WorldWideScience

Sample records for understanding complex matter

  1. Understanding the Complexity of Teacher Reflection in Action Research

    Science.gov (United States)

    Luttenberg, Johan; Meijer, Paulien; Oolbekkink-Marchand, Helma

    2017-01-01

    Reflection in action research is a complex matter, as is action research itself. In recent years, complexity science has regularly been called upon in order to more thoroughly understand the complexity of action research. The present article investigates the benefits that complexity science may yield for reflection in action research. This article…

  2. Fundamental understanding of matter: an engineering viewpoint

    International Nuclear Information System (INIS)

    Cullingford, H.S.; Cort, G.E.

    1980-01-01

    Fundamental understanding of matter is a continuous process that should produce physical data for use by engineers and scientists in their work. Lack of fundamental property data in any engineering endeavor cannot be mitigated by theoretical work that is not confirmed by physical experiments. An engineering viewpoint will be presented to justify the need for understanding of matter. Examples will be given in the energy engineering field to outline the importance of further understanding of material and fluid properties and behavior. Cases will be cited to show the effects of various data bases in energy, mass, and momentum transfer. The status of fundamental data sources will be discussed in terms of data centers, new areas of engineering, and the progress in measurement techniques. Conclusions and recommendations will be outlined to improve the current situation faced by engineers in carrying out their work. 4 figures

  3. Complexity analysis in particulate matter measurements

    Directory of Open Access Journals (Sweden)

    Luciano Telesca

    2011-09-01

    Full Text Available We investigated the complex temporal fluctuations of particulate matter data recorded in London area by using the Fisher-Shannon (FS information plane. In the FS plane the PM10 and PM2.5 data are aggregated in two different clusters, characterized by different degrees of order and organization. This results could be related to different sources of the particulate matter.

  4. Scalar dark matter: real vs complex

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hongyan; Zheng, Sibo [Department of Physics, Chongqing University,Chongqing 401331 (China)

    2017-03-27

    We update the parameter spaces for both a real and complex scalar dark matter via the Higgs portal. In the light of constraints arising from the LUX 2016 data, the latest Higgs invisible decay and the gamma ray spectrum, the dark matter resonant mass region is further restricted to a narrow window between 54.9−62.3 GeV in both cases, and its large mass region is excluded until 834 GeV and 3473 GeV for the real and complex scalar, respectively.

  5. Wet granular matter a truly complex fluid

    CERN Document Server

    Herminghaus, Stephan

    2013-01-01

    This is a monograph written for the young and advanced researcher who is entering the field of wet granular matter and keen to understand the basic physical principles governing this state of soft matter. It treats wet granulates as an instance of a ternary system, consisting of the grains, a primary, and a secondary fluid. After addressing wetting phenomena in general and outlining the basic facts on dry granular systems, a chapter on basic mechanisms and their effects is dedicated to every region of the ternary phase diagram. Effects of grain shape and roughness are considered as well. Rather than addressing engineering aspects such as existing books on this topic do, the book aims to provide a generalized framework suitable for those who want to understand these systems on a more fundamental basis. Readership: For the young and advanced researcher entering the field of wet granular matter.

  6. Understanding soft condensed matter via modeling and computation

    CERN Document Server

    Shi, An-Chang

    2011-01-01

    All living organisms consist of soft matter. For this reason alone, it is important to be able to understand and predict the structural and dynamical properties of soft materials such as polymers, surfactants, colloids, granular matter and liquids crystals. To achieve a better understanding of soft matter, three different approaches have to be integrated: experiment, theory and simulation. This book focuses on the third approach - but always in the context of the other two.

  7. PREFACE: The Physics of Soft Matter Complexes

    Science.gov (United States)

    Suezaki, Yukio

    2005-08-01

    The International Workshop on the Physics of Soft Matter Complexes was held from 29 November to 2 December 2004 at Tokyo Metropolitan University, Tokyo, Japan. The aim of the workshop was to discuss the current topics of composite systems of surfactants, polymers, colloids, liquid crystals and biological materials. Special attention was focused on the features that are realized due to the combination of those materials. Distinguished invited speakers from Japan and the rest of the world, and many other workers in the field, participated in this workshop. The topics covered were colloids, polymers, surfactants, biomaterials such as proteins and DNA, rheology, and their composite systems. We, the organizing committee of this workshop, wished not only to show the activity of Japanese workers in this field but also wanted to exchange and discuss ideas on the theme with workers from other countries. In addition, although as physicists we tend to study simple systems, as the theme of our workshop we focused on complex or composite systems. We hope that readers will see that the many excellent papers in this special issue of Journal of Physics: Condensed Matter show that the aim of the workshop was achieved. Lastly, we acknowledge that the workshop was held as part of the project for the promotion of international conferences by the Japan Society for the Promotion of Science.

  8. Understanding Supply Networks from Complex Adaptive Systems

    Directory of Open Access Journals (Sweden)

    Jamur Johnas Marchi

    2014-10-01

    Full Text Available This theoretical paper is based on complex adaptive systems (CAS that integrate dynamic and holistic elements, aiming to discuss supply networks as complex systems and their dynamic and co-evolutionary processes. The CAS approach can give clues to understand the dynamic nature and co-evolution of supply networks because it consists of an approach that incorporates systems and complexity. This paper’s overall contribution is to reinforce the theoretical discussion of studies that have addressed supply chain issues, such as CAS.

  9. Understanding Complex Construction Systems Through Modularity

    DEFF Research Database (Denmark)

    Jensen, Tor Clarke; Bekdik, Baris; Thuesen, Christian

    2014-01-01

    finds that the main driver of complexity is the fragmentation of the design and production, which causes the production modules to construct and install new product types and variants for each project as the designers are swapped for every project. The many interfaces are characteristics of an integral......This paper develops a framework for understanding complexity in construction projects by combining theories of complexity management and modularization. The framework incorporates three dimensions of product, process, and organizational modularity with the case of gypsum wall elements. The analysis...... system, rather than a modular, although the industry forces modular organizational structures. This creates a high complexity degree caused by the non-alignment of building parts and organizations and the frequent swapping of modules....

  10. Matter-wave interferometry with complex nanoparticles

    International Nuclear Information System (INIS)

    Geyer, P.

    2015-01-01

    Quantum Mechanics is one of the most thoroughly tested theories in physics; however the quantum phenomena that appear on the microscopic scale are incompatible with the behavior of the macroscopic world. Whether the transition between quantum and classical behavior is virtual or real is still an open question. During my thesis I have built, together with my colleagues, a Talbot-Lau interferometer with light gratings that is capable of handling very large and complex particles. With this device it will be possible to test some of the hypotheses that postulate mechanisms for the quantum to classic transition. During my thesis I have designed the experimental setup using CAD and we assembled the apparatus. I have designed and implemented the data acquisition and experiment control software system MOPS (Molecular Optics Programming System). Furthermore, I have implemented and tested various particle sources for the experiment to bring neutral particles into the gas phase at a velocity and with a beam flux that meets the requirements of the experiment. The Optical Time-domain Interferometer for Matter-waves (OTIMA) is made up of 3 retro-reflected, ⁓7 ns short excimer laser pulses with a wavelength of 157.6 nm, i.e. a grating period of 78.8 nm. The purely optical and pulsed diffraction elements avoid all dispersive interactions that would reduce the interference contrast. Therefore, we expect a high fringe contrast even for large particles; under realistic conditions on earth this type of interferometer is conceptually capable of exploring the wave-particle duality with particles up to 106 amu or even beyond. During my PhD thesis we successfully showed interference for single-photon ionizable molecular clusters up to 2300 amu. Furthermore, we have demonstrated that single-photon fragmentation gratings enable interference experiments with a new class of weakly bound particles and provided interesting perspectives for biomolecules. (author) [de

  11. Tracking Students' Understanding of the Particle Nature of Matter

    Science.gov (United States)

    Merritt, Joi Deshawn

    One reason students find it difficult to learn the particle model of matter is that traditional curriculum materials present concepts to students without helping them to develop these ideas. The How can I smell things from a distance? sixth grade chemistry unit takes the approach of building students' ideas through their construction and revision of models. Progress variables have been proposed as a means to address the need for curriculum and assessments that can help teachers' improve their practice as well as to inform both students and teachers about students' performance. Progress variables depict students' increasingly sophisticated conceptions of a specific construct during instruction. This study provides evidence that curriculum and assessment based on modern learning theories, can lead to the development of progress variables that are able to track middle school students' understanding of the particle nature of matter over time. This study used a progress variable to track student understanding of the particle nature of matter during the sixth grade chemistry unit. I describe the assessment system used to develop the progress variable for tracking students' development of particle model of matter during the sixth grade chemistry unit. A calibration study determined that the chemistry unit's assessments were reliable and valid measures of the particle model of matter progress variable. Further analysis revealed that the progress variable had to be modified such that the levels were more distinct. The modified progress variable was empirically validated so that it could be used to track students' understanding during instruction. Results indicate that a validated progress variable, linked to coherent curriculum and assessments can provide valid interpretations of students' knowledge of particular domain during instruction and that this progress variable is valid for students from varying populations and backgrounds. In addition, well-aligned curriculum and

  12. Dependency visualization for complex system understanding

    Energy Technology Data Exchange (ETDEWEB)

    Smart, J. Allison Cory [Univ. of California, Davis, CA (United States)

    1994-09-01

    With the volume of software in production use dramatically increasing, the importance of software maintenance has become strikingly apparent. Techniques now sought and developed for reverse engineering and design extraction and recovery. At present, numerous commercial products and research tools exist which are capable of visualizing a variety of programming languages and software constructs. The list of new tools and services continues to grow rapidly. Although the scope of the existing commercial and academic product set is quite broad, these tools still share a common underlying problem. The ability of each tool to visually organize object representations is increasingly impaired as the number of components and component dependencies within systems increases. Regardless of how objects are defined, complex ``spaghetti`` networks result in nearly all large system cases. While this problem is immediately apparent in modem systems analysis involving large software implementations, it is not new. As will be discussed in Chapter 2, related problems involving the theory of graphs were identified long ago. This important theoretical foundation provides a useful vehicle for representing and analyzing complex system structures. While the utility of directed graph based concepts in software tool design has been demonstrated in literature, these tools still lack the capabilities necessary for large system comprehension. This foundation must therefore be expanded with new organizational and visualization constructs necessary to meet this challenge. This dissertation addresses this need by constructing a conceptual model and a set of methods for interactively exploring, organizing, and understanding the structure of complex software systems.

  13. Evolution in students’ understanding of thermal physics with increasing complexity

    Directory of Open Access Journals (Sweden)

    Elon Langbeheim

    2013-11-01

    Full Text Available We analyze the development in students’ understanding of fundamental principles in the context of learning a current interdisciplinary research topic—soft matter—that was adapted to the level of high school students. The topic was introduced in a program for interested 11th grade high school students majoring in chemistry and/or physics, in an off-school setting. Soft matter was presented in a gradual increase in the degree of complexity of the phenomena as well as in the level of the quantitative analysis. We describe the evolution in students’ use of fundamental thermodynamics principles to reason about phase separation—a phenomenon that is ubiquitous in soft matter. In particular, we examine the impact of the use of free energy analysis, a common approach in soft matter, on the understanding of the fundamental principles of thermodynamics. The study used diagnostic questions and classroom observations to gauge the student’s learning. In order to gain insight on the aspects that shape the understanding of the basic principles, we focus on the responses and explanations of two case-study students who represent two trends of evolution in conceptual understanding in the group. We analyze changes in the two case studies’ management of conceptual resources used in their analysis of phase separation, and suggest how their prior knowledge and epistemological framing (a combination of their personal tendencies and their prior exposure to different learning styles affect their conceptual evolution. Finally, we propose strategies to improve the instruction of these concepts.

  14. Listening, understanding and interpreting: reflections on complexity.

    Science.gov (United States)

    Lichtenberg, J D

    1999-08-01

    Beginning with the premise that a contemporary approach to analytic exchanges has become far more complex and multi-faceted than in earlier times, the author addresses listening, understanding and interpreting. The opening section presents the basis and utility of a proposed theory of five motivational systems and identifies the need for a shift from conceptualising 'structures' to systems. The nature of communication during analysis is considered from several standpoints including listening for needs and intentions, the place of theory as a background to listening, an optimal state for analysand and analyst, and the significance of the distinction between inner monologue and spoken discourse. Differing views of free association and narrative, especially questions arising from findings of the 'adult attachment interview', are discussed. The patient's sensitivity to the presence and influence of the analyst and the analyst's recognition of non-verbal as well as verbal communications completes this section. In the final section a brief clinical example is presented to introduce a differentiated depiction of the variety of interventions that analysts employ. Throughout the paper, the author presents his view of listening, understanding and interpreting in dialectic contrast with the many other perspectives held by analysts in this period of theoretical pluralism.

  15. In between matters, interfaces in complex oxides

    NARCIS (Netherlands)

    van Zalk, M.

    2009-01-01

    Complex oxides are emerging as a versatile class of materials, exhibiting a wide variety of properties. In recent years, it has become increasingly clear that the properties of complex-oxide interfaces can differ considerably from those of the bulk. This opens up the possibility of tuning and

  16. In Between Matters : Interfaces in Complex Oxides

    NARCIS (Netherlands)

    van Zalk, M.

    2009-01-01

    Complex oxides are emerging as a versatile class of materials, exhibiting a wide variety of properties. In recent years, it has become increasingly clear that the properties of complex-oxide interfaces can differ considerably from those of the bulk. This opens up the possibility of tuning and

  17. Complexities of Parental Understanding of Phenylketonuria

    Science.gov (United States)

    Sibinga, Maarten S.; Friedman, C. Jack

    1971-01-01

    Parental understanding of PKU, investigated through a questionnaire, was evaluated as to completeness and with respect to distortion. Education of parents was found to be unrelated to their understanding or tendency to distort. Effectiveness of the pediatrician's communication with parents is discussed. (Author/KW)

  18. Understanding the Etiology of Tuberous Sclerosis Complex

    Science.gov (United States)

    2012-07-01

    of life as infantile spasms that are unresponsive to conventional anti-epileptic drug therapies (Curatolo et al., 2001; Holmes and Stafstrom, 2007... Infantile spasms in tuberous sclerosis complex. Brain Dev 23:502-507. DiMario FJ, Jr. (2004) Brain abnormalities in tuberous sclerosis complex. J...on chromosome 16. Cell, 75, 1305–1315. 3. Curatolo, P., Seri, S., Verdecchia, M. and Bombardieri, R. (2001) Infantile spasms in tuberous sclerosis

  19. Can we ever understand hadronic matter: a proposal

    International Nuclear Information System (INIS)

    Preparata, G.

    1978-01-01

    Quark theory of hadronic matter is discussed with emphasis on the proper description of off-shell effects and an adequate definition of current operators on the space of the wave functions of physical states. The basics of the physical hadron states are reviewed first: the meson (q-barq) wave function and its equations of motion; decoupling the high-l states - the fire sausage; the qq-bar Green's function - the Regge states. Then a more detailed discussion of the calculational rules is taken up, especially of the extension to the case of complex loop momenta. The following topics are addressed: implementing unitarity in a perturbative way; the irreducible kernel V 6 , the coupling of three bags and its extension to complex momenta; the kernel V 8 and the four-bag coupling; and graphical rules - off-shell effects. Next, the question of how to normalize the physical states, and therefore of how to introduce currents in a physically meaningful way, is considered. Then high-energy hadron scatterng and the problem of Reggeization are discussed (the production of resonances and of a single FS, bag exchange; four-bag coupling and the Pomeron). Next, deep inelastic scattering phenomena and scaling are treated, including e + e - annihilation into hadrons. Finally, hadron production at large p/sub T/ is described; the totally inclusive Fs decay and the semi-inclusive FS decay at large angle are considered. In conclusion, the results of the work are assessed. 26 figures

  20. School Phobia: Understanding a Complex Behavioural Response

    Science.gov (United States)

    Chitiyo, Morgan; Wheeler, John J.

    2006-01-01

    School phobia affects about 5% of the school-age population. If left untreated, school phobia can have devastating long-term consequences in children challenged by this condition. Various treatment approaches have been used to explore this complex behavioural response, major among them being the psychoanalytic, psychodynamic, pharmacological and…

  1. Understanding the Complexity of a Rising China

    Science.gov (United States)

    2016-05-26

    at the macro-level are determined by security interests derived from anarchy.48 From this mindset , Waltz attempted to draw on elements of complexity...artificialities. The restrictions prevented the expansion of the PRC multinational corporations, as it was more difficult for Chinese entrepreneurs to receive...unknowable.” This does not mean there is no point in planning. It simply establishes a mindset that there are no universal truths or solution sets. All

  2. Understanding complex interactions using social network analysis.

    Science.gov (United States)

    Pow, Janette; Gayen, Kaberi; Elliott, Lawrie; Raeside, Robert

    2012-10-01

    The aim of this paper is to raise the awareness of social network analysis as a method to facilitate research in nursing research. The application of social network analysis in assessing network properties has allowed greater insight to be gained in many areas including sociology, politics, business organisation and health care. However, the use of social networks in nursing has not received sufficient attention. Review of literature and illustration of the application of the method of social network analysis using research examples. First, the value of social networks will be discussed. Then by using illustrative examples, the value of social network analysis to nursing will be demonstrated. The method of social network analysis is found to give greater insights into social situations involving interactions between individuals and has particular application to the study of interactions between nurses and between nurses and patients and other actors. Social networks are systems in which people interact. Two quantitative techniques help our understanding of these networks. The first is visualisation of the network. The second is centrality. Individuals with high centrality are key communicators in a network. Applying social network analysis to nursing provides a simple method that helps gain an understanding of human interaction and how this might influence various health outcomes. It allows influential individuals (actors) to be identified. Their influence on the formation of social norms and communication can determine the extent to which new interventions or ways of thinking are accepted by a group. Thus, working with key individuals in a network could be critical to the success and sustainability of an intervention. Social network analysis can also help to assess the effectiveness of such interventions for the recipient and the service provider. © 2012 Blackwell Publishing Ltd.

  3. Complexation of lead by organic matter in Luanda Bay, Angola.

    Science.gov (United States)

    Leitão, Anabela; Santos, Ana Maria; Boaventura, Rui A R

    2015-10-01

    Speciation is defined as the distribution of an element among different chemical species. Although the relation between speciation and bioavailability is complex, the metal present as free hydrated ion, or as weak complexes able to dissociate, is usually more bioavailable than the metal incorporated in strong complexes or adsorbed on colloidal or particulate matter. Among the analytical techniques currently available, anodic stripping voltammetry (ASV) has been one of the most used in the identification and quantification of several heavy metal species in aquatic systems. This work concerns the speciation study of lead, in original (natural, non-filtered) and filtered water samples and in suspensions of particulate matter and sediments from Luanda Bay (Angola). Complexes of lead with organics were identified and quantified by differential pulse anodic stripping voltammetry technique. Each sample was progressively titrated with a Pb(II) standard solution until complete saturation of the organic ligands. After each addition of Pb(II), the intensity, potential and peak width of the voltammetric signal were measured. The results obtained in this work show that more than 95 % of the lead in the aquatic environment is bound in inert organic complexes, considering all samples from different sampling sites. In sediment samples, the lead is totally (100 %) complexed with ligands adsorbed on the particles surface. Two kinds of dominant lead complexes, very strong (logK >11) and strong to moderately strong (8< logK <11), were found, revealing the lead affinity for the stronger ligands.

  4. Understanding Physical Educators' Perceptions of Mattering Questionnaire--Physical Education

    Science.gov (United States)

    Richards, K. Andrew R.; Gaudreault, Karen Lux; Woods, Amelia Mays

    2017-01-01

    Previous research has illustrated that physical educators feel their subject is valued less than others in the context of schools. However, to date, no instruments have been developed to measure physical education teachers' perceptions of mattering. This study sought to propose and validate the Perceived Mattering Questionnaire--Physical Education…

  5. Understanding and controlling complex states arising from magnetic frustration

    Energy Technology Data Exchange (ETDEWEB)

    Zapf, Vivien [Los Alamos National Laboratory

    2012-06-01

    Much of our national security relies on capabilities made possible by magnetism, in particular the ability to compute and store huge bodies of information as well as to move things and sense the world. Most of these technologies exploit ferromagnetism, i.e. the global parallel alignment of magnetic spins as seen in a bar magnet. Recent advances in computing technologies, such as spintronics and MRAM, take advantage of antiferromagnetism where the magnetic spins alternate from one to the next. In certain crystal structures, however, the spins take on even more complex arrangements. These are often created by frustration, where the interactions between spins cannot be satisfied locally or globally within the material resulting in complex and often non-coplanar spin textures. Frustration also leads to the close proximity of many different magnetic states, which can be selected by small perturbations in parameters like magnetic fields, temperature and pressure. It is this tunability that makes frustrated systems fundamentally interesting and highly desirable for applications. We move beyond frustration in insulators to itinerant systems where the interaction between mobile electrons and the non-coplanar magnetic states lead to quantum magneto-electric amplification. Here a small external field is amplified by many orders of magnitude by non-coplanar frustrated states. This greatly enhances their sensitivity and opens broader fields for applications. Our objective is to pioneer a new direction for condensed matter science at the Laboratory as well as for international community by discovering, understanding and controlling states that emerge from the coupling of itinerant charges to frustrated spin textures.

  6. A Chargeless Complex Vector Matter Field in Supersymmetric Scenario

    Directory of Open Access Journals (Sweden)

    L. P. Colatto

    2015-01-01

    Full Text Available We construct and study a formulation of a chargeless complex vector matter field in a supersymmetric framework. To this aim we combine two nochiral scalar superfields in order to take the vector component field to build the chargeless complex vector superpartner where the respective field strength transforms into matter fields by a global U1 gauge symmetry. For the aim of dealing with consistent terms without breaking the global U1 symmetry we imposes a choice to the complex combination revealing a kind of symmetry between the choices and eliminates the extra degrees of freedom which is consistent with the supersymmetry. As the usual case the mass supersymmetric sector contributes as a complement to dynamics of the model. We obtain the equations of motion of the Proca’s type field for the chiral spinor fields and for the scalar field on the mass-shell which show the same mass as expected. This work establishes the first steps to extend the analysis of charged massive vector field in a supersymmetric scenario.

  7. Simple, complex and hyper-complex understanding - enhanced sensitivity in observation of information

    DEFF Research Database (Denmark)

    Bering Keiding, Tina

    enhanced transparency in selection of understanding as well as enhanced sensitivity and definition in dept. The contribution suggest that we distinguish between three types of understanding; simple, complex and hyper-complex understanding. Simple understanding is the simultaneous selection of understanding......-order observation. Hyper-complex, or third-order observation, observes conditions for indication; that is conditions for actualization of the specific form of the difference constructed through second-order observation. The three types are partly deduced from Luhmanns concept of understanding, partly generated...

  8. Understanding Music's Therapeutic Efficacy with Implications for Why Music Matters

    Science.gov (United States)

    Thram, Diane

    2015-01-01

    In this essay, I focus on how attention to music's therapeutic efficacy is important to the praxial music education philosophy espoused by Elliott and Silverman. I note, despite the use of the term praxis from Aristotle's philosophy dating back to antiquity, there is no mention in Music Matters 2 of what historical evidence tells us about how…

  9. Understanding Learner Agency as a Complex Dynamic System

    Science.gov (United States)

    Mercer, Sarah

    2011-01-01

    This paper attempts to contribute to a fuller understanding of the nature of language learner agency by considering it as a complex dynamic system. The purpose of the study was to explore detailed situated data to examine to what extent it is feasible to view learner agency through the lens of complexity theory. Data were generated through a…

  10. Ecosystemic Complexity Theory of Conflict: Understanding the Fog of Conflict

    Science.gov (United States)

    Brack, Greg; Lassiter, Pamela S.; Hill, Michele B.; Moore, Sarah A.

    2011-01-01

    Counselors often engage in conflict mediation in professional practice. A model for understanding the complex and subtle nature of conflict resolution is presented. The ecosystemic complexity theory of conflict is offered to assist practitioners in navigating the fog of conflict. Theoretical assumptions are discussed with implications for clinical…

  11. Understanding the Toothbrush Merging Galaxy Cluster to Constrain Dark Matter

    Science.gov (United States)

    Dawson, William; Brüggen, M.; Van Weeren, R. J.; Wittman, D. M.

    2014-01-01

    Merging galaxy clusters have proven to be one of the most important probes of dark matter self-interaction properties. If their full dark matter constraining power is to be realized though, we must accurately quantify the properties of these dissociative mergers. Some properties such as mass and relative line of sight velocity can be directly measured and sufficiently constrained, but there remains considerable uncertainty on indirect properties of the mergers. Indirect properties such as the angle of the merger axis with the plane of the sky and collision velocity are crucial to translating the gravitational lensing measurements of the mass, X-ray measurements of the cluster gas and optical measurements of the galaxies into constraints on the dark matter properties. By utilizing multi-wavelength measurements (X-ray to radio), of the Toothbrush radio relic dissociative merger (1RXS J0603+4212) we show that we can improve the constraints on the indirect parameters of the merger by up to an order of magnitude vs. traditional approaches. By utilizing multi-wavelength measurements (X-ray to radio), of the Toothbrush radio relic dissociative merger we show that we can improve the constraints on the indirect parameters of the merger by up to an order of magnitude vs. traditional approaches.

  12. Understanding complex urban systems multidisciplinary approaches to modeling

    CERN Document Server

    Gurr, Jens; Schmidt, J

    2014-01-01

    Understanding Complex Urban Systems takes as its point of departure the insight that the challenges of global urbanization and the complexity of urban systems cannot be understood – let alone ‘managed’ – by sectoral and disciplinary approaches alone. But while there has recently been significant progress in broadening and refining the methodologies for the quantitative modeling of complex urban systems, in deepening the theoretical understanding of cities as complex systems, or in illuminating the implications for urban planning, there is still a lack of well-founded conceptual thinking on the methodological foundations and the strategies of modeling urban complexity across the disciplines. Bringing together experts from the fields of urban and spatial planning, ecology, urban geography, real estate analysis, organizational cybernetics, stochastic optimization, and literary studies, as well as specialists in various systems approaches and in transdisciplinary methodologies of urban analysis, the volum...

  13. Mercury reduction and complexation by natural organic matter

    International Nuclear Information System (INIS)

    Gu, Baohua; Bian, Yongrong; Miller, Carrie L.; Dong, Wenming; Jiang, Xin; Liang, Liyuan

    2011-01-01

    Mercuric Hg(II) species form complexes with natural dissolved organic matter (DOM) such as humic acid (HA), and this binding is known to affect the chemical and biological transformation and cycling of mercury in aquatic environments. Dissolved elemental mercury, Hg(0), is also widely observed in sediments and water. However, reactions between Hg(0) and DOM have rarely been studied in anoxic environments. Here, under anoxic dark conditions we show strong interactions between reduced HA and Hg(0) through thiol-ligand induced oxidative complexation with an estimated binding capacity of about 3.5 umol Hg(0)/g HA and a partitioning coefficient greater than 10 6 mL/g. We further demonstrate that Hg(II) can be effectively reduced to Hg(0) in the presence of as little as 0.2 mg/L reduced HA, whereas production of purgeable Hg(0) is inhibited by complexation as HA concentration increases. This dual role played by DOM in the reduction and complexation of mercury is likely widespread in anoxic sediments and water and can be expected to significantly influence the mercury species transformations and biological uptake that leads to the formation of toxic methylmercury.

  14. Physics understanding the properties of matter and energy

    CERN Document Server

    2015-01-01

    Without physics, modern life would not exist. Instead of electric light, we would read by the light of candles. We couldn''t build skyscrapers. We could not possibly bridge rivers, much less build a jet or interplanetary craft. Computers and smartphones would be unimaginable. Physics is concerned with the most fundamental aspects of matter and energy and how they interact to make the physical universe work. In accessible language and with explanatory graphics and visual aids, this book introduces readers to the science that is at the very center of all other sciences and essential to our very

  15. Framework for Understanding LENR Processes, Using Ordinary Condensed Matter Physics

    Science.gov (United States)

    Chubb, Scott

    2005-03-01

    As I have emphasizedootnotetextS.R. Chubb, Proc. ICCF10 (in press). Also, http://www.lenr-canr.org/acrobat/ChubbSRnutsandbol.pdf http://www.lenr-canr.org/acrobat/ChubbSRnutsandbol.pdf, S.R. Chubb, Trans. Amer. Nuc. Soc. 88 , 618 (2003)., in discussions of Low Energy Nuclear Reactions(LENRs), mainstream many-body physics ideas have been largely ignored. A key point is that in condensed matter, delocalized, wave-like effects can allow large amounts of momentum to be transferred instantly to distant locations, without any particular particle (or particles) acquiring high velocity through a Broken Gauge Symmetry. Explicit features in the electronic structure explain how this can occur^1 in finite size PdD crystals, with real boundaries. The essential physics^1 can be related to standard many-body techniquesootnotetextBurke,P.G. and K.A. Berrington, Atomic and Molecular Processes:an R matrix Approach (Bristol: IOP Publishing, 1993).. In the paper, I examine this relationship, the relationship of the theory^1 to other LENR theories, and the importance of certain features (for example, boundaries^1) that are not included in the other LENR theories.

  16. Understanding complex systems: lessons from Auzoux's and von ...

    Indian Academy of Sciences (India)

    2009-12-09

    Dec 9, 2009 ... Animal and human anatomy is among the most complex systems known, and suitable teaching methods have been of great importance in the progress of knowledge. Examining the human body is part of the process by which medical students come to understand living forms. However, the need to ...

  17. Understanding the Complexity of Social Issues through Process Drama.

    Science.gov (United States)

    O'Mara, Joanne

    2002-01-01

    Attempts to capture the process of understanding and questioning deforestation through process drama (in which students and teacher work both in and out of role to explore a problem, situation, or theme). Notes that moving topics such as the destruction of a rainforest into process drama introduces complexity into social issues. Considers how…

  18. Understanding complex urban systems integrating multidisciplinary data in urban models

    CERN Document Server

    Gebetsroither-Geringer, Ernst; Atun, Funda; Werner, Liss

    2016-01-01

    This book is devoted to the modeling and understanding of complex urban systems. This second volume of Understanding Complex Urban Systems focuses on the challenges of the modeling tools, concerning, e.g., the quality and quantity of data and the selection of an appropriate modeling approach. It is meant to support urban decision-makers—including municipal politicians, spatial planners, and citizen groups—in choosing an appropriate modeling approach for their particular modeling requirements. The contributors to this volume are from different disciplines, but all share the same goal: optimizing the representation of complex urban systems. They present and discuss a variety of approaches for dealing with data-availability problems and finding appropriate modeling approaches—and not only in terms of computer modeling. The selection of articles featured in this volume reflect a broad variety of new and established modeling approaches such as: - An argument for using Big Data methods in conjunction with Age...

  19. Increasing process understanding by analyzing complex interactions in experimental data

    DEFF Research Database (Denmark)

    Naelapaa, Kaisa; Allesø, Morten; Kristensen, Henning Gjelstrup

    2009-01-01

    There is a recognized need for new approaches to understand unit operations with pharmaceutical relevance. A method for analyzing complex interactions in experimental data is introduced. Higher-order interactions do exist between process parameters, which complicate the interpretation...... understanding of a coating process. It was possible to model the response, that is, the amount of drug released, using both mentioned techniques. However, the ANOVAmodel was difficult to interpret as several interactions between process parameters existed. In contrast to ANOVA, GEMANOVA is especially suited...... for modeling complex interactions and making easily understandable models of these. GEMANOVA modeling allowed a simple visualization of the entire experimental space. Furthermore, information was obtained on how relative changes in the settings of process parameters influence the film quality and thereby drug...

  20. IDMS: inert dark matter model with a complex singlet

    Science.gov (United States)

    Bonilla, Cesar; Sokolowska, Dorota; Darvishi, Neda; Diaz-Cruz, J. Lorenzo; Krawczyk, Maria

    2016-06-01

    We study an extension of the inert doublet model (IDM) that includes an extra complex singlet of the scalars fields, which we call the IDMS. In this model there are three Higgs particles, among them a SM-like Higgs particle, and the lightest neutral scalar, from the inert sector, remains a viable dark matter (DM) candidate. We assume a non-zero complex vacuum expectation value for the singlet, so that the visible sector can introduce extra sources of CP violation. We construct the scalar potential of IDMS, assuming an exact Z 2 symmetry, with the new singlet being Z 2-even, as well as a softly broken U(1) symmetry, which allows a reduced number of free parameters in the potential. In this paper we explore the foundations of the model, in particular the masses and interactions of scalar particles for a few benchmark scenarios. Constraints from collider physics, in particular from the Higgs signal observed at the Large Hadron Collider with {M}h≈ 125 {{GeV}}, as well as constraints from the DM experiments, such as relic density measurements and direct detection limits, are included in the analysis. We observe significant differences with respect to the IDM in relic density values from additional annihilation channels, interference and resonance effects due to the extended Higgs sector.

  1. Perception and understanding of intentions and actions: does gender matter?

    Science.gov (United States)

    Pavlova, Marina

    2009-01-09

    Perception of intentions and dispositions of others through body motion, body language, gestures and actions is of immense importance for a variety of daily-life situations and adaptive social behavior. This ability is of particular value because of the potential discrepancy between verbal and non-verbal communication levels. Recent data shows that some aspects of visual social perception are gender dependent. The present study asks whether and, if so, how the ability for perception and understanding of others' intentions and actions depends on perceivers' gender. With this purpose in mind, a visual event arrangement (EA) task was administered to female and male participants of two groups, adolescents aged 13-16 years and young adults. The main outcome of the study shows no difference in performance on the EA task between female and male participants in both groups. The findings are discussed in terms of gender-related differences in behavioral components and brain mechanisms engaged in visual social perception.

  2. Understanding Decision Making through Complexity in Professional Networks

    Directory of Open Access Journals (Sweden)

    Kon Shing Kenneth Chung

    2014-01-01

    Full Text Available The attitudes of general practitioners (GP play an influential role in their decision making about patient treatment and care. Considering the GP-patient encounter as a complex system, the interactions between the GP and their personal network of peers give rise to “aggregate complexity,” which in turn influences the GP’s decisions about patient treatment. This study models aggregate complexity and its influence in decision making in primary care through the use of social network metrics. Professional network and attitudinal data on decision making responsibility from 107 rural GPs were analysed. Social network measures of “density” and “inclusiveness” were used for computing the “interrelatedness” of components within such a “complex system.” The “number of components” and “degree of interrelatedness” were used to determine the complexity profiles, which was then used to associate with responsibility in decision making for each GP. GPs in simple profiles (i.e., with low components and interactions in contrast to those in nonsimple profiles, indicate a higher responsibility for the decisions they make in medical care. This study suggests that social networks-based complexity profiles are useful for understanding decision making in primary care as it accounts for the role of influence through the professional networks of GPs.

  3. Understanding the complex interplay between tourism, disability and environmental contexts.

    Science.gov (United States)

    Packer, Tanya L; McKercher, Bob; Yau, Matthew K

    2007-02-28

    To explore and describe the complex issues and factors related to participation in tourism as perceived by people with disabilities in Hong Kong. Naturalistic inquiry using key informant interviews and focus groups with 86 people with disabilities. Interviews were transcribed, translated and coded to develop themes and relationships. Triangulation of three investigators from different backgrounds occurred. The Process of Becoming Travel Active emerged as a six-stage process, intricately related to the personal/disability context and the environmental/travel context. Personal and environmental factors contribute to the six-stage model explaining the complex interplay between tourism, disability and environmental context. Understanding the complexity provides insight into ways to increase active participation in tourism. Health, tourism and disability sectors have a role to play in the development of accessible tourism.

  4. Disaster forensics understanding root cause and complex causality

    CERN Document Server

    2016-01-01

    This book aims to uncover the root causes of natural and man-made disasters by going beyond the typical reports and case studies conducted post-disaster. It opens the black box of disasters by presenting ‘forensic analysis approaches’ to disasters, thereby revealing the complex causality that characterizes them and explaining how and why hazards do, or do not, become disasters. This yields ‘systemic’ strategies for managing disasters. Recently the global threat landscape has seen the emergence of high impact, low probability events. Events like Hurricane Katrina, the Great Japan Earthquake and tsunami, Hurricane Sandy, Super Typhoon Haiyan, global terrorist activities have become the new norm. Extreme events challenge our understanding regarding the interdependencies and complexity of the disaster aetiology and are often referred to as Black Swans. Between 2002 and 2011, there were 4130 disasters recorded that resulted from natural hazards around the world. In these, 1,117,527 people perished and a mi...

  5. Complexity and simplification in understanding recruitment in benthic populations

    KAUST Repository

    Pineda, Jesús

    2008-11-13

    Research of complex systems and problems, entities with many dependencies, is often reductionist. The reductionist approach splits systems or problems into different components, and then addresses these components one by one. This approach has been used in the study of recruitment and population dynamics of marine benthic (bottom-dwelling) species. Another approach examines benthic population dynamics by looking at a small set of processes. This approach is statistical or model-oriented. Simplified approaches identify "macroecological" patterns or attempt to identify and model the essential, "first-order" elements of the system. The complexity of the recruitment and population dynamics problems stems from the number of processes that can potentially influence benthic populations, including (1) larval pool dynamics, (2) larval transport, (3) settlement, and (4) post-settlement biotic and abiotic processes, and larval production. Moreover, these processes are non-linear, some interact, and they may operate on disparate scales. This contribution discusses reductionist and simplified approaches to study benthic recruitment and population dynamics of bottom-dwelling marine invertebrates. We first address complexity in two processes known to influence recruitment, larval transport, and post-settlement survival to reproduction, and discuss the difficulty in understanding recruitment by looking at relevant processes individually and in isolation. We then address the simplified approach, which reduces the number of processes and makes the problem manageable. We discuss how simplifications and "broad-brush first-order approaches" may muddle our understanding of recruitment. Lack of empirical determination of the fundamental processes often results in mistaken inferences, and processes and parameters used in some models can bias our view of processes influencing recruitment. We conclude with a discussion on how to reconcile complex and simplified approaches. Although it

  6. "Understanding Adam" multiple reciprocal translocations: complex case presentation.

    Science.gov (United States)

    Linder, Carie E; Lu, Xianglan; Kim, Young Mi; Li, Shibo; Pineda, Jose

    2009-01-01

    This article presents a case review of a newborn diagnosed with a complex chromosomal rearrangement, as demonstrated through a painted chromosomal analysis. This infant presented with multiple dysmorphology including cutis aplasia, multiple ocular malformations, bilateral cleft lip and palate, and postnatal hydrocephaly. A chromosomal analysis revealed multiple-ways, balanced translocation involving chromosomes 3, 4, 6, 8, and 9. This case study provides a unique opportunity to, in retrospect, trace each malformation exploring the pathophysiology, etiology, and correlating origin with chromosomal variation. Careful review of this case, enhanced by the visually augmented representation of each translocation, will increase understanding of chromosomal anomalies and their implications in embryological development and clinical presentation.

  7. Understanding Parkinson Disease: A Complex and Multifaceted Illness.

    Science.gov (United States)

    Gopalakrishna, Apoorva; Alexander, Sheila A

    2015-12-01

    Parkinson disease is an incredibly complex and multifaceted illness affecting millions of people in the United States. Parkinson disease is characterized by progressive dopaminergic neuronal dysfunction and loss, leading to debilitating motor, cognitive, and behavioral symptoms. Parkinson disease is an enigmatic illness that is still extensively researched today to search for a better understanding of the disease, develop therapeutic interventions to halt or slow progression of the disease, and optimize patient outcomes. This article aims to examine in detail the normal function of the basal ganglia and dopaminergic neurons in the central nervous system, the etiology and pathophysiology of Parkinson disease, related signs and symptoms, current treatment, and finally, the profound impact of understanding the disease on nursing care.

  8. Understanding Neuronal Architecture in Obesity through Analysis of White Matter Connection Strength.

    Science.gov (United States)

    Riederer, Justin W; Shott, Megan E; Deguzman, Marisa; Pryor, Tamara L; Frank, Guido K W

    2016-01-01

    Despite the prevalence of obesity, our understanding of its neurobiological underpinnings is insufficient. Diffusion weighted imaging and calculation of white matter connection strength are methods to describe the architecture of anatomical white matter tracts. This study is aimed to characterize white matter architecture within taste-reward circuitry in a population of obese individuals. Obese (n = 18, age = 28.7 ± 8.3 years) and healthy control (n = 24, age = 27.4 ± 6.3 years) women underwent diffusion weighted imaging. Using probabilistic fiber tractography (FSL PROBTRACKX2 toolbox) we calculated connection strength within 138 anatomical white matter tracts. Obese women (OB) displayed lower and greater connectivity within taste-reward circuitry compared to controls (Wilks' λ sensory integration and reward processing are key associations that are altered in and might contribute to obesity.

  9. Land, power and conflict in Afghanistan: seeking to understand complexity

    Directory of Open Access Journals (Sweden)

    Adam Pain

    2013-06-01

    Full Text Available This paper explores the diverse links between land and power under conditions of conflict in Afghanistan, taking into account the complexities of Afghan society. These complexities are structured around interconnecting informal institutions and personalised relationships, culturally specific, diverse and shifting patterns of social relations, and spatially specific patterns of land ownership inequalities. The paper draws on a decade of empirical fieldwork in Afghanistan and recent work on livelihood trajectories and the opium economy. An understanding of the evolution of land ownership and access issues needs to be associated with an appreciation of diverse and potentially contradictory long-term drivers of change in the rural economy. The first of these long-term drivers of change relates to the effects of conflict, not only on land but also of water access under conditions of an increasingly scarce water supply. The second driver relates both to the roles played by village elites and to the structural contrasts between villages located in the mountains and in the plains, with the latter displaying major inequalities in land ownership. The third driver relates to the declining economic role of land in rural livelihoods, given long-term agrarian change and falling farm sizes. An understanding of history is fundamental to explaining these phenomena. How such conflicts play out, and which social groups or individuals they involve, also depend to a large degree on spatial positioning.

  10. The Effect of Logical Thinking and Two Cognitive Styles on Understanding the Structure of Matter: An Analysis with the Random Walk Method

    Science.gov (United States)

    Stamovlasis, Dimitrios; Tsitsipis, Georgios; Papageorgiou, George

    2010-01-01

    This work uses the concepts and tools of complexity theory to examine the effect of logical thinking and two cognitive styles, such as, the degree of field dependence/independence and the convergent/divergent thinking on students' understanding of the structure of matter. Students were categorized according to the model they adopted for the…

  11. Neuroanthropological Understanding of Complex Cognition – Numerosity and Arithmetics

    Directory of Open Access Journals (Sweden)

    Zarja Mursic

    2013-10-01

    Full Text Available Humankind has a long evolutionary history. When we are trying to understand human complex cognition, it is as well important to look back to entire evolution. I will present the thesis that our biological predispositions and culture, together with natural and social environment, are tightly connected. During ontogenetically development we are shaped by various factors, and they enabled humans to develop some aspects of complex cognition, such as mathematics.In the beginning of the article I present the importance of natural and cultural evolution in other animals. In the following part, I briefly examine the field of mathematics – numerosity and arithmetic. Presentation of comparative animal studies, mainly made on primates, provides some interesting examples in animals’ abilities to separate between different quantities. From abilities for numerosity in animals I continue to neuroscientific studies of humans and our ability to solve simple arithmetic tasks. I also mention cross-cultural studies of arithmetic skills. In the final part of the text I present the field neuroanthropology as a possible new pillar of cognitive science. Finally, it is important to connect human evolution and development with animal cognition studies, but as well with cross-cultural studies in shaping of human ability for numerosity and arithmetic.

  12. Understanding and measuring quality of care: dealing with complexity.

    Science.gov (United States)

    Hanefeld, Johanna; Powell-Jackson, Timothy; Balabanova, Dina

    2017-05-01

    Existing definitions and measurement approaches of quality of health care often fail to address the complexities involved in understanding quality of care. It is perceptions of quality, rather than clinical indicators of quality, that drive service utilization and are essential to increasing demand. Here we reflect on the nature of quality, how perceptions of quality influence health systems and what such perceptions indicate about measurement of quality within health systems. We discuss six specific challenges related to the conceptualization and measurement of the quality of care: perceived quality as a driver of service utilization; quality as a concept shaped over time through experience; responsiveness as a key attribute of quality; the role of management and other so-called upstream factors; quality as a social construct co-produced by families, individuals, networks and providers; and the implications of our observations for measurement. Within the communities and societies where care is provided, quality of care cannot be understood outside social norms, relationships, trust and values. We need to improve not only technical quality but also acceptability, responsiveness and levels of patient-provider trust. Measurement approaches need to be reconsidered. An improved understanding of all the attributes of quality in health systems and their interrelationships could support the expansion of access to essential health interventions.

  13. Momentum conserving Brownian dynamics propagator for complex soft matter fluids

    NARCIS (Netherlands)

    Padding, J.T.; Briels, Willem J.

    2014-01-01

    We present a Galilean invariant, momentum conserving first order Brownian dynamics scheme for coarse-grained simulations of highly frictional soft matter systems. Friction forces are taken to be with respect to moving background material. The motion of the background material is described by locally

  14. Understanding complexity in neurodegenerative diseases: in silico reconstruction of emergence

    Directory of Open Access Journals (Sweden)

    Alexey eKolodkin

    2012-07-01

    Full Text Available Healthy functioning is an emergent property of the network of interacting biomolecules that comprise an organism. It follows that disease (a network shift that causes malfunction is also an emergent property, emerging from a perturbation of the network. On one hand, the biomolecular network of every individual is unique and this is evident when similar disease-producing agents cause different individual pathologies. Consequently, a personalized model and approach for every patient may be required for therapies to become effective across mankind. On the other hand, diverse combinations of internal and external perturbation factors may cause a similar shift in network functioning. We offer this as an explanation for the multi-factorial nature of most diseases: they are ‘systems biology diseases’, or ‘network diseases’. Here we focus on neurodegenerative diseases, like Parkinson’s disease, as an example. Because of the inherent complexity of these networks, it is difficult to understand multi-factorial diseases using simply our ‘naked brain’. When describing interactions between biomolecules through mathematical equations and integrating those equations into a mathematical model, we try to reconstruct the emergent properties of the system in silico. The reconstruction of emergence from interactions between huge numbers of macromolecules is one of the aims of systems biology. Systems biology approaches enable us to break through the limitation of the human brain to perceive the extraordinarily large number of interactions, but this also means that we delegate the understanding of reality to the computer. We no longer recognize all those essences in the system’s design crucial for important physiological behavior (the so-called ‘design principles’ of the system. In this paper we review evidence that by using more abstract approaches and by experimenting in silico, one may still be able to discover and understand the design

  15. Spatial Reasoning and Understanding the Particulate Nature of Matter: A Middle School Perspective

    Science.gov (United States)

    Cole, Merryn L.

    This dissertation employed a mixed-methods approach to examine the relationship between spatial reasoning ability and understanding of chemistry content for both middle school students and their science teachers. Spatial reasoning has been linked to success in learning STEM subjects (Wai, Lubinski, & Benbow, 2009). Previous studies have shown a correlation between understanding of chemistry content and spatial reasoning ability (e.g., Pribyl & Bodner, 1987; Wu & Shah, 2003: Stieff, 2013), raising the importance of developing the spatial reasoning ability of both teachers and students. Few studies examine middle school students' or in-service middle school teachers' understanding of chemistry concepts or its relation to spatial reasoning ability. The first paper in this dissertation addresses the quantitative relationship between mental rotation, a type of spatial reasoning ability, and understanding a fundamental concept in chemistry, the particulate nature of matter. The data showed a significant, positive correlation between scores on the Purdue Spatial Visualization Test of Rotations (PSVT; Bodner & Guay, 1997) and the Particulate Nature of Matter Assessment (ParNoMA; Yezierski, 2003) for middle school students prior to and after chemistry instruction. A significant difference in spatial ability among students choosing different answer choices on ParNoMA questions was also found. The second paper examined the ways in which students of different spatial abilities talked about matter and chemicals differently. Students with higher spatial ability tended to provide more of an explanation, though not necessarily in an articulate matter. In contrast, lower spatial ability students tended to use any keywords that seemed relevant, but provided little or no explanation. The third paper examined the relationship between mental reasoning and understanding chemistry for middle school science teachers. Similar to their students, a significant, positive correlation between

  16. Organic matter linked radionuclide transport in Boom clay - Phenomenological understanding and abstraction to PA

    International Nuclear Information System (INIS)

    Maes, N.; Bruggeman, C.; Liu, D.J.; Salah, S.; Van Laer, L.; Wang, L.; Weetjens, E.; Govaerts, J.; Marivoet, J.; Brassinnes, S.

    2012-01-01

    Document available in extended abstract form only. In the frame of the Belgian research program on long term management of high-level and/or long-lived radioactive wastes coordinated by ONDRAF/NIRAS, plastic clays (i.e., Boom Clay and Ypresian clays) are investigated for their potential to host a deep geological disposal repository for radioactive waste because of, among others, their ability to significantly retard radionuclide releases to the biosphere. The Boom Clay is characterised by the presence of a relatively high amount of dissolved organic matter (DOM, humic substances) which show a strong interaction with a suite of radionuclides (RN) like lanthanides, actinides and transition metals. This interaction with DOM leads in general to an increased mobility of the radionuclide as the OM can act as a colloidal carrier for the radionuclide. Therefore, the quantification and the understanding of the underlying processes are needed for the demonstration of confidence in the host formation to act as a suitable barrier. However, this is not an easy task, given the multitude of processes involved: complexation/colloid formation, sorption, kinetics, filtration, -. In this presentation, we will provide an overview of the research work that leads to a straightforward reactive transport model capturing fairly well the experimental observations. The model can be considered as an intermediate model providing a good basis for further safety abstraction on the one hand and the way to a more detailed phenomenological understanding on the other hand. The research is focussed on the underlying processes that govern speciation, sorption and transport. These underlying processes are investigated in a bottom-up approach, from simple systems to more complex systems. Interpretation is done using thermodynamic based models. Whereas the contribution of Bruggeman et al. focusses mainly on (batch) sorption studies (of trivalent RN), this presentation will provide more details on the

  17. Complexation with dissolved organic matter and solubility control of heavy metals in sandy soil

    NARCIS (Netherlands)

    Weng, L.; Temminghoff, E.J.M.; Lofts, S.; Tipping, E.; Riemsdijk, van W.H.

    2002-01-01

    The complexation of heavy metals with dissolved organic matter (DOM) in the environment influences the solubility and mobility of these metals. In this paper, we measured the complexation of Cu, Cd, Zn, Ni, and Pb with DOM in the soil solution at pH 3.7-6.1 using a Donnan membrane technique. The

  18. Characterization of Aluminum(III) Complexes in Coal Organic Matter

    Czech Academy of Sciences Publication Activity Database

    Straka, Pavel

    2016-01-01

    Roč. 7, č. 4 (2016), s. 378-394 ISSN 2156-8251 Institutional support: RVO:67985891 Keywords : aluminium * complex * 27Al MAS NMR * coal * lignite * altered coal Subject RIV: DD - Geochemistry http://www.scirp.org/journal/AJAC/

  19. Understanding global health governance as a complex adaptive system.

    Science.gov (United States)

    Hill, Peter S

    2011-01-01

    The transition from international to global health reflects the rapid growth in the numbers and nature of stakeholders in health, as well as the constant change embodied in the process of globalisation itself. This paper argues that global health governance shares the characteristics of complex adaptive systems, with its multiple and diverse players, and their polyvalent and constantly evolving relationships, and rich and dynamic interactions. The sheer quantum of initiatives, the multiple networks through which stakeholders (re)configure their influence, the range of contexts in which development for health is played out - all compound the complexity of this system. This paper maps out the characteristics of complex adaptive systems as they apply to global health governance, linking them to developments in the past two decades, and the multiple responses to these changes. Examining global health governance through the frame of complexity theory offers insight into the current dynamics of governance, and while providing a framework for making meaning of the whole, opens up ways of accessing this complexity through local points of engagement.

  20. Understanding sustainability from an exergetic frame in complex adaptive systems

    International Nuclear Information System (INIS)

    Aguilar Hernandez, Glem Alonso

    2017-01-01

    The concept of sustainability was developed from thermodynamic properties applied to complex adaptive systems. The origins of the perception about sustainable development and limitation in its application to analyze the interaction between a system and its surroundings were described. The properties of a complex adaptive system were taken as basis to determine how a system can to be affected by the resources restriction and irreversibility of the processes. The complex adaptive system was understood using the first and second law of thermodynamics, generating a conceptual framework to define the sustainability of a system. The contributions developed by exergy were shown to analyze the sustainability of systems in an economic, social and environmental context [es

  1. Understanding dyadic promoter-stakeholder relations in complex projects

    Directory of Open Access Journals (Sweden)

    Janita Vos

    2016-01-01

    Full Text Available In this study, we propose a Bilateral Double Motive framework of stakeholder cooperation in complex projects. The framework analyses and explains dyadic promoter-stakeholder relationships at a micro level by acknowledging both transactional and relational motives. We demonstrate the framework’s usefulness by illustrating its explanatory power in two instances of cooperation and two of non-cooperation within two health information technology projects. The study contributes to project management theory through its combined focus on transactional and relational motives. Further, the study contributes to practice by providing a tool for planning and evaluating cooperation in health Information Technology projects and similar complex multi-stakeholder environments.

  2. Matrix Models – An Approach to Understand Complex Systems

    Indian Academy of Sciences (India)

    Matrices with random matrix elements appear to have applications in physics, mathematics, bi- ology, telecommunications, etc. In fact, experi- mental data of many complex systems, such as the spacing distribution of energy level spectra of heavy nuclei, and the distribution of the non- real zeros of the Riemann zeta function ...

  3. Understanding dyadic promoter-stakeholder relations in complex projects

    NARCIS (Netherlands)

    Vos, Janita F.J.; Boonstra, Albert; Achterkamp, Marjolein C.

    2016-01-01

    In this study, we propose a Bilateral Double Motive framework of stakeholder cooperation in complex projects. The framework analyses and explains dyadic promoter-stakeholder relationships at a micro level by acknowledging both transactional and relational motives. We demonstrate the framework’s

  4. How Information Visualization Systems Change Users' Understandings of Complex Data

    Science.gov (United States)

    Allendoerfer, Kenneth Robert

    2009-01-01

    User-centered evaluations of information systems often focus on the usability of the system rather its usefulness. This study examined how a using an interactive knowledge-domain visualization (KDV) system affected users' understanding of a domain. Interactive KDVs allow users to create graphical representations of domains that depict important…

  5. Understanding white matter integrity stability for bilinguals on language status and reading performance.

    Science.gov (United States)

    Cummine, Jacqueline; Boliek, Carol A

    2013-03-01

    Recent studies using diffusion tensor imaging (DTI) have described overall white matter integrity in bilinguals but have not related structural neural pathways to language functions. The current study examined white matter integrity and its relationship to reading skill in monolingual English and bilingual Chinese-English speakers. Eleven monolingual speakers (mean age 28.5 years) and 13 bilingual speakers (mean age 24.2 years; English as a second language was acquired post 5 years of age) participated. Behavioural response times and accuracy rates to name regular and exception words were recorded. Participants were then scanned using a standardized DTI protocol. Fractional anisotropy (FA) and mean diffusivity values were derived from a voxelwise statistical analysis for comparisons between participant groups. Tests for relationships between response time and FA were also conducted. Our results show minimal regions of higher FA for monolinguals when compared to bilinguals and no regions of higher FA for bilinguals when compared to monolinguals, which indicates that white matter integrity may not stabilize in bilinguals until late adulthood. We do show several regions where an increase in FA is associated with faster response times. Interestingly, the FA-response time relationship varies between groups and between word types, which may reflect an increased processing demand for retrieval of difficult words (e.g., exception words). These results provide some support for the interference control and reduced frequency hypotheses outlined by Jones et al. (Cerebr Cortex 22:892-902, 2012). The current findings advance our understanding of the underlying cortical networks associated with language status and reading skill in monolingual and bilingual adults.

  6. Fusion in computer vision understanding complex visual content

    CERN Document Server

    Ionescu, Bogdan; Piatrik, Tomas

    2014-01-01

    This book presents a thorough overview of fusion in computer vision, from an interdisciplinary and multi-application viewpoint, describing successful approaches, evaluated in the context of international benchmarks that model realistic use cases. Features: examines late fusion approaches for concept recognition in images and videos; describes the interpretation of visual content by incorporating models of the human visual system with content understanding methods; investigates the fusion of multi-modal features of different semantic levels, as well as results of semantic concept detections, fo

  7. Understanding the Complex Patterns Observed during Hepatitis B Virus Therapy.

    Science.gov (United States)

    Carracedo Rodriguez, Andrea; Chung, Matthias; Ciupe, Stanca M

    2017-05-19

    Data from human clinical trials have shown that the hepatitis B virus (HBV) follows complex profiles, such as bi-phasic, tri-phasic, stepwise decay and rebound. We utilized a deterministic model of HBV kinetics following antiviral therapy to uncover the mechanistic interactions behind HBV dynamics. Analytical investigation of the model was used to separate the parameter space describing virus decay and rebound. Monte Carlo sampling of the parameter space was used to determine the virological, pharmacological and immunological factors that separate the bi-phasic and tri-phasic virus profiles. We found that the level of liver infection at the start of therapy best separates the decay patterns. Moreover, drug efficacy, ratio between division of uninfected and infected cells, and the strength of cytotoxic immune response are important in assessing the amount of liver damage experienced over time and in quantifying the duration of therapy leading to virus resolution in each of the observed profiles.

  8. Quantifying 'causality' in complex systems: understanding transfer entropy.

    Directory of Open Access Journals (Sweden)

    Fatimah Abdul Razak

    Full Text Available 'Causal' direction is of great importance when dealing with complex systems. Often big volumes of data in the form of time series are available and it is important to develop methods that can inform about possible causal connections between the different observables. Here we investigate the ability of the Transfer Entropy measure to identify causal relations embedded in emergent coherent correlations. We do this by firstly applying Transfer Entropy to an amended Ising model. In addition we use a simple Random Transition model to test the reliability of Transfer Entropy as a measure of 'causal' direction in the presence of stochastic fluctuations. In particular we systematically study the effect of the finite size of data sets.

  9. Quantifying ‘Causality’ in Complex Systems: Understanding Transfer Entropy

    Science.gov (United States)

    Abdul Razak, Fatimah; Jensen, Henrik Jeldtoft

    2014-01-01

    ‘Causal’ direction is of great importance when dealing with complex systems. Often big volumes of data in the form of time series are available and it is important to develop methods that can inform about possible causal connections between the different observables. Here we investigate the ability of the Transfer Entropy measure to identify causal relations embedded in emergent coherent correlations. We do this by firstly applying Transfer Entropy to an amended Ising model. In addition we use a simple Random Transition model to test the reliability of Transfer Entropy as a measure of ‘causal’ direction in the presence of stochastic fluctuations. In particular we systematically study the effect of the finite size of data sets. PMID:24955766

  10. Understanding Complex Human Ecosystems: The Case of Ecotourism on Bonaire

    Directory of Open Access Journals (Sweden)

    Thomas Abel

    2003-12-01

    Full Text Available It is suggested that ecotourism development on the island of Bonaire can be productively understood as a perturbation of a complex human ecosystem. Inputs associated with ecotourism have fueled transformations of the island ecology and sociocultural system. The results of this study indicate that Bonaire's social and economic hierarchy is approaching a new, stable systems state following a 50-yr transition begun by government and industry that stabilized with the appearance of ecotourism development and population growth. Ecotourism can be understood to have "filled in" the middle of the production hierarchy of Bonaire. Interpreted from this perspective, population growth has completed the transformation by expanding into production niches at smaller scales in the production hierarchy. Both a consequence and a cause, ecotourism has transformed the island's social structure and demography. The theory and methods applied in this case study of interdisciplinary research in the field of human ecosystems are also presented.

  11. From structure of the complex to understanding of the biology

    Energy Technology Data Exchange (ETDEWEB)

    Rossmann, Michael G., E-mail: mr@purdue.edu [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Arisaka, Fumio [Graduate School and School of Bioscience and Biotechnology, Tokyo Institute of Technology, 5249 Nagatsuta-cho, Yokohama 226-8501-B39 (Japan); Battisti, Anthony J.; Bowman, Valorie D.; Chipman, Paul R.; Fokine, Andrei; Hafenstein, Susan [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Kanamaru, Shuji [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Graduate School and School of Bioscience and Biotechnology, Tokyo Institute of Technology, 5249 Nagatsuta-cho, Yokohama 226-8501-B39 (Japan); Kostyuchenko, Victor A. [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Mesyanzhinov, Vadim V.; Shneider, Mikhail M. [Laboratory of Molecular Bioengineering, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow, 117997 (Russian Federation); Morais, Marc C.; Leiman, Petr G. [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Palermo, Laura M.; Parrish, Colin R. [James A. Baker Institute, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853 (United States); Xiao, Chuan [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States)

    2007-01-01

    The most extensive structural information on viruses relates to apparently icosahedral virions and is based on X-ray crystallography and on cryo-electron microscopy single-particle reconstructions. This paper concerns itself with the study of the macromolecular complexes that constitute viruses, using structural hybrid techniques. The most extensive structural information on viruses relates to apparently icosahedral virions and is based on X-ray crystallography and on cryo-electron microscopy (cryo-EM) single-particle reconstructions. Both techniques lean heavily on imposing icosahedral symmetry, thereby obscuring any deviation from the assumed symmetry. However, tailed bacteriophages have icosahedral or prolate icosahedral heads that have one obvious unique vertex where the genome can enter for DNA packaging and exit when infecting a host cell. The presence of the tail allows cryo-EM reconstructions in which the special vertex is used to orient the head in a unique manner. Some very large dsDNA icosahedral viruses also develop special vertices thought to be required for infecting host cells. Similarly, preliminary cryo-EM data for the small ssDNA canine parvovirus complexed with receptor suggests that these viruses, previously considered to be accurately icosahedral, might have some asymmetric properties that generate one preferred receptor-binding site on the viral surface. Comparisons are made between rhinoviruses that bind receptor molecules uniformly to all 60 equivalent binding sites, canine parvovirus, which appears to have a preferred receptor-binding site, and bacteriophage T4, which gains major biological advantages on account of its unique vertex and tail organelle.

  12. Understanding complex host-microbe interactions in Hydra

    Science.gov (United States)

    Bosch, Thomas C.G.

    2012-01-01

    Any multicellular organism may be considered a metaorganism or holobiont—comprised of the macroscopic host and synergistic interdependence with bacteria, archaea, fungi, viruses, and numerous other microbial and eukaryotic species including algal symbionts. Defining the individual microbe-host conversations in these consortia is a challenging but necessary step on the path to understanding the function of the associations as a whole. Dissecting the fundamental principles that underlie all host-microbe interactions requires simple animal models with only a few specific bacterial species. Here I present Hydra as such a model with one of the simplest epithelia in the animal kingdom, with the availability of a fully sequenced genome and numerous genomic tools, and with few associated bacterial species. PMID:22688725

  13. Thinking in complexity the complex dynamics of matter, mind, and mankind

    CERN Document Server

    Mainzer, Klaus

    1994-01-01

    The theory of nonlinear complex systems has become a successful and widely used problem-solving approach in the natural sciences - from laser physics, quantum chaos and meteorology to molecular modeling in chemistry and computer simulations of cell growth in biology In recent times it has been recognized that many of the social, ecological and political problems of mankind are also of a global, complex and nonlinear nature And one of the most exciting topics of present scientific and public interest is the idea that even the human mind is governed largely by the nonlinear dynamics of complex systems In this wide-ranging but concise treatment Prof Mainzer discusses, in nontechnical language, the common framework behind these endeavours Special emphasis is given to the evolution of new structures in natural and cultural systems and it is seen clearly how the new integrative approach of complexity theory can give new insights that were not available using traditional reductionistic methods

  14. Understanding Life : The Evolutionary Dynamics of Complexity and Semiosis

    Science.gov (United States)

    Loeckenhoff, Helmut K.

