WorldWideScience

Sample records for understanding cold tolerance

  1. Cold stress alters transcription in meiotic anthers of cold tolerant chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Sharma, Kamal Dev; Nayyar, Harsh

    2014-10-11

    Cold stress at reproductive phase in susceptible chickpea (Cicer arietinum L.) leads to pollen sterility induced flower abortion. The tolerant genotypes, on the other hand, produce viable pollen and set seed under cold stress. Genomic information on pollen development in cold-tolerant chickpea under cold stress is currently unavailable. DDRT-PCR analysis was carried out to identify anther genes involved in cold tolerance in chickpea genotype ICC16349 (cold-tolerant). A total of 9205 EST bands were analyzed. Cold stress altered expression of 127 ESTs (90 up-regulated, 37 down-regulated) in anthers, more than two third (92) of which were novel with unknown protein identity and function. Remaining about one third (35) belonged to several functional categories such as pollen development, signal transduction, ion transport, transcription, carbohydrate metabolism, translation, energy and cell division. The categories with more number of transcripts were carbohydrate/triacylglycerol metabolism, signal transduction, pollen development and transport. All but two transcripts in these categories were up-regulated under cold stress. To identify time of regulation after stress and organ specificity, expression levels of 25 differentially regulated transcripts were also studied in anthers at six time points and in four organs (anthers, gynoecium, leaves and roots) at four time points. Limited number of genes were involved in regulating cold tolerance in chickpea anthers. Moreover, the cold tolerance was manifested by up-regulation of majority of the differentially expressed transcripts. The anthers appeared to employ dual cold tolerance mechanism based on their protection from cold by enhancing triacylglycerol and carbohydrate metabolism; and maintenance of normal pollen development by regulating pollen development genes. Functional characterization of about two third of the novel genes is needed to have precise understanding of the cold tolerance mechanisms in chickpea anthers.

  2. Screening Prosopis (mesquite) for cold tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Felker, P. (Texas AandI Univ., Kingsville); Clark, P.R.; Nash, P.; Osborn, J.F.; Cannell, G.H.

    1982-09-01

    Cold tolerance and biomass estimation of Prosopis species were examined under field conditions. Prosopis africana and P. pallida tolerated several minus 1.5/sup 0/C freezes but none survived a minus 5/sup 0/C freeze. P. alba, P. articulata, P. chilensis, P. nigra, and P. tamarugo tolerated several minus 5/sup 0/C freezes but not a 12-hour below 0/sup 0/C freeze. Most North American native species P. glandulosa var. glandulosa, P. glandulosa var. torreyana, and P. velutina tolerated the 12 hour freeze with only moderate damage. In general trees with greater productivity belonged to the most cold sensitive accessions but sufficient variability exists to substantially improve Prosopis biomass production on the coldest areas where it now naturally occurs.

  3. Combining Maize Base Germplasm for Cold Tolerance Breeding

    OpenAIRE

    Rodríguez Graña, Víctor Manuel; Butrón Gómez, Ana María; Sandoya Miranda, Germán; Ordás Pérez, Amando; Revilla Temiño, Pedro

    2007-01-01

    Early planting can contribute to increased grain yield of maize (Zea mays L.), but it requires cold tolerance. A limited number of cold-tolerant maize genotypes have been reported. The objectives of this study were to test a new strategy to improve cold tolerance in maize searching for broad x narrow genetic combinations that may be useful as base populations for breeding programs, to compare genotype performance under cold-controlled and field conditions, and to establish the major genetic e...

  4. Understanding Colds: Anatomy of the Nose

    Science.gov (United States)

    ... Complications Special Features References Common Cold Understanding Colds Anatomy of the Nose The nose contains shelf-like ... white). Soft tissue, such as the eye, is gray. The maxillary sinus of adults has a volume ...

  5. Cold acclimation increases cold tolerance independently of diapause programing in the bean bug, Riptortus pedestris.

    Science.gov (United States)

    Rozsypal, J; Moos, M; Goto, S G

    2017-10-17

    The bean bug (Riptortus pedestris) is a pest of soybeans and other legumes in Japan and other Asian countries. It enters a facultative adult diapause on exposure to short days. While photoperiodism and diapause are well understood in R. pedestris, knowledge of cold tolerance is very limited, as is information on the effect of diapause on cold tolerance. We examined the effect of photoperiod, cold acclimation, and feeding status on cold tolerance in R. pedestris. We found that cold acclimation significantly increased survival at -10°C in both long- and short-day adult R. pedestris. Since the difference in cold survival between long- and short-day cold-acclimated groups was only marginal, we conclude that entering diapause is not crucial for R. pedestris to successfully pass through cold acclimation and become cold tolerant. We observed similar effects in 5th instar nymphs, with both long- and short-day cold-acclimated groups surviving longer cold exposures compared with non-acclimated groups. Starvation, which was tested only in adult bugs, had only a negligible and negative impact on cold survival. Although cold tolerance significantly increased with cold acclimation in adult bugs, supercooling capacity unexpectedly decreased. Our results suggest that changes in supercooling capacity as well as in water content are unrelated to cold tolerance in R. pedestris. An analysis of metabolites revealed differences between the treatments, and while several metabolites markedly increased with cold acclimation, their concentrations were too low to have a significant effect on cold tolerance.

  6. Relationships of self-identified cold tolerance and cold-induced vasodilatation in the finger

    Science.gov (United States)

    Park, Joonhee; Lee, Joo-Young

    2016-04-01

    This study was conducted to investigate relationships of self-identified cold tolerance and cold-induced vasodilatation (CIVD) in the finger. Nine males and 34 females participated in the following 2 tests: a CIVD test and a self-reported survey. The CIVD test was conducted 30-min cold-water immersion (3.8 ± 0.3 °C) of the middle finger at an air temperature of 27.9 ± 0.1 °C. The self-reported questionnaire consisted of 28 questions about whole and local body cold and heat tolerances. By a cluster analysis on the survey results, the participants were divided into two groups: high self-identified cold tolerance (HSCT, n = 25) and low self-identified cold tolerance (LSCT, n = 18). LSCT had lower self-identified cold tolerance ( P cold or heat tolerance had relationships with cold tolerance index, T max, and amplitude ( P cold tolerance classified through a standardized survey could be a good index to predict physiological cold tolerance.

  7. High Latitude Corals Tolerate Severe Cold Spell

    Directory of Open Access Journals (Sweden)

    Chenae A. Tuckett

    2018-01-01

    Full Text Available Climatically extreme weather events often drive long-term ecological responses of ecosystems. By disrupting the important symbiosis with zooxanthellae, Marine Cold Spells (MCS can cause bleaching and mortality in tropical and subtropical scleractinian corals. Here we report on the effects of a severe MCS on high latitude corals, where we expected to find bleaching and mortality. The MCS took place off the coast of Perth (32°S, Western Australia in 2016. Bleaching was assessed before (2014 and after (2017 the MCS from surveys of permanent plots, and with timed bleaching searches. Temperature data was recorded with in situ loggers. During the MCS temperatures dipped to the coldest recorded in ten years (15.3°C and periods of <17°C lasted for up to 19 days. Only 4.3% of the surveyed coral colonies showed signs of bleaching. Bleaching was observed in 8 species where those most affected were Plesiastrea versipora and Montipora mollis. These findings suggest that high latitude corals in this area are tolerant of cold stress and are not persisting near a lethal temperature minimum. It has not been established whether other environmental conditions are limiting these species, and if so, what the implications are for coral performance on these reefs in a warmer future.

  8. Relative expression of genes related with cold tolerance in ...

    African Journals Online (AJOL)

    SAM

    2014-06-18

    Jun 18, 2014 ... Low temperature is one of the main abiotic stresses affecting rice yield in Chile. Alterations ... To find mechanisms of cold tolerance in Chilean cultivars, we ... dependent on the development stage and the intensity of the cold ...

  9. Heritability of cold tolerance in Nile tilapia, Oreochromis niloticus, juveniles

    NARCIS (Netherlands)

    Charo-Karisa, H.; Rezk, M.A.; Bovenhuis, H.; Komen, J.

    2005-01-01

    The inability of tilapia to tolerate low temperatures is of major economic concern as it reduces their growing season and leads to over winter mortality. In this study, cold tolerance of juvenile Nile tilapia, Oreochromis niloticus, was investigated and heritability estimates obtained. A total of 80

  10. Critical temperature: A quantitative method of assessing cold tolerance

    Science.gov (United States)

    D.H. DeHayes; M.W., Jr. Williams

    1989-01-01

    Critical temperature (Tc), defined as the highest temperature at which freezing injury to plant tissues can be detected, provides a biologically meaningful and statistically defined assessment of the relative cold tolerance of plant tissues. A method is described for calculating critical temperatures in laboratory freezing studies that use...

  11. Chlorophyll fluorescence emission can screen cold tolerance of cold acclimated Arabidopsis thaliana accessions

    Czech Academy of Sciences Publication Activity Database

    Mishra, Anamika; Heyer, A. G.; Mishra, Kumud

    2014-01-01

    Roč. 10, č. 38 (2014) ISSN 1746-4811 R&D Projects: GA MŠk EE2.3.20.0246; GA MŠk 7E12047 Institutional support: RVO:67179843 Keywords : high-throughput screening * chlorophyll a fluorescence transients * cold tolerance * cold acclimation * whole plant * Arabidopsis thaliana Subject RIV: EH - Ecology, Behaviour Impact factor: 3.102, year: 2014

  12. Tracking the evolution of a cold stress associated gene family in cold tolerant grasses

    DEFF Research Database (Denmark)

    Sandve, Simen R; Rudi, Heidi; Asp, Torben

    2008-01-01

    to the repeat motifs of the IRI-domain in cold tolerant grasses. Finally we show that the LRR-domain of carrot and grass IRI proteins both share homology to an Arabidopsis thaliana LRR-trans membrane protein kinase (LRR-TPK). Conclusion The diverse IRI-like genes identified in this study tell a tale...... of a complex evolutionary history including birth of an ice binding domain, a burst of gene duplication events after cold tolerant grasses radiated from rice, protein domain structure differentiation between paralogs, and sub- and/or neofunctionalisation of IRI-like proteins. From our sequence analysis we...

  13. Multiple cold resistance loci confer the high cold tolerance adaptation of Dongxiang wild rice (Oryza rufipogon) to its high-latitude habitat.

    Science.gov (United States)

    Mao, Donghai; Yu, Li; Chen, Dazhou; Li, Lanying; Zhu, Yuxing; Xiao, Yeqing; Zhang, Dechun; Chen, Caiyan

    2015-07-01

    Dongxiang wild rice is phylogenetically close to temperate japonica and contains multiple cold resistance loci conferring its adaptation to high-latitude habitat. Understanding the nature of adaptation in wild populations will benefit crop breeding in the development of climate-resilient crop varieties. Dongxiang wild rice (DXWR), the northernmost common wild rice known, possesses a high degree of cold tolerance and can survive overwintering in its native habitat. However, to date, it is still unclear how DXWR evolved to cope with low-temperature environment, resulting in limited application of DXWR in rice breeding programs. In this study, we carried out both QTL mapping and phylogenetic analysis to discern the genetic mechanism underlying the strong cold resistance. Through a combination of interval mapping and single locus analysis in two genetic populations, at least 13 QTLs for seedling cold tolerance were identified in DXWR. A phylogenetic study using both genome-wide InDel markers and markers associated with cold tolerance loci reveals that DXWR belongs to the Or-III group, which is most closely related to cold-tolerant Japonica rice rather than to the Indica cultivars that are predominant in the habitat where DXWR grows. Our study paves the way toward an understanding of the nature of adaptation to a northern habitat in O. rufipogon. The QTLs identified in DXWR in this study will be useful for molecular breeding of cold-tolerant rice.

  14. Plant plasma membrane proteomics for improving cold tolerance

    Directory of Open Access Journals (Sweden)

    Daisuke eTakahashi

    2013-04-01

    Full Text Available Plants are always exposed to various stresses. We have focused on freezing stress, which causes serious problems for agricultural management. When plants suffer freeze-induced damage, the plasma membrane is thought to be the primary site of injury because of its central role in regulation of various cellular processes. Cold tolerant species, however, adapt to such freezing conditions by modifying cellular components and functions (cold acclimation. One of the most important adaptation mechanisms to freezing is alteration of plasma membrane compositions and functions. Advanced proteomic technologies have succeeded in identification of many candidates that may play roles in adaptation of the plasma membrane to freezing stress. Proteomics results suggest that adaptations of plasma membrane functions to low temperature are associated with alterations of protein compositions during cold acclimation. Some of proteins identified by proteomic approaches have been verified their functional roles in freezing tolerance mechanisms further. Thus, accumulation of proteomic results in the plasma membrane is of importance for application to molecular breeding efforts to increase cold tolerance in crops.

  15. Abscisic acid enhances cold tolerance in honeybee larvae

    Science.gov (United States)

    Sturla, Laura; Guida, Lucrezia; Vigliarolo, Tiziana; Maggi, Matías; Eguaras, Martín; Zocchi, Elena; Lamattina, Lorenzo

    2017-01-01

    The natural composition of nutrients present in food is a key factor determining the immune function and stress responses in the honeybee (Apis mellifera). We previously demonstrated that a supplement of abscisic acid (ABA), a natural component of nectar, pollen, and honey, increases honeybee colony survival overwinter. Here we further explored the role of ABA in in vitro-reared larvae exposed to low temperatures. Four-day-old larvae (L4) exposed to 25°C for 3 days showed lower survival rates and delayed development compared to individuals growing at a standard temperature (34°C). Cold-stressed larvae maintained higher levels of ABA for longer than do larvae reared at 34°C, suggesting a biological significance for ABA. Larvae fed with an ABA-supplemented diet completely prevent the low survival rate due to cold stress and accelerate adult emergence. ABA modulates the expression of genes involved in metabolic adjustments and stress responses: Hexamerin 70b, Insulin Receptor Substrate, Vitellogenin, and Heat Shock Proteins 70. AmLANCL2, the honeybee ABA receptor, is also regulated by cold stress and ABA. These results support a role for ABA increasing the tolerance of honeybee larvae to low temperatures through priming effects. PMID:28381619

  16. Abscisic acid enhances cold tolerance in honeybee larvae.

    Science.gov (United States)

    Ramirez, Leonor; Negri, Pedro; Sturla, Laura; Guida, Lucrezia; Vigliarolo, Tiziana; Maggi, Matías; Eguaras, Martín; Zocchi, Elena; Lamattina, Lorenzo

    2017-04-12

    The natural composition of nutrients present in food is a key factor determining the immune function and stress responses in the honeybee ( Apis mellifera ). We previously demonstrated that a supplement of abscisic acid (ABA), a natural component of nectar, pollen, and honey, increases honeybee colony survival overwinter. Here we further explored the role of ABA in in vitro -reared larvae exposed to low temperatures. Four-day-old larvae (L4) exposed to 25°C for 3 days showed lower survival rates and delayed development compared to individuals growing at a standard temperature (34°C). Cold-stressed larvae maintained higher levels of ABA for longer than do larvae reared at 34°C, suggesting a biological significance for ABA. Larvae fed with an ABA-supplemented diet completely prevent the low survival rate due to cold stress and accelerate adult emergence. ABA modulates the expression of genes involved in metabolic adjustments and stress responses: Hexamerin 70b, Insulin Receptor Substrate, Vitellogenin , and Heat Shock Proteins 70. AmLANCL2, the honeybee ABA receptor, is also regulated by cold stress and ABA. These results support a role for ABA increasing the tolerance of honeybee larvae to low temperatures through priming effects. © 2017 The Author(s).

  17. Proteome dynamics of cold-acclimating Rhododendron species contrasting in their freezing tolerance and thermonasty behavior.

    Directory of Open Access Journals (Sweden)

    Jose V Die

    Full Text Available To gain a better understanding of cold acclimation in rhododendron and in woody perennials in general, we used the 2D-DIGE technique to analyze the rhododendron proteome during the seasonal development of freezing tolerance. We selected two species varying in their cold acclimation ability as well as their thermonasty response (folding of leaves in response to low temperature. Proteins were extracted from leaves of non-acclimated (NA and cold acclimated (CA plants of the hardier thermonastic species, R. catawbiense (Cata., and from leaves of cold acclimated plants of the less hardy, non-thermonastic R. ponticum (Pont.. All three protein samples (Cata.NA, Cata.CA, and Pont.CA were labeled with different CyDyes and separated together on a single gel. Triplicate gels were run and protein profiles were compared resulting in the identification of 72 protein spots that consistently had different abundances in at least one pair-wise comparison. From the 72 differential spots, we chose 56 spots to excise and characterize further by mass spectrometry (MS. Changes in the proteome associated with the seasonal development of cold acclimation were identified from the Cata.CA-Cata.NA comparisons. Differentially abundant proteins associated with the acquisition of superior freezing tolerance and with the thermonastic response were identified from the Cata.CA-Pont.CA comparisons. Our results indicate that cold acclimation in rhododendron involves increases in abundance of several proteins related to stress (freezing/desiccation tolerance, energy and carbohydrate metabolism, regulation/signaling, secondary metabolism (possibly involving cell wall remodeling, and permeability of the cell membrane. Cold acclimation also involves decreases in abundance of several proteins involved in photosynthesis. Differences in freezing tolerance between genotypes can probably be attributed to observed differences in levels of proteins involved in these functions. Also

  18. TOLERANCE TIME OF EXPERIMENTAL THERMAL PAIN (COLD INDUCED) IN VOLUNTEERS.

    Science.gov (United States)

    Vaid, V N; Wilkhoo, N S; Jain, A K

    1998-10-01

    Perception of thermal pain (cold induced) was studied in 106 volunteers from troops and civilians deployed in J & K. Thermal stimulus devised was "holding ice". Tolerance time of holding ice was taken to be a measure of thermal sensitivity, volunteers were classified based on their native areas, addiction habits and socio-economic status, out of 106 volunteers, 81 could & 25 could not hold ice over 10 min. Sixteen out of 40 from coastline States and 9 out of 66 from non-coast line States failed to hold ice over 10 min. In "below average" "average" and "high average" socio-economic groups, three out of 27, 19 out of 73 and 03 out of 6 failed to hold ice over 10 min respectively. Fifteen out of 64 from "addiction habit group" and 10 out of 42 from "no addiction habit group" failed to hold ice over 10 min. Statistically no classification used in the study revealed significant difference in "tolerance times" of volunteers except the one based on coastline and non-coastline States.

  19. Tolerância ao frio do amendoim forrageiro Cold tolerance of forage peanut

    Directory of Open Access Journals (Sweden)

    Adriana Pires Soares Bresolin

    2008-08-01

    Full Text Available A produtividade de uma pastagem perene tropical, em regiões de clima temperado, é dependente de seu comportamento em relação às condições de temperatura. A avaliação da sensibilidade das plantas, através da sua exposição a temperaturas inferiores a 2°C em ambiente controlado, pode ser um procedimento bastante eficiente na predição de resistência, em função de assegurar uma homogeneidade dos níveis de frio. Considerando-se à reduzida disponibilidade de trabalhos científicos relacionados com a avaliação de leguminosas forrageiras tropicais quanto à tolerância ao frio, este experimento teve como objetivo avaliar o comportamento do amendoim forrageiro (cv. "Amarillo" sob temperaturas inferiores a 2°C. O delineamento experimental adotado foi completamente casualizado com 15 repetições e dois tratamentos, com exposição (CE e sem exposição ao frio (SE. Os caracteres mensurados foram: número de folhas por estolho, espessura do estolho e número de brotações novas. Os resultados indicaram que a exposição do amendoim forrageiro a um intervalo de temperatura de -1,0 a 1,3°C por um período de 3 horas é capaz de causar estresse de frio nas plantas, provocando uma redução no número de folhas e estimulando a formação de novas brotações, sem provocar a morte das plantas.The yield of tropical perennial forages in temperate climate areas depends on its cold tolerance. The exposure of genotypes to temperatures below 2oC, under controlled conditions is an efficient methodology to predict cold tolerance, since it maintains homogeneous levels of cold. Due to absence of information related to cold tolerance of tropical forages, this experiment was developed aiming to evaluate the behavior of forage peanut exposed to temperatures below 2oC. The design adopted was completely randomized with 15 replications and two treatments: exposed and not exposed to cold. The traits measured were: number of leaves per stolon; thickness

  20. Analysis of Stress-Responsive Gene Expression in Cultivated and Weedy Rice Differing in Cold Stress Tolerance.

    Directory of Open Access Journals (Sweden)

    Caroline Borges Bevilacqua

    Full Text Available Rice (Oryza sativa L. cultivars show impairment of growth in response to environmental stresses such as cold at the early seedling stage. Locally adapted weedy rice is able to survive under adverse environmental conditions, and can emerge in fields from greater soil depth. Cold-tolerant weedy rice can be a good genetic source for developing cold-tolerant, weed-competitive rice cultivars. An in-depth analysis is presented here of diverse indica and japonica rice genotypes, mostly weedy rice, for cold stress response to provide an understanding of different stress adaptive mechanisms towards improvement of the rice crop performance in the field. We have tested a collection of weedy rice genotypes to: 1 classify the subspecies (ssp. grouping (japonica or indica of 21 accessions; 2 evaluate their sensitivity to cold stress; and 3 analyze the expression of stress-responsive genes under cold stress and a combination of cold and depth stress. Seeds were germinated at 25°C at 1.5- and 10-cm sowing depth for 10d. Seedlings were then exposed to cold stress at 10°C for 6, 24 and 96h, and the expression of cold-, anoxia-, and submergence-inducible genes was analyzed. Control plants were seeded at 1.5cm depth and kept at 25°C. The analysis revealed that cold stress signaling in indica genotypes is more complex than that of japonica as it operates via both the CBF-dependent and CBF-independent pathways, implicated through induction of transcription factors including OsNAC2, OsMYB46 and OsF-BOX28. When plants were exposed to cold + sowing depth stress, a complex signaling network was induced that involved cross talk between stresses mediated by CBF-dependent and CBF-independent pathways to circumvent the detrimental effects of stresses. The experiments revealed the importance of the CBF regulon for tolerance to both stresses in japonica and indica ssp. The mechanisms for cold tolerance differed among weedy indica genotypes and also between weedy indica and

  1. Quantitative Proteomic Analysis Reveals that Antioxidation Mechanisms Contribute to Cold Tolerance in Plantain (Musa paradisiaca L.; ABB Group) Seedlings*

    Science.gov (United States)

    Yang, Qiao-Song; Wu, Jun-Hua; Li, Chun-Yu; Wei, Yue-Rong; Sheng, Ou; Hu, Chun-Hua; Kuang, Rui-Bin; Huang, Yong-Hong; Peng, Xin-Xiang; McCardle, James A.; Chen, Wei; Yang, Yong; Rose, Jocelyn K. C.; Zhang, Sheng; Yi, Gan-Jun

    2012-01-01

    Banana and its close relative, plantain are globally important crops and there is considerable interest in optimizing their cultivation. Plantain has superior cold tolerance compared with banana and a thorough understanding of the molecular mechanisms and responses of plantain to cold stress has great potential value for developing cold tolerant banana cultivars. In this study, we used iTRAQ-based comparative proteomic analysis to investigate the temporal responses of plantain to cold stress. Plantain seedlings were exposed for 0, 6, and 24 h of cold stress at 8 °C and subsequently allowed to recover for 24 h at 28 °C. A total of 3477 plantain proteins were identified, of which 809 showed differential expression from the three treatments. The majority of differentially expressed proteins were predicted to be involved in oxidation-reduction, including oxylipin biosynthesis, whereas others were associated with photosynthesis, photorespiration, and several primary metabolic processes, such as carbohydrate metabolic process and fatty acid beta-oxidation. Western blot analysis and enzyme activity assays were performed on seven differentially expressed, cold-response candidate plantain proteins to validate the proteomics data. Similar analyses of the seven candidate proteins were performed in cold-sensitive banana to examine possible functional conservation, and to compare the results to equivalent responses between the two species. Consistent results were achieved by Western blot and enzyme activity assays, demonstrating that the quantitative proteomics data collected in this study are reliable. Our results suggest that an increase of antioxidant capacity through adapted ROS scavenging capability, reduced production of ROS, and decreased lipid peroxidation contribute to molecular mechanisms for the increased cold tolerance in plantain. To the best of our knowledge, this is the first report of a global investigation on molecular responses of plantain to cold stress by

  2. Quantitative proteomic analysis reveals that antioxidation mechanisms contribute to cold tolerance in plantain (Musa paradisiaca L.; ABB Group) seedlings.

    Science.gov (United States)

    Yang, Qiao-Song; Wu, Jun-Hua; Li, Chun-Yu; Wei, Yue-Rong; Sheng, Ou; Hu, Chun-Hua; Kuang, Rui-Bin; Huang, Yong-Hong; Peng, Xin-Xiang; McCardle, James A; Chen, Wei; Yang, Yong; Rose, Jocelyn K C; Zhang, Sheng; Yi, Gan-Jun

    2012-12-01

    Banana and its close relative, plantain are globally important crops and there is considerable interest in optimizing their cultivation. Plantain has superior cold tolerance compared with banana and a thorough understanding of the molecular mechanisms and responses of plantain to cold stress has great potential value for developing cold tolerant banana cultivars. In this study, we used iTRAQ-based comparative proteomic analysis to investigate the temporal responses of plantain to cold stress. Plantain seedlings were exposed for 0, 6, and 24 h of cold stress at 8 °C and subsequently allowed to recover for 24 h at 28 °C. A total of 3477 plantain proteins were identified, of which 809 showed differential expression from the three treatments. The majority of differentially expressed proteins were predicted to be involved in oxidation-reduction, including oxylipin biosynthesis, whereas others were associated with photosynthesis, photorespiration, and several primary metabolic processes, such as carbohydrate metabolic process and fatty acid beta-oxidation. Western blot analysis and enzyme activity assays were performed on seven differentially expressed, cold-response candidate plantain proteins to validate the proteomics data. Similar analyses of the seven candidate proteins were performed in cold-sensitive banana to examine possible functional conservation, and to compare the results to equivalent responses between the two species. Consistent results were achieved by Western blot and enzyme activity assays, demonstrating that the quantitative proteomics data collected in this study are reliable. Our results suggest that an increase of antioxidant capacity through adapted ROS scavenging capability, reduced production of ROS, and decreased lipid peroxidation contribute to molecular mechanisms for the increased cold tolerance in plantain. To the best of our knowledge, this is the first report of a global investigation on molecular responses of plantain to cold stress by

  3. Cold tolerance evaluation in Chilean rice genotypes at the germination stage

    Directory of Open Access Journals (Sweden)

    Gabriel Donoso Ñanculao

    2013-03-01

    Full Text Available Low temperature is the most important abiotic stress affecting rice (Oryza sativa L. yield in Chile. Rice in Chile is usually planted when the minimum air temperatures are below 12 °C. This temperature is lower than the optimum needed for normal rice germination. Therefore, the aim of this study was to evaluate cold tolerance in 20 experimental lines from the Rice Breeding Program of the Instituto de Investigaciones Agropecuarias (INIA, Chile, at the germination stage. Coleoptile length reduction (CRED, coleoptile length after cold treatment (CLEN, coleoptile length recovery (CREC, and coleoptile regrowth (CREG were evaluated at 13 °C for 4 d using 'Diamante-INIA' as the cold-tolerant control. To find genotypes with cold tolerance (low CRED value and high CLEN, CREC, and CREG values, genotypes were ranked, a biplot of principal components, and cluster analysis were performed. No differences were found among genotypes in the ranking based on CREC value so this trait was not considered. Analysis showed that only three experimental lines had cold tolerance similar to that of 'Diamante-INIA'; all other experimental lines exhibited intermediate to low cold tolerance. These results showed low cold tolerance of some Chilean genotypes at the germination stage, thus confirming the need to evaluate the rest of the germplasm from the Rice Breeding Program.

  4. UV and cold tolerance of a pigment-producing Antarctic Janthinobacterium sp. Ant5-2

    KAUST Repository

    Mojib, Nazia; Farhoomand, Amin; Andersen, Dale T.; Bej, Asim K.

    2013-01-01

    In this paper, we describe the UV and cold tolerance of a purple violet pigment (PVP)-producing Antarctic bacterium, Janthinobacterium sp. Ant5-2 (PVP+) and compared its physiological adaptations with a pigmentless mutant strain (PVP-). A

  5. Transcriptome Profiling of the Pineapple under Low Temperature to Facilitate Its Breeding for Cold Tolerance

    Science.gov (United States)

    Chen, Chengjie; Zhang, Yafeng; Xu, Zhiqiang; Luan, Aiping; Mao, Qi; Feng, Junting; Xie, Tao; Gong, Xue; Wang, Xiaoshuang; Chen, Hao; He, Yehua

    2016-01-01

    The pineapple (Ananas comosus) is cold sensitive. Most cultivars are injured during winter periods, especially in sub-tropical regions. There is a lack of molecular information on the pineapple’s response to cold stress. In this study, high-throughput transcriptome sequencing and gene expression analysis were performed on plantlets of a cold-tolerant genotype of the pineapple cultivar ‘Shenwan’ before and after cold treatment. A total of 1,186 candidate cold responsive genes were identified, and their credibility was confirmed by RT-qPCR. Gene set functional enrichment analysis indicated that genes related to cell wall properties, stomatal closure and ABA and ROS signal transduction play important roles in pineapple cold tolerance. In addition, a protein association network of CORs (cold responsive genes) was predicted, which could serve as an entry point to dissect the complex cold response network. Our study found a series of candidate genes and their association network, which will be helpful to cold stress response studies and pineapple breeding for cold tolerance. PMID:27656892

  6. Phenotypic and genetic characteristics associated with Listeria monocytogenes food chain isolates displaying enhanced and diminished cold tolerance

    DEFF Research Database (Denmark)

    Hingston, P.; Chen, J.; Laing, C.

    between strains with varied cold tolerance. The objective of this study was to determine if Lm isolates with enhanced cold tolerance, exhibit other high risk characteristics that may add to their survival and/or pathogenicity. To accomplish this, 166 predominantly food/food plant Lm isolates were tested...... in brainheart infusion broth, for their ability to tolerate cold (4°C), salt (6% NaCl, 25°C), acid (pH 5, 25°C), and desiccation (33% RH, 20°C) stress. Isolates were considered tolerant or sensitive if they exhibited survival characteristics > or ... with a truncated version (n=47). Cold tolerant isolates were more likely to be tolerant to the other three stresses than intermediate and cold sensitive isolates. Similarly, cold sensitive isolates were more likely to be sensitive to the other stresses. Cold tolerant isolates had shorter (p=0.012) lag phases...