    2010-11-01

    Post-Renaissance sciences created different cultures. To establish an epistemological base, Physics were separated from the Mental domain. Consciousness was excluded from science. Life Sciences were left in between e.g. LaMettrie's `man—machine' (1748) and 'vitalism' [e.g. Bergson 4]. Causative thinking versus intuitive arguing limited strictly comprehensive concepts. First ethology established a potential shared base for science, proclaiming the `biology paradigm' in the middle of the 20th century. Initially procured by Cybernetics and Systems sciences, `constructivist' models prepared a new view on human perception and thus also of scientific `objectivity when introducing the `observer'. In sequel Computer sciences triggered the ICT revolution. In turn ICT helped to develop Chaos and Complexity sciences, Non-linear Mathematics and its spin-offs in the formal sciences [Spencer-Brown 49] as e.g. (proto-)logics. Models of life systems, as e.g. Anticipatory Systems, integrated epistemology with mathematics and Anticipatory Computing [Dubois 11, 12, 13, 14] connecting them with Semiotics. Seminal ideas laid in the turn of the 19th to the 20th century [J. v. Uexküll 53] detected the co-action and co-evolvement of environments and life systems. Bio-Semiotics ascribed purpose, intent and meaning as essential qualities of life. The concepts of Systems Biology and Qualitative Research enriched and develop also anthropologies and humanities. Brain research added models of (higher) consciousness. An avant-garde is contemplating a science including consciousness as one additional base. New insights from the extended qualitative approach led to re-conciliation of basic assumptions of scientific inquiry, creating the `epistemological turn'. Paradigmatically, resting on macro- micro- and recently on nano-biology, evolution biology sired fresh scripts of evolution [W. Wieser 60,61]. Its results tie to hypotheses describing the emergence of language, of the human mind and of

  15. Measurements of student understanding on complex scientific reasoning problems

    Science.gov (United States)

    Izumi, Alisa Sau-Lin

    While there has been much discussion of cognitive processes underlying effective scientific teaching, less is known about the response nature of assessments targeting processes of scientific reasoning specific to biology content. This study used multiple-choice (m-c) and short-answer essay student responses to evaluate progress in high-order reasoning skills. In a pilot investigation of student responses on a non-content-based test of scientific thinking, it was found that some students showed a pre-post gain on the m-c test version while showing no gain on a short-answer essay version of the same questions. This result led to a subsequent research project focused on differences between alternate versions of tests of scientific reasoning. Using m-c and written responses from biology tests targeted toward the skills of (1) reasoning with a model and (2) designing controlled experiments, test score frequencies, factor analysis, and regression models were analyzed to explore test format differences. Understanding the format differences in tests is important for the development of practical ways to identify student gains in scientific reasoning. The overall results suggested test format differences. Factor analysis revealed three interpretable factors---m-c format, genetics content, and model-based reasoning. Frequency distributions on the m-c and open explanation portions of the hybrid items revealed that many students answered the m-c portion of an item correctly but gave inadequate explanations. In other instances students answered the m-c portion incorrectly yet demonstrated sufficient explanation or answered the m-c correctly and also provided poor explanations. When trying to fit test score predictors for non-associated student measures---VSAT, MSAT, high school grade point average, or final course grade---the test scores accounted for close to zero percent of the variance. Overall, these results point to the importance of using multiple methods of testing and of

  16. Thermophilic anaerobes in arctic marine sediments induced to mineralize complex organic matter at high temperature

    DEFF Research Database (Denmark)

    Hubert, Casey; Arnosti, Carol; Brüchert, Volker

    2010-01-01

    temperature-induced food chain mirrors sediment microbial processes occurring at cold in situ temperatures (near 0°C), yet it is catalysed by a completely different set of microorganisms. Using sulfate reduction rates (SRR) as a proxy for organic matter mineralization showed that differences in organic matter......Marine sediments harbour diverse populations of dormant thermophilic bacterial spores that become active in sediment incubation experiments at much higher than in situ temperature. This response was investigated in the presence of natural complex organic matter in sediments of two Arctic fjords...... enzymatic capacities for organic polymer degradation could allow specific heterotrophic populations like these to play a role in sustaining microbial metabolism in the deep, warm, marine biosphere....

  17. Dark fluid: A complex scalar field to unify dark energy and dark matter

    International Nuclear Information System (INIS)

    Arbey, Alexandre

    2006-01-01

    In this article, we examine a model which proposes a common explanation for the presence of additional attractive gravitational effects - generally considered to be due to dark matter - in galaxies and in clusters, and for the presence of a repulsive effect at cosmological scales - generally taken as an indication of the presence of dark energy. We therefore consider the behavior of a so-called dark fluid based on a complex scalar field with a conserved U(1)-charge and associated to a specific potential, and show that it can at the same time account for dark matter in galaxies and in clusters, and agree with the cosmological observations and constraints on dark energy and dark matter

  18. Entropy: A Unifying Path for Understanding Complexity in Natural, Artificial and Social Systems

    Science.gov (United States)

    2011-07-01

    us now address complex systems which include a substantial social component. We may start with economics and theory of finance. Given the long memory ...Entropy: A Unifying Path for Understanding Complexity in Natural, Artificial and Social Systems * Constantino Tsallis Centro Brasileiro de...Path for Understanding Complexity in Natural, Artificial and Social Systems 5a. CONTRACT NUMBER FA23861114006 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  19. Preliminary investigation of phosphorus adsorption onto two types of iron oxide-organic matter complexes.

    Science.gov (United States)

    Yan, Jinlong; Jiang, Tao; Yao, Ying; Lu, Song; Wang, Qilei; Wei, Shiqiang

    2016-04-01

    Iron oxide (FeO) coated by natural organic matter (NOM) is ubiquitous. The associations of minerals with organic matter (OM) significantly changes their surface properties and reactivity, and thus affect the environmental fate of pollutants, including nutrients (e.g., phosphorus (P)). In this study, ferrihydrite/goethite-humic acid (FH/GE-HA) complexes were prepared and their adsorption characteristics on P at various pH and ionic strength were investigated. The results indicated that the FeO-OM complexes showed a decreased P adsorption capacity in comparison with bare FeO. The maximum adsorption capacity (Qmax) decreased in the order of FH (22.17 mg/g)>FH-HA (5.43 mg/g)>GE (4.67 mg/g)>GE-HA (3.27 mg/g). After coating with HA, the amorphous FH-HA complex still showed higher P adsorption than the crystalline GE-HA complex. The decreased P adsorption observed might be attributed to changes of the FeO surface charges caused by OM association. The dependence of P adsorption on the specific surface area of adsorbents suggests that the FeO component in the complexes is still the main contributor for the adsorption surfaces. The P adsorptions on FeO-HA complexes decreased with increasing initial pH or decreasing initial ionic strength. A strong dependence of P adsorption on ionic strength and pH may demonstrate that outer-sphere complexes between the OM component on the surface and P possibly coexist with inner-sphere surface complexes between the FeO component and P. Therefore, previous over-emphasis on the contributions of original minerals to P immobilization possibly over-estimates the P loading capacity of soils, especially in humic-rich areas. Copyright © 2015. Published by Elsevier B.V.

  20. Towards understanding thermal history of the Universe through direct and indirect detection of dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Roszkowski, Leszek; Trojanowski, Sebastian [National Centre for Nuclear Research, Hoża 69, 00-681 Warsaw (Poland); Turzyński, Krzysztof, E-mail: leszek.roszkowski@ncbj.gov.pl, E-mail: sebastian.trojanowski@uci.edu, E-mail: Krzysztof-Jan.Turzynski@fuw.edu.pl [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw (Poland)

    2017-10-01

    We examine the question to what extent prospective detection of dark matter by direct and indirect- detection experiments could shed light on what fraction of dark matter was generated thermally via the freeze-out process in the early Universe. By simulating putative signals that could be seen in the near future and using them to reconstruct WIMP dark matter properties, we show that, in a model- independent approach this could only be achieved in a thin sliver of the parameter space. However, with additional theoretical input the hypothesis about the thermal freeze-out as the dominant mechanism for generating dark matter can potentially be verified. We illustrate this with two examples: an effective field theory of dark matter with a vector messenger and a higgsino or wino dark matter within the MSSM.

  1. Kolmogorov complexity in the Milky Way and its reduction with warm dark matter

    Science.gov (United States)

    Neyrinck, Mark C.

    2015-09-01

    We discuss the Kolmogorov complexity of primordial patches that collapse to form galaxies like the Milky Way; this complexity quantifies the amount of initial data available to form the structure. We also speculate on how the quantity changes with time. Because of dark-matter and baryonic collapse processes, it likely decreases with time, i.e. information sinks dominate sources. But sources of new random information do exist; e.g. a central black hole with an accretion disc and jets could in principle broadcast small-scale quantum fluctuations over a substantial portion of a galaxy. A speculative example of how this concept might be useful is in differentiating between warm (WDM) and cold (CDM) dark matter. With WDM, the initial patch that formed the Milky Way would have had few features, making the present high degree of structure a curiosity. The primordial patch would have had only several billion independent information-carrying `pixels' if the WDM particle had a mass of 1 keV. This number of `pixels' is much less than even the number of stars in the Milky Way. If the dark matter is proven to be warm, the high degree of structure in the Milky Way could have arisen in two ways: (i) from a high sensitivity to initial conditions, like an intricate fractal arising from a relatively simple computer code; or (ii) from random information generated after the Galaxy formed, i.e. not entirely deterministically from the initial conditions.

  2. Storage and Bioavailability of Molybdenum in Soils Increased by Organic Matter Complexation

    Energy Technology Data Exchange (ETDEWEB)

    Wichard, T.; Mishra, B; Myneni, S; Bellenger, J; Kraepiel, A

    2009-01-01

    The micronutrient molybdenum is a necessary component of the nitrogen-fixing enzyme nitrogenase1, 2. Molybdenum is very rare in soils, and is usually present in a highly soluble form, making it susceptible to leaching3, 4. However, it is generally thought that molybdenum attaches to mineral surfaces in acidic soils; this would prevent its escape into the groundwater, but would also impede uptake by microbes3. Here we use X-ray spectroscopy to examine the chemical speciation of molybdenum in soil samples from forests in Arizona and New Jersey. We show that in the leaf litter layer, most of the molybdenum forms strong complexes with plant-derived tannins and tannin-like compounds; molybdenum binds to these organic ligands across a wide pH range. In deeper soils, molybdenum binds to both iron oxides and natural organic matter. We suggest that the molybdenum bound to organic matter can be captured by small complexing agents that are released by nitrogen-fixing bacteria; the molybdenum can then be incorporated into nitrogenase. We conclude that the binding of molybdenum to natural organic matter helps prevent leaching of molybdenum, and is thus a critical step in securing new nitrogen in terrestrial ecosystems.

  3. The Impact of Designing and Evaluating Molecular Animations on How Well Middle School Students Understand the Particulate Nature of Matter

    Science.gov (United States)

    Chang, Hsin-Yi; Quintana, Chris; Krajcik, Joseph S.

    2010-01-01

    In this study, we investigated whether the understanding of the particulate nature of matter by students was improved by allowing them to design and evaluate molecular animations of chemical phenomena. We developed Chemation, a learner-centered animation tool, to allow seventh-grade students to construct flipbook-like simple animations to show…

  4. Facilitating Conceptual Change in Understanding State of Matter and Solubility Concepts by Using 5E Learning Cycle Model

    Science.gov (United States)

    Ceylan, Eren; Geban, Omer

    2009-01-01

    The main purpose of the study was to compare the effectiveness of 5E learning cycle model based instruction and traditionally designed chemistry instruction on 10th grade students' understanding of state of matter and solubility concepts. In this study, 119 tenth grade students from chemistry courses instructed by same teacher from an Anatolian…

  5. Using Concept Maps as Instructional Materials to Foster the Understanding of the Atomic Model and Matter-Energy Interaction

    Science.gov (United States)

    Aguiar, Joana G.; Correia, Paulo R. M.

    2016-01-01

    In this paper, we explore the use of concept maps (Cmaps) as instructional materials prepared by teachers, to foster the understanding of chemistry. We choose fireworks as a macroscopic event to teach basic chemical principles related to the Bohr atomic model and matter-energy interaction. During teachers' Cmap navigation, students can experience…

  6. Students' Understanding of the Nature of Matter and Chemical Reactions--A Longitudinal Study of Conceptual Restructuring

    Science.gov (United States)

    Øyehaug, Anne Bergliot; Holt, Anne

    2013-01-01

    This longitudinal study aims to provide greater insight into how students' understanding of matter and chemical reactions develops over time and how their knowledge structures are restructured. Four case-study students in a Norwegian primary school were followed for two years from age 10-11 to age 12-13. Researchers were responsible for…

  7. The Effect of Recycling Education on High School Students' Conceptual Understanding about Ecology: A Study on Matter Cycle

    Science.gov (United States)

    Ugulu, Ilker; Yorek, Nurettin; Baslar, Suleyman

    2015-01-01

    The objective of this study is to analyze and determine whether a developed recycling education program would lead to a positive change in the conceptual understanding of ecological concepts associated with matter cycles by high school students. The research was conducted on 68 high school 10th grade students (47 female and 21 male students). The…

  8. Soil Organic Matter in Its Native State: Unravelling the Most Complex Biomaterial on Earth.

    Science.gov (United States)

    Masoom, Hussain; Courtier-Murias, Denis; Farooq, Hashim; Soong, Ronald; Kelleher, Brian P; Zhang, Chao; Maas, Werner E; Fey, Michael; Kumar, Rajeev; Monette, Martine; Stronks, Henry J; Simpson, Myrna J; Simpson, André J

    2016-02-16

    Since the isolation of soil organic matter in 1786, tens of thousands of publications have searched for its structure. Nuclear magnetic resonance (NMR) spectroscopy has played a critical role in defining soil organic matter but traditional approaches remove key information such as the distribution of components at the soil-water interface and conformational information. Here a novel form of NMR with capabilities to study all physical phases termed Comprehensive Multiphase NMR, is applied to analyze soil in its natural swollen-state. The key structural components in soil organic matter are identified to be largely composed of macromolecular inputs from degrading biomass. Polar lipid heads and carbohydrates dominate the soil-water interface while lignin and microbes are arranged in a more hydrophobic interior. Lignin domains cannot be penetrated by aqueous solvents even at extreme pH indicating they are the most hydrophobic environment in soil and are ideal for sequestering hydrophobic contaminants. Here, for the first time, a complete range of physical states of a whole soil can be studied. This provides a more detailed understanding of soil organic matter at the molecular level itself key to develop the most efficient soil remediation and agricultural techniques, and better predict carbon sequestration and climate change.

  9. Why more is different philosophical issues in condensed matter physics and complex systems

    CERN Document Server

    Morrison, Margaret

    2015-01-01

    The physics of condensed matter, in contrast to quantum physics or cosmology, is not traditionally associated with deep philosophical questions. However, as science - largely thanks to more powerful computers - becomes capable of analysing and modelling ever more complex many-body systems, basic questions of philosophical relevance arise. Questions about the emergence of structure, the nature of cooperative behaviour, the implications of the second law,  the quantum-classical transition and many other issues. This book is a collection of essays by leading physicists and philosophers. Each investigates one or more of these issues, making use of examples from modern condensed matter research.  Physicists and philosophers alike will find surprising and stimulating ideas in these pages.

  10. Rhetorical meta-language to promote the development of students' writing skills and subject matter understanding

    Science.gov (United States)

    Pelger, Susanne; Sigrell, Anders

    2016-01-01

    students' understanding of their subject matter.

  11. "Very Good" Ratings in a Survey of Maternity Care: Kindness and Understanding Matter to Australian Women.

    Science.gov (United States)

    Todd, Angela L; Ampt, Amanda J; Roberts, Christine L

    2017-03-01

    Surveys have shown that women are highly satisfied with their maternity care. Their satisfaction has been associated with various demographic, personal, and care factors. Isolating the factors that most matter to women about their care can guide quality improvement efforts. This study aimed to identify the most significant factors associated with high ratings of care by women in the three maternity periods (antenatal, birth, and postnatal). A survey was sent to 2,048 women who gave birth at seven public hospitals in New South Wales, Australia, exploring their expectations of, and experiences with maternity care. Women's overall ratings of care for the antenatal, birth, and postnatal periods were analyzed, and a number of maternal characteristics and care factors examined as potential predictors of "Very good" ratings of care. Among 886 women with a completed survey, 65 percent assigned a "Very good" rating for antenatal care, 74 percent for birth care, 58 percent for postnatal care, and 44 percent for all three periods. One factor was strongly associated with care ratings in all three maternity periods: women who were "always or almost always" treated with kindness and understanding were 1.8-2.8 times more likely to rate their antenatal, birth, and postnatal care as "Very good." A limited number of other factors were significantly associated with high care ratings for one or two of the maternity periods. Women's perceptions about the quality of their interpersonal interactions with health caregivers have a significant bearing on women's views about their maternity care journey. © 2016 Wiley Periodicals, Inc.

  12. Turning the Star Trek Dream into Reality by Understanding Matter & Antimatter

    Science.gov (United States)

    Hansen, Norm

    2002-04-01

    People are going to learn all about matter and antimatter. Where matter and antimatter comes from. Where antimatter exists within our solar system. What the Periodic Table of Matter-AntiMatter Elements looks like. What each of the 109 antimatter element's nuclear, physical, and chemical characteristics are. How much energy is produced from matter and antimatter. And what needs to be done to turn the Star Trek Dream into Reality. The Milky Way Galaxy is composed of matter and antimatter. At the center of the galaxy, there are two black holes. One black hole is composed of matter; and the other is antimatter. The black holes are ejecting matter and antimatter into space forming a halo and spiral arms of matter & antimatter stars. The sun is one of the billions of stars that are composed of matter. There are a similar number of antimatter stars. Our Solar System contains the sun, earth, planets, and asteroids that are composed of matter, and comets that are composed of antimatter. When galactic antimatter enters our solar system, the antimatter is called comets. Astronomers have observed hundred of comets orbiting the sun and are finding new comets every year. During the last century, mass destruction has resulted when antimatter collided with Jupiter and Earth. How Humanity deals with the opportunities and dangers of antimatter will determine our destiny. Mankind has known about comets destructive power for thousands of years going back to the days of antiquity. Did comets have anything to do with the disappearance of Atlantis over twelve thousand years ago? We may never know; but is there a similar situation about to take place? Scientists have been studying antimatter by producing, storing, and colliding small quantities at national laboratories for several decades. Symmetry exists between matter and antimatter. Science and Technology provides unlimited opportunities to benefit humanity. Antimatter can be used, as a natural source of energy, to bring every country

  13. Identification of Mercury and Dissolved Organic Matter Complexes Using Ultrahigh Resolution Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongmei [Environmental; Johnston, Ryne C. [UT/ORNL; Mann, Benjamin F. [Environmental; Chu, Rosalie K. [Environmental; Tolic, Nikola [Environmental; Parks, Jerry M. [UT/ORNL; Gu, Baohua [Environmental

    2016-12-30

    The chemical speciation and bioavailability of mercury (Hg) is markedly influenced by its complexation with naturally dissolved organic matter (DOM) in aquatic environments. To date, however, analytical methodologies capable of identifying such complexes are scarce. Here, we utilize ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) coupled with electrospray ionization to identify individual Hg-DOM complexes. The measurements were performed by direct infusion of DOM in a 1:1 methanol:water solution at a Hg to dissolved organic carbon (DOC) molar ratio of 3 × 10-4. Heteroatomic molecules, especially those containing multiple S and N atoms, were found to be among the most important in forming strong complexes with Hg. Major Hg-DOM complexes of C10H21N2S4Hg+ and C8H17N2S4Hg+ were identified based on both the exact molecular mass and patterns of Hg stable isotope distributions detected by FTICR-MS. Density functional theory was used to predict the solution-phase structures of candidate molecules. These findings represent the first step to unambiguously identify specific DOM molecules in Hg binding, although future studies are warranted to further optimize and validate the methodology so as to explore detailed molecular compositions and structures of Hg-DOM complexes that affect biological uptake and transformation of Hg in the environment.

  14. Using Simulations in Linked Courses to Foster Student Understanding of Complex Political Institutions

    Science.gov (United States)

    Williams, Michelle Hale

    2015-01-01

    Political institutions provide basic building blocks for understanding and comparing political systems. Yet, students often struggle to understand the implications of institutional choice, such as electoral system rules, especially when the formulas and calculations used to determine seat allocation can be multilevel and complex. This study brings…

  15. What Influences Children's and Adolescents' Understanding of the Complexity of the Internet?

    Science.gov (United States)

    Yan, Zheng

    2006-01-01

    This study aimed at analyzing complex relationships among Internet use, Internet users, and conceptual understanding of the Internet. It used path models to examine factors related to Internet use (duration of Internet use, frequency of Internet use, and informal Internet classes) and Internet users (age and gender) in affecting understanding of…

  16. Sorption and speciation of iodine in groundwater system: The roles of organic matter and organic-mineral complexes

    Science.gov (United States)

    Li, Junxia; Zhou, Hailing; Wang, Yanxin; Xie, Xianjun; Qian, Kun

    2017-06-01

    Characterizing the properties of main host of iodine in soil/sediment and the geochemical behaviors of iodine species are critical to understand the mechanisms of iodine mobilization in groundwater systems. Four surface soil and six subsurface sediment samples were collected from the iodine-affected area of Datong basin in northern China to conduct batch experiments and to evaluate the effects of NOM and/or organic-mineral complexes on iodide/iodate geochemical behaviors. The results showed that both iodine contents and kf-iodate values had positive correlations with solid TOC contents, implying the potential host of NOM for iodine in soil/sediment samples. The results of chemical removal of easily extracted NOM indicated that the NOM of surface soils is mainly composed of surface embedded organic matter, while sediment NOM mainly occurs in the form of organic-mineral complexes. After the removal of surface sorbed NOM, the decrease in kf-iodate value of treated surface soils indicates that surface sorbed NOM enhances iodate adsorption onto surface soil. By contrast, kf-iodate value increases in several H2O2-treated sediment samples, which was considered to result from exposed rod-like minerals rich in Fe/Al oxyhydroxide/oxides. After chemical removal of organic-mineral complexes, the lowest kf-iodate value for both treated surface soils and sediments suggests the dominant role of organic-mineral complexes on controlling the iodate geochemical behavior. In comparison with iodate, iodide exhibited lower affinities on all (un)treated soil/sediment samples. The understanding of different geochemical behaviors of iodine species helps to explain the occurrence of high iodine groundwater with iodate and iodide as the main species in shallow (oxidizing conditions) and deep (reducing conditions) groundwater.

  17. Sorption and speciation of iodine in groundwater system: The roles of organic matter and organic-mineral complexes.

    Science.gov (United States)

    Li, Junxia; Zhou, Hailing; Wang, Yanxin; Xie, Xianjun; Qian, Kun

    2017-06-01

    Characterizing the properties of main host of iodine in soil/sediment and the geochemical behaviors of iodine species are critical to understand the mechanisms of iodine mobilization in groundwater systems. Four surface soil and six subsurface sediment samples were collected from the iodine-affected area of Datong basin in northern China to conduct batch experiments and to evaluate the effects of NOM and/or organic-mineral complexes on iodide/iodate geochemical behaviors. The results showed that both iodine contents and k f -iodate values had positive correlations with solid TOC contents, implying the potential host of NOM for iodine in soil/sediment samples. The results of chemical removal of easily extracted NOM indicated that the NOM of surface soils is mainly composed of surface embedded organic matter, while sediment NOM mainly occurs in the form of organic-mineral complexes. After the removal of surface sorbed NOM, the decrease in k f -iodate value of treated surface soils indicates that surface sorbed NOM enhances iodate adsorption onto surface soil. By contrast, k f -iodate value increases in several H 2 O 2 -treated sediment samples, which was considered to result from exposed rod-like minerals rich in Fe/Al oxyhydroxide/oxides. After chemical removal of organic-mineral complexes, the lowest k f -iodate value for both treated surface soils and sediments suggests the dominant role of organic-mineral complexes on controlling the iodate geochemical behavior. In comparison with iodate, iodide exhibited lower affinities on all (un)treated soil/sediment samples. The understanding of different geochemical behaviors of iodine species helps to explain the occurrence of high iodine groundwater with iodate and iodide as the main species in shallow (oxidizing conditions) and deep (reducing conditions) groundwater. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Copper toxicity and organic matter: Resiliency of watersheds in the Duluth Complex, Minnesota, USA

    Science.gov (United States)

    Piatak, Nadine; Seal, Robert; Jones, Perry M.; Woodruff, Laurel G.

    2015-01-01

    We estimated copper (Cu) toxicity in surface water with high dissolved organic matter (DOM) for unmined mineralized watersheds of the Duluth Complex using the Biotic Ligand Model (BLM), which evaluates the effect of DOM, cation competition for biologic binding sites, and metal speciation. A sediment-based BLM was used to estimate stream-sediment toxicity; this approach factors in the cumulative effects of multiple metals, incorporation of metals into less bioavailable sulfides, and complexation of metals with organic carbon. For surface water, the formation of Cu-DOM complexes significantly reduces the amount of Cu available to aquatic organisms. The protective effects of cations, such as calcium (Ca) and magnesium (Mg), competing with Cu to complex with the biotic ligand is likely not as important as DOM in water with high DOM and low hardness. Standard hardness-based water quality criteria (WQC) are probably inadequate for describing Cu toxicity in such waters and a BLM approach may yield more accurate results. Nevertheless, assumptions about relative proportions of humic acid (HA) and fulvic acid (FA) in DOM significantly influence BLM results; the higher the HA fraction, the higher calculated resiliency of the water to Cu toxicity. Another important factor is seasonal variation in water chemistry, with greater resiliency to Cu toxicity during low flow compared to high flow.Based on generally low total organic carbon and sulfur content, and equivalent metal ratios from total and weak partial extractions, much of the total metal concentration in clastic streambedsediments may be in bioavailable forms, sorbed on clays or hydroxide phases. However, organicrich fine-grained sediment in the numerous wetlands may sequester significant amount of metals, limiting their bioavailability. A high proportion of organic matter in waters and some sediments will play a key role in the resiliency of these watersheds to potential additional metal loads associated with future

  19. Mass the quest to understand matter from Greek atoms to quantum fields

    CERN Document Server

    Baggott, Jim

    2017-01-01

    Everything around us is made of 'stuff', from planets, to books, to our own bodies. Whatever it is, we call it matter or material substance. It is solid; it has mass. But what is matter, exactly? We are taught in school that matter is not continuous, but discrete. As a few of the philosophers of ancient Greece once speculated, nearly two and a half thousand years ago, matter comes in 'lumps', and science has relentlessly peeled away successive layers of matter to reveal its ultimate constituents. Surely, we can't keep doing this indefinitely. We imagine that we should eventually run up against some kind of ultimately fundamental, indivisible type of stuff, the building blocks from which everything in the Universe is made. The English physicist Paul Dirac called this 'the dream of philosophers'. But science has discovered that the foundations of our Universe are not as solid or as certain and dependable as we might have once imagined. They are instead built from ghosts and phantoms, of a peculiar quantum kind....

  20. Cortical and white matter mapping in the visual system- more than meets theeye: on the importance of functional imaging to understand visual systempathologies

    Directory of Open Access Journals (Sweden)

    Noa eRaz

    2014-08-01

    Full Text Available Information transmission within the visual system is highly organized with the ultimate goal of accomplishing higher-order, complex visuo-spatial and object identity processing. Perception is dependent on the intactness of the entire system and damage at each stage – in the eye itself, the visual pathways, or within cortical processing - might result in perception disturbance.Herein we will review several examples of lesions along the visual system, from the retina, via the optic nerve and chiasm and through the occipital cortex. We will address their clinical manifestation and their cortical substrate. The latter will be studied via functional magnetic resonance imaging (fMRI and Diffusion Tensor Imaging (DTI, enabling cortical and white matter mapping of the human brain. In contrast to traditional signal recording, these procedures enable simultaneous evaluation of the entire brain network engaged when subjects undertake a particular task or evaluate the entirety of associated white matter pathways.These examples provided will highlight the importance of using advanced imaging methods to better understand visual pathologies. We will argue that clinical manifestation cannot always be explained solely by structural damage and a functional view is required to understand the clinical symptom. In such cases we recommend using advanced imaging methods to better understand the neurological basis of visual phenomena.

  1. Towards an understanding of dark matter: Precise gravitational lensing analysis complemented by robust photometric redshifts

    Science.gov (United States)

    Coe, Daniel Aaron

    The goal of thesis is to help scientists resolve one of the great mysteries of our time: the nature of Dark Matter. Dark Matter is currently believed to make up over 80% of the material in our universe, yet we have so far inferred but a few of its basic properties. Here we study the Dark Matter surrounding a galaxy cluster, Abell 1689, via the most direct method currently available--gravitational lensing. Abell 1689 is a "strong" gravitational lens, meaning it produces multiple images of more distant galaxies. The observed positions of these images can be measured very precisely and act as a blueprint allowing us to reconstruct the Dark Matter distribution of the lens. Until now, such mass models of Abell 1689 have reproduced the observed multiple images well but with significant positional offsets. Using a new method we develop here, we obtain a new mass model which perfectly reproduces the observed positions of 168 knots identified within 135 multiple images of 42 galaxies. An important ingredient to our mass model is the accurate measurement of distances to the lensed galaxies via their photometric redshifts. Here we develop tools which improve the accuracy of these measurements based on our study of the Hubble Ultra Deep Field, the only image yet taken to comparable depth as the magnified regions of Abell 1689. We present results both for objects in the Hubble Ultra Deep Field and for galaxies gravitationally lensed by Abell 1689. As part of this thesis, we also provide reviews of Dark Matter and Gravitational Lensing, including a chapter devoted to the mass profiles of Dark Matter halos realized in simulations. The original work presented here was performed primarily by myself under the guidance of Narciso Benítez and Holland Ford as a member of the Advanced Camera for Surveys GTO Science Team at Johns Hopkins University and the Instituto de Astrofisica de Andalucfa. My advisors served on my thesis committee along with Rick White, Gabor Domokos, and Steve

  2. Why we need to see the dark matter to understand the dark energy

    International Nuclear Information System (INIS)

    Kunz, M

    2008-01-01

    Abstract. The cosmological concordance model contains two separate constituents which interact only gravitationally with themselves and everything else, the dark matter and the dark energy. In the standard dark energy models, the dark matter makes up some 20% of the total energy budget today, while the dark energy is responsible for about 75%. Here we show that these numbers are only robust for specific dark energy models and that in general we cannot measure the abundance of the dark constituents separately without making strong assumptions

  3. PARTICULATE MATTER AND HUMAN HEALTH: USING HUMAN STUDIES TO UNDERSTAND SUSCEPTIBILITY

    Science.gov (United States)

    The potential for experiencing adverse health effects from air pollution particulate matter (PM) exposure is an important public health issue. The World Health Organization has estimated that PM contributes to the deaths of 500,000 people world-wide each year. Epidemiologic stu...

  4. Toward understanding why fairness matters : The influence of mortality salience on reactions to procedural fairness

    NARCIS (Netherlands)

    Bos, K. van den; Miedema, J.

    2000-01-01

    This article focuses on the question of why fairness matters to people. On the basis of fairness heuristic theory, the authors argue that people especially need fairness when they are uncertain about things that are important to them. Following terror management theory, the authors focus on a basic

  5. Copper complexing ligands and organic matter characterization in the northern Adriatic Sea

    Science.gov (United States)

    Plavšić, Marta; Gašparović, Blaženka; Strmečki, Slađana; Vojvodić, Vjeročka; Tepić, Nataša

    2009-11-01

    The study on dissolved organic ligands capable to complex copper ions (L T), surface-active substances (SAS) and dissolved organic carbon (DOC) in the Northern Adriatic Sea station (ST 101) under the influence of Po River was conducted in period from 2006-2008. The acidity of surface-active organic material (Ac r) was followed as well. The results are compared to temperature and salinity distributions. On that way, the contribution of the different pools of ligands capable to complex Cu ions could be determined as well as the influence of aging and transformation of the organic matter. The L T values in the investigated period were in the range of 40-300 nmol l -1. The range of DOC values for surface and bottom samples were 0.84-1.87 mg l -1 and 0.80-1.30 mg l -1, respectively. Total SAS concentrations in the bottom layer were 0.045-0.098 mg l -1 in equiv. of Triton-X-100 while those in the surface layer were 0.050-0.143 mg l -1 in equiv. of Triton-X-100. The majority of organic ligands responsible for Cu binding in surface water originate from new phytoplankton production promoted by river borne nutrients. Older, transformed organic matter, possessing higher relative acidity, is the main contributor to the pool of organic ligands that bind copper in the bottom samples. It was estimated that ˜9% of DOC in surface samples and ˜12% of DOC in the bottom samples are present as ligands capable to complex copper ions.

  6. Understanding a Complex World: Why an Emphasis on Empathy Could Better Enable Army Leaders to Win

    Science.gov (United States)

    2016-06-10

    the problem of how to win in a complex world. 1 Brig. Gen. Oscar W. Koch and Robert G. Hayes, G-2: Intelligence for Patton (Atglen, PA: Schiffer...UNDERSTANDING A COMPLEX WORLD: WHY AN EMPHASIS ON EMPATHY COULD BETTER ENABLE ARMY LEADERS TO WIN A thesis presented to the...Leaders to Win 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Matthew J. Fontaine, MAJ 5d. PROJECT NUMBER

  7. Probing Complex Structural Behaviour in Dynamically Compressed Matter Using Ultrafast X-ray Diffraction

    Science.gov (United States)

    McMahon, Malcolm

    2017-06-01

    Over the last 25 years, the static compression community has found that structural complexity is almost ubiquitous in high-density matter, even in the elemental metals. And modern structure prediction methods have reported that this complexity continues to ultra-high pressures. The prediction that aluminum will adopt an incommensurate host--guest structure at multi-TPa pressures is particularly noteworthy. As such compressions can only be achieved dynamically, two fundamental questions arise. Firstly, are such complex structural forms able to form on the nanosecond timescales of dynamic compression experiments, and, secondly, if they do, how can we determine their structures? We are currently conducting campaigns at both NIF and LCLS to address and answer these questions, using nanosecond and femtosecond x-ray diffraction to detect phase changes, including melting, and determine the detailed structural response to dynamic compression. A particular aim is to obtain structural data on a par with that long available in static compression research. An overview of recent results from these campaigns, and comparisons to previous studies, will be given. This work is supported by EPSRC under Grant No. EP/J017051/1. Use of the LCLS, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

  8. Understanding regime support in new democracies: does politics really matter more than economics?

    OpenAIRE

    Delhey, Jan; Tobsch, Verena

    2000-01-01

    "It is essential that the new democracies of post-communist Central and Eastern Europe enjoy the full support of their citizenry. Among social scientists there is an ongoing debate about which conditions ensure mass support. Is political output, like individual freedom, or economic output, like citizens' financial situation, a more potent force in generating approval for the newly established democratic institutions? In this paper we explore the question 'what matters more: politics or econom...

  9. Understanding the core-halo relation of quantum wave dark matter from 3D simulations.

    Science.gov (United States)

    Schive, Hsi-Yu; Liao, Ming-Hsuan; Woo, Tak-Pong; Wong, Shing-Kwong; Chiueh, Tzihong; Broadhurst, Tom; Hwang, W-Y Pauchy

    2014-12-31

    We examine the nonlinear structure of gravitationally collapsed objects that form in our simulations of wavelike cold dark matter, described by the Schrödinger-Poisson (SP) equation with a particle mass ∼10(-22)  eV. A distinct gravitationally self-bound solitonic core is found at the center of every halo, with a profile quite different from cores modeled in the warm or self-interacting dark matter scenarios. Furthermore, we show that each solitonic core is surrounded by an extended halo composed of large fluctuating dark matter granules which modulate the halo density on a scale comparable to the diameter of the solitonic core. The scaling symmetry of the SP equation and the uncertainty principle tightly relate the core mass to the halo specific energy, which, in the context of cosmological structure formation, leads to a simple scaling between core mass (Mc) and halo mass (Mh), Mc∝a(-1/2)Mh(1/3), where a is the cosmic scale factor. We verify this scaling relation by (i) examining the internal structure of a statistical sample of virialized halos that form in our 3D cosmological simulations and by (ii) merging multiple solitons to create individual virialized objects. Sufficient simulation resolution is achieved by adaptive mesh refinement and graphic processing units acceleration. From this scaling relation, present dwarf satellite galaxies are predicted to have kiloparsec-sized cores and a minimum mass of ∼10(8)M⊙, capable of solving the small-scale controversies in the cold dark matter model. Moreover, galaxies of 2×10(12)M⊙ at z=8 should have massive solitonic cores of ∼2×10(9)M⊙ within ∼60  pc. Such cores can provide a favorable local environment for funneling the gas that leads to the prompt formation of early stellar spheroids and quasars.

  10. Formation of mercury sulfide from Hg(II)−thiolate complexes in natural organic matter

    Science.gov (United States)

    Alain Manceau,; Cyprien Lemouchi,; Mironel Enescu,; Anne-Claire Gaillot,; Martine Lanson,; Valerie Magnin,; Pieter Glatzel,; Poulin, Brett; Ryan, Joseph N.; Aiken, George R.; Isabelle Gautier-Lunea,; Kathryn L. Nagy,

    2015-01-01

    Methylmercury is the environmental form of neurotoxic mercury that is biomagnified in the food chain. Methylation rates are reduced when the metal is sequestered in crystalline mercury sulfides or bound to thiol groups in macromolecular natural organic matter. Mercury sulfide minerals are known to nucleate in anoxic zones, by reaction of the thiol-bound mercury with biogenic sulfide, but not in oxic environments. We present experimental evidence that mercury sulfide forms from thiol-bound mercury alone in aqueous dark systems in contact with air. The maximum amount of nanoparticulate mercury sulfide relative to thiol-bound mercury obtained by reacting dissolved mercury and soil organic matter matches that detected in the organic horizon of a contaminated soil situated downstream from Oak Ridge, TN, in the United States. The nearly identical ratios of the two forms of mercury in field and experimental systems suggest a common reaction mechanism for nucleating the mineral. We identified a chemical reaction mechanism that is thermodynamically favorable in which thiol-bound mercury polymerizes to mercury–sulfur clusters. The clusters form by elimination of sulfur from the thiol complexes via breaking of mercury–sulfur bonds as in an alkylation reaction. Addition of sulfide is not required. This nucleation mechanism provides one explanation for how mercury may be immobilized, and eventually sequestered, in oxygenated surface environments.

  11. Speech Understanding in Complex Listening Environments by Listeners Fit with Cochlear Implants

    Science.gov (United States)

    Dorman, Michael F.; Gifford, Rene H.

    2017-01-01

    Purpose: The aim of this article is to summarize recent published and unpublished research from our 2 laboratories on improving speech understanding in complex listening environments by listeners fit with cochlear implants (CIs). Method: CI listeners were tested in 2 listening environments. One was a simulation of a restaurant with multiple,…

  12. Towards an understanding of feedbacks between plant productivity, acidity and dissolved organic matter

    Science.gov (United States)

    Rowe, Ed; Tipping, Ed; Davies, Jessica; Monteith, Don; Evans, Chris

    2014-05-01

    The recent origin of much dissolved organic carbon (DOC) (Tipping et al., 2010) implies that plant productivity is a major control on DOC fluxes. However, the flocculation, sorption and release of potentially-dissolved organic matter are governed by pH, and widespread increases in DOC concentrations observed in northern temperate freshwater systems seem to be primarily related to recovery from acidification (Monteith et al., 2007). We explore the relative importance of changes in productivity and pH using a model, MADOC, that incorporates both these effects (Rowe et al., 2014). The feedback whereby DOC affects pH is included. The model uses an annual timestep and relatively simple flow-routing, yet reproduces observed changes in DOC flux and pH in experimental (Evans et al., 2012) and survey data. However, the first version of the model probably over-estimated responses of plant productivity to nitrogen (N) deposition in upland semi-natural ecosystems. There is a strong case that plant productivity is an important regulator of DOC fluxes, and theoretical reasons for suspecting widespread productivity increases in recent years due not only to N deposition but to temperature and increased atmospheric CO2 concentrations. However, evidence that productivity has increased in upland semi-natural ecosystems is sparse, and few studies have assessed the major limitations to productivity in these habitats. In systems where phosphorus (P) limitation prevails, or which are co-limited, productivity responses to anthropogenic drivers will be limited. We present a revised version of the model that incorporates P cycling and appears to represent productivity responses to atmospheric N pollution more realistically. Over the long term, relatively small fluxes of nutrient elements into and out of ecosystems can profoundly affect productivity and the accumulation of organic matter. Dissolved organic N (DON) is less easily intercepted by plants and microbes than mineral N, and DON

  13. Understanding the implementation of complex interventions in health care: the normalization process model

    Directory of Open Access Journals (Sweden)

    Rogers Anne

    2007-09-01

    Full Text Available Abstract Background The Normalization Process Model is a theoretical model that assists in explaining the processes by which complex interventions become routinely embedded in health care practice. It offers a framework for process evaluation and also for comparative studies of complex interventions. It focuses on the factors that promote or inhibit the routine embedding of complex interventions in health care practice. Methods A formal theory structure is used to define the model, and its internal causal relations and mechanisms. The model is broken down to show that it is consistent and adequate in generating accurate description, systematic explanation, and the production of rational knowledge claims about the workability and integration of complex interventions. Results The model explains the normalization of complex interventions by reference to four factors demonstrated to promote or inhibit the operationalization and embedding of complex interventions (interactional workability, relational integration, skill-set workability, and contextual integration. Conclusion The model is consistent and adequate. Repeated calls for theoretically sound process evaluations in randomized controlled trials of complex interventions, and policy-makers who call for a proper understanding of implementation processes, emphasize the value of conceptual tools like the Normalization Process Model.

  14. An Approach to Understanding Complex Socio-Economic Impacts and Responses to Climate Disruption in the Chesapeake Bay Region

    Science.gov (United States)

    Schaefer, R. K.; Nix, M.; Ihde, A. G.; Paxton, L. J.; Weiss, M.; Simpkins, S.; Fountain, G. H.; APl GAIA Team

    2011-12-01

    In this paper we describe the application of a proven methodology for modeling the complex social and economic interactions of a system under stress to the regional issues that are tied to global climate disruption. Under the auspices of the GAIA project (http://gaia.jhuapl.edu), we have investigated simulating the complex interplay between climate, politics, society, industry, and the environment in the Chesapeake Bay Watershed and associated geographic areas of Maryland, Virginia, and Pennsylvania. This Chesapeake Bay simulation draws on interrelated geophysical and climate models to support decision-making analysis about the Bay. In addition to physical models, however, human activity is also incorporated via input and output calculations. For example, policy implications are modeled in relation to business activities surrounding fishing, farming, industry and manufacturing, land development, and tourism. This approach fosters collaboration among subject matter experts to advance a more complete understanding of the regional impacts of climate change. Simulated interactive competition, in which teams of experts are assigned conflicting objectives in a controlled environment, allow for subject exploration which avoids trivial solutions that neglect the possible responses of affected parties. Results include improved planning, the anticipation of areas of conflict or high risk, and the increased likelihood of developing mutually acceptable solutions.

  15. First principles calculations of nucleon and pion form factors: understanding the building blocks of nuclear matter from lattice QCD

    International Nuclear Information System (INIS)

    Constantia Alexandrou; Bojan Bistrovic; Robert Edwards; P de Forcrand; George Fleming; Philipp Haegler; John Negele; Konstantinos Orginos; Andrew Pochinsky; Dru Renner; David Richards; Wolfram Schroers; Antonios Tsapalis

    2005-01-01

    Lattice QCD is an essential complement to the current and anticipated DOE-supported experimental program in hadronic physics. In this poster we address several key questions central to our understanding of the building blocks of nuclear matter, nucleons and pions. Firstly, we describe progress at computing the electromagnetic form factors of the nucleon, describing the distribution of charge and current, before considering the role played by the strange quarks. We then describe the study of transition form factors to the Delta resonance. Finally, we present recent work to determine the pion form factor, complementary to the current JLab experimental determination and providing insight into the approach to asymptotic freedom

  16. First principles calculations of nucleon and pion form factors: understanding the building blocks of nuclear matter from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Constantia Alexandrou; Bojan Bistrovic; Robert Edwards; P de Forcrand; George Fleming; Philipp Haegler; John Negele; Konstantinos Orginos; Andrew Pochinsky; Dru Renner; David Richards; Wolfram Schroers; Antonios Tsapalis

    2005-10-01

    Lattice QCD is an essential complement to the current and anticipated DOE-supported experimental program in hadronic physics. In this poster we address several key questions central to our understanding of the building blocks of nuclear matter, nucleons and pions. Firstly, we describe progress at computing the electromagnetic form factors of the nucleon, describing the distribution of charge and current, before considering the role played by the strange quarks. We then describe the study of transition form factors to the Delta resonance. Finally, we present recent work to determine the pion form factor, complementary to the current JLab experimental determination and providing insight into the approach to asymptotic freedom.

  17. How to talk about serious matters of complexity with models as agents: A speculative essay on artistic and design-based research

    Directory of Open Access Journals (Sweden)

    Shintaro Miyazaki

    2015-12-01

    Full Text Available This essay is conceptualising models as cultural techniques, agential media and designed systems, which catalyse fruitful discussions on serious matters of our commons.The term ‘commons’ means all the natural, technological and cultural resources accessible to all members of a community. This is also relevant for artistic and design-based research as it is argued in this essay. Models are called into action especially when these “matters of concern” transcend our intuitive understanding and reach a degree of complexity that goes beyond simple human reasoning. In such cases, we need help from models. They show us, and let us experience, important aspects of the unforeseeable, emergent, and sometimes global effects – both positive and negative – of our machine’s day-to-day micro-behaviour. Consisting of little actions, they combine to affect our common resources and infrastructures.

  18. The Effects of Visualizations on Linguistically Diverse Students' Understanding of Energy and Matter in Life Science

    Science.gov (United States)

    Ryoo, Kihyun; Bedell, Kristin

    2017-01-01

    Although extensive research has shown the educational value of different types of interactive visualizations on students' science learning in general, how such technologies can contribute to English learners' (ELs) understanding of complex scientific concepts has not been sufficiently explored to date. This mixed-methods study investigated how…

  19. Why Understanding Science Matters: The IES Research Guidelines as a Case in Point

    Science.gov (United States)

    Rudolph, John L.

    2014-01-01

    The author outlines the rise of a hard-science model advocated by the Institute for Education Sciences, including the application of research and development approaches to education following the Second World War, and describes the attraction of these hard-science approaches for education policymakers. He notes that in the face of complex and…

  20. Understanding the dimensions of intensive care: transpersonal caring and complexity theories.

    Science.gov (United States)

    do Nascimento, Keyla Cristiane; Erdmann, Alacoque Lorenzini

    2009-01-01

    This is a descriptive, interpretive and qualitative study carried out at the ICU of a Brazilian teaching hospital. It aimed to understand the dimensions of human caring experienced by health care professionals, clients and their family members at an ICU, based on human caring complexity. The Transpersonal Caring and Complexity theories support theory and data analysis. The following dimensions of care emerged from the themes analyzed according to Ricoeur: self-care, care as an individual value, professional vs. informal care, care as supportive relationship, affective care, humanized care, care as act/attitude, care practice; educative care, dialogical relationship, care coupled to technology, loving care, interactive care, non-care, care ambience, the essence of life and profession, and meaning/purpose of care. We believe in care that encompasses several dimensions presented here, based on the relationship with the other, on the empathetic, sensitive, affectionate, creative, dynamic and understanding being in the totality of the human being.

  1. On the Impact of Layout Quality to Understanding UML Diagrams: Size Matters

    DEFF Research Database (Denmark)

    Störrle, Harald

    2014-01-01

    Practical experience suggests that usage and understanding of UML diagrams is greatly affected by the quality of their layout. While existing research failed to provide conclusive evidence in support of this hypothesis, our own previous work provided substantial evidence to this effect. When...

  2. Improving the Conceptual Understanding in Kinematics Subject Matter with Hypertext Media Learning and Formal Thinking

    Science.gov (United States)

    Manurung, Sondang R.; Mihardi, Satria

    2016-01-01

    The purpose of this study was to determine the effectiveness of hypertext media based kinematic learning and formal thinking ability to improve the conceptual understanding of physic prospective students. The research design used is the one-group pretest-posttest experimental design is carried out in the research by taking 36 students on from…

  3. Toward understanding the thermodynamics of TALSPEAK process. Medium effects on actinide complexation

    Energy Technology Data Exchange (ETDEWEB)

    Peter R Zalupski; Leigh R Martin; Ken Nash; Yoshinobu Nakamura; Masahiko Yamamoto

    2009-07-01

    The ingenious combination of lactate and diethylenetriamine-N,N,N’,N”,N”-pentaacetic acid (DTPA) as an aqueous actinide-complexing medium forms the basis of the successful separation of americium and curium from lanthanides known as the TALSPEAK process. While numerous reports in the prior literature have focused on the optimization of this solvent extraction system, considerably less attention has been devoted to the understanding of the basic thermodynamic features of the complex fluids responsible for the separation. The available thermochemical information of both lactate and DTPA protonation and metal complexation reactions are representative of the behavior of these ions under idealized conditions. Our previous studies of medium effects on lactate protonation suggest that significant departures from the speciation predicted based on reported thermodynamic values should be expected in the TALSPEAK aqueous environment. Thermodynamic parameters describing the separation chemistry of this process thus require further examination at conditions significantly removed from conventional ideal systems commonly employed in fundamental solution chemistry. Such thermodynamic characterization is the key to predictive modelling of TALSPEAK. Improved understanding will, in principle, allow process technologists to more efficiently respond to off-normal conditions during large scale process operation. In this report, the results of calorimetric and potentiometric investigations of the effects of aqueous electrolytes on the thermodynamic parameters for lactate protonation and lactate complexation of americium and neodymium will be presented. Studies on the lactate protonation equilibrium will clearly illustrate distinct thermodynamic variations between strong electrolyte aqueous systems and buffered lactate environment.

  4. The Influence of Different Models on 15-years-old Students' Understanding of the Solid State of Matter.

    Science.gov (United States)

    Devetak, Iztok; Hajzeri, Metka; Glažar, Saša Aleksij; Vogrinc, Janez

    2010-12-01

    Different models are an indispensable part of teaching and learning chemistry for students to develop adequate mental models of solid states of matter. The aim of this study was to establish the importance of using physical models (teachers' demonstrations and students' modelling) and virtual models of solid states in the educational process for students' to acquire a better understanding of the crystal structures of substances. First year grammar school students (average age 15.4 years) participated in the study. All students were divided into three groups, depending on what sort of activity involving models was used in the chemistry teaching and learning process. The solid state of matter was taught in the first group by students' constructing physical models. In the second group virtual models were used, while the third group was taught by teachers' demonstration of physical models. Students' understanding of the solid state structures was assessed with a knowledge test after the educational strategy, whereas the knowledge retention was evaluated one month following the applications of the teaching strategies with the delayed test. The students who modelled physical models scored better on the test than did the students who used virtual models and also those who were taught the solid state of matter by the teachers' demonstration of physical models. Those students who used virtual models or modelling during chemistry learning achieved statistically the same results on the delayed test, whereas the students who were exposed to the teachers' model demonstration achieved the lowest test score. It can be concluded that students who are engaged in active learning strategies that include modelling or computer interaction using virtual models develop more adequate mental models of solid state substance structures.

  5. Schedule Matters: Understanding the Relationship between Schedule Delays and Costs on Overruns

    Science.gov (United States)

    Majerowicz, Walt; Shinn, Stephen A.

    2016-01-01

    This paper examines the relationship between schedule delays and cost overruns on complex projects. It is generally accepted by many project practitioners that cost overruns are directly related to schedule delays. But what does "directly related to" actually mean? Some reasons or root causes for schedule delays and associated cost overruns are obvious, if only in hindsight. For example, unrealistic estimates, supply chain difficulties, insufficient schedule margin, technical problems, scope changes, or the occurrence of risk events can negatively impact schedule performance. Other factors driving schedule delays and cost overruns may be less obvious and more difficult to quantify. Examples of these less obvious factors include project complexity, flawed estimating assumptions, over-optimism, political factors, "black swan" events, or even poor leadership and communication. Indeed, is it even possible the schedule itself could be a source of delay and subsequent cost overrun? Through literature review, surveys of project practitioners, and the authors' own experience on NASA programs and projects, the authors will categorize and examine the various factors affecting the relationship between project schedule delays and cost growth. The authors will also propose some ideas for organizations to consider to help create an awareness of the factors which could cause or influence schedule delays and associated cost growth on complex projects.

  6. Language matters: towards an understanding of silence and humour in medical education.

    Science.gov (United States)

    Lingard, Lorelei

    2013-01-01

    This paper considers the state of the science regarding language matters in medical education, with particular attention to two informal language practices: silence and humour. Silence and humour pervade clinical training settings, although we rarely attend explicitly to them. This paper considers the treatment of these topics in our field to date and introduces a selection of the scholarship on silence and humour from other fields, including philosophy, sociology, anthropology, linguistics and rhetoric. Particular attention is paid to distilling the theoretical and methodological possibilities for an elaborated research agenda around silence and humour in medical education. These two language practices assume a variety of forms and serve a range of social functions. Episodes of silence and humour are intimately tied to their relational and institutional contexts. Power often figures centrally, although not predictably. A rich theoretical and methodological basis exists on which to elaborate a research agenda around silence and humour in medical education. Such research promises to reveal more fully the contributions of silence and humour to socialisation in clinical training settings. © Blackwell Publishing Ltd 2013.

  7. Towards a molecular level understanding of the sulfanilamide-soil organic matter-interaction.

    Science.gov (United States)

    Ahmed, Ashour A; Thiele-Bruhn, Sören; Leinweber, Peter; Kühn, Oliver

    2016-07-15

    Sorption experiments of sulfanilamide (SAA) on well-characterized samples of soil size-fractions were combined with the modeling of SAA-soil-interaction via quantum chemical calculations. Freundlich unit capacities were determined in batch experiments and it was found that they increase with the soil organic matter (SOM) content according to the order fine silt > medium silt > clay > whole soil > coarse silt > sand. The calculated binding energies for mass-spectrometrically quantified sorption sites followed the order ionic species > peptides > carbohydrates > phenols and lignin monomers > lignin dimers > heterocyclic compounds > fatty acids > sterols > aromatic compounds > lipids, alkanes, and alkenes. SAA forms H-bonds through its polar centers with the polar SOM sorption sites. In contrast dispersion and π-π-interactions predominate the interaction of the SAA aromatic ring with the non-polar moieties of SOM. Moreover, the dipole moment, partial atomic charges, and molecular volume of the SOM sorption sites are the main physical properties controlling the SAA-SOM-interaction. Further, reasonable estimates of the Freundlich unit capacities from the calculated binding energies have been established. Consequently, we suggest using this approach in forthcoming studies to disclose the interactions of a wide range of organic pollutants with SOM. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Prospective outcome of the influence of complexation by natural organic matter on enhanced or retarded transport of radionuclides: case of humic substances retention

    International Nuclear Information System (INIS)

    Reiller, P.

    2010-01-01

    This document takes a prospective stock of the natural organic matter influence on the possible effects on radionuclide migration, as well as a brief critical analysis of the literature data. A comparison with the retention of the 'simple' organic complexing agents is done in order to fix the limit of the 'simplistic' analogies done in the literature very often. It appears that the magnitude of the effects is function of the residence time in the medium, and of the possibilities for the organic complexes to be retained on the mineral surfaces. The contact time between radionuclides and the natural organic matter is also an influent parameter, as it influences part of the reversibility of this interaction vis-a-vis surface retention. Modelling of the metal-organic-surface systems is only satisfying up to now when accounting fractions of organic matter that are less susceptible to form colloidal aggregates, i.e., fulvic acids. These non-aggregated fractions could be considered as simple ligands in a first approximation. Conversely, when it comes to aggregated colloids of organic origin, i.e., humic acids, modelling are limited by the lack of theoretical understanding of their structure and of their evolution in response to geochemical condition variations, as ionic strength (harsh meteoric events), acidity or water composition (non-saturated water table). (author)

  9. Supratentorial white matter blurring associated with voltage-gated potassium channel-complex limbic encephalitis

    International Nuclear Information System (INIS)

    Urbach, H.; Mader, I.; Rauer, S.; Baumgartner, A.; Paus, S.; Wagner, J.; Malter, M.P.; Pruess, H.; Lewerenz, J.; Kassubek, J.; Hegen, H.; Auer, M.; Deisenhammer, F.; Ufer, F.; Bien, C.G.

    2015-01-01

    Limbic encephalitis (LE) associated with voltage-gated potassium channel-complex antibodies (VGKC-LE) is frequently non-paraneoplastic and associated with marked improvement following corticosteroid therapy. Mesial temporal lobe abnormalities are present in around 80 % of patients. If associated or preceded by faciobrachial dystonic seizures, basal ganglia signal changes may occur. In some patients, blurring of the supratentorial white matter on T2-weighted images (SWMB) may be seen. The purpose of this study was to evaluate the incidence of SWMB and whether it is specific for VGKC-LE. Two experienced neuroradiologists independently evaluated signal abnormalities on FLAIR MRI in 79 patients with LE while unaware on the antibody type. SWMB was independently assessed as present in 10 of 36 (28 %) compared to 2 (5 %) of 43 non-VGKC patients (p = 0.009). It was not related to the presence of LGI1 or CASPR2 proteins of VGKC antibodies. MRI showed increased temporomesial FLAIR signal in 22 (61 %) VGKC compared to 14 (33 %) non-VGKC patients (p = 0.013), and extratemporomesial structures were affected in one VGKC (3 %) compared to 11 (26 %) non-VGKC patients (p = 0.005). SWMB is a newly described MRI sign rather specific for VGKC-LE. (orig.)

  10. Supratentorial white matter blurring associated with voltage-gated potassium channel-complex limbic encephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Urbach, H.; Mader, I. [University Medical Center Freiburg, Department of Neuroradiology, Freiburg (Germany); Rauer, S.; Baumgartner, A. [University Medical Center Freiburg, Department of Neurology, Freiburg (Germany); Paus, S. [University Medical Center, Department of Neurology, Bonn (Germany); Wagner, J. [University Medical Center, Department of Epileptology, Bonn (Germany); Malter, M.P. [University of Cologne, Department of Neurology, Cologne (Germany); Pruess, H. [Charite - Universitaetsmedizin Berlin, Department of Neurology, Berlin (Germany); Lewerenz, J.; Kassubek, J. [Ulm University, Department of Neurology, Ulm (Germany); Hegen, H.; Auer, M.; Deisenhammer, F. [University Innsbruck, Department of Neurology, Innsbruck (Austria); Ufer, F. [University Medical Center, Department of Neurology, Hamburg (Germany); Bien, C.G. [Epilepsy Centre Bethel, Bielefeld-Bethel (Germany)

    2015-12-15

    Limbic encephalitis (LE) associated with voltage-gated potassium channel-complex antibodies (VGKC-LE) is frequently non-paraneoplastic and associated with marked improvement following corticosteroid therapy. Mesial temporal lobe abnormalities are present in around 80 % of patients. If associated or preceded by faciobrachial dystonic seizures, basal ganglia signal changes may occur. In some patients, blurring of the supratentorial white matter on T2-weighted images (SWMB) may be seen. The purpose of this study was to evaluate the incidence of SWMB and whether it is specific for VGKC-LE. Two experienced neuroradiologists independently evaluated signal abnormalities on FLAIR MRI in 79 patients with LE while unaware on the antibody type. SWMB was independently assessed as present in 10 of 36 (28 %) compared to 2 (5 %) of 43 non-VGKC patients (p = 0.009). It was not related to the presence of LGI1 or CASPR2 proteins of VGKC antibodies. MRI showed increased temporomesial FLAIR signal in 22 (61 %) VGKC compared to 14 (33 %) non-VGKC patients (p = 0.013), and extratemporomesial structures were affected in one VGKC (3 %) compared to 11 (26 %) non-VGKC patients (p = 0.005). SWMB is a newly described MRI sign rather specific for VGKC-LE. (orig.)

  11. Understanding the GPCR biased signaling through G protein and arrestin complex structures.

    Science.gov (United States)

    Zhou, X Edward; Melcher, Karsten; Xu, H Eric

    2017-08-01

    G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors and are important drug targets for many human diseases. The determination of the 3-D structure of GPCRs and their signaling complexes has promoted our understanding of GPCR biology and provided templates for structure-based drug discovery. In this review, we focus on the recent structure work on GPCR signaling complexes, the β2-adrenoreceptor-Gs and the rhodopsin-arrestin complexes in particular, and highlight the structural features of GPCR complexes involved in G protein- and arrestin-mediated signal transduction. The crystal structures reveal distinct structural mechanisms by which GPCRs recruit a G protein and an arrestin. A comparison of the two complex structures provides insight into the molecular mechanism of functionally selective GPCR signaling, and a structural basis for the discovery of G protein- and arrestin-biased treatments of human diseases related to GPCR signal transduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Towards a molecular level understanding of the sulfanilamide-soil organic matter-interaction

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Ashour A., E-mail: ashour.ahmed@uni-rostock.de [University of Rostock, Institute of Physics, Albert-Einstein-Str. 23-24, D-18059 Rostock (Germany); Steinbeis GmbH & Co. KG für Technologietransfer, 70174 Stuttgart (Germany); University of Cairo, Faculty of Science, Department of Chemistry, 12613 Giza (Egypt); Thiele-Bruhn, Sören, E-mail: thiele@uni-trier.de [University of Trier, Soil Science, D-54286 Trier (Germany); Leinweber, Peter, E-mail: peter.leinweber@uni-rostock.de [Steinbeis GmbH & Co. KG für Technologietransfer, 70174 Stuttgart (Germany); University of Rostock, Soil Science, D-18051 Rostock (Germany); Kühn, Oliver, E-mail: oliver.kuehn@uni-rostock.de [University of Rostock, Institute of Physics, Albert-Einstein-Str. 23-24, D-18059 Rostock (Germany)

    2016-07-15

    Sorption experiments of sulfanilamide (SAA) on well-characterized samples of soil size-fractions were combined with the modeling of SAA-soil-interaction via quantum chemical calculations. Freundlich unit capacities were determined in batch experiments and it was found that they increase with the soil organic matter (SOM) content according to the order fine silt > medium silt > clay > whole soil > coarse silt > sand. The calculated binding energies for mass-spectrometrically quantified sorption sites followed the order ionic species > peptides > carbohydrates > phenols and lignin monomers > lignin dimers > heterocyclic compounds > fatty acids > sterols > aromatic compounds > lipids, alkanes, and alkenes. SAA forms H-bonds through its polar centers with the polar SOM sorption sites. In contrast dispersion and π-π-interactions predominate the interaction of the SAA aromatic ring with the non-polar moieties of SOM. Moreover, the dipole moment, partial atomic charges, and molecular volume of the SOM sorption sites are the main physical properties controlling the SAA-SOM-interaction. Further, reasonable estimates of the Freundlich unit capacities from the calculated binding energies have been established. Consequently, we suggest using this approach in forthcoming studies to disclose the interactions of a wide range of organic pollutants with SOM. - Highlights: • Experiment and theory showed that SAA obeys a site-specific sorption on soil surfaces. • SAA-SOM-interaction increases by increasing polarity of SOM sorption site. • H-bonds, dispersion, and π-π-interactions were observed for SAA-SOM-interaction. • Dipole moment and atomic charges of SOM sorption sites control SAA-SOM-interaction. • The Freundlich unit capacities were estimated from the calculated binding energies. • The current SOM model is flexible to describe interactions of SOM with other pollutants.

  13. The Cryogenic Dark Matter Search: First 5-Tower Data and Improved Understanding of Ionization Collection

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Catherine N. [Case Western Reserve Univ., Cleveland, OH (United States)

    2010-01-01

    The Cryogenic Dark Matter Search (CDMS) is searching for Weakly Interacting Massive Particles (WIMPs) with cryogenic particle detectors. These detectors have the ability to discriminate between nuclear recoil candidate and electron recoil background events by collecting both phonon and ionization energy from recoils in the detector crystals. The CDMS-II experiment has completed analysis of the first data runs with 30 semiconductor detectors at the Soudan Underground Laboratory, resulting in a world leading WIMP-nucleon spin-independent cross section limit for WIMP masses above 44 GeV/c2. As CDMS aims to achieve greater WIMP sensitivity, it is necessary to increase the detector mass and discrimination between signal and background events. Incomplete ionization collection results in the largest background in the CDMS detectors as this causes electron recoil background interactions to appear as false candidate events. Two primary causes of incomplete ionization collection are surface and bulk trapping. Recent work has been focused on reducing surface trapping through the modification of fabrication methods for future detectors. Analyzing data taken with test devices has shown that hydrogen passivation of the amorphous silicon blocking layer worsens surface trapping. Additional data has shown that the iron-ion implantation used to lower the critical temperature of the tungsten transition-edge sensors causes a degradation of the ionization collection. Using selective implantation on future detectors may improve ionization collection for events near the phonon side detector surface. Bulk trapping is minimized by neutralizing ionized lattice impurities. Detector investigations at testing facilities and in situ at the experimental site have provided methods to optimize the neutralization process and monitor running conditions to maintain full ionization collection. This work details my contribution to the 5-tower data taking, monitoring, and analysis effort as

  14. Evaluation of the production, composition and aluminum and iron complexation of algogenic organic matter

    Czech Academy of Sciences Publication Activity Database

    Pivokonský, Martin; Klouček, Ondřej; Pivokonská, Lenka

    2006-01-01

    Roč. 40, č. 16 (2006), s. 3045-3052 ISSN 0043-1354 R&D Projects: GA AV ČR KJB200600501 Institutional research plan: CEZ:AV0Z20600510 Keywords : affinity chromatography * algogenic organic matter * aluminum and iron coagulants * extracellular organic matter * molecular weight fractionation * intracellular organic matter Subject RIV: BK - Fluid Dynamics Impact factor: 2.459, year: 2006

  15. Understanding NaI(Tl) crystal background for dark matter searches

    Energy Technology Data Exchange (ETDEWEB)

    Adhikari, G.; Adhikari, P.; Kong, S.Y.; Oh, S.Y. [Sejong University, Department of Physics and Astronomy, Seoul (Korea, Republic of); Ha, C.; Jeon, E.J.; Kim, N.Y.; Lee, H.S.; Park, J.S.; Park, K.S. [Institute for Basic Science (IBS), Center for Underground Physics, Daejeon (Korea, Republic of); Kim, Y.D. [Institute for Basic Science (IBS), Center for Underground Physics, Daejeon (Korea, Republic of); Sejong University, Department of Physics and Astronomy, Seoul (Korea, Republic of)

    2017-07-15

    We have developed ultra-low-background NaI(Tl) crystals to reproduce the DAMA results with the ultimate goal of achieving purity levels that are comparable to or better than those of the DAMA/LIBRA crystals. Even though the achieved background level does not approach that of DAMA/LIBRA, it is crucial to have a quantitative understanding of the backgrounds. We have studied background simulations toward a deeper understanding of the backgrounds and developed background models for a 9.16-kg NaI(Tl) crystal used in the test arrangement. In this paper we describe the contributions of background sources quantitatively by performing Geant4 Monte Carlo simulations that are fitted to the measured data to quantify the unknown fractions of the background compositions. In the fitted results, the overall simulated background spectrum well describes the measured data with a 9.16-kg NaI(Tl) crystal and shows that the background sources are dominated by surface {sup 210}Pb and internal {sup 40}K in the 2-6-keV energy interval, which produce 2.4 counts/day/keV/kg (dru) and 0.5 dru, respectively. (orig.)

  16. Getting angry matters: Going beyond perspective taking and empathic concern to understand bystanders' behavior in bullying.

    Science.gov (United States)

    Pozzoli, Tiziana; Gini, Gianluca; Thornberg, Robert

    2017-12-01

    The present study examined the relations between different empathic dimensions and bystanders' behavior in bullying. Specifically, the indirect effects of empathic concern and perspective taking via empathic anger on defending and passive bystanding were tested in a sample of Italian young adolescents (N = 398; M age  = 12 years, 3 months, 47.2% girls). Path analysis confirmed the direct and indirect effects, via empathic anger, of empathic concern and perspective taking on bystanders' behavior, with the exception of the direct association between perspective taking and passive bystanding that was not significant. Our findings suggest that considering empathic anger together with empathic concern and perspective taking could help researchers to better understand the links between empathic dispositions and bystanders' behavior in bullying. Copyright © 2017. Published by Elsevier Ltd.

  17. Mediation, moderation, and context: Understanding complex relations among cognition, affect, and health behaviour.

    Science.gov (United States)

    Kiviniemi, Marc T; Ellis, Erin M; Hall, Marissa G; Moss, Jennifer L; Lillie, Sarah E; Brewer, Noel T; Klein, William M P

    2018-01-01

    Researchers have historically treated cognition and affect as separate constructs in motivating health behaviour. We present a framework and empirical evidence for complex relations between cognition and affect in predicting health behaviour. Main Outcome, Design and Results: First, affect and cognition can mediate each other's relation to health behaviour. Second, affect and cognition can moderate the other's impact. Third, context can change the interplay of affect and cognition. Fourth, affect and cognition may be indelibly fused in some psychological constructs (e.g. worry, anticipated regret and reactance). These four propositions in our framework are not mutually exclusive. Examination of the types of complex relations described here can benefit theory development, empirical testing of theories and intervention design. Doing so will advance the understanding of mechanisms involved in regulation of health behaviours and the effectiveness of interventions to change health behaviours.

  18. Excisional Precision Matters: Understanding the Influence of Excisional Volume Loss on Renal Function After Partial Nephrectomy.

    Science.gov (United States)

    Dagenais, Julien; Maurice, Matthew J; Mouracade, Pascal; Kara, Onder; Malkoc, Ercan; Kaouk, Jihad H

    2017-08-01

    Renal function after partial nephrectomy (PN) may depend on modifiable factors including ischemia time, excision of healthy parenchyma (excisional volume loss, EVL), and reconstructive methods. We retrospectively reviewed our institutional robotic PN database to identify the predictors of glomerular filtration rate (GFR) preservation (GFR-P) at 3-12 mo postoperatively, during which GFR decline plateaus. Baseline clinical, sociodemographic, and radiologic characteristics were captured. Univariate and multivariate (MV) linear regression analyses were performed and marginal effects were employed to examine the relative effect of EVL on renal function. A total of 647 patients who underwent robotic PN had GFR data at a median follow-up of 6 mo. On MV models, EVL was significantly correlated with GFR-P following log transformation (p=0.001). Each doubling of EVL caused a 1.5% decrease in GFR-P. Ischemia time and tumor complexity were not significantly associated with GFR-P. In summary, GFR-P after PN appears to be significantly associated with the excised volume of benign parenchyma. At a high-volume tertiary care center, we investigated the impact of surgical factors on kidney function after kidney cancer surgery. We found that the surgical precision with which the tumor is excised significantly impacts kidney function at 3-12 mo after surgery. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  19. Understanding valve program complexity in a refurbishment environment - learning from the past

    International Nuclear Information System (INIS)

    Roth, H.E.

    2012-01-01

    The complexity of Valve Program development, planning, execution and management in a refurbishment environment is an enormous undertaking requiring the proper coordination and integration of many moving parts. As such, lack of attention and understanding of this complexity has led to significant cost and schedule overruns in past refurbishment projects in the province. OPEX indicates the challenges in completing valve scope during refurbishments are related but not limited to; lack of detailed condition assessments, improper scope development, insignificant strategic approach to work task planning, scheduling and procurement, absence of contingency planning for common ‘as found’ conditions during execution, lack of proper training requirements, etc. In addition, past contracting strategies to employ numerous companies in collaboration to complete such a complex and specialized program, has resulted in further complications surrounding the management and integration of multiple quality programs and internal company processes. Finally, the aftermath of such fragmented projects results in an absolute closeout nightmare, often times taking years to locate, sift through and re-integrate pertinent information back into customer systems. Valve Program complexity cannot be understood by just anyone, only those that have lived through a refurbishment project and experienced the challenges mentioned above have the knowledge, skill, and ability to appreciate how to tactically apply past learning to realize future improvements. Furthermore, effective contractor-customer collaboration is crucial; true and in-depth knowledge and understanding of the customer quality programs, engineering and work management processes, configuration management requirements, and most importantly the imperative significance of nuclear safety, are all essential components to ensure overall alignment and program success. (author)

  20. Understanding, creating, and managing complex techno-socio-economic systems: Challenges and perspectives

    Science.gov (United States)

    Helbing, D.; Balietti, S.; Bishop, S.; Lukowicz, P.

    2011-05-01

    This contribution reflects on the comments of Peter Allen [1], Bikas K. Chakrabarti [2], Péter Érdi [3], Juval Portugali [4], Sorin Solomon [5], and Stefan Thurner [6] on three White Papers (WP) of the EU Support Action Visioneer (www.visioneer.ethz.ch). These White Papers are entitled "From Social Data Mining to Forecasting Socio-Economic Crises" (WP 1) [7], "From Social Simulation to Integrative System Design" (WP 2) [8], and "How to Create an Innovation Accelerator" (WP 3) [9]. In our reflections, the need and feasibility of a "Knowledge Accelerator" is further substantiated by fundamental considerations and recent events around the globe. newpara The Visioneer White Papers propose research to be carried out that will improve our understanding of complex techno-socio-economic systems and their interaction with the environment. Thereby, they aim to stimulate multi-disciplinary collaborations between ICT, the social sciences, and complexity science. Moreover, they suggest combining the potential of massive real-time data, theoretical models, large-scale computer simulations and participatory online platforms. By doing so, it would become possible to explore various futures and to expand the limits of human imagination when it comes to the assessment of the often counter-intuitive behavior of these complex techno-socio-economic-environmental systems. In this contribution, we also highlight the importance of a pluralistic modeling approach and, in particular, the need for a fruitful interaction between quantitative and qualitative research approaches. newpara In an appendix we briefly summarize the concept of the FuturICT flagship project, which will build on and go beyond the proposals made by the Visioneer White Papers. EU flagships are ambitious multi-disciplinary high-risk projects with a duration of at least 10 years amounting to an envisaged overall budget of 1 billion EUR [10]. The goal of the FuturICT flagship initiative is to understand and manage complex

  1. Toward understanding the thermodynamics of TALSPEAK process. Medium effects on actinide complexation

    International Nuclear Information System (INIS)

    Zalupski, Peter R.; Martin, Leigh R.; Nash, Ken; Nakamura, Yoshinobu; Yamamoto, Masahiko

    2009-01-01

    The ingenious combination of lactate and diethylenetriamine-N,N,N',N(double p rime),N(double p rime)-pentaacetic acid (DTPA) as an aqueous actinide-complexing medium forms the basis of the successful separation of americium and curium from lanthanides known as the TALSPEAK process. While numerous reports in the prior literature have focused on the optimization of this solvent extraction system, considerably less attention has been devoted to the understanding of the basic thermodynamic features of the complex fluids responsible for the separation. The available thermochemical information of both lactate and DTPA protonation and metal complexation reactions are representative of the behavior of these ions under idealized conditions. Our previous studies of medium effects on lactate protonation suggest that significant departures from the speciation predicted based on reported thermodynamic values should be expected in the TALSPEAK aqueous environment. Thermodynamic parameters describing the separation chemistry of this process thus require further examination at conditions significantly removed from conventional ideal systems commonly employed in fundamental solution chemistry. Such thermodynamic characterization is the key to predictive modelling of TALSPEAK. Improved understanding will, in principle, allow process technologists to more efficiently respond to off-normal conditions during large scale process operation. In this report, the results of calorimetric and potentiometric investigations of the effects of aqueous electrolytes on the thermodynamic parameters for lactate protonation and lactate complexation of americium and neodymium will be presented. Studies on the lactate protonation equilibrium will clearly illustrate distinct thermodynamic variations between strong electrolyte aqueous systems and buffered lactate environment.

  2. Context matters — the complex interplay between resistome genotypes and resistance phenotypes

    DEFF Research Database (Denmark)

    Dantas, Gautam; Sommer, Morten

    2012-01-01

    Application of metagenomic functional selections to study antibiotic resistance genes is revealing a highly diverse and complex network of genetic exchange between bacterial pathogens and environmental reservoirs, which likely contributes significantly to increasing resistance levels in pathogens....... In some cases, clinically relevant resistance genes have been acquired from organisms where their native function is not antibiotic resistance, and which may not even confer a resistance phenotype in their native context. In this review, we attempt to distinguish the resistance phenotype from...... the resistome genotype, and we highlight examples of genes and their hosts where this distinction becomes important in order to understand the relevance of environmental niches that contribute most to clinical problems associated with antibiotic resistance....

  3. Geography and host biogeography matter for understanding the phylogeography of a parasite.

    Science.gov (United States)

    Nieberding, C M; Durette-Desset, M-C; Vanderpoorten, A; Casanova, J C; Ribas, A; Deffontaine, V; Feliu, C; Morand, S; Libois, R; Michaux, J R

    2008-05-01

    The co-evolution between hosts and parasites has long been recognized as a fundamental driver of macro-evolutionary patterns of diversification. The effect of co-differentiation on parasite diversification is, however, often confounded by underlying geographic patterns of host distribution. In order to disentangle the confounding effects of allopatric versus host speciation, the mitochondrial cytochrome b (cyt b) gene was sequenced in seventy individuals of the parasitic nematode genus Heligmosomoides sampled in the six Apodemus mice species common in the western Palearctic region. The nuclear internal transcribed spacers (ITS) 1 and 2 were also sequenced in fifteen parasites to confirm the mitochondrial data. All lineages differentiated according to a geographic pattern and independently from the sampled host species. This suggests that host speciation did not involve concurrent parasite speciation. However, the geographic distribution range of some parasite lineages mirrors that of A. sylvaticus lineages in SW Europe, and that of A. flavicollis lineages in the Balkans and in the Middle East. Thus, regional co-differentiation likely occurred between the parasite and the two sister Apodemus hosts in different parts of their distribution range. We suggest that differences in regional abundances of A. sylvaticus and A. flavicollis are responsible for generating this pattern of regional co-differentiation. This study highlights the importance of integrating both geography and biogeographic information from potential hosts to better understand their parasite phylogeography.

  4. Supramolecular chemistry: from molecular information towards self-organization and complex matter

    International Nuclear Information System (INIS)

    Lehn, Jean-Marie

    2004-01-01

    supramolecular polymers and liquid crystals, and provide an original approach to nanoscience and nanotechnology. In particular, the spontaneous but controlled generation of well-defined, functional supramolecular architectures of nanometric size through self-organization represents a means of performing programmed engineering and processing of nanomaterials. Supramolecular chemistry is intrinsically a dynamic chemistry, in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when a molecular entity contains covalent bonds that may form and break reversibly, so as to make possible a continuous change in constitution and structure by reorganization and exchange of building blocks. This behaviour defines a constitutional dynamic chemistry that allows self-organization by selection as well as by design at both the molecular and supramolecular levels. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization by selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation in a Darwinistic fashion. The merging of the features, information and programmability, dynamics and reversibility, constitution and structural diversity, points towards the emergence of adaptative and evolutionary chemistry. Together with the corresponding fields of physics and biology, it constitutes a science of informed matter, of organized, adaptative complex matter

  5. Using chemistry and microfluidics to understand the spatial dynamics of complex biological networks.

    Science.gov (United States)

    Kastrup, Christian J; Runyon, Matthew K; Lucchetta, Elena M; Price, Jessica M; Ismagilov, Rustem F

    2008-04-01

    Understanding the spatial dynamics of biochemical networks is both fundamentally important for understanding life at the systems level and also has practical implications for medicine, engineering, biology, and chemistry. Studies at the level of individual reactions provide essential information about the function, interactions, and localization of individual molecular species and reactions in a network. However, analyzing the spatial dynamics of complex biochemical networks at this level is difficult. Biochemical networks are nonequilibrium systems containing dozens to hundreds of reactions with nonlinear and time-dependent interactions, and these interactions are influenced by diffusion, flow, and the relative values of state-dependent kinetic parameters. To achieve an overall understanding of the spatial dynamics of a network and the global mechanisms that drive its function, networks must be analyzed as a whole, where all of the components and influential parameters of a network are simultaneously considered. Here, we describe chemical concepts and microfluidic tools developed for network-level investigations of the spatial dynamics of these networks. Modular approaches can be used to simplify these networks by separating them into modules, and simple experimental or computational models can be created by replacing each module with a single reaction. Microfluidics can be used to implement these models as well as to analyze and perturb the complex network itself with spatial control on the micrometer scale. We also describe the application of these network-level approaches to elucidate the mechanisms governing the spatial dynamics of two networkshemostasis (blood clotting) and early patterning of the Drosophila embryo. To investigate the dynamics of the complex network of hemostasis, we simplified the network by using a modular mechanism and created a chemical model based on this mechanism by using microfluidics. Then, we used the mechanism and the model to

  6. Why understanding the impacts of the changing environment on river basin hydrology matters in Texas?

    Science.gov (United States)

    Gao, H.; Zhao, G.; Lee, K.; Zhang, S.; Shen, X.; Shao, M.; Nickelson, C.

    2017-12-01

    The State of Texas is prone to floods and droughts—both of which are expected to become more frequent, and more intensified, under a changing climate. This has a direct negative effect on agricultural productivity, which is a major revenue source for the state. Meanwhile, with the rapid population growth and economic development, the burden to Texas water resources is exacerbated by the ever increasing demands from users. From a hydrological processes perspective, the direct consequence of the increased impervious area due to urbanization is greater surface runoff and higher flood peaks. Although many reservoirs have been built during the past several decades to regulate river flows and increase water supply, the role of these reservoirs in the context of different future climate change and urbanization scenarios needs to be explored. Furthermore, phytoplankton productivity—an important indicator of coastal ecosystem health— is significantly affected by river discharge. The objective of this presentation is to reveal the importance of understanding the impacts of climate change, urbanization, and flow regulation on Texas river flows, water resources, and coastal water quality. Using state-of-the-art modeling and remote sensing techniques, we will showcase our results over representative Texas river basins and bay areas. A few examples include modeling peak flows in the San Antonio River Basin, evaluating water supply resilience under future drought and urbanization over the Dallas metropolitan area, projecting future crop yields from Texas agricultural lands, and monitoring and forecasting Chlorophyll-a concentrations over Galveston Bay. Results from these studies are expected to provide information relevant to decision making, both with regard to water resources management and to ecosystem protection.

  7. Using discrete choice experiments to understand preferences for quality of life. Variance-scale heterogeneity matters.

    Science.gov (United States)

    Flynn, Terry Nicholas; Louviere, Jordan J; Peters, Tim J; Coast, Joanna

    2010-06-01

    Health services researchers are increasingly using discrete choice experiments (DCEs) to model a latent variable, be it health, health-related quality of life or utility. Unfortunately it is not widely recognised that failure to model variance heterogeneity correctly leads to bias in the point estimates. This paper compares variance heterogeneity latent class models with traditional multinomial logistic (MNL) regression models. Using the ICECAP-O quality of life instrument which was designed to provide a set of preference-based general quality of life tariffs for the UK population aged 65+, it demonstrates that there is both mean and variance heterogeneity in preferences for quality of life, which covariate-adjusted MNL is incapable of separating. Two policy-relevant mean groups were found: one group that particularly disliked impairments to independence was dominated by females living alone (typically widows). Males who live alone (often widowers) did not display a preference for independence, but instead showed a strong aversion to social isolation, as did older people (of either sex) who lived with a spouse. Approximately 6-10% of respondents can be classified into a third group that often misunderstood the task. Having a qualification of any type and higher quality of life was associated with smaller random component variances. This illustrates how better understanding of random utility theory enables richer inferences to be drawn from discrete choice experiments. The methods have relevance for all health studies using discrete choice tasks to make inferences about a latent scale, particular QALY valuation exercises that use DCEs, best-worst scaling and ranking tasks. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Extraction and characterization of ternary complexes between natural organic matter, cations, and oxyanions from a natural soil.

    Science.gov (United States)

    Peel, Hannah R; Martin, David P; Bednar, Anthony J

    2017-06-01

    Natural organic matter (NOM) can have a significant influence on the mobility and fate of inorganic oxyanions, such as arsenic and selenium, in the environment. There is evidence to suggest that interactions between NOM and these oxyanions are facilitated by bridging cations (primarily Fe 3+ ) through the formation of ternary complexes. Building on previous work characterizing ternary complexes formed in the laboratory using purified NOM, this study describes the extraction and characterization of intact ternary complexes directly from a soil matrix. The complexes are stable to the basic extraction conditions (pH 12) and do not appear to change when the pH of the extract is adjusted back to neutral. The results suggest that ternary complexes between NOM, cations, and inorganic oxyanions exist in natural soils and could play a role in the speciation of inorganic oxyanions in environmental matrices. Published by Elsevier Ltd.

  9. Understanding the topological characteristics and flow complexity of urban traffic congestion

    Science.gov (United States)

    Wen, Tzai-Hung; Chin, Wei-Chien-Benny; Lai, Pei-Chun

    2017-05-01

    For a growing number of developing cities, the capacities of streets cannot meet the rapidly growing demand of cars, causing traffic congestion. Understanding the spatial-temporal process of traffic flow and detecting traffic congestion are important issues associated with developing sustainable urban policies to resolve congestion. Therefore, the objective of this study is to propose a flow-based ranking algorithm for investigating traffic demands in terms of the attractiveness of street segments and flow complexity of the street network based on turning probability. Our results show that, by analyzing the topological characteristics of streets and volume data for a small fraction of street segments in Taipei City, the most congested segments of the city were identified successfully. The identified congested segments are significantly close to the potential congestion zones, including the officially announced most congested streets, the segments with slow moving speeds at rush hours, and the areas near significant landmarks. The identified congested segments also captured congestion-prone areas concentrated in the business districts and industrial areas of the city. Identifying the topological characteristics and flow complexity of traffic congestion provides network topological insights for sustainable urban planning, and these characteristics can be used to further understand congestion propagation.

  10. Simulation-based education: understanding the socio-cultural complexity of a surgical training 'boot camp'.

    Science.gov (United States)

    Cleland, Jennifer; Walker, Kenneth G; Gale, Michael; Nicol, Laura G

    2016-08-01

    The focus of simulation-based education (SBE) research has been limited to outcome and effectiveness studies. The effect of social and cultural influences on SBE is unclear and empirical work is lacking. Our objective in this study was to explore and understand the complexity of context and social factors at a surgical boot camp (BC). A rapid ethnographic study, employing the theoretical lenses of complexity and activity theory and Bourdieu's concept of 'capital', to better understand the socio-cultural influences acting upon, and during, two surgical BCs, and their implications for SBE. Over two 4-day BCs held in Scotland, UK, an observer and two preceptors conducted 81 hours of observations, 14 field interviews and 11 formal interviews with faculty members (n = 10, including the lead faculty member, session leaders and junior faculty members) and participants (n = 19 core surgical trainees and early-stage residents). Data collection and inductive analysis for emergent themes proceeded iteratively. This paper focuses on three analytical themes. First, the complexity of the surgical training system and wider health care education context, and how this influenced the development of the BC. Second, participants' views of the BC as a vehicle not just for learning skills but for gaining 'insider information' on how best to progress in surgical training. Finally, the explicit aim of faculty members to use the Scottish Surgical Bootcamp to welcome trainees and residents into the world of surgery, and how this occurred. To the best of our knowledge, this is the first empirical study of a surgical BC that takes a socio-cultural approach to exploring and understanding context, complexities, uncertainties and learning associated with one example of SBE. Our findings suggest that a BC is as much about social and cultural processes as it is about individual, cognitive and acquisitive learning. Acknowledging this explicitly will help those planning similar enterprises and

  11. A reduced complexity discrete particle model for understanding the sediment dynamics of steep upland river confluences

    Science.gov (United States)

    Tancock, M. J.; Lane, S. N.; Hardy, R. J.

    2012-12-01

    There has been a significant amount of research conducted in order to understand the flow fields at natural river confluences. Much of this has been made possible due to advances in the use of Computational Fluid Dynamics (CFD). However, much of this research has been conducted on river confluences with negligible water surface slopes and any understanding of the sediment dynamics is largely implied from the flow fields. Therefore, a key challenge is to understand the flow and sediment dynamics of steep river confluences with dynamic boundaries. Two numerical modelling developments are presented which together are capable of increasing our understanding of the sediment dynamics of steep river confluences. The first is the application of a Height-of-Liquid (HOL) model within a CFD framework to explicitly solve the water surface elevation. This is a time-dependent, multiphase treatment of the fluid dynamics which solves for the change in volume of water and air in each vertical column of the mesh. The second is the development of a reduced complexity discrete particle transport model which uses the change in momentum on a spherical particle to predict the transport paths through the flow field determined from CFD simulations. The performance of the two models is tested using field data from a series of highly dynamic, steep gravel-bed confluences on a braidplain of the Borgne d'Arolla, Switzerland. The HOL model is validated against the water surface elevation and flow velocity data and is demonstrated to provide a reliable representation of the flow field in fast-flowing, supercritical flows. In order to validate the discrete particle model, individual particles were tracked using electronic tacheometry. The model is demonstrated to accurately represent the particle tracks obtained in the field and provides a new methodology to understand the dynamic morphology of braid plains.

  12. Understanding and quantifying cognitive complexity level in mathematical problem solving items

    Directory of Open Access Journals (Sweden)

    SUSAN E. EMBRETSON

    2008-09-01

    Full Text Available The linear logistic test model (LLTM; Fischer, 1973 has been applied to a wide variety of new tests. When the LLTM application involves item complexity variables that are both theoretically interesting and empirically supported, several advantages can result. These advantages include elaborating construct validity at the item level, defining variables for test design, predicting parameters of new items, item banking by sources of complexity and providing a basis for item design and item generation. However, despite the many advantages of applying LLTM to test items, it has been applied less often to understand the sources of complexity for large-scale operational test items. Instead, previously calibrated item parameters are modeled using regression techniques because raw item response data often cannot be made available. In the current study, both LLTM and regression modeling are applied to mathematical problem solving items from a widely used test. The findings from the two methods are compared and contrasted for their implications for continued development of ability and achievement tests based on mathematical problem solving items.

  13. Applying a complex adaptive system's understanding of health to primary care [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Johannes Bircher

    2016-09-01

    Full Text Available This paper explores the diagnostic and therapeutic potential of a new concept of health. Investigations into the nature of health have led to a new definition that explains health as a complex adaptive system (CAS and is based on five components (a-e. Humans like all biological creatures must satisfactorily respond to (a the demands of life. For this purpose they need (b a biologically given potential (BGP and (c a personally acquired potential (PAP. These properties of individuals are embedded within (d social and (e environmental determinants of health. Between these five components of health there are 10 complex interactions that justify viewing health as a CAS. In each patient, the current state of health as a CAS evolved from the past, will move forward to a new future, and has to be analyzed and treated as an autonomous whole. A diagnostic procedure is suggested as follows: together with the patient, the five components and 10 complex interactions are assessed. This may help patients to better understand their situations and to recognize possible next steps that may be useful in order to evolve toward better health by themselves. In this process mutual trust in the patient-physician interaction is critical. The described approach offers new possibilities for helping patients improve their health prospects.

  14. Using a complex adaptive system lens to understand family caregiving experiences navigating the stroke rehabilitation system.

    Science.gov (United States)

    Ghazzawi, Andrea; Kuziemsky, Craig; O'Sullivan, Tracey

    2016-10-01

    Family caregivers provide the stroke survivor with social support and continuity during the transition home from a rehabilitation facility. In this exploratory study we examined family caregivers' perceptions and experiences navigating the stroke rehabilitation system. The theories of continuity of care and complex adaptive systems were integrated to examine the transition from a stroke rehabilitation facility to the patient's home. This study provides an understanding of the interacting complexities at the macro and micro levels. A convenient sample of family caregivers (n = 14) who provide care for a stroke survivor were recruited 4-12 weeks following the patient's discharge from a stroke rehabilitation facility in Ontario, Canada. Interviews were conducted with family caregivers to examine their perceptions and experiences navigating the stroke rehabilitation system. Directed and inductive content analysis and the theory of Complex Adaptive Systems were used to interpret the perceptions of family caregivers. Health system policies and procedures at the macro-level determined the types and timing of information being provided to caregivers, and impacted continuity of care and access to supports and services at the micro-level. Supports and services in the community, such as outpatient physiotherapy services, were limited or did not meet the specific needs of the stroke survivors or family caregivers. Relationships with health providers, informational support, and continuity in case management all influence the family caregiving experience and ultimately the quality of care for the stroke survivor, during the transition home from a rehabilitation facility.

  15. Teaching about Complex Systems Is No Simple Matter: Building Effective Professional Development for Computer-Supported Complex Systems Instruction

    Science.gov (United States)

    Yoon, Susan A.; Anderson, Emma; Koehler-Yom, Jessica; Evans, Chad; Park, Miyoung; Sheldon, Josh; Schoenfeld, Ilana; Wendel, Daniel; Scheintaub, Hal; Klopfer, Eric

    2017-01-01

    The recent next generation science standards in the United States have emphasized learning about complex systems as a core feature of science learning. Over the past 15 years, a number of educational tools and theories have been investigated to help students learn about complex systems; but surprisingly, little research has been devoted to…

  16. The Crucible simulation: Behavioral simulation improves clinical leadership skills and understanding of complex health policy change.

    Science.gov (United States)

    Cohen, Daniel; Vlaev, Ivo; McMahon, Laurie; Harvey, Sarah; Mitchell, Andy; Borovoi, Leah; Darzi, Ara

    2017-05-11

    The Health and Social Care Act 2012 represents the most complex National Health Service reforms in history. High-quality clinical leadership is important for successful implementation of health service reform. However, little is known about the effectiveness of current leadership training. This study describes the use of a behavioral simulation to improve the knowledge and leadership of a cohort of medical doctors expected to take leadership roles in the National Health Service. A day-long behavioral simulation (The Crucible) was developed and run based on a fictitious but realistic health economy. Participants completed pre- and postsimulation questionnaires generating qualitative and quantitative data. Leadership skills, knowledge, and behavior change processes described by the "theory of planned behavior" were self-assessed pre- and postsimulation. Sixty-nine medical doctors attended. Participants deemed the simulation immersive and relevant. Significant improvements were shown in perceived knowledge, capability, attitudes, subjective norms, intentions, and leadership competency following the program. Nearly one third of participants reported that they had implemented knowledge and skills from the simulation into practice within 4 weeks. This study systematically demonstrates the effectiveness of behavioral simulation for clinical management training and understanding of health policy reform. Potential future uses and strategies for analysis are discussed. High-quality care requires understanding of health systems and strong leadership. Policymakers should consider the use of behavioral simulation to improve understanding of health service reform and development of leadership skills in clinicians, who readily adopt skills from simulation into everyday practice.

  17. Extending the Sensitivity to the Detection of WIMP Dark Matter with an Improved Understanding of the Limiting Neutron Backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Kamat, Sharmila [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Physics

    2005-01-01

    The Cryogenic Dark Matter Search (CDMS) uses position-sensitive Germanium and Silicon crystals in the direct detection of Weakly Interacting Massive Particles (WIMPs) believed to constitute most of the dark matter in the Universe. WIMP interactions with matter being rare, identifying and eliminating known backgrounds is critical for detection. Event-by-event discrimination by the detectors rejects the predominant gamma and beta backgrounds while Monte Carlo simulations help estimate, and subtract, the contribution from the neutrons. This thesis describes the effort to understand neutron backgrounds as seen in the two stages of the CDMS search for WIMPs. The first stage of the experiment was at a shallow site at the Stanford Underground Facility where the limiting background came from high-energy neutrons produced by cosmic-ray muon interactions in the rock surrounding the cavern. Simulations of this background helped inform the analysis of data from an experimental run at this site and served as input for the background reduction techniques necessary to set new exclusion limits on the WIMP-nucleon cross-section, excluding new parameter space for WIMPs of masses 8-20 GeV/c2. This thesis considers the simulation methods used as well as how various event populations in the data served as checks on the simulations to allow them to be used in the interpretation of the WIMP-search data. The studies also confirmed the presence of a limiting neutron background at the shallow site, necessitating the move to the 713-meter deep Soudan Underground Facility. Similar computer-based studies helped quantify the neutron background seen at the deeper site and informed the analysis of the data emerging from the first physics run of the experiment at Soudan. In conjunction with the WIMP-search and calibration data, the simulations confirmed that increased depth considerably reduced the neutron backgrounds seen, greatly improving the sensitivity to WIMP detection. The data

  18. Conformal complex singlet extension of the Standard Model: scenario for dark matter and a second Higgs boson

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhi-Wei; Steele, T.G. [Department of Physics and Engineering Physics, University of Saskatchewan,116 Science Place, Saskatoon, SK, S7N 5E2 (Canada); Hanif, T. [Department of Theoretical Physics, University of Dhaka,Dhaka-1000 (Bangladesh); Mann, R.B. [Department of Physics, University of Waterloo,Waterloo, ON, N2L 3G1 (Canada)

    2016-08-09

    We consider a conformal complex singlet extension of the Standard Model with a Higgs portal interaction. The global U(1) symmetry of the complex singlet can be either broken or unbroken and we study each scenario. In the unbroken case, the global U(1) symmetry protects the complex singlet from decaying, leading to an ideal cold dark matter candidate with approximately 100 GeV mass along with a significant proportion of thermal relic dark matter abundance. In the broken case, we have developed a renormalization-scale optimization technique to significantly narrow the parameter space and in some situations, provide unique predictions for all the model’s couplings and masses. We have found there exists a second Higgs boson with a mass of approximately 550 GeV that mixes with the known 125 GeV Higgs with a large mixing angle sin θ≈0.47 consistent with current experimental limits. The imaginary part of the complex singlet in the broken case could provide axion dark matter for a wide range of models. Upon including interactions of the complex scalar with an additional vector-like fermion, we explore the possibility of a diphoton excess in both the unbroken and the broken cases. In the unbroken case, the model can provide a natural explanation for diphoton excess if extra terms are introduced providing extra contributions to the singlet mass. In the broken case, we find a set of coupling solutions that yield a second Higgs boson of mass 720 GeV and an 830 GeV extra vector-like fermion F, which is able to address the 750 GeV LHC diphoton excess. We also provide criteria to determine the symmetry breaking pattern in both the Higgs and hidden sectors.

  19. The major histocompatibility complex: a model for understanding graft-versus-host disease.

    Science.gov (United States)

    Petersdorf, Effie W

    2013-09-12

    Acute graft-versus-host disease (GVHD) afflicts as much as 80% of all patients who receive an unrelated donor hematopoietic cell transplant (HCT) for the treatment of blood disorders, even with optimal donor HLA matching and use of prophylactic immunosuppressive agents. Of patients who develop acute GVHD, many are at risk for chronic GVHD and bear the burden of considerable morbidity and lowered quality of life years after transplantation. The immunogenetic basis of GVHD has been the subject of intensive investigation, with the classic HLA genetic loci being the best-characterized determinants. Recent information on the major histocompatibility complex (MHC) region of chromosome 6 as an important source of untyped genetic variation has shed light on novel GVHD determinants. These data open new paradigms for understanding the genetic basis of GVHD.

  20. Computational Cellular Dynamics Based on the Chemical Master Equation: A Challenge for Understanding Complexity

    Science.gov (United States)

    Liang, Jie; Qian, Hong

    2010-01-01

    Modern molecular biology has always been a great source of inspiration for computational science. Half a century ago, the challenge from understanding macromolecular dynamics has led the way for computations to be part of the tool set to study molecular biology. Twenty-five years ago, the demand from genome science has inspired an entire generation of computer scientists with an interest in discrete mathematics to join the field that is now called bioinformatics. In this paper, we shall lay out a new mathematical theory for dynamics of biochemical reaction systems in a small volume (i.e., mesoscopic) in terms of a stochastic, discrete-state continuous-time formulation, called the chemical master equation (CME). Similar to the wavefunction in quantum mechanics, the dynamically changing probability landscape associated with the state space provides a fundamental characterization of the biochemical reaction system. The stochastic trajectories of the dynamics are best known through the simulations using the Gillespie algorithm. In contrast to the Metropolis algorithm, this Monte Carlo sampling technique does not follow a process with detailed balance. We shall show several examples how CMEs are used to model cellular biochemical systems. We shall also illustrate the computational challenges involved: multiscale phenomena, the interplay between stochasticity and nonlinearity, and how macroscopic determinism arises from mesoscopic dynamics. We point out recent advances in computing solutions to the CME, including exact solution of the steady state landscape and stochastic differential equations that offer alternatives to the Gilespie algorithm. We argue that the CME is an ideal system from which one can learn to understandcomplex behavior” and complexity theory, and from which important biological insight can be gained. PMID:24999297

  1. Venom Resistance as a Model for Understanding the Molecular Basis of Complex Coevolutionary Adaptations.

    Science.gov (United States)

    Holding, Matthew L; Drabeck, Danielle H; Jansa, Sharon A; Gibbs, H Lisle

    2016-11-01

    SynopsisVenom and venom resistance are molecular phenotypes widely considered to have diversified through coevolution between predators and prey. However, while evolutionary and functional studies on venom have been extensive, little is known about the molecular basis, variation, and complexity of venom resistance. We review known mechanisms of venom resistance and relate these mechanisms to their predicted impact on coevolutionary dynamics with venomous enemies. We then describe two conceptual approaches which can be used to examine venom/resistance systems. At the intraspecific level, tests of local adaptation in venom and resistance phenotypes can identify the functional mechanisms governing the outcomes of coevolution. At deeper evolutionary timescales, the combination of phylogenetically informed analyses of protein evolution coupled with studies of protein function promise to elucidate the mode and tempo of evolutionary change on potentially coevolving genes. We highlight case studies that use each approach to extend our knowledge of these systems as well as address larger questions about coevolutionary dynamics. We argue that resistance and venom are phenotypic traits which hold exceptional promise for investigating the mechanisms, dynamics, and outcomes of coevolution at the molecular level. Furthermore, extending the understanding of single gene-for-gene interactions to the whole resistance and venom phenotypes may provide a model system for examining the molecular and evolutionary dynamics of complex multi-gene interactions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  2. The Nevada Rural Ozone Initiative (NVROI): Insights to understanding air pollution in complex terrain.

    Science.gov (United States)

    Gustin, Mae Sexauer; Fine, Rebekka; Miller, Matthieu; Jaffe, Dan; Burley, Joel

    2015-10-15

    The Nevada Rural Ozone Initiative (NVROI) was established to better understand O3 concentrations in the Western United States (US). The major working hypothesis for development of the sampling network was that the sources of O3 to Nevada are regional and global. Within the framework of this overarching hypothesis, we specifically address two conceptual meteorological hypotheses: (1) The high elevation, complex terrain, and deep convective mixing that characterize Nevada, make this state ideally located to intercept polluted parcels of air transported into the US from the free troposphere; and (2) site specific terrain features will influence O3 concentrations observed at surface sites. Here, the impact of complex terrain and site location on observations are discussed. Data collected in Nevada at 6 sites (1385 to 2082 m above sea level (asl)) are compared with that collected at high elevation sites in Yosemite National Park and the White Mountains, California. Average daily maximum 1-hour concentrations of O3 during the first year of the NVROI ranged from 58 to 69 ppbv (spring), 53 to 62 ppbv (summer), 44 to 49 ppbv (fall), and 37 to 45 ppbv (winter). These were similar to those measured at 3 sites in Yosemite National Park (2022 to 3031 m asl), and at 4 sites in the White Mountains (1237 to 4342 m asl) (58 to 67 ppbv (summer) and 47 to 58 ppbv (fall)). Results show, that in complex terrain, collection of data should occur at high and low elevation sites to capture surface impacts, and site location with respect to topography should be considered. Additionally, concentrations measured are above the threshold reported for causing a reduction in growth and visible injury for plants (40 ppbv), and sustained exposure at high elevation locations in the Western USA may be detrimental for ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Understanding Student Cognition about Complex Earth System Processes Related to Climate Change

    Science.gov (United States)

    McNeal, K. S.; Libarkin, J.; Ledley, T. S.; Dutta, S.; Templeton, M. C.; Geroux, J.; Blakeney, G. A.

    2011-12-01

    The Earth's climate system includes complex behavior and interconnections with other Earth spheres that present challenges to student learning. To better understand these unique challenges, we have conducted experiments with high-school and introductory level college students to determine how information pertaining to the connections between the Earth's atmospheric system and the other Earth spheres (e.g., hydrosphere and cryosphere) are processed. Specifically, we include psychomotor tests (e.g., eye-tracking) and open-ended questionnaires in this research study, where participants were provided scientific images of the Earth (e.g., global precipitation and ocean and atmospheric currents), eye-tracked, and asked to provide causal or relational explanations about the viewed images. In addition, the students engaged in on-line modules (http://serc.carleton.edu/eslabs/climate/index.html) focused on Earth system science as training activities to address potential cognitive barriers. The developed modules included interactive media, hands-on lessons, links to outside resources, and formative assessment questions to promote a supportive and data-rich learning environment. Student eye movements were tracked during engagement with the materials to determine the role of perception and attention on understanding. Students also completed a conceptual questionnaire pre-post to determine if these on-line curriculum materials assisted in their development of connections between Earth's atmospheric system and the other Earth systems. The pre-post results of students' thinking about climate change concepts, as well as eye-tracking results, will be presented.

  4. Understanding the Complexities of Communicating Management Decisions on the Subsistence Use of Yukon River Salmon

    Science.gov (United States)

    Brooks, J. F.; Trainor, S.

    2017-12-01

    Over 20,000 residents in Alaska and Yukon Territory rely upon the Yukon River to provide them harvests of Pacific salmon each year. Salmon are a highly valued food resource and the practice of salmon fishing along the Yukon is deep rooted in local cultures and traditions. Potential future impacts of climate change on the health of Yukon River salmon stocks could be significant. Collaborative managerial processes which incorporate the viewpoints of subsistence stakeholders will be crucial in enabling communities and managerial institutions to adapt and manage these impacts. However, the massive extent of the Yukon River makes it difficult for communities rich with highly localized knowledge to situate themselves within a drainage-wide context of resource availability, and to fully understand the implications that management decisions may have for their harvest. Differences in salmon availability and abundance between the upper and lower Yukon, commercial vs. subsistence fishery interests, and enforcement of the international Pacific Salmon Treaty further complicate understanding and makes the topic of salmon as a subsistence resource a highly contentious issue. A map which synthesizes the presence and absence of Pacific salmon throughout the entire Yukon River drainage was requested by both subsistence fishers and natural resource managers in Alaska in order to help facilitate productive conversations about salmon management decisions. Interviews with Alaskan stakeholders with managerial, biological, and subsistence harvest backgrounds were carried out and a literature review was conducted in order to understand what such a map should and could accomplish. During the research process, numerous data gaps concerning the distribution of salmon along the Yukon River were discovered, and insights about the complexities involved in translating science when it is situated within a charged political, economic, and cultural context were revealed. Preliminary maps depicting

  5. Measuring spatial patterns in floodplains: A step towards understanding the complexity of floodplain ecosystems: Chapter 6

    Science.gov (United States)

    Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.; Gilvear, David J.; Greenwood, Malcolm T.; Thoms, Martin C.; Wood, Paul J.

    2016-01-01

    Floodplains can be viewed as complex adaptive systems (Levin, 1998) because they are comprised of many different biophysical components, such as morphological features, soil groups and vegetation communities as well as being sites of key biogeochemical processing (Stanford et al., 2005). Interactions and feedbacks among the biophysical components often result in additional phenomena occuring over a range of scales, often in the absence of any controlling factors (sensu Hallet, 1990). This emergence of new biophysical features and rates of processing can lead to alternative stable states which feed back into floodplain adaptive cycles (cf. Hughes, 1997; Stanford et al., 2005). Interactions between different biophysical components, feedbacks, self emergence and scale are all key properties of complex adaptive systems (Levin, 1998; Phillips, 2003; Murray et al., 2014) and therefore will influence the manner in which we study and view spatial patterns. Measuring the spatial patterns of floodplain biophysical components is a prerequisite to examining and understanding these ecosystems as complex adaptive systems. Elucidating relationships between pattern and process, which are intrinsically linked within floodplains (Ward et al., 2002), is dependent upon an understanding of spatial pattern. This knowledge can help river scientists determine the major drivers, controllers and responses of floodplain structure and function, as well as the consequences of altering those drivers and controllers (Hughes and Cass, 1997; Whited et al., 2007). Interactions and feedbacks between physical, chemical and biological components of floodplain ecosystems create and maintain a structurally diverse and dynamic template (Stanford et al., 2005). This template influences subsequent interactions between components that consequently affect system trajectories within floodplains (sensu Bak et al., 1988). Constructing and evaluating models used to predict floodplain ecosystem responses to

  6. Bringing content understanding into usability testing in complex application domains—a case study in eHealth

    DEFF Research Database (Denmark)

    Andersen, Simon Bruntse; Rasmussen, Claire Kirchert; Frøkjær, Erik

    2017-01-01

    A usability evaluation technique, Cooperative Usability Testing with Questions of Understanding (CUT with QU) intended to illuminate users’ ability to understand the content information of an application is proposed. In complex application domains as for instance the eHealth domain, this issue...... of users’ content understanding is sometimes crucial, and thus should be carefully evaluated. Unfortunately, conventional usability evaluation techniques do not address challenges of content understanding. In a case study within eHealth, specifically the setting of a rehabilitation clinic involving...... the participation of four physiotherapists and four clients in a period of 3.5 months, it was demonstrated how CUT with QU can complement conventional usability testing and provide insight into users’ challenges with understanding of a new complex eHealth application. More experiments in other complex application...

  7. High School Students' Understanding of Change over Time and System Complexity: A Focus on the Cryosphere

    Science.gov (United States)

    McNeal, K. S.; Libarkin, J.; Ledley, T. S.; Guthrie, C.

    2010-12-01

    Most students have difficulty articulating processes that are key for Earth’s changes and may have limited ability to understand Earth system science and think across spatial and temporal dimensions. The cryosphere, a complex and dynamic Earth system that exhibits change over time (e.g., seasonal, yearly, decadal, and millennial), can be difficult for students to reason about. The presented research assesses the effectiveness of the project developed on-line modules on high school students’ cryosphere content knowledge and skill development, including their: (1) conceptual understanding of ice, thermodynamics, climate, changes in ice cover over time, Earth system interactions, and complexity, and (2) use and interpretation of data and graphs about the cryosphere. Pre- and post- student assessments, classroom observations, and teacher interviews were collected from four high school classrooms in Texas to determine the effectiveness of the Earthlabs cryosphere modules in reaching the specified learning goals. Preliminary analysis of pre-and post-test data revealed a number of interesting changes where students displayed an increase in their awareness of the cryosphere, increase in confidence about cryosphere knowledge, and an increase in their ability to read and interpret graphs. Furthermore, classroom observations made for 25 minutes during a class period illustrated that for over 84% of the class period the students were engaged with the Earthlabs materials and spent the majority (>50%) of their time either discussing (31%) or working on the on-line Earthlabs cryosphere materials (29%). Finally, forty-five minute individual telephone interviews conducted with the four implementing cryosphere teachers revealed that teachers overwhelmingly reflected that the materials supported students’ ability to learn about the (i) nature and importance of the cryosphere, (ii) manipulation, analysis, interpretation of data, (iii) physical changes over multiple time scales

  8. Conciousness and Matter, A Complex Relationship: The Case of Sa¯mkhya

    Directory of Open Access Journals (Sweden)

    Juan Arnau

    2015-01-01

    Full Text Available The article focuses on the relationships (logic, metaphoric and epistemic between consciousness and matter in the sa-mkhya philosophy, one of the oldest systems of the Brahmanical tradition. After a brief introduction to the cosmology of the sa-mkhya, it discusses cosmogony and metaphysical pluralism of this current of thought using as primary sources the Sanskrit medieval commentaries on the Sa-mkhyaka-rika- by the medieval scholastic Va-caspati Mis´ra.

  9. Toward a better understanding of the complex geochemical processes governing subsurface contaminant transport

    International Nuclear Information System (INIS)

    Puls, R.W.

    1990-01-01

    Identification and understanding of the geochemical processes, including ion exchange, precipitation, organic partitioning, chemisorption, aqueous complexation, and colloidal stability and transport, controlling subsurface contamination is essential for making accurate predictions of the fate and transport of these constituents. Current approaches to quantify the effect of these processes primarily involve laboratory techniques, including the use of closed static systems (batch experiments) where small amounts of aquifer solids or minerals are contacted with an aqueous phase containing the components of interest for relatively short durations; and dynamic systems (column experiments) where a larger segment of the aquifer is investigated by analyzing the breakthrough profiles of reactive and non-reactive species. Both approaches are constrained by differences in scale, alteration of media during sample collection and use, and spatial variability. More field reactivity studies are needed to complement established laboratory approaches for the determination of retardation factors and scaling factors, corroboration of batch and column results, and validation of sampling techniques. These studies also serve to accentuate areas of geochemical process research where data deficiencies exist, such as the kinetics of adsorption-desorption, metal-organic-mineral interactions, and colloidal mobility. The advantages and disadvantages of the above approaches are discussed in the context of achieving a more completely integrated approach to geochemical transport experiments, with supportive data presented from selected studies. (Author) (16 refs., 4 figs., 2 tabs.)

  10. Understanding Epistatic Interactions between Genes Targeted by Non-coding Regulatory Elements in Complex Diseases

    Directory of Open Access Journals (Sweden)

    Min Kyung Sung

    2014-12-01

    Full Text Available Genome-wide association studies have proven the highly polygenic architecture of complex diseases or traits; therefore, single-locus-based methods are usually unable to detect all involved loci, especially when individual loci exert small effects. Moreover, the majority of associated single-nucleotide polymorphisms resides in non-coding regions, making it difficult to understand their phenotypic contribution. In this work, we studied epistatic interactions associated with three common diseases using Korea Association Resource (KARE data: type 2 diabetes mellitus (DM, hypertension (HT, and coronary artery disease (CAD. We showed that epistatic single-nucleotide polymorphisms (SNPs were enriched in enhancers, as well as in DNase I footprints (the Encyclopedia of DNA Elements [ENCODE] Project Consortium 2012, which suggested that the disruption of the regulatory regions where transcription factors bind may be involved in the disease mechanism. Accordingly, to identify the genes affected by the SNPs, we employed whole-genome multiple-cell-type enhancer data which discovered using DNase I profiles and Cap Analysis Gene Expression (CAGE. Assigned genes were significantly enriched in known disease associated gene sets, which were explored based on the literature, suggesting that this approach is useful for detecting relevant affected genes. In our knowledge-based epistatic network, the three diseases share many associated genes and are also closely related with each other through many epistatic interactions. These findings elucidate the genetic basis of the close relationship between DM, HT, and CAD.

  11. Complexities in Understanding Attentional Functioning among Children with Fetal Alcohol Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Kimberly eLane

    2014-03-01

    Full Text Available Parental reports of attention problems and clinical symptomatology of ADHD among children with fetal alcohol syndrome disorder (FASD were assessed in relation to performance on standardized subtests of attantional control/shifting and selective attention from the Test of Everyday Attention for Children (TEA-Ch; Manly et al., 1998. The participants included 14 children with FASD with a mean CA of 11.7 years and a mean MA of 9.7 years, and 14 typically developing (TD children with no reported history of prenatal exposure to alcohol or attention problems with a mean CA of 8.4 years and a mean MA of 9.6 years. The children with FASD were rated by their caregivers as having clinically significant attention difficulties for their developmental age. The reported symptomatology for the majority of the children with FASD were consistent with a diagnosis of ADHD, combined type, and only one child had a score within the average range. These reports are consistent with the finding here that the children with FASD demonstrated difficulties on the Creature Counting subtest of attentional control/shifting, but inconsistent with the finding that they outperformed the TD children on the Map Mission subtest of selective attention. These findings are considered within the context of the complexity in understanding attentional functioning among children with FASD and discrepancies across sources of information and components of attention.

  12. Understanding Immune Resistance to Infectious Bronchitis Using Major Histocompatibility Complex Chicken Lines.

    Science.gov (United States)

    da Silva, A P; Hauck, R; Zhou, H; Gallardo, R A

    2017-09-01

    Genetic resistance or susceptibility to infectious diseases has been largely associated with the avian major histocompatibility complex (MHC) genes. Our goal was to determine resistance and susceptibility of MHC B haplotype in congenic and inbred chicken lines in order to establish a resistant-susceptible model. Eight congenic lines (253/B18, 254/B15, 330/B21, 312/B24, 331/B2, 335/B19, 336/B21, and 342/BO), two inbred lines (003/B17 and 077/B19), and three commercial lines (white leghorn, brown layers, and broilers) were used in two experiments. We analyzed and compared immunologic responses and the effect of challenge by measuring viral load, IgG and IgA humoral responses, histopathology and histomorphometry, clinical signs, and immune cell populations in the different MHC B haplotype lines. We found that respiratory signs, tracheal deciliation and inflammation, airsacculitis, viral shedding in tears, and local humoral responses were good parameters to determine resistance or susceptibility. Based on these results, we identified 331/B2 as the most resistant and 335/B19 as the most susceptible congenic chicken lines. These two lines will be used as an animal model in subsequent experiments to understand the mechanisms by which the immune system in chickens generates resistance to infectious bronchitis virus.

  13. Collaborative Research. Damage and Burst Dynamics in Failure of Complex Geomaterials. A Statistical Physics Approach to Understanding the Complex Emergent Dynamics in Near Mean-Field Geological Materials

    Energy Technology Data Exchange (ETDEWEB)

    Rundle, John B. [Univ. of California, Davis, CA (United States); Klein, William [Boston Univ., MA (United States)

    2015-09-29

    We have carried out research to determine the dynamics of failure in complex geomaterials, specifically focusing on the role of defects, damage and asperities in the catastrophic failure processes (now popularly termed “Black Swan events”). We have examined fracture branching and flow processes using models for invasion percolation, focusing particularly on the dynamics of bursts in the branching process. We have achieved a fundamental understanding of the dynamics of nucleation in complex geomaterials, specifically in the presence of inhomogeneous structures.

  14. Does problem complexity matter for environmental policy delivery? How public authorities address problems of water governance.

    Science.gov (United States)

    Kirschke, Sabrina; Newig, Jens; Völker, Jeanette; Borchardt, Dietrich

    2017-07-01

    Problem complexity is often assumed to hamper effective environmental policy delivery. However, this claim is hardly substantiated, given the dominance of qualitative small-n designs in environmental governance research. We studied 37 types of contemporary problems defined by German water governance to assess the impact of problem complexity on policy delivery through public authorities. The analysis is based on a unique data set related to these problems, encompassing both in-depth interview-based data on complexities and independent official data on policy delivery. Our findings show that complexity in fact tends to delay implementation at the stage of planning. However, different dimensions of complexity (goals, variables, dynamics, interconnections, and uncertainty) impact on the different stages of policy delivery (goal formulation, stages and degrees of implementation) in various ways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Complex scalar field dark matter and its impact on detectability of the stochastic gravitational wave background from inflation

    Science.gov (United States)

    Rindler-Daller, Tanja; Li, Bohua; Shapiro, Paul

    2017-01-01

    We consider an alternative dark matter candidate to WIMP-CDM, ultralight bosonic dark matter (m >=10-22 eV) described by a complex scalar field (SFDM). In a ΛSFDM universe, SFDM starts relativistic, evolving from a maximal stiff equation of state to radiation-like, before becoming nonrelativistic at late times. The SFDM particle parameters, mass and selfinteraction coupling strength, are therefore constrained by cosmological observables, esp. Neff, the effective number of neutrino species during BBN, and the redshift of matter-radiation equality. Furthermore, since the energy density contributed by the stochastic gravitational wave background (SGWB) from inflation is amplified during the stiff phase, this makes possible the detection of this SGWB at high frequencies by current experiments, e.g. aLIGO/Virgo and eLISA. We show that, for SFDM particle parameters that satisfy those cosmological constraints, the amplified SGWB is detectable by aLIGO, for values of tensor-to-scalar ratio r currently allowed by CMB polarization measurements, for a broad range of possible reheat temperatures. A nondetection by aLIGO O1 would provide a new kind of cosmological constraint on SFDM. Also, a wider range of parameters and reheat temperatures will be probed by aLIGO O5.

  16. Does linear separability really matter? Complex visual search is explained by simple search

    Science.gov (United States)

    Vighneshvel, T.; Arun, S. P.

    2013-01-01

    Visual search in real life involves complex displays with a target among multiple types of distracters, but in the laboratory, it is often tested using simple displays with identical distracters. Can complex search be understood in terms of simple searches? This link may not be straightforward if complex search has emergent properties. One such property is linear separability, whereby search is hard when a target cannot be separated from its distracters using a single linear boundary. However, evidence in favor of linear separability is based on testing stimulus configurations in an external parametric space that need not be related to their true perceptual representation. We therefore set out to assess whether linear separability influences complex search at all. Our null hypothesis was that complex search performance depends only on classical factors such as target-distracter similarity and distracter homogeneity, which we measured using simple searches. Across three experiments involving a variety of artificial and natural objects, differences between linearly separable and nonseparable searches were explained using target-distracter similarity and distracter heterogeneity. Further, simple searches accurately predicted complex search regardless of linear separability (r = 0.91). Our results show that complex search is explained by simple search, refuting the widely held belief that linear separability influences visual search. PMID:24029822

  17. The dichotomy between disease phenotype databases and the implications for understanding complex diseases involving the major histocompatibility complex.

    Science.gov (United States)

    Clark, P M; Kunkel, M; Monos, D S

    2015-12-01

    Many genes related to innate and adaptive immunity reside within the major histocompatibility complex (MHC) and have been associated with a multitude of complex, immune-related disorders. Despite years of genetic study, this region has seen few causative determinants discovered for immune-mediated diseases. Reported associations have been curated in various databases including the Genetic Association Database, NCBI database of clinically relevant variants (ClinVar) and the Human Gene Mutation Database and together capture genetic associations and annotated pathogenic loci within the MHC and across the genome for a variety of complex, immune-mediated diseases. A review of these three distinct databases reveals disparate annotations between associated genes and pathogenic loci, alluding to the polygenic, multifactorial nature of immune-mediated diseases and the pleiotropic character of genes within the MHC. The technical limitations and inherent biases imposed by current approaches and technologies in studying the MHC create a strong case for the need to perform targeted deep sequencing of the MHC and other immunologically relevant loci in order to fully elucidate and study the causative elements of complex immune-mediated diseases. © 2015 The Authors. International Journal of Immunogenetics Published by John Wiley & Sons Ltd.

  18. The Value of a Comparative Approach to Understand the Complex Interplay between Microbiota and Host Immunity.

    Science.gov (United States)

    Morella, Norma M; Koskella, Britt

    2017-01-01

    The eukaryote immune system evolved and continues to evolve within a microbial world, and as such is critically shaped by-and in some cases even reliant upon-the presence of host-associated microbial species. There are clear examples of adaptations that allow the host to simultaneously tolerate and/or promote growth of symbiotic microbiota while protecting itself against pathogens, but the relationship between immunity and the microbiome reaches far beyond simple recognition and includes complex cross talk between host and microbe as well as direct microbiome-mediated protection against pathogens. Here, we present a broad but brief overview of how the microbiome is controlled by and interacts with diverse immune systems, with the goal of identifying questions that can be better addressed by taking a comparative approach across plants and animals and different types of immunity. As two key examples of such an approach, we focus on data examining the importance of early exposure on microbiome tolerance and immune system development and function, and the importance of transmission among hosts in shaping the potential coevolution between, and long-term stability of, host-microbiome associations. Then, by comparing existing evidence across short-lived plants, mouse model systems and humans, and insects, we highlight areas of microbiome research that are strong in some systems and absent in others with the hope of guiding future research that will allow for broad-scale comparisons moving forward. We argue that such an approach will not only help with identification of generalities in host-microbiome-immune interactions but also improve our understanding of the role of the microbiome in host health.

  19. Raman analysis of DLC coated engine components with complex shape: Understanding wear mechanisms

    International Nuclear Information System (INIS)

    Jaoul, C.; Jarry, O.; Tristant, P.; Merle-Mejean, T.; Colas, M.; Dublanche-Tixier, C.; Jacquet, J.-M.

    2009-01-01

    Hydrogenated amorphous carbon (a-C:H) films were deposited on flat samples and engine components using an industrial scale reactor. Characterization of the coating allowed validating its application on engine parts due to high hardness (32 GPa) and high level of adhesion achieved using sublayers. The original approach of this work concerned the use of Raman analysis not only on flat samples after tribometer tests but also directly on coated engine parts with complex shape (like cam/follower system), in order to understand wear mechanisms occurring in motorsport engines. As wear could lead to a coating thickness decrease, a particular attention was paid on the Raman signal of the sublayers. Among the different values extracted from Raman spectrum to characterize structural organization, the value of G peak intensity appeared as a criterion of validity of analyses because it is directly linked to the remaining thickness of the a-C:H layer. For flat samples tested on ball-on-disc tribometer, structure of a-C:H film observed by Raman spectroscopy in the wear track remained stable in depth. Then, a-C:H coated engine components were studied before and after working in real conditions. Two different wear mechanisms were identified. The first one did not show any structural modification of the bulk a-C:H layer. In the second one, the high initial roughness of samples (R t = 1.15 μm) lead to coating delaminations after sliding. Massive graphitization which decreases drastically mechanical properties of the coatings was observed by Raman analyses on the contact area. The increase of the temperature on rough edges of the scratches could explain this graphitization.

  20. The Value of a Comparative Approach to Understand the Complex Interplay between Microbiota and Host Immunity

    Directory of Open Access Journals (Sweden)

    Norma M. Morella

    2017-09-01

    Full Text Available The eukaryote immune system evolved and continues to evolve within a microbial world, and as such is critically shaped by—and in some cases even reliant upon—the presence of host-associated microbial species. There are clear examples of adaptations that allow the host to simultaneously tolerate and/or promote growth of symbiotic microbiota while protecting itself against pathogens, but the relationship between immunity and the microbiome reaches far beyond simple recognition and includes complex cross talk between host and microbe as well as direct microbiome-mediated protection against pathogens. Here, we present a broad but brief overview of how the microbiome is controlled by and interacts with diverse immune systems, with the goal of identifying questions that can be better addressed by taking a comparative approach across plants and animals and different types of immunity. As two key examples of such an approach, we focus on data examining the importance of early exposure on microbiome tolerance and immune system development and function, and the importance of transmission among hosts in shaping the potential coevolution between, and long-term stability of, host–microbiome associations. Then, by comparing existing evidence across short-lived plants, mouse model systems and humans, and insects, we highlight areas of microbiome research that are strong in some systems and absent in others with the hope of guiding future research that will allow for broad-scale comparisons moving forward. We argue that such an approach will not only help with identification of generalities in host–microbiome–immune interactions but also improve our understanding of the role of the microbiome in host health.

  1. Applying Within-Family Differences Approaches to Enhance Understanding of the Complexity of Intergenerational Relations.