  7. Relative expression of genes related with cold tolerance in ...

    African Journals Online (AJOL)

    Low temperature is one of the main abiotic stresses affecting rice yield in Chile. Alterations in phenology and physiology of the crop are observed after a cold event. The objective of this work was to study the relative expression of genes related with cold stress in Chilean cultivars of rice. For this, we analyzed the expression ...

  8. The effect of fasting and body reserves on cold tolerance in 2 pit-building insect predators.

    Science.gov (United States)

    Scharf, Inon; Daniel, Alma; MacMillan, Heath Andrew; Katz, Noa

    2017-06-01

    Pit-building antlions and wormlions are 2 distantly-related insect species, whose larvae construct pits in loose soil to trap small arthropod prey. This convergent evolution of natural histories has led to additional similarities in their natural history and ecology, and thus, these 2 species encounter similar abiotic stress (such as periodic starvation) in their natural habitat. Here, we measured the cold tolerance of the 2 species and examined whether recent feeding or food deprivation, as well as body composition (body mass and lipid content) and condition (quantified as mass-to-size residuals) affect their cold tolerance. In contrast to other insects, in which food deprivation either enhanced or impaired cold tolerance, prolonged fasting had no effect on the cold tolerance of either species, which had similar cold tolerance. The 2 species differed, however, in how cold tolerance related to body mass and lipid content: although body mass was positively correlated with the wormlion cold tolerance, lipid content was a more reliable predictor of cold tolerance in the antlions. Cold tolerance also underwent greater change with ontogeny in wormlions than in antlions. We discuss possible reasons for this lack of effect of food deprivation on both species' cold tolerance, such as their high starvation tolerance (being sit-and-wait predators).

  9. Genetic analysis of cold tolerance at the germination and booting stages in rice by association mapping.

    Directory of Open Access Journals (Sweden)

    Yinghua Pan

    Full Text Available Low temperature affects the rice plants at all stages of growth. It can cause severe seedling injury and male sterility resulting in severe yield losses. Using a mini core collection of 174 Chinese rice accessions and 273 SSR markers we investigated cold tolerance at the germination and booting stages, as well as the underlying genetic bases, by association mapping. Two distinct populations, corresponding to subspecies indica and japonica showed evident differences in cold tolerance and its genetic basis. Both subspecies were sensitive to cold stress at both growth stages. However, japonica was more tolerant than indica at all stages as measured by seedling survival and seed setting. There was a low correlation in cold tolerance between the germination and booting stages. Fifty one quantitative trait loci (QTLs for cold tolerance were dispersed across all 12 chromosomes; 22 detected at the germination stage and 33 at the booting stage. Eight QTLs were identified by at least two of four measures. About 46% of the QTLs represented new loci. The only QTL shared between indica and japonica for the same measure was qLTSSvR6-2 for SSvR. This implied a complicated mechanism of old tolerance between the two subspecies. According to the relative genotypic effect (RGE of each genotype for each QTL, we detected 18 positive genotypes and 21 negative genotypes in indica, and 19 positive genotypes and 24 negative genotypes in japonica. In general, the negative effects were much stronger than the positive effects in both subspecies. Markers for QTL with positive effects in one subspecies were shown to be effective for selection of cold tolerance in that subspecies, but not in the other subspecies. QTL with strong negative effects on cold tolerance should be avoided during MAS breeding so as to not cancel the effect of favorable QTL at other loci.

  10. Comparing Enchytraeus albidus populations from contrasting climatic environments suggest a link between cold tolerance and metabolic activity.

    Science.gov (United States)

    Žagar, Anamarija; Holmstrup, Martin; Simčič, Tatjana; Debeljak, Barabara; Slotsbo, Stine

    2018-06-06

    Basal metabolic activity and freezing of body fluids create reactive oxygen species (ROS) in freeze-tolerant organisms. These sources of ROS can have an additive negative effect via oxidative stress. In cells, antioxidant systems are responsible for removing ROS in order to avoid damage due to oxidative stress. Relatively little is known about the importance of metabolic rate for the survival of freezing, despite a good understanding of several cold tolerance related physiological mechanisms. We hypothesized that low basal metabolism would be selected for in freeze-tolerant organisms where winter survival is important for fitness for two reasons. First, avoidance of the additive effect of ROS production from metabolism and freezing, and second, as an energy-saving mechanism under extended periods of freezing where the animal is metabolically active, but unable to feed. We used the terrestrial oligochaete, Enchytraeus albidus, which is widely distributed from Spain to the high Arctic and compared eight populations originating across a broad geographical and climatic gradient after they had been cold acclimated at 5 °C in a common garden experiment. Cold tolerance (lower lethal temperature: LT50) and the potential metabolic activity (PMA, an estimator of the maximal enzymatic potential of the mitochondrial respiration chain) of eight populations were positively correlated amongst each other and correlated negatively with latitude and positively with average yearly temperature and the average temperature of the coldest month. These results indicate that low PMA in cold tolerant populations is important for survival in extremely cold environments. Copyright © 2018. Published by Elsevier Inc.

  11. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants.

    Science.gov (United States)

    Kim, J C; Lee, S H; Cheong, Y H; Yoo, C M; Lee, S I; Chun, H J; Yun, D J; Hong, J C; Lee, S Y; Lim, C O; Cho, M J

    2001-02-01

    Cold stress on plants induces changes in the transcription of cold response genes. A cDNA clone encoding C2H2-type zinc finger protein, SCOF-1, was isolated from soybean. The transcription of SCOF-1 is specifically induced by low temperature and abscisic acid (ABA) but not by dehydration or high salinity. Constitutive overexpression of SCOF-1 induced cold-regulated (COR) gene expression and enhanced cold tolerance of non-acclimated transgenic Arabidopsis and tobacco plants. SCOF-1 localized to the nucleus but did not bind directly to either C-repeat/dehydration (CRT/DRE) or ABA responsive element (ABRE), cis-acting DNA regulatory elements present in COR gene promoters. However, SCOF-1 greatly enhanced the DNA binding activity of SGBF-1, a soybean G-box binding bZIP transcription factor, to ABRE in vitro. SCOF-1 also interacted with SGBF-1 in a yeast two-hybrid system. The SGBF-1 transactivated the beta-glucuronidase reporter gene driven by the ABRE element in Arabidopsis leaf protoplasts. Furthermore, the SCOF-1 enhanced ABRE-dependent gene expression mediated by SGBF-1. These results suggest that SCOF-1 may function as a positive regulator of COR gene expression mediated by ABRE via protein-protein interaction, which in turn enhances cold tolerance of plants.

  12. TrustRank: a Cold-Start tolerant recommender system

    Science.gov (United States)

    Zou, Haitao; Gong, Zhiguo; Zhang, Nan; Zhao, Wei; Guo, Jingzhi

    2015-02-01

    The explosive growth of the World Wide Web leads to the fast advancing development of e-commerce techniques. Recommender systems, which use personalised information filtering techniques to generate a set of items suitable to a given user, have received considerable attention. User- and item-based algorithms are two popular techniques for the design of recommender systems. These two algorithms are known to have Cold-Start problems, i.e., they are unable to effectively handle Cold-Start users who have an extremely limited number of purchase records. In this paper, we develop TrustRank, a novel recommender system which handles the Cold-Start problem by leveraging the user-trust networks which are commonly available for e-commerce applications. A user-trust network is formed by friendships or trust relationships that users specify among them. While it is straightforward to conjecture that a user-trust network is helpful for improving the accuracy of recommendations, a key challenge for using user-trust network to facilitate Cold-Start users is that these users also tend to have a very limited number of trust relationships. To address this challenge, we propose a pre-processing propagation of the Cold-Start users' trust network. In particular, by applying the personalised PageRank algorithm, we expand the friends of a given user to include others with similar purchase records to his/her original friends. To make this propagation algorithm scalable to a large amount of users, as required by real-world recommender systems, we devise an iterative computation algorithm of the original personalised TrustRank which can incrementally compute trust vectors for Cold-Start users. We conduct extensive experiments to demonstrate the consistently improvement provided by our proposed algorithm over the existing recommender algorithms on the accuracy of recommendations for Cold-Start users.

  13. Tolerance to multiple climate stressors: A case study of Douglas-fir drought and cold hardiness

    Science.gov (United States)

    Bansal, Sheel; Harrington, Constance A; St. Clair, John Bradley

    2016-01-01

    Summary: 1. Drought and freeze events are two of the most common forms of climate extremes which result in tree damage or death, and the frequency and intensity of both stressors may increase with climate change. Few studies have examined natural covariation in stress tolerance traits to cope with multiple stressors among wild plant populations. 2. We assessed the capacity of coastal Douglas-fir (Pseudotsuga menziesii var. menziesii), an ecologically and economically important species in the northwestern USA, to tolerate both drought and cold stress on 35 populations grown in common gardens. We used principal components analysis to combine drought and cold hardiness trait data into generalized stress hardiness traits to model geographic variation in hardiness as a function of climate across the Douglas-fir range. 3. Drought and cold hardiness converged among populations along winter temperature gradients and diverged along summer precipitation gradients. Populations originating in regions with cold winters had relatively high tolerance to both drought and cold stress, which is likely due to overlapping adaptations for coping with winter desiccation. Populations from regions with dry summers had increased drought hardiness but reduced cold hardiness, suggesting a trade-off in tolerance mechanisms. 4. Our findings highlight the necessity to look beyond bivariate trait–climate relationships and instead consider multiple traits and climate variables to effectively model and manage for the impacts of climate change on widespread species.

  14. Stock characterization and improvement: DNA fingerprinting and cold tolerance of Populus and Salix clones

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Dolly; Hubbes, M.; Zsuffa, L. [Toronto Univ., ON (Canada). Faculty of Forestry; Tsarouhas, V.; Gullberg, U. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Genetics; Howe, G.; Hackett, W.; Gardner, G.; Furnier, G. [Minnesota Univ., St. Paul, MN (United States). Dept. of Forest Resources; Tuskan, G. [Oak Ridge National Lab., TN (United States)

    1998-12-31

    Molecular characterization of advanced-generation pedigrees and evaluation of cold tolerance are two aspects of Populus and Salix genetic improvement programmes worldwide that have traditionally received little emphasis. As such, chloroplast DNA markers were tested as a means of determining multi-generation parental contributions to hybrid progeny. Likewise, greenhouse, growth chamber and field studies were used to assess cold tolerance in Populus and Salix. Chloroplast DNA markers did not reveal size polymorphisms among four tested Populus species, but did produce sequence polymorphisms between P. maximowiczii and P. trichocarpa. Additional crosses between multiple genotypes from each species are being used to evaluate the utility of the detected polymorphism for ascertaining parentage within interspecific crosses. Short-day, cold tolerance greenhouse studies revealed that bud set date and frost damage are moderately heritable and genetically correlated in Populus. The relationship between greenhouse and field studies suggests that factors other than short days contribute to cold tolerance in Populus. In Salix, response to artificial fall conditioning varied among full-sibling families, with the fastest growing family displaying the greatest amount of cold tolerance 26 refs, 3 tabs

  15. Genome-Wide Identification, Characterization, and Expression Profiling of Glutathione S-Transferase (GST) Family in Pumpkin Reveals Likely Role in Cold-Stress Tolerance

    Science.gov (United States)

    Abdul Kayum, Md.; Nath, Ujjal Kumar; Park, Jong-In; Choi, Eung Kyoo; Song, Jae-Young; Kim, Hoy-Taek; Nou, Ill-Sup

    2018-01-01

    Plant growth and development can be adversely affected by cold stress, limiting productivity. The glutathione S-transferase (GST) family comprises important detoxifying enzymes, which play major roles in biotic and abiotic stress responses by reducing the oxidative damage caused by reactive oxygen species. Pumpkins (Cucurbita maxima) are widely grown, economically important, and nutritious; however, their yield can be severely affected by cold stress. The identification of putative candidate genes responsible for cold-stress tolerance, including the GST family genes, is therefore vital. For the first time, we identified 32 C. maxima GST (CmaGST) genes using a combination of bioinformatics approaches and characterized them by expression profiling. These CmaGST genes represent seven of the 14 known classes of plant GSTs, with 18 CmaGSTs categorized into the tau class. The CmaGSTs were distributed across 13 of pumpkin’s 20 chromosomes, with the highest numbers found on chromosomes 4 and 6. The large number of CmaGST genes resulted from gene duplication; 11 and 5 pairs of CmaGST genes were segmental- and tandem-duplicated, respectively. In addition, all CmaGST genes showed organ-specific expression. The expression of the putative GST genes in pumpkin was examined under cold stress in two lines with contrasting cold tolerance: cold-tolerant CP-1 (C. maxima) and cold-susceptible EP-1 (Cucurbita moschata). Seven genes (CmaGSTU3, CmaGSTU7, CmaGSTU8, CmaGSTU9, CmaGSTU11, CmaGSTU12, and CmaGSTU14) were highly expressed in the cold-tolerant line and are putative candidates for use in breeding cold-tolerant crop varieties. These results increase our understanding of the cold-stress-related functions of the GST family, as well as potentially enhancing pumpkin breeding programs. PMID:29439434

  16. Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra

    Czech Academy of Sciences Publication Activity Database

    Kosová, K.; Prášil, I.T.; Vítámvás, P.; Dobrev, Petre; Motyka, Václav; Floková, Kristýna; Novák, Ondřej; Turečková, Veronika; Rolčík, Jakub; Pešek, Bedřich; Trávníčková, Alena; Gaudinová, Alena; Galiba, G.; Janda, T.; Vlasáková, E.; Prášilová, P.; Vaňková, Radomíra

    2012-01-01

    Roč. 169, č. 6 (2012), s. 567-576 ISSN 0176-1617 R&D Projects: GA ČR GA522/09/2058; GA MŠk MEB040713; GA MŠk MEB040924 Grant - others:GA ČR(CZ) GPP501/11/P637 Program:GP Institutional research plan: CEZ:AV0Z50380511 Keywords : Cold stress * Dehydrin * Frost tolerance Subject RIV: ED - Physiology Impact factor: 2.699, year: 2012

  17. The ins and outs of water dynamics in cold tolerant soil invertebrates.

    Science.gov (United States)

    Holmstrup, Martin

    2014-10-01

    Many soil invertebrates have physiological characteristics in common with freshwater animals and represent an evolutionary transition from aquatic to terrestrial life forms. Their high cuticular permeability and ability to tolerate large modifications of internal osmolality are of particular importance for their cold tolerance. A number of cold region species that spend some or most of their life-time in soil are in more or less intimate contact with soil ice during overwintering. Unless such species have effective barriers against cuticular water-transport, they have only two options for survival: tolerate internal freezing or dehydrate. The risk of internal ice formation may be substantial due to inoculative freezing and many species rely on freeze-tolerance for overwintering. If freezing does not occur, the desiccating power of external ice will cause the animal to dehydrate until vapor pressure equilibrium between body fluids and external ice has been reached. This cold tolerance mechanism is termed cryoprotective dehydration (CPD) and requires that the animal must be able to tolerate substantial dehydration. Even though CPD is essentially a freeze-avoidance strategy the associated physiological traits are more or less the same as those found in freeze tolerant species. The most well-known are accumulation of compatible osmolytes and molecular chaperones reducing or protecting against the stress caused by cellular dehydration. Environmental moisture levels of the habitat are important for which type of cold tolerance is employed, not only in an evolutionary context, but also within a single population. Some species use CPD under relatively dry conditions, but freeze tolerance when soil moisture is high. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Overwintering biology and limits of cold tolerance in larvae of pistachio twig borer, Kermania pistaciella.

    Science.gov (United States)

    Mollaei, M; Izadi, H; Šimek, P; Koštál, V

    2016-08-01

    Pistachio twig borer, Kermania pistaciella is an important pest of pistachio trees. It has an univoltine life-cycle and its larvae tunnel and feed inside pistachio twigs for almost 10 months each year. The last larval instars overwinter inside the twigs. Survival/mortality associated with low temperatures during overwintering stage is currently unknown. We found that overwintering larvae of the Rafsanjan (Iran) population of K. pistaciella rely on maintaining a stably high supercooling capacity throughout the cold season. Their supercooling points (SCPs) ranged between -19.4 and -22.7°C from October to February. Larvae were able to survive 24 h exposures to -15°C anytime during the cold season. During December and January, larvae were undergoing quiescence type of dormancy caused probably by low ambient temperatures and/or changes in host tree physiology (tree dormancy). Larvae attain highest cold tolerance (high survival at -20°C) during dormancy, which offers them sufficient protection against geographically and ecologically relevant cold spells. High cold tolerance during dormancy was not associated with accumulation of any low-molecular mass cryoprotective substances. The SCP sets the limit of cold tolerance in pistachio twig borer, meaning that high mortality of overwintering populations can be expected only in the regions or years where or when the temperatures fall below the average larval SCP (i.e., below -20°C). Partial mortality can be expected also when temperatures repeatedly drop close to the SCP on a diurnal basis.

  19. Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants.

    Science.gov (United States)

    Peng, Yanhui; Lin, Wuling; Cai, Weiming; Arora, Rajeev

    2007-08-01

    Water movement across cellular membranes is regulated largely by a family of water channel proteins called aquaporins (AQPs). Since several abiotic stresses such as, drought, salinity and freezing, manifest themselves via altering water status of plant cells and are linked by the fact that they all result in cellular dehydration, we overexpressed an AQP (tonoplast intrinsic protein) from Panax ginseng, PgTIP1, in transgenic Arabidopsis thaliana plants to test its role in plant's response to drought, salinity and cold acclimation (induced freezing tolerance). Under favorable conditions, PgTIP1 overexpression significantly increased plant growth as determined by the biomass production, and leaf and root morphology. PgTIP1 overexpression had beneficial effect on salt-stress tolerance as indicated by superior growth status and seed germination of transgenic plants under salt stress; shoots of salt-stressed transgenic plants also accumulated greater amounts of Na(+) compared to wild-type plants. Whereas PgTIP1 overexpression diminished the water-deficit tolerance of plants grown in shallow (10 cm deep) pots, the transgenic plants were significantly more tolerant to water stress when grown in 45 cm deep pots. The rationale for this contrasting response, apparently, comes from the differences in the root morphology and leaf water channel activity (speed of dehydration/rehydration) between the transgenic and wild-type plants. Plants overexpressed with PgTIP1 exhibited lower (relative to wild-type control) cold acclimation ability; however, this response was independent of cold-regulated gene expression. Our results demonstrate a significant function of PgTIP1 in growth and development of plant cells, and suggest that the water movement across tonoplast (via AQP) represents a rate-limiting factor for plant vigor under favorable growth conditions and also significantly affect responses of plant to drought, salt and cold stresses.

  20. Glycinebetaine synthesizing transgenic potato plants exhibit enhanced tolerance to salt and cold stresses

    International Nuclear Information System (INIS)

    Ahmad, R.; Hussain, J.

    2014-01-01

    Abiotic stresses are the most important contributors towards low productivity of major food crops. Various attempts have been made to enhance abiotic stress tolerance of crop plants by classical breeding and genetic transformation. Genetic transformation with glycinebetaine (GB) synthesizing enzymes' gene(s) in naturally non accumulating plants has resulted in enhanced tolerance against variety of abiotic stresses. Present study was aimed to evaluate the performance of GB synthesizing transgenic potato plants against salt and cold stresses. Transgenic potato plants were challenged against salt and cold stresses at whole plant level. Transgenic lines were characterized to determine the transgene copy number. Different parameters like integrity, chlorophyll contents, tuber yield and vegetative biomass were studied to monitor the stress tolerance of transgenic potato plants. The results were compared with Non-transgenic (NT) plants and statistically analyzed to evaluate significant differences. Multi-copy insertion of expression cassette was found in both transgenic lines. Upon salt stress, transgenic plants maintained better growth as compared to NT plants. The tuber yield of transgenic plants was significantly greater than NT plants in salt stress. Transgenic plants showed improved membrane integrity against cold stress by depicting appreciably reduced ion leakage as compared to NT plants. Moreover, transgenic plants showed significantly less chlorophyll bleaching than NT plants upon cold stress. In addition, NT plants accumulated significantly less biomass, and yielded fewer tubers as compared to transgenic plants after cold stress treatment. The study will be a committed step for field evaluation of transgenic plants with the aim of commercialization. (author)

  1. Evaluation of Durum Wheat Lines for Tolerance to Early Season Cold via Early Planting

    Directory of Open Access Journals (Sweden)

    V. Rashidi

    2010-10-01

    Full Text Available Cold stress is one of the environmental factors that affect planting date of durum wheat in mountainous North West areas of Iran. To study tolerance of 36 Durum wheat lines for cold, an experiment was conducted in mid winter (mid of February at the Agricultural Research Station of Islamic Azad University, Tabriz Branch, in 2007. Experimental design used was simple lattice. The results of analysis of variance showed that the lines under study responded differently to cold as to traits like percentage of survival, yield and its components. This indicates existence of genetic diversity among durum wheat lines. Percentage of survival of the lines 30, 5, 16, 27, 31 and 35 were for higher than those at other lines. Thus, they can be considered to be tolerant to early season cold. Comparison of means showed that lines 35, 31, 16 and 5 possessed higher percentage of survival and other percent survival also correlated positive with plant height, number of fertile spike seed yield and 1000 grain weight. As a whole line 35 was found to be more tolerant to early season cold than the others were. Cluster analysis was divided 36 lines into three groups. Lines in the third group possessed higher percentage of survival, plant height, number of fertile spike, biomass and high yield than their over all means.

  2. Cold tolerance and photosystem function in a montane red spruce population: physiological relationships with foliar carbohydrates

    Science.gov (United States)

    P.G. Shaberg; G.R. Strimbeck; G.J. Hawley; D.H. DeHayes; J.B. Shane; P.F. Murakami; T.D. Perkins; J.R. Donnelly; B.L. Wong

    2000-01-01

    Red spruce (Picea rubens Sarg.) growing in northern montane forests of eastern North America appears to be distinctive with respect to at least two aspects of winter physiology. First, red spruce attains only a modest level of midwinter cold tolerance compared to other north temperate conifers and appears barely capable of avoiding freezing injury at...

  3. Growth characteristics and productivity of cold-tolerant “Kowinearly ...

    African Journals Online (AJOL)

    Growth characteristics and productivity of cold-tolerant “Kowinearly” Italian ryegrass in the northern part of South Korea. Gi Jun Choi, Hee Chung Ji, Ki-Yong Kim, Hyung Soo Park, Sung Seo, Ki-Won Lee, Sang-Hoon Lee ...

  4. Directional selection on cold tolerance does not constrain plastic capacity in a butterfly.

    Science.gov (United States)

    Franke, Kristin; Dierks, Anneke; Fischer, Klaus

    2012-12-05

    Organisms may respond to environmental change by means of genetic adaptation, phenotypic plasticity or both, which may result in genotype-environment interactions (G x E) if genotypes differ in their phenotypic response. We here specifically target the latter source of variation (i.e. G x E) by comparing plastic responses among lines of the tropical butterfly Bicyclus anynana that had been selected for increased cold tolerance and according controls. Our main aim here was to test the hypothesis that directional selection on cold tolerance will interfere with plastic capacities. Plastic responses to temperature and feeding treatments were strong, with e.g. higher compared to lower temperatures reducing cold tolerance, longevity, pupal mass, and development time. We report a number of statistically significant genotype-environment interactions (i.e. interactions between selection regime and environmental variables), but most of these were not consistent across treatment groups. We found some evidence though for larger plastic responses to different rearing temperatures in the selection compared to the control lines, while plastic responses to different adult temperatures and feeding treatments were overall very similar across selection regimes. Our results indicate that plastic capacities are not always constrained by directional selection (on cold tolerance) and therefore genetic changes in trait means, but may operate independently.

  5. Metabolite profiling during cold acclimation of Lolium perenne genotypes distinct in the level of frost tolerance.

    Science.gov (United States)

    Bocian, Aleksandra; Zwierzykowski, Zbigniew; Rapacz, Marcin; Koczyk, Grzegorz; Ciesiołka, Danuta; Kosmala, Arkadiusz

    2015-11-01

    Abiotic stresses, including low temperature, can significantly reduce plant yielding. The knowledge on the molecular basis of stress tolerance could help to improve its level in species of relatively high importance to agriculture. Unfortunately, the complex research performed so far mainly on model species and also, to some extent, on cereals does not fully cover the demands of other agricultural plants of temperate climate, including forage grasses. Two Lolium perenne (perennial ryegrass) genotypes with contrasting levels of frost tolerance, the high frost tolerant (HFT) and the low frost tolerant (LFT) genotypes, were selected for comparative metabolomic research. The work focused on the analysis of leaf metabolite accumulation before and after seven separate time points of cold acclimation. Gas chromatography-mass spectrometry (GC/MS) was used to identify amino acids (alanine, proline, glycine, glutamic and aspartic acid, serine, lysine and asparagine), carbohydrates (fructose, glucose, sucrose, raffinose and trehalose) and their derivatives (mannitol, sorbitol and inositol) accumulated in leaves in low temperature. The observed differences in the level of frost tolerance between the analysed genotypes could be partially due to the time point of cold acclimation at which the accumulation level of crucial metabolite started to increase. In the HFT genotype, earlier accumulation was observed for proline and asparagine. The increased amounts of alanine, glutamic and aspartic acids, and asparagine during cold acclimation could be involved in the regulation of photosynthesis intensity in L. perenne. Among the analysed carbohydrates, only raffinose revealed a significant association with the acclimation process in this species.

  6. Handling Ibuprofen increases pain tolerance and decreases perceived pain intensity in a cold pressor test.

    Directory of Open Access Journals (Sweden)

    Abraham M Rutchick

    Full Text Available Pain contributes to health care costs, missed work and school, and lower quality of life. Extant research on psychological interventions for pain has focused primarily on developing skills that individuals can apply to manage their pain. Rather than examining internal factors that influence pain tolerance (e.g., pain management skills, the current work examines factors external to an individual that can increase pain tolerance. Specifically, the current study examined the nonconscious influence of exposure to meaningful objects on the perception of pain. Participants (N = 54 completed a cold pressor test, examined either ibuprofen or a control object, then completed another cold pressor test. In the second test, participants who previously examined ibuprofen reported experiencing less intense pain and tolerated immersion longer (relative to baseline than those who examined the control object. Theoretical and applied implications of these findings are discussed.

  7. Involvement of WRKY Transcription Factors in Abscisic-Acid-Induced Cold Tolerance of Banana Fruit.

    Science.gov (United States)

    Luo, Dong-Lan; Ba, Liang-Jie; Shan, Wei; Kuang, Jian-Fei; Lu, Wang-Jin; Chen, Jian-Ye

    2017-05-10

    Phytohormone abscisic acid (ABA) and plant-specific WRKY transcription factors (TFs) have been implicated to play important roles in various stress responses. The involvement of WRKY TFs in ABA-mediated cold tolerance of economical fruits, such as banana fruit, however remains largely unknown. Here, we reported that ABA application could induce expressions of ABA biosynthesis-related genes MaNCED1 and MaNCED2, increase endogenous ABA contents, and thereby enhance cold tolerance in banana fruit. Four banana fruit WRKY TFs, designated as MaWRKY31, MaWRKY33, MaWRKY60, and MaWRKY71, were identified and characterized. All four of these MaWRKYs were nuclear-localized and displayed transactivation activities. Their expressions were induced by ABA treatment during cold storage. More importantly, the gel mobility shift assay and transient expression analysis revealed that MaWRKY31, MaWRKY33, MaWRKY60, and MaWRKY71 directly bound to the W-box elements in MaNCED1 and MaNCED2 promoters and activated their expressions. Taken together, our findings demonstrate that banana fruit WRKY TFs are involved in ABA-induced cold tolerance by, at least in part, increasing ABA levels via directly activating NECD expressions.