    Science.gov (United States)

    Suitor, J Jill; Gilligan, Megan; Pillemer, Karl; Fingerman, Karen L; Kim, Kyungmin; Silverstein, Merril; Bengtson, Vern L

    2017-12-15

    The role of family relationships in the lives of older adults has received substantial attention in recent decades. Scholars have increasingly looked beyond simple models of family relations to approaches that recognize the complex and sometimes contradictory nature of these ties. One of the most exciting conceptual and methodological developments is the application of within-family differences approaches. In this paper, we focus on the ways in which such within-family approaches can extend the understanding of patterns and consequences of intergenerational ties in adulthood. Following a review of the conceptual underpinnings of within-family differences approaches, we provide empirical illustrations of these approaches from three projects conducted in the United States: the Family Exchanges Study (FES), the Longitudinal Study of Generations (LSOG), and the Within-Family Differences Study (WFDS). Analyses from the FES, LSOG, and WFDS reveal differences in the consequences of patterns of intergenerational relations found when using within-family compared to between-family approaches. In particular, these analyses demonstrate considerable variation within families that shapes patterns and consequences of parent-adult child ties that is masked when such variations are not taken into account. Within-family differences approaches have been shown to shed new light on intergenerational relations. Despite the value of within-family designs, their use may be limited by the higher investment of finances and time required to implement such studies. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Bringing content understanding into usability testing in complex application domains—a case study in eHealth

    DEFF Research Database (Denmark)

    Andersen, Simon Bruntse; Rasmussen, Claire Kirchert; Frøkjær, Erik

    2017-01-01

    A usability evaluation technique, Cooperative Usability Testing with Questions of Understanding (CUT with QU) intended to illuminate users’ ability to understand the content information of an application is proposed. In complex application domains as for instance the eHealth domain, this issue...... the participation of four physiotherapists and four clients in a period of 3.5 months, it was demonstrated how CUT with QU can complement conventional usability testing and provide insight into users’ challenges with understanding of a new complex eHealth application. More experiments in other complex application...... domains involving different kinds of users and evaluators are needed before we can tell whether CUT with QU is an effective usability testing technique of wider applicability. Performing CUT with QU is very demanding by drawing heavily on the evaluators’ ability to respond effectively to openings...

  3. Does complexity matter? Meta-analysis of learner performance in artificial grammar tasks.

    Science.gov (United States)

    Schiff, Rachel; Katan, Pesia

    2014-01-01

    Complexity has been shown to affect performance on artificial grammar learning (AGL) tasks (categorization of test items as grammatical/ungrammatical according to the implicitly trained grammar rules). However, previously published AGL experiments did not utilize consistent measures to investigate the comprehensive effect of grammar complexity on task performance. The present study focused on computerizing Bollt and Jones's (2000) technique of calculating topological entropy (TE), a quantitative measure of AGL charts' complexity, with the aim of examining associations between grammar systems' TE and learners' AGL task performance. We surveyed the literature and identified 56 previous AGL experiments based on 10 different grammars that met the sampling criteria. Using the automated matrix-lift-action method, we assigned a TE value for each of these 10 previously used AGL systems and examined its correlation with learners' task performance. The meta-regression analysis showed a significant correlation, demonstrating that the complexity effect transcended the different settings and conditions in which the categorization task was performed. The results reinforced the importance of using this new automated tool to uniformly measure grammar systems' complexity when experimenting with and evaluating the findings of AGL studies.

  4. Does song complexity matter in an intra-sexual context in common blackbirds

    DEFF Research Database (Denmark)

    Hesler, Nana; Sacher, Thomas; Coppack, Timothy

    Bird song is thought to be subject of both inter- and intra-sexual selection and song complexity a signal of male quality. One aspect of song complexity, repertoire size, correlates with estimates of male quality in several passerine species.  The Common Blackbird (Turdus merula) has a large...... repertoire of different song patterns which are organized in a complex structure without fixed song types. Previous studies found that Blackbirds show large individual differences in repertoire sizes and use these repertoires in both inter- and intra-sexual contexts. In this study we investigate the signal...... value of repertoire size in Blackbirds in an intra-sexual context with the hypothesis, that males use the repertoire sizes of rivals as a cue to assess their quality. We conducted playback experiments in which we broadcast songs of conspecifics with different repertoire sizes to the test birds...

  5. From Solute, Fluidic and Particulate Precursors to Complex Organizations of Matter.

    Science.gov (United States)

    Rao, Ashit; Cölfen, Helmut

    2018-03-24

    The organization of matter from its constitutive units recruits intermediate states with distinctive degrees of self-association and molecular order. Existing as clusters, droplets, gels as well as amorphous and crystalline nanoparticles, these precursor forms have fundamental contributions towards the composition and structure of inorganic and organic architectures. In this personal account, we show that the transitions from atoms, molecules or ionic species to superstructures of higher order are intertwined with the interfaces and interactions of precursor and intermediate states. Structural organizations distributed across different length scales are explained by the multistep nature of nucleation and crystallization, which can be guided towards functional hybrid materials by the strategic application of additives, templates and reaction environments. Thus, the non-classical pathways for material formation and growth offer conceptual frameworks for elucidating, inducing and directing fascinating material organizations of biogenic and synthetic origins. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Managing product complexity: It`s just a matter of time

    Energy Technology Data Exchange (ETDEWEB)

    Hinckley, C.M.

    1998-06-01

    It has long been the goal of designers to identify a robust measure of product complexity to guide product decisions. Using Design for Assembly evaluations from over 225 assemblies and subassemblies, alternative measures of product complexity are identified and compared. Time is shown to be the most consistently predicted, useful, and fungible measure. The distribution of assembly times for a product can be modeled by Pareto`s law. This leads to a new, more effective product design guideline and a predictive tool that enables rapid and accurate prediction of assembly times for redesigned products without having to repeat DFMA analysis.

  7. Advancing understanding of the fluvial export of organic matter through high-resolution profiling of dissolved organic carbon.

    Science.gov (United States)

    Waldron, S.; Drew, S.; Gilvear, D.; Murray, H.; Heal, K.

    2012-04-01

    Quantifying the natural variation (complexity) of a system remains an enduring scientific challenge in better understanding controls on surface water quality. This characterisation is needed in order to reveal controlling processes, such as dilution, and also to identify unusual load profiles. In trying to capture that natural variation we still rely largely on concentration time series (and associated export budgets) generated from manual spot sampling, or from samples collected by autosamplers - approaches which are unlikely to provide the high temporal resolution of parameter concentration required. Now however, advances in sensor technology are helping us address this challenge. Here we present detailed dissolved organic carbon (DOC) export profiles from a small upland river (9.4 km sq.), generated since June 2011 by semi-continuous logging of UV-vis absorption (200-750 nm, every 2.5 nm) every 30 minutes. Observed increases in the concentration of the DOC, [DOC], in freshwaters have prompted significant research to understand the cause and consequences of increased export: higher levels of DOC require additional water purification of potable sources; increased aquatic export may represent a reduction in terrestrial C-soil sequestration; changes in light penetration can affect the heterotrophic / autotrophic balance in surface waters and this has consequences for the food web structure; increased aquatic export may also result in increased carbon dioxide evasion. Additionally, C export is often linked to nutrient export: we have observed statistically significant stoichiometric relationships between DOC and soluble reactive phosphorus (SRP) concentrations, thus understanding better this parameters offers insight into export of other nutrient and the source of material from which these dissolved compounds are produced; this may be particulate. Our Scottish study site is interesting because there are multiple processes that can contribute to DOC and other nutrient

  8. Complexes of vanadyl and uranyl ions with the chelating groups of humic matter

    International Nuclear Information System (INIS)

    Goncalves, M.L.S.; Mota, A.M.

    1987-01-01

    The uranyl and vanadyl complexes formed with salicylic, phthalic and 3,4-dihydroxybenzoic acids have been studied by potentiometry in order to determine the stability constants of the Msub(m) Lsub(n) species formed in solution, and the constants for hydrolysis and polymeric complexes, at 25.0 0 , in 0.10, 0.40 and 0.70M sodium perchlorate. MINIQUAD was used in process the data to find the best models for the species in solution, and calculate the formation constants. The uranyl-salicylic acid sytem was also studied by spectrophotometry and the program SQUAD used to process the data obtained. The best models for these systems show that co-ordination of the uranyl ion by carboxylate groups is easier than for the vanadyl ion, whereas the vanadyl ion seems to form more stable complexes with phenolate groups. Both oxo-cations seem to tend to hydrolyse rather than form complexes when the L:M ratios are greater than unity. Although the change in the constants with ionic strength is small, the activity coefficients of the salicylate and phthalate species have been calculated at ionic strengths 0.40 and 0.70M, along with the interaction parameters with Na + , from the stability constants found for the species ML and H 2 L, according to the Bronsted-Guggenheim expression. (author)

  9. Understanding Adult Learning in the Midst of Complex Social "Liquid Modernity"

    Science.gov (United States)

    Nicolaides, Aliki; Marsick, Victoria J.

    2016-01-01

    This chapter describes the changing nature of adult education theory and practice in the face of complex, disruptive change and explores theories that are suited to tectonic shifts in a period of what we describe as "liquid modernity" in the midst of complex sociocultural-economic-political change in a global environment.

  10. Understanding IS Complexity and the Heterogeneity of Frames: The Illusion of Agreement

    NARCIS (Netherlands)

    Jochemsen, E.J.; Rezazade Mehrizi, M.H.; van den Hooff, B.J.; Plomp, M.G.A.

    2016-01-01

    Organizations are confronted with increasing levels of IS complexity. The socio-technical nature of IS implies that IS complexity stems from not only the structure of technology (e.g., how many elements and relations), but also from the subjective perceptions organizational actors have regarding

  11. Understanding complex governance relationships in food safety regulation : The RIT model as a theoretical lens

    NARCIS (Netherlands)

    Havinga, Tetty; Verbruggen, Paul

    In this contribution we discuss the added value of the RIT model for the analysis of complex governance relationships in the regulation of food safety. By exploring regimes of food safety involving the European Union and the Global Food Safety Initiative, we highlight the diverse and complex

  12. Understanding the Complexity of Temperature Dynamics in Xinjiang, China, from Multitemporal Scale and Spatial Perspectives

    Directory of Open Access Journals (Sweden)

    Jianhua Xu

    2013-01-01

    Full Text Available Based on the observed data from 51 meteorological stations during the period from 1958 to 2012 in Xinjiang, China, we investigated the complexity of temperature dynamics from the temporal and spatial perspectives by using a comprehensive approach including the correlation dimension (CD, classical statistics, and geostatistics. The main conclusions are as follows (1 The integer CD values indicate that the temperature dynamics are a complex and chaotic system, which is sensitive to the initial conditions. (2 The complexity of temperature dynamics decreases along with the increase of temporal scale. To describe the temperature dynamics, at least 3 independent variables are needed at daily scale, whereas at least 2 independent variables are needed at monthly, seasonal, and annual scales. (3 The spatial patterns of CD values at different temporal scales indicate that the complex temperature dynamics are derived from the complex landform.

  13. Understanding complex clinical reasoning in infectious diseases for improving clinical decision support design.

    Science.gov (United States)

    Islam, Roosan; Weir, Charlene R; Jones, Makoto; Del Fiol, Guilherme; Samore, Matthew H

    2015-11-30

    Clinical experts' cognitive mechanisms for managing complexity have implications for the design of future innovative healthcare systems. The purpose of the study is to examine the constituents of decision complexity and explore the cognitive strategies clinicians use to control and adapt to their information environment. We used Cognitive Task Analysis (CTA) methods to interview 10 Infectious Disease (ID) experts at the University of Utah and Salt Lake City Veterans Administration Medical Center. Participants were asked to recall a complex, critical and vivid antibiotic-prescribing incident using the Critical Decision Method (CDM), a type of Cognitive Task Analysis (CTA). Using the four iterations of the Critical Decision Method, questions were posed to fully explore the incident, focusing in depth on the clinical components underlying the complexity. Probes were included to assess cognitive and decision strategies used by participants. The following three themes emerged as the constituents of decision complexity experienced by the Infectious Diseases experts: 1) the overall clinical picture does not match the pattern, 2) a lack of comprehension of the situation and 3) dealing with social and emotional pressures such as fear and anxiety. All these factors contribute to decision complexity. These factors almost always occurred together, creating unexpected events and uncertainty in clinical reasoning. Five themes emerged in the analyses of how experts deal with the complexity. Expert clinicians frequently used 1) watchful waiting instead of over- prescribing antibiotics, engaged in 2) theory of mind to project and simulate other practitioners' perspectives, reduced very complex cases into simple 3) heuristics, employed 4) anticipatory thinking to plan and re-plan events and consulted with peers to share knowledge, solicit opinions and 5) seek help on patient cases. The cognitive strategies to deal with decision complexity found in this study have important

  14. Rahman Prize Lecture: Lattice Boltzmann simulation of complex states of flowing matter

    Science.gov (United States)

    Succi, Sauro

    Over the last three decades, the Lattice Boltzmann (LB) method has gained a prominent role in the numerical simulation of complex flows across an impressively broad range of scales, from fully-developed turbulence in real-life geometries, to multiphase flows in micro-fluidic devices, all the way down to biopolymer translocation in nanopores and lately, even quark-gluon plasmas. After a brief introduction to the main ideas behind the LB method and its historical developments, we shall present a few selected applications to complex flow problems at various scales of motion. Finally, we shall discuss prospects for extreme-scale LB simulations of outstanding problems in the physics of fluids and its interfaces with material sciences and biology, such as the modelling of fluid turbulence, the optimal design of nanoporous gold catalysts and protein folding/aggregation in crowded environments.

  15. The Understanding of "Concept Study" in Teachers' Professional Learning: A Lived Experience of Complexity Inquiry

    Science.gov (United States)

    Wang, Xiong

    2015-01-01

    This paper used narrative to present the author's understanding process of "concept study" in teachers' professional learning. The understanding process was advanced by several questions emerging from the preparation of doing "concept study". Thus, the several questions and their solutions became the threads of the narrative.…

  16. Complex contexts and dynamic drivers: Understanding four decades of forest loss and recovery in an East African protected area

    NARCIS (Netherlands)

    Sassen, M.; Sheil, D.; Giller, K.E.; Braak, ter C.J.F.

    2013-01-01

    Protected forests are sometimes encroached by surrounding communities. But patterns of cover change can vary even within one given setting – understanding these complexities can offer insights into the effective maintenance of forest cover. Using satellite image analyses together with historical

  17. Exploring Different Types of Assessment Items to Measure Linguistically Diverse Students' Understanding of Energy and Matter in Chemistry

    Science.gov (United States)

    Ryoo, Kihyun; Toutkoushian, Emily; Bedell, Kristin

    2018-01-01

    Energy and matter are fundamental, yet challenging concepts in middle school chemistry due to their abstract, unobservable nature. Although it is important for science teachers to elicit a range of students' ideas to design and revise their instruction, capturing such varied ideas using traditional assessments consisting of multiple-choice items…

  18. Particulate Matter in the Air of the Underground Chamber Complex of the Wieliczka Salt Mine Health Resort.

    Science.gov (United States)

    Rogula-Kozłowska, Wioletta; Kostrzon, Magdalena; Rogula-Kopiec, Patrycja; Badyda, Artur J

    2017-01-01

    This study evaluates the mass concentration and chemical composition of particulate matter (PM), collected in the chamber complex of the underground health resort located in the Wieliczka Salt Mine in southern Poland. Physical and chemical properties of PM were examined from the standpoint of their possible connection with therapeutic effects of the subterranean air in the mine. We found that in three underground spots we measured the average concentration of PM did not exceed 30 μg/m 3 . Chemical composition of PM was dominated by sodium chloride, making up 88 % of its mass, on average. It was shown that the underground ambient concentration of PM and its chemical composition depended mostly on the nature of the rock material present in the ventilation tunnel of the health resort, filtering the incoming air. The presence and effect of external sources of PM, including patients' activity, also had an impact on the underground PM concentration.

  19. On understanding creative language : The late positive complex and novel metaphor comprehension

    NARCIS (Netherlands)

    Rataj, Karolina; Przekoracka-Krawczyk, Anna; van der Lubbe, Rob H.J.

    2018-01-01

    Novel metaphoric sentences have repeatedly evoked larger N400 amplitudes than literal sentences, while investigations of the late positive complex (LPC) have brought inconsistent results, with reports of both increased and reduced amplitudes. In two experiments, we examined novel metaphor

  20. Understanding the Fatigue Behavior of FML Structures and Materials under Complex Variable Amplitude Loading

    NARCIS (Netherlands)

    Alderdiesten, R.; Benedictus, R.; Khan, S.

    2009-01-01

    This paper presents various failure mechanisms in FMLs, highlights the presence or absence of interaction effects, and describes how the failure mechanisms can be described for predicting damage growth under arbitrary complex load spectra.

  1. Understanding and Mitigating the Charging Behavior of Next Generation Complex and Active Spacecraft

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft that are fundamentally more complex and higher powered are necessary to expand our scientific missions and take commercial space endeavors to the next...

  2. The VULCAN Project: Toward a better understanding of the vulnerability of soil organic matter to climate change in permafrost ecosystems

    Science.gov (United States)

    Plaza, C.; Schuur, E.; Maestre, F. T.

    2015-12-01

    Despite much recent research, high uncertainty persists concerning the extent to which global warming influences the rate of permafrost soil organic matter loss and how this affects the functioning of permafrost ecosystems and the net transfer of C to the atmosphere. This uncertainty continues, at least in part, because the processes that protect soil organic matter from decomposition and stabilize fresh plant-derived organic materials entering the soil are largely unknown. The objective of the VULCAN (VULnerability of soil organic CArboN to climate change in permafrost and dryland ecosystems) project is to gain a deeper insight into these processes, especially at the molecular level, and to explore potential implications in terms of permafrost ecosystem functioning and feedback to climate change. We will capitalize on a globally unique ecosystem warming experiment in Alaska, the C in Permafrost Experimental Heating Research (CiPEHR) project, which is monitoring soil temperature and moisture, thaw depth, water table depth, plant productivity, phenology, and nutrient status, and soil CO2 and CH4 fluxes. Soil samples have been collected from the CiPEHR experiment from strategic depths, depending on thaw depth, and allow us to examine effects related to freeze/thaw, waterlogging, and organic matter relocation along the soil profile. We will use physical fractionation methods to separate soil organic matter pools characterized by different preservation mechanisms of aggregation and mineral interaction. We will determine organic C and total N content, transformation rates, turnovers, ages, and structural composition of soil organic matter fractions by elemental analysis, stable and radioactive isotope techniques, and nuclear magnetic resonance tools. Acknowledgements: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 654132. Web site: http://vulcan.comule.com

  3. Complex Indigenous Organic Matter Embedded in Apollo 17 Volcanic Black Glass Surface Deposits

    Science.gov (United States)

    Thomas-Keprta, Kathie L.; Clemett, S. J.; Ross, D. K.; Le, L.; Rahman, Z.; Gonzalez, C.; McKay, D. S.; Gibson, E. K.

    2013-01-01

    Papers presented at the first Lunar Science Conference [1] and those published in the subsequent Science Moon Issue [2] reported the C content of Apollo II soils, breccias, and igneous rocks as rang-ing from approx.50 to 250 parts per million (ppm). Later Fegley & Swindle [3] summarized the C content of bulk soils from all the Apollo missions as ranging from 2.5 (Apollo 15) to 280 ppm (Apollo 16) with an overall average of 124+/- 45 ppm. These values are unexpectedly low given that multiple processes should have contributed (and in some cases continue to contribute) to the lunar C inventory. These include exogenous accretion of cometary and asteroidal dust, solar wind implantation, and synthesis of C-bearing species during early lunar volcanism. We estimate the contribution of C from exogenous sources alone is approx.500 ppm, which is approx.4x greater than the reported average. While the assessm ent of indigenous organic matter (OM) in returned lunar samples was one of the primary scientific goals of the Apollo program, extensive analysis of Apollo samples yielded no evidence of any significant indigenous organic species. Furthermore, with such low concentrations of OM reported, the importance of discriminating indigenous OM from terrestrial contamination (e.g., lunar module exhaust, sample processing and handling) became a formidable task. After more than 40 years, with the exception of CH4 [5-7], the presence of indigenous lunar organics still remains a subject of considerable debate. We report for the first time the identification of arguably indigenous OM present within surface deposits of black glass grains collected on the rim of Shorty crater during the Apollo 17 mission by astronauts Eugene Cernan and Harrison Schmitt.

  4. Toxicity of silver nanoparticles in biological systems: Does the complexity of biological systems matter?

    Science.gov (United States)

    Vazquez-Muñoz, Roberto; Borrego, Belen; Juárez-Moreno, Karla; García-García, Maritza; Mota Morales, Josué D; Bogdanchikova, Nina; Huerta-Saquero, Alejandro

    2017-07-05

    Currently, nanomaterials are more frequently in our daily life, specifically in biomedicine, electronics, food, textiles and catalysis just to name a few. Although nanomaterials provide many benefits, recently their toxicity profiles have begun to be explored. In this work, the toxic effects of silver nanoparticles (35nm-average diameter and Polyvinyl-Pyrrolidone-coated) on biological systems of different levels of complexity was assessed in a comprehensive and comparatively way, through a variety of viability and toxicological assays. The studied organisms included viruses, bacteria, microalgae, fungi, animal and human cells (including cancer cell lines). It was found that biological systems of different taxonomical groups are inhibited at concentrations of silver nanoparticles within the same order of magnitude. Thus, the toxicity of nanomaterials on biological/living systems, constrained by their complexity, e.g. taxonomic groups, resulted contrary to the expected. The fact that cells and virus are inhibited with a concentration of silver nanoparticles within the same order of magnitude could be explained considering that silver nanoparticles affects very primitive cellular mechanisms by interacting with fundamental structures for cells and virus alike. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Understanding the Role of GPCR Heteroreceptor Complexes in Modulating the Brain Networks in Health and Disease.

    Science.gov (United States)

    Borroto-Escuela, Dasiel O; Carlsson, Jens; Ambrogini, Patricia; Narváez, Manuel; Wydra, Karolina; Tarakanov, Alexander O; Li, Xiang; Millón, Carmelo; Ferraro, Luca; Cuppini, Riccardo; Tanganelli, Sergio; Liu, Fang; Filip, Malgorzata; Diaz-Cabiale, Zaida; Fuxe, Kjell

    2017-01-01

    The introduction of allosteric receptor-receptor interactions in G protein-coupled receptor (GPCR) heteroreceptor complexes of the central nervous system (CNS) gave a new dimension to brain integration and neuropsychopharmacology. The molecular basis of learning and memory was proposed to be based on the reorganization of the homo- and heteroreceptor complexes in the postjunctional membrane of synapses. Long-term memory may be created by the transformation of parts of the heteroreceptor complexes into unique transcription factors which can lead to the formation of specific adapter proteins. The observation of the GPCR heterodimer network (GPCR-HetNet) indicated that the allosteric receptor-receptor interactions dramatically increase GPCR diversity and biased recognition and signaling leading to enhanced specificity in signaling. Dysfunction of the GPCR heteroreceptor complexes can lead to brain disease. The findings of serotonin (5-HT) hetero and isoreceptor complexes in the brain over the last decade give new targets for drug development in major depression. Neuromodulation of neuronal networks in depression via 5-HT, galanin peptides and zinc involve a number of GPCR heteroreceptor complexes in the raphe-hippocampal system: GalR1-5-HT1A, GalR1-5-HT1A-GPR39, GalR1-GalR2, and putative GalR1-GalR2-5-HT1A heteroreceptor complexes. The 5-HT1A receptor protomer remains a receptor enhancing antidepressant actions through its participation in hetero- and homoreceptor complexes listed above in balance with each other. In depression, neuromodulation of neuronal networks in the raphe-hippocampal system and the cortical regions via 5-HT and fibroblast growth factor 2 involves either FGFR1-5-HT1A heteroreceptor complexes or the 5-HT isoreceptor complexes such as 5-HT1A-5-HT7 and 5-HT1A-5-HT2A. Neuromodulation of neuronal networks in cocaine use disorder via dopamine (DA) and adenosine signals involve A2AR-D2R and A2AR-D2R-Sigma1R heteroreceptor complexes in the dorsal and

  6. Understanding M-ligand bonding and mer-/fac-isomerism in tris(8-hydroxyquinolinate) metallic complexes.

    Science.gov (United States)

    Lima, Carlos F R A C; Taveira, Ricardo J S; Costa, José C S; Fernandes, Ana M; Melo, André; Silva, Artur M S; Santos, Luís M N B F

    2016-06-28

    Tris(8-hydroxyquinolinate) metallic complexes, Mq3, are one of the most important classes of organic semiconductor materials. Herein, the nature of the chemical bond in Mq3 complexes and its implications on their molecular properties were investigated by a combined experimental and computational approach. Various Mq3 complexes, resulting from the alteration of the metal and substitution of the 8-hydroxyquinoline ligand in different positions, were prepared. The mer-/fac-isomerism in Mq3 was explored by FTIR and NMR spectroscopy, evidencing that, irrespective of the substituent, mer- and fac-are the most stable molecular configurations of Al(iii) and In(iii) complexes, respectively. The relative M-ligand bond dissociation energies were evaluated experimentally by electrospray ionization tandem mass spectrometry (ESI-MS-MS), showing a non-monotonous variation along the group (Al > In > Ga). The results reveal a strong covalent character in M-ligand bonding, which allows for through-ligand electron delocalization, and explain the preferred molecular structures of Mq3 complexes as resulting from the interplay between bonding and steric factors. The mer-isomer reduces intraligand repulsions, being preferred for smaller metals, while the fac-isomer is favoured for larger metals where stronger covalent M-ligand bonds can be formed due to more extensive through-ligand conjugation mediated by metal "d" orbitals.

  7. Referential Choices in a Collaborative Storytelling Task: Discourse Stages and Referential Complexity Matter.

    Science.gov (United States)

    Fossard, Marion; Achim, Amélie M; Rousier-Vercruyssen, Lucie; Gonzalez, Sylvia; Bureau, Alexandre; Champagne-Lavau, Maud

    2018-01-01

    During a narrative discourse, accessibility of the referents is rarely fixed once and for all. Rather, each referent varies in accessibility as the discourse unfolds, depending on the presence and prominence of the other referents. This leads the speaker to use various referential expressions to refer to the main protagonists of the story at different moments in the narrative. This study relies on a new, collaborative storytelling in sequence task designed to assess how speakers adjust their referential choices when they refer to different characters at specific discourse stages corresponding to the introduction, maintaining, or shift of the character in focus, in increasingly complex referential contexts. Referential complexity of the stories was manipulated through variations in the number of characters (1 vs. 2) and, for stories in which there were two characters, in their ambiguity in gender (different vs. same gender). Data were coded for the type of reference markers as well as the type of reference content (i.e., the extent of the information provided in the referential expression). Results showed that, beyond the expected effects of discourse stages on reference markers (more indefinite markers at the introduction stage, more pronouns at the maintaining stage, and more definite markers at the shift stage), the number of characters and their ambiguity in gender also modulated speakers' referential choices at specific discourse stages, For the maintaining stage, an effect of the number of characters was observed for the use of pronouns and of definite markers, with more pronouns when there was a single character, sometimes replaced by definite expressions when two characters were present in the story. For the shift stage, an effect of gender ambiguity was specifically noted for the reference content with more specific information provided in the referential expression when there was referential ambiguity. Reference content is an aspect of referential marking

  8. Genotyping strategy matters when analyzing hypervariable major histocompatibility complex-Experience from a passerine bird.

    Science.gov (United States)

    Rekdal, Silje L; Anmarkrud, Jarl Andreas; Johnsen, Arild; Lifjeld, Jan T

    2018-02-01

    Genotyping of classical major histocompatibility complex (MHC) genes is challenging when they are hypervariable and occur in multiple copies. In this study, we used several different approaches to genotype the moderately variable MHC class I exon 3 (MHCIe3) and the highly polymorphic MHC class II exon 2 (MHCIIβe2) in the bluethroat ( Luscinia svecica ). Two family groups (eight individuals) were sequenced in replicates at both markers using Ion Torrent technology with both a single- and a dual-indexed primer structure. Additionally, MHCIIβe2 was sequenced on Illumina MiSeq. Allele calling was conducted by modifications of the pipeline developed by Sommer et al. (BMC Genomics, 14, 2013, 542) and the software AmpliSAS. While the different genotyping strategies gave largely consistent results for MHCIe3, with a maximum of eight alleles per individual, MHCIIβe2 was remarkably complex with a maximum of 56 MHCIIβe2 alleles called for one individual. Each genotyping strategy detected on average 50%-82% of all MHCIIβe2 alleles per individual, but dropouts were largely allele-specific and consistent within families for each strategy. The discrepancies among approaches indicate PCR biases caused by the platform-specific primer tails. Further, AmpliSAS called fewer alleles than the modified Sommer pipeline. Our results demonstrate that allelic dropout is a significant problem when genotyping the hypervariable MHCIIβe2. As these genotyping errors are largely nonrandom and method-specific, we caution against comparing genotypes across different genotyping strategies. Nevertheless, we conclude that high-throughput approaches provide a major advance in the challenging task of genotyping hypervariable MHC loci, even though they may not reveal the complete allelic repertoire.

  9. Improving the understanding and treatment of complex grief: an important issue for psychotraumatology

    Directory of Open Access Journals (Sweden)

    Paul A. Boelen

    2016-09-01

    Full Text Available In the Netherlands, every year 500,000 people are confronted with the death of a close relative. Many of these people experience little emotional distress. In some, bereavement precipitates severe grief, distress, and dysphoria. A small yet significant minority of bereaved individuals develops persistent and debilitating symptoms of persistent complex bereavement disorder (PCBD (also termed prolonged grief disorder, posttraumatic stress disorder, and depression. Knowledge about early identification of, and preventive care for complex grief has increased. Moreover, in recent years there has been an increase in treatment options for people for whom loss leads to persistent psychological problems. That said, preventive and curative treatments are effective for some, but not all bereaved individuals experiencing distress and dysfunction following loss. This necessitates further research on the development, course, and treatment of various stages of complex grief, including PCBD. Highlights of the article:

  10. Understanding heterogeneity in grey matter research of adults with childhood maltreatment-A meta-analysis and review.

    Science.gov (United States)

    Paquola, Casey; Bennett, Maxwell R; Lagopoulos, Jim

    2016-10-01

    Childhood trauma has been associated with long term effects on prefrontal-limbic grey matter. A literature search was conducted to identify structural magnetic resonance imaging studies of adults with a history of childhood trauma. We performed three meta-analyses. Hedges' g effect sizes were calculated for each study providing hippocampal or amygdala volumes of trauma and non-trauma groups. Seed based differential mapping was utilised to synthesise whole brain voxel based morphometry (VBM) studies. A total of 38 articles (17 hippocampus, 13 amygdala, 19 whole brain VBM) were included in the meta-analyses. Trauma cohorts exhibited smaller hippocampus and amygdala volumes bilaterally. The most robust findings of the whole brain VBM meta-analysis were reduced grey matter in the right dorsolateral prefrontal cortex and right hippocampus amongst adults with a history of childhood trauma. Subgroup analyses and meta-regressions showed results were moderated by age, gender, the cohort's psychiatric health and the study's definition of childhood trauma. We provide evidence of abnormal grey matter in prefrontal-limbic brain regions of adults with a history of childhood maltreatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Further Understanding of Complex Information Processing in Verbal Adolescents and Adults with Autism Spectrum Disorders

    Science.gov (United States)

    Williams, Diane L.; Minshew, Nancy J.; Goldstein, Gerald

    2015-01-01

    More than 20?years ago, Minshew and colleagues proposed the Complex Information Processing model of autism in which the impairment is characterized as a generalized deficit involving multiple modalities and cognitive domains that depend on distributed cortical systems responsible for higher order abilities. Subsequent behavioral work revealed a…

  12. Contemporary Leadership Theories. Enhancing the Understanding of the Complexity, Subjectivity and Dynamic of Leadership

    DEFF Research Database (Denmark)

    Winkler, Ingo

    . Leadership is understood as product of complex social relationships embedded in the logic and dynamic of the social system. The book discusses theoretical approaches from top leadership journals, but also addresses various alternatives that are suitable to challenge mainstream leadership research...

  13. Sedimentary Melanges and Fossil Mass-Transport Complexes: A Key for Better Understanding Submarine Mass Movements?

    NARCIS (Netherlands)

    Pini, Gian Andrea; Ogata, Kei; Camerlenghi, Angelo; Festa, Andrea; Lucente, Claudio Corrado; Codegone, Giulia

    2012-01-01

    Mélanges originated from sedimentary processes (sedimentary mélanges) and olistostromes are frequently present in mountain chains worldwide. They are excellent fossil examples of mass- Transport complexes (MTC), often cropping out in well-preserved and laterally continuous exposures. In this article

  14. Understanding the Complex Dimensions of the Digital Divide: Lessons Learned in the Alaskan Arctic

    Science.gov (United States)

    Subramony, Deepak Prem

    2007-01-01

    An ethnographic case study of Inupiat Eskimo in the Alaskan Arctic has provided insights into the complex nature of the sociological issues surrounding equitable access to technology tools and skills, which are referred to as the digital divide. These people can overcome the digital divide if they get the basic ready access to hardware and…

  15. Understanding the Complex Processes in Developing Student Teachers' Knowledge about Grammar

    Science.gov (United States)

    Svalberg, Agneta M.-L.

    2015-01-01

    This article takes the view that grammar is driven by user choices and is therefore complex and dynamic. This has implications for the teaching of grammar in language teacher education and how teachers' cognitions about grammar, and hence their own grammar teaching, might change. In this small, interpretative study, the participants--students on…

  16. Language complexity during read-alouds and kindergartners' vocabulary and symbolic understanding

    NARCIS (Netherlands)

    Mascareño Lara, Mayra; Snow, Catherine E.; Deunk, Marjolein I.; Bosker, Roel J.

    2016-01-01

    We explored links between complexity of teacher-child verbal interaction and child language and literacy outcomes in fifteen whole-class read-aloud sessions in Chilean kindergarten classrooms serving children from low socioeconomic backgrounds. We coded teacher and child turns for function

  17. Supporting Individuals with Autism Spectrum Disorder in Understanding and Coping with Complex Social Emotional Issues

    Science.gov (United States)

    Ahlers, Kaitlyn P.; Gabrielsen, Terisa P.; Lewis, Danielle; Brady, Anna M.; Litchford, April

    2017-01-01

    Core deficits in autism spectrum disorder (ASD) center around social communication and behavior. For those with ASD, these deficits complicate the task of learning how to cope with and manage complex social emotional issues. Although individuals with ASD may receive sufficient academic and basic behavioral support in school settings, supports for…

  18. Using multi-criteria analysis of simulation models to understand complex biological systems

    Science.gov (United States)

    Maureen C. Kennedy; E. David. Ford

    2011-01-01

    Scientists frequently use computer-simulation models to help solve complex biological problems. Typically, such models are highly integrated, they produce multiple outputs, and standard methods of model analysis are ill suited for evaluating them. We show how multi-criteria optimization with Pareto optimality allows for model outputs to be compared to multiple system...

  19. Techniques to better understand complex epikarst hydrogeology and contaminant transport in telogenetic karst settings

    Science.gov (United States)

    The movement of autogenic recharge through the shallow epikarstic zone in soil-mantled karst aquifers is important in understanding recharge areas and rates, groundwater storage, and contaminant transport processes. The groundwater flow in agricultural karst areas, such as Kentucky’s Pennyroyal Plat...

  20. Complex Problem Solving in Radiologic Technology: Understanding the Roles of Experience, Reflective Judgment, and Workplace Culture

    Science.gov (United States)

    Yates, Jennifer L.

    2011-01-01

    The purpose of this research study was to explore the process of learning and development of problem solving skills in radiologic technologists. The researcher sought to understand the nature of difficult problems encountered in clinical practice, to identify specific learning practices leading to the development of professional expertise, and to…

  1. Preschoolers' Implicit and Explicit False-Belief Understanding: Relations with Complex Syntactical Mastery

    Science.gov (United States)

    Low, Jason

    2010-01-01

    Three studies were carried out to investigate sentential complements being the critical device that allows for false-belief understanding in 3- and 4-year-olds (N = 102). Participants across studies accurately gazed in anticipation of a character's mistaken belief in a predictive looking task despite erring on verbal responses for direct…

  2. Small angle scattering from soft matter-application to complex mixed systems

    International Nuclear Information System (INIS)

    Boue, F.; Cousin, F.; Gummel, J.; Carrot, G.; El Harrak, A.; Oberdisse, J.

    2007-01-01

    The advantage of small angle neutron scattering associated with isotopic labelling through deuteration is illustrated in the case of mixed systems, created by associating already well-known systems of characteristic structures; this is also important for applications. Our first mixed system associates charged polymer chains, polyelectrolyte (here polystyrene sulfonate, PSS), with oppositely charged particles, proteins (here lysozyme). Different fractions of deuterated water (D 2 O) mixed with normal water are used to match the scattering length density of the protein or of the polymer in non-deuterated or deuterated version. First, this allows us to separate the protein and the polymer signal: we can then distinguish a case where the structures of each species alone in water are hardly modified by mixing, except for interconnections yielding a gel, and a case inducing complete change into a structure common to both species, made of aggregated globules. Secondly, using, for counter-ions of the poly-ions, deuterated Tetramethylammonium, together with matching both protein and polymer, we establish unambiguously the counter-ion release into the solvent. Thirdly, matching only a fraction of polymer chains, the other being deuterated, we extrapolate at zero deuterated fraction their form factor and describe the chain conformation inside the complexes. Fourthly, we illustrate the possibilities of modelling the signal on a second example of mixed system: a nano-composite made of silica particles surrounded by polymer dispersed into a deuterated polymer matrix. Chains are then visible in such reinforced polymer system, in particular when it is submitted to elongation: we discuss a possible model for an ideal system, introducing the scattering contribution from deformed chains. (authors)

  3. Landscape community genomics: understanding eco-evolutionary processes in complex environments

    Science.gov (United States)

    Hand, Brian K.; Lowe, Winsor H.; Kovach, Ryan P.; Muhlfeld, Clint C.; Luikart, Gordon

    2015-01-01

    Extrinsic factors influencing evolutionary processes are often categorically lumped into interactions that are environmentally (e.g., climate, landscape) or community-driven, with little consideration of the overlap or influence of one on the other. However, genomic variation is strongly influenced by complex and dynamic interactions between environmental and community effects. Failure to consider both effects on evolutionary dynamics simultaneously can lead to incomplete, spurious, or erroneous conclusions about the mechanisms driving genomic variation. We highlight the need for a landscape community genomics (LCG) framework to help to motivate and challenge scientists in diverse fields to consider a more holistic, interdisciplinary perspective on the genomic evolution of multi-species communities in complex environments.

  4. Eating disorder emergencies: understanding the medical complexities of the hospitalized eating disordered patient.

    Science.gov (United States)

    Cartwright, Martina M

    2004-12-01

    Eating disorders are maladaptive eating behaviors that typically develop in adolescence and early adulthood. Psychiatric maladies and comorbid conditions, especially insulin-dependent diabetes mellitus, frequently co-exist with eating disorders. Serious medical complications affecting all organs and tissues can develop and result in numerous emergent hospitalizations. This article reviews the pathophysiologies of anorexia nervosa, bulimia nervosa, and orthorexia nervosa and discusses the complexities associated with the treatment of medical complications seen in these patients.

  5. Using mLearning and MOOCs to Understand Chaos, Emergence, and Complexity in Education

    Science.gov (United States)

    deWaard, Inge; Abajian, Sean; Gallagher, Michael Sean; Hogue, Rebecca; Keskin, Nilgun; Koutropoulos, Apostolos; Rodriguez, Osvaldo C.

    2011-01-01

    In this paper, we look at how the massive open online course (MOOC) format developed by connectivist researchers and enthusiasts can help analyze the complexity, emergence, and chaos at work in the field of education today. We do this through the prism of a MobiMOOC, a six-week course focusing on mLearning that ran from April to May 2011. MobiMOOC…

  6. Systems-synthetic biology in understanding the complexities and simple devices in immunology.

    Science.gov (United States)

    Soni, Bhavnita; Nimsarkar, Prajakta; Mol, Milsee; Saha, Bhaskar; Singh, Shailza

    2018-03-23

    Systems and synthetic biology in the coming era has the ability to manipulate, stimulate and engineer cells to counteract the pathogenic immune response. The inherent biological complexities associated with the creation of a device allow capitalizing the biotechnological resources either by simply administering a recombinant cytokine or just reprogramming the immune cells. The strategy outlined, adopted and discussed may mark the beginning with promising therapeutics based on the principles of synthetic immunology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Complex Systems Biology Approach To Understanding Coordination of JAK-STAT Signaling

    OpenAIRE

    Soebiyanto, Radina P.; Sreenath, Sree N.; Qu, Cheng-Kui; Loparo, Kenneth A.; Bunting, Kevin D.

    2007-01-01

    In this work, we search for coordination as an organizing principle in a complex signaling system using a multilevel hierarchical paradigm. The objective is to explain the underlying mechanism of Interferon (IFNγ) induced JAK-STAT (specifically JAK1/JAK2-STAT1) pathway behavior. Starting with a mathematical model of the pathway from the literature, we modularize the system using biological knowledge via principles of biochemical cohesion, biological significance, and functionality. The modula...

  8. Douglas Hanahan: The daunting complexity of cancer: understanding the battlefield is a step towards winning the war

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The Inaugural Grace-CERN Lecture The daunting complexity of cancer: understanding the battlefield is a step towards winning the war  Douglas Hanahan, Ph.D. Director, Swiss Institute for Experimental Cancer Research (ISREC)  Professor of Molecular Oncology, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL) Vice Director, Swiss Cancer Center Lausanne Synopsis (version francaise ci-dessous) Cancer is a disease with hundreds of variations, both in affected organs and in responses to different therapies.  Modern human cancer research is producing an avalanche of data about the distinctive genetic aberrations of its specific types, further accentuating the diversity and vast complexity of the disease. There is hope that elucidating its mechanisms will lead to more informed and more effective therapeutic strategies.  Understanding the enemy is paramount, and yet tumors arising in different organs can be so different as to de...

  9. Complex Scalar Field Dark Matter and the Stochastic Gravitational Wave Background from Inflation: New Cosmological Constraints and Detectability

    Science.gov (United States)

    Li, Bohua; Shapiro, Paul R.; Rindler-Daller, Tanja

    2017-01-01

    We consider an alternative to WIMP cold dark matter (CDM), ultralight bosonic dark matter (m≥10-22 eV) described by a complex scalar field (SFDM), of which the comoving particle number density is conserved after particle production during standard reheating (w=p/ρ=0). In a ΛSFDM universe, SFDM starts relativistic, evolving from stiff (w=1) to radiation-like (w=1/3), before becoming nonrelativistic at late times (w=0). Thus, before the familiar radiation-dominated phase, there is an even earlier phase of stiff-SFDM-domination, during which the expansion rate is higher than in ΛCDM. The transitions between these phases, determined by SFDM particle mass m, and coupling strength λ, of a quartic self-interaction, are therefore constrained by cosmological observables, particularly Neff, the effective number of neutrino species during BBN, and zeq, the redshift of matter-radiation equality. Furthermore, since the homogeneous energy density contributed by the stochastic gravitational wave background (SGWB) from inflation is amplified during the stiff phase, relative to the other components, the SGWB can contribute a radiation-like component large enough to affect these observables. This same amplification makes possible detection of this SGWB at high frequencies by current laser interferometer experiments, e.g., aLIGO/Virgo, eLISA. For SFDM particle parameters that satisfy these cosmological constraints, the amplified SGWB is detectable by aLIGO, for values of tensor-to-scalar ratio r currently allowed by CMB polarization measurements, for a broad range of possible reheat temperatures Tre. For a given r, if SFDM parameters marginally satisfy cosmological constraints (maximizing total SGWB energy density), the SGWB is maximally detectable when modes that reenter the horizon when reheating ends have frequencies in the 10-50 Hz aLIGO band today. For example, if r=0.01, the maximally detectable model for (λ/(mc2)2, m)=(10-18 eV-1cm3, 8×10-20 eV) has Tre=104 GeV, for

  10. Understanding ageing effects using complexity analysis of foot-ground clearance during walking.

    Science.gov (United States)

    Karmakar, Chandan; Khandoker, Ahsan; Begg, Rezaul; Palaniswami, Marimuthu

    2013-01-01

    Ageing influences gait patterns which in turn can affect the balance control of human locomotion. Entropy-based regularity and complexity measures have been highly effective in analysing a broad range of physiological signals. Minimum toe clearance (MTC) is an event during the swing phase of the gait cycle and is highly sensitive to the spatial balance control properties of the locomotor system. The aim of this research was to investigate the regularity and complexity of the MTC time series due to healthy ageing and locomotors' disorders. MTC data from 30 healthy young (HY), 27 healthy elderly (HE) and 10 falls risk (FR) elderly subjects with balance problems were analysed. Continuous MTC data were collected and using the first 500 data points, MTC mean, standard deviation (SD) and entropy-based complexity analysis were performed using sample entropy (SampEn) for different window lengths (m) and filtering levels (r). The MTC SampEn values were lower in the FR group compared to the HY and HE groups for all m and r. The HY group had a greater mean SampEn value than both HE and FR reflecting higher complexity in their MTC series. The mean SampEn values of HY and FR groups were found significantly different for m = 2, 4, 5 and r = (0.1-0.9) × SD, (0.3-0.9) × SD and (0.3-0.9) × SD, respectively. They were also significant difference between HE and FR groups for m = 4-5 and r = (0.3-0.7) × SD, but no significant differences were seen between HY and HE groups for any m and r. A significant correlation of SampEn with SD of MTC was revealed for the HY and HE groups only, suggesting that locomotor disorders could significantly change the regularity or the complexity of the MTC series while healthy ageing does not. These results can be usefully applied to the early diagnosis of common gait pathologies.

  11. Using a Design Science Perspective to Understand a Complex Design-Based Research Process

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2012-01-01

    The purpose of the paper is to demonstrate how a design science perspective can be used to describe and understand a set of related design-based research processes. We describe and analyze a case study in a manner that is inspired by design science. The case study involves the design of modeling......-based research processes. And we argue that a design science perspective may be useful for both researchers and practitioners....... tools and the redesign of an information service in a library. We use a set of guidelines from a design science perspective to organize the description and analysis of the case study. By doing this we demonstrate the usefulness of design science as an analytical tool for understanding related design...

  12. A Diagrammatic Approach to Understanding Complex Eco-Social Interactions in Kathmandu, Nepal

    Directory of Open Access Journals (Sweden)

    R. Cynthia. Neudoerffer

    2005-12-01

    Full Text Available As part of developing an international network of community-based ecosystem approaches to health, a project was undertaken in a densely populated and socio-economically diverse area of Kathmandu, Nepal. Drawing on hundreds of pages of narrative reports based on surveys, interviews, secondary data, and focus groups by trained Nepalese facilitators, the authors created systemic depictions of relationships between multiple stakeholder groups, ecosystem health, and human health. These were then combined to examine interactions among stakeholders, activities, concerns, perceived needs, and resource states (ecosystem health indicators. These qualitative models have provided useful heuristics for both community members and research scholars to understand the eco-social systems in which they live; many of the strategies developed by the communities and researchers to improve health intuitively drew on this systemic understanding. The diagrams enabled researchers and community participants to explicitly examine relationships and conflicts related to health and environmental issues in their community.

  13. Enacting understanding of inclusion in complex contexts: Classroom practices of South African teachers

    Directory of Open Access Journals (Sweden)

    Petra Engelbrecht

    2015-08-01

    Full Text Available While the practice of inclusive education has recently been widely embraced as an ideal model for education, the acceptance of inclusive education practices has not translated into reality in most mainstream classrooms. Despite the fact that education policies in South Africa stipulate that all learners should be provided with the opportunities to participate as far as possible in all classroom activities, the implementation of inclusive education is still hampered by a combination of a lack of resources and the attitudes and actions of the teachers in the classroom. The main purpose of this paper was to develop a deeper understanding of a group of South African teachers' personal understanding about barriers to learning and how their understanding relates to their consequent actions to implement inclusive education in their classrooms. A qualitative research approach placed within a cultural-historical and bio-ecological theoretical framework was used. The findings, in this paper, indicate that the way in which teachers understand a diversity of learning needs is based on the training that they initially received as teachers, which focused on a deficit, individualised approach to barriers to learning and development, as well as contextual challenges, and that both have direct and substantial effects on teachers' classroom practices. As a result, they engage in practices in their classrooms that are less inclusive, by creating dual learning opportunities that are not sufficiently made available for everyone, with the result that every learner is not able to participate fully as an accepted member of their peer group in all classroom activities.

  14. Emergent nested systems a theory of understanding and influencing complex systems as well as case studies in urban systems

    CERN Document Server

    Walloth, Christian

    2016-01-01

    This book presents a theory as well as methods to understand and to purposively influence complex systems. It suggests a theory of complex systems as nested systems, i. e. systems that enclose other systems and that are simultaneously enclosed by even other systems. According to the theory presented, each enclosing system emerges through time from the generative activities of the systems they enclose. Systems are nested and often emerge unplanned, and every system of high dynamics is enclosed by a system of slower dynamics. An understanding of systems with faster dynamics, which are always guided by systems of slower dynamics, opens up not only new ways to understanding systems, but also to effectively influence them. The aim and subject of this book is to lay out these thoughts and explain their relevance to the purposive development of complex systems, which are exemplified in case studies from an urban system. The interested reader, who is not required to be familiar with system-theoretical concepts or wit...

  15. Boxes, Boosts, and Energy Duality: Understanding the Galactic-Center Gamma-Ray Excess through Dynamical Dark Matter

    CERN Document Server

    Boddy, Kimberly K.

    2017-03-28

    Many models currently exist which attempt to interpret the excess of gamma rays emanating from the Galactic Center in terms of annihilating or decaying dark matter. These models typically exhibit a variety of complicated cascade mechanisms for photon production, leading to a non-trivial kinematics which obscures the physics of the underlying dark sector. In this paper, by contrast, we observe that the spectrum of the gamma-ray excess may actually exhibit an intriguing "energy-duality" invariance under $E_\\gamma \\rightarrow E_\\ast^2/E_\\gamma$ for some $E_\\ast$. As we shall discuss, such an energy duality points back to a remarkably simple alternative kinematics which in turn is realized naturally within the Dynamical Dark Matter framework. Observation of this energy duality could therefore provide considerable information about the properties of the dark sector from which the Galactic-Center gamma-ray excess might arise, and highlights the importance of acquiring more complete data for the Galactic-Center exce...

  16. Understanding the Narratives Explaining the Ukrainian Crisis: Identity Divisions and Complex Diversity in Ukraine

    Directory of Open Access Journals (Sweden)

    Smoor Lodewijk

    2017-09-01

    Full Text Available The central argument of this paper is that radical and opposing interpretations of the Ukrainian conflict in politics and media should be studied as offspring of broader narratives. These narratives can be better understood by examining the national identity of Ukraine. Since Ukrainian national identity shows a high degree of diversity, it offers a rich source of arguments for any party wanting to give an interpretation of the present Ukrainian crisis. Narratives explaining the crisis often ignore this complex diversity or deliberately use elements from it to construct the ‘desired’ narrative.

  17. Take a stand on understanding: electrophysiological evidence for stem access in German complex verbs.

    Science.gov (United States)

    Smolka, Eva; Gondan, Matthias; Rösler, Frank

    2015-01-01

    The lexical representation of complex words in Indo-European languages is generally assumed to depend on semantic compositionality. This study investigated whether semantically compositional and noncompositional derivations are accessed via their constituent units or as whole words. In an overt visual priming experiment (300 ms stimulus onset asynchrony, SOA), event-related potentials (ERPs) were recorded for verbs (e.g., ziehen, "pull") that were preceded by purely semantically related verbs (e.g., zerren, "drag"), by morphologically related and semantically compositional verbs (e.g., zuziehen, "pull together"), by morphologically related and semantically noncompositional verbs (e.g., erziehen, "educate"), by orthographically similar verbs (e.g., zielen, "aim"), or by unrelated verbs (e.g., tarnen, "mask"). Compared to the unrelated condition, which evoked an N400 effect with the largest amplitude at centro-parietal recording sites, the N400 was reduced in all other conditions. The rank order of N400 amplitudes turned out as follows: morphologically related and semantically compositional ≈ morphologically related and semantically noncompositional morphologically related primes produced similar N400 modulations-irrespective of their semantic compositionality. The control conditions with orthographic similarity confirmed that these morphological effects were not the result of a simple form overlap between primes and targets. Our findings suggest that the lexical representation of German complex verbs refers to their base form, regardless of meaning compositionality. Theories of the lexical representation of German words need to incorporate this aspect of language processing in German.

  18. Understanding characteristics in multivariate traffic flow time series from complex network structure

    Science.gov (United States)

    Yan, Ying; Zhang, Shen; Tang, Jinjun; Wang, Xiaofei

    2017-07-01

    Discovering dynamic characteristics in traffic flow is the significant step to design effective traffic managing and controlling strategy for relieving traffic congestion in urban cities. A new method based on complex network theory is proposed to study multivariate traffic flow time series. The data were collected from loop detectors on freeway during a year. In order to construct complex network from original traffic flow, a weighted Froenius norm is adopt to estimate similarity between multivariate time series, and Principal Component Analysis is implemented to determine the weights. We discuss how to select optimal critical threshold for networks at different hour in term of cumulative probability distribution of degree. Furthermore, two statistical properties of networks: normalized network structure entropy and cumulative probability of degree, are utilized to explore hourly variation in traffic flow. The results demonstrate these two statistical quantities express similar pattern to traffic flow parameters with morning and evening peak hours. Accordingly, we detect three traffic states: trough, peak and transitional hours, according to the correlation between two aforementioned properties. The classifying results of states can actually represent hourly fluctuation in traffic flow by analyzing annual average hourly values of traffic volume, occupancy and speed in corresponding hours.

  19. #consumingitall: Understanding The Complex Relationship Between Media Consumption And Eating Behaviors

    OpenAIRE

    Albert, Stephanie L.

    2017-01-01

    Adolescents spend almost nine hours a day engaging with media. As a result, they are confronted with large amounts of obesogenic content that shapes their understanding of what are normal and acceptable eating behaviors. Utilizing primary data collected from a sample of 4,838 low-income, racially and ethnically diverse middle school students in Los Angeles County, I studied the effects of different types of media use (i.e., social media, TV/movies/videos, gaming, music, Internet) on dietary p...

  20. Sorptive fractionation of organic matter and formation of organo-hydroxy-aluminum complexes during litter biodegradation in the presence of gibbsite

    Science.gov (United States)

    K. Heckman; A.S. Grandy; X. Gao; M. Keiluweit; K. Wickings; K. Carpenter; J. Chorover; C. Rasmussen

    2013-01-01

    Solid and aqueous phase Al species are recognized to affect organic matter (OM) stabilization in forest soils. However, little is known about the dynamics of formation, composition and dissolution of organo-Al hydroxide complexes in microbially-active soil systems, where plant litter is subject to microbial decomposition in close proximity to mineral weathering...

  1. Application for 3d Scene Understanding in Detecting Discharge of Domesticwaste Along Complex Urban Rivers

    Science.gov (United States)

    Ninsalam, Y.; Qin, R.; Rekittke, J.

    2016-06-01

    In our study we use 3D scene understanding to detect the discharge of domestic solid waste along an urban river. Solid waste found along the Ciliwung River in the neighbourhoods of Bukit Duri and Kampung Melayu may be attributed to households. This is in part due to inadequate municipal waste infrastructure and services which has caused those living along the river to rely upon it for waste disposal. However, there has been little research to understand the prevalence of household waste along the river. Our aim is to develop a methodology that deploys a low cost sensor to identify point source discharge of solid waste using image classification methods. To demonstrate this we describe the following five-step method: 1) a strip of GoPro images are captured photogrammetrically and processed for dense point cloud generation; 2) depth for each image is generated through a backward projection of the point clouds; 3) a supervised image classification method based on Random Forest classifier is applied on the view dependent red, green, blue and depth (RGB-D) data; 4) point discharge locations of solid waste can then be mapped by projecting the classified images to the 3D point clouds; 5) then the landscape elements are classified into five types, such as vegetation, human settlement, soil, water and solid waste. While this work is still ongoing, the initial results have demonstrated that it is possible to perform quantitative studies that may help reveal and estimate the amount of waste present along the river bank.

  2. Understanding the Complexities of Subnational Incentives in Supporting a National Market for Distributed Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Bush, B.; Doris, E.; Getman, D.

    2014-09-01

    Subnational policies pertaining to photovoltaic (PV) systems have increased in volume in recent years and federal incentives are set to be phased out over the next few. Understanding how subnational policies function within and across jurisdictions, thereby impacting PV market development, informs policy decision making. This report was developed for subnational policy-makers and researchers in order to aid the analysis on the function of PV system incentives within the emerging PV deployment market. The analysis presented is based on a 'logic engine,' a database tool using existing state, utility, and local incentives allowing users to see the interrelationships between PV system incentives and parameters, such as geographic location, technology specifications, and financial factors. Depending on how it is queried, the database can yield insights into which combinations of incentives are available and most advantageous to the PV system owner or developer under particular circumstances. This is useful both for individual system developers to identify the most advantageous incentive packages that they qualify for as well as for researchers and policymakers to better understand the patch work of incentives nationwide as well as how they drive the market.

  3. Critical analysis of the data on complexation of lanthanides and actinides by natural organic matter: particular case of humic substances

    International Nuclear Information System (INIS)

    Reiller, P.

    2010-01-01

    This document proposes a critical analysis of the models that describe the actinides and lanthanides complexation by natural organic matter in general and by humic substances in particular. In order to better delimit the particular properties of these substances the most influent physical and chemical properties on complexation are recalled as a preamble. Models as well as data that has been used are reviewed, compiled, and eventually compared to independent data in order to identify (i) their application domain, (ii) the possible simplifications which permit to obtain operational models, (iii) the conditions in which simplifications cannot be ascertained yet, and (iv) the data or fields of knowledge which are still too uncertain. A comparison between the different models is proposed in order to adapt parameters from one model to another minimising the experimental acquisitions, or at least to focus on missing data. Usually, data on the complexation of free ions M z+ are reliable; as soon as hydrolysis, or competition with another ligand in general, in at stake data are much less reliable. Predictions from models are much more uncertain: formation of mixed complexes with hydroxide or carbonate anions is not univocal whatever the modelling strategy. Hints for transfer functions between models which are believed to be incompatible could be explored in order to justify necessary simplifications for using operational modelling. Influence on the solubility of oxides could be quantified, but it is difficult to clearly separate it from colloidal particles stabilisation. The account of the competition between cations by the models has also been tested. In view of the small number of available experimental data there still lie some uncertainties especially for the media that are close to neutrality and in the case of competition with magnesium, but overall in the case of the competition with aluminium and iron. The influence of redox activity of humic substances is also

  4. Food, health, and complexity: towards a conceptual understanding to guide collaborative public health action

    Directory of Open Access Journals (Sweden)

    Shannon E. Majowicz

    2016-06-01

    Full Text Available Abstract Background What we eat simultaneously impacts our exposure to pathogens, allergens, and contaminants, our nutritional status and body composition, our risks for and the progression of chronic diseases, and other outcomes. Furthermore, what we eat is influenced by a complex web of drivers, including culture, politics, economics, and our built and natural environments. To date, public health initiatives aimed at improving food-related population health outcomes have primarily been developed within ‘practice silos’, and the potential for complex interactions among such initiatives is not well understood. Therefore, our objective was to develop a conceptual model depicting how infectious foodborne illness, food insecurity, dietary contaminants, obesity, and food allergy can be linked via shared drivers, to illustrate potential complex interactions and support future collaboration across public health practice silos. Methods We developed the conceptual model by first conducting a systematic literature search to identify review articles containing schematics that depicted relationships between drivers and the issues of interest. Next, we synthesized drivers into a common model using a modified thematic synthesis approach that combined an inductive thematic analysis and mapping to synthesize findings. Results The literature search yielded 83 relevant references containing 101 schematics. The conceptual model contained 49 shared drivers and 227 interconnections. Each of the five issues was connected to all others. Obesity and food insecurity shared the most drivers (n = 28. Obesity shared several drivers with food allergy (n = 11, infectious foodborne illness (n = 7, and dietary contamination (n = 6. Food insecurity shared several drivers with infectious foodborne illness (n = 9 and dietary contamination (n = 9. Infectious foodborne illness shared drivers with dietary contamination (n = 8. Fewer drivers were

  5. Physical Chemistry of Nanomedicine: Understanding the Complex Behaviors of Nanoparticles in Vivo

    Science.gov (United States)

    Lane, Lucas A.; Qian, Ximei; Smith, Andrew M.; Nie, Shuming

    2015-04-01

    Nanomedicine is an interdisciplinary field of research at the interface of science, engineering, and medicine, with broad clinical applications ranging from molecular imaging to medical diagnostics, targeted therapy, and image-guided surgery. Despite major advances during the past 20 years, there are still major fundamental and technical barriers that need to be understood and overcome. In particular, the complex behaviors of nanoparticles under physiological conditions are poorly understood, and detailed kinetic and thermodynamic principles are still not available to guide the rational design and development of nanoparticle agents. Here we discuss the interactions of nanoparticles with proteins, cells, tissues, and organs from a quantitative physical chemistry point of view. We also discuss insights and strategies on how to minimize nonspecific protein binding, how to design multistage and activatable nanostructures for improved drug delivery, and how to use the enhanced permeability and retention effect to deliver imaging agents for image-guided cancer surgery.

  6. Understanding the genetic and epigenetic architecture in complex network of rice flowering pathways.

    Science.gov (United States)

    Sun, Changhui; Chen, Dan; Fang, Jun; Wang, Pingrong; Deng, Xiaojian; Chu, Chengcai

    2014-12-01

    Although the molecular basis of flowering time control is well dissected in the long day (LD) plant Arabidopsis, it is still largely unknown in the short day (SD) plant rice. Rice flowering time (heading date) is an important agronomic trait for season adaption and grain yield, which is affected by both genetic and environmental factors. During the last decade, as the nature of florigen was identified, notable progress has been made on exploration how florigen gene expression is genetically controlled. In Arabidopsis expression of certain key flowering integrators such as FLOWERING LOCUS C (FLC) and FLOWERING LOCUS T (FT) are also epigenetically regulated by various chromatin modifications, however, very little is known in rice on this aspect until very recently. This review summarized the advances of both genetic networks and chromatin modifications in rice flowering time control, attempting to give a complete view of the genetic and epigenetic architecture in complex network of rice flowering pathways.

  7. Effects of Jigsaw Cooperative Learning and Animation Techniques on Students' Understanding of Chemical Bonding and Their Conceptions of the Particulate Nature of Matter

    Science.gov (United States)

    Karacop, Ataman; Doymus, Kemal

    2013-04-01

    The aim of this study was to determine the effect of jigsaw cooperative learning and computer animation techniques on academic achievements of first year university students attending classes in which the unit of chemical bonding is taught within the general chemistry course and these students' learning of the particulate nature of matter of this unit. The sample of this study consisted of 115 first-year science education students who attended the classes in which the unit of chemical bonding was taught in a university faculty of education during the 2009-2010 academic year. The data collection instruments used were the Test of Scientific Reasoning, the Purdue Spatial Visualization Test: Rotations, the Chemical Bonding Academic Achievement Test, and the Particulate Nature of Matter Test in Chemical Bonding (CbPNMT). The study was carried out in three different groups. One of the groups was randomly assigned to the jigsaw group, the second was assigned to the animation group (AG), and the third was assigned to the control group, in which the traditional teaching method was applied. The data obtained with the instruments were evaluated using descriptive statistics, one-way ANOVA, and MANCOVA. The results indicate that the teaching of chemical bonding via the animation and jigsaw techniques was more effective than the traditional teaching method in increasing academic achievement. In addition, according to findings from the CbPNMT, the students from the AG were more successful in terms of correct understanding of the particulate nature of matter.