  8. Divergent regulation of CBF regulon on cold tolerance and plant phenotype in cassava overexpressing Arabidopsis CBF3 gene

    Directory of Open Access Journals (Sweden)

    Dong An

    2016-12-01

    Full Text Available Cassava is a tropical origin plant that is sensitive to chilling stress. In order to understand the CBF cold response pathway, a well-recognized regulatory mechanism in temperate plants, in cassava, overexpression of an Arabidopsis CBF3 gene is studied. This gene renders cassava increasingly tolerant to cold and drought stresses but is associated with retarded plant growth, leaf curling, reduced storage root yield, and reduced anthocyanin accumulation in a transcript abundance-dependent manner. Physiological analysis revealed that the transgenic cassava increased proline accumulation, reduced malondialdehyde production, and electrolyte leakage under cold stress. These transgenic lines also showed high relative water content when faced with drought. The expression of partial CBF-targeted genes in response to cold displayed temporal and spatial variations in the wild-type and transgenic plants: highly inducible in leaves and less altered in apical buds. In addition, anthocyanin accumulation was inhibited by downregulating the expression of genes involved in its biosynthesis and by interplaying between the CBF3 and the endogenous transcription factors. Thus, the heterologous CBF3 modulates the expression of stress-related genes and carries out a series of physiological adjustments under stressful conditions, showing a varied regulation pattern of CBF regulon from that of cassava CBFs.

  9. Responsiveness of cold tolerant chickpea characteristics in fall and spring planting: II. yield and yield components

    Directory of Open Access Journals (Sweden)

    ahmad nezami

    2009-06-01

    Full Text Available Previous research in Mashhad collection chickpeas (MCC has shown that there are some cold tolerant genotypes for fall planting in the highlands. To obtain more detailed information about the reaction of these genotypes to fall and spring planting, the yield and yield component responses of 33 chickpea genotypes (32 cold tolerant genotypes and one susceptible genotypes to four planting dates (28 Sep., 16 Oct., 2 Nov., and 7 Mar. were evaluated in 2000-2001 growing season. The experiment was conducted at the experimental field of college of agriculture, Ferdowsi University of Mashhad as a split plot design with two replications. The planting dates were imposed as main plot and chickpea genotypes as subplot. Effects of planting date and genotype on percent of plant survival (PPS after winter, number. of pod per plant, 100 seed weight, yield and Harvest Index (HI were significant (p

  10. Mass spectrometry-based metabolomic fingerprinting for screening cold tolerance in Arabidopsis thaliana accessions

    Czech Academy of Sciences Publication Activity Database

    Václavík, L.; Mishra, Anamika; Mishra, Kumud; Hajslova, J.

    2013-01-01

    Roč. 405, č. 8 (2013), s. 2671-2683 ISSN 1618-2642 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk OC08055 Institutional support: RVO:67179843 Keywords : cold tolerance * Arabidopsis thaliana * metabolomic fingerprinting * LC-MS * DART-MS * chemometric analysis Subject RIV: EH - Ecology, Behaviour Impact factor: 3.578, year: 2013

  11. Hormonal responses and tolerance to cold of female quail following parathion ingestion

    Science.gov (United States)

    Rattner, B.A.; Sileo, L.; Scanes, C.G.

    1982-01-01

    Thirty-week-old female bobwhite quail (Colinus virginianus), maintained at 26 + 1?C, were provided diets containing 0,25, or 100 ppm parathion ad libitum. After 10 days, birds were exposed to mild cold (6 + 1?C) for 4,8, 12, 24, or 48 hr. Brain acetylcholinesterase activity was inhibited in a dose-dependent manner in birds receiving 25 and 100 ppm parathion. Body weight, egg production, and plasma luteinizing hormone and progesterone concentrations were reduced in birds receiving 100 ppm parathion compared with other groups. Cold exposure did not alter plasma corticosterone levels in the 0- and 25-ppm parathion groups, but a two- to five fold elevation of plasma corticosterone was observed in birds fed 100 ppm parathion. These findings indicate that (i) short-term ingestion of parathion can impair reproduction possibly by altering gonadotropin or steroid secretion, and (ii) tolerance to cold may be reduced following ingestion of this organophosphate.

  12. The Low Temperature Induced Physiological Responses of Avena nuda L., a Cold-Tolerant Plant Species

    Directory of Open Access Journals (Sweden)

    Wenying Liu

    2013-01-01

    Full Text Available The paperaim of the was to study the effect of low temperature stress on Avena nuda L. seedlings. Cold stress leads to many changes of physiological indices, such as membrane permeability, free proline content, malondialdehyde (MDA content, and chlorophyll content. Cold stress also leads to changes of some protected enzymes such as peroxidase (POD, superoxide dismutase (SOD, and catalase (CAT. We have measured and compared these indices of seedling leaves under low temperature and normal temperature. The proline and MDA contents were increased compared with control; the chlorophyll content gradually decreased with the prolongation of low temperature stress. The activities of SOD, POD, and CAT were increased under low temperature. The study was designated to explore the physiological mechanism of cold tolerance in naked oats for the first time and also provided theoretical basis for cultivation and antibiotic breeding in Avena nuda L.

  13. Effect of photoperiod prior to cold acclimation on freezing tolerance and carbohydrate metabolism in alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Bertrand, Annick; Bipfubusa, Marie; Claessens, Annie; Rocher, Solen; Castonguay, Yves

    2017-11-01

    Cold acclimation proceeds sequentially in response to decreases in photoperiod and temperature. This study aimed at assessing the impact of photoperiod prior to cold acclimation on freezing tolerance and related biochemical and molecular responses in two alfalfa cultivars. The fall dormant cultivar Evolution and semi-dormant cultivar 6010 were grown in growth chambers under different photoperiods (8, 10, 12, 14 or 16h) prior to cold acclimation. Freezing tolerance was evaluated as well as carbohydrate concentrations, levels of transcripts encoding enzymes of carbohydrate metabolism as well as a K-3dehydrin, before and after cold acclimation. The fall dormant cultivar Evolution had a better freezing tolerance than the semi-dormant cultivar 6010. The effect of photoperiod prior to cold acclimation on the level of freezing tolerance differed between the two cultivars: an 8h-photoperiod induced the highest level of freezing tolerance in Evolution and the lowest in 6010. In Evolution, the 8h-induced superior freezing tolerance was associated with higher concentration of raffinose-family oligosaccharides (RFO). The transcript levels of sucrose synthase (SuSy) decreased whereas those of sucrose phosphatase synthase (SPS) and galactinol synthase (GaS) increased in response to cold acclimation in both cultivars. Our results indicate that RFO metabolism could be involved in short photoperiod-induced freezing tolerance in dormant alfalfa cultivars. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  14. Does Resistance to Buprofezin Improve Heat and Cold Tolerance of Laodelphax striatellus (Hemiptera: Delphacidae)?

    Science.gov (United States)

    Li, Yongteng; Zhang, Yueliang; Liu, Xiangdong; Guo, Huifang

    2017-08-01

    There is ample evidence that insecticide resistance causes fitness costs and benefits in pests, while the impact of insecticide resistance on thermotolerance of pests is mostly unclear. The Laodelphax striatellus (Fallén), is an important rice insect pest, which has developed resistance to buprofezin in China. Here, we investigated differences in heat tolerance and cold tolerance among L. striatellus lines with variable buprofezin resistance. The lethal time for 50% of the individuals to die (LT50) at 40 °C increased with an increase in buprofezin resistance level, whereas both the survival rate under -22 °C and the supercooling point of planthoppers did not differ significantly between resistant and susceptible strains. The metabolic enzyme carboxylesterase was found to have an association with buprofezin resistance. Our research showed that buprofezin resistance was positively related with heat tolerance in L. striatellus, but it had no effect on cold tolerance. Insecticide resistance in L. striatellus may therefore have broader implications for the ecology of L. striatellus, and the management of buprofezin resistance in this pest may be challenging. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Overwintering strategy and mechanisms of cold tolerance in the codling moth (Cydia pomonella.

    Directory of Open Access Journals (Sweden)

    Jan Rozsypal

    Full Text Available BACKGROUND: The codling moth (Cydia pomonella is a major insect pest of apples worldwide. Fully grown last instar larvae overwinter in diapause state. Their overwintering strategies and physiological principles of cold tolerance have been insufficiently studied. No elaborate analysis of overwintering physiology is available for European populations. PRINCIPAL FINDINGS: We observed that codling moth larvae of a Central European population prefer to overwinter in the microhabitat of litter layer near the base of trees. Reliance on extensive supercooling, or freeze-avoidance, appears as their major strategy for survival of the winter cold. The supercooling point decreases from approximately -15.3 °C during summer to -26.3 °C during winter. Seasonal extension of supercooling capacity is assisted by partial dehydration, increasing osmolality of body fluids, and the accumulation of a complex mixture of winter specific metabolites. Glycogen and glutamine reserves are depleted, while fructose, alanine and some other sugars, polyols and free amino acids are accumulated during winter. The concentrations of trehalose and proline remain high and relatively constant throughout the season, and may contribute to the stabilization of proteins and membranes at subzero temperatures. In addition to supercooling, overwintering larvae acquire considerable capacity to survive at subzero temperatures, down to -15 °C, even in partially frozen state. CONCLUSION: Our detailed laboratory analysis of cold tolerance, and whole-winter survival assays in semi-natural conditions, suggest that the average winter cold does not represent a major threat for codling moth populations. More than 83% of larvae survived over winter in the field and pupated in spring irrespective of the overwintering microhabitat (cold-exposed tree trunk or temperature-buffered litter layer.

  16. [Analysis of structural characteristics of alpha-tubulins in plants with enhanced cold tolerance].

    Science.gov (United States)

    Nyporko, A Iu; Demchuk, O N; Blium, Ia B

    2003-01-01

    The uniqueness of the point substitutions in the sequences of two alpha-tubulin isotypes from psychrophilic alga Chloromonas that can determine the increased cold tolerance of this alga was analyzed. The comparison of all known amino acid sequences of plant alpha-tubulins enabled to ascertain that only M268-->V replacement is unique and may have a significant influence on spatial structure of plant alpha-tubulins. Modeling of molecular surfaces of alpha-tubulins from Chloromonas, Chalmydomonas reinhardtii and goose grass Eleusine indica showed that insertion of the amino acid replacement M268-->V into the sequence of goose grace tubulin led to the likening of this protein surface to the surface of native alpha-tubulin from Chloromonas. Alteration of local hydrophobic properties of alpha-tubulin molecular surface in interdimeric contact zone as a result of the mentioned replacement was shown that may play important role in increasing the level of cold resistance of microtubules. The crucial role of amino acid residue in 268 position for forming the interdimeric contact surface of alpha-tubulin molecule was revealed. The assumption is made about the importance of replacements at this position for plant tolerance to abiotic factors of different nature (cold, herbicides).

  17. Development of Cold Spray Coatings for Accident-Tolerant Fuel Cladding in Light Water Reactors

    Science.gov (United States)

    Maier, Benjamin; Yeom, Hwasung; Johnson, Greg; Dabney, Tyler; Walters, Jorie; Romero, Javier; Shah, Hemant; Xu, Peng; Sridharan, Kumar

    2018-02-01

    The cold spray coating process has been developed at the University of Wisconsin-Madison for the deposition of oxidation-resistant coatings on zirconium alloy light water reactor fuel cladding with the goal of improving accident tolerance during loss of coolant scenarios. Coatings of metallic (Cr), alloy (FeCrAl), and ceramic (Ti2AlC) materials were successfully deposited on zirconium alloy flats and cladding tube sections by optimizing the powder size, gas preheat temperature, pressure and composition, and other process parameters. The coatings were dense and exhibited excellent adhesion to the substrate. Evaluation of the samples after high-temperature oxidation tests at temperatures up to 1300°C showed that the cold spray coatings significantly mitigate oxidation kinetics because of the formation of thin passive oxide layers on the surface. The results of the study indicate that the cold spray coating process is a viable near-term option for developing accident-tolerant zirconium alloy fuel cladding.

  18. Development of Cr cold spray–coated fuel cladding with enhanced accident tolerance

    Directory of Open Access Journals (Sweden)

    Martin Ševeček

    2018-03-01

    Full Text Available Accident-tolerant fuels (ATFs are currently of high interest to researchers in the nuclear industry and in governmental and international organizations. One widely studied accident-tolerant fuel concept is multilayer cladding (also known as coated cladding. This concept is based on a traditional Zr-based alloy (Zircaloy-4, M5, E110, ZIRLO etc. serving as a substrate. Different protective materials are applied to the substrate surface by various techniques, thus enhancing the accident tolerance of the fuel. This study focuses on the results of testing of Zircaloy-4 coated with pure chromium metal using the cold spray (CS technique. In comparison with other deposition methods, e.g., Physical vapor deposition (PVD, laser coating, or Chemical vapor deposition techniques (CVD, the CS technique is more cost efficient due to lower energy consumption and high deposition rates, making it more suitable for industry-scale production. The Cr-coated samples were tested at different conditions (500°C steam, 1200°C steam, and Pressurized water reactor (PWR pressurization test and were precharacterized and postcharacterized by various techniques, such as scanning electron microscopy, Energy-dispersive X-ray spectroscopy (EDX, or nanoindentation; results are discussed. Results of the steady-state fuel performance simulations using the Bison code predicted the concept's feasibility. It is concluded that CS Cr coating has high potential benefits but requires further optimization and out-of-pile and in-pile testing. Keywords: Accident-Tolerant Fuel, Chromium, Cladding, Coating, Cold Spray, Nuclear Fuel

  19. Understanding the Global Cold War Legacy: Narrating through Landscape

    Directory of Open Access Journals (Sweden)

    Melanie Klein

    2004-06-01

    Full Text Available The end of the Cold War brought the shrinking and dismantling of vast nuclear weapons complexes. As a result, some landscape architects will find themselves reclaiming a new, very specific type of Cold War landscape: those degraded by nuclear arms testing, production and waste storage. Nuclear landscapes pose multiple and complex challenges. Before designing nuclear reclamations, one must ask: what are the issues? If designers misunderstand the nuclear landscape 'problem', it will be 'solved' in the wrong way. My position is based on the assumption that society desires these landscapes to be reclaimed safely and in ways that allow them to educate the public. Landscape architects can find ways to reclaim nuclear landscapes safely while leaving narratives for generations to come. Perhaps it is too early to describe how nuclear reclamations will look. It is not too early to discuss what designs for nuclear reclamations should accomplish. This paper raises questions critical to the design of nuclear reclamations, both globally and locally. Near precedents - past reclamations that narrate other types of degraded landscapes - are discussed, and it is noted how we can learn from them when considering nuclear landscape reclamation. This paper does not articulate a specific design theory or solution to Cold War nuclear landscapes, but rather, it seeks to pose critical questions that designers should ask. These questions will be broad because we consider nuclear landscapes globally. The questions will require in-depth investigation of local issues as each unique nuclear landscape is considered.

  20. Characterization of Metarhizium species and varieties based on molecular analysis, heat tolerance and cold activity

    Science.gov (United States)

    Fernandes, E.K.K.; Keyser, C.A.; Chong, J.P.; Rangel, D.E.N.; Miller, M.P.; Roberts, D.W.

    2010-01-01

    Aims: The genetic relationships and conidial tolerances to high and low temperatures were determined for isolates of several Metarhizium species and varieties. Methods and Results: Molecular-based techniques [AFLP and rDNA (ITS1, ITS2 and 5??8S) gene sequencing] were used to characterize morphologically identified Metarhizium spp. isolates from a wide range of sources. Conidial suspensions of isolates were exposed to wet heat (45 ?? 0??2??C) and plated on potato dextrose agar plus yeast extract (PDAY) medium. After 8-h exposure, the isolates divided clearly into two groups: (i) all isolates of Metarhizium anisopliae var. anisopliae (Ma-an) and Metarhizium from the flavoviride complex (Mf) had virtually zero conidial relative germination (RG), (ii) Metarhizium anisopliae var. acridum (Ma-ac) isolates demonstrated high heat tolerance (c. 70-100% RG). Conidial suspensions also were plated on PDAY and incubated at 5??C for 15 days, during which time RGs for Ma-an and Ma-ac isolates were virtually zero, whereas the two Mf were highly cold active (100% RG). Conclusions: Heat and cold exposures can be used as rapid tools to tentatively identify some important Metarhizium species and varieties. Significance and Impact of the Study: Identification of Metarhizium spp. currently relies primarily on DNA-based methods; we suggest a simple temperature-based screen to quickly obtain tentative identification of isolates as to species or species complexes. ?? 2009 The Society for Applied Microbiology.

  1. Antibacterial and anticancerous biocompatible silver nanoparticles synthesised from the cold-tolerant strain of Spirulina platensis

    Directory of Open Access Journals (Sweden)

    Selvaraj Karthick Raja Namasivayam

    2015-04-01

    Full Text Available Objective: To synthesize silver nanoparticles from the biomass of cold tolerant strain of Spirulina platensis and evalute the synthesized nanoparticles against antibacterial and anticancer activity. Methods: Silver nanoparticles were synthesized by the algal culture and characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and X ray diffraction studies. Antibacterial activity has been studied with free nanoparticles adopting agar diffusion assay, biofilm inhibition assay and nanoparticles fabricated wound dressing against representative Gram-negative organism Pseudomonas aeruginosa and Gram-positive organism Staphylococcus aureus respectively. The in vitro anticancer activity of silver nanoparticles were screened against human Hep2 cell lines by means of MTT assay. Results: Reduction of silver ions by the algal culture was observed during 72 h of incubation and the synthesized nanoparticles were further characterized. Antibacterial study reveals both the strains were susceptible to free nanoparticles and fabricated wound dressing treatment. The in vitro anticancer activity of silver nanoparticles were screened against human Hep 2 cell lines by means of MTT assay which reveals that cell viability has been reduced as dose dependent manner. Conclusions: The observed results imply that silver nanoparticles synthesized from Spirulina platensis cold tolerant strain can be used as potential antibacterial and anticancerous agent.

  2. Antibacterial and anticancerous biocompatible silver nanoparticles synthesised from the cold-tolerant strain of Spirulina platensis

    Institute of Scientific and Technical Information of China (English)

    Duraisamy Jayakumar; Ramesh Kumar; Rajan SowriArvind Bharani

    2015-01-01

    Objective: To synthesize silver nanoparticles from the biomass of cold tolerant strain of Spirulina platensis and evalute the synthesized nanoparticles against antibacterial and anticancer activity. Methods: Silver nanoparticles were synthesized by the algal culture and characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and X ray diffraction studies. Antibacterial activity has been studied with free nanoparticles adopting agar diffusion assay, biofilm inhibition assay and nanoparticles fabricated wound dressing against representative Gram-negative organism Pseudomonas aeruginosa and Gram-positive organism Staphylococcus aureus respectively. The in vitro anticancer activity of silver nanoparticles were screened against human Hep2 cell lines by means of MTT assay. Results: Reduction of silver ions by the algal culture was observed during 72 h of incubation and the synthesized nanoparticles were further characterized. Antibacterial study reveals both the strains were susceptible to free nanoparticles and fabricated wound dressing treatment. The in vitro anticancer activity of silver nanoparticles were screened against human Hep 2 cell lines by means of MTT assay which reveals that cell viability has been reduced as dose dependent manner. Conclusions: The observed results imply that silver nanoparticles synthesized from Spirulina platensis cold tolerant strain can be used as potential antibacterial and anticancerous agent.

  3. Preservation of potassium balance is strongly associated with insect cold tolerance in the field: a seasonal study of Drosophila subobscura.

    Science.gov (United States)

    MacMillan, Heath A; Schou, Mads F; Kristensen, Torsten N; Overgaard, Johannes

    2016-05-01

    There is interest in pinpointing genes and physiological mechanisms explaining intra- and interspecific variations in cold tolerance, because thermal tolerance phenotypes strongly impact the distribution and abundance of wild animals. Laboratory studies have highlighted that the capacity to preserve water and ion homeostasis is linked to low temperature survival in insects. It remains unknown, however, whether adaptive seasonal acclimatization in free-ranging insects is governed by the same physiological mechanisms. Here, we test whether cold tolerance in field-caught Drosophila subobscura is high in early spring and lower during summer and whether this transition is associated with seasonal changes in the capacity of flies to preserve water and ion balance during cold stress. Indeed, flies caught during summer were less cold tolerant, and exposure of these flies to sub-zero temperatures caused a loss of haemolymph water and increased the concentration of K(+) in the haemolymph (as in laboratory-reared insects). This pattern of ion and water balance disruption was not observed in more cold-tolerant flies caught in early spring. Thus, we here provide a field verification of hypotheses based on laboratory studies and conclude that the ability to maintain ion homeostasis is important for the ability of free-ranging insects to cope with chilling. © 2016 The Author(s).

  4. Sorghum Landrace Collections from Cooler Regions of the World Exhibit Magnificent Genetic Differentiation and Early Season Cold Tolerance

    Directory of Open Access Journals (Sweden)

    Frank Maulana

    2017-05-01

    Full Text Available Cold temperature is an important abiotic stress affecting sorghum production in temperate regions. It reduces seed germination, seedling emergence and seedling vigor thus limiting the production of the crop both temporally and spatially. The objectives of this study were (1 to assess early season cold temperature stress response of sorghum germplasm from cooler environments and identify sources of tolerance for use in breeding programs, (2 to determine population structure and marker-trait association among these germplasms for eventual development of marker tools for improving cold tolerance. A total of 136 sorghum accessions from cooler regions of the world were phenotyped for seedling growth characteristics under cold temperature imposed through early planting. The accessions were genotyped using 67 simple sequence repeats markers spanning all ten linkage groups of sorghum, of which 50 highly polymorphic markers were used in the analysis. Genetic diversity and population structure analyses sorted the population into four subpopulations. Several accessions distributed in all subpopulations showed either better or comparable level of tolerance to the standard cold tolerance source, Shan qui red. Association analysis between the markers and seedling traits identified markers Xtxp34, Xtxp88, and Xtxp319 as associated with seedling emergence, Xtxp211 and Xtxp304 with seedling dry weight, and Xtxp20 with seedling height. The markers were detected on chromosomes previously found to harbor QTLs associated with cold tolerance in sorghum. Once validated these may serve as genomic tools in marker-assisted breeding or for screening larger pool of genotypes to identify additional sources of cold tolerance.

  5. Effect of Postsowing Compaction on Cold and Frost Tolerance of North China Plain Winter Wheat

    Directory of Open Access Journals (Sweden)

    Caiyun Lu

    2017-01-01

    Full Text Available Improper postsowing compaction negatively affects soil temperature and thereby cold and frost tolerance, particularly in extreme cold weather. In North China Plain, the temperature falls to 5 degrees below zero, even lower in winter, which is period for winter wheat growing. Thus improving temperature to promote wheat growth is important in this area. A field experiment from 2013 to 2016 was conducted to evaluate effects of postsowing compaction on soil temperature and plant population of wheat at different stages during wintering period. The effect of three postsowing compaction methods—(1 compacting wheel (CW, (2 crosskill roller (CR, and (3 V-shaped compacting roller after crosskill roller (VCRCR—on winter soil temperatures and relation to wheat shoot growth parameters were measured. Results showed that the highest soil midwinter temperature was in the CW treatment. In the 20 cm and 40 cm soil layer, soil temperatures were ranked in the following order of CW > VCRCR > CR. Shoot numbers under CW, CR, and VCRCR treatments were statistically 12.40% and 8.18% higher under CW treatment compared to CR or VCRCR treatments at the end of wintering period. The higher soil temperature under CW treatment resulted in higher shoot number at the end of wintering period, apparently due to reduced shoot death by cold and frost damage.

  6. A novel cold-regulated gene from Phlox subulata, PsCor413im1, enhances low temperature tolerance in Arabidopsis.

    Science.gov (United States)

    Zhou, Aimin; Sun, Hongwei; Feng, Shuang; Zhou, Mi; Gong, Shufang; Wang, Jingang; Zhang, Shuzhen

    2018-01-08

    Low temperature stress adversely affects plant growth, development, and crop productivity. Analysis of the function of genes in the response of plants to low temperature stress is essential for understanding the mechanism of chilling and freezing tolerance. In this study, PsCor413im1, a novel cold-regulated gene isolated from Phlox subulata, was transferred to Arabidopsis to investigate its function under low temperature stress. Real-time quantitative PCR analysis revealed that PsCor413im1 expression was induced by cold and abscisic acid. Subcellular localization revealed that PsCor413im1-GFP fusion protein was localized to the periphery of the chloroplast, consistent with the localization of chloroplast inner membrane protein AtCor413im1, indicating that PsCor413im1 is a chloroplast membrane protein. Furthermore, the N-terminal of PsCor413im1 was determined to be necessary for its localization. Compared to the wild-type plants, transgenic plants showed higher germination and survival rates under cold and freezing stress. Moreover, the expression of AtCor15 in transgenic plants was higher than that in the wild-type plants under cold stress. Taken together, our results suggest that the overexpression of PsCor413im1 enhances low temperature tolerance in Arabidopsis. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Development of cold and drought tolerant short-season maize germplasm for fuel and feed utilization

    Directory of Open Access Journals (Sweden)

    Marcelo J Carena

    2013-04-01

    Full Text Available Maize has become a profitable alternative for North Dakota (ND farmers and ranchers. However, U.S. northern industry hybrids still lack cold and drought stress tolerance as well as adequate grain quality for ethanol and feedstock products. Moreover, there is a need to increase the value of feedstock operations before and after ethanol utilization. The ND maize breeding program initiated the development of hybrids with high quality protein content through the Early Quality Protein Maize for Feedstock (EarlyQPMF project. The North Dakota State University (NDSU maize breeding program acts as a genetic provider to foundation seed companies, retailer seed companies, processing industry, and breeders nationally and internationally. In the past 10 years, NDSU was awarded 9 PVP maize certificates and released 38 maize products. Within those, 13 inbred lines were exclusively released to a foundation seed company for commercial purposes. In addition, 2 hybrids were identified for commercial production in central and western ND.

  8. De Novo Transcriptome Sequencing in Passiflora edulis Sims to Identify Genes and Signaling Pathways Involved in Cold Tolerance

    Directory of Open Access Journals (Sweden)

    Sian Liu

    2017-11-01

    Full Text Available The passion fruit (Passiflora edulis Sims, also known as the purple granadilla, is widely cultivated as the new darling of the fruit market throughout southern China. This exotic and perennial climber is adapted to warm and humid climates, and thus is generally intolerant of cold. There is limited information about gene regulation and signaling pathways related to the cold stress response in this species. In this study, two transcriptome libraries (KEDU_AP vs. GX_AP were constructed from the aerial parts of cold-tolerant and cold-susceptible varieties of P. edulis, respectively. Overall, 126,284,018 clean reads were obtained, and 86,880 unigenes with a mean size of 1449 bp were assembled. Of these, there were 64,067 (73.74% unigenes with significant similarity to publicly available plant protein sequences. Expression profiles were generated, and 3045 genes were found to be significantly differentially expressed between the KEDU_AP and GX_AP libraries, including 1075 (35.3% up-regulated and 1970 (64.7% down-regulated. These included 36 genes in enriched pathways of plant hormone signal transduction, and 56 genes encoding putative transcription factors. Six genes involved in the ICE1–CBF–COR pathway were induced in the cold-tolerant variety, and their expression levels were further verified using quantitative real-time PCR. This report is the first to identify genes and signaling pathways involved in cold tolerance using high-throughput transcriptome sequencing in P. edulis. These findings may provide useful insights into the molecular mechanisms regulating cold tolerance and genetic breeding in Passiflora spp.

  9. Deinococcus gobiensis cold shock protein improves salt stress tolerance of escherichia coli

    International Nuclear Information System (INIS)

    Jiang Shijie; Wang Jin; Yang Mingkun; Chen Ming; Zhang Wei; Luo Xuegang

    2013-01-01

    The Deinococcus gobiensis I-0, an extremely radiation-resistant bacterium, isolated from the Gobi, has superior resistance to abiotic stress (e.g radiation, oxidation, dehydration and so on). The two cold-shock proteins encoded by csp1 (Dgo_CA1136) and csp2 (Dgo_PA0041) were identified in the complete genome sequence of D. gobiensis. In this study, we showed that D. gobiensis Csp1 protected Escherichia coli cells against cold shock and other abiotic stresses such as salt and osmotic shocks. The quantitative real-time PCR assay shows that the expression of trehalose synthase (otsA, otsB) was up-regulated remarkably under salt stress in the csp1-expressing strain, while no difference in the expression of the genes involved in trehalose degradation (treB and treC). The results suggested that Csp1 caused the accumulation of the trehalose was a major feature for improving tolerance to salt stress in E. coli. (authors)

  10. Viable cold-tolerant iron-reducing microorganisms in geographically diverse subglacial environments

    Science.gov (United States)

    Nixon, Sophie L.; Telling, Jon P.; Wadham, Jemma L.; Cockell, Charles S.

    2017-03-01

    Subglacial environments are known to harbour metabolically diverse microbial communities. These microbial communities drive chemical weathering of underlying bedrock and influence the geochemistry of glacial meltwater. Despite its importance in weathering reactions, the microbial cycling of iron in subglacial environments, in particular the role of microbial iron reduction, is poorly understood. In this study we address the prevalence of viable iron-reducing microorganisms in subglacial sediments from five geographically isolated glaciers. Iron-reducing enrichment cultures were established with sediment from beneath Engabreen (Norway), Finsterwalderbreen (Svalbard), Leverett and Russell glaciers (Greenland), and Lower Wright Glacier (Antarctica). Rates of iron reduction were higher at 4 °C compared with 15 °C in all but one duplicated second-generation enrichment culture, indicative of cold-tolerant and perhaps cold-adapted iron reducers. Analysis of bacterial 16S rRNA genes indicates Desulfosporosinus were the dominant iron-reducing microorganisms in low-temperature Engabreen, Finsterwalderbreen and Lower Wright Glacier enrichments, and Geobacter dominated in Russell and Leverett enrichments. Results from this study suggest microbial iron reduction is widespread in subglacial environments and may have important implications for global biogeochemical iron cycling and export to marine ecosystems.

  11. Overexpression of a repressor MdMYB15L negatively regulates anthocyanin and cold tolerance in red-fleshed callus.

    Science.gov (United States)

    Xu, Haifeng; Yang, Guanxian; Zhang, Jing; Wang, Yicheng; Zhang, Tianliang; Wang, Nan; Jiang, Shenghui; Zhang, Zongying; Chen, Xuesen

    2018-04-14

    The cold-induced metabolic pathway and anthocyanin biosynthesis play important roles in plant growth. In this study, we identified a bHLH binding motif in the MdMYB15L protein using protein sequence analyses. Yeast two-hybrid and pull-down assays showed that MdMYB15L could interact with MdbHLH33. Overexpressing MdMYB15L in red-fleshed callus inhibited the expression of MdCBF2 and resulted in reduced cold tolerance but did not affect anthocyanin levels. Chip-PCR and EMSA analysis showed that MdMYB15L could bind the type II cis-acting element found in the MdCBF2 promoter. Overexpressing MdMYB15L in red-fleshed callus overexpressing MdbHLH33 also reduced cold tolerance and reduced MdbHLH33-induced anthocyanin biosynthesis. Knocking out the bHLH binding sequence of MdMYB15L (LBSMdMYB15L) prevented LBSMdMYB15L from interacting with MdbHLH33. Overexpressing LBSMdMYB15L in red-fleshed callus overexpressing MdbHLH33 also reduced cold tolerance and reduced MdbHLH33-induced anthocyanin biosynthesis. Together, these results suggested that an apple repressor MdMYB15L might play a key role in the cold signaling and anthocyanin metabolic pathways. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Community composition and cold tolerance of soil Collembola in a collapse karst doline with strong microclimate inversion

    Czech Academy of Sciences Publication Activity Database

    Raschmanová, N.; Miklisová, D.; Kováč, L.; Šustr, Vladimír

    2015-01-01

    Roč. 70, č. 6 (2015), s. 802-811 ISSN 0006-3088 Grant - others:VEGA(SK) 1/0199/14; VEGA(SK) 1/3267/06 Institutional support: RVO:60077344 Keywords : cold tolerance * collapse doline * karst landform * microclimatic gradient * soil Collembola Subject RIV: EG - Zoology Impact factor: 0.719, year: 2015

  13. Cloning of Ammopiptanthus mongolicus C-repeat-binding factor gene and its cold-induced tolerance in transgenic tobacco

    Directory of Open Access Journals (Sweden)

    Lijiang Gu

    2013-12-01

    Full Text Available C-repeat-binding factors (CBFs are a type of important regulon in stress-related signal transduction pathways that control plant tolerance of abiotic stress. Ammopiptanthus mongolicus is the only evergreen broadleaf shrub in the northwest desert of China. The species shows strong resistance to environmental stress, especially to cold stress. An A. mongolicus CBF1 gene (AmCBF1 was cloned and transformed into tobacco. Expression of AmCBF1 could be detected in A. mongolicus shortly after exposure to low temperature of 4°C. Analysis on ratio of electrolytic leakage, soluble sugar content, free proline content, malondialdehyde (MDA content and peroxidase (POD activity before and after cold treatment (4°C for 24 h indicated AmCBF1 conferred higher cold tolerance to AmCBF1 transgenic tobacco compared with the wild type and empty vector transformed tobacco.

  14. ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance

    DEFF Research Database (Denmark)

    Bouchabke-Coussa, O.; Quashie, M.L.; Seoane, Jose Miguel

    2008-01-01

    's improved tolerance to reduced water supply may be explained by its lower transpiration rate and better water use efficiency (WUE), which was assessed by carbon isotope discrimination and gas exchange measurements. esk1 alleles were also shown to be more tolerant to salt stress. Transcriptomic analysis......Background: Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. Arabidopsis thaliana is an excellent model for identifying...... as a key gene involved in plant water economy as well as cold acclimation and salt tolerance. Results: All esk1 mutants were more tolerant to freezing, after acclimation, than their wild type counterpart. esk1 mutants also showed increased tolerance to mild water deficit for all traits measured. The mutant...

  15. Genotypes Associated with Listeria monocytogenes Isolates Displaying Impaired or Enhanced Tolerances to Cold, Salt, Acid, or Desiccation Stress

    DEFF Research Database (Denmark)

    Hingston, Patricia A.; Chen, Jessica; Dhillon, Bhavjinder K

    2017-01-01

    elements. A whole genome single-nucleotide-variants phylogeny revealed sporadic distribution of tolerant isolates and closely related sensitive and tolerant isolates, highlighting that minor genetic differences can influence the stress tolerance of L. monocytogenes. Specifically, a number of cold......The human pathogen Listeria monocytogenes is a large concern in the food industry where its continuous detection in food products has caused a string of recalls in North America and Europe. Most recognized for its ability to grow in foods during refrigerated storage, L. monocytogenes can also...... tolerate several other food-related stresses with some strains possessing higher levels of tolerances than others. The objective of this study was to use a combination of phenotypic analyses and whole genome sequencing to elucidate potential relationships between L. monocytogenes genotypes and food...

  16. CbRCI35, a cold responsive peroxidase from Capsella bursa-pastoris regulates reactive oxygen species homeostasis and enhances cold tolerance in tobacco

    Directory of Open Access Journals (Sweden)

    Juan Lin

    2016-10-01

    Full Text Available Low temperature affects gene regulatory networks and alters cellular metabolism to inhibit plant growth. Peroxidases are widely distributed in plants and play a large role in adjusting and controlling reactive oxygen species (ROS homeostasis in response to abiotic stresses such as low temperature. The Rare Cold-Inducible 35 gene from Capsella bursa-pastoris (CbRCI35 belongs to the type III peroxidase family and has been reported to be a cold responsive gene in plants. Here we performed an expressional characterization of CbRCI35 under cold and ionic liquid treatments. The promoter of CbRCI35 was also cloned and its activity was examined using the GUS reporter system. CbRCI35 protein was localized in the cytoplasm according to sequence prediction and GFP fusion assay. Heterologous expression tests revealed that CbRCI35 conferred enhanced resistance to low temperature and activated endogenous cold responsive signaling in tobacco. Furthermore, in the normal condition the ROS accumulation was moderately enhanced while after chilling exposure superoxide dismutase (SOD activity was increased in CbRCI53 transgenic plants. The ROS metabolism related genes expression was altered accordingly. We conclude that CbRCI35 modulates ROS homeostasis and contributes to cold tolerance in plants.

  17. Upper lethal temperatures in three cold-tolerant insects are higher in winter than in summer.

    Science.gov (United States)

    Vu, Henry M; Duman, John G

    2017-08-01

    Upper lethal temperatures (ULTs) of cold-adapted insect species in winter have not been previously examined. We anticipated that as the lower lethal temperatures (LLTs) decreased (by 20-30°C) with the onset of winter, the ULTs would also decrease accordingly. Consequently, given the recent increases in winter freeze-thaw cycles and warmer winters due to climate change, it became of interest to determine whether ambient temperatures during thaws were approaching ULTs during the cold seasons. However, beetle Dendroides canadensis (Coleoptera: Pyrochroidae) larvae had higher 24 and 48 h ULT 50 (the temperature at which 50% mortality occurred) in winter than in summer. The 24 and 48 h ULT 50 for D. canadensis in winter were 40.9 and 38.7°C, respectively. For D. canadensis in summer, the 24 and 48 h ULT 50 were 36.7 and 36.4°C. During the transition periods of spring and autumn, the 24 h ULT 50 was 37.3 and 38.5°C, respectively. While D. canadensis in winter had a 24 h LT 50 range between LLT and ULT of 64°C, the summer range was only 41°C. Additionally, larvae of the beetle Cucujus clavipes clavipes (Coleoptera: Cucujidae) and the cranefly Tipula trivittata (Diptera: Tipulidae) also had higher ULTs in winter than in summer. This unexpected phenomenon of increased temperature survivorship at both lower and higher temperatures in the winter compared with that in the summer has not been previously documented. With the decreased high temperature tolerance as the season progresses from winter to summer, it was observed that environmental temperatures are closest to upper lethal temperatures in spring. © 2017. Published by The Company of Biologists Ltd.

  18. Cold Tolerance of Megacopta cribraria (Hemiptera: Plataspidae): An Invasive Pest of Soybeans.

    Science.gov (United States)

    Grant, Jessica I; Lamp, William O

    2017-12-08

    Kudzu bug, Megacopta cribraria Fabricius (Hemiptera: Plataspidae), first discovered in the United States in 2009, is an invasive pest of soybeans. From 2013 to 2016, Maryland has been the northern limit of its distribution in the United States. We sought to determine the physiological cold temperature limits, timing of movement to overwintering locations, and to characterize overwintering microhabitat temperature. We measured supercooling point (SCP) on three populations from distinct USDA plant hardiness zones in Maryland and Virginia between October and December of 2015. The average SCP across all sample months and populations was -12.6°C and no consistent trend of month or population location were observed. Additionally, we assessed the lower lethal temperature to kill 50% of the population (LLT50) at the same population locations in October and November 2015. The average LLT50 over both months and all three population locations was -5.1°C. Again, no consistent trend based on population location was observed but we did find a modest depression in the LLT50 values between October and November. We observed that kudzu bug overwinters in leaf litter and begins to move into the litter in late November to early December. Leaf litter moderates day to night temperature differences and was warmer than ambient temperature by an average of 0.7°C. Evidence suggests that the cold tolerance of the kudzu bug limits its distribution north of Maryland. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. A cold-induced pectin methyl-esterase inhibitor gene contributes negatively to freezing tolerance but positively to salt tolerance in Arabidopsis.

    Science.gov (United States)

    Chen, Jian; Chen, Xuehui; Zhang, Qingfeng; Zhang, Yidan; Ou, Xiangli; An, Lizhe; Feng, Huyuan; Zhao, Zhiguang

    2018-03-01

    Plant pectin methyl-esterase (PME) and PME inhibitor (PMEI) belong to large gene families whose members are proposed to be widely involved in growth, development, and stress responses; however, the biological functions of most PMEs and PMEIs have not been characterized. In this study, we studied the roles of CbPMEI1, a cold-induced pectin methyl-esterase inhibitor (PMEI) gene from Chorispora bungeana, under freezing and salt stress. The putative CbPMEI1 peptide shares highest similarity (83%) with AT5G62360 (PMEI13) of Arabidopsis. Overexpression of either CbPMEI1 or PMEI13 in Arabidopsis decreased tissue PME activity and enhanced the degree of methoxylation of cell wall pectins, indicating that both genes encode functional PMEIs. CbPMEI1 and PMEI13 were induced by cold but repressed by salt stress and abscisic acid, suggesting distinct roles of the genes in freezing and salt stress tolerance. Interestingly, transgenic Arabidopsis plants overexpressing CbPMEI1 or PMEI13 showed decreased freezing tolerance, as indicated by survival and electrolyte leakage assays. On the other hand, the salt tolerance of transgenic plants was increased, showing higher rates of germination, root growth, and survival under salinity conditions as compared with non-transgenic wild-type plants. Although the transgenic plants were freezing-sensitive, they showed longer roots than wild-type plants under cold conditions, suggesting a role of PMEs in balancing the trade-off between freezing tolerance and growth. Thus, our study indicates that CbPMEI1 and PMEI13 are involved in root growth regulation under cold and salt stresses, and suggests that PMEIs may be potential targets for genetic engineering aimed to improve fitness of plants under stress conditions. Copyright © 2018 Elsevier GmbH. All rights reserved.

  20. Evaluation of Fall Sowing of Cold Tolerant Chickpa (Cicer arietinum L. Genotypes under Supplementary Irrigation in Mashhad

    Directory of Open Access Journals (Sweden)

    A. Nezami

    2011-01-01

    Full Text Available Abstract In order to investigate of phenological and morphological characteristics, yield components and yield of cold tolerant chickpea genotypes in fall sowing, 9 cold tolerant chickpea genotypes and Karaj 12-60-31 as a control were evaluated in Experimental Field of College of Agriculture, Ferdowsi University of Mashhad in 2006-2007. The experiment was carried out based on randomized complete block design with four replications. The planting date was 25 October and three times of irrigation was done as supplementary irrigation at planting stage, 20 days after that and at flowering stage. The control was ruined at seedling stage due to the hard cold. Based on the results, the differences among the genotypes for all of measured traits including growth duration, plant height, number and length of branches, yield components (pod number per plant, seed number per pod and 100 seeds weight, seed yield and biological yield were significant (P≥0.05. There were positive and significant correlations between seed yield and vegetative (r=0.71** and reproductive (r=0.68** periods. MCC291, MCC349 and MCC207 produced the highest seed yield with 231, 229 and 217 g.m-2, respectively. Totally, it appears that some of genotypes have appropriate yield potential for fall sowing under supplementary irrigation at Mashhad. Keywords: Cold tolerant, Chickpea genotypes, Phenological and morphological characteristics, Seed yield, Yield components

  1. Effect of Planting Date on Cold Tolerance of Winter and Spring Barley Genotypes

    Directory of Open Access Journals (Sweden)

    A. R. Eivazi

    2015-01-01

    Full Text Available In order to evaluate cold tolerance of twenty barley genotypes under field conditions, an experiment was carried out in a randomized complete block design at 3 sowing dates of October 5, November 5, and December 5 in Saatlu Agricultural Research Station, West Azarbaijan, Iran, during 2010-11 seasons. Also, another experiment was conducted on the same genotypes based on a completely randomized design under greenhouse conditions. in wich Cold stress was applied up to -25°C at two, four and six leaf development stages. LT50, ion leakage and dry matter were measured and apex photographed. Field experiment results showed the lowest significant differences at p≤0.05 between different levels of sowing date, genotype, and interaction between them for plant height, spike/m2, kernel per spike, 1000-kernel weight, grain yield and total dry matter. Genotypes of winter growth type had higher grain yield (4250kg/ha than those with spring growth type (4190kg/ha. There were significant differences for ion leakage and dry matter at 4 and 6 leaf development stages under greenhouse conditions. Genotype 1 (winter growth type with lowest values of range and standard deviation for grain yield, total dry matter and LT50 = -38 °C showed a relatively low ion leakage. In contrast, genotypes 5, 10 and 14 (spring growth type were identified sensitive to cold stress due to having more values of range, standard deviation for grain yield and total dry matter, LT50 = -18 to -27 °C and ion leakage from 25 to 33µS/m. Regression analysis showed 1000-kernel weight and total dry matter to remain at final model. Cluster analysis indicated that genotypes 2, 18, 1, 17 and 19 were superior genotypes. In principal component analysis, four components showed 80% of total variations, and the first component with 26% of variation was an important yield component for improving grain yield of barley genotypes. In conclusion, grain yields of winter and spring barley genotypes were

  2. Plasticity and stress tolerance override local adaptation in the responses of Mediterranean holm oak seedlings to drought and cold.

    Science.gov (United States)

    Gimeno, Teresa E; Pías, Beatriz; Lemos-Filho, José P; Valladares, Fernando

    2009-01-01

    Plant populations of widely distributed species experience a broad range of environmental conditions that can be faced by phenotypic plasticity or ecotypic differentiation and local adaptation. The strategy chosen will determine a population's ability to respond to climate change. To explore this, we grew Quercus ilex (L.) seedlings from acorns collected at six selected populations from climatically contrasting localities and evaluated their response to drought and late season cold events. Maximum photosynthetic rate (A(max)), instantaneous water use efficiency (iWUE), and thermal tolerance to freeze and heat (estimated from chlorophyll fluorescence versus temperature curves) were measured in 5-month-old seedlings in control (no stress), drought (water-stressed), and cold (low suboptimal temperature) conditions. The observed responses were similar for the six populations: drought decreased A(max) and increased iWUE, and cold reduced A(max) and iWUE. All the seedlings maintained photosynthetic activity under adverse conditions (drought and cold), and rapidly increased their iWUE by closing stomata when exposed to drought. Heat and freeze tolerances were similarly high for seedlings from all the populations, and they were significantly increased by drought and cold, respectively; and were positively related to each other. Differences in seedling performance across populations were primarily induced by maternal effects mediated by seed size and to a lesser extent by idiosyncratic physiologic responses to drought and low temperatures. Tolerance to multiple stresses together with the capacity to physiologically acclimate to heat waves and cold snaps may allow Q. ilex to cope with the increasingly stressful conditions imposed by climate change. Lack of evidence of physiologic seedling adaptation to local climate may reflect opposing selection pressures to complex, multidimensional environmental conditions operating within the distribution range of this species.

  3. UV and cold tolerance of a pigment-producing Antarctic Janthinobacterium sp. Ant5-2

    KAUST Repository

    Mojib, Nazia

    2013-03-20

    In this paper, we describe the UV and cold tolerance of a purple violet pigment (PVP)-producing Antarctic bacterium, Janthinobacterium sp. Ant5-2 (PVP+) and compared its physiological adaptations with a pigmentless mutant strain (PVP-). A spontaneous deletion of vioA that codes for tryptophan monooxygenase, the first gene involved in the biosynthesis of PVP was found in PVP- strain. The PVP- culture exhibited significantly reduced survival during exponential and stationary growth phase following exposure to UVB (320 nm) and UVC (254 nm) (dose range: 0-300 J/m2) when compared to wild-type (PVP+) cultures. In addition, upon biochemical inhibition of pigment synthesis by 2(5H)-furanone, wild-type PVP+ cultures exhibited approximately 50-fold growth reduction at a higher dose (300 J/m2) of UV. Increased resistance to UV was observed upon inducing starvation state in both PVP+ and PVP- cultures. There was 80 % (SD = ±8) reduction in extrapolymeric substance (EPS) production in the PVP- cultures along with a compromised survival to freeze-thaw cycles when compared to the PVP+ cultures. Perhaps synthesis of PVP and EPS are among the key adaptive features that define the survival of this bacterium in Antarctic extreme conditions, especially during austral summer months. © 2013 Springer Japan.

  4. Towards understanding (religious) (in)tolerance in education

    African Journals Online (AJOL)

    2014-02-26

    Feb 26, 2014 ... of 'tolerance': does it exist in being, a-priori to human invention, or is it a human artefact or invention? This process involves an epistemology centring on hermeneutics and phenomenology, and ..... Boyd, W. & Lugg, C., 1998, 'Markets, choices and educational change', in A. Hargreaves,. A. Liebermann, M.

  5. Religious Tolerance and Understanding in the French Education System

    Science.gov (United States)

    Ferrara, Carol

    2012-01-01

    This research is based on an interview and survey-based case study of an Islamic "lycee", a Catholic "lycee", and two public "lycees" in the Ile-de-France region of France. The study investigated whether students in private schools receiving some form of education about religion tend to be more tolerant and…

  6. Environmental systems biology of cold-tolerant phenotype in Saccharomyces species adapted to grow at different temperatures.

    Science.gov (United States)

    Paget, Caroline Mary; Schwartz, Jean-Marc; Delneri, Daniela

    2014-11-01

    Temperature is one of the leading factors that drive adaptation of organisms and ecosystems. Remarkably, many closely related species share the same habitat because of their different temporal or micro-spatial thermal adaptation. In this study, we seek to find the underlying molecular mechanisms of the cold-tolerant phenotype of closely related yeast species adapted to grow at different temperatures, namely S. kudriavzevii CA111 (cryo-tolerant) and S. cerevisiae 96.2 (thermo-tolerant). Using two different systems approaches, i. thermodynamic-based analysis of a genome-scale metabolic model of S. cerevisiae and ii. large-scale competition experiment of the yeast heterozygote mutant collection, genes and pathways important for the growth at low temperature were identified. In particular, defects in lipid metabolism, oxidoreductase and vitamin pathways affected yeast fitness at cold. Combining the data from both studies, a list of candidate genes was generated and mutants for two predicted cold-favouring genes, GUT2 and ADH3, were created in two natural isolates. Compared with the parental strains, these mutants showed lower fitness at cold temperatures, with S. kudriavzevii displaying the strongest defect. Strikingly, in S. kudriavzevii, these mutations also significantly improve the growth at warm temperatures. In addition, overexpression of ADH3 in S. cerevisiae increased its fitness at cold. These results suggest that temperature-induced redox imbalances could be compensated by increased glycerol accumulation or production of cytosolic acetaldehyde through the deletion of GUT2 or ADH3, respectively. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  7. DAF-16 and Δ9 desaturase genes promote cold tolerance in long-lived Caenorhabditis elegans age-1 mutants.

    Directory of Open Access Journals (Sweden)

    Fiona R Savory

    Full Text Available In Caenorhabditis elegans, mutants of the conserved insulin/IGF-1 signalling (IIS pathway are long-lived and stress resistant due to the altered expression of DAF-16 target genes such as those involved in cellular defence and metabolism. The three Δ(9 desaturase genes, fat-5, fat-6 and fat-7, are included amongst these DAF-16 targets, and it is well established that Δ(9 desaturase enzymes play an important role in survival at low temperatures. However, no assessment of cold tolerance has previously been reported for IIS mutants. We demonstrate that long-lived age-1(hx546 mutants are remarkably resilient to low temperature stress relative to wild type worms, and that this is dependent upon daf-16. We also show that cold tolerance following direct transfer to low temperatures is increased in wild type worms during the facultative, daf-16 dependent, dauer stage. Although the cold tolerant phenotype of age-1(hx546 mutants is predominantly due to the Δ(9 desaturase genes, additional transcriptional targets of DAF-16 are also involved. Surprisingly, survival of wild type adults following a rapid temperature decline is not dependent upon functional daf-16, and cellular distributions of a DAF-16::GFP fusion protein indicate that DAF-16 is not activated during low temperature stress. This suggests that cold-induced physiological defences are not specifically regulated by the IIS pathway and DAF-16, but expression of DAF-16 target genes in IIS mutants and dauers is sufficient to promote cross tolerance to low temperatures in addition to other forms of stress.

  8. Toward Human-Carnivore Coexistence: Understanding Tolerance for Tigers in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Chloe Inskip

    Full Text Available Fostering local community tolerance for endangered carnivores, such as tigers (Panthera tigris, is a core component of many conservation strategies. Identification of antecedents of tolerance will facilitate the development of effective tolerance-building conservation action and secure local community support for, and involvement in, conservation initiatives. We use a stated preference approach for measuring tolerance, based on the 'Wildlife Stakeholder Acceptance Capacity' concept, to explore villagers' tolerance levels for tigers in the Bangladesh Sundarbans, an area where, at the time of the research, human-tiger conflict was severe. We apply structural equation modeling to test an a priori defined theoretical model of tolerance and identify the experiential and psychological basis of tolerance in this community. Our results indicate that beliefs about tigers and about the perceived current tiger population trend are predictors of tolerance for tigers. Positive beliefs about tigers and a belief that the tiger population is not currently increasing are both associated with greater stated tolerance for the species. Contrary to commonly-held notions, negative experiences with tigers do not directly affect tolerance levels; instead, their effect is mediated by villagers' beliefs about tigers and risk perceptions concerning human-tiger conflict incidents. These findings highlight a need to explore and understand the socio-psychological factors that encourage tolerance towards endangered species. Our research also demonstrates the applicability of this approach to tolerance research to a wide range of socio-economic and cultural contexts and reveals its capacity to enhance carnivore conservation efforts worldwide.

  9. Toward Human-Carnivore Coexistence: Understanding Tolerance for Tigers in Bangladesh.

    Science.gov (United States)

    Inskip, Chloe; Carter, Neil; Riley, Shawn; Roberts, Thomas; MacMillan, Douglas

    2016-01-01

    Fostering local community tolerance for endangered carnivores, such as tigers (Panthera tigris), is a core component of many conservation strategies. Identification of antecedents of tolerance will facilitate the development of effective tolerance-building conservation action and secure local community support for, and involvement in, conservation initiatives. We use a stated preference approach for measuring tolerance, based on the 'Wildlife Stakeholder Acceptance Capacity' concept, to explore villagers' tolerance levels for tigers in the Bangladesh Sundarbans, an area where, at the time of the research, human-tiger conflict was severe. We apply structural equation modeling to test an a priori defined theoretical model of tolerance and identify the experiential and psychological basis of tolerance in this community. Our results indicate that beliefs about tigers and about the perceived current tiger population trend are predictors of tolerance for tigers. Positive beliefs about tigers and a belief that the tiger population is not currently increasing are both associated with greater stated tolerance for the species. Contrary to commonly-held notions, negative experiences with tigers do not directly affect tolerance levels; instead, their effect is mediated by villagers' beliefs about tigers and risk perceptions concerning human-tiger conflict incidents. These findings highlight a need to explore and understand the socio-psychological factors that encourage tolerance towards endangered species. Our research also demonstrates the applicability of this approach to tolerance research to a wide range of socio-economic and cultural contexts and reveals its capacity to enhance carnivore conservation efforts worldwide.

  10. Melatonin enhances cold tolerance in drought-primed wild-type and abscisic acid-deficient mutant barley.

    Science.gov (United States)

    Li, Xiangnan; Tan, Dun-Xian; Jiang, Dong; Liu, Fulai

    2016-10-01

    Melatonin is involved in multiple plant developmental processes and various stress responses. To explore the roles of melatonin played as well as its association with abscisic acid (ABA) in a process of drought priming-induced cold tolerance (DPICT), a wild-type barley and its ABA-deficient mutant Az34 counterpart were selected for comparison, in which the effects of melatonin application (either foliarly or rhizospherically) and/or drought priming on the cold tolerance of both types of barleys were systematically investigated. It was demonstrated that the early drought priming induced an increase of endogenous melatonin production, which is not ABA dependent. In addition, exogenously applied melatonin resulted in higher ABA concentration in the drought-primed plants than in the nonprimed plants when exposed to cold stress, indicating that ABA responded in a drought-dependent manner. The interplay of melatonin and ABA leads to plants maintaining better water status. Drought priming-induced melatonin accumulation enhanced the antioxidant capacity in both chloroplasts and mitochondria, which sustained the photosynthetic electron transport in photosynthetic apparatus of the plants under cold stress. These results suggest that the exogenous melatonin application enhances the DPICT by modulating subcellular antioxidant systems and ABA levels in barley. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Community phylogenetics at the biogeographical scale: cold tolerance, niche conservatism and the structure of North American forests.

    Science.gov (United States)

    Hawkins, Bradford A; Rueda, Marta; Rangel, Thiago F; Field, Richard; Diniz-Filho, José Alexandre F; Linder, Peter

    2014-01-01

    Aim The fossil record has led to a historical explanation for forest diversity gradients within the cool parts of the Northern Hemisphere, founded on a limited ability of woody angiosperm clades to adapt to mid-Tertiary cooling. We tested four predictions of how this should be manifested in the phylogenetic structure of 91,340 communities: (1) forests to the north should comprise species from younger clades (families) than forests to the south; (2) average cold tolerance at a local site should be associated with the mean family age (MFA) of species; (3) minimum temperature should account for MFA better than alternative environmental variables; and (4) traits associated with survival in cold climates should evolve under a niche conservatism constraint. Location The contiguous United States. Methods We extracted angiosperms from the US Forest Service's Forest Inventory and Analysis database. MFA was calculated by assigning age of the family to which each species belongs and averaging across the species in each community. We developed a phylogeny to identify phylogenetic signal in five traits: realized cold tolerance, seed size, seed dispersal mode, leaf phenology and height. Phylogenetic signal representation curves and phylogenetic generalized least squares were used to compare patterns of trait evolution against Brownian motion. Eleven predictors structured at broad or local scales were generated to explore relationships between environment and MFA using random forest and general linear models. Results Consistent with predictions, (1) southern communities comprise angiosperm species from older families than northern communities, (2) cold tolerance is the trait most strongly associated with local MFA, (3) minimum temperature in the coldest month is the environmental variable that best describes MFA, broad-scale variables being much stronger correlates than local-scale variables, and (4) the phylogenetic structures of cold tolerance and at least one other trait

  12. Responses of Picea mariana to elevated CO2 concentration during growth, cold hardening and dehardening : phenology, cold tolerance, photosynthesis and growth

    International Nuclear Information System (INIS)

    Bigras, F.J.