  8. Dynamics of metal-humate complexation equilibria as revealed by isotope exchange studies - a matter of concentration and time

    Science.gov (United States)

    Lippold, Holger; Eidner, Sascha; Kumke, Michael U.; Lippmann-Pipke, Johanna

    2017-01-01

    Complexation with dissolved humic matter can be crucial in controlling the mobility of toxic or radioactive contaminant metals. For speciation and transport modelling, a dynamic equilibrium process is commonly assumed, where association and dissociation run permanently. This is, however, questionable in view of reported observations of a growing resistance to dissociation over time. In this study, the isotope exchange principle was employed to gain direct insight into the dynamics of the complexation equilibrium, including kinetic inertisation phenomena. Terbium(III), an analogue of trivalent actinides, was used as a representative of higher-valent metals. Isotherms of binding to (flocculated) humic acid, determined by means of 160Tb as a radiotracer, were found to be identical regardless of whether the radioisotope was introduced together with the bulk of stable 159Tb or subsequently after pre-equilibration for up to 3 months. Consequently, there is a permanent exchange of free and humic-bound Tb since all available binding sites are occupied in the plateau region of the isotherm. The existence of a dynamic equilibrium was thus evidenced. There was no indication of an inertisation under these experimental conditions. If the small amount of 160Tb was introduced prior to saturation with 159Tb, the expected partial desorption of 160Tb occurred at much lower rates than observed for the equilibration process in the reverse procedure. In addition, the rates decreased with time of pre-equilibration. Inertisation phenomena are thus confined to the stronger sites of humic molecules (occupied at low metal concentrations). Analysing the time-dependent course of isotope exchange according to first-order kinetics indicated that up to 3 years are needed to attain equilibrium. Since, however, metal-humic interaction remains reversible, exchange of metals between humic carriers and mineral surfaces cannot be neglected on the long time scale to be considered in predictive

  9. Using design principles to foster understanding of complex health concepts in consumer informatics tools.

    Science.gov (United States)

    Misra, Rupananda; Mark, Jessica H; Khan, Sharib; Kukafka, Rita

    2010-11-13

    Consumer health informatics tools can only be effective if patients comprehend their content. Optimal design may foster better patient comprehension and health literacy, which can improve health outcomes. We developed a patient-centric decision aid, Tailored Lifestyle Conversations (TLC), to help patients comprehend behavioral risks and set behavior change priorities for reducing risk of cardiovascular disease. The TLC decision aid was developed using a design framework based on Gestalt Principles of Perception. Further iteration was informed by qualitative user feedback. Preliminary analysis showed that the TLC decision aid helped patients understand their risk and supported their decisions on health behavior change. We identified design elements that supported patient comprehension, and other elements that were not effective, to inform iterative revision. This paper describes an effective methodology for the development of consumer health informatics tools that includes grounding in design principles complemented by iterative revision based on user testing and feedback.

  10. APPLICATION FOR 3D SCENE UNDERSTANDING IN DETECTING DISCHARGE OF DOMESTICWASTE ALONG COMPLEX URBAN RIVERS

    Directory of Open Access Journals (Sweden)

    Y. Ninsalam

    2016-06-01

    Full Text Available In our study we use 3D scene understanding to detect the discharge of domestic solid waste along an urban river. Solid waste found along the Ciliwung River in the neighbourhoods of Bukit Duri and Kampung Melayu may be attributed to households. This is in part due to inadequate municipal waste infrastructure and services which has caused those living along the river to rely upon it for waste disposal. However, there has been little research to understand the prevalence of household waste along the river. Our aim is to develop a methodology that deploys a low cost sensor to identify point source discharge of solid waste using image classification methods. To demonstrate this we describe the following five-step method: 1 a strip of GoPro images are captured photogrammetrically and processed for dense point cloud generation; 2 depth for each image is generated through a backward projection of the point clouds; 3 a supervised image classification method based on Random Forest classifier is applied on the view dependent red, green, blue and depth (RGB-D data; 4 point discharge locations of solid waste can then be mapped by projecting the classified images to the 3D point clouds; 5 then the landscape elements are classified into five types, such as vegetation, human settlement, soil, water and solid waste. While this work is still ongoing, the initial results have demonstrated that it is possible to perform quantitative studies that may help reveal and estimate the amount of waste present along the river bank.

  11. Navigating Special Education in Charter Schools Part I: Understanding Legal Roles and Responsibilities. Authorizing Matters. Issue Brief

    Science.gov (United States)

    Rhim, Lauren Morando

    2007-01-01

    Special education and related services are mandated by the federal Individuals with Disabilities Education Act (IDEA) and related state special education policies. Policies and procedures associated with implementing IDEA can be complex, cumbersome and time consuming. IDEA is founded on the notion that a free appropriate public education is a…

  12. FuturICT: Participatory computing to understand and manage our complex world in a more sustainable and resilient way

    Science.gov (United States)

    Helbing, D.; Bishop, S.; Conte, R.; Lukowicz, P.; McCarthy, J. B.

    2012-11-01

    We have built particle accelerators to understand the forces that make up our physical world. Yet, we do not understand the principles underlying our strongly connected, techno-socio-economic systems. We have enabled ubiquitous Internet connectivity and instant, global information access. Yet we do not understand how it impacts our behavior and the evolution of society. To fill the knowledge gaps and keep up with the fast pace at which our world is changing, a Knowledge Accelerator must urgently be created. The financial crisis, international wars, global terror, the spreading of diseases and cyber-crime as well as demographic, technological and environmental change demonstrate that humanity is facing serious challenges. These problems cannot be solved within the traditional paradigms. Moving our attention from a component-oriented view of the world to an interaction-oriented view will allow us to understand the complex systems we have created and the emergent collective phenomena characterising them. This paradigm shift will enable new solutions to long-standing problems, very much as the shift from a geocentric to a heliocentric worldview has facilitated modern physics and the ability to launch satellites. The FuturICT flagship project will develop new science and technology to manage our future in a complex, strongly connected world. For this, it will combine the power of information and communication technology (ICT) with knowledge from the social and complexity sciences. ICT will provide the data to boost the social sciences into a new era. Complexity science will shed new light on the emergent phenomena in socially interactive systems, and the social sciences will provide a better understanding of the opportunities and risks of strongly networked systems, in particular future ICT systems. Hence, the envisaged FuturICT flagship will create new methods and instruments to tackle the challenges of the 21st century. FuturICT could indeed become one of the most

  13. Understanding complexities in coupled dynamics of human-water and food security

    Science.gov (United States)

    Usmani, M.; Kondal, A.; Lin, L.; Colwell, R. R.; Jutla, A.

    2017-12-01

    Traditional premise of food security is associated with satisfying human hunger by providing sufficient calories to population. Water is the key variable associated with the growth of crops, which is then used as a metric of success for abundance of food across globe. The current framework often negates complex coupled interaction between availability of food nutrients and human well-being (such as productivity, work efficiency, low birth weight, physical and mental growth). Our analysis suggests that 1 in 3 humans suffer from malnutrition across the globe. In last five decades, most of the countries have a decreasing availability trend in at least one of the twenty-three essential food nutrients required for human well-being. We argue that food security can only be achieved if information on use of water for crops and consumption of food must include availability of nutrients for humans. Here, we propose a new concept of "consumptive nutrients" that include constant feedback mechanism between water-human and societal processes- essential for growth, distribution and consumption of food nutrients. Using Ethiopia as a signature rain-fed agricultural region, we will show how decreasing precipitation has led to an increase in crop productivity, but decreased availability of nutrients for humans. This in turn has destabilizing impact on overall regional economy. We will demonstrate why inclusion of nutrients must be a part of discussion for ensuring food security to human population.

  14. Childhood disability in Turkana, Kenya: Understanding how carers cope in a complex humanitarian setting.

    Science.gov (United States)

    Zuurmond, Maria; Nyapera, Velma; Mwenda, Victoria; Kisia, James; Rono, Hilary; Palmer, Jennifer

    2016-01-01

    Although the consequences of disability are magnified in humanitarian contexts, research into the difficulties of caring for children with a disability in such settings has received limited attention. Based on in-depth interviews with 31 families, key informants and focus group discussions in Turkana, Kenya, this article explores the lives of families caring for children with a range of impairments (hearing, vision, physical and intellectual) in a complex humanitarian context characterised by drought, flooding, armed conflict, poverty and historical marginalisation. The challenging environmental and social conditions of Turkana magnified not only the impact of impairment on children, but also the burden of caregiving. The remoteness of Turkana, along with the paucity and fragmentation of health, rehabilitation and social services, posed major challenges and created opportunity costs for families. Disability-related stigma isolated mothers of children with disabilities, especially, increasing their burden of care and further limiting their access to services and humanitarian programmes. In a context where social systems are already stressed, the combination of these factors compounded the vulnerabilities faced by children with disabilities and their families. The needs of children with disabilities and their carers in Turkana are not being met by either community social support systems or humanitarian aid programmes. There is an urgent need to mainstream disability into Turkana services and programmes.

  15. Effect of Computer Simulations at the Particulate and Macroscopic Levels on Students' Understanding of the Particulate Nature of Matter

    Science.gov (United States)

    Tang, Hui; Abraham, Michael R.

    2016-01-01

    Computer-based simulations can help students visualize chemical representations and understand chemistry concepts, but simulations at different levels of representation may vary in effectiveness on student learning. This study investigated the influence of computer activities that simulate chemical reactions at different levels of representation…

  16. When Statistical Literacy Really Matters: Understanding Published Information about the HIV/AIDS Epidemic in South Africa

    Science.gov (United States)

    Hobden, Sally

    2014-01-01

    Information on the HIV/AIDS epidemic in Southern Africa is often interpreted through a veil of secrecy and shame and, I argue, with flawed understanding of basic statistics. This research determined the levels of statistical literacy evident in 316 future Mathematical Literacy teachers' explanations of the median in the context of HIV/AIDS…

  17. Complex Dipolar Matter

    Science.gov (United States)

    2014-11-10

    grant began in August 2011. The basic timeline of activities over the last three years are as follows. In 2011-2012 I was on sabbatical on a Humboldt...Calculations in this paper came out of my sabbatical in Heidelberg, and in many cases were personally requested by leading researchers, including my host

  18. Carbon-water Cycling in the Critical Zone: Understanding Ecosystem Process Variability Across Complex Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, Holly [Univ. of Colorado, Boulder, CO (United States); Brooks, Paul [Univ. of Utah, Salt Lake City, UT (United States); Univ. of Arizona, Tucson, AZ (United States)

    2016-06-16

    One of the largest knowledge gaps in environmental science is the ability to understand and predict how ecosystems will respond to future climate variability. The links between vegetation, hydrology, and climate that control carbon sequestration in plant biomass and soils remain poorly understood. Soil respiration is the second largest carbon flux of terrestrial ecosystems, yet there is no consensus on how respiration will change as water availability and temperature co-vary. To address this knowledge gap, we use the variation in soil development and topography across an elevation and climate gradient on the Front Range of Colorado to conduct a natural experiment that enables us to examine the co-evolution of soil carbon, vegetation, hydrology, and climate in an accessible field laboratory. The goal of this project is to further our ability to combine plant water availability, carbon flux and storage, and topographically driven hydrometrics into a watershed scale predictive model of carbon balance. We hypothesize: (i) landscape structure and hydrology are important controls on soil respiration as a result of spatial variability in both physical and biological drivers: (ii) variation in rates of soil respiration during the growing season is due to corresponding shifts in belowground carbon inputs from vegetation; and (iii) aboveground carbon storage (biomass) and species composition are directly correlated with soil moisture and therefore, can be directly related to subsurface drainage patterns.

  19. Studying the complexity of change: toward an analytical framework for understanding deliberate social-ecological transformations

    Directory of Open Access Journals (Sweden)

    Michele-Lee Moore

    2014-12-01

    Full Text Available Faced with numerous seemingly intractable social and environmental challenges, many scholars and practitioners are increasingly interested in understanding how to actively engage and transform the existing systems holding such problems in place. Although a variety of analytical models have emerged in recent years, most emphasize either the social or ecological elements of such transformations rather than their coupled nature. To address this, first we have presented a definition of the core elements of a social-ecological system (SES that could potentially be altered in a transformation. Second, we drew on insights about transformation from three branches of literature focused on radical change, i.e., social movements, socio-technical transitions, and social innovation, and gave consideration to the similarities and differences with the current studies by resilience scholars. Drawing on these findings, we have proposed a framework that outlines the process and phases of transformative change in an SES. Future research will be able to utilize the framework as a tool for analyzing the alteration of social-ecological feedbacks, identifying critical barriers and leverage points and assessing the outcome of social-ecological transformations.

  20. Understanding the Complexities of Food Safety Using a "One Health" Approach.

    Science.gov (United States)

    Kniel, Kalmia E; Kumar, Deepak; Thakur, Siddhartha

    2018-02-01

    The philosophy of One Health is growing in concept and clarity. The interdependence of human, animal, and environmental health is the basis for the concept of One Health. One Health is a comprehensive approach to ensure the health of people, animals, and the environment through collaborative efforts. Preharvest food safety issues align with the grand concept of One Health. Imagine any food production system, and immediately, parallel images from One Health emerge: for example, transmission of zoonotic diseases, antibiotic residues, or resistance genes in the environment; environmental and animal host reservoirs of disease; challenges with rearing animals and growing fresh produce on the same farm; application and transport of manure or diseased animals. During a recent celebration of #OneHealthDay, information was shared around the globe concerning scientists dedicated to One Health research systems. An ever-growing trade and global commerce system mixed with our incessant desire for food products during the whole year makes it all the more important to take a global view through the One Health lens to solve these growing challenges. The recent explosion of Zika virus around the globe renewed the need for assessing transmissible diseases through the eyes of One Health. It is not good enough to know how a disease affects the human population without a thorough understanding of the environment and vector reservoirs. If 60 to 75% of infectious diseases affecting humans are of animal origin, the need for better One Health research strategies and overdue solutions is imperative.

  1. Understanding the complexities of functional ability in Alzheimer's disease: more than just basic and instrumental factors.

    Science.gov (United States)

    Kahle-Wrobleski, Kristin; Coley, Nicola; Lepage, Benoit; Cantet, Christelle; Vellas, Bruno; Andrieu, Sandrine

    2014-05-01

    Dementia of the Alzheimer's type (AD) is defined by both cognitive and functional decline; new criteria allow for identification of milder, non-functionally impaired patients. Understanding loss of autonomy in AD is essential, as later stages represent a significant burden and cost to patients, their families, and society. The purpose of the present analyses was to determine the factor structure of the Alzheimer's Disease Cooperative Study-Activities of Daily Living Scale (ADCS-ADL) in a cohort of AD patients. Baseline ADCS-ADL assessments of 734 AD patients from the PLASA study were included in an exploratory factor analysis (EFA). Because the ADCS-ADL was designed to assess change over time, change from baseline scores over 2 years were also analyzed using an EFA. Factorial solutions were evaluated based on cross-loading, non-loadings, and number of items per factor. Mean age at baseline was 79.3, mean MMSE was 19.8 and 73.3% of participants were female. Baseline data suggested a 4-factor solution that included factors for basic ADLs (BADLs), domestic/household activities, communication/engagement with the environment, and outside activities. The change scores EFA suggested a 2-factor solution of BADLs and instrumental ADLs (IADLs). Distinct factors of IADLs should be considered for further validation as areas of attention to catch early functional decline.

  2. Childhood disability in Turkana, Kenya: Understanding how carers cope in a complex humanitarian setting

    Directory of Open Access Journals (Sweden)

    Maria Zuurmond

    2016-02-01

    Full Text Available Background: Although the consequences of disability are magnified in humanitarian contexts, research into the difficulties of caring for children with a disability in such settings has received limited attention.Methods: Based on in-depth interviews with 31 families, key informants and focus group discussions in Turkana, Kenya, this article explores the lives of families caring for children with a range of impairments (hearing, vision, physical and intellectual in a complex humanitarian context characterised by drought, flooding, armed conflict, poverty and historical marginalisation.Results: The challenging environmental and social conditions of Turkana magnified not only the impact of impairment on children, but also the burden of caregiving. The remoteness of Turkana, along with the paucity and fragmentation of health, rehabilitation and social services, posed major challenges and created opportunity costs for families. Disability-related stigma isolated mothers of children with disabilities, especially, increasing their burden of care and further limiting their access to services and humanitarian programmes. In a context where social systems are already stressed, the combination of these factors compounded the vulnerabilities faced by children with disabilities and their families.Conclusion: The needs of children with disabilities and their carers in Turkana are not being met by either community social support systems or humanitarian aid programmes. There is an urgent need to mainstream disability into Turkana services and programmes.

  3. Understanding complex coacervation in serum albumin and pectin mixtures using a combination of the Boltzmann equation and Monte Carlo simulation.

    Science.gov (United States)

    Li, Yunqi; Zhao, Qin; Huang, Qingrong

    2014-01-30

    A combination of turbidimetric titration, a sigmoidal Boltzmann equation approach and Monte Carlo simulation has been used to study the complex coacervation in serum albumin and pectin mixtures. The effects of the mass ratio of protein to polysaccharide on the critical pH values, the probability of complex coacervation and the electrostatic interaction from charge patches in serum albumin were investigated. Turbidimetric titration results showed an optimum pH for complex coacervation (pHm), which corresponded to the maximum turbidity in the protein/polysaccharide mixture. The pHm monotonically decreased as the ratio decreased, and could be fitted using the sigmoidal Boltzmann equation. It suggests that pHm could be a good ordering parameter to characterize the phase behavior associated with protein/polysaccharide complex coacervation. Qualitative understanding of pHm by taking into account the minimization of electrostatic interaction, as well as quantitative matching of pHm according to the concept of charge neutralization were both achieved. Our results suggest that the serum albumin/pectin complexes were ultimately neutralized by the partial charges originated from the titratable residues in protein and polysaccharide chains at pHm. The Monte Carlo simulation provided consistent phase boundaries for complex coacervation in the same system, and the intermolecular association strength was determined to be several kBT below the given ionic strength. The strongest binding site in the protein is convergent to the largest positive charge patch if pure electrostatic interaction was considered. Further inclusion of contribution from excluded volume resulted in the binding site distribution over five different positive charge patches at different protein/polysaccharide ratios and pH values. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. A multi-omics and imaging approach to understand soil organic matter composition and its interaction with microbes.

    Science.gov (United States)

    Tfaily, M. M.; Walker, L. R.; Kyle, J. E.; Chu, R. K.; Dohnalkova, A.; Tolic, N.; Orton, D.; Robinson, E. R.; Paša-Tolić, L.; Hess, N. J.

    2015-12-01

    The focus on soil C dynamics is currently relevant as researchers and policymakers strive to understand the feedbacks between ecosystem stress and climate change. Successful development of molecular profiles that link soil microbiology with soil carbon (C) dynamics to ascertain soil vulnerability and resilience to climate change would have great impact on assessments of soil ecosystems in response to climate change. Additionally, a better understanding of the soil C dynamics would improve climate modeling, and fate and transport of carbon across terrestrial, subsurface and atmospheric interfaces. Unravelling the wide range of possible interactions between and within the microbial communities, with minerals and organic compounds in the terrestrial ecosystem requires a multimodal, molecular approach. Here we report on the use of a combination of several molecular 'omics' approaches: metabolomics, metallomics, lipidomics, and proteomics coupled with a suite of high resolution imaging, and X-ray diffraction crystallographic techniques, as a novel methodology to understand SOM composition, and its interaction with microbial communities in different ecosystems, including C associated with mineral surfaces. The findings of these studies provide insights into the SOM persistence and microbial stabilization of carbon in ecosystems and reveal the powerful coupling of a multi-scale of techniques. Examples of this approach will be presented from field studies of simulated climate change, and laboratory column-grown Pinus resinosa mesocosms.

  5. Mapping the Dark Matter From UV Light at High Redshift: An Empirical Approach to Understand Galaxy Statistics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyoung-Soo; /Yale Ctr. Astron. Astrophys.; Giavalisco, Mauro; /Massachusetts U., Amherst; Conroy, Charlie; /Princeton U. Observ.; Wechsler, Risa H; /KIPAC, Menlo Park; Ferguson, Henry C.; Somerville, Rachel S.; /Baltimore, Space Telescope Sci.; Dickinson, Mark E.; /NOAO, Tucson; Urry, Claudia M.; /Yale Ctr. Astron. Astrophys.

    2009-08-03

    We present a simple formalism to interpret the observations of two galaxy statistics, the UV luminosity function (LF) and two-point correlation functions for star-forming galaxies at z {approx} 4, 5 and 6 in the context of {Lambda}CDM cosmology. Both statistics are the result of how star formation takes place in dark matter halos, and thus are used to constrain how UV light depends on halo properties, in particular halo mass. The two physical quantities we explore are the star formation duty cycle, and the range of UV luminosity that a halo of mass M can have (mean and variance). The former directly addresses the typical duration of star formation activity in halos while the latter addresses the averaged star formation history and regularity of gas inflow into these systems. In the context of this formalism, we explore various physical models consistent with all the available observational data, and find the following: (1) the typical duration of star formation observed in the data is {approx}< 0.4 Gyr (1{sigma}), (2) the inferred scaling law between the observed L{sub UV} and halo mass M from the observed faint-end slope of the luminosity functions is roughly linear out to M {approx} 10{sup 11.5} - 10{sup 12} h{sup -1} M{sub {circle_dot}} at all redshifts probed in this work, and (3) the observed L{sub UV} for a fixed halo mass M decreases with time, implying that the star formation efficiency (after dust extinction) is higher at earlier times. We explore several different physical scenarios relating star formation to halo mass, but find that these scenarios are indistinguishable due to the limited range of halo mass probed by our data. In order to discriminate between different scenarios, we discuss the possibility of using the bright-faint galaxy cross-correlation functions and more robust determination of luminosity-dependent galaxy bias for future surveys.

  6. Human development II: We Need an Integrated Theory for Matter, Life and Consciousness to Understand Life and Healing

    Directory of Open Access Journals (Sweden)

    Sören Ventegodt

    2006-01-01

    Full Text Available For almost a decade, we have experimented with supporting the philosophical development of severely ill patients to induce recovery and spontaneous healing. Recently, we have observed a new pattern of extremely rapid, spontaneous healing that apparently can facilitate even the spontaneous remission of cancer and the spontaneous recovery of mental diseases like schizophrenia and borderline schizophrenia. Our working hypothesis is that the accelerated healing is a function of the patient’s brain-mind and body-mind coming closer together due to the development of what we call “deep” cosmology. To understand and describe what happens at a biological level, we have suggested naming the process adult human metamorphosis, a possibility that is opened by the human genome showing full generic equipment for metamorphosis. To understand the mechanistic details in the complicated interaction between consciousness and biology, we need an adequate theory for biological information. In a series of papers, we propose what we call “holistic biology for holistic medicine”. We suggest that a relatively simple model based on interacting wholenesses instead of isolated parts can shed a new light on a number of difficult issues that we need to explain and understand in biology and medicine in order to understand and use metamorphosis in the holistic medical clinic. We aim to give a holistic theoretical interpretation of biological phenomena at large, morphogenesis, evolution, immune system regulation (self-nonself discrimination, brain function, consciousness, and health in particular. We start at the most fundamental problem: what is biological information at the subcellular, cellular, and supracellular levels if we presume that it is the same phenomenon on all levels (using Occam's razor, and how can this be described scientifically? The problems we address are all connected to the information flow in the functioning, living organism: function of the brain

  7. Targeted and non-targeted boron complex formation followed by electrospray Fourier transform ion cyclotron mass spectrometry: a novel approach for identifying boron esters with natural organic matter.

    Science.gov (United States)

    Gaspar, Andras; Lucio, Marianna; Harir, Mourad; Schmitt-Kopplin, Philippe

    2011-01-01

    The formation of boron esters was investigated in peat-soluble humified materials with a detailed molecular-level description of boron-organic interactions. Thousands of individually baseline separated signals were obtained from the analysis of natural organic matter of peat samples, using Fourier transform ion cyclotron resonance mass spectrometry. This technique offers unsurpassed isotope-specific mass resolution that can lead to precise molecular formula assignments by means of mathematical data analysis and visualisation techniques, such as mass defect (Kendrick) or elemental ratio (van Krevelen) plots. The analysis of potential boron binding structures within the sample of natural organic matter was described based on prior results. Herein, we describe an algorithm that can be used to effectively distinguish and filter complexes through data obtained from boron-enriched systems with highly intricate mass spectra, such as natural organic matter.

  8. Why Society is a Complex Matter Meeting Twenty-first Century Challenges with a New Kind of Science

    CERN Document Server

    Ball, Philip

    2012-01-01

    Society is complicated. But this book argues that this does not place it beyond the reach of a science that can help to explain and perhaps even to predict social behaviour. As a system made up of many interacting agents – people, groups, institutions and governments, as well as physical and technological structures such as roads and computer networks – society can be regarded as a complex system. In recent years, scientists have made great progress in understanding how such complex systems operate, ranging from animal populations to earthquakes and weather. These systems show behaviours that cannot be predicted or intuited by focusing on the individual components, but which emerge spontaneously as a consequence of their interactions: they are said to be ‘self-organized’. Attempts to direct or manage such emergent properties generally reveal that ‘top-down’ approaches, which try to dictate a particular outcome, are ineffectual, and that what is needed instead is a ‘bottom-up’ approach that aim...

  9. Developing Seventh Grade Students' Understanding of Complex Environmental Problems with Systems Tools and Representations: a Quasi-experimental Study

    Science.gov (United States)

    Doganca Kucuk, Zerrin; Saysel, Ali Kerem

    2017-03-01

    A systems-based classroom intervention on environmental education was designed for seventh grade students; the results were evaluated to see its impact on the development of systems thinking skills and standard science achievement and whether the systems approach is a more effective way to teach environmental issues that are dynamic and complex. A quasi-experimental methodology was used to compare performances of the participants in various dimensions, including systems thinking skills, competence in dynamic environmental problem solving and success in science achievement tests. The same pre-, post- and delayed tests were used with both the comparison and experimental groups in the same public middle school in Istanbul. Classroom activities designed for the comparison group (N = 20) followed the directives of the Science and Technology Curriculum, while the experimental group (N = 22) covered the same subject matter through activities benefiting from systems tools and representations such as behaviour over time graphs, causal loop diagrams, stock-flow structures and hands-on dynamic modelling. After a one-month systems-based instruction, the experimental group demonstrated significantly better systems thinking and dynamic environmental problem solving skills. Achievement in dynamic problem solving was found to be relatively stable over time. However, standard science achievement did not improve at all. This paper focuses on the quantitative analysis of the results, the weaknesses of the curriculum and educational implications.

  10. Applications of condensed matter understanding to medical tissues and disease progression: Elemental analysis and structural integrity of tissue scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.A., E-mail: d.a.bradley@surrey.ac.u [Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Farquharson, M.J. [Department of Radiography, School of Community and Health Sciences, City University, London (United Kingdom); Gundogdu, O. [Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Al-Ebraheem, Alia [Department of Radiography, School of Community and Health Sciences, City University, London (United Kingdom); Che Ismail, Elna [Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Kaabar, W., E-mail: w.kaabar@surrey.ac.u [Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Bunk, O. [Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Pfeiffer, F. [Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Falkenberg, G. [Hamburger Synchrotronstrahlungslabor HASYLAB at Deutsches Elektronensynchrotron DESY, Notkestr. 85, D-22603 Hamburg (Germany); Bailey, M. [Surrey Ion Beam Centre, Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2010-02-15

    The investigations reported herein link tissue structure and elemental presence with issues of environmental health and disease, exemplified by uptake and storage of potentially toxic elements in the body, the osteoarthritic condition and malignancy in the breast and other soft tissues. Focus is placed on application of state-of-the-art ionizing radiation techniques, including, micro-synchrotron X-ray fluorescence (mu-SXRF) and particle-induced X-ray emission/Rutherford backscattering mapping (mu-PIXE/RBS), coherent small-angle X-ray scattering (cSAXS) and X-ray phase-contrast imaging, providing information on elemental make-up, the large-scale organisation of collagen and anatomical features of moderate and low atomic number media. For the particular situations under investigation, use of such facilities is allowing information to be obtained at an unprecedented level of detail, yielding new understanding of the affected tissues and the progression of disease.

  11. Complex Systems Are More than the Sum of Their Parts: Using Integration to Understand Performance, Biomechanics, and Diversity.

    Science.gov (United States)

    Kane, Emily A; Higham, Timothy E

    2015-07-01

    Organisms are comprised of many interacting parts, and an increased number or specialization of those parts leads to greater complexity and the necessity for increased integration (the ability of those parts to perform together and maintain a functioning organism). Although this idea is widely recognized among biologists, organisms are more tangibly studied when those parts are considered independently. This reductionist approach has successfully advanced our understanding of organisms' performance. However, performance of one system might (or might not) be dependent on performance of another system to achieve a relevant outcome, and the mechanism of this dependence is poorly understood. We synthesize the concepts of complexity and integration and discuss their application in a biomechanical context. Capture of prey by predatory fishes is used as an example to highlight the application of these ideas. We provide a theoretical framework for future hypotheses of integration and predict an "integration space" for fishes that is then populated with data extracted from the literature. Additionally, using the kinematics of prey-capture in two species of sculpin (Scorpaeniformes: Cottidae), we show that species exhibit multivariate integration in distinct ways, and that these differences add additional insight into ecological divergence that would not be apparent by considering systems independently. Finally, we discuss new insights into organismal performance gained through the study of integration as an emergent property of kinematic systems working together during a common task. Integration is rarely the trait of interest, but we show that future work should adopt a more holistic approach to understand why and how animals perform complex behaviors. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  12. Understanding Spatially Complex Segmental and Branch Anatomy Using 3D Printing: Liver, Lung, Prostate, Coronary Arteries, and Circle of Willis.

    Science.gov (United States)

    Javan, Ramin; Herrin, Douglas; Tangestanipoor, Ardalan

    2016-09-01

    Three-dimensional (3D) manufacturing is shaping personalized medicine, in which radiologists can play a significant role, be it as consultants to surgeons for surgical planning or by creating powerful visual aids for communicating with patients, physicians, and trainees. This report illustrates the steps in development of custom 3D models that enhance the understanding of complex anatomy. We graphically designed 3D meshes or modified imported data from cross-sectional imaging to develop physical models targeted specifically for teaching complex segmental and branch anatomy. The 3D printing itself is easily accessible through online commercial services, and the models are made of polyamide or gypsum. Anatomic models of the liver, lungs, prostate, coronary arteries, and the Circle of Willis were created. These models have advantages that include customizable detail, relative low cost, full control of design focusing on subsegments, color-coding potential, and the utilization of cross-sectional imaging combined with graphic design. Radiologists have an opportunity to serve as leaders in medical education and clinical care with 3D printed models that provide beneficial interaction with patients, clinicians, and trainees across all specialties by proactively taking on the educator's role. Complex models can be developed to show normal anatomy or common pathology for medical educational purposes. There is a need for randomized trials, which radiologists can design, to demonstrate the utility and effectiveness of 3D printed models for teaching simple and complex anatomy, simulating interventions, measuring patient satisfaction, and improving clinical care. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  13. LIDAR vertical profiles over the Oil Sands Region: an important tool in understanding atmospheric particulate matter transport, mixing and transformation

    Science.gov (United States)

    Strawbridge, K. B.

    2013-12-01

    LIDAR technology is an excellent tool to probe the complex vertical structure of the atmosphere at high spatial and temporal resolution. This provides the critical vertical context for the interpretation of ground-based chemistry measurements, airborne measurements and model verification and validation. In recent years, Environment Canada has designed an autonomous aerosol LIDAR system that can be deployed to remote areas such as the oil sands. Currently two autonomous LIDAR systems are making measurements in the oil sands region, one since December, 2012 and the other since July, 2013. The LIDAR transmitter emits two wavelengths (1064nm and 532nm) and the detector assembly collects four channels (1064nm backscatter, 532nm backscatter and 532nm depolarization, 607 nm nitrogen channel). Aerosol profiles from near ground to 20 km are collected every 10-60 s providing sufficient resolution to probe atmospheric dynamics, mixing and transport. The depolarization channel provides key information in identifying and discriminating the various aerosol layers aloft such as dust, forest fire plumes, industrial plume sources or ice crystals. The vertical resolution of the LIDAR can determine whether industrial plumes remain aloft or mix down to the surface and also provide estimates as to the concentration of the particulate at various altitudes. It operates 24 hours a day, seven days a week except during precipitation events. The system is operated remotely and the data are updated every hour to a website to allow near real-time capability. An intensive measurement campaign will be carried out in August and September of 2013 and will provide coincident airborne and ground-based measurements for the two LIDAR systems. The first results from this field study will be presented as well as some statistics on the frequency and evolution of plume events that were detected by the LIDARs.

  14. Terrestrial Particulate Organic Matter Degradation in Estuarine and Coastal Areas: Coupling Lipid Tracers and Molecular Tools to Better Understand Deltaic Biogeochemical Cycles

    Science.gov (United States)

    Galeron, M. A.; Volkman, J. K.; Rontani, J. F.; Radakovitch, O.; Charriere, B.; Amiraux, R.

    2016-02-01

    Deltaic and coastal areas have been studied extensively worldwide, due to their high economic and ecosystemic value. It was long thought that terrestrial particulate organic matter (TPOM) degraded during river transport was refractory to further degradation upon its arrival at sea. But studies on coastal sediments and in the Mackenzie delta (Canada) showed that, on the contrary, TPOM was undergoing intense degradation upon reaching seawater. In order to generalize these results to worldwide river basins, we propose to trace degradation processes impacting TPOM during in-stream transport as well as coastal distribution. We selected the Rhône River (France) for its differences with the Mackenzie River (latitude, temperature, coastal salinity) and carefully researched lipid tracers to help us pinpoint both the origin of the POM and the degradative processes undergone. Betulin, α-/β-amyrins, dehydroabietic acid, sitosterol and their specific degradation products were selected. While the Rhône delta has been studied for decades, there is very little research on its in-stream processes, and how they can be linked with coastal cycles and fluxes. Coupling new specific lipid tracers especially selected for the monitoring of higher plant degradation and molecular biology tools, we were able to better trace the origin of TPOM transported along the Rhône River, as well as better understand its degradation state in the river, the delta, and upon its arrival at sea. We show here that autoxidation (free radical induced oxidation), long overlooked, is a major degradation process impacting TPOM transported along the Rhone River, and is even more intense upon the arrival of TPOM at sea. Salinity, metal ion desorption, bacterial and biochemical activity are amongst the factors studied as inducers of such an intense degradation. This understanding is crucial if we want a truly extensive knowledge of terrestrial particulate organic matter transport and deposition, as well as

  15. Gaseous VOCs rapidly modify particulate matter and its biological effects – Part 2: Complex urban VOCs and model PM

    Directory of Open Access Journals (Sweden)

    H. E. Jeffries

    2012-12-01

    Full Text Available This is the second study in a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOCs, particulate matter (PM, and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber, both in the dark and in sunlight. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model living receptors. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects from cells exposed to chamber air relative to cells exposed to clean air. Our exposure systems permit side-by-side, gas-only- and PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure for either gases or PM. In Part 1 (Ebersviller et al., 2012a, we demonstrated the existence of PM "effect modification" (NAS, 2004 for the case of a single gas-phase toxicant and an inherently non-toxic PM (mineral oil aerosol, MOA. That is, in the presence of the single gas-phase toxicant in the dark, the initially non-toxic PM became toxic to lung cells in the PM-only-biological exposure system. In this Part 2 study, we used sunlit-reactive systems to create a large variety of gas-phase toxicants from a complex mixture of oxides of nitrogen and 54 VOCs representative of those measured in US city air. In these mostly day-long experiments, we have designated the period in the dark just after injection (but before sunrise as the "Fresh" condition and the period in the dark after sunset as the "Aged" condition. These two conditions were used to expose cells and to collect chemical characterization samples. We used the same inherently non-toxic PM from the Part 1 study as the target PM

  16. Implementing Health in All Policies - Time and Ideas Matter Too! Comment on "Understanding the Role of Public Administration in Implementing Action on the Social Determinants of Health and Health Inequities".

    Science.gov (United States)

    Clavier, Carole

    2016-06-20

    Carey and Friel suggest that we turn to knowledge developed in the field of public administration, especially new public governance, to better understand the process of implementing health in all policies (HiAP). In this commentary, I claim that theories from the policy studies bring a broader view of the policy process, complementary to that of new public governance. Drawing on the policy studies, I argue that time and ideas matter to HiAP implementation, alongside with interests and institutions. Implementing HiAP is a complex process considering that it requires the involvement and coordination of several policy sectors, each with their own interests, institutions and ideas about the policy. Understanding who are the actors involved from the various policy sectors concerned, what context they evolve in, but also how they own and frame the policy problem (ideas), and how this has changed over time, is crucial for those involved in HiAP implementation so that they can relate to and work together with actors from other policy sectors. © 2016 by Kerman University of Medical Sciences.

  17. Understanding titanium-catalysed radical-radical reactions: a DFT study unravels the complex kinetics of ketone-nitrile couplings.

    Science.gov (United States)

    Streuff, Jan; Himmel, Daniel; Younas, Sara L

    2018-04-03

    The computational investigation of a titanium-catalysed reductive radical-radical coupling is reported. The results match the conclusions from an earlier experimental study and enable a further interpretation of the previously observed complex reaction kinetics. Furthermore, the interplay between neutral and cationic reaction pathways in titanium(iii)-catalysed reactions is investigated for the first time. The results show that hydrochloride additives and reaction byproducts play an important role in the respective equilibria. A full reaction profile is assembled and the computed activation barrier is found to be in reasonable agreement with the experiment. The conclusions are of fundamental importance to the field of low-valent titanium catalysis and the understanding of related catalytic radical-radical coupling reactions.

  18. Topological Characteristics of the Hong Kong Stock Market: A Test-based P-threshold Approach to Understanding Network Complexity

    Science.gov (United States)

    Xu, Ronghua; Wong, Wing-Keung; Chen, Guanrong; Huang, Shuo

    2017-02-01

    In this paper, we analyze the relationship among stock networks by focusing on the statistically reliable connectivity between financial time series, which accurately reflects the underlying pure stock structure. To do so, we firstly filter out the effect of market index on the correlations between paired stocks, and then take a t-test based P-threshold approach to lessening the complexity of the stock network based on the P values. We demonstrate the superiority of its performance in understanding network complexity by examining the Hong Kong stock market. By comparing with other filtering methods, we find that the P-threshold approach extracts purely and significantly correlated stock pairs, which reflect the well-defined hierarchical structure of the market. In analyzing the dynamic stock networks with fixed-size moving windows, our results show that three global financial crises, covered by the long-range time series, can be distinguishingly indicated from the network topological and evolutionary perspectives. In addition, we find that the assortativity coefficient can manifest the financial crises and therefore can serve as a good indicator of the financial market development.

  19. Understanding the dynamics of the Seguro Popular de Salud policy implementation in Mexico from a complex adaptive systems perspective.

    Science.gov (United States)

    Nigenda, Gustavo; González-Robledo, Luz María; Juárez-Ramírez, Clara; Adam, Taghreed

    2016-05-13

    In 2003, Mexico's Seguro Popular de Salud (SPS), was launched as an innovative financial mechanism implemented to channel new funds to provide health insurance to 50 million Mexicans and to reduce systemic financial inequities. The objective of this article is to understand the complexity and dynamics that contributed to the adaptation of the policy in the implementation stage, how these changes occurred, and why, from a complex and adaptive systems perspective. A complex adaptive systems (CAS) framework was used to carry out a secondary analysis of data obtained from four SPS's implementation evaluations. We first identified key actors, their roles, incentives and power, and their responses to the policy and guidelines. We then developed a causal loop diagram to disentangle the feedback dynamics associated with the modifications of the policy implementation which we then analyzed using a CAS perspective. Implementation variations were identified in seven core design features during the first 10 years of implementation period, and in each case, the SPS's central coordination introduced modifications in response to the reactions of the different actors. We identified several CAS phenomena associated with these changes including phase transitions, network emergence, resistance to change, history dependence, and feedback loops. Our findings generate valuable lessons to policy implementation processes, especially those involving a monetary component, where the emergence of coping mechanisms and other CAS phenomena inevitably lead to modifications of policies and their interpretation by those who implement them. These include the difficulty of implementing strategies that aim to pool funds through solidarity among beneficiaries where the rich support the poor when there are no incentives for the rich to do so. Also, how resistance to change and history dependence can pose significant challenges to implementing changes, where the local actors use their significant power

  20. Ecosystem function in complex mountain terrain: Combining models and long-term observations to advance process-based understanding

    Science.gov (United States)

    Wieder, William R.; Knowles, John F.; Blanken, Peter D.; Swenson, Sean C.; Suding, Katharine N.

    2017-04-01

    Abiotic factors structure plant community composition and ecosystem function across many different spatial scales. Often, such variation is considered at regional or global scales, but here we ask whether ecosystem-scale simulations can be used to better understand landscape-level variation that might be particularly important in complex terrain, such as high-elevation mountains. We performed ecosystem-scale simulations by using the Community Land Model (CLM) version 4.5 to better understand how the increased length of growing seasons may impact carbon, water, and energy fluxes in an alpine tundra landscape. The model was forced with meteorological data and validated with observations from the Niwot Ridge Long Term Ecological Research Program site. Our results demonstrate that CLM is capable of reproducing the observed carbon, water, and energy fluxes for discrete vegetation patches across this heterogeneous ecosystem. We subsequently accelerated snowmelt and increased spring and summer air temperatures in order to simulate potential effects of climate change in this region. We found that vegetation communities that were characterized by different snow accumulation dynamics showed divergent biogeochemical responses to a longer growing season. Contrary to expectations, wet meadow ecosystems showed the strongest decreases in plant productivity under extended summer scenarios because of disruptions in hydrologic connectivity. These findings illustrate how Earth system models such as CLM can be used to generate testable hypotheses about the shifting nature of energy, water, and nutrient limitations across space and through time in heterogeneous landscapes; these hypotheses may ultimately guide further experimental work and model development.

  1. Science Outside the Lab: Helping Graduate Students in Science and Engineering Understand the Complexities of Science Policy.

    Science.gov (United States)

    Bernstein, Michael J; Reifschneider, Kiera; Bennett, Ira; Wetmore, Jameson M

    2017-06-01

    Helping scientists and engineers challenge received assumptions about how science, engineering, and society relate is a critical cornerstone for macroethics education. Scientific and engineering research are frequently framed as first steps of a value-free linear model that inexorably leads to societal benefit. Social studies of science and assessments of scientific and engineering research speak to the need for a more critical approach to the noble intentions underlying these assumptions. "Science Outside the Lab" is a program designed to help early-career scientists and engineers understand the complexities of science and engineering policy. Assessment of the program entailed a pre-, post-, and 1 year follow up survey to gauge student perspectives on relationships between science and society, as well as a pre-post concept map exercise to elicit student conceptualizations of science policy. Students leave Science Outside the Lab with greater humility about the role of scientific expertise in science and engineering policy; greater skepticism toward linear notions of scientific advances benefiting society; a deeper, more nuanced understanding of the actors involved in shaping science policy; and a continued appreciation of the contributions of science and engineering to society. The study presents an efficacious program that helps scientists and engineers make inroads into macroethical debates, reframe the ways in which they think about values of science and engineering in society, and more thoughtfully engage with critical mediators of science and society relationships: policy makers and policy processes.

  2. Understanding Litter Input Controls on Soil Organic Matter Turnover and Formation are Essential for Improving Carbon-Climate Feedback Predictions for Arctic, Tundra Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Wallenstein, Matthew [Colorado State Univ., Fort Collins, CO (United States)

    2017-12-05

    The Arctic region stored vast amounts of carbon (C) in soils over thousands of years because decomposition has been limited by cold, wet conditions. Arctic soils now contain roughly as much C that is contained in all other soils across the globe combined. However, climate warming could unlock this oil C as decomposition accelerates and permafrost thaws. In addition to temperature-driven acceleration of decomposition, several additional processes could either counteract or augment warming-induced SOM losses. For example, increased plant growth under a warmer climate will increase organic matter inputs to soils, which could fuel further soil decomposition by microbes, but will also increase the production of new SOM. Whether Arctic ecosystems store or release carbon in the future depends in part on the balance between these two counteracting processes. By differentiating SOM decomposition and formation and understanding the drivers of these processes, we will better understand how these systems function. We did not find evidence of priming under current conditions, defined as an increase in the decomposition of native SOM stocks. This suggests that decomposition is unlikely to be further accelerated through this mechanism. We did find that decomposition of native SOM did occur when nitrogen was added to these soils, suggesting that nitrogen limits decomposition in these systems. Our results highlight the resilience and extraordinary C storage capacity of these soils, and suggest shrub expansion may partially mitigate C losses from decomposition of old SOM as Arctic soils warm.

  3. Understanding the determinants of the complex interplay between cost-effectiveness and equitable impact in maternal and child mortality reduction.

    Science.gov (United States)

    Chopra, Mickey; Campbell, Harry; Rudan, Igor

    2012-06-01

    One of the most unexpected outcomes arising from the efforts towards maternal and child mortality reduction is that all too often the objective success has been coupled with increased inequity in the population. The aim of this study is to analyze the determinants of the complex interplay between cost-effectiveness and equity and suggest strategies that will promote an impact on mortality that reduce population child health inequities. We developed a conceptual framework that exposes the nature of the links between the five key determinants that need to be taken into account when planning equitable impact. These determinants are: (i) efficiency of intervention scale-up (requires knowledge of differential increase in cost of intervention scale-up by equity strata in the population); (ii) effectiveness of intervention (requires understanding of differential effectiveness of interventions by equity strata in the population); (iii) the impact on mortality (requires knowledge of differential mortality levels by equity strata, and understanding the differences in cause composition of overall mortality in different equity strata); (iv) cost-effectiveness (compares the initial cost and the resulting impact on mortality); (v) equity structure of the population. The framework is presented visually as a four-quadrant graph. We use the proposed framework to demonstrate why the relationship between cost-effectiveness and equitable impact of an intervention cannot be intuitively predicted or easily planned. The relationships between the five determinants are complex, often nonlinear, context-specific and intervention-specific. We demonstrate that there will be instances when an equity-promoting approach, ie, trying to reach for the poorest and excluded in the population with health interventions, will also be the most cost-effective approach. However, there will be cases in which this will be entirely unfeasible, and where equity-neutral or even inequity-promoting approaches may

  4. Understanding Magmatic Timescales and Magma Dynamics in Proterozoic Anorthosites: a Geochronological Investigation of the Kunene Complex (Angola)

    Science.gov (United States)

    Brower, A. M.; Corfu, F.; Bybee, G. M.; Lehmann, J.; Owen-Smith, T.

    2016-12-01

    The Kunene Anorthosite Complex, located in south west Angola, is one of the largest massif-type anorthosite intrusions on Earth, with an areal extent of at least 18 000 km2. Previous studies considered the Complex to consist of a series of coalesced plutons. However, the ages and relative emplacement sequence of these plutons are unknown. Understanding the relative timing of the pluton emplacement is crucial for understanding how these enigmatic magmas form and how they rise through the crust. Here we present new high precision U-Pb ID-TIMS ages (n=10) on zircons and baddeleyites for many of the coalesced plutons across the 300-km-long anorthositic complex. These new geochronological results reveal subtle variations in crystallization age between the coalesced plutons. There is no gradual age progression between plutons, but distinct groupings of ages (Fig.1). Age clusters of 1379.8 ± 2 Ma (n=5) occur north of the Red Granite NE-SW-striking intrusions, whereas in the south there is an older age grouping of 1390.4 ± 2.3 (n=3). Two additional ages of 1400.5 ± 1.3 in the centre and 1438.4 ± 1.1 Ma in the south east have been obtained. These results indicate that the Kunene anorthosites were emplaced over 60 Ma and may suggest long-lived magmatic systems and/or slowly ascending plutons. We also find a link between pluton composition and age. In general, leuconoritic domains are older than the leucotroctolitic domains. This may imply that the first pulses of magma received a greater degree of contamination, forcing the broadly basaltic magma to produce orthopyroxene as the main mafic phase. The later pulses receive less contamination as they ascend through the already partially melted crust, producing olivine as the mafic phase and deforming the older domains. This study reiterates the multiphase petrogenesis of Proterozoic anorthosites and sheds light on the assembly of crystal-rich magmas as they ascend through the crust.

  5. Chemical imaging techniques for the analysis of complex mixtures: New application to the characterization of ritual matters on African wooden statuettes

    International Nuclear Information System (INIS)

    Mazel, Vincent; Richardin, Pascale; Touboul, David; Brunelle, Alain; Walter, Philippe; Laprevote, Olivier

    2006-01-01

    Chemical imaging techniques, based on the combination of microscopy and spectroscopy, are well suited to study both the composition and the spatial organization of heterogeneous complex mixtures of organic and mineral matter. Time-of-flight secondary ion mass spectrometry (ToF-SIMS), followed by scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX) and Fourier transform infrared microscopy (FTIR microscopy) have been applied to non-destructive analysis of micro-samplings of ritual matters deposited on the surface of African wooden statuettes. With a very careful preparation, using ultramicrotomy on embedded samples, it was possible to perform successively all the measurements on a single fragment. Comparison and superposition of the different chemical images, obtained on a sample from a significant actual artefact, have allowed us to identify minerals (clays, quartz and calcium carbonate), proteins, starch, urate salts and lipids and to map their spatial distribution

  6. The renewable energy industry in Massachussetts as a complex system: Developing a shared understanding for policy making

    Science.gov (United States)

    Jones, Charles A.

    A model-based field study was conducted to understand the mental models of participants in the photovoltaic industry in Massachusetts, with the purpose of understanding of how that industry works as a complex system. Mental models of industry participants are important, both as the holders of the best system information and as the critical actors in any policy solution. Experts from manufacturing, installation, development, policy, and advocacy sectors were interviewed. The knowledge they conveyed was expressed as a set system dynamics models; these models were characterized, compared, and combined in order to answer the following research questions: What are the mental models of participants? How widely are mental models shared among participants? What is the combined model of the system? How accurate are these models? Given these models, what policies would lead to success? The system described by informants is revealed as one of distributed and embedded agency---actors have the ability to take meaningful action, but that action and its effects are limited by the complexity of the system and by the actions of other actors. Both the growth of the industry and constraints on the growth occur through dynamic processes, many however outside local control. Mental models are shared in clusters of informants, with some differences between these groupings. Informants vary on the level of aggregation needed to express their descriptions and on the most important dynamic force. However, many processes are commonly perceived across informants, they perceive the same system trajectories, and the behavior of the simulation models constructed from their mental models was similar. A combined model was constructed which included a full range of potential feedback loops within an abstracted version of the described system. Testing for policy using the combined model reveals that the structures necessary for growth are present, as expected. Under several reasonable conditions

  7. Magnetic resonance imaging and diffusion-weighted imaging of normal-appearing white matter in children and young adults with tuberous sclerosis complex

    Energy Technology Data Exchange (ETDEWEB)

    Arulrajah, Sahayini; Ertan, Gulhan; Tekes, Aylin; Huisman, Thierry A.G.M. [Johns Hopkins Hospital, Division of Pediatric Radiology, Department of Radiology and Radiological Science, Baltimore, MD (United States); Jordan, Lori [Johns Hopkins School of Public Health, Division of Pediatric Neurology, Baltimore, MD (United States); Khaykin, Elizabeth [Johns Hopkins School of Public Health, Department of Mental Health, Baltimore, MD (United States); Izbudak, Izlem [Johns Hopkins Hospital, Division of Neuroradiology, Department of Radiology and Radiological Science, Baltimore, MD (United States)

    2009-11-15

    Patients with tuberous sclerosis complex (TSC) frequently present with neurocognitive deficits which may be related to impaired white matter maturation. The purposes of our study were (a) to evaluate the white matter maturation in children and young adults with TSC by comparing the apparent diffusion coefficient (ADC) values of normal-appearing white matter (NAWM) with age-matched healthy controls and (b) to determine the association of NAWM-ADC values with the severity of neurological symptoms in TSC patients. Twenty-three TSC patients who underwent magnetic resonance imaging/diffusion-weighted imaging between January 2000 and January 2009 were studied. ADC values of NAWM were measured in the frontal, parietal, occipital lobes, and in the pons. ADC data were compared with age-matched normative data derived from healthy controls. Patients were neurologically scored by a pediatric neurologist. Two-sample t tests and linear regression were conducted using STATA software. ADC values of NAWM were higher in TSC patients compared with healthy controls; the increase, however, only reached statistical significance in the frontal white matter and pons in the age group between 96 and 144 months and in the right parietal and occipital white matter in the age group above 144 months. There was no significant change in neurological severity score per unit increase in ADC measurement. ADC values of NAWM appear increased in TSC patients. The abnormal ADC values suggest that myelination may be delayed/impaired in TSC patients, which could explain global neurocognitive deficits. Larger prospective studies, including diffusion tensor imaging, are necessary to validate our results. (orig.)

  8. Magnetic resonance imaging and diffusion-weighted imaging of normal-appearing white matter in children and young adults with tuberous sclerosis complex

    International Nuclear Information System (INIS)

    Arulrajah, Sahayini; Ertan, Gulhan; Tekes, Aylin; Huisman, Thierry A.G.M.; Jordan, Lori; Khaykin, Elizabeth; Izbudak, Izlem

    2009-01-01

    Patients with tuberous sclerosis complex (TSC) frequently present with neurocognitive deficits which may be related to impaired white matter maturation. The purposes of our study were (a) to evaluate the white matter maturation in children and young adults with TSC by comparing the apparent diffusion coefficient (ADC) values of normal-appearing white matter (NAWM) with age-matched healthy controls and (b) to determine the association of NAWM-ADC values with the severity of neurological symptoms in TSC patients. Twenty-three TSC patients who underwent magnetic resonance imaging/diffusion-weighted imaging between January 2000 and January 2009 were studied. ADC values of NAWM were measured in the frontal, parietal, occipital lobes, and in the pons. ADC data were compared with age-matched normative data derived from healthy controls. Patients were neurologically scored by a pediatric neurologist. Two-sample t tests and linear regression were conducted using STATA software. ADC values of NAWM were higher in TSC patients compared with healthy controls; the increase, however, only reached statistical significance in the frontal white matter and pons in the age group between 96 and 144 months and in the right parietal and occipital white matter in the age group above 144 months. There was no significant change in neurological severity score per unit increase in ADC measurement. ADC values of NAWM appear increased in TSC patients. The abnormal ADC values suggest that myelination may be delayed/impaired in TSC patients, which could explain global neurocognitive deficits. Larger prospective studies, including diffusion tensor imaging, are necessary to validate our results. (orig.)

  9. Changes Matter!

    Science.gov (United States)

    Lott, Kimberly; Jensen, Anitra

    2012-01-01

    Being able to distinguish between physical and chemical changes of matter is a foundational chemistry concept that at first seems like a simple elementary concept to teach, but students often have misconceptions that hinder their understanding. These misconceptions are seen among elementary students, but these ideas are perpetuated throughout…

  10. Toward a Simple Framework for Understanding the Influence of Litter Quality on Vertical and Horizontal Patterns of Soil Organic Matter Pools

    Science.gov (United States)

    Craig, M.; Phillips, R.

    2016-12-01

    Decades of research have revealed that plant litter quality fundamentally influences soil organic matter (SOM) properties. Yet we lack the predictive frameworks necessary to up-scale our understanding of these dynamics in biodiverse systems. Given that ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) plants are thought to differ in their litter quality, we ask whether this dichotomy represents a framework for understanding litter quality effects on SOM in temperate forests. To do this, we sampled soils from 250 spatially referenced locations within a 25-Ha plot where 28,000 trees had been georeferenced, and analyzed spatial patterns of plant and SOM properties. We then examined the extent to which the dominance of AM- versus EM-trees relates to 1) the quality of litter inputs to forest soils and 2) the horizontal and vertical distribution of SOM fractions. We found that leaf litters produced by EM-associated trees were generally of lower quality, having a lower concentration of soluble compounds and higher C:N. Concomitant with this, we observed higher soil C:N under EM trees. Interestingly, this reflected greater N storage in AM-dominated soils rather than greater C storage in EM-dominated soils. These patterns were driven by the storage of SOM in N-rich fractions in AM-dominated soils. Specifically, trees with high litter quality were associated with greater amounts of deep and mineral-associated SOM; pools that are generally considered stable. Our results support the recent contention that high-quality plant inputs should lead to the formation of stable SOM and suggest that the AM-EM framework may provide a way forward for representing litter quality effects on SOM in earth system models.

  11. Light, Matter, and Geometry

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall

    Interaction of light and matter produces the appearance of materials. To deal with the immense complexity of nature, light and matter is modelled at a macroscopic level in computer graphics. This work is the first to provide the link between the microscopic physical theories of light and matter a...

  12. Dark Matter Effective Theory

    DEFF Research Database (Denmark)

    Del Nobile, Eugenio; Sannino, Francesco

    2012-01-01

    We organize the effective (self)interaction terms for complex scalar dark matter candidates which are either an isosinglet, isodoublet or an isotriplet with respect to the weak interactions. The classification has been performed ordering the operators in inverse powers of the dark matter cutoff...... scale. We assume Lorentz invariance, color and charge neutrality. We also introduce potentially interesting dark matter induced flavor-changing operators. Our general framework allows for model independent investigations of dark matter properties....

  13. Correlation equation for predicting attachment efficiency (α) of organic matter-colloid complexes in unsaturated porous media.

    Science.gov (United States)

    Morales, Verónica L; Sang, Wenjng; Fuka, Daniel R; Lion, Leonard W; Gao, Bin; Steenhuis, Tammo S

    2011-12-01

    Naturally occurring polymers such as organic matter have been known to inhibit aggregation and promote mobility of suspensions in soil environments by imparting steric stability. This increase in mobility can significantly reduce the water filtering capacity of soils, thus jeopardizing a primary function of the vadose zone. Improvements to classic filtration theory have been made to account for the known decrease in attachment efficiency of electrostatically stabilized particles, and more recently, of sterically stabilized particles traveling through simple and saturated porous media. In the absence of an established unsaturated transport expression, and in the absence of applicable theoretical approaches for suspensions with asymmetric and nonindifferent electrolytes, this study presents an empirical correlation to predict attachment efficiency (α) for electrosterically stabilized suspensions in unsaturated systems in the presence of nonideal electrolytes. We show that existing models fall short in estimating polymer-coated colloid deposition in unsaturated media. This deficiency is expected given that the models were developed for saturated conditions where the mechanisms controlling colloid deposition are significantly different. A new correlation is derived from unsaturated transport data and direct characterization of microspheres coated with natural organic matter over a range of pH and CaCl(2) concentrations. The improvements to existing transport models include the following: adjustment for a restricted liquid-phase in the medium, development of a quantitative term to account for unsaturated transport phenomena, and adjustments in the relative contribution of steric stability parameters based on direct measurements of the adsorbed polymer layer characteristics. Differences in model formulation for correlations designed for saturated systems and the newly proposed correlation for unsaturated systems are discussed, and the performance of the new model

  14. Understanding Energy

    Science.gov (United States)

    Menon, Deepika; Shelby, Blake; Mattingly, Christine

    2016-01-01

    "Energy" is a term often used in everyday language. Even young children associate energy with the food they eat, feeling tired after playing soccer, or when asked to turn the lights off to save light energy. However, they may not have the scientific conceptual understanding of energy at this age. Teaching energy and matter could be…

  15. Soluble 1:1 complexes and insoluble 3:2 complexes - Understanding the phase-solubility diagram of hydrocortisone and γ-cyclodextrin

    DEFF Research Database (Denmark)

    Schönbeck, Christian; Madsen, Tobias Løvgren; Peters, Günther H.

    2017-01-01

    -cyclodextrin in solution and the solid phase. The drug-solubilizer interaction was also studied by isothermal titration calorimetry from which a precise value of the 1:1 binding constant (K 11 =4.01mM-1 at 20°C) was obtained. The formation of water-soluble 1:1 complexes is responsible for the initial increase...

  16. The Comparison of the Skill of Understanding Complex Syntax at Children Attending to a Preschool Education Institution (TRNC-TR Sample)

    Science.gov (United States)

    Yazici, Elçin

    2016-01-01

    The current study was carried out to compare the skills of understanding complex syntax at children attending to preschool education institutions. In the current study, relational screening model, a model providing to determine the current study, was used. The working group of the study was made up of 224 children at the age of 4-5 attending to a…

  17. Effects of Particulate Organic Matter Complexation and Photo-Irradiation on the Fate and Toxicity of Mercury(II) in Aqueous Systems

    Science.gov (United States)

    Gelfond, C. E.; Kocar, B. D.; Carrasquillo, A. J.

    2015-12-01

    This project investigates how interactions between mercury (Hg) and particulate organic matter (POM) affect the fate, transport, and toxicity of Hg in the environment. Previous studies have evaluated the coordination of dissolved organic matter (DOM) with Hg, but the coordination of POM with Hg has not been thoroughly addressed. Owing to a high density of reactive functional groups, POM will sorb appreciable quantities of Hg, resulting in a large pool of Hg susceptible to organic matter dependent transformations. Particulate organic carbon is also susceptible photolysis, hence chemical changes induced by irradiation by natural sunlight is also important. Further, photo-reduction of Hg(II) to elemental mercury in the presence of DOM has been observed, yet studies examining this process with Hg(II) complexed to POM are less exhaustive. Here, we illustrate that POM derived from fresh plant detritus is a powerful sorbent of Hg(II), and sorbent properties are altered during POM photolysis. Further, we examine redox transformations of Hg(II), and examine functional groups that contribute to mercury association with POM. Batch sorption isotherms of Hg to dark and irradiated POM from ground Phragmites australis ("common reed") were performed and data was collected using ICP-MS. Coordination of Hg to POM was lower in the irradiated samples, resulting from the decrease in Hg-associated (reduced) sulfur bearing functional groups as measured using X-ray adsorption near-edge spectroscopy (XANES) and extended x-ray adsorption fine structure (EXAFS). Further analysis of the dark and irradiated POM was performed using FT-IR microscopy and STXM to determine changes in distribution and alteration of functional groups responsible for Hg sorption to POM.

  18. What matters to infrequent customers: a pragmatic approach to understanding perceived value and intention to revisit trendy coffee café.

    Science.gov (United States)

    Ting, Hiram; Thurasamy, Ramayah

    2016-01-01

    Notwithstanding the rise of trendy coffee café, little is done to investigate revisit intention towards the café in the context of developing markets. In particular, there is a lack of study which provides theoretical and practical explanation to the perceptions and behaviours of infrequent customers. Hence, the study aims to look into the subject matter by using the theory of reasoned action and social exchange theory as the underpinning basis. The framework proposed by Pine and Gilmore (Strat Leadersh 28:18-23, 2000), which asserts the importance of product quality, service quality and experience quality in a progressive manner, is used to decompose perceived value in the model so as to determine their effects on intention to revisit the café. Given the importance to gain practical insights into revisit intention of infrequent customers, pragmatism stance is assumed. Explanatory sequential mixed-method design is thus adopted whereby qualitative approach is used to confirm and complement quantitative findings. Self-administered questionnaire-based survey is first administered before personal interview is carried out at various cafés. Partial least squares structural equation modelling and content analysis are appropriated successively. In the quantitative findings, although product quality, service quality and experience quality are found to have positive effect on perceived value and revisit intention towards trendy coffee café, experience quality is found to have the greater effect than the others among the infrequent customers. The qualitative findings not only confirm their importance, but most importantly explain the favourable impressions they have at trendy coffee café based on their last in-store experience. While product and service quality might not necessary stimulate them to revisit trendy coffee café, experience quality driven by purposes of visit would likely affect their intention to revisit. As retaining customers is of utmost importance to

  19. Solubility and transport of Cr(III) in a historically contaminated soil - Evidence of a rapidly reacting dimeric Cr(III) organic matter complex.