    2006-01-01

    Although elevated carbon dioxide (CO 2 ) can promote growth in seedlings, CO 2 may adversely affect bud phenology and cold tolerance. In this study, seedlings from a northern and southern provenance of black spruce were exposed to 37 and 71 Pa of CO 2 during growth, cold hardening and dehardening in a greenhouse. The aim of the study was to assess the photosynthetic response and its impact on growth of black spruce during fall, winter and spring in the context of anticipated climate change. The effects of elevated CO 2 on nonstructural sugars, chlorophyll and nitrogen (N) concentrations were also investigated. Bud set occurred earlier in seedlings with elevated CO 2 than in ambient CO 2 . An increase in seedling cold tolerance in early fall was related to early bud set in elevated CO 2 . Photochemical efficiency, effective quantum yield, photochemical quenching, light-saturated rate of carboxylation, and electron transport decreased during hardening and recovered during dehardening. Elevated CO 2 reduced gene expression of the small subunit of Rubisco and decreased chlorophyll a/chlorophyll b ratio and N concentration in needles, confirming down-regulation of photosynthesis. Total seedling dry mass was higher in elevated CO 2 than in ambient CO 2 at the end of the growing season. Results suggested that differences in photosynthetic rate observed during fall, winter and spring accounted for the inter-annual variations in carbon assimilation of the seedlings. It was concluded that the variations need to be considered in carbon budget studies. It was concluded that total dry mass was 38 per cent higher in seedlings growing in elevated CO 2 at the end of the growing season. 84 refs., 2 tabs., 9 figs

  13. Overexpression of a New Zinc Finger Protein Transcription Factor OsCTZFP8 Improves Cold Tolerance in Rice

    Directory of Open Access Journals (Sweden)

    Yong-Mei Jin

    2018-01-01

    Full Text Available Cold stress is one of the most important abiotic stresses in rice. C2H2 zinc finger proteins play important roles in response to abiotic stresses in plants. In the present study, we isolated and functionally characterized a new C2H2 zinc finger protein transcription factor OsCTZFP8 in rice. OsCTZFP8 encodes a C2H2 zinc finger protein, which contains a typical zinc finger motif, as well as a potential nuclear localization signal (NLS and a leucine-rich region (L-box. Expression of OsCTZFP8 was differentially induced by several abiotic stresses and was strongly induced by cold stress. Subcellular localization assay and yeast one-hybrid analysis revealed that OsCTZFP8 was a nuclear protein and has transactivation activity. To characterize the function of OsCTZFP8 in rice, the full-length cDNA of OsCTZFP8 was isolated and transgenic rice with overexpression of OsCTZFP8 driven by the maize ubiquitin promoter was generated using Agrobacterium-mediated transformation. Among 46 independent transgenic lines, 6 single-copy homozygous overexpressing lines were selected by Southern blot analysis and Basta resistance segregation assay in both T1 and T2 generations. Transgenic rice overexpressing OsCTZFP8 exhibited cold tolerant phenotypes with significantly higher pollen fertilities and seed setting rates than nontransgenic control plants. In addition, yield per plant of OsCTZFP8-expressing lines was significantly (p<0.01 higher than that of nontransgenic control plants under cold treatments. These results demonstrate that OsCTZFP8 was a C2H2 zinc finger transcription factor that plays an important role in cold tolerance in rice.

  14. Cold urticaria patients exhibit normal skin levels of functional mast cells and histamine after tolerance induction

    DEFF Research Database (Denmark)

    Kring Tannert, Line; Stahl Skov, Per; Bjerremann Jensen, Louise

    2012-01-01

    Cold urticaria is a skin condition characterized by rapid appearance of itchy wheals and occasionally angioedema in response to cold stimulation. Antihistamines do not sufficiently protect all patients from symptoms, even when used in higher than standard doses. In these patients, desensitization...

  15. Expression responses of five cold tolerant related genes to two temperature dropping treatments in sea cucumber Apostichopus japonicus

    Science.gov (United States)

    Li, Chengze; Chang, Yaqing; Pang, Zhenguo; Ding, Jun; Ji, Nanjing

    2015-03-01

    Environmental conditions, including ambient temperature, play important roles in survival, growth development, and reproduction of the Japanese sea cucumber, Apostichopus japonicus. Low temperatures result in slowed growth and skin ulceration disease. In a previous study, we investigated the effect of low temperature on gene expression profiles in A. japonicus by suppression subtractive hybridization (SSH). Genes encoding Ferritin, Lysozyme, Hsp70, gp96, and AjToll were selected from a subtracted cDNA library of A. japonicus under acute cold stress. The transcriptional expression profiles of these genes were investigated in different tissues (coelomocyte, respiratory tree, intestine, longitudinal muscle) after exposure to acute and mild temperature dropping treatments. The results show that (1) the five cold-tolerance-related genes were found in all four tissues and the highest mRNA levels were observed in coelomocyte and respiratory tree; (2) under the temperature dropping treatments, three types of transcriptional regulation patterns were observed: primary suppression followed by up-regulation at -2°C, suppressed expression throughout the two treatments, and more rarely an initial stimulation followed by suppression; and (3) gene expression suppression was more severe under acute temperature dropping than under mild temperature dropping treatment. The five cold-tolerance-related genes that were distributed mainly in coelomocyte and respiratory tissues were generally down-regulated by low temperature stress but an inverse up-regulation event was found at the extreme temperature (-2°C).

  16. Overexpression of Arabidopsis NADPH-dependent thioredoxin reductase C (AtNTRC) confers freezing and cold shock tolerance to plants

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jeong Chan [National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon-gun 325-813 (Korea, Republic of); Lee, Sangmin [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon (Korea, Republic of); Shin, Su Young [National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon-gun 325-813 (Korea, Republic of); Chae, Ho Byoung; Jung, Young Jun [Division of Applied Life Science - BK21+ program, PMBBRC, Gyeongsang National University, Jinju (Korea, Republic of); Jung, Hyun Suk [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon (Korea, Republic of); Lee, Kyun Oh [Division of Applied Life Science - BK21+ program, PMBBRC, Gyeongsang National University, Jinju (Korea, Republic of); Lee, Jung Ro, E-mail: leejr73@nie.re.kr [National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon-gun 325-813 (Korea, Republic of); Department of Biochemistry and Biophysics, Texas A& M University, College Station, TX (United States); Lee, Sang Yeol, E-mail: sylee@gnu.ac.kr [Division of Applied Life Science - BK21+ program, PMBBRC, Gyeongsang National University, Jinju (Korea, Republic of)

    2015-08-07

    Overexpression of AtNTRC (AtNTRC{sup OE}) in Arabidopsis thaliana led to a freezing and cold stress tolerance, whereas a knockout mutant (atntrc) showed a stress-sensitive phenotype. Biochemical analyses showed that the recombinant AtNTRC proteins exhibited a cryoprotective activity for malate dehydrogenase and lactic dehydrogenase. Furthermore, conclusive evidence of its interaction with nucleic acids in vitro is provided here on the basis of gel shift and electron microscopy analysis. Recombinant AtNTRC efficiently protected RNA and DNA from RNase A and metal catalyzed oxidation damage, respectively. The C-terminal thioredoxin domain is required for the nucleic acid–protein complex formation. From these results, it can be hypothesized that AtNTRC, which is known to be an electron donor of peroxiredoxin, contributes the stability of macromolecules under cold stress. - Highlights: • AtNTRC has a cryoprotective activity in vitro. • Overexpression of AtNTRC increases tolerance to freezing and cold shock stresses. • Thioredoxin domain of AtNTRC protects nucleic acids in vitro. • AtNTRC inhibits protein aggregation under freezing stress in vitro.

  17. Overexpression of Arabidopsis NADPH-dependent thioredoxin reductase C (AtNTRC) confers freezing and cold shock tolerance to plants

    International Nuclear Information System (INIS)

    Moon, Jeong Chan; Lee, Sangmin; Shin, Su Young; Chae, Ho Byoung; Jung, Young Jun; Jung, Hyun Suk; Lee, Kyun Oh; Lee, Jung Ro; Lee, Sang Yeol

    2015-01-01

    Overexpression of AtNTRC (AtNTRC OE ) in Arabidopsis thaliana led to a freezing and cold stress tolerance, whereas a knockout mutant (atntrc) showed a stress-sensitive phenotype. Biochemical analyses showed that the recombinant AtNTRC proteins exhibited a cryoprotective activity for malate dehydrogenase and lactic dehydrogenase. Furthermore, conclusive evidence of its interaction with nucleic acids in vitro is provided here on the basis of gel shift and electron microscopy analysis. Recombinant AtNTRC efficiently protected RNA and DNA from RNase A and metal catalyzed oxidation damage, respectively. The C-terminal thioredoxin domain is required for the nucleic acid–protein complex formation. From these results, it can be hypothesized that AtNTRC, which is known to be an electron donor of peroxiredoxin, contributes the stability of macromolecules under cold stress. - Highlights: • AtNTRC has a cryoprotective activity in vitro. • Overexpression of AtNTRC increases tolerance to freezing and cold shock stresses. • Thioredoxin domain of AtNTRC protects nucleic acids in vitro. • AtNTRC inhibits protein aggregation under freezing stress in vitro

  18. Understanding the safety and tolerability of facial filling therapeutics.

    Science.gov (United States)

    Kulichova, Daniela; Borovaya, Alyona; Ruzicka, Thomas; Thomas, Peter; Gauglitz, Gerd G

    2014-09-01

    Aesthetic medicine represents an emerging field for many specialties. Nowadays, a plethora of approaches are available to rejuvenate the human body and face, the latter being a frequent target for the placement of filling substances to correct wrinkles and volume loss. Nevertheless, based on the many products on the market, treating clinicians must pay specific attention to the properties of the respective materials, their associated side effects and any specific handling requirements to prevent potential short- and long-term adverse events. Types of filling materials, including biodegradable and non-biodegradable products, related complications, their conservative and invasive treatment options, as well as prevention strategies are described in this review. A profound knowledge of the facial anatomy as well as extensive experience with the various filling techniques and suitable materials for the respective areas remains crucial to prevent adverse events associated with filling procedures to the human face. Since side effects such as malar edema and foreign body granuloma do affect patients physically and psychologically to a significant extent and their successful treatment still remains challenging, further in depth studies on the tolerability of many filling materials utilized are required.

  19. Large-scale evaluation of pea (Pisum sativum L.) germplasm for cold tolerance in the open field during winter in Qingdao.

    Science.gov (United States)

    As a cool season crop, pea (Pisum sativum L.) can tolerate frost at the vegetative stage but has yield loss when freezing stress occurs at reproductive stage. Cold tolerance improvement of pea varieties is important for the stable yield and the expansion of winter pea planting area. Under the natura...

  20. Genotypes Associated with Listeria monocytogenes Isolates Displaying Impaired or Enhanced Tolerances to Cold, Salt, Acid, or Desiccation Stress

    Science.gov (United States)

    Hingston, Patricia; Chen, Jessica; Dhillon, Bhavjinder K.; Laing, Chad; Bertelli, Claire; Gannon, Victor; Tasara, Taurai; Allen, Kevin; Brinkman, Fiona S. L.; Truelstrup Hansen, Lisbeth; Wang, Siyun

    2017-01-01

    The human pathogen Listeria monocytogenes is a large concern in the food industry where its continuous detection in food products has caused a string of recalls in North America and Europe. Most recognized for its ability to grow in foods during refrigerated storage, L. monocytogenes can also tolerate several other food-related stresses with some strains possessing higher levels of tolerances than others. The objective of this study was to use a combination of phenotypic analyses and whole genome sequencing to elucidate potential relationships between L. monocytogenes genotypes and food-related stress tolerance phenotypes. To accomplish this, 166 L. monocytogenes isolates were sequenced and evaluated for their ability to grow in cold (4°C), salt (6% NaCl, 25°C), and acid (pH 5, 25°C) stress conditions as well as survive desiccation (33% RH, 20°C). The results revealed that the stress tolerance of L. monocytogenes is associated with serotype, clonal complex (CC), full length inlA profiles, and the presence of a plasmid which was identified in 55% of isolates. Isolates with full length inlA exhibited significantly (p monocytogenes sequence types, a new inlA PMSC, and several connections between CCs and the presence/absence or variations of specific genetic elements. A whole genome single-nucleotide-variants phylogeny revealed sporadic distribution of tolerant isolates and closely related sensitive and tolerant isolates, highlighting that minor genetic differences can influence the stress tolerance of L. monocytogenes. Specifically, a number of cold and desiccation sensitive isolates contained PMSCs in σB regulator genes (rsbS, rsbU, rsbV). Collectively, the results suggest that knowing the sequence type of an isolate in addition to screening for the presence of full-length inlA and a plasmid, could help food processors and food agency investigators determine why certain isolates might be persisting in a food processing environment. Additionally, increased

  1. Potential Effects of Climate Change on the Distribution of Cold-Tolerant Evergreen Broadleaved Woody Plants in the Korean Peninsula.

    Directory of Open Access Journals (Sweden)

    Kyung Ah Koo

    Full Text Available Climate change has caused shifts in species' ranges and extinctions of high-latitude and altitude species. Most cold-tolerant evergreen broadleaved woody plants (shortened to cold-evergreens below are rare species occurring in a few sites in the alpine and subalpine zones in the Korean Peninsula. The aim of this research is to 1 identify climate factors controlling the range of cold-evergreens in the Korean Peninsula; and 2 predict the climate change effects on the range of cold-evergreens. We used multimodel inference based on combinations of climate variables to develop distribution models of cold-evergreens at a physiognomic-level. Presence/absence data of 12 species at 204 sites and 6 climatic factors, selected from among 23 candidate variables, were used for modeling. Model uncertainty was estimated by mapping a total variance calculated by adding the weighted average of within-model variation to the between-model variation. The range of cold-evergreens and model performance were validated by true skill statistics, the receiver operating characteristic curve and the kappa statistic. Climate change effects on the cold-evergreens were predicted according to the RCP 4.5 and RCP 8.5 scenarios. Multimodel inference approach excellently projected the spatial distribution of cold-evergreens (AUC = 0.95, kappa = 0.62 and TSS = 0.77. Temperature was a dominant factor in model-average estimates, while precipitation was minor. The climatic suitability increased from the southwest, lowland areas, to the northeast, high mountains. The range of cold-evergreens declined under climate change. Mountain-tops in the south and most of the area in the north remained suitable in 2050 and 2070 under the RCP 4.5 projection and 2050 under the RCP 8.5 projection. Only high-elevations in the northeastern Peninsula remained suitable under the RCP 8.5 projection. A northward and upper-elevational range shift indicates change in species composition at the alpine and

  2. Potential Effects of Climate Change on the Distribution of Cold-Tolerant Evergreen Broadleaved Woody Plants in the Korean Peninsula.

    Science.gov (United States)

    Koo, Kyung Ah; Kong, Woo-Seok; Nibbelink, Nathan P; Hopkinson, Charles S; Lee, Joon Ho

    2015-01-01

    Climate change has caused shifts in species' ranges and extinctions of high-latitude and altitude species. Most cold-tolerant evergreen broadleaved woody plants (shortened to cold-evergreens below) are rare species occurring in a few sites in the alpine and subalpine zones in the Korean Peninsula. The aim of this research is to 1) identify climate factors controlling the range of cold-evergreens in the Korean Peninsula; and 2) predict the climate change effects on the range of cold-evergreens. We used multimodel inference based on combinations of climate variables to develop distribution models of cold-evergreens at a physiognomic-level. Presence/absence data of 12 species at 204 sites and 6 climatic factors, selected from among 23 candidate variables, were used for modeling. Model uncertainty was estimated by mapping a total variance calculated by adding the weighted average of within-model variation to the between-model variation. The range of cold-evergreens and model performance were validated by true skill statistics, the receiver operating characteristic curve and the kappa statistic. Climate change effects on the cold-evergreens were predicted according to the RCP 4.5 and RCP 8.5 scenarios. Multimodel inference approach excellently projected the spatial distribution of cold-evergreens (AUC = 0.95, kappa = 0.62 and TSS = 0.77). Temperature was a dominant factor in model-average estimates, while precipitation was minor. The climatic suitability increased from the southwest, lowland areas, to the northeast, high mountains. The range of cold-evergreens declined under climate change. Mountain-tops in the south and most of the area in the north remained suitable in 2050 and 2070 under the RCP 4.5 projection and 2050 under the RCP 8.5 projection. Only high-elevations in the northeastern Peninsula remained suitable under the RCP 8.5 projection. A northward and upper-elevational range shift indicates change in species composition at the alpine and subalpine

  3. SGD1, a key enzyme in tocopherol biosynthesis, is essential for plant development and cold tolerance in rice.

    Science.gov (United States)

    Wang, Di; Wang, Yunlong; Long, Wuhua; Niu, Mei; Zhao, Zhigang; Teng, Xuan; Zhu, Xiaopin; Zhu, Jianping; Hao, Yuanyuan; Wang, Yongfei; Liu, Yi; Jiang, Ling; Wang, Yihua; Wan, Jianmin

    2017-07-01

    Tocopherols, a group of Vitamin E compounds, are essential components of the human diet. In contrast to well documented roles in animals, the functions of tocopherols in plants are less understood. In this study, we characterized two allelic rice dwarf mutant lines designated sgd1-1 and sgd1-2 (small grain and dwarf1). Histological observations showed that the dwarf phenotypes were mainly due to cell elongation defects. A map-based cloning strategy and subsequent complementation test showed that SGD1 encodes homogentisate phytyltransferase (HPT), a key enzyme in tocopherol biosynthesis. Mutation of SGD1 resulted in tocopherol deficiency in both sgd1mutants. No oxidant damage was detected in the sgd1 mutants. Further analysis showed that sgd1-2 was hypersensitive to cold stress. Our results indicate that SGD1 is essential for plant development and cold tolerance in rice. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Biochemical and molecular characterization of the antioxidative system of Coffea sp. under cold conditions in genotypes with contrasting tolerance.

    Science.gov (United States)

    Fortunato, Ana S; Lidon, Fernando C; Batista-Santos, Paula; Leitão, António Eduardo; Pais, Isabel P; Ribeiro, Ana I; Ramalho, José Cochicho

    2010-03-15

    Low positive temperature (chilling) is frequently linked to the promotion of oxidative stress conditions, and is of particular importance in the coffee plant due to its severe impact on growth, development, photosynthesis and production. Nevertheless, some acclimation ability has been reported within the Coffea genus, and is possibly related to oxidative stress control. Using an integrated biochemical and molecular approach, the characterization of the antioxidative system of genotypes with different cold acclimation abilities was performed. Experiments were carried out using 1.5-year-old coffee seedlings of Coffea canephora cv. Apoatã, C. arabica cv. Catuaí, C. dewevrei and 2 hybrids, Icatu (C. arabicaxC. canephora) and Piatã (C. dewevreixC. arabica) subjected to a gradual cold treatment and a recovery period. Icatu showed the greatest ability to control oxidative stress, as reflected by the enhancement of several antioxidative components (Cu,Zn-SOD and APX activities; ascorbate, alpha-tocopherol and chlorogenic acids (CGAs) contents) and lower reactive oxygen species contents (H(2)O(2) and OH). Gene expression studies show that GRed, DHAR and class III and IV chitinases might also be involved in the cold acclimation ability of Icatu. Catuaí showed intermediate acclimation ability through the reinforcement of some antioxidative molecules, usually to a lesser extent than that observed in Icatu. On the other hand, C. dewevrei showed the poorest response in terms of antioxidant accumulation, and also showed the greatest increase in OH values. The difference in the triggering of antioxidative traits supports the hypothesis of its importance to cold (and photoinhibition) tolerance in Coffea sp. and could provide a useful probe to identify tolerant genotypes. Copyright 2009 Elsevier GmbH. All rights reserved.

  5. Hemolymph metabolites and osmolality are tightly linked to cold tolerance of Drosophila species

    DEFF Research Database (Denmark)

    Olsson, Trine; MacMillan, Heath A.; Nyberg, Nils

    2016-01-01

    osmolality was similar among all species despite chill-tolerant species having lower hemolymph [Na(+)]. Using NMR spectroscopy, we found that chill-tolerant species instead have higher levels of sugars and free amino acids in their hemolymph, including classical 'cryoprotectants' such as trehalose...

  6. Lipophilic Contaminants Influence Cold Tolerance of Invertebrates through Changes in Cell Membrane Fluidity

    DEFF Research Database (Denmark)

    Holmstrup, Martin; Bouvrais, Hélène; Westh, Peter

    2014-01-01

    Contaminants taken up by living organisms in the environment as a result of anthropogenic contamination can reduce the tolerance of natural stressors, e.g., low temperatures, but the physiological mechanisms behind these interactions of effects are poorly understood. The tolerance to low temperat...

  7. Mapping and validation of QTLs for cold tolerance at seedling stage in rice from an indica cultivar Habiganj Boro VI (Hbj.BVI).

    Science.gov (United States)

    Biswas, Partha S; Khatun, Hasina; Das, Nomita; Sarker, Md Mahathir; Anisuzzaman, M

    2017-12-01

    Yellowing, stunting, and seedling death associated with cold stress is a common problem in many Asian countries for winter rice cultivation. Improvement of cultivars through marker-assisted selection of QTLs for cold tolerance at seedling stage from locally adapted germplasm/cultivar is the most effective and sustainable strategy to resolve this problem. A study was undertaken to map QTLs from 151 F 2:3 progenies of a cross between a cold susceptible variety, BR1 and a locally adapted traditional indica cultivar, Hbj.BVI. A total of six significant QTLs were identified for two cold tolerance indices-cold-induced leaf discoloration and survival rate after a recovery period of seven days on chromosomes 6, 8, 11, and 12. Among these QTLs, qCTSL - 8 - 1 and qCTSS - 8 - 1 being co-localized into RM7027-RM339 on chromosome 8 and qCTSL - 12 - 1 and qCTSS - 12 - 1 into RM247-RM2529 on chromosome 12 showed 12.78 and 14.96% contribution, respectively, to the total phenotypic variation for cold tolerance. Validation of QTL effect in BC 1 F 3 population derived a cross between a cold susceptible BRRI dhan28 and Hbj.BVI showed dominating effect of qCTSL - 12 - 1 on cold tolerance at seedling stage and it became stronger when one or more other QTLs were co-segregated with it. These results suggest that the QTLs identified in this study are stable and effective on other genetic background also, which warrant the use of these QTLs for further study aiming to cultivar development for seedling stage cold tolerance.

  8. Transcriptome Profiling of Two Asparagus Bean (Vigna unguiculata subsp. sesquipedalis Cultivars Differing in Chilling Tolerance under Cold Stress.

    Directory of Open Access Journals (Sweden)

    Huaqiang Tan

    Full Text Available Cowpea (V. unguiculata L. Walp. is an important tropical grain legume. Asparagus bean (V. unguiculata ssp. sesquipedialis is a distinctive subspecies of cowpea, which is considered one of the top ten Asian vegetables. It can be adapted to a wide range of environmental stimuli such as drought and heat. Nevertheless, it is an extremely cold-sensitive tropical species. Improvement of chilling tolerance in asparagus bean may significantly increase its production and prolong its supply. However, gene regulation and signaling pathways related to cold response in this crop remain unknown. Using Illumina sequencing technology, modification of global gene expression in response to chilling stress in two asparagus bean cultivars-"Dubai bean" and "Ningjiang-3", which are tolerant and sensitive to chilling, respectively-were investigated. More than 1.8 million clean reads were obtained from each sample. After de novo assembly, 88,869 unigenes were finally generated with a mean length of 635 bp. Of these unigenes, 41,925 (47.18% had functional annotations when aligned to public protein databases. Further, we identified 3,510 differentially expressed genes (DEGs in Dubai bean, including 2,103 up-regulated genes and 1,407 down-regulated genes. While in Ningjiang-3, we found 2,868 DEGs, 1,786 of which were increasing and the others were decreasing. 1,744 DEGs were commonly regulated in two cultivars, suggesting that some genes play fundamental roles in asparagus bean during cold stress. Functional classification of the DEGs in two cultivars using Mercator pipeline indicated that RNA, protein, signaling, stress and hormone metabolism were five major groups. In RNA group, analysis of TFs in DREB subfamily showed that ICE1-CBF3-COR cold responsive cascade may also exist in asparagus bean. Our study is the first to provide the transcriptome sequence resource for asparagus bean, which will accelerate breeding cold resistant asparagus bean varieties through genetic

  9. The evolution of high summit metabolism and cold tolerance in birds and its impact on present-day distributions.

    Science.gov (United States)

    Swanson, David L; Garland, Theodore

    2009-01-01

    Summit metabolic rate (M(sum), maximum cold-induced metabolic rate) is positively correlated with cold tolerance in birds, suggesting that high M(sum) is important for residency in cold climates. However, the phylogenetic distribution of high M(sum) among birds and the impact of its evolution on current distributions are not well understood. Two potential adaptive hypotheses might explain the phylogenetic distribution of high M(sum) among birds. The cold adaptation hypothesis contends that species wintering in cold climates should have higher M(sum) than species wintering in warmer climates. The flight adaptation hypothesis suggests that volant birds might be capable of generating high M(sum) as a byproduct of their muscular capacity for flight; thus, variation in M(sum) should be associated with capacity for sustained flight, one indicator of which is migration. We collected M(sum) data from the literature for 44 bird species and conducted both conventional and phylogenetically informed statistical analyses to examine the predictors of M(sum) variation. Significant phylogenetic signal was present for log body mass, log mass-adjusted M(sum), and average temperature in the winter range. In multiple regression models, log body mass, winter temperature, and clade were significant predictors of log M(sum). These results are consistent with a role for climate in determining M(sum) in birds, but also indicate that phylogenetic signal remains even after accounting for associations indicative of adaptation to winter temperature. Migratory strategy was never a significant predictor of log M(sum) in multiple regressions, a result that is not consistent with the flight adaptation hypothesis.

  10. Overexpression of WsSGTL1 Gene of Withania somnifera Enhances Salt Tolerance, Heat Tolerance and Cold Acclimation Ability in Transgenic Arabidopsis Plants

    Science.gov (United States)

    Mishra, Manoj K.; Chaturvedi, Pankaj; Singh, Ruchi; Singh, Gaurav; Sharma, Lokendra K.; Pandey, Vibha; Kumari, Nishi; Misra, Pratibha

    2013-01-01

    Background Sterol glycosyltrnasferases (SGT) are enzymes that glycosylate sterols which play important role in plant adaptation to stress and are medicinally important in plants like Withania somnifera. The present study aims to find the role of WsSGTL1 which is a sterol glycosyltransferase from W. somnifera, in plant’s adaptation to abiotic stress. Methodology The WsSGTL1 gene was transformed in Arabidopsis thaliana through Agrobacterium mediated transformation, using the binary vector pBI121, by floral dip method. The phenotypic and physiological parameters like germination, root length, shoot weight, relative electrolyte conductivity, MDA content, SOD levels, relative electrolyte leakage and chlorophyll measurements were compared between transgenic and wild type Arabidopsis plants under different abiotic stresses - salt, heat and cold. Biochemical analysis was done by HPLC-TLC and radiolabelled enzyme assay. The promoter of the WsSGTL1 gene was cloned by using Genome Walker kit (Clontech, USA) and the 3D structures were predicted by using Discovery Studio Ver. 2.5. Results The WsSGTL1 transgenic plants were confirmed to be single copy by Southern and homozygous by segregation analysis. As compared to WT, the transgenic plants showed better germination, salt tolerance, heat and cold tolerance. The level of the transgene WsSGTL1 was elevated in heat, cold and salt stress along with other marker genes such as HSP70, HSP90, RD29, SOS3 and LEA4-5. Biochemical analysis showed the formation of sterol glycosides and increase in enzyme activity. When the promoter of WsSGTL1 gene was cloned from W. somnifera and sequenced, it contained stress responsive elements. Bioinformatics analysis of the 3D structure of the WsSGTL1 protein showed functional similarity with sterol glycosyltransferase AtSGT of A. thaliana. Conclusions Transformation of WsSGTL1 gene in A. thaliana conferred abiotic stress tolerance. The promoter of the gene in W.somnifera was found to have stress

  11. The induction of menadione stress tolerance in the marine microalga, Dunaliella viridis, through cold pretreatment and modulation of the ascorbate and glutathione pools.

    Science.gov (United States)

    Madadkar Haghjou, Maryam; Colville, Louise; Smirnoff, Nicholas

    2014-11-01

    The effect of cold pretreatment on menadione tolerance was investigated in the cells of the marine microalga, Dunaliella viridis. In addition, the involvement of ascorbate and glutathione in the response to menadione stress was tested by treating cell suspensions with l-galactono-1,4-lactone, an ascorbate precursor, and buthionine sulfoximine, an inhibitor of glutathione synthesis. Menadione was highly toxic to non cold-pretreated cells, and caused a large decrease in cell number. Cold pretreatment alleviated menadione toxicity and cold pretreated cells accumulated lower levels of reactive oxygen species, and had enhanced antioxidant capacity due to increased levels of β-carotene, reduced ascorbate and total glutathione compared to non cold-pretreated cells. Cold pretreatment also altered the response to l-galactono-1,4-lactone and buthionine sulfoximine treatments. Combined l-galactono-1,4-lactone and menadione treatment was lethal in non-cold pretreated cells, but in cold-pretreated cells it had a positive effect on cell numbers compared to menadione alone. Overall, exposure of Dunaliella cells to cold stress enhanced tolerance to subsequent oxidative stress induced by menadione. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. Overexpression of Pyrabactin Resistance-Like Abscisic Acid Receptors Enhances Drought, Osmotic, and Cold Tolerance in Transgenic Poplars

    Directory of Open Access Journals (Sweden)

    Jingling Yu

    2017-10-01

    Full Text Available Abscisic acid (ABA has been known participate in a wider range of adaptive responses to diverse environmental abiotic stresses such as drought, osmosis, and low temperatures. ABA signaling is initiated by its receptors PYR/PYL/RCARs, a type of soluble proteins with a conserved START domain which can bind ABA and trigger the downstream pathway. Previously, we discovered that poplar (Populus trichocarpa genome encodes 14 PYR/PYL/RCAR orthologs (PtPYRLs, and two of them, PtPYRL1 and PtPYRL5 have been functionally characterized to positively regulate drought tolerance. However, the physiological function of these ABA receptors in poplar remains uncharacterized. Here, we generated transgenic poplar plants overexpressing PtPYRL1 and PtPYRL5 and found that they exhibited more vigorous growth and produced greater biomass when exposed to drought stress. The improved drought tolerance was positively correlated with the key physiological responses dictated by the ABA signaling pathway, including increase in stomatal closure and decrease in leaf water loss. Further analyses revealed that overexpression lines showed improved capacity in scavenging reactive oxygen species and enhanced the activation of antioxidant enzymes under drought stress. Moreover, overexpression of PtPYRL1 or PtPYRL5 significantly increased the poplar resistance to osmotic and cold stresses. In summary, our results suggest that constitutive expression of PtPYRL1 and PtPYRL5 significantly enhances the resistance to drought, osmotic and cold stresses by positively regulating ABA signaling in poplar.

  13. Cold tolerance is unaffected by oxygen availability despite changes in anaerobic metabolism

    Czech Academy of Sciences Publication Activity Database

    Boardman, L.; Sorensen, J. G.; Košťál, Vladimír; Šimek, Petr; Terblanche, J. S.

    2016-01-01

    Roč. 6, SEPT 13 (2016), č. článku 32856. ISSN 2045-2322 R&D Projects: GA ČR GA13-18509S Institutional support: RVO:60077344 Keywords : hypoxia * cold * insect Subject RIV: ED - Physiology Impact factor: 4.259, year: 2016 http://www.nature.com/articles/srep32856

  14. Overwintering biology and limits of cold tolerance in larvae of pistachio twig borer, Kermania pistaciella

    Czech Academy of Sciences Publication Activity Database

    Mollaei, Maedeh; Izadi, H.; Šimek, Petr; Košťál, Vladimír

    2016-01-01

    Roč. 106, č. 4 (2016), s. 538-545 ISSN 0007-4853 R&D Projects: GA ČR GA13-18509S Institutional support: RVO:60077344 Keywords : cold hardiness * supercooling * quiescence Subject RIV: ED - Physiology Impact factor: 1.758, year: 2016

  15. Changes in cold tolerance due to a 14-day stay in the Canadian Arctic

    Science.gov (United States)

    Livingstone, S. D.; Romet, T.; Keefe, A. A.; Nolan, R. W.

    1996-12-01

    Responses to cold exposure tests both locally and of the whole body were examined in subjects who stayed in the Arctic (average maximum and minimum temperatures -11 and -21° C respectively) for 14 days of skiing and sleeping in tents. These changes were compared to responses in subjects living working in Ottawa, Canada (average max. and min. temperatures -5 and -11° C respectively). The tests were done before the stay in the Arctic (Pre), immediately after the return (Post 1) and approximately 32 days after the return (Post 2). For the whole-body cold exposure each subject, wearing only shorts and lying on a rope mesh cot, was exposed to an ambient temperature of 10° C. There was no consistent response in the changes of metabolic or body temperature to this exposure in either of groups and, in addition, the changes over time were variable. Cold induced vasodilatation (CIVD) was determined by measuring temperature changes in the middle finger of the nondominant hand upon immersion in ice water for 30 min. CIVD was depressed after the Arctic exposure whilst during the Post 2 testing, although variable, did not return to the Pre values; the responses of the control group were similar. These results indicate that normal seasonal changes may be as important in adaptation as a stay in the Arctic. Caution is advised in the separation of seasonal effects when examining the changes in adaptation after exposure to a cold environment.

  16. Cold stress increases salt tolerance of the extremophytes Eutrema salsugineum (Thellungiella salsuginea) and Eutrema (Thellungiella) botschantzevii

    NARCIS (Netherlands)

    Shamustakimova, A. O.; Leonova, G.; Taranov, V. V.; de Boer, A. H.; Babakov, A. V.

    2017-01-01

    A comparative study was performed to analyze the effect of cold acclimation on improving the resistance of Arabidopsis thaliana, Eutrema salsugineum and Eutrema botschantzevii plants to salt stress. Shoot FW, sodium and potassium accumulation, metabolite content, expression of proton pump genes

  17. Identification of X-linked quantitative trait loci affecting cold tolerance in Drosophila melanogaster and fine mapping by selective sweep analysis.

    Science.gov (United States)

    Svetec, Nicolas; Werzner, Annegret; Wilches, Ricardo; Pavlidis, Pavlos; Alvarez-Castro, José M; Broman, Karl W; Metzler, Dirk; Stephan, Wolfgang

    2011-02-01

    Drosophila melanogaster is a cosmopolitan species that colonizes a great variety of environments. One trait that shows abundant evidence for naturally segregating genetic variance in different populations of D. melanogaster is cold tolerance. Previous work has found quantitative trait loci (QTL) exclusively on the second and the third chromosomes. To gain insight into the genetic architecture of cold tolerance on the X chromosome and to compare the results with our analyses of selective sweeps, a mapping population was derived from a cross between substitution lines that solely differed in the origin of their X chromosome: one originates from a European inbred line and the other one from an African inbred line. We found a total of six QTL for cold tolerance factors on the X chromosome of D. melanogaster. Although the composite interval mapping revealed slightly different QTL profiles between sexes, a coherent model suggests that most QTL overlapped between sexes, and each explained around 5-14% of the genetic variance (which may be slightly overestimated). The allelic effects were largely additive, but we also detected two significant interactions. Taken together, this provides evidence for multiple QTL that are spread along the entire X chromosome and whose effects range from low to intermediate. One detected transgressive QTL influences cold tolerance in different ways for the two sexes. While females benefit from the European allele increasing their cold tolerance, males tend to do better with the African allele. Finally, using selective sweep mapping, the candidate gene CG16700 for cold tolerance colocalizing with a QTL was identified. © 2010 Blackwell Publishing Ltd.

  18. Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopsis thaliana accessions

    Czech Academy of Sciences Publication Activity Database

    Mishra, Anamika; Mishra, Kumud; Höermiller, I. I.; Heyer, A. G.; Nedbal, Ladislav

    2011-01-01

    Roč. 6, č. 2 (2011), s. 301-310 ISSN 1559-2316 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk OC08055; GA MŠk 2B06068 Institutional research plan: CEZ:AV0Z60870520 Keywords : chlorophyll fluorescence * cold acclimation * electrolyte leakage * high - throughput screening * natural accessions Subject RIV: EH - Ecology, Behaviour

  19. Cold in the common garden: comparative low-temperature tolerance of boreal and temperate conifer foliage

    Science.gov (United States)

    G. Richard Strimbeck; Trygve D. Kjellsen; Paul G. Schaberg; Paula F. Murakami

    2007-01-01

    Because they maintain green foliage throughout the winter season, evergreen conifers may face special physiological challenges in a warming world. We assessed the midwinter low-temperature (LT) tolerance of foliage from eight temperate and boreal species in each of the genera Abies, Picea, and Pinus growing in an arboretum in...

  20. Tolerance to multiple climate stressors: a case study of Douglas-fir drought and cold hardiness

    Science.gov (United States)

    Sheel Bansal; Connie Harrington; Brad St. Clair

    2016-01-01

    1. Drought and freeze events are two of the most common forms of climate extremes which result in tree damage or death, and the frequency and intensity of both stressors may increase with climate change. Few studies have examined natural covariation in stress tolerance traits to cope with multiple stressors among wild plant populations. 2. We assessed the...

  1. Hand immersion in cold water alleviating physiological strain and increasing tolerance to uncompensable heat stress.

    Science.gov (United States)

    Khomenok, Gennadi A; Hadid, Amir; Preiss-Bloom, Orahn; Yanovich, Ran; Erlich, Tomer; Ron-Tal, Osnat; Peled, Amir; Epstein, Yoram; Moran, Daniel S

    2008-09-01

    The current study examines the use of hand immersion in cold water to alleviate physiological strain caused by exercising in a hot climate while wearing NBC protective garments. Seventeen heat acclimated subjects wearing a semi-permeable NBC protective garment and a light bulletproof vest were exposed to a 125 min exercise-heat stress (35 degrees C, 50% RH; 5 km/h, 5% incline). The heat stress exposure routine included 5 min rest in the chamber followed by two 50:10 min work-rest cycles. During the control trial (CO), there was no intervention, whilst in the intervention condition the subjects immersed their hands and forearms in a 10 degrees C water bath (HI). The results demonstrated that hand immersion in cold water significantly reduced physiological strain. In the CO exposure during the first and second resting periods, the average rectal temperature (T (re)) practically did not decrease. With hand immersion, the mean (SD) T (re) decreased by 0.45 (0.05 degrees C) and 0.48 degrees C (0.06 degrees C) during the first and second rest periods respectively (P immersion in cold water for 10 min is an effective method for decreasing the physiological strain caused by exercising under heat stress while wearing NBC protective garments. The method is convenient, simple, and allows longer working periods in hot or contaminated areas with shorter resting periods.

  2. Complete genome sequence of Arthrobacter alpinus ERGS4:06, a yellow pigmented bacterium tolerant to cold and radiations isolated from Sikkim Himalaya.

    Science.gov (United States)

    Kumar, Rakshak; Singh, Dharam; Swarnkar, Mohit Kumar; Singh, Anil Kumar; Kumar, Sanjay

    2016-02-20

    Arthrobacter alpinus ERGS4:06, a yellow pigmented bacterium which exhibited tolerance to cold and UV radiations was isolated from the glacial stream of East Rathong glacier in Sikkim Himalaya. Here we report the 4.3Mb complete genome assembly that has provided the basis for potential role of pigments as a survival strategy to combat stressed environment of cold and high UV-radiation and additionally the ability to produce cold active industrial enzymes. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance

    Directory of Open Access Journals (Sweden)

    Yu Agnes

    2008-12-01

    Full Text Available Abstract Background Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. Arabidopsis thaliana is an excellent model for identifying potential targets for plant breeding. Drought tolerance in the field was successfully conferred to crops by transferring genes from this model species. While involved in a plant genomics programme, which aims to identify new genes responsible for plant response to abiotic stress, we identified ESKIMO1 as a key gene involved in plant water economy as well as cold acclimation and salt tolerance. Results All esk1 mutants were more tolerant to freezing, after acclimation, than their wild type counterpart. esk1 mutants also showed increased tolerance to mild water deficit for all traits measured. The mutant's improved tolerance to reduced water supply may be explained by its lower transpiration rate and better water use efficiency (WUE, which was assessed by carbon isotope discrimination and gas exchange measurements. esk1 alleles were also shown to be more tolerant to salt stress. Transcriptomic analysis of one mutant line and its wild-type background was carried out. Under control watering conditions a number of genes were differentially expressed between the mutant and the wild type whereas under mild drought stress this list of genes was reduced. Among the genes that were differentially expressed between the wild type and mutant, two functional categories related to the response to stress or biotic and abiotic stimulus were over-represented. Under salt stress conditions, all gene functional categories were represented equally in both the mutant and wild type. Based on this transcriptome analysis we hypothesise that in control conditions the esk1 mutant behaves as if it was exposed to drought stress. Conclusion Overall our findings suggest that the

  4. Contribution of polyamines metabolism and GABA shunt to chilling tolerance induced by nitric oxide in cold-stored banana fruit.

    Science.gov (United States)

    Wang, Yansheng; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2016-04-15

    Effect of exogenous nitric oxide (NO) on polyamines (PAs) catabolism, γ-aminobutyric acid (GABA) shunt, proline accumulation and chilling injury of banana fruit under cold storage was investigated. Banana fruit treated with NO sustained lower chilling injury index than the control. Notably elevated nitric oxide synthetase activity and endogenous NO level were observed in NO-treated banana fruit. PAs contents in treated fruit were significantly higher than control fruit, due to the elevated activities of arginine decarboxylase and ornithine decarboxylase. NO treatment increased the activities of diamine oxidase, polyamine oxidase and glutamate decarboxylase, while reduced GABA transaminase activity to lower levels compared with control fruit, which resulted the accumulation of GABA. Besides, NO treatment upregulated proline content and significantly enhanced the ornithine aminotransferase activity. These results indicated that the chilling tolerance induced by NO treatment might be ascribed to the enhanced catabolism of PAs, GABA and proline. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Tolerance

    DEFF Research Database (Denmark)

    Tønder, Lars

    is linked to a different set of circumstances than the ones suggested by existing models in contemporary democratic theory. Reorienting the discussion of tolerance, the book raises the question of how to disclose new possibilities within our given context of affect and perception. Once we move away from......Tolerance: A Sensorial Orientation to Politics is an experiment in re-orientation. The book is based on the wager that tolerance exceeds the more prevalent images of self-restraint and repressive benevolence because neither precludes the possibility of a more “active tolerance” motivated...... by the desire to experiment and to become otherwise. The objective is to discuss what gets lost, conceptually as well as politically, when we neglect the subsistence of active tolerance within other practices of tolerance, and to develop a theory of active tolerance in which tolerance's mobilizing character...

  6. Role of Melatonin in Cell-Wall Disassembly and Chilling Tolerance in Cold-Stored Peach Fruit.

    Science.gov (United States)

    Cao, Shifeng; Bian, Kun; Shi, Liyu; Chung, Hsiao-Hang; Chen, Wei; Yang, Zhenfeng

    2018-06-06

    Melatonin reportedly increases chilling tolerance in postharvest peach fruit during cold storage, but information on its effects on cell-wall disassembly in chilling-injured peaches is limited. In this study, we investigated the role of cell-wall depolymerization in chilling-tolerance induction in melatonin-treated peaches. Treatment with 100 μM melatonin alleviated chilling symptoms (mealiness) characterized by a decrease in fruit firmness and increase in juice extractability in treated peaches during storage. The loss of neutral sugars, such as arabinose and galactose, in both the 1,2-cyclohexylenedinitrilotetraacetic acid (CDTA)- and Na 2 CO 3 -soluble fractions was observed at 7 days in treated peaches, but the contents increased after 28 days of storage. Atomic-force-microscopy (AFM) analysis revealed that the polysaccharide widths in the CDTA- and Na 2 CO 3 -soluble fractions in the treated fruit were mainly distributed in a shorter range, as compared with those in the control fruit. In addition, the expression profiles of a series of cell-wall-related genes showed that melatonin treatment maintained the balance between transcripts of PpPME and PpPG, which accompany the up-regulation of several other genes involved in cell-wall disassembly. Taken together, our results suggested that the reduced mealiness by melatonin was probably associated with its positive regulation of numerous cell-wall-modifying enzymes and proteins; thus, the depolymerization of the cell-wall polysaccharides in the peaches treated with melatonin was maintained, and the treated fruit could soften gradually during cold storage.

  7. Tolerance

    DEFF Research Database (Denmark)

    Tønder, Lars

    Tolerance: A Sensorial Orientation to Politics is an experiment in re-orientation. The book is based on the wager that tolerance exceeds the more prevalent images of self-restraint and repressive benevolence because neither precludes the possibility of a more “active tolerance” motivated by the d...... these alternatives by returning to the notion of tolerance as the endurance of pain, linking this notion to exemplars and theories relevant to the politics of multiculturalism, religious freedom, and free speech....

  8. Myo-inositol as a main metabolite in overwintering flies: seasonal metabolomic profiles and cold stress tolerance in a northern drosophilid fly

    Czech Academy of Sciences Publication Activity Database

    Vesala, L.; Salminen, T. S.; Košťál, Vladimír; Zahradníčková, Helena; Hoikkala, A.

    2012-01-01

    Roč. 215, č. 16 (2012), s. 2891-2897 ISSN 0022-0949 R&D Projects: GA ČR GA206/07/0269 Institutional research plan: CEZ:AV0Z50070508 Institutional support: RVO:60077344 Keywords : chill coma recovery * cold tolerance * cryoprotectant Subject RIV: ED - Physiology Impact factor: 3.236, year: 2012

  9. Tolerance of subzero winter cold in kudzu (Pueraria montana var. lobata) and its implications for northward migration in a warming climate

    Science.gov (United States)

    Kudzu (Pueraria montana var. lobata) is an important invasive species that was planted throughout southeastern North America until the mid-20th century. Winter survival is commonly assumed to control its distribution; however, its cold tolerance thresholds have not been determined. Here, we used bio...

  10. Insect cold tolerance and repair of chill-injury at fluctuating thermal regimes: Role of 70kDa heat shock protein expression

    Czech Academy of Sciences Publication Activity Database

    Tollarová-Borovanská, Michaela; Lalouette, L.; Košťál, Vladimír

    2009-01-01

    Roč. 30, č. 5 (2009), s. 312-319 ISSN 0143-2044 R&D Projects: GA ČR GA206/07/0269 Institutional research plan: CEZ:AV0Z50070508 Keywords : insect * cold tolerance * heat shock proteins Subject RIV: ED - Physiology Impact factor: 1.074, year: 2009

  11. Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants.

    Science.gov (United States)

    Byun, Mi Young; Lee, Jungeun; Cui, Li Hua; Kang, Yoonjee; Oh, Tae Kyung; Park, Hyun; Lee, Hyoungseok; Kim, Woo Taek

    2015-07-01

    Deschampsia antarctica is an Antarctic hairgrass that grows on the west coast of the Antarctic peninsula. In this report, we have identified and characterized a transcription factor, D. antarctica C-repeat binding factor 7 (DaCBF7), that is a member of the monocot group V CBF homologs. The protein contains a single AP2 domain, a putative nuclear localization signal, and the typical CBF signature. DaCBF7, like other monocot group V homologs, contains a distinct polypeptide stretch composed of 43 amino acids in front of the AP2 motif. DaCBF7 was predominantly localized to nuclei and interacted with the C-repeat/dehydration responsive element (CRT/DRE) core sequence (ACCGAC) in vitro. DaCBF7 was induced by abiotic stresses, including drought, cold, and salinity. To investigate its possible cellular role in cold tolerance, a transgenic rice system was employed. DaCBF7-overexpressing transgenic rice plants (Ubi:DaCBF7) exhibited markedly increased tolerance to cold stress compared to wild-type plants without growth defects; however, overexpression of DaCBF7 exerted little effect on tolerance to drought or salt stress. Transcriptome analysis of a Ubi:DaCBF7 transgenic line revealed 13 genes that were up-regulated in DaCBF7-overexpressing plants compared to wild-type plants in the absence of cold stress and in short- or long-term cold stress. Five of these genes, dehydrin, remorin, Os03g63870, Os11g34790, and Os10g22630, contained putative CRT/DRE or low-temperature responsive elements in their promoter regions. These results suggest that overexpression of DaCBF7 directly and indirectly induces diverse genes in transgenic rice plants and confers enhanced tolerance to cold stress. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Chemical stability of a cold-active cellulase with high tolerance toward surfactants and chaotropic agent

    Directory of Open Access Journals (Sweden)

    Thaís V. Souza

    2016-03-01

    Full Text Available CelE1 is a cold-active endo-acting glucanase with high activity at a broad temperature range and under alkaline conditions. Here, we examined the effects of pH on the secondary and tertiary structures, net charge, and activity of CelE1. Although variation in pH showed a small effect in the enzyme structure, the activity was highly influenced at acidic conditions, while reached the optimum activity at pH 8. Furthermore, to estimate whether CelE1 could be used as detergent additives, CelE1 activity was evaluated in the presence of surfactants. Ionic and nonionic surfactants were not able to reduce CelE1 activity significantly. Therefore, CelE1 was found to be promising candidate for use as detergent additives. Finally, we reported a thermodynamic analysis based on the structural stability and the chemical unfolding/refolding process of CelE1. The results indicated that the chemical unfolding proceeds as a reversible two-state process. These data can be useful for biotechnological applications.

  13. Evaluation of Cold Tolerant High Yielding Oil Palm Germplasm in Guangdong Province of South China, a Northern Tropical Region

    International Nuclear Information System (INIS)

    Xianhai, Z.; Denglang, P.; Zhao, L.; Junming, C.; Weifu, L.

    2016-01-01

    An evaluation of the vegetative growth, yield components and cold resistance traits from 38 pre-selected individual oil palm plants grown in six regions (populations) at the latitude (LAT) range between 20 degree N and 23 degree N in Guangdong Province, China was carried out during the period from April 2010 to April 2015. Analysis of variance showed significant differences in traits between the individual palms or the populations [except sex-ratio of female inflorescence and fruit bunch to female inflorescence, male inflorescence and fruit bunch (%) (SR)]. Phenotypic correlation analysis showed that bunch number (NB) was positively correlated with fresh fruit bunch (FFB), but not significantly with average bunch weight (ABW). For the individual palms, it was found that the higher the LAT the lower the frond production (FP) and LT 50 and the higher fruit compaction rate (FCR), and the higher the LT 50 the lower the ABW. For the populations, the higher the LAT the higher the ABW and the lower the abortion ratio of female inflorescence to female inflorescence and fruit bunch (%) (RAFM). Path coefficient analysis further revealed that for the individual palms ABW was the major determinant in both FFB and NB, and mainly determined by normal fruit higher per bunch (kg) (ANFW) and percent of ANFW to ABW (%) (F/B). For the populations, the major determining factors were ratio of aborted fruit bunch to fruit bunch (%) (ABR) for FFB and NB, and inflorescence (male, female, bisexual and non-anthesis) and fruit bunch numbers per year (No.) NIB and LT 50 for ABW. MM5 palm and Huazhou population were selected based on the major determining factors as high-yielding cold tolerant palm and population, respectively, which was consistent with the results of analysis of variance. (author)

  14. The enhancement of tolerance to salt and cold stresses by modifying the redox state and salicylic acid content via the cytosolic malate dehydrogenase gene in transgenic apple plants.

    Science.gov (United States)

    Wang, Qing-Jie; Sun, Hong; Dong, Qing-Long; Sun, Tian-Yu; Jin, Zhong-Xin; Hao, Yu-Jin; Yao, Yu-Xin

    2016-10-01

    In this study, we characterized the role of an apple cytosolic malate dehydrogenase gene (MdcyMDH) in the tolerance to salt and cold stresses and investigated its regulation mechanism in stress tolerance. The MdcyMDH transcript was induced by mild cold and salt treatments, and MdcyMDH-overexpressing apple plants possessed improved cold and salt tolerance compared to wild-type (WT) plants. A digital gene expression tag profiling analysis revealed that MdcyMDH overexpression largely altered some biological processes, including hormone signal transduction, photosynthesis, citrate cycle and oxidation-reduction. Further experiments verified that MdcyMDH overexpression modified the mitochondrial and chloroplast metabolisms and elevated the level of reducing power, primarily caused by increased ascorbate and glutathione, as well as the increased ratios of ascorbate/dehydroascorbate and glutathione/glutathione disulphide, under normal and especially stress conditions. Concurrently, the transgenic plants produced a high H2 O2 content, but a low O2·- production rate was observed compared to the WT plants. On the other hand, the transgenic plants accumulated more free and total salicylic acid (SA) than the WT plants under normal and stress conditions. Taken together, MdcyMDH conferred the transgenic apple plants a higher stress tolerance by producing more reductive redox states and increasing the SA level; MdcyMDH could serve as a target gene to genetically engineer salt- and cold-tolerant trees. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Cold atmospheric-pressure plasma and bacteria: understanding the mode of action using vibrational microspectroscopy

    International Nuclear Information System (INIS)

    Kartaschew, Konstantin; Mischo, Meike; Bründermann, Erik; Havenith, Martina; Baldus, Sabrina; Awakowicz, Peter

    2016-01-01

    Cold atmospheric-pressure plasma show promising antimicrobial effects, however the detailed biochemical mechanism of the bacterial inactivation is still unknown. We investigated, for the first time, plasma-treated Gram-positive Bacillus subtilis and Gram-negative Escherichia coli bacteria with Raman and infrared microspectroscopy. A dielectric barrier discharge was used as a plasma source. We were able to detect several plasma-induced chemical modifications, which suggest a pronounced oxidative effect on the cell envelope, cellular proteins and nucleotides as well as a generation of organic nitrates in the treated bacteria. Vibrational microspectroscopy is used as a comprehensive and a powerful tool for the analysis of plasma interactions with whole organisms such as bacteria. Analysis of reaction kinetics of chemical modifications allow a time-dependent insight into the plasma-mediated impact. Investigating possible synergistic effects between the plasma-produced components, our observations strongly indicate that the detected plasma-mediated chemical alterations can be mainly explained by the particle effect of the generated reactive species. By changing the polarity of the applied voltage pulse, and hence the propagation mechanisms of streamers, no significant effect on the spectral results could be detected. This method allows the analysis of the individual impact of each plasma constituent for particular chemical modifications. Our approach shows great potential to contribute to a better understanding of plasma-cell interactions. (paper)

  16. Exploiting transcriptome data for the development and characterization of gene-based SSR markers related to cold tolerance in oil palm (Elaeis guineensis).

    Science.gov (United States)

    Xiao, Yong; Zhou, Lixia; Xia, Wei; Mason, Annaliese S; Yang, Yaodong; Ma, Zilong; Peng, Ming

    2014-12-19

    The oil palm (Elaeis guineensis, 2n = 32) has the highest oil yield of any crop species, as well as comprising the richest dietary source of provitamin A. For the tropical species, the best mean growth temperature is about 27°C, with a minimal growth temperature of 15°C. Hence, the plantation area is limited into the geographical ranges of 10°N to 10°S. Enhancing cold tolerance capability will increase the total cultivation area and subsequently oil productivity of this tropical species. Developing molecular markers related to cold tolerance would be helpful for molecular breeding of cold tolerant Elaeis guineensis. In total, 5791 gene-based SSRs were identified in 51,452 expressed sequences from Elaeis guineensis transcriptome data: approximately one SSR was detected per 10 expressed sequences. Of these 5791 gene-based SSRs, 916 were derived from expressed sequences up- or down-regulated at least two-fold in response to cold stress. A total of 182 polymorphic markers were developed and characterized from 442 primer pairs flanking these cold-responsive SSR repeats. The polymorphic information content (PIC) of these polymorphic SSR markers across 24 lines of Elaeis guineensis varied from 0.08 to 0.65 (mean = 0.31 ± 0.12). Using in-silico mapping, 137 (75.3%) of the 182 polymorphic SSR markers were located onto the 16 Elaeis guineensis chromosomes. Total coverage of 473 Mbp was achieved, with an average physical distance of 3.4 Mbp between adjacent markers (range 96 bp - 20.8 Mbp). Meanwhile, Comparative analysis of transcriptome under cold stress revealed that one ICE1 putative ortholog, five CBF putative orthologs, 19 NAC transcription factors and four cold-induced orhologs were up-regulated at least two fold in response to cold stress. Interestingly, 5' untranslated region of both Unigene21287 (ICE1) and CL2628.Contig1 (NAC) both contained an SSR markers. In the present study, a series of SSR markers were developed based on sequences

  17. Evaluation of Diversity Based on Morphological Variabilities and ISSR Molecular Markers in Iranian Cynodon dactylon (L.) Pers. Accessions to Select and Introduce Cold-Tolerant Genotypes.

    Science.gov (United States)

    Akbari, M; Salehi, H; Niazi, A

    2018-04-01

    The main goals of the present study were to screen Iranian common bermudagrasses to find cold-tolerant accessions and evaluate their genetic and morphological variabilities. In this study, 49 accessions were collected from 18 provinces of Iran. One foreign cultivar of common bermudagrass was used as control. Morphological variation was evaluated based on 14 morphological traits to give information about taxonomic position of Iranian common bermudagrass. Data from morphological traits were evaluated to categorize all accessions as either cold sensitive or tolerant using hierarchical clustering with Ward's method in SPSS software. Inter-Simple Sequence Repeat (ISSR) primers were employed to evaluate genetic variability of accessions. The results of our taxonomic investigation support the existence of two varieties of Cynodon dactylon in Iran: var. dactylon (hairless plant) and var. villosous (plant with hairs at leaf underside and/or upper side surfaces or exterior surfaces of sheath). All 15 primers amplified and gave clear and highly reproducible DNA fragments. In total, 152 fragments were produced, of which 144 (94.73%) being polymorphic. The polymorphic information content (PIC) values ranged from 0.700 to 0.928. The average PIC value obtained with 15 ISSR primers was 0.800, which shows that all primers were informative. Probability identity (PI) and discriminating power between all primers ranged from 0.029 to 0.185 and 0.815 to 0.971, respectively. Genetic data were converted into a binary data matrix. NTSYS software was used for data analysis. Clustering was done by the unweighted pair-group method with arithmetic averages and principle coordinate analysis, separated the accessions into six main clusters. According to both morphological and genetic diversity investigations of accessions, they can be clustered into three groups: cold sensitive, cold semi-tolerant, and cold tolerant. The most cold-tolerant accessions were: Taft, Malayear, Gorgan, Safashahr

  18. The Effect of Spermidine on Cold Tolerance Induction in Cucumber Seedlings ‘Cv. Super-Dominus’

    Directory of Open Access Journals (Sweden)

    Golnar GhazianTafrishi

    2017-09-01

    Full Text Available Introduction: Plants native to tropical and subtropical climates which grown in the temperate climate zone, suffer chilling injury when exposed to non-freezing temperatures for a certain period of time. The optimum growth temperature for cucumber (a tropical plant is 20 to 25°C. Cucumber is sensitive to temperatures lower than 10 °C. Cucumber area of production exposes to late spring and early autumn cold weather in Khorasan-e-Razavai, Iran. Studies showed that chilling leads to an alteration in fatty acid composition of membrane lipids and its permeability, changes in photosynthetic pigments content and decrease in photosynthesis. Many researchers pointed to a possible role of polyamine compounds in plant defense against environmental stresses. Exog enous application Spd could prevent the electrolyte and amino acid leakage or recovering the plasma membrane damage in rice and cucumber in response to salinity, chilling and water stressed conditions. Materials and methods: A factorial experiment, based on completely randomized design was conducted to investigate the effect of short-term chilling on cucumber plantlets which was earlier treated with spermidine. Factors were included two levels of temperature (6 and 12°C and four levels of spermidine (0, 0.25, 0.5 and .0.75 mg/L. The studied cultivar was ‘Super-Dominus’. In order to determine the extent of chilling injury, plants of each treatment were rated based on visual symptoms. By assigning values of 1, 2, 3, 4, and 5 while 1: no visible symptoms 2:5% of leaf area necrotic, 3: 5-25% of leaf area necrotic, 4: 26-50% of leaf area necrotic but plant still alive, 5: lost, entire plant necrotic and collapsed. Measured traits were root and shoot length, root and shoot dry weight, root and leaf electrical leakage, and leaf chlorophyll content. Results and discussion: Plants which exposed to low temperature showed chilling injury symptoms (5-25% leaf area necrotic. The symptoms reduced (less

  19. GsLRPK, a novel cold-activated leucine-rich repeat receptor-like protein kinase from Glycine soja, is a positive regulator to cold stress tolerance.