    Science.gov (United States)

    Löv, Åsa; Sjöstedt, Carin; Larsbo, Mats; Persson, Ingmar; Gustafsson, Jon Petter; Cornelis, Geert; Kleja, Dan B

    2017-12-01

    Chromium is a common soil contaminant and, although it has been studied widely, questions about its speciation and dissolutions kinetics remain unanswered. We combined information from an irrigation experiment performed with intact soil columns with data from batch experiments to evaluate solubility and mobilization mechanisms of Cr(III) in a historically contaminated soil (>65 years). Particulate and colloidal Cr(III) forms dominated transport in this soil, but their concentrations were independent of irrigation intensity (2-20 mm h -1 ). Extended X-ray absorption fine structure (EXAFS) measurements indicated that Cr(III) associated with colloids and particles, and with the solid phase, mainly existed as dimeric hydrolyzed Cr(III) bound to natural organic matter. Dissolution kinetics of this species were fast (≤1 day) at low pH (organic matter complex with a geochemical equilibrium model using only generic binding parameters, opening the way for use of geochemical models in risk assessments of Cr(III)-contaminated sites. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Nuclear inelastic scattering and density-functional-theory calculations on the understanding of the vibronic properties of polynuclear iron complexes

    International Nuclear Information System (INIS)

    Faus, Isabelle

    2015-01-01

    Transition metal complexes of 3d elements with an electronic configuration of d 4 to d 8 can show a temperature dependent spin transition. This process is called spin crossover (SCO) effect and describes the transition between two states, the low spin (LS) state and the high spin (HS) state. In the LS state the spin is as low as possible, caused by none or a minimal number of unpaired electrons. In the HS state the spin is as high as possible with a maximal number of unpaired electrons. Because of this bistability, SCO materials are promising candidates for innovative molecular storage devices. Directly related to the SCO effect is the cooperativity, which specifies the interaction of metal centers between molecules (intermolecular cooperativity) or in a molecule (intramolecular cooperativity). Cooperativity is of vital importance for the switching behavior of SCO complexes with broad hysteresis. Therefore, three dinuclear SCO complexes which show a varying degree of cooperativity due to different geometries of their bridging ligands were investigated. By means of nuclear inelastic scattering (NIS), it could be clarified whether it is possible to find intramolecular cooperative effects in the vibrational patterns of these complexes. With corresponding density functional theory (DFT) calculations, it was possible for all of the dinuclear complexes to correlate the experimental NIS bands to the corresponding molecular vibrational modes. In the LS-LS or HS-HS state of the three complexes two modes exist lying energetically close together, which show a similar movement of the whole complex, with only a difference in the movement of the iron atoms. Thereby, the irons are moving either in the same or in the opposite direction. For complexes with a high degree of cooperativity there are nearly exclusively small energy shifts between this kind of nearly twofold energetically degenerated modes (ΔE <7 cm -1 ), for the complex with a low degree of cooperativity there are

  1. CHEMICAL ATTRIBUTES AND ORGANIC MATTER IN FOREST COMPLEX SEASONALLY FLOODED IN RESTINGA OF MARAMBAIA, RIO DE JANEIRO STATE

    Directory of Open Access Journals (Sweden)

    Ranieri Ribeiro Paula

    2013-12-01

    Full Text Available http://dx.doi.org/10.5902/1980509812337This study aimed to evaluate and characterize the chemical properties of soil organic matter under twoperiodically flooded forest formations on the island of Marambaia, Rio de Janeiro. These formations differon the degree of soil water saturation, caused by the influence of water table, and in the (F1 formationpresents the water table nearer the surface compared to the (F2 formation. Samples were collected in layersfrom 0.00 to 0.05, 0.05-0.10 and 0.10-0.20 m. The soil properties evaluated were: pH, H+ + Al+3, Ca+2, Mg+2,Na+, K+, P, N, total organic carbon (TOC and base saturation (V%, humin carbon fraction (C-HUM,carbon of humic acid fraction (HAF-C and fulvic acid fraction carbon (FAF-C. Statistically higher pHvalues were observed for F1. In F2 there are higher values of Mg+2, P, N and V% value. Correlation wasfound between the concentrations of Mg+2, N, humic acid and fulvic acid with water table in F1, and watertable in F2 with Na+ and K+. Fraction C-HUM was more representative of the total organic carbon, followedby C-HAF and C-FAF. The TOC levels were higher in F1. The C / N ratio was lower in F2, with valuesranging between 9 and 12, and F1 were found higher values of this relationship, ranging from 9 to 15.Among the pathways of formation of organic soils in both areas it appears that the major route for organicmatter accumulation is the inheritance route

  2. Stability constants important to the understanding of plutonium in environmental waters, hydroxy and carbonate complexation of PuO2+

    International Nuclear Information System (INIS)

    Bennett, D.A.; Lawrence Berkeley Lab., CA

    1990-01-01

    The formation constants for the reactions PuO 2 + + H 2 O = PuO 2 (OH) + H + and PuO 2 + + CO 3 2 = PuO 2 (CO 3 ) - were determined in aqueous sodium perchlorate solutions by laser-induced photoacoustic spectroscopy. The molar absorptivity of the PuO 2 + band at 569 nm decreased with increasing hydroxide concentration. Similarly, spectral changes occurred between 540 and 580 nm as the carbonate concentration was increased. The absorption data were analyzed by the non-linear least-squares program SQUAD to yield complexation constants. Using the specific ion interaction theory, both complexation constants were extrapolated to zero ionic strength. These thermodynamic complexation constants were combined with the oxidation-reduction potentials of Pu to obtain Eh versus pH diagrams. 120 refs., 35 figs., 12 tabs

  3. Soft matter physics

    CERN Document Server

    Doi, Masao

    2013-01-01

    Soft matter (polymers, colloids, surfactants and liquid crystals) are an important class of materials in modern technology. They also form the basis of many future technologies, for example in medical and environmental applications. Soft matter shows complex behaviour between fluids and solids, and used to be a synonym of complex materials. Due to the developments of the past two decades, soft condensed matter can now be discussed on the same sound physical basis as solid condensedmatter. The purpose of this book is to provide an overview of soft matter for undergraduate and graduate students

  4. Using a Complexity-Based Perspective to Better Understand the Relationships among Mentoring, School Conflicts, and Novice Retention

    Science.gov (United States)

    Waterman, Sheryn Elaine Spencer

    2011-01-01

    In this study I used complexity-thinking, ecologically-based sustainable capacity-building, narrative methodology, and pragmatism to explore the relationships among mentoring, conflict, and novice retention. In order to explore these relationships, I constructed stories from my interviews with six mentor-novice dyads in a southeastern 9-12 high…

  5. The development of second-order social cognition and its relation with complex language understanding and working memory

    NARCIS (Netherlands)

    Arslan, Burcu; Hohenberger, Annette; Verbrugge, Rineke

    2012-01-01

    In this study, the development of second-order social cognition and its possible relationship with language and memory were investigated. For this reason two second-order false belief tasks (FBT_2), a short term memory task (WST), a complex working memory task (LST), a linguistic perspective-taking

  6. Effects of Jigsaw Cooperative Learning and Animation Techniques on Students' Understanding of Chemical Bonding and Their Conceptions of the Particulate Nature of Matter

    Science.gov (United States)

    Karacop, Ataman; Doymus, Kemal

    2013-01-01

    The aim of this study was to determine the effect of jigsaw cooperative learning and computer animation techniques on academic achievements of first year university students attending classes in which the unit of chemical bonding is taught within the general chemistry course and these students' learning of the particulate nature of matter of this…

  7. Use of biological priors enhances understanding of genetic architecture and genomic prediction of complex traits within and between dairy cattle breeds

    DEFF Research Database (Denmark)

    Fang, Lingzhao; Sahana, Goutam; Ma, Peipei

    2017-01-01

    sequence variants in Holstein (HOL) and Jersey (JER) cattle were analysed. We first carried out a post-GWAS analysis in a HOL training population to assess the degree of enrichment of the association signals in the gene regions defined by each GO term. We then extended the genomic best linear unbiased......BACKGROUND: A better understanding of the genetic architecture underlying complex traits (e.g., the distribution of causal variants and their effects) may aid in the genomic prediction. Here, we hypothesized that the genomic variants of complex traits might be enriched in a subset of genomic...

  8. Understanding the Complexity of the Lived Experiences of Foundation Degree Sport Lecturers within the Context of Further Education

    Science.gov (United States)

    Aldous, David

    2014-01-01

    This paper provides an ethnographic account of the lived experiences of Further Education (FE) lecturers (N = 4) who are engaged in the transmission of pedagogic knowledge within a Foundation Degree. To further understand the experiences of the lecturers the paper draws upon Stones' quadripartite cycle of structuration. This conceptual and…

  9. Tumor size and invasiveness matters for partial nephrectomy: External validation and modification of the arterial based complexity score.

    Science.gov (United States)

    Kriegmair, Maximilian C; Hetjens, Svetlana; Mandel, Philipp; Wadle, Jula; Budjan, Johannes; Michel, Maurice S; Pfalzgraf, Daniel; Wagener, Nina

    2017-05-01

    Outcome of partial nephrectomy (PN) depends on anatomic features of the renal tumor, which can be assessed by nephrometry scores. The aim was to externally validate and refine the Arterial Based Complexity (ABC) score and to compare it to established systems. Tumors of 300 patients undergoing PN were categorized according to the ABC, RENAL, and PADUA score. Size and tumor invasiveness were combined to form the ABCD score. Correlation analysis and multivariate logistic regression was performed to validate and compare the respective scores as predictors of surgical outcome. The ABC score shows significant correlation with ischemia time (IT) (P < 0.01), opening of the collecting system (CS) (P < 0.01), and conversion to nephrectomy (P = 0.01). In the multivariate analysis, the ABC score was predictive for on-clamp excision (P < 0.01) and opening of the CS (P < 0.01) only. The RENAL and ABCD scores were independent predictors for complications (P = 0.02, P = 0.05), IT (P < 0.01, P = 0.03), on clamp excision (P < 0.01, P < 0.01), and opening of the CS (P < 0.01, P < 0.01). The ABC score correlates well with surgical parameters. Expanding the score by tumor diameter gives the ABCD system. It has similar predictive effectiveness to the well-established RENAL score, but features simplicity by only assessing invasiveness and tumor size. © 2017 Wiley Periodicals, Inc.

  10. Using a Virtual Tablet Machine to Improve Student Understanding of the Complex Processes Involved in Tablet Manufacturing.

    Science.gov (United States)

    Mattsson, Sofia; Sjöström, Hans-Erik; Englund, Claire

    2016-06-25

    Objective. To develop and implement a virtual tablet machine simulation to aid distance students' understanding of the processes involved in tablet production. Design. A tablet simulation was created enabling students to study the effects different parameters have on the properties of the tablet. Once results were generated, students interpreted and explained them on the basis of current theory. Assessment. The simulation was evaluated using written questionnaires and focus group interviews. Students appreciated the exercise and considered it to be motivational. Students commented that they found the simulation, together with the online seminar and the writing of the report, was beneficial for their learning process. Conclusion. According to students' perceptions, the use of the tablet simulation contributed to their understanding of the compaction process.

  11. Soluble 1:1 complexes and insoluble 3:2 complexes - Understanding the phase-solubility diagram of hydrocortisone and γ-cyclodextrin.

    Science.gov (United States)

    Schönbeck, Christian; Madsen, Tobias L; Peters, Günther H; Holm, René; Loftsson, Thorsteinn

    2017-10-15

    The molecular mechanisms underlying the drug-solubilizing properties of γ-cyclodextrin were explored using hydrocortisone as a model drug. The B S -type phase-solubility diagram of hydrocortisone with γ-cyclodextrin was thoroughly characterized by measuring the concentrations of hydrocortisone and γ-cyclodextrin in solution and the solid phase. The drug-solubilizer interaction was also studied by isothermal titration calorimetry from which a precise value of the 1:1 binding constant (K 11 =4.01mM -1 at 20°C) was obtained. The formation of water-soluble 1:1 complexes is responsible for the initial increase in hydrocortisone solubility while the precipitation of entities with a 3:2 ratio of γ-cyclodextrin:hydrocortisone is responsible for the plateau and the ensuing strong decrease in solubility once all solid hydrocortisone is used up. The complete phase-solubility diagram is well accounted for by a model employing the 1:1 binding constant and the solubility product of the precipitating 3:2 entity (K 32 S =5.51 mM 5 ). For such systems, a small surplus of γ-cyclodextrin above the optimum concentration may result in a significant decrease in drug solubility, and the implications for drug formulations are briefly discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Enhanced Systemic Understanding of the Information Environment in Complex Crisis Management - Analytical Concept, Version 1.0

    Science.gov (United States)

    2010-10-22

    comprises the dimensions of ‗ media literacy ‘ and ‗intercultural communicative competence‘63. Figure 25: Communicative Competence...competence‘ comprises the dimensions of ‗ media literacy ‘ and ‗intercultural communicative competence‘89. Figure: Communicative Competence ‗ Media literacy ‘ aims...at successfully using media and media-related technology: "We have defined media literacy as: ‗the ability to access, understand and create

  13. Understanding Free Radicals: Isolating Active Thylakoid Membranes and Purifying the Cytochrome b6f Complex for Superoxide Generation Studies

    Directory of Open Access Journals (Sweden)

    Jason Stofleth

    2012-01-01

    Full Text Available All life persists in an environment that is rich in molecular oxygen. The production of oxygen free radicals, or superoxide, is a necessary consequence of the biogenesis of energy in cells. Both mitochondrial and photosynthetic electron transport chains have been found to produce superoxide associated with cell differentiation, proliferation, and cell death, thereby contributing to the effects of aging. Aerobic respiration in mitochondria consumes oxygen, whereas photosynthesis in chloroplasts or cyanobacteria produces oxygen. The increased concentration of molecular oxygen may serve to allow greater availability for the production of superoxide by cytochrome bc complexes in photosynthetic membranes compared to those of mitochondrial membranes. The isolation of well-coupled chloroplasts, containing the cytochrome b6f complex of oxygenic photosynthesis, is a vital initial step in the process of comparing the rate of production of superoxide to those of the homologous cytochrome bc1 complex of aerobic respiration. It is necessary to determine if the isolated chloroplasts have retained their oxygengenerating capability after isolation by an oxygen evolution assay with a Clark-type electrode. A necessary second step, which is the isolation of cytochrome b6f from spinach, has yet to be successfully performed. Oxygen measurements taken from chloroplasts in the presence of the uncoupler, NH4Cl, exhibited a rate of oxygen evolution over three times greater at 344 +/- 18 μmol O2/mg Chlorophyll a/hr than the rate of oxygen evolution without uncoupler at 109 +/- 29 μmol O2/mg Chlorophyll a/hr. These data demonstrate that the technique used to isolate spinach chloroplasts preserves their light-driven electron-transport activity, making them reliable for future superoxide assays.

  14. Regional molecular and cellular differences in the female rabbit Achilles tendon complex: potential implications for understanding responses to loading.

    Science.gov (United States)

    Huisman, Elise S; Andersson, Gustav; Scott, Alexander; Reno, Carol R; Hart, David A; Thornton, Gail M

    2014-05-01

    The aim of this study was: (i) to analyze the morphology and expression of extracellular matrix genes in six different regions of the Achilles tendon complex of intact normal rabbits; and (ii) to assess the effect of ovariohysterectomy (OVH) on the regional expression of these genes. Female New Zealand White rabbits were separated into two groups: (i) intact normal rabbits (n = 4); and (ii) OVH rabbits (n = 8). For each rabbit, the Achilles tendon complex was dissected into six regions: distal gastrocnemius (DG); distal flexor digitorum superficialis; proximal lateral gastrocnemius (PLG); proximal medial gastrocnemius; proximal flexor digitorum superficialis; and paratenon. For each of the regions, hematoxylin and eosin staining was performed for histological evaluation of intact normal rabbit tissues and mRNA levels for proteoglycans, collagens and genes associated with collagen regulation were assessed by real-time reverse transcription-quantitative polymerase chain reaction for both the intact normal and OVH rabbit tissues. The distal regions displayed a more fibrocartilaginous phenotype. For intact normal rabbits, aggrecan mRNA expression was higher in the distal regions of the Achilles tendon complex compared with the proximal regions. Collagen Type I and matrix metalloproteinase-2 expression levels were increased in the PLG compared to the DG in the intact normal rabbit tissues. The tendons from OVH rabbits had lower gene expressions for the proteoglycans aggrecan, biglycan, decorin and versican compared with the intact normal rabbits, although the regional differences of increased aggrecan expression in distal regions compared with proximal regions persisted. The tensile and compressive forces experienced in the examined regions may be related to the regional differences found in gene expression. The lower mRNA expression of the genes examined in the OVH group confirms a potential effect of systemic estrogen on tendon. © 2014 Anatomical Society.

  15. Complex function in the dynamic brain. Comment on “Understanding brain networks and brain organization” by Luiz Pessoa

    Science.gov (United States)

    Anderson, Michael L.

    2014-09-01

    There is much to commend in this excellent overview of the progress we've made toward-and the challenges that remain for-developing an empirical framework for neuroscience that is adequate to the dynamic complexity of the brain [17]. Here I will limit myself first to highlighting the concept of dynamic affiliation, which I take to be the central feature of the functional architecture of the brain, and second to clarifying Pessoa's brief discussion of the ontology of cognition, to be sure readers appreciate this crucial issue.

  16. Know Your Client and Know Your Team: A Complexity Inspired Approach to Understanding Safe Transitions in Care

    Directory of Open Access Journals (Sweden)

    Deborah Tregunno

    2013-01-01

    Full Text Available Background. Transitions in care are one of the most important and challenging client safety issues in healthcare. This project was undertaken to gain insight into the practice setting realities for nurses and other health care providers as they manage increasingly complex care transitions across multiple settings. Methods. The Appreciative Inquiry approach was used to guide interviews with sixty-six healthcare providers from a variety of practice settings. Data was collected on participants’ experience of exceptional care transitions and opportunities for improving care transitions. Results. Nurses and other healthcare providers need to know three things to ensure safe care transitions: (1 know your client; (2 know your team on both sides of the transfer; and (3 know the resources your client needs and how to get them. Three themes describe successful care transitions, including flexible structures; independence and teamwork; and client and provider focus. Conclusion. Nurses often operate at the margins of acceptable performance, and flexibility with regulation and standards is often required in complex sociotechnical work like care transitions. Priority needs to be given to creating conditions where nurses and other healthcare providers are free to creatively engage and respond in ways that will optimize safe care transitions.

  17. Avoiding genetic genocide: understanding good intentions and eugenics in the complex dialogue between the medical and disability communities.

    Science.gov (United States)

    Miller, Paul Steven; Levine, Rebecca Leah

    2013-02-01

    The relationship between the medical and disability communities is complex and is influenced by historical, social, and cultural factors. Although clinicians, health-care researchers, and people with disabilities all work from the standpoint of the best interest of disabled individuals, the notion of what actually is "best" is often understood quite differently among these constituencies. Eugenics campaigns, legal restrictions on reproductive and other freedoms, and prenatal testing recommendations predicated on the lesser worth of persons with disabilities have all contributed toward the historic trauma experienced by the disability community, particularly with respect to medical genetics. One premise of personalized medicine is that different individuals require different solutions. Disabled persons' experiences are a reminder that these solutions can be best realized by maintaining awareness and sensitivity in a complex ethical and moral terrain. Geneticists should recognize that their research may have implications for those with disabilities; they should recognize the impact of the historical trauma of the eugenics movement, and seek to involve people with disabilities in discussions about policies that affect them. Dialogue can be messy and uncomfortable, but it is the only way to avoid the mistakes of the past and to ensure a more equitable, and healthful, future.

  18. A model for understanding diagnostic imaging referrals and complex interaction processes within the bigger picture of a healthcare system

    International Nuclear Information System (INIS)

    Makanjee, Chandra R.; Bergh, Anne-Marie; Hoffmann, Willem A.

    2014-01-01

    Using experiences from the South African public healthcare system with limited resources, this review proposes a model that captures a holistic perspective of diagnostic imaging services embedded in a network of negotiated decision-making processes. Professional interdependency and interprofessional collaboration, cooperation and coordination are built around the central notion of integration in order to achieve a seamless transition through the continuum of various types of services needed to come to a diagnosis. Health-system role players interact with patients who enter the system from the perspective of their life-world. The distribution of diagnostic imaging services – within one setting or at multiple levels of care – demonstrates how fragments of information are filtered, interpreted and transformed at each point of care. The proposed model could contribute to alignment towards a common goal: services providing holistic quality of care within and beyond a complex healthcare system

  19. Intermolecular vibrations of the CO2-CS2 complex: Experiment and theory agree, but understanding remains challenging

    Science.gov (United States)

    Dehghany, M.; Rezaei, Mojtaba; Moazzen-Ahmadi, N.; McKellar, A. R. W.; Brown, James; Wang, Xiao-Gang; Carrington, Tucker

    2016-12-01

    The infrared spectrum of the cross-shaped van der Waals complex CO2-CS2 is observed in the region of the CO2 ν3 fundamental band (≈2350 cm-1) using a tuneable diode laser to probe a pulsed supersonic slit jet expansion. Two combination bands are assigned, corresponding to the intermolecular torsion and CO2 bend modes, and their positions and rotational structure agree extremely well (torsional band is well-behaved, but the a-type CO2 bending band is highly unusual, with large shifts between the subband origins for Ka = 0, 2, and 4. The shifts may be rationalized as due to tunnelling effects and Ka-dependent perturbations from other intermolecular modes. But even though they are well predicted by our calculations, there is no simple qualitative explanation. The predicted low-lying planar slipped parallel isomer of CO2-CS2 is not observed.

  20. A preliminary investigation of the applicability of surface complexation modeling to the understanding of transportation cask weeping

    International Nuclear Information System (INIS)

    Granstaff, V.E.; Chambers, W.B.; Doughty, D.H.

    1994-01-01

    A new application for surface complexation modeling is described. These models, which describe chemical equilibria among aqueous and adsorbed species, have typically been used for predicting groundwater transport of contaminants by modeling the natural adsorbents as various metal oxides. Our experiments suggest that this type of modeling can also explain stainless steel surface contamination and decontamination mechanisms. Stainless steel transportation casks, when submerged in a spent fuel storage pool at nuclear power stations, can become contaminated with radionuclides such as 137 Cs, 134 Cs, and 60 Co. Subsequent release or desorption of these contaminants under varying environmental conditions occasionally results in the phenomenon known as open-quotes cask weeping.close quotes We have postulated that contaminants in the storage pool adsorb onto the hydrous metal oxide surface of the passivated stainless steel and are subsequently released (by conversion from a fixed to a removable form) during transportation, due to varying environmental factors, such as humidity, road salt, dirt, and acid rain. It is well known that 304 stainless steel has a chromium enriched passive surface layer; thus its adsorption behavior should be similar to that of a mixed chromium/iron oxide. To help us interpret our studies of reversible binding of dissolved metals on stainless steel surfaces, we have studied the adsorption of Co +2 on Cr 2 O 3 . The data are interpreted using electrostatic surface complexation models. The FITEQL computer program was used to obtain the model binding constants and site densities from the experimental data. The MINTEQA2 computer speciation model was used, with the fitted constants, in an attempt to validate this approach

  1. High-Velocity Cloud Complex H and Weaver's "Jet": Two candidate dwarf satellite galaxies for which dark matter halo models indicate distances of ~27 kpc and ~108 kpc

    Science.gov (United States)

    Simonson, S. Christian

    2018-04-01

    Two anomalous-velocity H I features, High-Velocity Cloud Complex H (HVC H) (Blitz et al. 1999), and Weaver's "jet" (Weaver 1974), appear to be good candidates for dwarf satellites. In this work they are modeled as H I disks in dark matter halos that move in 3D orbits in the combined time-dependent gravitational fields of the Milky Way and M31. As they orbit in the Local Group they develop tidal distortions and produce debris. The current l,b,V appearance of the tidal features as they approach the Milky Way indicate distances of 27 ± 9 kpc for HVC H and 108 ± 36 kpc for Weaver's "jet". As these are within the distances to known Milky Way satellites, finding stellar components would be of interest for the star formation history of the Milky Way. This work uses recent Hubble Space Telescope results on M31 (van der Marel et al. 2012) to calculate the center-of-mass (COM) locations and the dark matter mass distributions of the Milky-Way—M31 system since the Big Bang. Time-dependent COM orbits of the satellites have been computed in 3D, along with rings of test particles representing their disks. Tidal effects that develop on these rings have been compared with published 21-cm line data from Lockman (2003) and Simonson (1975). For HVC H at l = 130.5°, b = +1.5°, V = -200 km/s, the dark matter mass (in solar masses) is estimated as 5.2 ± 3.5E8. The previously estimated H I mass is 6.4E6, or 1.2% of the newly derived satellite mass. For Weaver's "jet", which covers 2° by 7° at l = 197.3°, b = +2.1°, V = -30 to -87 km/s, the dark matter mass is estimated as 1.8 ± 0.6E9. The H I mass is 1.8 ± 1.1E8, or 6% to 12% of the satellite mass. In the case of HVC H, owing to its disk angle of 45°, tidal debris is thrown upward. This would presumably contribute to a halo star stream. In the case of Weaver's "jet", the streamer represents accreting material for the disk. I am grateful to Leo Blitz for bringing Lockman's work on HVC H to my attention and for many helpful

  2. Organisation Matters

    DEFF Research Database (Denmark)

    Unphon, Hataichanok; Dittrich, Yvonne

    2008-01-01

    Our work aims at understanding the design rationale for product line architecture by focusing on the design of common data access modules for complex simulation software products. This paper presents empirical evidence of organisational and business domain aspects that influence the development...

  3. Formation of complexes between hematite nanoparticles and a non-conventional galactomannan gum. Toward a better understanding on interaction processes.

    Science.gov (United States)

    Busch, Verónica M; Loosli, Fréderic; Santagapita, Patricio R; Buera, M Pilar; Stoll, Serge

    2015-11-01

    The physicochemical characteristics of hematite nanoparticles related to their size, surface area and reactivity make them useful for many applications, as well as suitable models to study aggregation kinetics. For several applications (such as remediation of contaminated groundwater) it is crucial to maintain the stability of hematite nanoparticle suspensions in order to assure their arrival to the target place. The use of biopolymers has been proposed as a suitable environmentally friendly option to avoid nanoparticle aggregation and assure their stability. The aim of the present work was to investigate the formation of complexes between hematite nanoparticles and a non-conventional galactomannan (vinal gum--VG) obtained from Prosopis ruscifolia in order to promote hematite nanoparticle coating with a green biopolymer. Zeta potential and size of hematite nanoparticles, VG dispersions and the stability of their mixtures were investigated, as well as the influence of the biopolymer concentration and preparation method. DLS and nanoparticle tracking analysis techniques were used for determining the size and the zeta-potential of the suspensions. VG showed a polydispersed size distribution (300-475 nm Z-average diameter, 0.65 Pdi) and a negative zeta potential (between -1 and -12 mV for pH2 and 12, respectively). The aggregation of hematite nanoparticles (3.3 mg/L) was induced by the addition of VG at lower concentrations than 2mg/L (pH5.5). On the other hand, hematite nanoparticles were stabilized at concentrations of VG higher than 2 mg/L. Several phenomena between hematite nanoparticles and VG were involved: steric effects, electrostatic interactions, charge neutralization, charge inversion and polymer bridging. The process of complexation between hematite nanoparticles and the biopolymer was strongly influenced by the preparation protocols. It was concluded that the aggregation, dispersion, and stability of hematite nanoparticles depended on biopolymer

  4. Associations between speech understanding and auditory and visual tests of verbal working memory: Effects of linguistic complexity, task, age and hearing loss

    Directory of Open Access Journals (Sweden)

    Sherri L. Smith

    2015-09-01

    Full Text Available Listeners with hearing loss commonly report having difficulty understanding speech, particularly in noisy environments. Their difficulties could be due to auditory and cognitive processing problems. Performance on speech-in-noise tests has been correlated with reading working memory span (RWMS, a measure often chosen to avoid the effects of hearing loss. If the goal is to assess the cognitive consequences of listeners’ auditory processing abilities, however, then listening working memory span (LWMS could be a more informative measure. Some studies have examined the effects of different degrees and types of masking on working memory, but less is known about the demands placed on working memory depending on the linguistic complexity of the target speech or the task used to measure speech understanding in listeners with hearing loss. Compared to RWMS, LWMS measures using different speech targets and maskers may provide a more ecologically valid approach. To examine the contributions of RWMS and LWMS to speech understanding, we administered two working memory measures (a traditional RWMS measure and a new LWMS measure, and a battery of tests varying in the linguistic complexity of the speech materials, the presence of babble masking, and the task. Participants were a group of younger listeners with normal hearing and two groups of older listeners with hearing loss (n = 24 per group. There was a significant group difference and a wider range in performance on LWMS than on RWMS. There was a significant correlation between both working memory measures only for the oldest listeners with hearing loss. Notably, there were only few significant correlations among the working memory and speech understanding measures. These findings suggest that working memory measures reflect individual differences that are distinct from those tapped by these measures of speech understanding.

  5. Associations between speech understanding and auditory and visual tests of verbal working memory: effects of linguistic complexity, task, age, and hearing loss.

    Science.gov (United States)

    Smith, Sherri L; Pichora-Fuller, M Kathleen

    2015-01-01

    Listeners with hearing loss commonly report having difficulty understanding speech, particularly in noisy environments. Their difficulties could be due to auditory and cognitive processing problems. Performance on speech-in-noise tests has been correlated with reading working memory span (RWMS), a measure often chosen to avoid the effects of hearing loss. If the goal is to assess the cognitive consequences of listeners' auditory processing abilities, however, then listening working memory span (LWMS) could be a more informative measure. Some studies have examined the effects of different degrees and types of masking on working memory, but less is known about the demands placed on working memory depending on the linguistic complexity of the target speech or the task used to measure speech understanding in listeners with hearing loss. Compared to RWMS, LWMS measures using different speech targets and maskers may provide a more ecologically valid approach. To examine the contributions of RWMS and LWMS to speech understanding, we administered two working memory measures (a traditional RWMS measure and a new LWMS measure), and a battery of tests varying in the linguistic complexity of the speech materials, the presence of babble masking, and the task. Participants were a group of younger listeners with normal hearing and two groups of older listeners with hearing loss (n = 24 per group). There was a significant group difference and a wider range in performance on LWMS than on RWMS. There was a significant correlation between both working memory measures only for the oldest listeners with hearing loss. Notably, there were only few significant correlations among the working memory and speech understanding measures. These findings suggest that working memory measures reflect individual differences that are distinct from those tapped by these measures of speech understanding.

  6. Associations between speech understanding and auditory and visual tests of verbal working memory: effects of linguistic complexity, task, age, and hearing loss

    Science.gov (United States)

    Smith, Sherri L.; Pichora-Fuller, M. Kathleen

    2015-01-01

    Listeners with hearing loss commonly report having difficulty understanding speech, particularly in noisy environments. Their difficulties could be due to auditory and cognitive processing problems. Performance on speech-in-noise tests has been correlated with reading working memory span (RWMS), a measure often chosen to avoid the effects of hearing loss. If the goal is to assess the cognitive consequences of listeners’ auditory processing abilities, however, then listening working memory span (LWMS) could be a more informative measure. Some studies have examined the effects of different degrees and types of masking on working memory, but less is known about the demands placed on working memory depending on the linguistic complexity of the target speech or the task used to measure speech understanding in listeners with hearing loss. Compared to RWMS, LWMS measures using different speech targets and maskers may provide a more ecologically valid approach. To examine the contributions of RWMS and LWMS to speech understanding, we administered two working memory measures (a traditional RWMS measure and a new LWMS measure), and a battery of tests varying in the linguistic complexity of the speech materials, the presence of babble masking, and the task. Participants were a group of younger listeners with normal hearing and two groups of older listeners with hearing loss (n = 24 per group). There was a significant group difference and a wider range in performance on LWMS than on RWMS. There was a significant correlation between both working memory measures only for the oldest listeners with hearing loss. Notably, there were only few significant correlations among the working memory and speech understanding measures. These findings suggest that working memory measures reflect individual differences that are distinct from those tapped by these measures of speech understanding. PMID:26441769

  7. The Climate Change-Road Safety-Economy Nexus: A System Dynamics Approach to Understanding Complex Interdependencies

    Directory of Open Access Journals (Sweden)

    Mehdi Alirezaei

    2017-01-01

    Full Text Available Road accidents have the highest externality costs to society and to the economy, even when compared to the externality damages associated with air emissions and oil dependency. Road safety is one of the most complicated topics, which involves many interdependencies, and so, a sufficiently thorough analysis of roadway safety will require a novel system-based approach in which the associated feedback relationships and causal effects are given appropriate consideration. The factors affecting accident frequency and severity are highly dependent on economic parameters, environmental factors and weather conditions. In this study, we try to use a system dynamics modeling approach to model the climate change-road safety-economy nexus, thereby investigating the complex interactions among these important areas by tracking how they affect each other over time. For this purpose, five sub-models are developed to model each aspect of the overall nexus and to interact with each other to simulate the overall system. As a result, this comprehensive model can provide a platform for policy makers to test the effectiveness of different policy scenarios to reduce the negative consequences of traffic accidents and improve road safety.

  8. Understanding the complex determinants of height and adiposity in disadvantaged daycare preschoolers in Salvador, NE Brazil through structural equation modelling.

    Science.gov (United States)

    Lander, Rebecca L; Williams, Sheila M; Costa-Ribeiro, Hugo; Mattos, Angela P; Barreto, Danile L; Houghton, Lisa A; Bailey, Karl B; Lander, Alastair G; Gibson, Rosalind S

    2015-10-23

    Earlier we reported on growth and adiposity in a cross-sectional study of disadvantaged Brazilian preschoolers. Here we extend the work on these children, using structural equation modelling (SEM) to gather information on the complex relationships between the variables influencing height and adiposity. We hope this information will help improve the design and effectiveness of future interventions for preschoolers. In 376 preschoolers aged 3-6 years attending seven philanthropic daycares in Salvador, we used SEM to examine direct and indirect relationships among biological (sex, ethnicity, birth order, maternal height and weight), socio-economic, micronutrient (haemoglobin, serum selenium and zinc), and environmental (helminths, de-worming) variables on height and adiposity, as reflected by Z-scores for height-for-age (HAZ) and body mass index (BMIZ). Of the children, 11 % had HAZ  1. Of their mothers, 8 % had short stature, and 50 % were overweight or obese. Based on standardized regression coefficients, significant direct effects (p children.

  9. Understanding pulp delignification by laccase-mediator systems through isolation and characterization of lignin-carbohydrate complexes.

    Science.gov (United States)

    Du, Xueyu; Li, Jiebing; Gellerstedt, Göran; Rencoret, Jorge; Del Río, José C; Martínez, Angel T; Gutiérrez, Ana

    2013-09-09

    The effects and mechanism of pulp delignification by laccases in the presence of redox mediators have been investigated on unbleached eucalyptus kraft pulp treated with laccases from Pycnoporus cinnabarinus (PcL) and Myceliophthora thermophila (MtL) and 1-hydroxybenzotriazole (HBT) and methyl syringate (MeS) as mediators, respectively. Determination of the corrected κ number in eucalyptus pulps after the enzymatic treatments revealed that the PcL-HBT system exhibited a more remarkable delignification effect than the MtL-MeS system. To obtain further insight, lignin-carbohydrate complexes were fractionated and subsequently characterized by nuclear magnetic resonance, thioacidolysis (followed by gas chromatography and size exclusion chromatography), and pyrolysis-gas chromatography-mass spectrometry (pyrolysis-GC-MS) analyses before and after the enzymatic treatments and their controls. We can conclude that the laccase-mediator treatments altered the lignin structures in such a way that more lignin was recovered in the xylan-lignin fractions, as shown by Klason lignin estimation, with smaller amounts of both syringyl (S) and guaiacyl (G) uncondensed units, as shown by thioacidolysis and gas chromatography, especially after the PcL-HBT treatment. The laccase-mediator treatment produced oxidation at Cα and cleavage of Cα and Cβ bonds in pulp lignin, as shown by pyrolysis-GC-MS. The general mechanism of residual lignin degradation in the pulp by laccase-mediator treatments is discussed in light of the results obtained.

  10. Understanding reflection behavior as a key for interpreting complex signals in FBRM monitoring of microparticle preparation processes.

    Science.gov (United States)

    Vay, Kerstin; Friess, Wolfgang; Scheler, Stefan

    2012-11-01

    The application of focused beam reflectance measurement (FBRM) was studied in a larger scale PLGA microparticle preparation process for monitoring changes of the particle size and the particles' surface properties. Further understanding how these parameters determine the chord length distribution (CLD) was gained by means of single object measurements and data of monodisperse microparticles. It was evaluated how the FBRM signal is influenced by the surface characteristics of the tested materials and the measuring conditions. Particles with good scattering properties provided comparable values for the CLD and the particle size distribution. Translucent particles caused an overestimation of the particle size by FBRM, whereas the values for transparent emulsion droplets were too low. Despite a strong dependence of FBRM results on the optical properties of the samples, it is a beneficial technique for online monitoring of microparticle preparation processes. The study demonstrated how changing reflection properties can be used to monitor structural changes during the solidification of emulsion droplets and to detect process instabilities by FBRM. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Toward an analytical framework for understanding complex social-ecological systems when conducting environmental impact assessments in South Africa

    Directory of Open Access Journals (Sweden)

    Rebecca Bowd

    2015-03-01

    counterpoint to established approaches and could contribute to improving the quality of EIAs with respect to the complex SESs that characterize the developing world.

  12. Resistance Switching in Complex Oxides: Improvements in Understanding and Function for Use as Non-Volatile Memory

    Science.gov (United States)

    Young, Kristina Garrison

    2011-12-01

    Pro0.7Ca0.3MnO3 (PCMO) is a complex oxide that is studied for use as a non-volatile memory with potential to replace flash-type memory. PCMO functions as a resistive random access memory (RRAM) whose memory function is due to an oxygen vacancy concentration change that occurs in the top interface of the PCMO during the application of an electric field. The concentration of the oxygen ions/vacancies in this top interface region significantly affects the resistance seen in a simple thin film device. The electric field required to move ions/vacancies within PCMO is generated by a short (ns), low voltage (few V) pulse. During the pulse a high current is seen that is not commensurate with the resistance seen after the removal of the pulse. Additionally, after the removal of the pulse there is a degradation of the resistance state set by the pulse. The high current seen during the pulse has been explored using electrical characterization techniques and is believed to be due to quantum mechanical tunneling through the high resistance interface region. Modeling of conduction values confirms that quantum mechanical tunneling is the source of the high current. The degradation of the state after the removal of the pulse has been improved through the nanostructure modification of the PCMO film. A thin (barrier layer was placed immediately below the interface of the PCMO minimizing the back diffusion of ions/vacancies after removal of the pulse. The modification improved the EPIR ratio, fatigue and retention in PCMO.

  13. Perspectives on the terrestrial organic matter transport and burial along the land-deep sea continuum: Caveats in our understanding of biogeochemical processes and future needs

    Digital Repository Service at National Institute of Oceanography (India)

    Kandasamy, S.; Nath, B.N.

    The natural carbon cycle is immensely intricate to fully understand its sources, fluxes and the processes that are responsible for their cycling in different reservoirs and their balances on a global scale. Anthropogenic perturbations add another...

  14. Hypoxia monitoring activities within the FP7 EU-project HYPOX: diverse approaches to understand a complex phenomenon

    Science.gov (United States)

    Janssen, F.; Waldmann, C.; Boetius, A.

    2012-04-01

    Hypoxic conditions in aquatic systems and the occurrence of 'dead zones' increase worldwide due to man-made eutrophication and global warming with consequences for biodiversity, ecosystem functions and services such as fisheries, aquaculture and tourism. Monitoring of hypoxia and its consequences has to (1) account for the appropriate temporal and spatial scales, (2) separate anthropogenic from natural drivers and long-term trends from natural variations, (3) assess ecosystem response, (4) use modeling tools for generalization and prediction, and (5) share data and obtained knowledge. In 2009 the EU FP7 project HYPOX (www.hypox.net) started out as a pioneering attempt to improve and integrate hypoxia observation capacities addressing these requirements. Target ecosystems selected for HYPOX cover a broad range of settings (e.g., hydrography, oxygenation status, biological activity, anthropogenic impact) and differ in their sensitivity towards change. Semi-enclosed basins with permanent anoxia (Black Sea, Baltic Sea), are included as well as seasonally or locally hypoxic land-locked systems (fjords, lagoons, lakes) and open ocean systems with high sensitivity to global warming (North Atlantic - Arctic transition). Adopted monitoring approaches involve autonomous, cabled, and shipboard instruments and include static and profiling moorings, benthic observatories, drifters, as well as classical CTD surveys. In order to improve observatory performance, project activities encompass developments of oxygen sensors as well as calibration procedures and technologies to reduce biofouling. Modeling and data assimilation are used to synthesize findings, to obtain an in-depth understanding of hypoxia causes and consequences, and to improve forecasting capacities. For integration of the collected information into a global oxygen observing system, results are disseminated through the HYPOX portal following GEOSS data sharing principles. This presentation will give an overview of

  15. Understanding the addiction cycle: a complex biology with distinct contributions of genotype vs. sex at each stage.

    Science.gov (United States)

    Wilhelm, C J; Hashimoto, J G; Roberts, M L; Sonmez, M K; Wiren, K M

    2014-10-24

    Ethanol abuse can lead to addiction, brain damage and premature death. The cycle of alcohol addiction has been described as a composite consisting of three stages: intoxication, withdrawal and craving/abstinence. There is evidence for contributions of both genotype and sex to alcoholism, but an understanding of the biological underpinnings is limited. Utilizing both sexes of genetic animal models with highly divergent alcohol withdrawal severity, Withdrawal Seizure-Resistant (WSR) and Withdrawal Seizure-Prone (WSP) mice, the distinct contributions of genotype/phenotype and of sex during addiction stages on neuroadaptation were characterized. Transcriptional profiling was performed to identify expression changes as a consequence of chronic intoxication in the medial prefrontal cortex. Significant expression differences were identified on a single platform and tracked over a behaviorally relevant time course that covered each stage of alcohol addiction; i.e., after chronic intoxication, during peak withdrawal, and after a defined period of abstinence. Females were more sensitive to ethanol with higher fold expression differences. Bioinformatics showed a strong effect of sex on the data structure of expression profiles during chronic intoxication and at peak withdrawal irrespective of genetic background. However, during abstinence, differences were observed instead between the lines/phenotypes irrespective of sex. Confirmation of identified pathways showed distinct inflammatory signaling following intoxication at peak withdrawal, with a pro-inflammatory phenotype in females but overall suppression of immune signaling in males. Combined, these results suggest that each stage of the addiction cycle is influenced differentially by sex vs. genetic background and support the development of stage- and sex-specific therapies for alcohol withdrawal and the maintenance of sobriety. Published by Elsevier Ltd.

  16. A more holistic understanding of soil organic matter pools of alpine and pre-alpine grassland soils in a changing climate

    Science.gov (United States)

    Garcia Franco, Noelia; Wiesmeier, Martin; Kiese, Ralf; Dannenmann, Michael; Wolf, Benjamin; Brandhuber, Robert; Beck, Robert; Kögel-Knabner, Ingrid

    2016-04-01

    In southern Germany, the alpine and pre-alpine grassland systems (> 1 Mio ha) provide an important economic value via fodder used for milk and meat production and grassland soils support environmental key functions (C and N storage, water retention, erosion control and biodiversity hot spot). In addition, these grassland soils constitute important regions for tourism and recreation. However, the different land use and management practices in this area introduce changes which are likely to accelerate due to climate change. The newly launched SUPSALPS project within the BonaRes Initiative of the German Ministry for Education and Research is focused on the development and evaluation of innovative grassland management strategies under climate change with an emphasis on soil functions, which are on the one hand environmental sustainable and on the other hand economically viable. Several field experiments of the project will be initialized in order to evaluate grassland soil functioning for a range of current and climate adapted management practices. A multi-factorial design combines ongoing and new plant-soil meso-/macrocosm and field studies at a multitude of existing long-term research sites along an elevation gradient in Bavaria. One of the specific objectives of the project is to improve our knowledge on the sensitivity of specific soil organic matter (SOM) fractions to climate change. Moreover, the project aims to determine the processes and mechanisms involved in the build-up and stabilization of C and N pools under different management practices. In order to derive sensitive SOM pools, a promising physical fractionation method was developed that enables the separation of five different SOM fractions by density, ultrasonication and sieving separation: fine particulate organic matter (fPOM), occluded particulate organic matter (oPOM>20μm and oPOM 20 μm; medium + fine silt and clay, < 20 μm). Methods to further characterize SOM (NMR, 13C and 15N stable isotopes

  17. Understanding complex exposure history of Mount Hampton, West Antarctica using cosmogenic 3He, 21Ne and 10Be in olivine

    Science.gov (United States)

    Carracedo, Ana; Rodes, Angel; Stuart, Finlay; Smellie, John

    2016-04-01

    Combining stable and radioactive cosmogenic nuclides is an established tool for revealing the complexities of long-term landscape development. To date most studies have concentrated on 21Ne and 10Be in quartz. We have combined different chemical protocols for extraction of cosmogenic 10Be from olivine, and measured concentrations in olivine from lherzolite xenoliths from the peak of Mount Hampton (~3,200 m), an 11 Ma shield volcano on the West Antarctic rift flank. We combine this data with cosmogenic 3He (and 21Ne) in the olivines in order to unravel the long-term environmental history of the region. The mean 3He/21Ne ratio (1.98 ± 0.22) is consistent with the theoretical value and previous determinations. 10Be/3He ratios (0.012 to 0.018) are significantly lower than the instantaneous production ratio (~0.045). The data are consistent with 1-3 Ma of burial. The altitude of the volcano rules out over-topping of the peak by the West Antarctic Ice Sheet only possible burial could be generated by the growth of an ice cap although this contradicts the absence of evidence for ice cover. The 3He-10Be data can also be generated during episodic erosion of the volcanic ash over the last few million years. The data requires a minimum depth of 1 to 2.5 m for the samples during a minimum age of 5 Ma and maximum long-term erosion rate of ~0.5 m/Ma with at least one erosive episode reflecting short-term erosion rate of ~7 m/Ma that would have brought the samples into the surface during the last ~350 ka. Erosion in this type of landscape could be related to interglacial periods where cryostatic erosion can occur generating an increase in the erosion rate. This study shows that episodic erosion can produce stable-radioactive cosmogenic isotope systematics that are similar to those generated by exposure-burial cycles.

  18. Critical analysis of the data on complexation of lanthanides and actinides by natural organic matter: particular case of humic substances; Analyse critique des donnees de complexation des lanthanides et actinides par la matiere organique naturelle: cas des substances humiques

    Energy Technology Data Exchange (ETDEWEB)

    Reiller, P.

    2010-07-01

    This document proposes a critical analysis of the models that describe the actinides and lanthanides complexation by natural organic matter in general and by humic substances in particular. In order to better delimit the particular properties of these substances the most influent physical and chemical properties on complexation are recalled as a preamble. Models as well as data that has been used are reviewed, compiled, and eventually compared to independent data in order to identify (i) their application domain, (ii) the possible simplifications which permit to obtain operational models, (iii) the conditions in which simplifications cannot be ascertained yet, and (iv) the data or fields of knowledge which are still too uncertain. A comparison between the different models is proposed in order to adapt parameters from one model to another minimising the experimental acquisitions, or at least to focus on missing data. Usually, data on the complexation of free ions M{sup z+} are reliable; as soon as hydrolysis, or competition with another ligand in general, in at stake data are much less reliable. Predictions from models are much more uncertain: formation of mixed complexes with hydroxide or carbonate anions is not univocal whatever the modelling strategy. Hints for transfer functions between models which are believed to be incompatible could be explored in order to justify necessary simplifications for using operational modelling. Influence on the solubility of oxides could be quantified, but it is difficult to clearly separate it from colloidal particles stabilisation. The account of the competition between cations by the models has also been tested. In view of the small number of available experimental data there still lie some uncertainties especially for the media that are close to neutrality and in the case of competition with magnesium, but overall in the case of the competition with aluminium and iron. The influence of redox activity of humic substances is

  19. Complexity explained

    CERN Document Server

    Erdi, Peter

    2008-01-01

    This book explains why complex systems research is important in understanding the structure, function and dynamics of complex natural and social phenomena. Readers will learn the basic concepts and methods of complex system research.

  20. The Holocene history of the North American Monsoon: 'known knowns' and 'known unknowns' in understanding its spatial and temporal complexity

    Science.gov (United States)

    Metcalfe, Sarah E.; Barron, John A.; Davies, Sarah J.

    2015-01-01

    Evidence for climatic change across the North American Monsoon (NAM) and adjacent areas is reviewed, drawing on continental and marine records and the application of climate models. Patterns of change at 12,000, 9000, 6000 and 4000 cal yr BP are presented to capture the nature of change from the Younger Dryas (YD) and through the mid-Holocene. At the YD, conditions were cooler overall, wetter in the north and drier in the south, while moving into the Holocene wetter conditions became established in the south and then spread north as the NAM strengthened. Until c. 8000 cal yr BP, the Laurentide Ice Sheet influenced precipitation in the north by pushing the Bermuda High further south. The peak extent of the NAM seems to have occurred around 6000 cal yr BP. 4000 cal yr BP marks the start of important changes across the NAM region, with drying in the north and the establishment of the clear differences between the summer-rain dominated south and central areas and the north, where winter rain is more important. This differentiation between south and north is crucial to understanding many climate responses across the NAM. This increasing variability is coincident with the declining influence of orbital forcing. 4000 cal yr BP also marks the onset of significant anthropogenic activity in many areas. For the last 2000 years, the focus is on higher temporal resolution change, with strong variations across the region. The Medieval Climate Anomaly (MCA) is characterised by centennial scale ‘megadrought’ across the southwest USA, associated with cooler tropical Pacific SSTs and persistent La Niña type conditions. Proxy data from southern Mexico, Central America and the Caribbean reveal generally wetter conditions, whereas records from the highlands of central Mexico and much of the Yucatan are typified by long -term drought. The Little Ice Age (LIA), in the north, was characterised by cooler, wetter winter conditions that have been linked with increased

  1. The quark matter

    International Nuclear Information System (INIS)

    Rho, Mannque.

    1980-04-01

    The present status of our understanding of the physics of hadronic (nuclear or neutron) matter under extreme conditions, in particular at high densities is discussed. This is a problem which challenges three disciplines of physics: nuclear physics, astrophysics and particle physics. It is generally believed that we now have a correct and perhaps ultimate theory of the strong interactions, namely quantum chromodynamics (QCD). The constituents of this theory are quarks and gluons, so highly dense matters should be describable in terms of these constituents alone. This is a question that addresses directly to the phenomenon of quark confinement, one of the least understood aspects in particle physics. For nuclear physics, the possibility of a phase change between nuclear matter and quark matter introduces entirely new degrees of freedom in the description of nuclei and will bring perhaps a deeper understanding of nuclear dynamics. In astrophysics, the properties of neutron stars will be properly understood only when the equation of state of 'neutron' matter at densities exceeding that of nuclear matter can be realiably calculated. Most fascinating is the possibility of quark stars existing in nature, not entirely an absurd idea. Finally the quark matter - nuclear matter phase transition must have occured in the early stage of universe when matter expanded from high temperature and density; this could be an essential ingredient in the big-bang cosmology

  2. Insight to structural subsite recognition in plant thiol protease-inhibitor complexes : Understanding the basis of differential inhibition and the role of water

    Directory of Open Access Journals (Sweden)

    Mukhopadhayay Bishnu P

    2001-09-01

    Full Text Available Abstract Background This work represents an extensive MD simulation / water-dynamics studies on a series of complexes of inhibitors (leupeptin, E-64, E-64-C, ZPACK and plant cysteine proteases (actinidin, caricain, chymopapain, calotropin DI of papain family to understand the various interactions, water binding mode, factors influencing it and the structural basis of differential inhibition. Results The tertiary structure of the enzyme-inhibitor complexes were built by visual interactive modeling and energy minimization followed by dynamic simulation of 120 ps in water environment. DASA study with and without the inhibitor revealed the potential subsite residues involved in inhibition. Though the interaction involving main chain atoms are similar, critical inspection of the complexes reveal significant differences in the side chain interactions in S2-P2 and S3-P3 pairs due to sequence differences in the equivalent positions of respective subsites leading to differential inhibition. Conclusion The key finding of the study is a conserved site of a water molecule near oxyanion hole of the enzyme active site, which is found in all the modeled complexes and in most crystal structures of papain family either native or complexed. Conserved water molecules at the ligand binding sites of these homologous proteins suggest the structural importance of the water, which changes the conventional definition of chemical geometry of inhibitor binding domain, its shape and complimentarity. The water mediated recognition of inhibitor to enzyme subsites (Pn...H2O....Sn of leupeptin acetyl oxygen to caricain, chymopapain and calotropinDI is an additional information and offer valuable insight to potent inhibitor design.

  3. Evaluating Students' Understanding of Kinetic Particle Theory Concepts Relating to the States of Matter, Changes of State and Diffusion: A Cross-National Study

    Science.gov (United States)

    Treagust, David F.; Chandrasegaran, A. L.; Crowley, Julianne; Yung, Benny H. W.; Cheong, Irene P.-A.; Othman, Jazilah

    2010-01-01

    This paper reports on the understanding of three key conceptual categories relating to the kinetic particle theory: (1) intermolecular spacing in solids, liquids and gases, (2) changes of state and intermolecular forces and (3) diffusion in liquids and gases, amongst 148 high school students from Brunei, Australia, Hong Kong and Singapore using 11…

  4. First 5 tower WIMP-search results from the Cryogenic Dark Matter Search with improved understanding of neutron backgrounds and benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Hennings-Yeomans, Raul [Case Western Reserve Univ., Cleveland, OH (United States)

    2009-02-01

    Non-baryonic dark matter makes one quarter of the energy density of the Universe and is concentrated in the halos of galaxies, including the Milky Way. The Weakly Interacting Massive Particle (WIMP) is a dark matter candidate with a scattering cross section with an atomic nucleus of the order of the weak interaction and a mass comparable to that of an atomic nucleus. The Cryogenic Dark Matter Search (CDMS-II) experiment, using Ge and Si cryogenic particle detectors at the Soudan Underground Laboratory, aims to directly detect nuclear recoils from WIMP interactions. This thesis presents the first 5 tower WIMP-search results from CDMS-II, an estimate of the cosmogenic neutron backgrounds expected at the Soudan Underground Laboratory, and a proposal for a new measurement of high-energy neutrons underground to benchmark the Monte Carlo simulations. Based on the non-observation of WIMPs and using standard assumptions about the galactic halo [68], the 90% C.L. upper limit of the spin-independent WIMPnucleon cross section for the first 5 tower run is 6.6 × 10-44cm2 for a 60 GeV/c2 WIMP mass. A combined limit using all the data taken at Soudan results in an upper limit of 4.6×10-44cm2 at 90% C.L.for a 60 GeV/c2 WIMP mass. This new limit corresponds to a factor of ~3 improvement over any previous CDMS-II limit and a factor of ~2 above 60 GeV/c 2 better than any other WIMP search to date. This thesis presents an estimation, based on Monte Carlo simulations, of the nuclear recoils produced by cosmic-ray muons and their secondaries (at the Soudan site) for a 5 tower Ge and Si configuration as well as for a 7 supertower array. The results of the Monte Carlo are that CDMS-II should expect 0.06 ± 0.02+0.18 -0.02 /kgyear unvetoed single nuclear recoils in Ge for the 5 tower configuration, and 0.05 ± 0.01+0.15 -0.02 /kg-year for the 7 supertower configuration. The systematic error is based on the available

  5. Experimental Studies of the Transport Parameters of Warm Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Chouffani, Khalid [Idaho State Univ., Pocatello, ID (United States)

    2014-12-01

    There is a need to establish fundamental properties of matter and energy under extreme physical conditions. Although high energy density physics (HEDP) research spans a wide range of plasma conditions, there is one unifying regime that is of particular importance and complexity: that of warm dense matter, the transitional state between solid state condensed matter and energetic plasmas. Most laboratory experimental conditions, including inertial confinement implosion, fall into this regime. Because all aspects of laboratory-created high-energy-density plasmas transition through the warm dense matter regime, understanding the fundamental properties to determine how matter and energy interact in this regime is an important aspect of major research efforts in HEDP. Improved understanding of warm dense matter would have significant and wide-ranging impact on HEDP science, from helping to explain wire initiation studies on the Sandia Z machine to increasing the predictive power of inertial confinement fusion modeling. The central goal or objective of our proposed research is to experimentally determine the electrical resistivity, temperature, density, and average ionization state of a variety of materials in the warm dense matter regime, without the use of theoretical calculations. Since the lack of an accurate energy of state (EOS) model is primarily due to the lack of experimental data, we propose an experimental study of the transport coefficients of warm dense matter.

  6. Coarse-grained simulations for flow of complex soft matter fluids in the bulk and in the presence of solid interfaces.

    Science.gov (United States)

    Ahuja, V R; van der Gucht, J; Briels, W J

    2016-11-21

    We present a coarse-grained particle-based simulation technique for modeling flow of complex soft matter fluids such as polymer solutions in the presence of solid interfaces. In our coarse-grained description of the system, we track the motion of polymer molecules using their centers-of-mass as our coarse-grain co-ordinates and also keep track of another set of variables that describe the background flow field. The coarse-grain motion is thus influenced not only by the interactions based on appropriate potentials used to model the particular polymer system of interest and the random kicks associated with thermal fluctuations, but also by the motion of the background fluid. In order to couple the motion of the coarse-grain co-ordinates with the background fluid motion, we use a Galilean invariant, first order Brownian dynamics algorithm developed by Padding and Briels [J. Chem. Phys. 141, 244108 (2014)], which on the one hand draws inspiration from smoothed particle hydrodynamics in a way that the motion of the background fluid is efficiently calculated based on a discretization of the Navier-Stokes equation at the positions of the coarse-grain coordinates where it is actually needed, but also differs from it because of the inclusion of thermal fluctuations by having momentum-conserving pairwise stochastic updates. In this paper, we make a few modifications to this algorithm and introduce a new parameter, viz., a friction coefficient associated with the background fluid, and analyze the relationship of the model parameters with the dynamic properties of the system. We also test this algorithm for flow in the presence of solid interfaces to show that appropriate boundary conditions can be imposed at solid-fluid interfaces by using artificial particles embedded in the solid walls which offer friction to the real fluid particles in the vicinity of the wall. We have tested our method using a model system of a star polymer solution at the overlap concentration.

  7. It Doesn't Matter What Is in Their Hands: Understanding How Students Use Technology to Support, Enhance and Expand Their Learning in a Complex World

    Science.gov (United States)

    Bryant, Peter

    2017-01-01

    Perspectives on the use of technology in teaching and learning have been increasing polarised, with positions entrenched around the efficacy of using technology in lectures, the distractions assumed to arise from social media and the temporality and ephemerality of knowledge located outside the academy. This paper presents the preliminary…

  8. The MarsOrganiX experiment: Understanding the influence of the secondary X-Rays on the organic matter at Mars' near-surface.

    Science.gov (United States)

    Buch, A.; Szopa, C.; Freissinet, C.; Stalport, F.; Coscia, D.; Pavlov, A.; Gilbert, P.; Bonnet, J. Y.; Guerrini, V.; Navarro-Gonzalez, R.

    2017-12-01

    Mars may have harbored a prebiotic chemistry that could have led to the emergence of life. If such, traces of these could be preserved in the oldest (3.5 billion years and more) rocks at the surface of the planet. Because of the thin atmosphere of Mars and the absence of an active magnetic field, the harsh radiative environment at the near-surface consists of UV and X-ray radiation, galactic and solar cosmic rays (GCRs and SCRs), as well as secondary particles produced by the interaction of GCRs and SCRs with the atmosphere and soil (secondary X-rays). The majority of the X-rays at the martian surface are generated in the rocks by the penetrating GCR and SCR particles. The GCRs' secondary X-rays' absorbed dose, at the top centimeters of the surface of Mars, has been estimated at about 0.05 Gy per year. All these radiation (direct and indirect) are prone to induce extended degradation or transformation of organic matter that would be present at Mars' near-surface, down to the 3 m depth of the GCRs/SCRs penetration. The SAM experiment onboard Curiosity rover led to the first in situ detection of organic molecules in martian rocks and soils. Chlorobenzene was detected in Cumberland at a concentration of up to 300 parts per billion in weight. However, chlorobenzene was thought to be formed in the SAM oven, during the pyrolysis of the sample. Nevertheless, Cumberland sample has been exposed to GCRs and SCRs for about 80 million years, and thus, the undergone X-rays radiation may have processed the organic matter and chlorinated the organic molecules in presence of perchlorate. Therefore, this study aims at evaluating the possible precursor(s), that would lead to the formation of chlorobenzene (detected with SAM) when irradiated in presence of perchlorate. Using the PSICHE beam line at SOLEIL, a synchrotron facility in France, we studied the extend of degradation and transformation of two organic molecules of interest, a carboxylic acid (benzoic acid) and an amino acid

  9. Understanding Global Climate Change Effects on Annual Average Fine Particulate Matter (PM2.5) Concentrations in California Using 7-year Average Meteorology

    Science.gov (United States)

    Mahmud, A. A.; Hixson, M.; Zhao, Z.; Chen, S.; Kleeman, M. J.

    2009-12-01

    Climate change will transform meteorological patterns with unknown consequences for air quality in California. California’s extreme topography requires higher spatial resolution for climate-air quality studies compared to other regions of the United States. At the same time, the 7-year ENSO cycle requires long analysis periods in order to quantify climate impacts. The combination of these challenges results in a computationally intensive modeling problem that limits our ability to fully analyze climate impacts on California air quality. One possible approach to reduce this computational burden is to average several years of meteorological fields and then use these average inputs in a single set of air quality runs. The interactions between meteorology and air quality are non-linear, and so the averaging approach may introduce biases that need to be quantified. The objective of this research is to evaluate how upstream averaging of meteorological fields over several years influences air quality predictions in California. Hourly meteorological fields will be averaged over 7-years in the present-day (2000-2006) and the future (2047-2053). The meteorology for each period was down-scaled using the Weather Research Forecast (WRF) from the business-as-usual output generated by the Parallel Climate Model (PCM). Emissions of biogenic and mobile-source volatile organic carbons (VOC) will be processed using meteorological fields from individual years, and using the averaged meteorological data. The UCD source-oriented photochemical air quality model will be employed to study the global climate change effects on the annual average concentrations of fine particulate matter (PM2.5) throughout the entire state of California. The model predicts the size and composition distribution of airborne particulate matter in 15 size bins spanning the diameter range from 10nm - 10µm. The modeled concentrations from individual years will be averaged and compared with the concentrations

  10. Organisation Matters

    DEFF Research Database (Denmark)

    Unphon, Hataichanok; Dittrich, Yvonne

    2008-01-01

    Our work aims at understanding the design rationale for product line architecture by focusing on the design of common data access modules for complex simulation software products. This paper presents empirical evidence of organisational and business domain aspects that influence the development o...... of product line architecture. We suggest that the assessment of use-situation and his tory of organisational structure should be considered when creating product line architectures, especially for products that are tailored and used interactively.......Our work aims at understanding the design rationale for product line architecture by focusing on the design of common data access modules for complex simulation software products. This paper presents empirical evidence of organisational and business domain aspects that influence the development...

  11. Interstellar matter

    International Nuclear Information System (INIS)

    Peimbert, M.; Lequeux, J.; Mebold, U.; Wannier, P.G.; Mathis, J.S.; Elmegreen, B.G.; Shaver, P.A.; D'Odorico, S.; Terzian, Y.

    1985-01-01

    It has become more evident during the last three years that the study of interstellar matter is paramount to understand the evolution of the universe and its constituents. From observations of the present state of the interstellar medium, in our galaxy, in other galaxies, and between galaxies, it is possible to test theories of: evolution of the universe, formation and evolution of galaxies, formation and evolution of stars and of the evolution of the interstellar medium itself. The amount of information on the interstellar medium that has been gathered during the 1982-1984 period has been very large and the theoretical models that have been ellaborated to explain these observations have been very numerous. This report on IAU research on interstellar matter covers the period 1982-1984 and is divided in self-contained sections. For those papers considered, only very brief summaries are presented here. A detailed list of articles on the physics of the interstellar medium and gaseous nebulae carried out in the Soviet Union in the 1981-1984 period was prepared by N.G. Bochkarev and G. Rudnitskij; only a small fraction of these articles are discussed in this report; copies of this list are available from the office of the President of Commission 34. (Auth.)

  12. Dark matter and its detection

    International Nuclear Information System (INIS)

    Bi Xiaojun; Qin Bo

    2011-01-01

    We first explain the concept of dark matter,then review the history of its discovery and the evidence of its existence. We describe our understanding of the nature of dark matter particles, the popular dark matter models,and why the weakly interacting massive particles (called WIMPs) are the most attractive candidates for dark matter. Then we introduce the three methods of dark matter detection: colliders, direct detection and indirect detection. Finally, we review the recent development of dark matter detection, including the new results from DAMA, CoGent, PAMELA, ATIC and Fermi. (authors)

  13. Play Matters

    DEFF Research Database (Denmark)

    Sicart (Vila), Miguel Angel

    What do we think about when we think about play? A pastime? Games? Childish activities? The opposite of work? Think again: If we are happy and well rested, we may approach even our daily tasks in a playful way, taking the attitude of play without the activity of play. So what, then, is play......, but not necessarily fun. Play can be dangerous, addictive, and destructive. Along the way, Sicart considers playfulness, the capacity to use play outside the context of play; toys, the materialization of play--instruments but also play pals; playgrounds, play spaces that enable all kinds of play; beauty......? In Play Matters, Miguel Sicart argues that to play is to be in the world; playing is a form of understanding what surrounds us and a way of engaging with others. Play goes beyond games; it is a mode of being human. We play games, but we also play with toys, on playgrounds, with technologies and design...

  14. GEM Plate Boundary Simulations for the Plate Boundary Observatory: A Program for Understanding the Physics of Earthquakes on Complex Fault Networks via Observations, Theory and Numerical Simulation

    Science.gov (United States)

    Rundle, J. B.; Rundle, P. B.; Klein, W.; de sa Martins, J.; Tiampo, K. F.; Donnellan, A.; Kellogg, L. H.

    The last five years have seen unprecedented growth in the amount and quality of geodetic data collected to characterize crustal deformation in earthquake-prone areas such as California and Japan. The installation of the Southern California Integrated Geodetic Network (SCIGN) and the Bay Area Regional Deformation (BARD) network are two examples. As part of the recently proposed Earthscope NSF/GEO/EAR/MRE initiative, the Plate Boundary Observatory (PBO) plans to place more than a thousand GPS, strainmeters, and deformation sensors along the active plate boundary of the western coast of the United States, Mexico and Canada (http://www.earthscope.org/pbo.com.html). The scientific goals of PBO include understanding how tectonic plates interact, together with an emphasis on understanding the physics of earthquakes. However, the problem of understanding the physics of earthquakes on complex fault networks through observations alone is complicated by our inability to study the problem in a manner familiar to laboratory scientists, by means of controlled, fully reproducible experiments. We have therefore been motivated to construct a numerical simulation technology that will allow us to study earthquake physics via numerical experiments. To be considered successful, the simulations must not only produce observables that are maximally similar to those seen by the PBO and other observing programs, but in addition the simulations must provide dynamical predictions that can be falsified by means of observations on the real fault networks. In general, the dynamical behavior of earthquakes on complex fault networks is a result of the interplay between the geometric structure of the fault network and the physics of the frictional sliding process. In constructing numerical simulations of a complex fault network, we will need to solve a variety of problems, including the development of analysis techniques (also called data mining), data assimilation, space-time pattern definition

  15. Soft Condensed Matter

    International Nuclear Information System (INIS)

    Jones, Richard A L

    2002-01-01

    The author states in the preface of the book that the aim is '...to give a unified overview of the various aspects of the physics of soft condensed matter'. The book succeeds in fulfilling this aim in many respects. The style is fluent and concise and gives the necessary explanations to make its content understandable to people with some knowledge of the basic principles of physics. The content of the book is complete enough to give a panoramic view of the landscape of soft condensed matter. The first two chapters give, respectively, a short introduction and a presentation of forces, energies and timescales, giving a general overview and pointing out the particular importance of different aspects such as timescales, which are much more important in soft condensed matter than in traditional or 'hard' condensed matter. The next chapter, devoted to phase transition, recalls that the equilibrium between two phases is controlled by free energy considerations. Spinodal decomposition is presented as a counterpart of nucleation and growth. Again, characteristic length scales are considered and applied to a phase separation mixture of polymers in a common solvent. The following three chapters are devoted respectively to specific topics: colloidal dispersion, polymers and gelation. The stability and phase behaviour of colloids are related to the interaction between colloidal particles. Properties of colloidal crystals as well as colloidal dispersion are depicted in terms of stabilization of crystalline colloids. The flow properties of colloidal dispersion are presented in terms of free energy minimization and the structure of the dispersion. After a brief introduction to polymer chemistry and architecture, the coil-globule transition is discussed. Viscoelasticity of polymers is described and discussed by introducing the notion of entanglement. This leads to the introduction of the tube model and the theory of reptation. The sol-gel transition is presented phenomenologically

  16. Solid Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    Supported by a generous quantity of full-color illustrations and interesting sidebars, Solid Matter introduces the basic characteristics and properties of solid matter. It briefly describes the cosmic connection of the elements, leading readers through several key events in human pre-history that resulted in more advanced uses of matter in the solid state. Chapters include:. -Solid Matter: An Initial Perspective. -Physical Behavior of Matter. -The Gravity of Matter. -Fundamentals of Materials Science. -Rocks and Minerals. -Metals. -Building Materials. -Carbon Earth's Most Versatile Element. -S

  17. Understanding solution-state noncovalent interactions between xenobiotics and natural organic matter using 19F/1H heteronuclear saturation transfer difference nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Longstaffe, James G; Simpson, André J

    2011-08-01

    A combination of forward and reverse heteronuclear ((19)F/(1)H) saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopic techniques were applied to characterize the noncovalent interactions between perfluorinated aromatic xenobiotics and dissolved humic acid. These NMR techniques produce detailed molecular-level descriptions of weak noncovalent associations between components in complex environmental mixtures, allowing the mechanisms underlying these interactions to be explored; (19)F observed heteronuclear STD (H-STD) is used to describe the average molecular orientation of the xenobiotics during their interactions with humic acid, whereas (1)H observed reverse-heteronuclear STD (RH-STD) is used to both identify and quantify preferences exhibited by xenobiotics for interactions at different types of humic acid moieties. First, by using H-STD, it is shown that selected aromatic organofluorides orient with their nonfluorine functional groups (OH, NH(2), and COOH) directed away from humic acid during the interactions, suggesting that these functional groups are not specifically involved. Second, the RH-STD experiment is shown to be sensitive to subtle differences in preferred interaction sites in humic acid and is used here to demonstrate preferential interactions at aromatic humic acid sites for selected aromatic xenobiotics, C(10)F(7)OH, and C(6)F(4)X(2), (where X = F, OH, NH(2), NO(2), or COOH), that can be predicted from the electrostatic potential density maps of the xenobiotic. Copyright © 2011 SETAC.

  18. Speech Matters

    DEFF Research Database (Denmark)

    Hasse Jørgensen, Stina

    2011-01-01

    About Speech Matters - Katarina Gregos, the Greek curator's exhibition at the Danish Pavillion, the Venice Biannual 2011.......About Speech Matters - Katarina Gregos, the Greek curator's exhibition at the Danish Pavillion, the Venice Biannual 2011....

  19. Using the FLUKA Monte Carlo Code to Simulate the Interactions of Ionizing Radiation with Matter to Assist and Aid Our Understanding of Ground Based Accelerator Testing, Space Hardware Design, and Secondary Space Radiation Environments

    Science.gov (United States)

    Reddell, Brandon

    2015-01-01

    Designing hardware to operate in the space radiation environment is a very difficult and costly activity. Ground based particle accelerators can be used to test for exposure to the radiation environment, one species at a time, however, the actual space environment cannot be duplicated because of the range of energies and isotropic nature of space radiation. The FLUKA Monte Carlo code is an integrated physics package based at CERN that has been under development for the last 40+ years and includes the most up-to-date fundamental physics theory and particle physics data. This work presents an overview of FLUKA and how it has been used in conjunction with ground based radiation testing for NASA and improve our understanding of secondary particle environments resulting from the interaction of space radiation with matter.

  20. 'It's a matter of patient safety': understanding challenges in everyday clinical practice for achieving good care on the surgical ward - a qualitative study.

    Science.gov (United States)

    Jangland, Eva; Nyberg, Berit; Yngman-Uhlin, Pia

    2017-06-01

    Surgical care plays an important role in the acute hospital's delivery of safe, high-quality patient care. Although demands for effectiveness are high in surgical wards quality of care and patient safety must also be secured. It is therefore necessary to identify the challenges and barriers linked to quality of care and patient safety with a focus on this specific setting. To explore situations and processes that support or hinder good safe patient care on the surgical ward. This qualitative study was based on a strategic sample of 10 department and ward leaders in three hospitals and six surgical wards in Sweden. Repeated reflective interviews were analysed using systematic text condensation. Four themes described the leaders' view of a complex healthcare setting that demands effectiveness and efficiency in moving patients quickly through the healthcare system. Quality of care and patient safety were often hampered factors such as a shift of care level, with critically ill patients cared for without reorganisation of nurses' competencies on the surgical ward. There is a gap between what is described in written documents and what is or can be performed in clinical practice to achieve good care and safe care on the surgical ward. A shift in levels of care on the surgical ward without reallocation of the necessary competencies at the patient's bedside show consequences for quality of care and patient safety. This means that surgical wards should consider reviewing their organisation and implementing more advanced nursing roles in direct patient care on all shifts. The ethical issues and the moral stress on nurses who lack the resources and competence to deliver good care according to professional values need to be made more explicit as a part of the patient safety agenda in the surgical ward. © 2016 Nordic College of Caring Science.

  1. Dark Matter

    Indian Academy of Sciences (India)

    What You See Ain't What. You Got, Resonance, Vol.4,. No.9,1999. Dark Matter. 2. Dark Matter in the Universe. Bikram Phookun and Biman Nath. In Part 11 of this article we learnt that there are compelling evidences from dynamics of spiral galaxies, like our own, that there must be non-luminous matter in them. In this.

  2. Dynamics of Soft Matter

    CERN Document Server

    García Sakai, Victoria; Chen, Sow-Hsin

    2012-01-01

    Dynamics of Soft Matter: Neutron Applications provides an overview of neutron scattering techniques that measure temporal and spatial correlations simultaneously, at the microscopic and/or mesoscopic scale. These techniques offer answers to new questions arising at the interface of physics, chemistry, and biology. Knowledge of the dynamics at these levels is crucial to understanding the soft matter field, which includes colloids, polymers, membranes, biological macromolecules, foams, emulsions towards biological & biomimetic systems, and phenomena involving wetting, friction, adhesion, or micr

  3. Understanding integrated mental health care in "real-world" primary care settings: What matters to health care providers and clients for evaluation and improvement?

    Science.gov (United States)

    Ion, Allyson; Sunderji, Nadiya; Jansz, Gwen; Ghavam-Rassoul, Abbas

    2017-09-01

    The integration of mental health specialists into primary care has been widely advocated to deliver evidence-based mental health care to a defined population while improving access, clinical outcomes, and cost efficiency. Integrated care has been infrequently and inconsistently translated into real-world settings; as a result, the key individual components of effective integrated care remain unclear. This article reports findings from a qualitative study that explored provider and client experiences of integrated care. We conducted in-depth interviews with integrated care providers (n = 13) and clients (n = 9) to understand their perspectives and experiences of integrated care including recommended areas for quality measurement and improvement. The authors used qualitative content and reflexive thematic analytic approaches to synthesize the interview data. Clients and integrated care providers agreed regarding the overarching concepts of the what, how, and why of integrated care including co-location of care; continuity of care; team composition and functioning; client centeredness; and comprehensive care for individuals and populations. Providers and clients proposed a number of dimensions that could be the focus for quality measurement and evaluation, illuminating what is needed for successful context-sensitive spreading and scaling of integrated care interventions. With a mounting gap between the empirical support for integrated care approaches and the implementation of these models, there is a need to clarify the aims of integrated care and the key ingredients required for widespread implementation outside of research settings. This study has important implications for future integrated care research, and health care provider and client engagement in the quality movement. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Teaching Teaching & Understanding Understanding

    DEFF Research Database (Denmark)

    2006-01-01

    "Teaching Teaching & Understanding Understanding" is a 19-minute award-winning short-film about teaching at university and higher-level educational institutions. It is based on the "Constructive Alignment" theory developed by Prof. John Biggs. The film delivers a foundation for understanding what...

  5. Increased understanding of nutrient immobilization in soil organic matter is critical for predicting the carbon sink strength of forest ecosystems over the next 100 years.

    Science.gov (United States)

    McMurtrie, R E; Medlyn, B E; Dewar, R C

    2001-08-01

    variable soil N:C, it is a combined temperature-CO2 response. Simulations with gradual increases of temperature and [CO2] indicate a sustained C sink over the next 100 years, in contrast to recent claims that the C sink will decline over the next few decades. Nevertheless, in using a relatively simple model, our primary aim is not to make precise predictions of the C sink over the next 100 years, but rather to highlight key areas of model uncertainty requiring further experimental clarification. Here we show that improved understanding of the processes underlying soil N immobilization is essential if we are to predict the future course of the forest carbon sink.

  6. Understanding physics

    CERN Document Server

    Cassidy, David; Rutherford, James

    2002-01-01

    Understanding Physics provides a thorough grounding in contemporary physics while placing physics into its social and historical context Based in large part on the highly respected Project Physics Course developed by two of the authors, it also integrates the results of recent pedagogical research The text thus - teaches about the basic phenomena in the physical world and the concepts developed to explain them - shows that science is a rational human endeavor with a long and continuing tradition, involving many different cultures and people - develops facility in critical thinking, reasoned argumentation, evaluation of evidence, mathematical modeling, and ethical values The treatment emphasizes not only what we know but also how we know it, why we believe it, and what effects that knowledge has - Why do we believe the Earth and planets revolve around the Sun? - Why do we believe that matter is made of atoms? - How do relativity theory and quantum mechanics alter our conception of Nature and in what ways do th...

  7. Understanding Maple

    CERN Document Server

    Thompson, Ian

    2016-01-01

    Maple is a powerful symbolic computation system that is widely used in universities around the world. This short introduction gives readers an insight into the rules that control how the system works, and how to understand, fix, and avoid common problems. Topics covered include algebra, calculus, linear algebra, graphics, programming, and procedures. Each chapter contains numerous illustrative examples, using mathematics that does not extend beyond first-year undergraduate material. Maple worksheets containing these examples are available for download from the author's personal website. The book is suitable for new users, but where advanced topics are central to understanding Maple they are tackled head-on. Many concepts which are absent from introductory books and manuals are described in detail. With this book, students, teachers and researchers will gain a solid understanding of Maple and how to use it to solve complex mathematical problems in a simple and efficient way.

  8. Dark matter universe.

    Science.gov (United States)

    Bahcall, Neta A

    2015-10-06

    Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.

  9. Culture Matters

    Directory of Open Access Journals (Sweden)

    Gillian Warner-Søderholm

    2012-12-01

    Full Text Available Whether managers are concerned with financial issues, marketing, or human resource management (HRM, cultural values and practices do matter. The purpose of this article is to understand Norwegian managers’ cultural values within the cross-cultural landscape of her neighbors in the “Scandinavian cluster.” Clearly, subtle but disturbing differences may surface even when representatives from similar cultures work together. As a follow on from the GLOBE project, data based on the GLOBE instrument were collected on culture and communication values in Norway from 710 Norwegian middle managers for this present study. Although the Scandinavian cultures appear ostensibly similar, the results illustrate that research can reveal subtle but important cultural differences in nations that are similar yet dissimilar. All three Scandinavian societies appear intrinsically egalitarian; they appear to value low Power Distance, directness, and consensus in decision making and to promote Gender Egalitarianism. Nevertheless, there are significant differences in the degrees of commitment to these values by each individual Scandinavian partner. These differences need to be understood and appreciated to avoid misunderstandings.

  10. The correlation between white-matter microstructure and the complexity of spontaneous brain activity: a difussion tensor imaging-MEG study.

    OpenAIRE

    Fernández, A; Ríos-Lago, M; Abásolo, D; Hornero, R; Alvarez-Linera, J; Paul, N; Maestú, F; Ortiz, T

    2011-01-01

    The advent of new signal processing methods, such as non-linear analysis techniques, represents a new perspective which adds further value to brain signals' analysis. Particularly, Lempel–Ziv's Complexity (LZC) has proven to be useful in exploring the complexity of the brain electromagnetic activity. However, an important problem is the lack of knowledge about the physiological determinants of these measures. Although acorrelation between complexity and connectivity has been proposed, this hy...

  11. Understanding the fundamental constituents of matter

    International Nuclear Information System (INIS)

    Zichichi, A.

    1978-01-01

    Individual abstracts were prepared for 21 of the lectures in this volume for entry into the TIC data base; five of these are cited in ERA. Two additional papers have already been entered into the data base; these can be found by reference to the entry CONF-760874-- in the Report Number Index

  12. Serving Up Vegetarian: A Matter of Understanding.

    Science.gov (United States)

    France, Cindy

    1997-01-01

    A food service manager at a resident camp discusses how she changed her attitude about vegetarianism and the strategies she used to create a vegetarian menu for staff and campers. She experimented with vegetarian recipes and allowed campers and staff their choice of menu options for each camp session. Includes information sources. (LP)

  13. Informationalising matter : systems understandings of the nanoscale.

    OpenAIRE

    Kearnes, M. B.

    2008-01-01

    Themes of mastery, domination and power are familiar to any scholar of modern technology. Science is commonly cast as enabling the technological control over both the natural and physical worlds. Indeed, Francis Bacon famously equated scientific knowledge with power itself—stating that ‘knowledge itself is a power’ (Bacon in Montagu 1825, 71). Bacon’s now ubiquitous phrase—commonly repeated as the banal ‘knowledge is power’—was an attempt to combat three heresies in scriptural interpretation ...

  14. The God Machine seeks the origin of the matter

    International Nuclear Information System (INIS)

    Martin, R.

    2015-01-01

    Under the green fields of the French-Swiss border, not far from the Alps and Lake Geneva, is hidden underground most strength Earth energy. The generated particles of low mass, subatomic, ue collide with each other in a huge circumference of 27 kilometers, the Large Hadron Collider (LHC English siglasen), an underground infrastructure that seeks to answer big questions of science: the origin of matter we know or dark matter and energy, which together occupy 95% of the universe and that we are not able to see or understand. They call it the 'god machine' and is the largest and most complex built in the world. (Author)

  15. Order and disorder in matter

    CERN Document Server

    Careri, Giorgio

    1984-01-01

    Order and Disorder in Matter offers a comprehensive and up-to-date view of structures and processes in matter, in terms of the evolving concepts of order and disorder. Particular emphasis is given to the recent evolution of these concepts and their relationship to the more complex systems in nature.

  16. Matter in toy dynamical geometries

    International Nuclear Information System (INIS)

    Konopka, Tomasz

    2009-01-01

    One of the objectives of theories describing quantum dynamical geometry is to compute expectation values of geometrical observables. The results of such computations can be affected by whether or not matter is taken into account. It is thus important to understand to what extent and to what effect matter can affect dynamical geometries. Using a simple model, it is shown that matter can effectively mold a geometry into an isotropic configuration. Implications for 'atomistic' models of quantum geometry are briefly discussed.

  17. Predicting Effects of Climate Change on Habitat Suitability of Red Spruce (Picea rubens Sarg. in the Southern Appalachian Mountains of the USA: Understanding Complex Systems Mechanisms through Modeling

    Directory of Open Access Journals (Sweden)

    Kyung Ah Koo

    2015-04-01

    Full Text Available Alpine, subalpine and boreal tree species, of low genetic diversity and adapted to low optimal temperatures, are vulnerable to the warming effects of global climate change. The accurate prediction of these species’ distributions in response to climate change is critical for effective planning and management. The goal of this research is to predict climate change effects on the distribution of red spruce (Picea rubens Sarg. in the Great Smoky Mountains National Park (GSMNP, eastern USA. Climate change is, however, conflated with other environmental factors, making its assessment a complex systems problem in which indirect effects are significant in causality. Predictions were made by linking a tree growth simulation model, red spruce growth model (ARIM.SIM, to a GIS spatial model, red spruce habitat model (ARIM.HAB. ARIM.SIM quantifies direct and indirect interactions between red spruce and its growth factors, revealing the latter to be dominant. ARIM.HAB spatially distributes the ARIM.SIM simulations under the assumption that greater growth reflects higher probabilities of presence. ARIM.HAB predicts the future habitat suitability of red spruce based on growth predictions of ARIM.SIM under climate change and three air pollution scenarios: 10% increase, no change and 10% decrease. Results show that suitable habitats shrink most when air pollution increases. Higher temperatures cause losses of most low-elevation habitats. Increased precipitation and air pollution produce acid rain, which causes loss of both low- and high-elevation habitats. The general prediction is that climate change will cause contraction of red spruce habitats at both lower and higher elevations in GSMNP, and the effects will be exacerbated by increased air pollution. These predictions provide valuable information for understanding potential impacts of global climate change on the spatiotemporal distribution of red spruce habitats in GSMNP.

  18. Dark Matter

    Indian Academy of Sciences (India)

    In Part 11 of this article we learnt that there are compelling evidences from dynamics of spiral galaxies, like our own, that there must be non-luminous matter in them. In this second part we will see that even clusters of galaxies must harbour dark matter. As if this was not enough, it turns out that if our knowledge of the ...

  19. Memory Matters

    Science.gov (United States)

    ... site Sitio para adolescentes Body Mind Sexual Health Food & Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español Memory Matters KidsHealth / For Kids / Memory Matters What's in ...

  20. Dark matter universe

    Science.gov (United States)

    Bahcall, Neta A.

    2015-01-01

    Most of the mass in the universe is in the form of dark matter—a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations—from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is “cold” (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology—a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)—fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle. PMID:26417091

  1. Can a Healthcare “Lean Sweep” Deliver on What Matters to Patients?; Comment on “Improving Wait Times to Care for Individuals with Multimorbidities and Complex Conditions Using Value Stream Mapping”

    Directory of Open Access Journals (Sweden)

    Jennifer Y. Verma

    2015-11-01

    Full Text Available Disconnects and defects in care – such as duplication, poor integration between services or avoidable adverse events – are costly to the health system and potentially harmful to patients and families. For patients living with multiple chronic conditions, such disconnects can be particularly detrimental. Lean is an approach to optimizing value by reducing waste (eg, duplication and defects and containing costs (eg, improving integration of services as well as focusing on what matters to patients. Lean works particularly well to optimize existing processes and services. However, as the burden of chronic illness and frailty overtake episodic care needs, health systems require far greater complex, adaptive change. Such change ought to take into account outcomes in population health in addition to care experiences and costs (together, comprising the Triple Aim; and involve patients and families in co-designing new models of care that better address complex, longer-term health needs.

  2. Can a Healthcare "Lean Sweep" Deliver on What Matters to Patients? Comment on "Improving Wait Times to Care for Individuals with Multimorbidities and Complex Conditions Using Value Stream Mapping".

    Science.gov (United States)

    Verma, Jennifer Y; Amar, Claudia

    2015-07-28

    Disconnects and defects in care - such as duplication, poor integration between services or avoidable adverse events - are costly to the health system and potentially harmful to patients and families. For patients living with multiple chronic conditions, such disconnects can be particularly detrimental. Lean is an approach to optimizing value by reducing waste (eg, duplication and defects) and containing costs (eg, improving integration of services) as well as focusing on what matters to patients. Lean works particularly well to optimize existing processes and services. However, as the burden of chronic illness and frailty overtake episodic care needs, health systems require far greater complex, adaptive change. Such change ought to take into account outcomes in population health in addition to care experiences and costs (together, comprising the Triple Aim); and involve patients and families in co-designing new models of care that better address complex, longer-term health needs. © 2015 by Kerman University of Medical Sciences.

  3. Soil Organic Matter (SOM): Molecular Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Amity

    2017-01-12

    Molecular simulation is a powerful tool used to gain an atomistic, molecular, and nanoscale level understanding of the structure, dynamics, and interactions from adsorption on minerals and assembly in aggregates of soil organic matter (SOM). Given the importance of SOM fate and persistence in soils and the current knowledge gaps, applications of atomistic scale simulations to study the complex compounds in SOM and their interactions in self-assembled aggregates composed of different organic matter compounds and with mineral surfaces of different types common in soils are few and far between. Here, we describe various molecular simulation methods that are currently in use in various areas and applicable to SOM research, followed by a brief survey of specific applications to SOM research and an illustration with our own recent efforts in this area. We conclude with an outlook and the challenges for future research in this area.

  4. The axon-glia unit in white matter stroke: mechanisms of damage and recovery.

    Science.gov (United States)

    Rosenzweig, Shira; Carmichael, S Thomas

    2015-10-14

    Approximately one quarter of all strokes in humans occur in white matter, and the progressive nature of white matter lesions often results in severe physical and mental disability. Unlike cortical grey matter stroke, the pathology of white matter stroke revolves around disrupted connectivity and injured axons and glial cells, rather than neuronal cell bodies. Consequently, the mechanisms behind ischemic damage to white matter elements, the regenerative responses of glial cells and their signaling pathways, all differ significantly from those in grey matter. Development of effective therapies for white matter stroke would require an enhanced understanding of the complex cellular and molecular interactions within the white matter, leading to the identification of new therapeutic targets. This review will address the unique properties of the axon-glia unit during white matter stroke, describe the challenging process of promoting effective white matter repair, and discuss recently-identified signaling pathways which may hold potential targets for repair in this disease. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Gaseous Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    aseous Matter focuses on the many important discoveries that led to the scientific interpretation of matter in the gaseous state. This new, full-color resource describes the basic characteristics and properties of several important gases, including air, hydrogen, helium, oxygen, and nitrogen. The nature and scope of the science of fluids is discussed in great detail, highlighting the most important scientific principles upon which the field is based. Chapters include:. Gaseous Matter An Initial Perspective. Physical Characteristics of Gases. The Rise of the Science of Gases. Kinetic Theory of

  6. Communication complexity: A treasure house of lower bounds

    Indian Academy of Sciences (India)

    admin

    Communication complexity: A treasure house of lower bounds. Consider the following intriguing problem in the Mughal court: Akbar, known for his political sagacity, and Birbal, skilled in administrative affairs, want to come to a common understanding on matters of state. Being men of few words, they want to achieve this with ...

  7. Dark matters

    International Nuclear Information System (INIS)

    Silk, Joseph

    2010-01-01

    One of the greatest mysteries in the cosmos is that it is mostly dark. That is, not only is the night sky dark, but also most of the matter and the energy in the universe is dark. For every atom visible in planets, stars and galaxies today there exists at least five or six times as much 'Dark Matter' in the universe. Astronomers and particle physicists today are seeking to unravel the nature of this mysterious but pervasive dark matter, which has profoundly influenced the formation of structure in the universe. Dark energy remains even more elusive, as we lack candidate fields that emerge from well established physics. I will describe various attempts to measure dark matter by direct and indirect means, and discuss the prospects for progress in unravelling dark energy.

  8. Dirac matter

    CERN Document Server

    Rivasseau, Vincent; Fuchs, Jean-Nöel

    2017-01-01

    This fifteenth volume of the Poincare Seminar Series, Dirac Matter, describes the surprising resurgence, as a low-energy effective theory of conducting electrons in many condensed matter systems, including graphene and topological insulators, of the famous equation originally invented by P.A.M. Dirac for relativistic quantum mechanics. In five highly pedagogical articles, as befits their origin in lectures to a broad scientific audience, this book explains why Dirac matters. Highlights include the detailed "Graphene and Relativistic Quantum Physics", written by the experimental pioneer, Philip Kim, and devoted to graphene, a form of carbon crystallized in a two-dimensional hexagonal lattice, from its discovery in 2004-2005 by the future Nobel prize winners Kostya Novoselov and Andre Geim to the so-called relativistic quantum Hall effect; the review entitled "Dirac Fermions in Condensed Matter and Beyond", written by two prominent theoreticians, Mark Goerbig and Gilles Montambaux, who consider many other mater...

  9. Low Energy Nuclear Transmutation in Condensed Matter Induced by D2 Gas Permeation Through pd Complexes:. Correlation Between Deuterium Flux and Nuclear Products

    Science.gov (United States)

    Iwamura, Y.; Itoh, T.; Sakano, M.; Sakai, S.; Kuribayashi, S.

    2005-12-01

    Observations of low energy nuclear reactions induced by D2 gas permeation through Pd complexes (Pd/CaO/Pd) were presented at ICCF-91 and in a paper2 published in the Japanese Journal of Applied Physics. When Cs was added on the surface of a Pd complex, Pr emerged on the surface while Cs decreased after the Pd complex was subjected to D2 gas permeation. When Sr was added to the surface, Mo emerged while the Sr decreased after D2 gas permeation. The isotopic composition of the detected Mo was different from the natural abundance. In this paper, recent progress of our research is described. The detected Pr was confirmed by various methods such as TOF-SIMS, XANES, X-ray Fluorescence Spectrometry and ICP-MS. Analysis of the depth profile of Pr indicated that a very thin surface region up to 100 Å was the active transmutation zone. Many experimental results showed that the quantity of Pr was proportional to the deuterium flux through Pd complex. The cross-section of transmutation of Cs into Pr can be roughly estimated at 1 barn if we consider the deuterium flux as an ultra low energy deuteron beam.

  10. Implementing a Case-Based E-Learning Environment in a Lecture-Oriented Anaesthesiology Class: Do Learning Styles Matter in Complex Problem Solving over Time?

    Science.gov (United States)

    Choi, Ikseon; Lee, Sang Joon; Kang, Jeongwan

    2009-01-01

    This study explores how students' learning styles influence their learning while solving complex problems when a case-based e-learning environment is implemented in a conventional lecture-oriented classroom. Seventy students from an anaesthesiology class at a dental school participated in this study over a 3-week period. Five learning-outcome…

  11. Does Text Complexity Matter in the Elementary Grades? A Research Synthesis of Text Difficulty and Elementary Students' Reading Fluency and Comprehension

    Science.gov (United States)

    Amendum, Steven J.; Conradi, Kristin; Hiebert, Elfrieda

    2018-01-01

    Prompted by the advent of new standards for increased text complexity in elementary classrooms in the USA, the current integrative review investigates the relationships between the level of text difficulty and elementary students' reading fluency and reading comprehension. After application of content and methodological criteria, a total of 26…

  12. Resonant SIMP dark matter

    Directory of Open Access Journals (Sweden)

    Soo-Min Choi

    2016-07-01

    Full Text Available We consider a resonant SIMP dark matter in models with two singlet complex scalar fields charged under a local dark U(1D. After the U(1D is broken down to a Z5 discrete subgroup, the lighter scalar field becomes a SIMP dark matter which has the enhanced 3→2 annihilation cross section near the resonance of the heavier scalar field. Bounds on the SIMP self-scattering cross section and the relic density can be fulfilled at the same time for perturbative couplings of SIMP. A small gauge kinetic mixing between the SM hypercharge and dark gauge bosons can be used to make SIMP dark matter in kinetic equilibrium with the SM during freeze-out.

  13. Balancing Management and Leadership in Complex Health Systems Comment on "Management Matters: A Leverage Point for Health Systems Strengthening in Global Health".

    Science.gov (United States)

    Kwamie, Aku

    2015-08-14

    Health systems, particularly those in low- and middle-income countries (LMICs), need stronger management and leadership capacities. Management and leadership are not synonymous, yet should be considered together as there can be too much of one and not enough of the other. In complex adaptive health systems, the multiple interactions and relationships between people and elements of the system mean that management and leadership, so often treated as domains of the individual, are additionally systemic phenomena, emerging from these relational interactions. This brief commentary notes some significant implications for how we can support capacity strengthening interventions for complex management and leadership. These would necessarily move away from competency-based models focused on training for individuals, and would rather encompass longer-term initiatives explicitly focused on systemic goals of accountability, innovation, and learning. © 2015 by Kerman University of Medical Sciences.

  14. Matter and memory

    CERN Document Server

    Bergson, Henri

    1991-01-01

    Since the end of the last century," Walter Benjamin wrote, "philosophy has made a series of attempts to lay hold of the 'true' experience as opposed to the kind that manifests itself in the standardized, denatured life of the civilized masses. It is customary to classify these efforts under the heading of a philosophy of life. Towering above this literature is Henri Bergson's early monumental work, Matter and Memory."Along with Husserl's Ideas and Heidegger's Being and Time, Bergson's work represents one of the great twentieth-century investigations into perception and memory, movement and time, matter and mind. Arguably Bergson's most significant book, Matter and Memory is essential to an understanding of his philosophy and its legacy.This new edition includes an annotated bibliography prepared by Bruno Paradis.Henri Bergson (1859-1941) was awarded the Nobel Prize in 1927. His works include Time and Free Will, An Introduction to Metaphysics, Creative Evolution, and The Creative Mind.

  15. Processing of spatial and non-spatial information in rats with lesions of the medial and lateral entorhinal cortex: Environmental complexity matters.

    Science.gov (United States)

    Rodo, Christophe; Sargolini, Francesca; Save, Etienne

    2017-03-01

    The entorhinal-hippocampal circuitry has been suggested to play an important role in episodic memory but the contribution of the entorhinal cortex remains elusive. Predominant theories propose that the medial entorhinal cortex (MEC) processes spatial information whereas the lateral entorhinal cortex (LEC) processes non spatial information. A recent study using an object exploration task has suggested that the involvement of the MEC and LEC spatial and non-spatial information processing could be modulated by the amount of information to be processed, i.e. environmental complexity. To address this hypothesis we used an object exploration task in which rats with excitotoxic lesions of the MEC and LEC had to detect spatial and non-spatial novelty among a set of objects and we varied environmental complexity by decreasing the number of objects or amount of object diversity. Reducing diversity resulted in restored ability to process spatial and non-spatial information in MEC and LEC groups, respectively. Reducing the number of objects yielded restored ability to process non-spatial information in the LEC group but not the ability to process spatial information in the MEC group. The findings indicate that the MEC and LEC are not strictly necessary for spatial and non-spatial processing but that their involvement depends on the complexity of the information to be processed. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Insights into dissolved organic matter complexity in rainwater from continental and coastal storms by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry

    Science.gov (United States)

    Mead, R. N.; Mullaugh, K. M.; Avery, G. Brooks; Kieber, R. J.; Willey, J. D.; Podgorski, D. C.

    2013-05-01

    A series of seven rainwater samples were collected in Wilmington, North Carolina USA originating from both continental and coastal storms and analyzed by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). This data set is unique in that it represents a detailed comparison of the molecular level composition of DOM in rainwater collected from distinctly different air mass back trajectories by FT-ICR MS. Approximately 25% of the roughly 2000 assigned CHO molecular formulas are unique to a single storm classification indicating the importance of air mass back trajectory on the composition of rainwater dissolved organic matter (DOM). Analysis of the unique molecular formula assignments highlighted distinct groupings of various bio- and geo-molecule classes with coastal storms containing unique formulas representative of lignin and cellulose-like formulas while continental storms had lipid-like formulas. A series of 18 distinct methylene oligomers were identified in coastal storms and 13 unique methylene oligomers in continental storms, suggesting oligomer formation is ubiquitous in rainwater albeit different for each storm classification. Oligomers of small acids and C3H4O2 were detected in both storm types indicating their processing may be similar in both back trajectories. Condensed aromatic hydrocarbons were detected in continental storms with phenol moieties that are not as oxidized as similar compounds detected in aquatic DOM.

  17. Dichromatic dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yang; Su, Meng; Zhao, Yue

    2013-02-01

    Both the robust INTEGRAL 511 keV gamma-ray line and the recent tentative hint of the 135 GeV gamma-ray line from Fermi-LAT have similar signal morphologies, and may be produced from the same dark matter annihilation. Motivated by this observation, we construct a dark matter model to explain both signals and to accommodate the two required annihilation cross sections that are different by more than six orders of magnitude. In our model, to generate the low-energy positrons for INTEGRAL, dark matter particles annihilate into a complex scalar that couples to photon via a charge-radius operator. The complex scalar contains an excited state decaying into the ground state plus an off-shell photon to generate a pair of positron and electron. Two charged particles with non-degenerate masses are necessary for generating this charge-radius operator. One charged particle is predicted to be long-lived and have a mass around 3.8 TeV to explain the dark matter thermal relic abundance from its late decay. The other charged particle is predicted to have a mass below 1 TeV given the ratio of the two signal cross sections. The 14 TeV LHC will concretely test the main parameter space of this lighter charged particle.

  18. Structure of matter an introductory course with problems and solutions

    CERN Document Server

    Rigamonti, Attilio

    2015-01-01

    This textbook, now in its third edition, provides a formative introduction to the structure of matter that will serve as a sound basis for students proceeding to more complex courses, thus bridging the gap between elementary physics and topics pertaining to research activities. The focus is deliberately limited to key concepts of atoms, molecules and solids, examining the basic structural aspects without paying detailed attention to the related properties. For many topics the aim has been to start from the beginning and to guide the reader to the threshold of advanced research. This edition includes four new chapters dealing with relevant phases of solid matter (magnetic, electric and superconductive) and the related phase transitions. The book is based on a mixture of theory and solved problems that are integrated into the formal presentation of the arguments. Readers will find it invaluable in enabling them to acquire basic knowledge in the wide and wonderful field of condensed matter and to understand how ...

  19. Understanding the Electronic Structure of 4d Metal Complexes: From Molecular Spinors to L-Edge Spectra of a di-Ru Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Alperovich, Igor; Smolentsev, Grigory; Moonshiram, Dooshaye; Jurss, Jonah W.; Concepcion, Javier J.; Meyer, Thomas J.; Soldatov, Alexander; Pushkar, Yulia (UNC); (Purdue); (SFU-Russia); (Lund)

    2015-09-17

    L{sub 2,3}-edge X-ray absorption spectroscopy (XAS) has demonstrated unique capabilities for the analysis of the electronic structure of di-Ru complexes such as the blue dimer cis,cis-[Ru{sub 2}{sup III}O(H{sub 2}O){sub 2}(bpy){sub 4}]{sup 4+} water oxidation catalyst. Spectra of the blue dimer and the monomeric [Ru(NH{sub 3}){sub 6}]{sup 3+} model complex show considerably different splitting of the Ru L{sub 2,3} absorption edge, which reflects changes in the relative energies of the Ru 4d orbitals caused by hybridization with a bridging ligand and spin-orbit coupling effects. To aid the interpretation of spectroscopic data, we developed a new approach, which computes L{sub 2,3}-edges XAS spectra as dipole transitions between molecular spinors of 4d transition metal complexes. This allows for careful inclusion of the spin-orbit coupling effects and the hybridization of the Ru 4d and ligand orbitals. The obtained theoretical Ru L{sub 2,3}-edge spectra are in close agreement with experiment. Critically, existing single-electron methods (FEFF, FDMNES) broadly used to simulate XAS could not reproduce the experimental Ru L-edge spectra for the [Ru(NH{sub 3}){sub 6}]{sup 3+} model complex nor for the blue dimer, while charge transfer multiplet (CTM) calculations were not applicable due to the complexity and low symmetry of the blue dimer water oxidation catalyst. We demonstrated that L-edge spectroscopy is informative for analysis of bridging metal complexes. The developed computational approach enhances L-edge spectroscopy as a tool for analysis of the electronic structures of complexes, materials, catalysts, and reactive intermediates with 4d transition metals.

  20. Understanding the Data Complexity continuum to reduce data management costs and increase data usability through partnerships with the National Centers for Environmental Information

    Science.gov (United States)

    Mesick, S.; Weathers, K. W.

    2017-12-01

    Data complexity can be seen as a continuum from complex to simple. The term data complexity refers to data collections that are disorganized, poorly documented, and generally do not follow best data management practices. Complex data collections are challenging and expensive to manage. Simplified collections readily support automated archival processes, enhanced discovery and data access, as well as production of services that make data easier to reuse. In this session, NOAA NCEI scientific data stewards will discuss the data complexity continuum. This talk will explore data simplification concepts, methods, and tools that data managers can employ which may offer more control over data management costs and processes, while achieving policy goals for open data access and ready reuse. Topics will include guidance for data managers on best allocation of limited data management resources; models for partnering with NCEI to accomplish shared data management goals; and will demonstrate through case studies the benefits of investing in documentation, accessibility, and services to increase data value and return on investment.

  1. Major Sources of Organic Matter in a Complex Coral Reef Lagoon: Identification from Isotopic Signatures (δ13C and δ15N.

    Directory of Open Access Journals (Sweden)

    Marine J Briand

    Full Text Available A wide investigation was conducted into the main organic matter (OM sources supporting coral reef trophic networks in the lagoon of New Caledonia. Sampling included different reef locations (fringing, intermediate and barrier reef, different associated ecosystems (mangroves and seagrass beds and rivers. In total, 30 taxa of macrophytes, plus pools of particulate and sedimentary OM (POM and SOM were sampled. Isotopic signatures (C and N of each OM sources was characterized and the composition of OM pools assessed. In addition, spatial and seasonal variations of reef OM sources were examined. Mangroves isotopic signatures were the most C-depleted (-30.17 ± 0.41 ‰ and seagrass signatures were the most C-enriched (-4.36 ± 0.72 ‰. Trichodesmium spp. had the most N-depleted signatures (-0.14 ± 0.03 ‰ whereas mangroves had the most N-enriched signatures (6.47 ± 0.41 ‰. The composition of POM and SOM varied along a coast-to-barrier reef gradient. River POM and marine POM contributed equally to coastal POM, whereas marine POM represented 90% of the POM on barrier reefs, compared to 10% river POM. The relative importance of river POM, marine POM and mangroves to the SOM pool decreased from fringing to barrier reefs. Conversely, the relative importance of seagrass, Trichodesmium spp. and macroalgae increased along this gradient. Overall, spatial fluctuations in POM and SOM were much greater than in primary producers. Seasonal fluctuations were low for all OM sources. Our results demonstrated that a large variety of OM sources sustain coral reefs, varying in their origin, composition and role and suggest that δ13C was a more useful fingerprint than δ15N in this endeavour. This study also suggested substantial OM exchanges and trophic connections between coral reefs and surrounding ecosystems. Finally, the importance of accounting for environmental characteristics at small temporal and spatial scales before drawing general patterns is

  2. Dark matter and the equivalence principle

    Science.gov (United States)

    Frieman, Joshua A.; Gradwohl, Ben-Ami

    1993-01-01

    A survey is presented of the current understanding of dark matter invoked by astrophysical theory and cosmology. Einstein's equivalence principle asserts that local measurements cannot distinguish a system at rest in a gravitational field from one that is in uniform acceleration in empty space. Recent test-methods for the equivalence principle are presently discussed as bases for testing of dark matter scenarios involving the long-range forces between either baryonic or nonbaryonic dark matter and ordinary matter.

  3. Insights into complexation of dissolved organic matter and Al(III) and nanominerals formation in soils under contrasting fertilizations using two-dimensional correlation spectroscopy and high resolution-transmission electron microscopy techniques.

    Science.gov (United States)

    Wen, Yongli; Li, Huan; Xiao, Jian; Wang, Chang; Shen, Qirong; Ran, Wei; He, Xinhua; Zhou, Quansuo; Yu, Guanghui

    2014-09-01

    Understanding the organomineral associations in soils is of great importance. Using two-dimensional correlation spectroscopy (2DCOS) and high resolution-transmission electron microscopy (HRTEM) techniques, this study compared the binding characteristics of organic ligands to Al(III) in dissolved organic matter (DOM) from soils under short-term (3-years) and long-term (22-years) fertilizations. Three fertilization treatments were examined: (i) no fertilization (Control), (ii) chemical nitrogen, phosphorus and potassium (NPK), and (iii) NPK plus swine manure (NPKM). Soil spectra detected by the 2DCOS Fourier transform infrared (FTIR) spectroscopy showed that fertilization modified the binding characteristics of organic ligands to Al(III) in soil DOM at both short- and long- term location sites. The CH deformations in aliphatic groups played an important role in binding to Al(III) but with minor differences among the Control, NPK and NPKM at the short-term site. While at the long-term site both C-O stretching of polysaccharides or polysaccharide-like substances and aliphatic O-H were bound to Al(III) under the Control, whereas only aliphatic O-H, and only polysaccharides and silicates, were bound to Al(III) under NPK and NPKM, respectively. Images from HRTEM demonstrated that crystalline nanominerals, composed of Fe and O, were predominant in soil DOM under NPK, while amorphous nanominerals, predominant in Al, Si, and O, were dominant in soil DOM under Control and NPKM. In conclusion, fertilization strategies, especially under long-term, could affect the binding of organic ligands to Al(III) in soil DOM, which resulted in alterations in the turnover, reactivity, and bioavailability of soil organic matter. Our results demonstrated that the FTIR-2DCOS combined with HRTEM techniques could enhance our understanding in the binding characteristics of DOM to Al(III) and the resulted nanominerals in soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Bite-angle bending as a key for understanding group-10 metal reactivity of d(10)-[M(NHC)(2)] complexes with sterically modest NHC ligands

    NARCIS (Netherlands)

    Hering, Florian; Nitsch, Joern; Paul, Ursula; Steffen, Andreas; Bickelhaupt, F. Matthias; Radius, Udo

    2014-01-01

    Synthesis, characterization and investigations on the reactivity of the novel metal basic, yet isolable 14 VE NHC-complexes [M0(iPr2Im)2] (M = Pd 3, Pt 4; iPr2Im = 1,3-di-isopropyl-imidazolin-2-ylidene; VE = valence electron; NHC = N-heterocyclic carbene) is reported and compared to the chemistry of

  5. The topological matter of holonomy displacement on the principal U(n) -bundle over Dn,m , related to complex surfaces

    Science.gov (United States)

    Byun, Taechang

    2018-04-01

    Consider U(n) → U(n , m) / U(m) → π Dn,m , where Dn,m = U(n , m) /(U(n) × U(m)) . Given a nontrivial X ∈Mm×n(C) and g ∈ U(n , m) , consider a complete oriented surface S = S(X , g) with a complex structure in Dn,m and a "new" area form ω (X , g) on the surface S . Let c : [ 0 , 1 ] → S be a smooth, simple, closed, orientation-preserving curve and c ˆ : [ 0 , 1 ] → U(n , m) / U(m) its horizontal lift. Then the holonomy displacement is given by the right action of eΨ for some Ψ ∈SpanR i(X∗ X)k k = 1 p ⊂ u(n) , p =the number of distinct positiveeigenvalues ofX∗ X

  6. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 4. Molecule Matters – van der Waals Molecules - History and Some Perspectives on Intermolecular Forces ... Author Affiliations. E Arunan1. Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India.

  7. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 4. Molecule Matters – van der Waals Molecules - History and Some Perspectives on Intermolecular Forces. E Arunan. Feature Article Volume 14 Issue 4 April 2009 pp 346-356 ...

  8. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Molecule Matters - Dinitrogen. A G Samuelson J Jabadurai. Volume 16 Issue 12 ... Author Affiliations. A G Samuelson1 J Jabadurai1. Department of Inroganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India.

  9. Superdense matter

    Indian Academy of Sciences (India)

    introduce effective theories that describe low energy excitations at high baryon density. Finally, we comment on the ... these conditions are maintained for essentially infinite periods of time and the material is quite cold. At low density ... exchange between quarks in a color anti-symmetric ¯3 state. High density quark matter is.

  10. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 5. Molecule Matters - N-Heterocyclic Carbenes - The Stable Form of R2 C: Anil J Elias. Feature Article Volume 13 Issue 5 May 2008 pp 456-467. Fulltext. Click here to view fulltext PDF. Permanent link:

  11. Dark Matter

    Indian Academy of Sciences (India)

    ics of small satellite galaxies around large galaxies have shown that the luminous part of galaxies must be immersed in a huge halo of non-luminous matter, much larger than what the studies from rotation curves of spiral galaxies would suggest (see Part 1 of this article). These studies essentially use the same arguments.

  12. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 9. Molecule Matters - A Chromium Compound with a Quintuple Bond. K C Kumara Swamy. Feature Article Volume 11 Issue 9 September 2006 pp 72-75. Fulltext. Click here to view fulltext PDF. Permanent link:

  13. Dark Matter

    Indian Academy of Sciences (India)

    The study of gas clouds orbiting in the outer regions of spiral galaxies has revealed that their gravitational at- traction is much larger than the stars alone can provide. Over the last twenty years, astronomers have been forced to postulate the presence of large quantities of 'dark matter' to explain their observations. They are ...

  14. Science Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 2. Science Matters A Book for Curious Minds. Rohini Godbole. Book Review Volume 2 Issue 2 February 1997 pp 94-95. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/002/02/0094-0095 ...

  15. Dark Matter

    Indian Academy of Sciences (India)

    interests include cinema, stamps and sketching. GENERAL I ARTICLE. Dark Matter. 1. What You See Ain'/ What You Got. Bikram Phookun and Biman Nath. The study of gas clouds orbiting in the outer regions of spiral galaxies has revealed that their gravitational at- traction is much larger than the stars alone can provide.

  16. Complexity rating of abnormal events and operator performance

    International Nuclear Information System (INIS)

    Oeivind Braarud, Per

    1998-01-01

    The complexity of the work situation during abnormal situations is a major topic in a discussion of safety aspects of Nuclear Power plants. An understanding of complexity and its impact on operator performance in abnormal situations is important. One way to enhance understanding is to look at the dimensions that constitute complexity for NPP operators, and how those dimensions can be measured. A further step is to study how dimensions of complexity of the event are related to performance of operators. One aspect of complexity is the operator 's subjective experience of given difficulties of the event. Another related aspect of complexity is subject matter experts ratings of the complexity of the event. A definition and a measure of this part of complexity are being investigated at the OECD Halden Reactor Project in Norway. This paper focus on the results from a study of simulated scenarios carried out in the Halden Man-Machine Laboratory, which is a full scope PWR simulator. Six crews of two licensed operators each performed in 16 scenarios (simulated events). Before the experiment subject matter experts rated the complexity of the scenarios, using a Complexity Profiling Questionnaire. The Complexity Profiling Questionnaire contains eight previously identified dimensions associated with complexity. After completing the scenarios the operators received a questionnaire containing 39 questions about perceived complexity. This questionnaire was used for development of a measure of subjective complexity. The results from the study indicated that Process experts' rating of scenario complexity, using the Complexity Profiling Questionnaire, were able to predict crew performance quite well. The results further indicated that a measure of subjective complexity could be developed that was related to crew performance. Subjective complexity was found to be related to subjective work load. (author)

  17. Using ILD or ITD Cues for Sound Source Localization and Speech Understanding in a Complex Listening Environment by Listeners with Bilateral and with Hearing-Preservation Cochlear Implants

    Science.gov (United States)

    Loiselle, Louise H.; Dorman, Michael F.; Yost, William A.; Cook, Sarah J.; Gifford, Rene H.

    2016-01-01

    Purpose: To assess the role of interaural time differences and interaural level differences in (a) sound-source localization, and (b) speech understanding in a cocktail party listening environment for listeners with bilateral cochlear implants (CIs) and for listeners with hearing-preservation CIs. Methods: Eleven bilateral listeners with MED-EL…

  18. Ask, don’t tell : A complex dynamic systems approach to improving science education by focusing on the co-construction of scientific understanding

    NARCIS (Netherlands)

    van Vondel, Sabine; Steenbeek, Henderien; van Dijk, Marijn; van Geert, Paul

    Studying real-time teacher-student interaction provides insight into student's learning processes. In this study, upper grade elementary teachers were supported to optimize their instructional skills required for co-constructing scientific understanding. First, we examined the effect of the Video

  19. Remedial action of matrices contaminated by cobalt with supercritical CO2: contribution to the understanding of the complex formation mechanisms and to the diphasic transfers

    International Nuclear Information System (INIS)

    Gervais, Florence

    2001-01-01

    Soils rehabilitation using supercritical CO 2 seems an interesting alternative way to existing techniques. No effluents are generated during the supercritical fluid extraction, which is the main advantage of this process. In order to be extracted by this techniques, metals or radionuclides have to be complexed by suitable chelating agents. Beta-diketones and dithiocarbamates (fluorinated or not) have been chosen. The first part of this work deals with chemical equilibria mechanisms study in an aqueous phase. Experiments show a very weak cobalt complexation kinetics with acetylacetone. Moreover, this complex exhibit a hydrophilic behaviour. On the other hand, cobalt and dithiocarbamate instantaneously from a chelate which is very hydrophobic. Mass transfer between extracting and aqueous phases (hexane and SC CO 2 ) are also investigated. Supercritical CO 2 seems to have a greater affinity towards fluorinated beta-diketones than hexane. This tendency is confirmed by in situ commercial chelates (fluorinates or not) solubility measurements using X-ray absorption spectroscopy. However, cobalt-beta-diketonates are hydrophilic because of their partial hydration. This kind of chelating agents is not suitable to cobalt supercritical fluid extraction from an aqueous phase. Inversely, distribution coefficients of hydrophobic dithiocarbamates are higher than beta-diketonates, whatever the extracting solvent is. Metals extraction from an aqueous matrix seems possible with these chelating agents. (author) [fr

  20. Stability constants important to the understanding of plutonium in environmental waters, hydroxy and carbonate complexation of PuO2+

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Dianne Angelo [Univ. of California, Berkeley, CA (United States)

    1990-04-20

    The formation constants for the reactions PuO2+ + H2O = PuO2(OH) + H+ and PuO2+ + CO32- = PuO2(CO3)- were determined in aqueous sodium perchlorate solutions by laser-induced photoacoustic spectroscopy. The molar absorptivity of the PuO2+ band at 569 nm decreased with increasing hydroxide concentration. Similarly, spectral changes occurred between 540 and 580 nm as the carbonate concentration was increased. The absorption data were analyzed by the non-linear least-squares program SQUAD to yield complexation constants. Using the specific ion interaction theory, both complexation constants were extrapolated to zero ionic strength. These thermodynamic complexation constants were combined with the oxidation-reduction potentials of Pu to obtain Eh versus pH diagrams.

  1. Evolving Complexity, Cognition, and Consciousness

    Science.gov (United States)

    Liljenström, H.

    2012-12-01

    All through the history of the universe there is an apparent tendency for increasing complexity, with the organization of matter in evermore elaborate and interactive systems. The living world in general, and the human brain in particular, provides the highest complexity known. It seems obvious that all of this complexity must be the result of physical, chemical and biological evolution, but it was only with Darwin that we began to get a scientific understanding of biological evolution. Darwinian principles are guiding in our understanding of such complex systems as the nervous system, but also for the evolution of human society and technology. Living organisms have to survive in a complex and changing environment. This implies response and adaption to environmental events and changes at several time scales. The interaction with the environment depends on the present state of the organism, as well as on previous experiences stored in its molecular and cellular structures. At a longer time scale, organisms can adapt to slow environmental changes, by storing information in the genetic material carried over from generation to generation. This phylogenetic learning is complemented by ontogenetic learning, which is adaptation at a shorter time scale, occuring in non-genetic structures. The evolution of a nervous system is a major transition in biological evolution and allows for an increasing capacity for information storage and processing, increasing chances of survival. Such neural knowledge processing, cognition, shows the same principal features as nonneural adaptive processes. Similarly, consciousness might appear, to different degrees, at different stages in evolution. Both cognition and consciousness depends critically on the organization and complexity of the organism. In this presentation, I will briefly discuss general principles for evolution of complexity, focussing on the evolution of the nervous system, which provides organisms with ever increasing

  2. The Classical Pathways of Occipital Lobe Epileptic Propagation Revised in the Light of White Matter Dissection

    Science.gov (United States)

    Latini, Francesco; Hjortberg, Mats; Aldskogius, Håkan; Ryttlefors, Mats

    2015-01-01

    The clinical evidences of variable epileptic propagation in occipital lobe epilepsy (OLE) have been demonstrated by several studies. However the exact localization of the epileptic focus sometimes represents a problem because of the rapid propagation to frontal, parietal, or temporal regions. Each white matter pathway close to the supposed initial focus can lead the propagation towards a specific direction, explaining the variable semiology of these rare epilepsy syndromes. Some new insights in occipital white matter anatomy are herein described by means of white matter dissection and compared to the classical epileptic patterns, mostly based on the central position of the primary visual cortex. The dissections showed a complex white matter architecture composed by vertical and longitudinal bundles, which are closely interconnected and segregated and are able to support specific high order functions with parallel bidirectional propagation of the electric signal. The same sublobar lesions may hyperactivate different white matter bundles reemphasizing the importance of the ictal semiology as a specific clinical demonstration of the subcortical networks recruited. Merging semiology, white matter anatomy, and electrophysiology may lead us to a better understanding of these complex syndromes and tailored therapeutic options based on individual white matter connectivity. PMID:26063964

  3. Quantum vacuum and dark matter

    CERN Document Server

    Hajdukovic, Dragan Slavkov

    2012-01-01

    Recently, the gravitational polarization of the quantum vacuum was proposed as alternative to the dark matter paradigm. In the present paper we consider four benchmark measurements: the universality of the central surface density of galaxy dark matter haloes, the cored dark matter haloes in dwarf spheroidal galaxies, the non-existence of dark disks in spiral galaxies and distribution of dark matter after collision of clusters of galaxies (the Bullet cluster is a famous example). Only some of these phenomena (but not all of them) can (in principle) be explained by the dark matter and the theories of modified gravity. However, we argue that the framework of the gravitational polarization of the quantum vacuum allows the understanding of the totality of these phenomena.

  4. The Dark Matter of Biology.

    Science.gov (United States)

    Ross, Jennifer L

    2016-09-06

    The inside of the cell is full of important, yet invisible species of molecules and proteins that interact weakly but couple together to have huge and important effects in many biological processes. Such "dark matter" inside cells remains mostly hidden, because our tools were developed to investigate strongly interacting species and folded proteins. Example dark-matter species include intrinsically disordered proteins, posttranslational states, ion species, and rare, transient, and weak interactions undetectable by biochemical assays. The dark matter of biology is likely to have multiple, vital roles to regulate signaling, rates of reactions, water structure and viscosity, crowding, and other cellular activities. We need to create new tools to image, detect, and understand these dark-matter species if we are to truly understand fundamental physical principles of biology. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Theatre pedagogy as an area of negotiating and understanding complex concepts by kindergartners in times of crisis: an intervention-based research study

    OpenAIRE

    Giotaki, Marianna; Lenakakis, Antonis

    2016-01-01

    In this research theatre pedagogy was used to explore kindergartners’ perceptions of the economic crisis and its aspects in their everyday lives, as well as to provide them with opportunities to invest crisis situations with a positive, dynamic meaning, and to shift towards the humanitarian values of justice, active citizenship and understanding the other. Through our theatre-pedagogic programme, a social topic was put forward to the class, and performing arts tools were used to generate a fr...

  6. Quark matter

    International Nuclear Information System (INIS)

    Csernai, L.; Kampert, K.H.

    1994-01-01

    Precisely one decade ago the GSI (Darmstadt)/LBL (Berkeley) Collaboration at the Berkeley Bevalac reported clear evidence for collective sidewards flow in high energy heavy ion collisions. This milestone observation clearly displayed the compression and heating up of nuclear matter, providing new insights into how the behaviour of nuclear matter changes under very different conditions. This year, evidence for azimuthally asymmetric transverse flow at ten times higher projectile energy (11 GeV per nucleon gold on gold collisions) was presented by the Brookhaven E877 collaboration at the recent European Research Conference on ''Physics of High Energy Heavy Ion Collisions'', held in Helsinki from 17-22 June

  7. Understanding implementation and change in complex interventions. From single- to multi-methodological research on the promotion of youths’ participation in physical education

    DEFF Research Database (Denmark)

    Agergaard, Sine; Dankers, Silke; Munk, Mette

    2018-01-01

    Existing studies on complex interventions aiming to promote youths’ participation in physical education (PE) appear to be predominantly single-methodological. The aim of this article is to examine the benefits and challenges of evaluating an intervention to increase youths’ participation...... and experiences of social inclusion in the PE context using a multi-method approach integrating quantitative and qualitative approaches. The multi-method approach allowed an integration of the findings with regard to the implementation as well as the effect of the intervention. First of all, standardized...

  8. A complexity basis for phenomenology: How information states at criticality offer a new approach to understanding experience of self, being and time.

    Science.gov (United States)

    Hankey, Alex

    2015-12-01

    In the late 19th century Husserl studied our internal sense of time passing, maintaining that its deep connections into experience represent prima facie evidence for it as the basis for all investigations in the sciences: Phenomenology was born. Merleau-Ponty focused on perception pointing out that any theory of experience must accord with established aspects of biology i.e. be embodied. Recent analyses suggest that theories of experience require non-reductive, integrative information, together with a specific property connecting them to experience. Here we elucidate a new class of information states with just such properties found at the loci of control of complex biological systems, including nervous systems. Complexity biology concerns states satisfying self-organized criticality. Such states are located at critical instabilities, commonly observed in biological systems, and thought to maximize information diversity and processing, and hence to optimize regulation. Major results for biology follow: why organisms have unusually low entropies; and why they are not merely mechanical. Criticality states form singular self-observing systems, which reduce wave packets by processes of perfect self-observation associated with feedback gain g = 1. Analysis of their information properties leads to identification of a new kind of information state with high levels of internal coherence, and feedback loops integrated into their structure. The major idea presented here is that the integrated feedback loops are responsible for our 'sense of self', and also the feeling of continuity in our sense of time passing. Long-range internal correlations guarantee a unique kind of non-reductive, integrative information structure enabling such states to naturally support phenomenal experience. Being founded in complexity biology, they are 'embodied'; they also fulfill the statement that 'The self is a process', a singular process. High internal correlations and René Thom

  9. Capturing prokaryotic dark matter genomes.

    Science.gov (United States)

    Gasc, Cyrielle; Ribière, Céline; Parisot, Nicolas; Beugnot, Réjane; Defois, Clémence; Petit-Biderre, Corinne; Boucher, Delphine; Peyretaillade, Eric; Peyret, Pierre

    2015-12-01

    Prokaryotes are the most diverse and abundant cellular life forms on Earth. Most of them, identified by indirect molecular approaches, belong to microbial dark matter. The advent of metagenomic and single-cell genomic approaches has highlighted the metabolic capabilities of numerous members of this dark matter through genome reconstruction. Thus, linking functions back to the species has revolutionized our understanding of how ecosystem function is sustained by the microbial world. This review will present discoveries acquired through the illumination of prokaryotic dark matter genomes by these innovative approaches. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  10. Nonhuman primate models for cell-associated simian immunodeficiency virus transmission: the need to better understand the complexity of HIV mucosal transmission.

    Science.gov (United States)

    Bernard-Stoecklin, Sibylle; Gommet, Céline; Cavarelli, Mariangela; Le Grand, Roger

    2014-12-15

    Nonhuman primates are extensively used to assess strategies to prevent infection from sexual exposure to human immunodeficiency virus (HIV) and to study mechanisms of mucosal transmission. However, although semen represents one of the most important vehicles for the virus, the vast majority of preclinical challenge studies have used cell-free simian immunodeficiency virus (SIV) or simian/human immunodeficiency virus (SHIV) viral particles inoculated as diluted culture supernatants. Semen is a complex body fluid containing many factors that may facilitate or decrease HIV infectiousness. The virus in semen is present in different forms: as free virus particles or as cell-associated virus (ie, within infected leukocytes). Although cell-to-cell transmission of HIV is highly efficient, the role of cell-associated virus in semen has been surprisingly poorly investigated in nonhuman primate models. Mucosal exposure of macaques to cell-associated SIV by using infected peripheral blood mononuclear cells or spleen cells has been shown to be an efficient means of infection; however, it has yet to be shown that SIV- or SHIV-infected seminal leukocytes can transmit infection in vivo. Improvement of animal models to better recapitulate the complex microenvironment at portals of HIV entry is needed for testing candidate antiretrovirals, microbicides, and vaccines. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Soft Matter Characterization

    CERN Document Server

    Borsali, Redouane

    2008-01-01

    Progress in basic soft matter research is driven largely by the experimental techniques available. Much of the work is concerned with understanding them at the microscopic level, especially at the nanometer length scales that give soft matter studies a wide overlap with nanotechnology. This 2 volume reference work, split into 4 parts, presents detailed discussions of many of the major techniques commonly used as well as some of those in current development for studying and manipulating soft matter. The articles are intended to be accessible to the interdisciplinary audience (at the graduate student level and above) that is or will be engaged in soft matter studies or those in other disciplines who wish to view some of the research methods in this fascinating field. Part 1 contains articles with a largely (but, in most cases, not exclusively) theoretical content and/or that cover material relevant to more than one of the techniques covered in subsequent volumes. It includes an introductory chapter on some of t...