    Science.gov (United States)

    Yang, Liang; Wu, Kangcheng; Gao, Peng; Liu, Xiaojuan; Li, Guangpu; Wu, Zujian

    2014-02-01

    Plant LRR-RLKs serve as protein interaction platforms, and as regulatory modules of protein activation. Here, we report the isolation of a novel plant-specific LRR-RLK from Glycine soja (termed GsLRPK) by differential screening. GsLRPK expression was cold-inducible and shows Ser/Thr protein kinase activity. Subcellular localization studies using GFP fusion protein indicated that GsLRPK is localized in the plasma membrane. Real-time PCR analysis indicated that temperature, salt, drought, and ABA treatment can alter GsLRPK gene transcription in G. soja. However, just protein induced by cold stress not by salinity and ABA treatment in tobacco was found to possess kinase activity. Furthermore, we found that overexpression of GsLRPK in yeast and Arabidopsis can enhance resistance to cold stress and increase the expression of a number of cold responsive gene markers. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Genetic Architecture of Cold Tolerance in Rice (Oryza sativa) Determined through High Resolution Genome-Wide Analysis

    Science.gov (United States)

    Cold temperature is an important abiotic stress which negatively affects morphological development and seed production in rice (Oryza sativa L.). At the seedling stage, cold stress causes poor germination, seedling injury and poor stand establishment; and at the reproductive stage cold decreases se...

  1. Overexpression of the OsIMP Gene Increases the Accumulation of Inositol and Confers Enhanced Cold Tolerance in Tobacco through Modulation of the Antioxidant Enzymes’ Activities

    Directory of Open Access Journals (Sweden)

    Rong-Xiang Zhang

    2017-07-01

    Full Text Available Inositol is a cyclic polyol that is involved in various physiological processes, including signal transduction and stress adaptation in plants. l-myo-inositol monophosphatase (IMPase is one of the metal-dependent phosphatase family members and catalyzes the last reaction step of biosynthesis of inositol. Although increased IMPase activity induced by abiotic stress has been reported in chickpea plants, the role and regulation of the IMP gene in rice (Oryza sativa L. remains poorly understood. In the present work, we obtained a full-length cDNA sequence coding IMPase in the cold tolerant rice landraces in Gaogonggui, which is named as OsIMP. Multiple alignment results have displayed that this sequence has characteristic signature motifs and conserved enzyme active sites of the phosphatase super family. Phylogenetic analysis showed that IMPase is most closely related to that of the wild rice Oryza brachyantha, while transcript analysis revealed that the expression of the OsIMP is significantly induced by cold stress and exogenous abscisic acid (ABA treatment. Meanwhile, we cloned the 5’ flanking promoter sequence of the OsIMP gene and identified several important cis-acting elements, such as LTR (low-temperature responsiveness, TCA-element (salicylic acid responsiveness, ABRE-element (abscisic acid responsiveness, GARE-motif (gibberellin responsive, MBS (MYB Binding Site and other cis-acting elements related to defense and stress responsiveness. To further investigate the potential function of the OsIMP gene, we generated transgenic tobacco plants overexpressing the OsIMP gene and the cold tolerance test indicated that these transgenic tobacco plants exhibit improved cold tolerance. Furthermore, transgenic tobacco plants have a lower level of hydrogen peroxide (H2O2 and malondialdehyde (MDA, and a higher content of total chlorophyll as well as increased antioxidant enzyme activities of superoxide dismutase (SOD, catalase (CAT and peroxidase (POD

  2. Overexpression of the OsIMP Gene Increases the Accumulation of Inositol and Confers Enhanced Cold Tolerance in Tobacco through Modulation of the Antioxidant Enzymes' Activities.

    Science.gov (United States)

    Zhang, Rong-Xiang; Qin, Li-Jun; Zhao, De-Gang

    2017-07-20

    Inositol is a cyclic polyol that is involved in various physiological processes, including signal transduction and stress adaptation in plants. l- myo -inositol monophosphatase (IMPase) is one of the metal-dependent phosphatase family members and catalyzes the last reaction step of biosynthesis of inositol. Although increased IMPase activity induced by abiotic stress has been reported in chickpea plants, the role and regulation of the IMP gene in rice ( Oryza sativa L.) remains poorly understood. In the present work, we obtained a full-length cDNA sequence coding IMPase in the cold tolerant rice landraces in Gaogonggui, which is named as OsIMP . Multiple alignment results have displayed that this sequence has characteristic signature motifs and conserved enzyme active sites of the phosphatase super family. Phylogenetic analysis showed that IMPase is most closely related to that of the wild rice Oryza brachyantha , while transcript analysis revealed that the expression of the OsIMP is significantly induced by cold stress and exogenous abscisic acid (ABA) treatment. Meanwhile, we cloned the 5' flanking promoter sequence of the OsIMP gene and identified several important cis -acting elements, such as LTR (low-temperature responsiveness), TCA-element (salicylic acid responsiveness), ABRE-element (abscisic acid responsiveness), GARE-motif (gibberellin responsive), MBS (MYB Binding Site) and other cis -acting elements related to defense and stress responsiveness. To further investigate the potential function of the OsIMP gene, we generated transgenic tobacco plants overexpressing the OsIMP gene and the cold tolerance test indicated that these transgenic tobacco plants exhibit improved cold tolerance. Furthermore, transgenic tobacco plants have a lower level of hydrogen peroxide (H₂O₂) and malondialdehyde (MDA), and a higher content of total chlorophyll as well as increased antioxidant enzyme activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD

  3. Shifts in metabolomic profiles of the parasitoid Nasonia vitripennis associated with elevated cold tolerance induced by the parasitoid's diapause, host diapause and host diet augmentation with proline

    Czech Academy of Sciences Publication Activity Database

    Li, Y.; Zhang, L.; Chen, H.; Košťál, Vladimír; Šimek, Petr; Moos, Martin; Denlinger, D. L.

    2015-01-01

    Roč. 63, AUG 01 (2015), s. 34-46 ISSN 0965-1748 R&D Projects: GA MŠk LH12103 Grant - others:National Science Foundation Grant(US) IOS-08440772 Institutional support: RVO:60077344 Keywords : metabolomics * cold tolerance * proline Subject RIV: ED - Physiology Impact factor: 3.767, year: 2015 http://www.sciencedirect.com/science/article/pii/S0965174815001022

  4. Malassezia vespertilionis sp. nov.: A new cold-tolerant species of yeast isolated from bats

    Science.gov (United States)

    Lorch, Jeffrey M.; Palmer, Jonathan M.; Vanderwolf, Karen J.; Schmidt, Katie Z.; Verant, Michelle L.; Weller, Theodore J.; Blehert, David S.

    2018-01-01

    important in future research to better understand the evolution, life history, and pathogenicity of the Malasseziayeasts.

  5. Transcriptomic study to understand thermal adaptation in a high temperature-tolerant strain of Pyropia haitanensis.

    Science.gov (United States)

    Wang, Wenlei; Teng, Fei; Lin, Yinghui; Ji, Dehua; Xu, Yan; Chen, Changsheng; Xie, Chaotian

    2018-01-01

    Pyropia haitanensis, a high-yield commercial seaweed in China, is currently undergoing increasing levels of high-temperature stress due to gradual global warming. The mechanisms of plant responses to high temperature stress vary with not only plant type but also the degree and duration of high temperature. To understand the mechanism underlying thermal tolerance in P. haitanensis, gene expression and regulation in response to short- and long-term temperature stresses (SHS and LHS) was investigated by performing genome-wide high-throughput transcriptomic sequencing for a high temperature tolerant strain (HTT). A total of 14,164 differential expression genes were identified to be high temperature-responsive in at least one time point by high-temperature treatment, representing 41.10% of the total number of unigenes. The present data indicated a decrease in the photosynthetic and energy metabolic rates in HTT to reduce unnecessary energy consumption, which in turn facilitated in the rapid establishment of acclimatory homeostasis in its transcriptome during SHS. On the other hand, an increase in energy consumption and antioxidant substance activity was observed with LHS, which apparently facilitates in the development of resistance against severe oxidative stress. Meanwhile, ubiquitin-mediated proteolysis, brassinosteroids, and heat shock proteins also play a vital role in HTT. The effects of SHS and LHS on the mechanism of HTT to resist heat stress were relatively different. The findings may facilitate further studies on gene discovery and the molecular mechanisms underlying high-temperature tolerance in P. haitanensis, as well as allow improvement of breeding schemes for high temperature-tolerant macroalgae that can resist global warming.

  6. Effects of heat, cold, acid and bile salt adaptations on the stress tolerance and protein expression of kefir-isolated probiotic Lactobacillus kefiranofaciens M1.

    Science.gov (United States)

    Chen, Ming-Ju; Tang, Hsin-Yu; Chiang, Ming-Lun

    2017-09-01

    Lactobacillus kefiranofaciens M1 is a probiotic strain isolated from Taiwanese kefir grains. The present study evaluated the effects of heat, cold, acid and bile salt adaptations on the stress tolerance of L. kefiranofaciens M1. The regulation of protein expression of L. kefiranofaciens M1 under these adaptation conditions was also investigated. The results showed that adaptation of L. kefiranofaciens M1 to heat, cold, acid and bile salts induced homologous tolerance and cross-protection against heterologous challenge. The extent of induced tolerance varied depending on the type and condition of stress. Proteomic analysis revealed that 27 proteins exhibited differences in expression between non-adapted and stress-adapted L. kefiranofaciens M1 cells. Among these proteins, three proteins involved in carbohydrate metabolism (triosephosphate isomerase, enolase and NAD-dependent glycerol-3-phosphate dehydrogenase), two proteins involved in pH homeostasis (ATP synthase subunits AtpA and AtpB), two stress response proteins (chaperones DnaK and GroEL) and one translation-related protein (30S ribosomal protein S2) were up-regulated by three of the four adaptation treatments examined. The increased synthesis of these stress proteins might play a critical protective role in the cellular defense against heat, cold, acid and bile salt stresses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A cold-induced myo-inositol transporter-like gene confers tolerance to multiple abiotic stresses in transgenic tobacco plants.

    Science.gov (United States)

    Sambe, Mame Abdou Nahr; He, Xueying; Tu, Qinghua; Guo, Zhenfei

    2015-03-01

    A full length cDNA encoding a myo-inositol transporter-like protein, named as MfINT-like, was cloned from Medicago sativa subsp. falcata (herein falcata), a species with greater cold tolerance than alfalfa (M. sativa subsp. sativa). MfINT-like is located on plasma membranes. MfINT-like transcript was induced 2-4 h after exogenous myo-inositol treatment, 24-96 h with cold, and 96 h by salinity. Given that myo-inositol accumulates higher in falcata after 24 h of cold treatment, myo-inositol is proposed to be involved in cold-induced expression of MfINT-like. Higher levels of myo-inositol was observed in leaves of transgenic tobacco plants overexpressing MfINT-like than the wild-type but not in the roots of plants grown on myo-inositol containing medium, suggesting that transgenic plants had higher myo-inositol transport activity than the wild-type. Transgenic plants survived better to freezing temperature, and had lower ion leakage and higher maximal photochemical efficiency of photosystem II (Fv /Fm ) after chilling treatment. In addition, greater plant fresh weight was observed in transgenic plants as compared with the wild-type when plants were grown under drought or salinity stress. The results suggest that MfINT-like mediated transport of myo-inositol is associated with plant tolerance to abiotic stresses. © 2014 Scandinavian Plant Physiology Society.

  8. 'A high degree of understanding and tolerance': veranderende denke oor die moderne gereformeerde kerklied

    Directory of Open Access Journals (Sweden)

    D. Kruger

    2007-07-01

    Full Text Available 'A high degree of understanding and tolerance': changing thoughts on the modern reformed church song Currently, churches worldwide are experiencing an unparalleled increase in new hymns. Consequently, the requirements of the modern congregational song are much more challenging and demanding. Although the principles of music theory remain a primary criterion for the evaluation of the congregational song, aspects concerning the spiritual requirements, musical taste and culture of the modern church member are becoming increasingly relevant when thinking about the congregational song. In this article the author gives a general overview as to the nature of the modern church song against the background of liturgical renewal within the reformed tradition. The profile of the postmodern church member as regards spiritual needs, musical taste and culture is outlined and connected with the current sensitivity of spirituality and emotional experience through worship and song. Lastly a connection is made between the current trends of hymnological thought and the reformed principles. It is argued that greater tolerance and understanding can lead towards a reforming, rather than a reformed attitude towards the modern congregational song. The discussion is illustrated with examples from the “Liedboek van die kerk” (2001.

  9. SANS study of understanding mechanism of cold gelation of globular proteins

    International Nuclear Information System (INIS)

    Chinchalikar, A. J.; Kumar, Sugam; Aswal, V. K.; Wagh, A. G.; Kohlbrecher, J.

    2014-01-01

    Small-angle neutron scattering (SANS) has been used to probe the evolution of interaction and the resultant structures in the cold gelation of globular proteins. The cold gelation involves two steps consisting of irreversible protein deformation by heating followed by some means (e.g. increasing ionic strength) to bring them together at room temperature. We have examined the role of different salts in cold gelation of preheated aqueous Bovine Serum Albumin (BSA) protein solutions. The interactions have been modeled by two Yukawa potential combining short-range attraction and long-range repulsion. We show that in step 1 (preheated temperature effect) the deformation of protein increases the magnitude of attractive interaction but not sufficient to induce gel. The attractive interaction is further enhanced in step 2 (salt effect) to result in gel formation. The salt effect is found to be strongly depending on the valency of the counterions. The gel structure has been characterized by the mass fractals

  10. Expression of cold and drought regulatory protein (CcCDR) of pigeonpea imparts enhanced tolerance to major abiotic stresses in transgenic rice plants.

    Science.gov (United States)

    Sunitha, Mellacheruvu; Srinath, Tamirisa; Reddy, Vudem Dashavantha; Rao, Khareedu Venkateswara

    2017-06-01

    Transgenic rice expressing pigeonpea Cc CDR conferred high-level tolerance to different abiotic stresses. The multiple stress tolerance observed in CcCDR -transgenic lines is attributed to the modulation of ABA-dependent and-independent signalling-pathway genes. Stable transgenic plants expressing Cajanus cajan cold and drought regulatory protein encoding gene (CcCDR), under the control of CaMV35S and rd29A promoters, have been generated in indica rice. Different transgenic lines of CcCDR, when subjected to drought, salt, and cold stresses, exhibited higher seed germination, seedling survival rates, shoot length, root length, and enhanced plant biomass when compared with the untransformed control plants. Furthermore, transgenic plants disclosed higher leaf chlorophyll content, proline, reducing sugars, SOD, and catalase activities, besides lower levels of MDA. Localization studies revealed that the CcCDR-GFP fusion protein was mainly present in the nucleus of transformed cells of rice. The CcCDR transgenics were found hypersensitive to abscisic acid (ABA) and showed reduced seed germination rates as compared to that of control plants. When the transgenic plants were exposed to drought and salt stresses at vegetative and reproductive stages, they revealed larger panicles and higher number of filled grains compared to the untransformed control plants. Under similar stress conditions, the expression levels of P5CS, bZIP, DREB, OsLEA3, and CIPK genes, involved in ABA-dependent and-independent signal transduction pathways, were found higher in the transgenic plants than the control plants. The overall results amply demonstrate that the transgenic rice expressing CcCDR bestows high-level tolerance to drought, salt, and cold stress conditions. Accordingly, the CcCDR might be deployed as a promising candidate gene for improving the multiple stress tolerance of diverse crop plants.

  11. Identification of Sweet Sorghum accessions with seedling cold tolerance using both lab cold germination test and field early Spring planting evaluation

    Science.gov (United States)

    Cultivars with quick seedling emergence and stand establishment at early spring cold conditions may be planted early in the same region with an extended period of plant growth and can potentially increase either grain yield, stem sugar yield, or biomass production of sorghum. Planting cultivars with...

  12. De novo transcriptome assembly of a Chinese locoweed (Oxytropis ochrocephala species provides insights into genes associated with drought, salinity and cold tolerance

    Directory of Open Access Journals (Sweden)

    Wei eHe

    2015-12-01

    Full Text Available Background: Locoweeds (toxic Oxytropis and Astraglus species, containing the toxic agent swainsonine, pose serious threats to animal husbandry on grasslands in both China and the US. Some locoweeds have evolved adaptations in order to resist various stress conditions such as drought, salt and cold. As a result they replace other plants in their communities and become an ecological problem. Currently very limited genetic information of locoweeds is available and this hinders our understanding in the molecular basis of their environmental plasticity, and the interaction between locoweeds and their symbiotic swainsonine producing endophytes. Next-generation sequencing provides a means of obtaining transcriptomic sequences in a timely manner, which is particularly useful for non-model plants. In this study, we performed transcriptome sequencing of Oxytropis ochrocephala plants followed by a de nove assembly. Our primary aim was to provide an enriched pool of genetic sequences of an Oxytropis sp. for further locoweed research. Results: Transcriptomes of four different O. ochrocephala samples, from control (CK plants, and those that had experienced either drought (20% PEG, salt (150 mM NaCl or cold (4 °C stress were sequenced using an Illumina Hiseq 2000 platform. From 232,209,506 clean reads 23,220,950,600 (~23 G nucleotides, 182,430 transcripts and 88,942 unigenes were retrieved, with an N50 value of 1,237. Differential expression analysis revealed putative genes encoding heat shock proteins (HSPs and late embryogenesis abundant (LEA proteins, enzymes in secondary metabolite and plant hormone biosyntheses, and transcription factors which are involved in stress tolerance in O. ochrocephala. In order to validate our sequencing results, we further analyzed the expression profiles of nine genes by quantitative real-time PCR. Finally, we discuss the possible mechanism of O. ochrocephala’s adaptations to stress environment. Conclusion: Our

  13. Overexpression of MfPIP2-7 from Medicago falcata promotes cold tolerance and growth under NO3 (-) deficiency in transgenic tobacco plants.

    Science.gov (United States)

    Zhuo, Chunliu; Wang, Ting; Guo, Zhenfei; Lu, Shaoyun

    2016-06-14

    Plasma membrane intrinsic proteins (PIPs), which belong to aquaporins (AQPs) superfamily, are subdivided into two groups, PIP1 and PIP2, based on sequence similarity. Several PIP2s function as water channels, while PIP1s have low or no water channel activity, but have a role in water permeability through interacting with PIP2. A cold responsive PIP2 named as MfPIP2-7 was isolated from Medicago falcata (hereafter falcata), a forage legume with great cold tolerance, and transgenic tobacco plants overexpressing MfPIP2-7 were analyzed in tolerance to multiple stresses including freezing, chilling, and nitrate reduction in this study. MfPIP2-7 transcript was induced by 4 to 12 h of cold treatment and 2 h of abscisic acid (ABA) treatment. Pretreatment with inhibitor of ABA synthesis blocked the cold induced MfPIP2-7 transcript, indicating that ABA was involved in cold induced transcription of MfPIP2-7 in falcata. Overexpression of MfPIP2-7 resulted in enhanced tolerance to freezing, chilling and NO3 (-) deficiency in transgenic tobacco (Nicotiana tabacum L.) plants as compared with the wild type. Moreover, MfPIP2-7 was demonstrated to facilitate H2O2 diffusion in yeast. Higher transcript levels of several stress responsive genes, such as NtERD10B, NtERD10C, NtDREB1, and 2, and nitrate reductase (NR) encoding genes (NtNIA1, and NtNIA2) were observed in transgenic plants as compared with the wild type with dependence upon H2O2. In addition, NR activity was increased in transgenic plants, which led to alterations in free amino acid components and concentrations. The results suggest that MfPIP2-7 plays an important role in plant tolerance to freezing, chilling, and NO3 (-) deficiency by promoted H2O2 diffusion that in turn up-regulates expression of NIAs and multiple stress responsive genes.

  14. A novel cold-regulated gene from Camellia sinensis, CsCOR1, enhances salt- and dehydration-tolerance in tobacco

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xian-Wen, E-mail: xianwenli01@sina.com [College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); College of Life Science, Xinyang Normal University, Xinyang 464000 (China); Key Laboratory of Horticultural Plant Biology of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070 (China); Feng, Zhi-Guo; Yang, Hui-Min; Zhu, Xiao-Pei [College of Life Science, Xinyang Normal University, Xinyang 464000 (China); Liu, Jun, E-mail: liujun@mail.hzau.edu.cn [College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Key Laboratory of Horticultural Plant Biology of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070 (China); Yuan, Hong-Yu, E-mail: yhongyu92@163.com [College of Life Science, Xinyang Normal University, Xinyang 464000 (China)

    2010-04-02

    In present research, the full-length cDNA and the genomic sequence of a novel cold-regulated gene, CsCOR1, were isolated from Camellia sinensis L. The deduced protein CsCOR1 contains a hydrophobic N-terminus as a signal peptide and a hydrophilic C-terminal domain that is rich in glycine, arginine and proline. Two internal repetitive tridecapeptide fragments (HSVTAGRGGYNRG) exist in the middle of the C-terminal domain and the two nucleotide sequences encoding them are identical. CsCOR1 was localized in the cell walls of transgenic-tobaccos via CsCOR1::GFP fusion approach. The expression of CsCOR1 in tea leaves was enhanced dramatically by both cold- and dehydration-stress. And overexpression of CsCOR1 in transgenic-tobaccos improved obviously the tolerance to salinity and dehydration.

  15. Cold acclimation improves chill tolerance in the migratory locust through preservation of ion balance and membrane potential

    DEFF Research Database (Denmark)

    Andersen, Mads; Folkersen, Rasmus; MacMillan, Heath Andrew

    2017-01-01

    potential (Vm). Several studies have therefore suggested a link between preservation of Vm and cellular survival after cold stress, but none has measured Vm in this context. We tested this hypothesis by acclimating locusts (Locusta migratoria) to high (31°C) and low temperature (11°C) for 4 days before...... revealed that cellular injury during cold exposure occurs when Vm becomes severely depolarized. Interestingly, we found that cellular sensitivity to hypothermic hyperkalaemia was lower in cold-acclimated locusts that were better able to defend Vm whilst exposed to high extracellular [K+]. Together...

  16. Temperature-dependent development, cold tolerance, and potential distribution of Cricotopus lebetis (Diptera: Chironomidae), a tip miner of Hydrilla verticillata (Hydrocharitaceae).

    Science.gov (United States)

    Stratman, Karen N; Overholt, William A; Cuda, James P; Mukherjee, A; Diaz, R; Netherland, Michael D; Wilson, Patrick C

    2014-10-15

    A chironomid midge, Cricotopus lebetis (Sublette) (Diptera: Chironomidae), was discovered attacking the apical meristems of Hydrilla verticillata (L.f. Royle) in Crystal River, Citrus Co., Florida in 1992. The larvae mine the stems of H. verticillata and cause basal branching and stunting of the plant. Temperature-dependent development, cold tolerance, and the potential distribution of the midge were investigated. The results of the temperature-dependent development study showed that optimal temperatures for larval development were between 20 and 30°C, and these data were used to construct a map of the potential number of generations per year of C. lebetis in Florida. Data from the cold tolerance study, in conjunction with historical weather data, were used to generate a predicted distribution of C. lebetis in the United States. A distribution was also predicted using an ecological niche modeling approach by characterizing the climate at locations where C. lebetis is known to occur and then finding other locations with similar climate. The distributions predicted using the two modeling approaches were not significantly different and suggested that much of the southeastern United States was climatically suitable for C. lebetis. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  17. Cloning and characterization of a new cold-adapted and thermo-tolerant ι-carrageenase from marine bacterium Flavobacterium sp. YS-80-122.

    Science.gov (United States)

    Li, Shangyong; Hao, Jianhua; Sun, Mi

    2017-09-01

    ι-Carrageenases play a role in marine ι-carrageenan degradation, and their enzymatic hydrolysates are thought to be excellent antioxidants. In this study, we identified a new ι-carrageenase, encoded by cgiF, in psychrophilic bacterium Flavobacterium sp. YS-80-122. The deduced ι-carrageenase, CgiF, belongs to glycoside hydrolase family 82 and shows less than 40% amino acid identity with characterized ι-carrageenases. The activity of recombinant CgiF peaked at 30°C (1,207.8U/mg). Notably, CgiF is a cold-adapted ι-carrageenase, which showed 36.5% and 57% of the maximum activity at 10°C and 15°C, respectively. In addition, it is a thermo-tolerant enzyme that recovered 58.2% of its initial activity after heat shock. Furthermore, although the activity of CgiF was enhanced by NaCl, the enzyme is active in absence of NaCl. This study also shows that CgiF is an endo-type ι-carrageenase that hydrolyzes β-1,4-linkages of ι-carrageenan, yielding neo-ι-carratetraose as the main product. Its cold-adaptation, thermo-tolerance, NaCl independence and high neo-ι-carratetraose yield make CgiF an excellent candidate for industrial applications in production of ι-carrageen oligosaccharides from seaweed polysaccharides. Copyright © 2017. Published by Elsevier B.V.

  18. High-Throughput microRNA and mRNA Sequencing Reveals that microRNAs May Be Involved in Melatonin-Mediated Cold Tolerance in Citrullus Lanatus L.

    Directory of Open Access Journals (Sweden)

    Hao Li

    2016-08-01

    Full Text Available Transcriptional regulation of cold-responsive genes is crucial for exogenous melatonin-mediated cold tolerance in plants. Nonetheless, how melatonin regulates cold-responsive genes is largely unknown. In this study, we found that exogenous melatonin improved cold tolerance in watermelon by regulating expression of microRNAs (miRNAs. We identified a set of miRNAs that were regulated by melatonin under unstressed or cold conditions. Importantly, mRNA-seq analysis revealed that melatonin-induced downregulation of some miRNAs, such as miR159-5p, miR858, miR8029-3p, and novel-m0048-3p correlated with the upregulation of target genes involved in signal transduction (CDPK, BHLH, WRKY, MYB, and DREB and protection/detoxification (LEA and MDAR under cold stress. These results suggest that miRNAs may be involved in melatonin-mediated cold tolerance in watermelon by negatively regulating the expression of target mRNAs.

  19. High-Throughput MicroRNA and mRNA Sequencing Reveals That MicroRNAs May Be Involved in Melatonin-Mediated Cold Tolerance in Citrullus lanatus L.

    Science.gov (United States)

    Li, Hao; Dong, Yuchuan; Chang, Jingjing; He, Jie; Chen, Hejie; Liu, Qiyan; Wei, Chunhua; Ma, Jianxiang; Zhang, Yong; Yang, Jianqiang; Zhang, Xian

    2016-01-01

    Transcriptional regulation of cold-responsive genes is crucial for exogenous melatonin-mediated cold tolerance in plants. Nonetheless, how melatonin regulates cold-responsive genes is largely unknown. In this study, we found that exogenous melatonin improved cold tolerance in watermelon by regulating expression of microRNAs (miRNAs). We identified a set of miRNAs that were regulated by melatonin under unstressed or cold conditions. Importantly, mRNA-seq analysis revealed that melatonin-induced downregulation of some miRNAs, such as miR159-5p, miR858, miR8029-3p, and novel-m0048-3p correlated with the upregulation of target genes involved in signal transduction (CDPK, BHLH, WRKY, MYB, and DREB) and protection/detoxification (LEA and MDAR) under cold stress. These results suggest that miRNAs may be involved in melatonin-mediated cold tolerance in watermelon by negatively regulating the expression of target mRNAs. PMID:27574526

  20. Toward Understanding the Cold, Hot, and Neutral Nature of Chinese Medicines Using in Silico Mode-of-Action Analysis.

    Science.gov (United States)

    Fu, Xianjun; Mervin, Lewis H; Li, Xuebo; Yu, Huayun; Li, Jiaoyang; Mohamad Zobir, Siti Zuraidah; Zoufir, Azedine; Zhou, Yang; Song, Yongmei; Wang, Zhenguo; Bender, Andreas

    2017-03-27

    One important, however, poorly understood, concept of Traditional Chinese Medicine (TCM) is that of hot, cold, and neutral nature of its bioactive principles. To advance the field, in this study, we analyzed compound-nature pairs from TCM on a large scale (>23 000 structures) via chemical space visualizations to understand its physicochemical domain and in silico target prediction to understand differences related to their modes-of-action (MoA) against proteins. We found that overall TCM natures spread into different subclusters with specific molecular patterns, as opposed to forming coherent global groups. Compounds associated with cold nature had a lower clogP and contain more aliphatic rings than the other groups and were found to control detoxification, heat-clearing, heart development processes, and have sedative function, associated with "Mental and behavioural disorders" diseases. While compounds associated with hot nature were on average of lower molecular weight, have more aromatic ring systems than other groups, frequently seemed to control body temperature, have cardio-protection function, improve fertility and sexual function, and represent excitatory or activating effects, associated with "endocrine, nutritional and metabolic diseases" and "diseases of the circulatory system". Compounds associated with neutral nature had a higher polar surface area and contain more cyclohexene moieties than other groups and seem to be related to memory function, suggesting that their nature may be a useful guide for their utility in neural degenerative diseases. We were hence able to elucidate the difference between different nature classes in TCM on the molecular level, and on a large data set, for the first time, thereby helping a better understanding of TCM nature theory and bridging the gap between traditional medicine and our current understanding of the human body.