  12. Understanding the Hydro-metathesis Reaction of 1-decene by Using Well-defined Silica Supported W, Mo, Ta Carbene/Carbyne Complexes

    KAUST Repository

    Saidi, Aya

    2017-12-21

    Direct conversion of 1-decene to petroleum range alkanes was obtained using hydro-metathesis reaction. To understand this reaction we employed three different well-defined single site catalysts precursors; [(≡Si-O-)W(CH3)5] 1, [(≡Si-O-)Mo(≡CtBu)(CH2tBu)2] 2 and [(≡Si-O)Ta(=CHtBu)(CH2tBu)2] 3. We witnessed that in our conditions olefin metathesis/isomerization of 1-decene occurs much faster followed by reduction of the newly formed olefins rather than reduction of the 1-decene to decane, followed by metathesis of decane. We found that Mo-based catalyst favors 2+2 cycloaddition of 1-decene forming metallocarbene, followed by reduction of the newly formed olefins to alkanes. However, in the case of W and Ta-based catalysts, a rapid isomerization (migration) of the double bond followed by olefin metathesis and reduction of the newly formed olefins were observed. We witnessed that silica supported W catalyst precursor 1 and Mo catalyst precursor 2 are better catalysts for hydro-metathesis reaction with TONs of 818 and 808 than Ta-based catalyst 3 (TON of 334). This comparison of the catalysts provides us a better understanding that, if a catalyst is efficient in olefin metathesis reaction it would be a better catalyst for hydro-metathesis reaction.

  13. Synthesis, Crystal Structures, Magnetic Properties, and Theoretical Investigation of a New Series of NiII-LnIII-WVHeterotrimetallics: Understanding the SMM Behavior of Mixed Polynuclear Complexes.

    Science.gov (United States)

    Vieru, Veacheslav; Pasatoiu, Traian D; Ungur, Liviu; Suturina, Elizaveta; Madalan, Augustin M; Duhayon, Carine; Sutter, Jean-Pascal; Andruh, Marius; Chibotaru, Liviu F

    2016-12-05

    The polynuclear compounds containing anisotropic metal ions often exhibit efficient barriers for blocking of magnetization at fairly arbitrary geometries. However, at variance with mononuclear complexes, which usually become single-molecule magnets (SMM) under the sole requirement of a highly axial crystal field at the metal ion, the factors influencing the SMM behavior in polynuclear complexes, especially, with weakly axial magnetic ions, still remain largely unrevealed. As an attempt to clarify these conditions, we present here the synthesis, crystal structures, magnetic behavior, and ab initio calculations for a new series of Ni II -Ln III -W V trimetallics, [(CN) 7 W(CN)Ni(H 2 O)(valpn)Ln(H 2 O) 4 ]·H 2 O (Ln = Y 1, Eu 2, Gd 3, Tb 4, Dy 5, Lu 6). The surprising finding is the absence of the magnetic blockage even for compounds involving strongly anisotropic Dy III and Tb III metal ions. This is well explained by ab initio calculations showing relatively large transversal components of the g-tensor in the ground exchange Kramers doublets of 1 and 4 and large intrinsic tunneling gaps in the ground exchange doublets of 3 and 5. In order to get more insight into this behavior, another series of earlier reported compounds with the same trinuclear [W V Ni II Ln III ] core structure, [(CN) 7 W(CN)Ni(dmf)(valdmpn)Ln(dmf) 4 ]·H 2 O (Ln = Gd III 7, Tb III 8a, Dy III 9, Ho III 10), [(CN) 7 W(CN)Ni(H 2 O)(valdmpn)Tb(dmf) 2.5 (H 2 O) 1.5 ]·H 2 O·0.5dmf 8b, and [(CN) 7 W(CN)Ni(H 2 O)(valdmpn)Er(dmf) 3 (H 2 O) 1 ]·H 2 O·0.5dmf 11, has been also investigated theoretically. In this series, only 8b exhibits SMM behavior which is confirmed by the present ab initio calculations. An important feature for the entire series is the strong ferromagnetic coupling between Ni(II) and W(V), which is due to an almost perfect trigonal dodecahedron geometry of the octacyano wolframate fragment. The reason why only 8b is an SMM is explained by positive zero-field splitting on the nickel

  14. Quantum simulations with photons and polaritons merging quantum optics with condensed matter physics

    CERN Document Server

    2017-01-01

    This book reviews progress towards quantum simulators based on photonic and hybrid light-matter systems, covering theoretical proposals and recent experimental work. Quantum simulators are specially designed quantum computers. Their main aim is to simulate and understand complex and inaccessible quantum many-body phenomena found or predicted in condensed matter physics, materials science and exotic quantum field theories. Applications will include the engineering of smart materials, robust optical or electronic circuits, deciphering quantum chemistry and even the design of drugs. Technological developments in the fields of interfacing light and matter, especially in many-body quantum optics, have motivated recent proposals for quantum simulators based on strongly correlated photons and polaritons generated in hybrid light-matter systems. The latter have complementary strengths to cold atom and ion based simulators and they can probe for example out of equilibrium phenomena in a natural driven-dissipative sett...

  15. Understanding the visual resource

    Science.gov (United States)

    Floyd L. Newby

    1971-01-01

    Understanding our visual resources involves a complex interweaving of motivation and cognitive recesses; but, more important, it requires that we understand and can identify those characteristics of a landscape that influence the image formation process. From research conducted in Florida, three major variables were identified that appear to have significant effect...

  16. The `What is a system' reflection interview as a knowledge integration activity for high school students' understanding of complex systems in human biology

    Science.gov (United States)

    Tripto, Jaklin; Ben-Zvi Assaraf, Orit; Snapir, Zohar; Amit, Miriam

    2016-03-01

    This study examined the reflection interview as a tool for assessing and facilitating the use of 'systems language' amongst 11th grade students who have recently completed their first year of high school biology. Eighty-three students composed two concept maps in the 10th grade-one at the beginning of the school year and one at its end. The first part of the interview is dedicated to guiding the students through comparing their two concept maps and by means of both explicit and non-explicit teaching. Our study showed that the explicit guidance in comparing the two concept maps was more effective than the non-explicit, eliciting a variety of different, more specific, types of interactions and patterns (e.g. 'hierarchy', 'dynamism', 'homeostasis') in the students' descriptions of the human body system. The reflection interview as a knowledge integration activity was found to be an effective tool for assessing the subjects' conceptual models of 'system complexity', and for identifying those aspects of a system that are most commonly misunderstood.

  17. Understanding the complexity of trans fatty acid reduction in the American diet: American Heart Association Trans Fat Conference 2006: report of the Trans Fat Conference Planning Group.

    Science.gov (United States)

    Eckel, Robert H; Borra, Susan; Lichtenstein, Alice H; Yin-Piazza, Shirley Y

    2007-04-24

    A 2-day forum was convened to discuss the current status and future implications of reducing trans fatty acids without increasing saturated fats in the food supply while maintaining functionality and consumer acceptance of packaged, processed, and prepared foods. Attendees represented the agriculture and oilseed industry and oil processing, food manufacturing, food service, government, food technology, and health and nutrition disciplines. Presentations included food science behind fatty acid technology, the health science of dietary fatty acids, alternatives to trans fatty acids, and the use of alternatives in food manufacturing and food service. The reduction of trans fatty acids in the food supply is a complex issue involving interdependent and interrelated stakeholders. Actions to reduce trans fatty acids need to carefully consider both intended and unintended consequences related to nutrition and public health. The unintended consequence of greatest concern is that fats and oils high in saturated fats, instead of the healthier unsaturated fats, might be used to replace fats and oils with trans fatty acids. Many different options of alternative oils and fats to replace trans fatty acids are available or in development. Decisions on the use of these alternatives need to consider availability, health effects, research and development investments, reformulated food quality and taste, supply-chain management, operational modifications, consumer acceptance, and cost. The conference demonstrated the value of collaboration between the food industry and health and nutrition professionals, and this conference model should be used to address other food development, processing, and/or technology issues.

  18. AN EVALUATION OF THE USEFULNESS OF ACTOR NETWORK THEORY IN UNDERSTANDING THE COMPLEXITIES OF VULNERABILITY AND RESILIENCE IN POST-DISASTER RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    Graham Brewer

    2013-11-01

    Full Text Available The literature is replete with accounts of the struggle to effectively target and deploy postdisaster aid so as to achieve maximum benefit to recipients, both direct and indirect, over the short- and longer-term. Generally these stories balance success with lessons learned from failure, in order to inform practice in future recovery and reconstruction events. They are often derived from the heroic accounts of key actors in case studies, on the understandable basis that these carefully selected individuals will have been pivotal in designing and directing the implementation of aid programmes. The influence of non-humans such as organisations, systems, processes, or elements of the constructed environment are considered only insofar as they impact upon the experiences of the raconteurs. However actor network theory, a technique originally developed to examine phenomena at the sociotechnological interface, ascribes human characteristics such as motives and behaviours equally to human and non-human actants, ultimately to better explain the worldly consequences of their interaction. This paper reports on the ex post application of ANT to data collected in an earlier actor-centric study, to both evaluate its usefulness in disaster research and to identify potential gaps in the disaster research agenda.

  19. Commentary: An exemplar of progress in understanding complex disorders - reflections on what we have learned about eating disorders (Culbert et al., 2015).

    Science.gov (United States)

    Smith, Gregory T; Davis, Heather A

    2015-11-01

    A number of recent advances in eating disorders research have helped clarify the nature of risk for the development of such disorders. Culbert et al. () provide an empirical and thoughtful review of these recent advances. The authors identified empirically established risk factors in each of several categories of risk for eating disorders: genetic influences, neurotransmitter activity, hormones, personality, and sociocultural influences. We highlight three implications of their review. First, the review can serve as an important asset to eating disorder researchers, both substantively, by providing a comprehensive account of empirically supported risk processes; and methodologically, by highlighting good standards of evidence for acceptance of a candidate risk factor. Second, eating disorder risk is increased by both transdiagnostic and eating disorder-specific factors; there is a need to understand how these types of factors transact with each other. Third and most important, we highlight the importance of Culbert et al.'s advocacy for the development of theoretical models, and empirical tests of those models that specify transactions among different types of risk factors, such as those based on genetic, neurobiological, personality, and social processes. © 2015 Association for Child and Adolescent Mental Health.

  20. Mouse Models of Genomic Syndromes as Tools for Understanding the Basis of Complex Traits: An Example with the Smith-Magenis and the Potocki-Lupski Syndromes

    Science.gov (United States)

    Carmona-Mora, P; Molina, J; Encina, C.A; Walz, K

    2009-01-01

    Each human's genome is distinguished by extra and missing DNA that can be “benign” or powerfully impact everything from development to disease. In the case of genomic disorders DNA rearrangements, such as deletions or duplications, correlate with a clinical specific phenotype. The clinical presentations of genomic disorders were thought to result from altered gene copy number of physically linked dosage sensitive genes. Genomic disorders are frequent diseases (~1 per 1,000 births). Smith-Magenis syndrome (SMS) and Potocki-Lupski syndrome (PTLS) are genomic disorders, associated with a deletion and a duplication, of 3.7 Mb respectively, within chromosome 17 band p11.2. This region includes 23 genes. Both syndromes have complex and distinctive phenotypes including multiple congenital and neurobehavioral abnormalities. Human chromosome 17p11.2 is syntenic to the 32-34 cM region of murine chromosome 11. The number and order of the genes are highly conserved. In this review, we will exemplify how genomic disorders can be modeled in mice and the advantages that such models can give in the study of genomic disorders in particular and gene copy number variation (CNV) in general. The contributions of the SMS and PTLS animal models in several aspects ranging from more specific ones, as the definition of the clinical aspects of the human clinical spectrum, the identification of dosage sensitive genes related to the human syndromes, to the more general contributions as the definition of genetic locus impacting obesity and behavior and the elucidation of general mechanisms related to the pathogenesis of gene CNV are discussed. PMID:19949547

  1. Local modelling techniques for assessing micro-level impacts of risk factors in complex data: understanding health and socioeconomic inequalities in childhood educational attainments.

    Science.gov (United States)

    Zhou, Shang-Ming; Lyons, Ronan A; Bodger, Owen G; John, Ann; Brunt, Huw; Jones, Kerina; Gravenor, Mike B; Brophy, Sinead

    2014-01-01

    Although inequalities in health and socioeconomic status have an important influence on childhood educational performance, the interactions between these multiple factors relating to variation in educational outcomes at micro-level is unknown, and how to evaluate the many possible interactions of these factors is not well established. This paper aims to examine multi-dimensional deprivation factors and their impact on childhood educational outcomes at micro-level, focusing on geographic areas having widely different disparity patterns, in which each area is characterised by six deprivation domains (Income, Health, Geographical Access to Services, Housing, Physical Environment, and Community Safety). Traditional health statistical studies tend to use one global model to describe the whole population for macro-analysis. In this paper, we combine linked educational and deprivation data across small areas (median population of 1500), then use a local modelling technique, the Takagi-Sugeno fuzzy system, to predict area educational outcomes at ages 7 and 11. We define two new metrics, "Micro-impact of Domain" and "Contribution of Domain", to quantify the variations of local impacts of multidimensional factors on educational outcomes across small areas. The two metrics highlight differing priorities. Our study reveals complex multi-way interactions between the deprivation domains, which could not be provided by traditional health statistical methods based on single global model. We demonstrate that although Income has an expected central role, all domains contribute, and in some areas Health, Environment, Access to Services, Housing and Community Safety each could be the dominant factor. Thus the relative importance of health and socioeconomic factors varies considerably for different areas, depending on the levels of each of the other factors, and therefore each component of deprivation must be considered as part of a wider system. Childhood educational achievement could

  2. Marginal Matter

    Science.gov (United States)

    van Hecke, Martin

    2013-03-01

    All around us, things are falling apart. The foam on our cappuccinos appears solid, but gentle stirring irreversibly changes its shape. Skin, a biological fiber network, is firm when you pinch it, but soft under light touch. Sand mimics a solid when we walk on the beach but a liquid when we pour it out of our shoes. Crucially, a marginal point separates the rigid or jammed state from the mechanical vacuum (freely flowing) state - at their marginal points, soft materials are neither solid nor liquid. Here I will show how the marginal point gives birth to a third sector of soft matter physics: intrinsically nonlinear mechanics. I will illustrate this with shock waves in weakly compressed granular media, the nonlinear rheology of foams, and the nonlinear mechanics of weakly connected elastic networks.

  3. Cosmology and Dark Matter

    CERN Document Server

    Tkachev, Igor

    2017-01-01

    This lecture course covers cosmology from the particle physicist perspective. Therefore, the emphasis will be on the evidence for the new physics in cosmological and astrophysical data together with minimal theoretical frameworks needed to understand and appreciate the evidence. I review the case for non-baryonic dark matter and describe popular models which incorporate it. In parallel, the story of dark energy will be developed, which includes accelerated expansion of the Universe today, the Universe origin in the Big Bang, and support for the Inflationary theory in CMBR data.

  4. Understanding the complexity of the Lévy-walk nature of human mobility with a multi-scale cost∕benefit model.

    Science.gov (United States)

    Scafetta, Nicola

    2011-12-01

    human mobility, that the proposed model predicts the statistical properties of human mobility below 1 km ranges, where people just walk. In the latter case, the threshold between zone 1 and zone 2 may be around 100-200 m and, perhaps, may have been evolutionary determined by the natural human high resolution visual range, which characterizes an area of interest where the benefits are assumed to be randomly and uniformly distributed. This rich and suggestive interpretation of human mobility may characterize other complex random walk phenomena that may also be described by a N-piece fit Pareto distributions with increasing integer exponents. This study also suggests that distribution functions used to fit experimental probability distributions must be carefully chosen for not improperly obscuring the physics underlying a phenomenon.

  5. Understanding the complexity of the Lévy-walk nature of human mobility with a multi-scale cost/benefit model

    Science.gov (United States)

    Scafetta, Nicola

    2011-12-01

    mobility, that the proposed model predicts the statistical properties of human mobility below 1 km ranges, where people just walk. In the latter case, the threshold between zone 1 and zone 2 may be around 100-200 m and, perhaps, may have been evolutionary determined by the natural human high resolution visual range, which characterizes an area of interest where the benefits are assumed to be randomly and uniformly distributed. This rich and suggestive interpretation of human mobility may characterize other complex random walk phenomena that may also be described by a N-piece fit Pareto distributions with increasing integer exponents. This study also suggests that distribution functions used to fit experimental probability distributions must be carefully chosen for not improperly obscuring the physics underlying a phenomenon.

  6. Understanding Carbohydrates

    Science.gov (United States)

    ... Size: A A A Listen En Español Understanding Carbohydrates How much and what type of carbohydrate foods ... glucose levels in your target range. Explore: Understanding Carbohydrates Glycemic Index and Diabetes Learn about the glycemic ...

  7. Neurotransmitter matters

    DEFF Research Database (Denmark)

    Gerlach, Christian

    2004-01-01

    It weighs like half a bag of flour and has more holes than a sponge, but if we look closely, we find that the brain is also a complex and vibrant part of our body, one that undergoes physical changes as we learn. Join neuroscience for a brief sojourn into the realm of memory ? a world of neurons...

  8. Snow Matters

    DEFF Research Database (Denmark)

    Gyimóthy, Szilvia; Jensen, Martin Trandberg

    2018-01-01

    attribute of high altitude mountain destinations. Hitherto, researchers mostly engaged with snowclad landscapes as a backstage; trying to deconstruct the complex symbolism and representational qualities of this elusive substance. Despite snow being a strategically crucial condition for tourism in the Alps...

  9. Molecule Matters

    Indian Academy of Sciences (India)

    2008-03-01

    Mar 1, 2008 ... has an important place in the history of mankind. Its impact, direct ... laria, thus justifying the importance attributed to this drug. Qui- nine exerts .... ibly more complex than quinine were synthesized by aspiring chemists, but somehow a stereoselective synthesis of quinine. Suggested Reading. [1] V Nair, R S ...

  10. Complex variables

    CERN Document Server

    Fisher, Stephen D

    1999-01-01

    The most important topics in the theory and application of complex variables receive a thorough, coherent treatment in this introductory text. Intended for undergraduates or graduate students in science, mathematics, and engineering, this volume features hundreds of solved examples, exercises, and applications designed to foster a complete understanding of complex variables as well as an appreciation of their mathematical beauty and elegance. Prerequisites are minimal; a three-semester course in calculus will suffice to prepare students for discussions of these topics: the complex plane, basic

  11. Optical engineering: understanding optical system by experiments

    Science.gov (United States)

    Scharf, Toralf

    2017-08-01

    Students have to be educated in theoretical and practical matters. Only one of them does not allow attacking complex problems in research, development, and management. After their study, students should be able to design, construct and analyze technical problems at highest levels of complexity. Who never experienced the difficulty of setting up measurements will not be able to understand, plan and manage such complex tasks in her/his future career. At EPFL a course was developed for bachelor education and is based on three pillars: concrete actions (enactive) to be done by the students, a synthesis of their work by writing a report (considered as the iconic part) and inputs from the teacher to generalize the findings and link it to a possible complete abstract description (symbolic). Intensive tutoring allowed an intermodal transfer between these categories. This EIS method originally introduced by Jerome Bruner for small children is particular well adapted for engineer education for which theoretical understanding often is not enough. The symbiosis of ex-cathedra lecture and practical work in a classroom-like situation presents an innovative step towards integrated learning that complements perfectly more abstract course principles like online courses.

  12. Understanding complex structures in fold-and-thrust belts. Integration of geometric and growth strata analyses, paleomagnetism, AMS and analogue models in the Western termination of the Southern Pyrenees

    Science.gov (United States)

    Pueyo, Emilio L.; Sánchez, Elisa; Oliva-Urcia, Belén; José Ramón, Ma

    2014-05-01

    Classic 2D approaches have helped the understanding of the geometry and kinematics of fold-and-thrust belts belts (FAT belts) but are insufficient to unravel many natural cases. This is because deformation is 3D from the geometric point of view and, thus, cylindrical features may be considered as a simplification. On the other hand, deformation kinematics is usually complex, diachronic and poliphasic in real cases. Therefore, FAT belts have to be always considered in 4D. In this sense, the Southern Pyrenees is a perfect location to study the evolution of FAT belts because of the exceptional outcropping conditions of growth strata, the proven diachronic kinematics and the non-coaxial interference of deformation events. Within the vast catalogue of complex structures that includes superposed folding, conical and plunging folds, oblique thrust ramps, etc here, we have selected the westernmost termination of the South Pyrenean sole thrust to illustrate how the integration of geometric and kinematic analysis can help unraveling complex structures in FAT belts. The San Marzal pericline (4 km2 surface extension) is the lateral termination of the Sto. Domingo deca-kilometric fold. San Marzal looks like a large 70° plunging cylindrical structure. However the large magnitude (≡ 60-70°) of vertical axis rotations accommodated between its flanks cannot be explained without a conical geometry. In this work we will show how the structural analysis performed on this structure has disentangled its complex geometry. This analyses comprises several hundreds of bedding data, joints and veins and more than 150 standard paleomagnetic and AMS sites. Besides, we will show how the kinematic information derived from magnetostratigraphic sections (more than 8 km of sampled profiles) has helped to constraint the folding and rotation ages and velocities. Finally, all these complex geometric and kinematic features have inspired us to build an analogue model where we can explore the 3D

  13. Cosmic Complexity

    Science.gov (United States)

    Mather, John C.

    2012-01-01

    What explains the extraordinary complexity of the observed universe, on all scales from quarks to the accelerating universe? My favorite explanation (which I certainty did not invent) ls that the fundamental laws of physics produce natural instability, energy flows, and chaos. Some call the result the Life Force, some note that the Earth is a living system itself (Gaia, a "tough bitch" according to Margulis), and some conclude that the observed complexity requires a supernatural explanation (of which we have many). But my dad was a statistician (of dairy cows) and he told me about cells and genes and evolution and chance when I was very small. So a scientist must look for me explanation of how nature's laws and statistics brought us into conscious existence. And how is that seemll"!gly Improbable events are actually happening a!1 the time? Well, the physicists have countless examples of natural instability, in which energy is released to power change from simplicity to complexity. One of the most common to see is that cooling water vapor below the freezing point produces snowflakes, no two alike, and all complex and beautiful. We see it often so we are not amazed. But physlc!sts have observed so many kinds of these changes from one structure to another (we call them phase transitions) that the Nobel Prize in 1992 could be awarded for understanding the mathematics of their common features. Now for a few examples of how the laws of nature produce the instabilities that lead to our own existence. First, the Big Bang (what an insufficient name!) apparently came from an instability, in which the "false vacuum" eventually decayed into the ordinary vacuum we have today, plus the most fundamental particles we know, the quarks and leptons. So the universe as a whole started with an instability. Then, a great expansion and cooling happened, and the loose quarks, finding themselves unstable too, bound themselves together into today's less elementary particles like protons and

  14. Hydrogen Isotopes in Amino Acids and Soils Offer New Potential to Study Complex Processes

    Science.gov (United States)

    Fogel, M. L.; Newsome, S. D.; Williams, E. K.; Bradley, C. J.; Griffin, P.; Nakamoto, B. J.

    2016-12-01

    Hydrogen isotopes have been analyzed extensively in the earth and biogeosciences to trace water through various environmental systems. The majority of the measurements have been made on water in rocks and minerals (inorganic) or non-exchangeable H in lipids (organic), important biomarkers that represent a small fraction of the organic molecules synthesized by living organisms. Our lab has been investigating hydrogen isotopes in amino acids and complex soil organic matter, which have traditionally been thought to be too complex to interpret owing to complications from potentially exchangeable hydrogen. For the amino acids, we show how hydrogen in amino acids originates from two sources, food and water, and demonstrate that hydrogen isotopes can be routed directly between organisms. Amino acid hydrogen isotopes may unravel cycling in extremophiles in order to discover novel biochemical pathways central to the organism. For soil organic matter, recent approaches to understanding the origin of soil organic matter are pointing towards root exudates along with microbial biomass as the source, rather than aboveground leaf litter. Having an isotope tracer in very complex, potentially exchangeable organic matter can be handled with careful experimentation. Although no new instrumentation is being used per se, extension of classes of organic matter to isotope measurements has potential to open up new doors for understanding organic matter cycling on earth and in planetary materials.

  15. From Matter to Life: Chemistry?!

    Indian Academy of Sciences (India)

    Chemistry is the science of matter and of its transformations, and life is its highest expression. It provides structures endowed with properties and develops processes for the synthesis of structures. It plays a primordial role in our understanding of material phe- nomena, in our capability to act upon them, to modify them, to.

  16. Matter in toy dynamical geometries

    NARCIS (Netherlands)

    Konopka, T.J.

    2009-01-01

    One of the objectives of theories describing quantum dynamical geometry is to compute expectation values of geometrical observables. The results of such computations can be affected by whether or not matter is taken into account. It is thus important to understand to what extent and to what effect

  17. Condensed Matter Nuclear Science

    Science.gov (United States)

    Biberian, Jean-Paul

    2006-02-01

    into characteristics of X-ray emission laser beams from solidstate cathode medium of high-current glow discharge / A. B. Karabut. Charged particles from Ti and Pd foils / L. Kowalski ... [et al.]. Cr-39 track detectors in cold fusion experiments: review and perspectives / A. S. Roussetski. Energetic particle shower in the vapor from electrolysis / R. A. Oriani and J. C. Fisher. Nuclear reactions produced in an operating electrolysis cell / R. A. Oriani and J. C. Fisher. Evidence of microscopic ball lightning in cold fusion experiments / E. H. Lewis. Neutron emission from D[symbol] gas in magnetic fields under low temperature / T. Mizuno ... [et al.]. Energetic charged particle emission from hydrogen-loaded Pd and Ti cathodes and its enhancement by He-4 implantation / A. G. Lipson ... [et al.]. H-D permeation. Observation of nuclear transmutation reactions induced by D[symbol] gas permeation through Pd complexes / Y. Iwamura ... [et al.]. Deuterium (hydrogen) flux permeating through palladium and condensed matter nuclear science / Q. M. Wei ... [et al.]. Triggering. Precursors and the fusion reactions in polarized Pd/D-D[symbol]O system: effect of an external electric field / S. Szpak, P. A. Mosier-Boss, and F. E. Gordon. Calorimetric and neutron diagnostics of liquids during laser irradiation / Yu. N. Bazhutov ... [et al.]. Anomalous neutron capture and plastic deformation of Cu and Pd cathodes during electrolysis in a weak thermalized neutron field: evidence of nuclei-lattice exchange / A. G. Lipson and G. H. Miley. H-D loading. An overview of experimental studies on H/Pd over-loading with thin Pd wires and different electrolytic solutions / A. Spallone ... [et al.] -- 3. Transmutations. Photon and particle emission, heat production, and surface transformation in Ni-H system / E. Campari ... [et al.]. Surface analysis of hydrogen-loaded nickel alloys / E. Campari ... [et al.]. Low-energy nuclear reactions and the leptonic monopole / G. Lochak and L. Urutskoev. Results

  18. Mirror dark matter and large scale structure

    International Nuclear Information System (INIS)

    Ignatiev, A.Yu.; Volkas, R.R.

    2003-01-01

    Mirror matter is a dark matter candidate. In this paper, we reexamine the linear regime of density perturbation growth in a universe containing mirror dark matter. Taking adiabatic scale-invariant perturbations as the input, we confirm that the resulting processed power spectrum is richer than for the more familiar cases of cold, warm and hot dark matter. The new features include a maximum at a certain scale λ max , collisional damping below a smaller characteristic scale λ S ' , with oscillatory perturbations between the two. These scales are functions of the fundamental parameters of the theory. In particular, they decrease for decreasing x, the ratio of the mirror plasma temperature to that of the ordinary. For x∼0.2, the scale λ max becomes galactic. Mirror dark matter therefore leads to bottom-up large scale structure formation, similar to conventional cold dark matter, for x(less-or-similar sign)0.2. Indeed, the smaller the value of x, the closer mirror dark matter resembles standard cold dark matter during the linear regime. The differences pertain to scales smaller than λ S ' in the linear regime, and generally in the nonlinear regime because mirror dark matter is chemically complex and to some extent dissipative. Lyman-α forest data and the early reionization epoch established by WMAP may hold the key to distinguishing mirror dark matter from WIMP-style cold dark matter

  19. Communication Complexity

    Indian Academy of Sciences (India)

    Jaikumar Radhakrishnan

    Communication complexity. Motivation . . . An abstract model to study the communicaiton required for computation. A tool for showing lower bounds in several computational models. The study often requires deep understanding of computation using tools from combinatorics, coding theory, algebra, analysis, etc. Jaikumar ...

  20. Baryonic matter and beyond

    OpenAIRE

    Fukushima, Kenji

    2014-01-01

    We summarize recent developments in identifying the ground state of dense baryonic matter and beyond. The topics include deconfinement from baryonic matter to quark matter, a diquark mixture, topological effect coupled with chirality and density, and inhomogeneous chiral condensates.

  1. Mind Over Matter: Methamphetamine

    Science.gov (United States)

    ... Mind Over Matter Teaching Guide and Series / Methamphetamine Mind Over Matter: Methamphetamine (Meth) Print Order Free Publication ... someday you'll make the next major breakthrough. Mind Over Matter is produced by the National Institute ...

  2. Astrophysics implication of dense matter phase diagram

    International Nuclear Information System (INIS)

    Sedrakian, A.

    2010-01-01

    I will discuss the ways that astrophysics can help us to understand the phase diagram of dense matter. The examples will include gravitational wave from compact stars, cooling of compact stars, and effects on vorticity on compact star dynamics. (author)

  3. Strange matter in compact stars

    Science.gov (United States)

    Klähn, Thomas; Blaschke, David B.

    2018-02-01

    We discuss possible scenarios for the existence of strange matter in compact stars. The appearance of hyperons leads to a hyperon puzzle in ab-initio approaches based on effective baryon-baryon potentials but is not a severe problem in relativistic mean field models. In general, the puzzle can be resolved in a natural way if hadronic matter gets stiffened at supersaturation densities, an effect based on the quark Pauli quenching between hadrons. We explain the conflict between the necessity to implement dynamical chiral symmetry breaking into a model description and the conditions for the appearance of absolutely stable strange quark matter that require both, approximately masslessness of quarks and a mechanism of confinement. The role of strangeness in compact stars (hadronic or quark matter realizations) remains unsettled. It is not excluded that strangeness plays no role in compact stars at all. To answer the question whether the case of absolutely stable strange quark matter can be excluded on theoretical grounds requires an understanding of dense matter that we have not yet reached.

  4. Halal Matters

    DEFF Research Database (Denmark)

    In today’s globalized world, halal (meaning ‘permissible’ or ‘lawful’) is about more than food. Politics, power and ethics all play a role in the halal industry in setting new standards for production, trade, consumption and regulation. The question of how modern halal markets are constituted...... is increasingly important and complex. Written from a unique interdisciplinary global perspective, this book demonstrates that as the market for halal products and services is expanding and standardizing, it is also fraught with political, social and economic contestation and difference. The discussion...

  5. Snow Matters

    DEFF Research Database (Denmark)

    Gyimóthy, Szilvia; Jensen, Martin Trandberg

    2018-01-01

    attribute of high altitude mountain destinations. Hitherto, researchers mostly engaged with snowclad landscapes as a backstage; trying to deconstruct the complex symbolism and representational qualities of this elusive substance. Despite snow being a strategically crucial condition for tourism in the Alps......This chapter explores the performative potential of snow for Alpine tourism, by drawing attention to its material and nonrepresentational significance for tourism practices. European imagination has been preoccupied with snow since medieval times and even today, snow features as the sine que non...

  6. Front Matter

    Directory of Open Access Journals (Sweden)

    HLRC Editor

    2016-08-01

    Full Text Available Higher Learning Research Communications (HLRC, ISSN: 2157-6254 [Online] is published collaboratively by Walden University (USA, Universidad Andrés Bello (Chile, Universidad Europea de Madrid (Spain and Istanbul Bilgi University (Turkey. Written communication to HLRC should be addressed to the office of the Executive Director at Laureate Education, Inc. 701 Brickell Ave Ste. 1700, Miami, FL 33131, USA. HLRC is designed for open access and online distribution through www.hlrcjournal.com. The views and statements expressed in this journal do not necessarily reflect the views of Laureate Education, Inc. or any of its affiliates (collectively “Laureate”. Laureate does not warrant the accuracy, reliability, currency or completeness of those views or statements and does not accept any legal liability arising from any reliance on the views, statements and subject matter of the journal. Acknowledgements The Guest Editors gratefully acknowledge the substantial contribution of the readers for the blind peer review of essays submitted for this special issue as exemplars of individuals from around the world who have come together in a collective endeavor for the common good: Robert Bringle (Indiana University Purdue University Indianapolis, US, Linda Buckley (University of the Pacific, US, Guillermo Calleja (Universidad Rey Juan Carlos, Spain, Eva Egron-Polak (International Association of Universities, France, Heather Friesen (Abu Dhabi University, UAE, Saran Gill (National University of Malaysia, Malaysia, Chester Haskell (higher education consultant, US, Kanokkarn Kaewnuch (National Institute for Development Administration, Thailand, Gil Latz (Indiana University Purdue University Indianapolis, US, Molly Lee (higher education consultant, Malaysia, Deane Neubauer (East-West Center at University of Hawaii, US, Susan Sutton (Bryn Mawr College, US, Francis Wambalaba (United States International University, Kenya, and Richard Winn (higher education

  7. Understanding the complexity of human gait dynamics

    Science.gov (United States)

    Scafetta, Nicola; Marchi, Damiano; West, Bruce J.

    2009-06-01

    Time series of human gait stride intervals exhibit fractal and multifractal properties under several conditions. Records from subjects walking at normal, slow, and fast pace speed are analyzed to determine changes in the fractal scalings as a function of the stress condition of the system. Records from subjects with different age from children to elderly and patients suffering from neurodegenerative disease are analyzed to determine changes in the fractal scalings as a function of the physical maturation or degeneration of the system. A supercentral pattern generator model is presented to simulate the above two properties that are typically found in dynamical network performance: that is, how a dynamical network responds to stress and to evolution.

  8. Neuroscience-Enabled Complex Visual Scene Understanding

    Science.gov (United States)

    2012-04-12

    34, Rivista di Psicologia 49 (1): 7–30 • Kauppinen, Hannu. Seppanen, Tapio and Pietikainen, Matti. An Experimental Comparison of Autoregressive and...a Social Robot,“ IJCAI, pp. 1146-1151, 1999. [63] G. Heidemann, R. Rae, H. Bekel, I. Bax, and H. Ritter, ”Inte- grating Context-free and Context... social interaction. In Interna- tional Conference on Robotics, Automation, and Mecha- tronics (RAM 2006), Bangkok Thailand. Se, S., Lowe, D. G

  9. Understanding classification

    NARCIS (Netherlands)

    Subianto, M.

    2009-01-01

    In practical data analysis, the understandability of models plays an important role in their acceptance. In the data mining literature, however, understandability plays is hardly ever mentioned. If it is mentioned, it is interpreted as meaning that the models have to be simple. In this thesis we

  10. Condensed matter analogues of cosmology

    Science.gov (United States)

    Kibble, Tom; Srivastava, Ajit

    2013-10-01

    It is always exciting when developments in one branch of physics turn out to have relevance in a quite different branch. It would be hard to find two branches farther apart in terms of energy scales than early-universe cosmology and low-temperature condensed matter physics. Nevertheless ideas about the formation of topological defects during rapid phase transitions that originated in the context of the very early universe have proved remarkably fruitful when applied to a variety of condensed matter systems. The mathematical frameworks for describing these systems can be very similar. This interconnection has led to a deeper understanding of the phenomena in condensed matter systems utilizing ideas from cosmology. At the same time, one can view these condensed matter analogues as providing, at least in a limited sense, experimental access to the phenomena of the early universe for which no direct probe is possible. As this special issue well illustrates, this remains a dynamic and exciting field. The basic idea is that when a system goes through a rapid symmetry-breaking phase transition from a symmetric phase into one with spontaneously broken symmetry, the order parameter may make different choices in different regions, creating domains that when they meet can trap defects. The scale of those domains, and hence the density of defects, is constrained by the rate at which the system goes through the transition and the speed with which order parameter information propagates. This is what has come to be known as the Kibble-Zurek mechanism. The resultant scaling laws have now been tested in a considerable variety of different systems. The earliest experiments illustrating the analogy between cosmology and condensed matter were in liquid crystals, in particular on the isotropic-to-nematic transition, primarily because it is very easy to induce the phase transition (typically at room temperature) and to image precisely what is going on. This field remains one of the

  11. New Approaches in Soil Organic Matter Fluorescence; A Solid Phase Fluorescence Approach

    Science.gov (United States)

    Bowman, M. M.; Sanclements, M.; McKnight, D. M.

    2017-12-01

    Fluorescence spectroscopy is a well-established technique to investigate the composition of organic matter in aquatic systems and is increasingly applied to soil organic matter (SOM). Current methods require that SOM be extracted into a liquid prior to analysis by fluorescence spectroscopy. Soil extractions introduce an additional layer of complexity as the composition of the organic matter dissolved into solution varies based upon the selected extractant. Water is one of the most commonly used extractant, but only extracts the water-soluble fraction of the SOM with the insoluble soil organic matter fluorescence remaining in the soil matrix. We propose the use of solid phase fluorescence on whole soils as a potential tool to look at the composition of organic matter without the extraction bias and gain a more complete understand of the potential for fluorescence as a tool in terrestrial studies. To date, the limited applications of solid phase fluorescence have ranged from food and agriculture to pharmaceutical with no clearly defined methods and limitations available. We are aware of no other studies that use solid phase fluorescence and thus no clear methods to look at SOM across a diverse set of soil types and ecosystems. With this new approach to fluorescence spectroscopy there are new challenges, such as blank correction, inner filter effect corrections, and sample preparation. This work outlines a novel method for analyzing soil organic matter using solid phase fluorescence across a wide range of soils collected from the National Ecological Observatory Network (NEON) eco-domains. This method has shown that organic matter content in soils must be diluted to 2% to reduce backscattering and oversaturation of the detector in forested soils. In mineral horizons (A) there is observed quenching of the humic-like organic matter, which is likely a result of organo-mineral complexation. Finally, we present preliminary comparisons between solid and liquid phase

  12. ADHESION EFFECTS WITHIN THE HARD MATTER – SOFT MATTER INTERFACE: MOLECULAR DYNAMICS

    Directory of Open Access Journals (Sweden)

    Alexey Tsukanov

    2016-12-01

    Full Text Available In the present study three soft matter – hard matter systems consisting of different nanomaterials and organic molecules were studied using the steered molecular dynamics approach in order to reveal regularities in the formation of organic-inorganic hybrids and the stability of multimolecular complexes, as well as to analyze the energy aspects of adhesion between bio-molecules and layered ceramics. The combined process free energy estimation (COPFEE procedure was used for quantitative and qualitative assessment of the considered heterogeneous systems. Interaction of anionic and cationic amino acids with the surface of a [Mg4Al2(OH122+ 2Cl–] layered double hydroxide (LDH nanosheet was considered. In both cases, strong adhesion was observed despite the opposite signs of electric charge. The free energy of the aspartic amino acid anion, which has two deprotonated carboxylic groups, was determined to be –45 kJ/mol for adsorption on the LDH surface. For the cationic arginine, with only one carboxylic group and a positive net charge, the energy of adsorption was –26 kJ/mol, which is twice higher than that of chloride anion adsorption on the same cationic nanosheet. This fact clearly demonstrates the capability of “soft matter” species to adjust themselves and fit into the surface, minimizing energy of the system. The adsorption of protonated histamine, having no carboxylic groups, on a boehmite nanosheet is also energetically favorable, but the depth of free energy well is quite small at 3.6 kJ/mol. In the adsorbed state the protonated amino-group of histamine plays the role of proton donor, while the hydroxyl oxygens of the layered hydroxide have the role of proton acceptor, which is unusual. The obtained results represent a small step towards further understanding of the adhesion effects within the hard matter – soft matter contact zone.

  13. Embodied understanding.

    Science.gov (United States)

    Johnson, Mark

    2015-01-01

    Western culture has inherited a view of understanding as an intellectual cognitive operation of grasping of concepts and their relations. However, cognitive science research has shown that this received intellectualist conception is substantially out of touch with how humans actually make and experience meaning. The view emerging from the mind sciences recognizes that understanding is profoundly embodied, insofar as our conceptualization and reasoning recruit sensory, motor, and affective patterns and processes to structure our understanding of, and engagement with, our world. A psychologically realistic account of understanding must begin with the patterns of ongoing interaction between an organism and its physical and cultural environments and must include both our emotional responses to changes in our body and environment, and also the actions by which we continuously transform our experience. Consequently, embodied understanding is not merely a conceptual/propositional activity of thought, but rather constitutes our most basic way of being in, and engaging with, our surroundings in a deep visceral manner.

  14. Hyperons in dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Dapo, Haris

    2009-01-28

    -body force with a density-dependent interaction. This density-dependent interaction is fitted to the saturation properties of nuclear matter and used together with the V{sub low} {sub k} potential. The study of in-medium properties with these interactions is accomplished with a combination of Fermi liquid theory and random phase approximation(RPA). The Fermi liquid theory is then used to obtain the strength of the particle-hole interactions. The medium's response to neutrinos is represented via changes of the polarization function in the random phase approximation. The properties of neutrinos in dense matter are studied in both, Hartree-Fock and random phase, approximation. To understand how the changes in the mediums response alter the behavior of neutrinos in dense matter, we calculate the neutrino cross section and the neutrino mean free path. The neutrinos interact with baryons and leptons through the weak interaction, hence we calculate these for both neutral and charged currents. (orig.)

  15. Fluency matters

    Directory of Open Access Journals (Sweden)

    Timothy Rasinski

    2014-11-01

    Full Text Available Although reading fluency has been dismissed and overlooked as an important component of effective reading instruction, the author makes that case that fluency continues to be essential for success in learning to read. Moreover, many students who struggle in reading manifest difficulties in reading fluency. After defining reading fluency, the article explores proven methods for improving reading fluency, and finally explores questions regarding fluency that when answered may lead to a greater emphasis on and understanding of reading fluency as a necessary part of teaching reading.

  16. Fluency Matters

    Directory of Open Access Journals (Sweden)

    Timothy RASINSKI

    2014-10-01

    Full Text Available Although reading fluency has been dismissed and overlooked as an important component of effective reading instruction, the author makes that case that fluency continues to be essential for success in learning to read. Moreover, many students who struggle in reading manifest difficulties in reading fluency. After defining reading fluency, the article explores proven methods for improving reading fluency, and finally explores questions regarding fluency that when answered may lead to a greater emphasis on and understanding of reading fluency as a necessary part of teaching reading.

  17. Matter in compact binary mergers

    Science.gov (United States)

    Read, Jocelyn; LIGO Scientific Collaboration, Virgo Scientific Collaboration

    2018-01-01

    Mergers of binary neutron stars or neutron-star/black-hole systems are promising targets for gravitational-wave detection. The dynamics of merging compact objects, and thus their gravitational-wave signatures, are primarily determined by the mass and spin of the components. However, the presence of matter can make an imprint on the final orbits and merger of a binary system. I will outline efforts to understand the impact of neutron-star matter on gravitational waves, using both theoretical and computational input, so that gravitational-wave observations can be used to measure the properties of source systems with neutron-star components.

  18. Complex Covariance

    Directory of Open Access Journals (Sweden)

    Frieder Kleefeld

    2013-01-01

    Full Text Available According to some generalized correspondence principle the classical limit of a non-Hermitian quantum theory describing quantum degrees of freedom is expected to be the well known classical mechanics of classical degrees of freedom in the complex phase space, i.e., some phase space spanned by complex-valued space and momentum coordinates. As special relativity was developed by Einstein merely for real-valued space-time and four-momentum, we will try to understand how special relativity and covariance can be extended to complex-valued space-time and four-momentum. Our considerations will lead us not only to some unconventional derivation of Lorentz transformations for complex-valued velocities, but also to the non-Hermitian Klein-Gordon and Dirac equations, which are to lay the foundations of a non-Hermitian quantum theory.

  19. Metal Ions and Hydroperoxide Content: Main Drivers of Coastal Lipid Autoxidation in Riverine Suspended Particulate Matter and Higher Plant Debris

    Directory of Open Access Journals (Sweden)

    Marie-Aimée Galeron

    2016-08-01

    Full Text Available Autoxidation is a complex abiotic degradation process, and while it has long been known and well studied in biological compounds, it has been widely overlooked in environmental samples and as a part of environmental processes. With recent observations showing the magnitude of the involvement of autoxidation in coastal environments, it has become critical to better understand how and why this degradative process takes place. At the riverine/marine interface, recent findings evidenced a spike in autoxidation rates upon the arrival of suspended particulate matter in seawater. In this study, we aimed at identifying autoxidation-favoring factors in vitro by analyzing suspended particulate matter incubated under different conditions. If metal ions have long been known to induce autoxidation in biological systems, we show that they indeed induce autoxidation in particulate matter incubated in water, but also that the content in photochemically-produced hydroperoxides in suspended particulate matter is crucial to the induction of its autoxidation in water.

  20. Complex Networks

    CERN Document Server

    Evsukoff, Alexandre; González, Marta

    2013-01-01

    In the last decade we have seen the emergence of a new inter-disciplinary field focusing on the understanding of networks which are dynamic, large, open, and have a structure sometimes called random-biased. The field of Complex Networks is helping us better understand many complex phenomena such as the spread of  deseases, protein interactions, social relationships, to name but a few. Studies in Complex Networks are gaining attention due to some major scientific breakthroughs proposed by network scientists helping us understand and model interactions contained in large datasets. In fact, if we could point to one event leading to the widespread use of complex network analysis is the availability of online databases. Theories of Random Graphs from Erdös and Rényi from the late 1950s led us to believe that most networks had random characteristics. The work on large online datasets told us otherwise. Starting with the work of Barabási and Albert as well as Watts and Strogatz in the late 1990s, we now know th...

  1. Understanding quantum phase transitions

    CERN Document Server

    Carr, Lincoln

    2010-01-01

    Quantum phase transitions (QPTs) offer wonderful examples of the radical macroscopic effects inherent in quantum physics: phase changes between different forms of matter driven by quantum rather than thermal fluctuations, typically at very low temperatures. QPTs provide new insight into outstanding problems such as high-temperature superconductivity and display fundamental aspects of quantum theory, such as strong correlations and entanglement. Over the last two decades, our understanding of QPTs has increased tremendously due to a plethora of experimental examples, powerful new numerical meth

  2. Understanding semantics

    DEFF Research Database (Denmark)

    Thrane, Torben

    1997-01-01

    Understanding natural language is a cognitive, information-driven process. Discussing some of the consequences of this fact, the paper offers a novel look at the semantic effect of lexical nouns and the identification of reference types....

  3. Understanding Alzheimer's

    Science.gov (United States)

    ... Navigation Bar Home Current Issue Past Issues Understanding Alzheimer's Past Issues / Fall 2007 Table of Contents For ... and brain scans. No treatment so far stops Alzheimer's. However, for some in the disease's early and ...

  4. Understanding of the characteristics of the local newspapers providing media coverage on the matters of nuclear energy in the regions where nuclear facilities are located. Based on analysis of the media reports and interviews with journalists

    International Nuclear Information System (INIS)

    Tsuchida, Tatsuro; Kimura, Hiroshi

    2011-01-01

    Taking into consideration the influence of the media coverage, this research aims to analyze the characteristics of the local newspapers that cover diverse events relevant to nuclear energy in regional areas where nuclear facilities are located (hereinafter called the 'region'). According to the previous surveys, local residents in the region are more interested in the nuclear energy matters than those who live in urban areas. Plus, the local newspapers turn out to report more events of nuclear energy from a variety of angles. Through interviews with executives and journalists of the local newspaper companies in the regions, it is revealed that the local newspapers tend not to report news sensationally, but they would rather take a supportive stance toward the development in their regions. The interviewees hope that various activities of the nuclear industry will promote education, employment and cooperation among government, industry and academia. They also desire that the industry's activities will help to increase benefits in their regions. It appears that the interviewees' awareness reflects articles of the local newspapers. As a result of the surveys conducted for this research, it is considered that the journalists expect that their region will make particularly qualitative progress in the future. (author)

  5. Understanding homelessness

    OpenAIRE

    Somerville, Peter

    2013-01-01

    This paper reviews the literature on understanding homelessness. It criticizes approaches that ignore, distort or diminish the humanity of homeless people, or else, add little to our understanding of that humanity. In particular, it rejects what it calls “epidemiological” approaches, which deny the possibility of agency for homeless people, insofar as those approaches view the situation of those people largely as a “social fact”, to be explained in terms of causal variables or “risk factors” ...

  6. Understanding the Southeast Asian haze

    Science.gov (United States)

    G, Karthik K. R.; Baikie, T.; T, Mohan Dass E.; Huang, Y. Z.; Guet, C.

    2017-08-01

    The Southeast Asian region had been subjected to a drastic reduction in air quality from the biomass burnings that occurred in 2013 and 2015. The smoke from the biomass burnings covered the entire region including Brunei, Indonesia, Malaysia, Singapore and Thailand, with haze particulate matter (PM) reducing the air quality to hazardous levels. Here we report a comprehensive size-composition-morphology characterization of the PM collected from an urban site in Singapore during the two haze events. The two haze events were a result of biomass burning and occurred in two different geographical source regions. We show the similarities and variations of particle size distribution during hazy and clear days during the two haze events. Sub-micron particles (<1 μm) dominate (˜50%) the aerosols in the atmosphere during clear and hazy days. Using electron microscopy, we also categorize the PM, namely soot, organic-inorganic clusters and hybrid particles. The composition and morphology were similar in both the haze events. The majority of the PM is composed of carbon (˜51%) and other elements pertaining to the earth’s crust. The complexity of the mixing state of the PM is highlighted and the role of the capture mode is addressed. We also present the morphological characterization of all the classified PM. The box counting method is used to determine the fractal dimensions of the PM, and the dimensionality varied for every classification from 1.79 to 1.88. We also report the complexities of particles and inconsistencies in the existing approaches to understand them.

  7. Urban tree effects on fine particulate matter and human health

    Science.gov (United States)

    David J. Nowak

    2014-01-01

    Overall, city trees reduce particulate matter and provide substantial health benefits; but under certain conditions, they can locally increase particulate matter concentrations. Urban foresters need to understand how trees affect particulate matter so they can select proper species and create appropriate designs to improve air quality. This article details trees'...

  8. Is old organic matter simple organic matter?

    Science.gov (United States)

    Nunan, Naoise; Lerch, Thomas; Pouteau, Valérie; Mora, Philippe; Changey, Fréderique; Kätterer, Thomas; Herrmann, Anke

    2016-04-01

    Bare fallow soils that have been deprived of fresh carbon inputs for prolonged periods contain mostly old, stable organic carbon. In order to shed light on the nature of this carbon, the functional diversity profiles (MicroResp™, Biolog™ and enzyme activity spectra) of the microbial communities of long-term barefallow soils were analysed and compared with those of the microbial communities from their cultivated counterparts. The study was based on the idea that microbial communities adapt to their environment and that therefore the catabolic and enzymatic profiles would reflect the type of substrates available to the microbial communities. The catabolic profiles suggested that the microbial communities in the long-term bare-fallow soil were exposed to a less diverse range of substrates and that these substrates tended to be of simpler molecular forms. Both the catabolic and enzyme activity profiles suggested that the microbial communities from the long-term bare-fallow soils were less adapted to using polymers. These results do not fit with the traditional view of old, stable carbon being composed of complex, recalcitrant polymers. An energetics analysis of the substrate use of the microbial communities for the different soils suggested that the microbial communities from the long-term bare-fallow soils were better adapted to using readily oxidizable,although energetically less rewarding, substrates. Microbial communities appear to adapt to the deprivation of fresh organic matter by using substrates that require little investment.

  9. Understanding the Attributes of Implementation Frameworks to Guide the Implementation of a Model of Community-based Integrated Health Care for Older Adults with Complex Chronic Conditions: A Metanarrative Review

    Directory of Open Access Journals (Sweden)

    Ann McKillop

    2017-06-01

    Full Text Available Introduction: Many studies have investigated the process of healthcare implementation to understand better how to bridge gaps between recommended practice, the needs and demands of healthcare consumers, and what they actually receive. However, in the implementation of integrated community-based and integrated health care, it is still not well known which approaches work best.  Methods: We conducted a systematic review and metanarrative synthesis of literature on implementation frameworks, theories and models in support of a research programme investigating CBPHC for older adults with chronic health problems. Results: Thirty-five reviews met our inclusion criteria and were appraised, summarised, and synthesised. Five metanarratives emerged 1 theoretical constructs; 2 multiple influencing factors; 3 development of new frameworks; 4 application of existing frameworks; and 5 effectiveness of interventions within frameworks/models. Four themes were generated that exposed the contradictions and synergies among the metanarratives. Person-centred care is fundamental to integrated CBPHC at all levels in the health care delivery system, yet many implementation theories and frameworks neglect this cornerstone.  Discussion: The research identified perspectives central to integrated CBPHC that were missing in the literature. Context played a key role in determining success and in how consumers and their families, providers, organisations and policy-makers stay connected to implementing the best care possible.  Conclusions: All phases of implementation of a new model of CBPHC call for collaborative partnerships with all stakeholders, the most important being the person receiving care in terms of what matters most to them.

  10. Matter and antimatter

    International Nuclear Information System (INIS)

    Schopper, H.

    1989-01-01

    For many years the physicist Herwig Schopper has been contributing in leading positions - either as director of DESY in Hamburg or as general director of CERN in Geneva - to the development of a fascinating field of modern physics. His book is the first comprehensive presentation of experimental particle physics for non-physicists. The search for the smallest constituents of matter, i.e. the exploration of the microcosmos, apart from the advance of the man into space belongs to the most exciting scientific-technical adventures of our century. Contrarily to the stars, atoms, atomic nuclei, and quarks cannot be seen. How objects are studied which are by thousands smaller than the smallest atomic nucleus? Can matter be decomposed in ever smaller constituents, or does there exist a limit? What is matter, and what is of consequence for the mysterious antimatter. Do the laws of the infinitely small also determine the development of the universe since its origin? Such and other questions - expressions of human curiosity - Schopper wants to answer with his generally understandable book. Thereby the 'machines' and the experiments of high-energy physics play a decicive role in the presentation. The author describes the development of the accelerators - in Europe, as well as in the Soviet Union, Japan, or in the USA -, and he shows, why for the investigation of the smallest immense experimental facilities - the 1989 finished LEP storage ring at CERN has a circumference of 27 kilometers - are necessary. Schopper explains how the 'machines' work and how the single experiments run. His book satisfies the curiosity of all those, who want to know more about the world of the quarks. (orig.) With 96 figs [de

  11. Condensed Matter Nuclear Science

    Science.gov (United States)

    Takahashi, Akito; Ota, Ken-Ichiro; Iwamura, Yashuhiro

    Preface -- 1. General. Progress in condensed matter nuclear science / A. Takahashi. Summary of ICCF-12 / X. Z. Li. Overview of light water/hydrogen-based low-energy nuclear reactions / G. H. Miley and P. J. Shrestha -- 2. Excess heat and He detection. Development of "DS-reactor" as the practical reactor of "cold fusion" based on the "DS-cell" with "DS-cathode" / Y. Arata and Y.-C. Zhang. Progress in excess of power experiments with electrochemical loading of deuterium in palladium / V. Violante ... [et al.]. Anomalous energy generation during conventional electrolysis / T. Mizuno and Y. Toriyabe. "Excess heat" induced by deuterium flux in palladium film / B. Liu ... [et al.]. Abnormal excess heat observed during Mizuno-type experiments / J.-F. Fauvarque, P. P. Clauzon and G. J.-M. Lallevé. Seebeck envelope calorimetry with a Pd|D[symbol]O + H[symbol]SO[symbol] electrolytic cell / W.-S. Zhang, J. Dash and Q. Wang. Observation and investigation of nuclear fusion and self-induced electric discharges in liquids / A. I. Koldamasov ... [et al.]. Description of a sensitive seebeck calorimeter used for cold fusion studies / E. Storms. Some recent results at ENEA / M. Apicella ... [et al.]. Heat measurement during plasma electrolysis / K. Iizumi ... [et al.]. Effect of an additive on thermal output during electrolysis of heavy water with a palladium cathode / Q. Wang and J. Dash. Thermal analysis of calorimetric systems / L. D'Aulerio ... [et al.]. Surface plasmons and low-energy nuclear reactions triggering / E. Castagna ... [et al.]. Production method for violent TCB jet plasma from cavity / F. Amini. New results and an ongoing excess heat controversy / L. Kowalski ... [et al.] -- 3. Transmutation. Observation of surface distribution of products by X-ray fluorescence spectrometry during D[symbol] gas permeation through Pd Complexes / Y. Iwamura ... [et al.]. Discharge experiment using Pd/CaO/Pd multi-layered cathode / S. Narita ... [et al.]. Producing transmutation

  12. The production of understanding.

    Science.gov (United States)

    Link, Bruce G

    2003-12-01

    While there is little doubt that sociological theory and research has had an important impact on the way people think about health and health care, mental health and medical sociologists are often confronted with challenges concerning the utility of the work that they do. Among the doubters are deans, funding agencies and family members. We are challenged by the ascendency of biological interpretations of human behaviors, by the incompatibility between the contextual view we prefer and the very strong individualistic orientation of our culture, and by the fact that we do not have an applied arm that trains the professionals who treat health and mental-health conditions. How do we respond to this challenge? The title of this paper gives a short answer: "The Production of Understanding." I propose that a powerful but under-recognized value of our work is the generation of explanations about health and mental health matters that help people understand the other side of an "us"/"them" divide. We produce understanding in a context in which misunderstanding is regularly constructed by powerful people who offer victim-blaming explanations for the circumstances experienced by people with less power. The production of understanding serves as an important counterbalance to this tendency. Our work shapes the way people think about problems related to health and mental health, limits the power of inaccurate victim-blaming accounts and provides understanding about why health and mental health are mal-distributed among people from different social circumstances.

  13. Understanding Haiti.

    Science.gov (United States)

    Caines, Heather; And Others

    1995-01-01

    Provides teachers, librarians, and general readers with resources to educate themselves and others about the complex reality of today's Haiti. It offers an introduction to Haiti's history, politics, society, and culture and cites works available within the following categories: children's/young adults' books, literature, film and video, and music.…

  14. SYSTEMS APPROACH FOR CONTEMPORARY COMPLEX TOURISM SYSTEMS

    Directory of Open Access Journals (Sweden)

    Tadeja Jere Jakulin

    2016-09-01

    Full Text Available Systems approach represents thinking outside the box and is connected to the transformation of common linear approach and thinking. Western society followed rules of classical western science, which form many centuries took analysis as mainstream of thinking and researching. One can find perfect and logical explanation for this. In the past, classical science researched matter and reached optimal results with analysis and analytical thinking. Nowadays more and more scientists research intangible world around matter and cooperate with prevailed, fastest growing service industry such as tourism. Following paper presents systems approach in tourism, which defines wideness, co-dependency among tourism system elements, and "big picture" point of view. In a frame of systems methodology, we will show the importance of systems approach in order to understand complexity in the area of tourism. At once an excellent example of the analytical approach will be shown in so called "the tip of the iceberg" theory, where events represent analytical thinking and structure or base of the iceberg represents systems approach. Complexity of the tourism systems will be explained and a model of a common tourism system developed. We claim that the analysis, in the past, caused technological progress; it caused the development of western science, which we now know it. It led to the discoveries but for dealing with contemporary complex challenges is not sufficient. Today a systems approach is suitable enough for dealing with complex question in the area of tourism and of course in global society.

  15. Size does Matter

    Science.gov (United States)

    Vespignani, Alessandro

    From schools of fish and flocks of birds, to digital networks and self-organizing biopolymers, our understanding of spontaneously emergent phenomena, self-organization, and critical behavior is in large part due to complex systems science. The complex systems approach is indeed a very powerful conceptual framework to shed light on the link between the microscopic dynamical evolution of the basic elements of the system and the emergence of oscopic phenomena; often providing evidence for mathematical principles that go beyond the particulars of the individual system, thus hinting to general modeling principles. By killing the myth of the ant queen and shifting the focus on the dynamical interaction across the elements of the systems, complex systems science has ushered our way into the conceptual understanding of many phenomena at the core of major scientific and social challenges such as the emergence of consensus, social opinion dynamics, conflicts and cooperation, contagion phenomena. For many years though, these complex systems approaches to real-world problems were often suffering from being oversimplified and not grounded on actual data...

  16. Superheavy dark matter

    CERN Document Server

    Riotto, Antonio

    2000-01-01

    It is usually thought that the present mass density of the Universe is dominated by a weakly interacting massive particle (WIMP), a fossil relic of the early Universe. Theoretical ideas and experimental efforts have focused mostly on production and detection of thermal relics, with mass typically in the range a few GeV to a hundred GeV. Here, we will review scenarios for production of nonthermal dark matter whose mass may be in the range 10/sup 12/ to 10/sup 19/ GeV, much larger than the mass of thermal wimpy WIMPS. We will also review recent related results in understanding the production of very heavy fermions through preheating after inflation. (19 refs).

  17. Managing Complexity

    Energy Technology Data Exchange (ETDEWEB)

    Chassin, David P.; Posse, Christian; Malard, Joel M.

    2004-08-01

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today’s most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically-based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This paper explores the state of the art in the use physical analogs for understanding the behavior of some econophysical systems and to deriving stable and robust control strategies for them. In particular we review and discussion applications of some analytic methods based on the thermodynamic metaphor according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood.

  18. Understanding physics

    CERN Document Server

    Mansfield, Michael

    2011-01-01

    Understanding Physics - Second edition is a comprehensive, yet compact, introductory physics textbook aimed at physics undergraduates and also at engineers and other scientists taking a general physics course. Written with today's students in mind, this text covers the core material required by an introductory course in a clear and refreshing way. A second colour is used throughout to enhance learning and understanding. Each topic is introduced from first principles so that the text is suitable for students without a prior background in physics. At the same time the book is designed to enable

  19. Unified picture for Dirac neutrinos, dark matter, dark energy and matter-antimatter asymmetry

    OpenAIRE

    Gu, Pei-Hong

    2007-01-01

    We propose a unified scenario to generate the masses of Dirac neutrinos and cold dark matter at the TeV scale, understand the origin of dark energy and explain the matter-antimatter asymmetry of the universe. This model can lead to significant impact on the Higgs searches at LHC.

  20. The God Machine seeks the origin of the matter; La maquina de dios busca el origen de la materia

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.

    2015-07-01

    Under the green fields of the French-Swiss border, not far from the Alps and Lake Geneva, is hidden underground most strength Earth energy. The generated particles of low mass, subatomic, ue collide with each other in a huge circumference of 27 kilometers, the Large Hadron Collider (LHC English siglasen), an underground infrastructure that seeks to answer big questions of science: the origin of matter we know or dark matter and energy, which together occupy 95% of the universe and that we are not able to see or understand. They call it the 'god machine' and is the largest and most complex built in the world. (Author)