  1. Understanding the tolerance of the industrial yeast Saccharomyces cerevisiae against a major class of toxic aldehyde compounds.

    Science.gov (United States)

    Liu, ZongLin Lewis

    2018-07-01

    Development of the next-generation biocatalyst is vital for fermentation-based industrial applications and a sustainable bio-based economy. Overcoming the major class of toxic compounds associated with lignocellulose-to-biofuels conversion is one of the significant challenges for new strain development. A significant number of investigations have been made to understand mechanisms of the tolerance for industrial yeast. It is humbling to learn how complicated the cell's response to the toxic chemicals is and how little we have known about yeast tolerance in the universe of the living cell. This study updates our current knowledge on the tolerance of industrial yeast against aldehyde inhibitory compounds at cellular, molecular and the genomic levels. It is comprehensive yet specific based on reproducible evidence and cross confirmed findings from different investigations using varied experimental approaches. This research approaches a rational foundation toward a more comprehensive understanding on the yeast tolerance. Discussions and perspectives are also proposed for continued exploring the puzzle of the yeast tolerance to aid the next-generation biocatalyst development.

  2. Uncovering the benefits of fluctuating thermal regimes on cold tolerance of drosophila flies by combined metabolomic and lipidomic approach

    Czech Academy of Sciences Publication Activity Database

    Colinet, H.; Renault, D.; Javal, M.; Berková, Petra; Šimek, Petr; Košťál, Vladimír

    2016-01-01

    Roč. 1861, č. 11 (2016), s. 1736-1745 ISSN 1388-1981 R&D Projects: GA ČR GA13-18509S Institutional support: RVO:60077344 Keywords : cold stress * fluctuating thermal regimes * recovery Subject RIV: ED - Physiology Impact factor: 5.547, year: 2016 http://www.sciencedirect.com/science/article/pii/S1388198116302281

  3. Insect cold tolerance and repair of chill-injury at fluctuating thermal regimes: Role of ion homeostasis

    Czech Academy of Sciences Publication Activity Database

    Košťál, Vladimír; Renault, D.; Mehrabianová, A.; Bastl, J.

    2007-01-01

    Roč. 147, č. 1, (2007), s. 231-238 ISSN 1095-6433 R&D Projects: GA ČR GA206/03/0099 Institutional research plan: CEZ:AV0Z50070508 Keywords : Insecta * cold hardiness * thermal fluctuations Subject RIV: ED - Physiology Impact factor: 1.863, year: 2007

  4. Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress.

    Science.gov (United States)

    Mutava, Raymond N; Prince, Silvas Jebakumar K; Syed, Naeem Hasan; Song, Li; Valliyodan, Babu; Chen, Wei; Nguyen, Henry T

    2015-01-01

    Many sources of drought and flooding tolerance have been identified in soybean, however underlying molecular and physiological mechanisms are poorly understood. Therefore, it is important to illuminate different plant responses to these abiotic stresses and understand the mechanisms that confer tolerance. Towards this goal we used four contrasting soybean (Glycine max) genotypes (PI 567690--drought tolerant, Pana--drought susceptible, PI 408105A--flooding tolerant, S99-2281--flooding susceptible) grown under greenhouse conditions and compared genotypic responses to drought and flooding at the physiological, biochemical, and cellular level. We also quantified these variations and tried to infer their role in drought and flooding tolerance in soybean. Our results revealed that different mechanisms contribute to reduction in net photosynthesis under drought and flooding stress. Under drought stress, ABA and stomatal conductance are responsible for reduced photosynthetic rate; while under flooding stress, accumulation of starch granules played a major role. Drought tolerant genotypes PI 567690 and PI 408105A had higher plastoglobule numbers than the susceptible Pana and S99-2281. Drought stress increased the number and size of plastoglobules in most of the genotypes pointing to a possible role in stress tolerance. Interestingly, there were seven fibrillin proteins localized within the plastoglobules that were up-regulated in the drought and flooding tolerant genotypes PI 567690 and PI 408105A, respectively, but down-regulated in the drought susceptible genotype Pana. These results suggest a potential role of Fibrillin proteins, FBN1a, 1b and 7a in soybean response to drought and flooding stress. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. It's Too Hot! It's Too Cold!--Understanding How Heat Works

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    Engineers often measure temperature for a wide variety of applications and assessments. This article describes how STEM educators can use thermometers or temperature sensors to help students understand how heat disperses through fluids, both air and water. It also provides hands-on learning about air and water heating systems. (Contains 4 figures.)

  6. Scenarios of Earth system change in western Canada: Conceptual understanding and process insights from the Changing Cold Regions Network

    Science.gov (United States)

    DeBeer, C. M.; Wheater, H. S.; Pomeroy, J. W.; Stewart, R. E.; Turetsky, M. R.; Baltzer, J. L.; Pietroniro, A.; Marsh, P.; Carey, S.; Howard, A.; Barr, A.; Elshamy, M.

    2017-12-01

    The interior of western Canada has been experiencing rapid, widespread, and severe hydroclimatic change in recent decades, and this is projected to continue in the future. To better assess future hydrological, cryospheric and ecological states and fluxes under future climates, a regional hydroclimate project was formed under the auspices of the Global Energy and Water Exchanges (GEWEX) project of the World Climate Research Programme; the Changing Cold Regions Network (CCRN; www.ccrnetwork.ca) aims to understand, diagnose, and predict interactions among the changing Earth system components at multiple spatial scales over the Mackenzie and Saskatchewan River basins of western Canada. A particular challenge is in applying land surface and hydrological models under future climates, as system changes and cold regions process interactions are not often straightforward, and model structures and parameterizations based on historical observations and understanding of contemporary system functioning may not adequately capture these complexities. To address this and provide guidance and direction to the modelling community, CCRN has drawn insights from a multi-disciplinary perspective on the process controls and system trajectories to develop a set of feasible scenarios of change for the 21st century across the region. This presentation will describe CCRN's efforts towards formalizing these insights and applying them in a large-scale modelling context. This will address what are seen as the most critical processes and key drivers affecting hydrological, cryospheric and ecological change, how these will most likely evolve in the coming decades, and how these are parameterized and incorporated as future scenarios for terrestrial ecology, hydrological functioning, permafrost state, glaciers, agriculture, and water management.

  7. Transgenic Centipedegrass (Eremochloa ophiuroides [Munro] Hack. Overexpressing S-Adenosylmethionine Decarboxylase (SAMDC Gene for Improved Cold Tolerance Through Involvement of H2O2 and NO Signaling

    Directory of Open Access Journals (Sweden)

    Jianhao Luo

    2017-09-01

    Full Text Available Centipedegrass (Eremochloa ophiuroides [Munro] Hack. is an important warm-season turfgrass species. Transgenic centipedgrass plants overexpressing S-adenosylmethionine decarboxylase from bermudagrass (CdSAMDC1 that was induced in response to cold were generated in this study. Higher levels of CdSAMDC1 transcript and sperimidine (Spd and spermin (Spm concentrations and enhanced freezing and chilling tolerance were observed in transgenic plants as compared with the wild type (WT. Transgenic plants had higher levels of polyamine oxidase (PAO activity and H2O2 than WT, which were blocked by pretreatment with methylglyoxal bis (guanylhydrazone or MGBG, inhibitor of SAMDC, indicating that the increased PAO and H2O2 were a result of expression of CdSAMDC1. In addition, transgenic plants had higher levels of nitrate reductase (NR activity and nitric oxide (NO concentration. The increased NR activity were blocked by pretreatment with MGBG and ascorbic acid (AsA, scavenger of H2O2, while the increased NO level was blocked by MGBG, AsA, and inhibitors of NR, indicating that the enhanced NR-derived NO was dependent upon H2O2, as a result of expression CdSAMDC1. Elevated superoxide dismutase (SOD and catalase (CAT activities were observed in transgenic plants than in WT, which were blocked by pretreatment with MGBG, AsA, inhibitors of NR and scavenger of NO, indicating that the increased activities of SOD and CAT depends on expression of CdSAMDC1, H2O2, and NR-derived NO. Our results suggest that the elevated cold tolerance was associated with PAO catalyzed production of H2O2, which in turn led to NR-derived NO production and induced antioxidant enzyme activities in transgenic plants.

  8. Transgenic Centipedegrass (Eremochloa ophiuroides [Munro] Hack.) Overexpressing S-Adenosylmethionine Decarboxylase (SAMDC) Gene for Improved Cold Tolerance Through Involvement of H2O2 and NO Signaling.

    Science.gov (United States)

    Luo, Jianhao; Liu, Mingxi; Zhang, Chendong; Zhang, Peipei; Chen, Jingjing; Guo, Zhenfei; Lu, Shaoyun

    2017-01-01

    Centipedegrass ( Eremochloa ophiuroides [Munro] Hack.) is an important warm-season turfgrass species. Transgenic centipedgrass plants overexpressing S-adenosylmethionine decarboxylase from bermudagrass ( CdSAMDC1 ) that was induced in response to cold were generated in this study. Higher levels of CdSAMDC1 transcript and sperimidine (Spd) and spermin (Spm) concentrations and enhanced freezing and chilling tolerance were observed in transgenic plants as compared with the wild type (WT). Transgenic plants had higher levels of polyamine oxidase (PAO) activity and H 2 O 2 than WT, which were blocked by pretreatment with methylglyoxal bis (guanylhydrazone) or MGBG, inhibitor of SAMDC, indicating that the increased PAO and H 2 O 2 were a result of expression of CdSAMDC1 . In addition, transgenic plants had higher levels of nitrate reductase (NR) activity and nitric oxide (NO) concentration. The increased NR activity were blocked by pretreatment with MGBG and ascorbic acid (AsA), scavenger of H 2 O 2 , while the increased NO level was blocked by MGBG, AsA, and inhibitors of NR, indicating that the enhanced NR-derived NO was dependent upon H 2 O 2 , as a result of expression CdSAMDC1 . Elevated superoxide dismutase (SOD) and catalase (CAT) activities were observed in transgenic plants than in WT, which were blocked by pretreatment with MGBG, AsA, inhibitors of NR and scavenger of NO, indicating that the increased activities of SOD and CAT depends on expression of CdSAMDC1 , H 2 O 2 , and NR-derived NO. Our results suggest that the elevated cold tolerance was associated with PAO catalyzed production of H 2 O 2 , which in turn led to NR-derived NO production and induced antioxidant enzyme activities in transgenic plants.

  9. Meat Processing Plant Microbiome and Contamination Patterns of Cold-Tolerant Bacteria Causing Food Safety and Spoilage Risks in the Manufacture of Vacuum-Packaged Cooked Sausages.

    Science.gov (United States)

    Hultman, Jenni; Rahkila, Riitta; Ali, Javeria; Rousu, Juho; Björkroth, K Johanna

    2015-10-01

    Refrigerated food processing facilities are specific man-made niches likely to harbor cold-tolerant bacteria. To characterize this type of microbiota and study the link between processing plant and product microbiomes, we followed and compared microbiota associated with the raw materials and processing stages of a vacuum-packaged, cooked sausage product affected by a prolonged quality fluctuation with occasional spoilage manifestations during shelf life. A total of 195 samples were subjected to culturing and amplicon sequence analyses. Abundant mesophilic psychrotrophs were detected within the microbiomes throughout the different compartments of the production plant environment. However, each of the main genera of food safety and quality interest, e.g., Leuconostoc, Brochothrix, and Yersinia, had their own characteristic patterns of contamination. Bacteria from the genus Leuconostoc, commonly causing spoilage of cold-stored, modified-atmosphere-packaged foods, were detected in high abundance (up to >98%) in the sausages studied. The same operational taxonomic units (OTUs) were, however, detected in lower abundances in raw meat and emulsion (average relative abundance of 2%±5%), as well as on the processing plant surfaces (food safety concerns related to their resilient existence on surfaces. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Screening the banana biodiversity for drought tolerance: can an in vitro growth model and proteomics be used as a tool to discover tolerant varieties and understand homeostasis.

    Science.gov (United States)

    Vanhove, Anne-Catherine; Vermaelen, Wesley; Panis, Bart; Swennen, Rony; Carpentier, Sebastien C

    2012-01-01

    There is a great need for research aimed at understanding drought tolerance, screening for drought tolerant varieties and breeding crops with an improved water use efficiency. Bananas and plantains are a major staple food and export product with a worldwide production of over 135 million tonnes per year. Water however is the most limiting abiotic factor in banana production. A screening of the Musa biodiversity has not yet been performed. We at KU Leuven host the Musa International Germplasm collection with over 1200 accessions. To screen the Musa biodiversity for drought tolerant varieties, we developed a screening test for in vitro plants. Five varieties representing different genomic constitutions in banana (AAAh, AAA, AAB, AABp, and ABB) were selected and subjected to a mild osmotic stress. The ABB variety showed the smallest stress induced growth reduction. To get an insight into the acclimation and the accomplishment of homeostasis, the leaf proteome of this variety was characterized via 2D DIGE. After extraction of the leaf proteome of six control and six stressed plants, 2600 spots could be distinguished. A PCA analysis indicates that control and stressed plants can blindly be classified based on their proteome. One hundred and twelve proteins were significantly more abundant in the stressed plants and 18 proteins were significantly more abundant in control plants (FDR α 0.05). Twenty four differential proteins could be identified. The proteome analysis clearly shows that there is a new balance in the stressed plants and that the respiration, metabolism of ROS and several dehydrogenases involved in NAD/NADH homeostasis play an important role.

  11. Understanding salt tolerance mechanisms in wheat genotypes by exploring antioxidant enzymes

    DEFF Research Database (Denmark)

    Amjad, M.; Akhtar, J.; Haq, M.A.

    2014-01-01

    The activities of antioxidant enzymes were analyzed in six wheat genotypes under different concentrations of NaCl (0, 100 and 200 mM). Plants were harvested after either 15 or 30 days of salt stress. The most salt tolerant genotype (SARC-1) maintained lower Na+ and higher relative growth rate (RGR......), shoot fresh weight (SFW), shoot-root ratio, and K+:Na+ ratio, compared to the most salt sensitive genotypes (S-9189 and S-9476). Superoxide dismutase (SOD) and catalase (CAT) increased significantly in SARC-1 and SARC-2 with increasing salt stress, while there was no difference in S-9189 and S- 9476....... Additionally, glutathione reductase (GR) activity was decreased in salt sensitive (S-9189 and S-9476) than salt tolerant (SARC-1) genotypes. Under salt stress conditions a negative relationship between SOD and leaf Na+, and a positive between SOD and shoot fresh weight (SFW), were observed. The higher...

  12. Cross-Cultural Understanding Through Youth Sports: Bridging the Tolerance Gap Through Youth Development

    Directory of Open Access Journals (Sweden)

    Craig M. Ross

    2008-12-01

    Full Text Available The USPORT-Kyrgyzstan project was an ambitious initiative of public diplomacy, sports diplomacy, cross-cultural exchange, in-country grassroots projects, and international cooperation. The project consisted of three phrases which included youth recreational sport programming, youth leadership and development training, and youth tolerance training. Overall, it proved to be an extremely effective form of intervention that provided youth in this region of the Middle East with many positive and constructive youth sports and leadership development opportunities.

  13. A theoretical understanding on the CO-tolerance mechanism of the WC(0001) supported Pt monolayer: Some improvement strategies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xilin [College of Physics and Materials Science, Henan Normal University, Xinxiang, 453007 (China); Lu, Zhansheng [College of Physics and Materials Science, Henan Normal University, Xinxiang, 453007 (China); Collaborative Innovation Center of Nano Functional Materials and Applications, Henan Province (China); Yang, Zongxian, E-mail: yzx@henannu.edu.cn [College of Physics and Materials Science, Henan Normal University, Xinxiang, 453007 (China); Collaborative Innovation Center of Nano Functional Materials and Applications, Henan Province (China)

    2016-12-15

    Highlights: • The mechanism of CO tolerance and oxidation on Pt{sub ML}/WC(0001) is clarified. • The high tolerance of Pt{sub ML}/WC(0001) to CO originate from the weak adsorption. • The minimum energy path and the rate-determining step are identified. • The activity of Pt{sub ML}/WC(0001) to CO oxidation is comparable to that of Pt(111). • Some probable strategies are proposed to improve the activity of Pt{sub ML}/WC(0001). - Abstract: The deposition of platinum on the tungsten carbide (Pt/WC) have been achieved and proved with high stability, activity and CO-tolerance toward some reactions in experiments. Although a lot of experimental efforts have been focused on understanding the activity, stability and CO-tolerance of Pt/WC, the relevant theoretical works related to the CO-tolerance mechanism are still scarce. In current study, the adsorption and oxidation of CO on the Pt monolayer supported on WC(0001) surface (Pt{sub ML}/WC(0001)) are investigated using density functional theory calculations. It is found that the oxidation of CO on Pt{sub ML}/WC(0001) proceeds preferably along the Langmuir-Hinshelwood mechanism. The energy barrier of 1.06 eV for the rate-determining step of OOCO formation is almost equal to that (1.05 eV) for CO oxidation by atomic O on Pt(111), while the adsorption energy of 1.59 eV for CO on Pt{sub ML}/WC(0001) is smaller than that on Pt(111) (1.85 eV), indicating that the high resistance to CO poisoning of Pt{sub ML}/WC(0001) may originate from the weak interaction between them. To further improve the CO tolerance, some probable strategies are proposed based on the relevant kinetics results. The current results are helpful to understanding the origin of the highly resistant to CO poisoning of Pt{sub ML}/WC(0001) and rationally designing catalysts to improve the CO oxidation activity.

  14. Homology modeling and docking studies of a Δ9-fatty acid desaturase from a Cold-tolerant Pseudomonas sp. AMS8

    Directory of Open Access Journals (Sweden)

    Lawal Garba

    2018-03-01

    Full Text Available Membrane-bound fatty acid desaturases perform oxygenated desaturation reactions to insert double bonds within fatty acyl chains in regioselective and stereoselective manners. The Δ9-fatty acid desaturase strictly creates the first double bond between C9 and 10 positions of most saturated substrates. As the three-dimensional structures of the bacterial membrane fatty acid desaturases are not available, relevant information about the enzymes are derived from their amino acid sequences, site-directed mutagenesis and domain swapping in similar membrane-bound desaturases. The cold-tolerant Pseudomonas sp. AMS8 was found to produce high amount of monounsaturated fatty acids at low temperature. Subsequently, an active Δ9-fatty acid desaturase was isolated and functionally expressed in Escherichia coli. In this paper we report homology modeling and docking studies of a Δ9-fatty acid desaturase from a Cold-tolerant Pseudomonas sp. AMS8 for the first time to the best of our knowledge. Three dimensional structure of the enzyme was built using MODELLER version 9.18 using a suitable template. The protein model contained the three conserved-histidine residues typical for all membrane-bound desaturase catalytic activity. The structure was subjected to energy minimization and checked for correctness using Ramachandran plots and ERRAT, which showed a good quality model of 91.6 and 65.0%, respectively. The protein model was used to preform MD simulation and docking of palmitic acid using CHARMM36 force field in GROMACS Version 5 and Autodock tool Version 4.2, respectively. The docking simulation with the lowest binding energy, −6.8 kcal/mol had a number of residues in close contact with the docked palmitic acid namely, Ile26, Tyr95, Val179, Gly180, Pro64, Glu203, His34, His206, His71, Arg182, Thr85, Lys98 and His177. Interestingly, among the binding residues are His34, His71 and His206 from the first, second, and third conserved histidine motif, respectively

  15. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation.

    Science.gov (United States)

    Li, Pan; Li, Yan-Jie; Zhang, Feng-Ju; Zhang, Gui-Zhi; Jiang, Xiao-Yi; Yu, Hui-Min; Hou, Bing-Kai

    2017-01-01

    The plant family 1 UDP-glycosyltransferases (UGTs) are the biggest GT family in plants, which are responsible for transferring sugar moieties onto a variety of small molecules, and control many metabolic processes; however, their physiological significance in planta is largely unknown. Here, we revealed that two Arabidopsis glycosyltransferase genes, UGT79B2 and UGT79B3, could be strongly induced by various abiotic stresses, including cold, salt and drought stresses. Overexpression of UGT79B2/B3 significantly enhanced plant tolerance to low temperatures as well as drought and salt stresses, whereas the ugt79b2/b3 double mutants generated by RNAi (RNA interference) and CRISPR-Cas9 strategies were more susceptible to adverse conditions. Interestingly, the expression of UGT79B2 and UGT79B3 is directly controlled by CBF1 (CRT/DRE-binding factor 1, also named DREB1B) in response to low temperatures. Furthermore, we identified the enzyme activities of UGT79B2/B3 in adding UDP-rhamnose to cyanidin and cyanidin 3-O-glucoside. Ectopic expression of UGT79B2/B3 significantly increased the anthocyanin accumulation, and enhanced the antioxidant activity in coping with abiotic stresses, whereas the ugt79b2/b3 double mutants showed reduced anthocyanin levels. When overexpressing UGT79B2/B3 in tt18 (transparent testa 18), a mutant that cannot synthesize anthocyanins, both genes fail to improve plant adaptation to stress. Taken together, we demonstrate that UGT79B2 and UGT79B3, identified as anthocyanin rhamnosyltransferases, are regulated by CBF1 and confer abiotic stress tolerance via modulating anthocyanin accumulation. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  16. Root cause analysis underscores the importance of understanding, addressing, and communicating cold chain equipment failures to improve equipment performance.

    Science.gov (United States)

    Lennon, Pat; Atuhaire, Brian; Yavari, Shahrzad; Sampath, Vidya; Mvundura, Mercy; Ramanathan, Nithya; Robertson, Joanie

    2017-04-19

    Vaccine cold chain equipment (CCE) in developing countries is often exposed to harsh environmental conditions, such as extreme temperatures and humidity, and is subject to many additional challenges, including intermittent power supply, insufficient maintenance capacity, and a scarcity of replacement parts. Together, these challenges lead to high failure rates for refrigerators, potentially damaging vaccines and adversely affecting immunization coverage. Providing a sustainable solution for improving CCE performance requires an understanding of the root causes of failure. Project teams conducted small-scale studies to determine the root causes of CCE failure in selected locations in Uganda and Mozambique. The evaluations covered 59 failed refrigerators and freezers in Uganda and 27 refrigerators in Mozambique. In Uganda, the vast majority of failures were due to a cooling unit fault in one widely used refrigerator model. In Mozambique, 11 of the 27 problems were attributable to solar refrigerators with batteries that were unable to hold a charge, and another eight problems were associated with a need to adjust thermostat settings. The studies showed that tracking and evaluation of equipment performance and failure can yield important, actionable information for a range of stakeholders, including local CCE technicians, the ministry of health, equipment manufacturers, and international partners such as the United Nations Children's Fund, World Health Organization, and Gavi, the Vaccine Alliance. Collaborative efforts to systematically collect and communicate data on CCE performance and causes of failure will help to improve the efficiency and reach of immunization programs in low- and middle-income countries. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. Proteome Analysis for Understanding Abiotic Stress (Salinity and Drought Tolerance in Date Palm (Phoenix dactylifera L.

    Directory of Open Access Journals (Sweden)

    Haddad A. El Rabey

    2015-01-01

    Full Text Available This study was carried out to study the proteome of date palm under salinity and drought stress conditions to possibly identify proteins involved in stress tolerance. For this purpose, three-month-old seedlings of date palm cultivar “Sagie” were subjected to drought (27.5 g/L polyethylene glycol 6000 and salinity stress conditions (16 g/L NaCl for one month. DIGE analysis of protein extracts identified 47 differentially expressed proteins in leaves of salt- and drought-treated palm seedlings. Mass spectrometric analysis identified 12 proteins; three out of them were significantly changed under both salt and drought stress, while the other nine were significantly changed only in salt-stressed plants. The levels of ATP synthase alpha and beta subunits, an unknown protein and some of RubisCO fragments were significantly changed under both salt and drought stress conditions. Changes in abundance of superoxide dismutase, chlorophyll A-B binding protein, light-harvesting complex1 protein Lhca1, RubisCO activase, phosphoglycerate kinase, chloroplast light-harvesting chlorophyll a/b-binding protein, phosphoribulokinase, transketolase, RubisCO, and some of RubisCO fragments were significant only for salt stress.

  18. Glutathione Transferases Superfamily: Cold-Inducible Expression of Distinct GST Genes in Brassica oleracea

    Directory of Open Access Journals (Sweden)

    Harshavardhanan Vijayakumar

    2016-07-01

    Full Text Available Plants, as sessile organisms, can suffer serious growth and developmental consequences under cold stress conditions. Glutathione transferases (GSTs, EC 2.5.1.18 are ubiquitous and multifunctional conjugating proteins, which play a major role in stress responses by preventing oxidative damage by reactive oxygen species (ROS. Currently, understanding of their function(s during different biochemical and signaling pathways under cold stress condition remain unclear. In this study, using combined computational strategy, we identified 65 Brassica oleracea glutathione transferases (BoGST and characterized them based on evolutionary analysis into 11 classes. Inter-species and intra-species duplication was evident between BoGSTs and Arabidopsis GSTs. Based on localization analyses, we propose possible pathways in which GST genes are involved during cold stress. Further, expression analysis of the predicted putative functions for GST genes were investigated in two cold contrasting genotypes (cold tolerance and susceptible under cold condition, most of these genes were highly expressed at 6 h and 1 h in the cold tolerant (CT and cold susceptible (CS lines, respectively. Overall, BoGSTU19, BoGSTU24, BoGSTF10 are candidate genes highly expressed in B. oleracea. Further investigation of GST superfamily in B. oleracea will aid in understanding complex mechanism underlying cold tolerance in plants.

  19. Comparative genome analysis of a thermotolerant Escherichia coli obtained by Genome Replication Engineering Assisted Continuous Evolution (GREACE) and its parent strain provides new understanding of microbial heat tolerance.

    Science.gov (United States)

    Luan, Guodong; Bao, Guanhui; Lin, Zhao; Li, Yang; Chen, Zugen; Li, Yin; Cai, Zhen

    2015-12-25

    Heat tolerance of microbes is of great importance for efficient biorefinery and bioconversion. However, engineering and understanding of microbial heat tolerance are difficult and insufficient because it is a complex physiological trait which probably correlates with all gene functions, genetic regulations, and cellular metabolisms and activities. In this work, a novel strain engineering approach named Genome Replication Engineering Assisted Continuous Evolution (GREACE) was employed to improve the heat tolerance of Escherichia coli. When the E. coli strain carrying a mutator was cultivated under gradually increasing temperature, genome-wide mutations were continuously generated during genome replication and the mutated strains with improved thermotolerance were autonomously selected. A thermotolerant strain HR50 capable of growing at 50°C on LB agar plate was obtained within two months, demonstrating the efficiency of GREACE in improving such a complex physiological trait. To understand the improved heat tolerance, genomes of HR50 and its wildtype strain DH5α were sequenced. Evenly distributed 361 mutations covering all mutation types were found in HR50. Closed material transportations, loose genome conformation, and possibly altered cell wall structure and transcription pattern were the main differences of HR50 compared with DH5α, which were speculated to be responsible for the improved heat tolerance. This work not only expanding our understanding of microbial heat tolerance, but also emphasizing that the in vivo continuous genome mutagenesis method, GREACE, is efficient in improving microbial complex physiological trait. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Biological warfare warriors, secrecy and pure science in the Cold War: how to understand dialogue and the classifications of science.

    Science.gov (United States)

    Bud, Robert

    2014-01-01

    This paper uses a case study from the Cold War to reflect on the meaning at the time of the term 'Pure Science'. In 1961, four senior scientists from Britain's biological warfare centre at Porton Down visited Moscow both attending an International Congress and visiting Russian microbiological and biochemical laboratories. The reports of the British scientists in talking about a limited range of topics encountered in the Soviet Union expressed qualities of openness, sociologists of the time associated with pure science. The paper reflects on the discourses of "Pure Science", secrecy and security in the Cold War. Using Bakhtin's approach, I suggest the cordial communication between scientists from opposing sides can be seen in terms of the performance, or speaking, of one language among several at their disposal. Pure science was the language they were allowed to share outside their institutions, and indeed political blocs.

  1. Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: State of knowledge

    Science.gov (United States)

    Peterson, Thomas C.; Heim, Richard R.; Hirsch, Robert M.; Kaiser, Dale P.; Brooks, Harold; Diffenbaugh, Noah S.; Dole, Randall M.; Giovannettone, Jason P.; Guirguis, Kristen; Karl, Thomas R.; Katz, Richard W.; Kunkel, Kenneth E.; Lettenmaier, Dennis P.; McCabe, Gregory J.; Paciorek, Christopher J.; Ryberg, Karen R.; K Wolter, BS Silva; Schubert, Siegfried; Silva, Viviane B. S.; Stewart, Brooke C.; Vecchia, Aldo V.; Villarini, Gabriele; Vose, Russell S.; Walsh, John; Wehner, Michael; Wolock, David; Wolter, Klaus; Woodhouse, Connie A.; Wuebbles, Donald

    2013-01-01

    Weather and climate extremes have been varying and changing on many different time scales. In recent decades, heat waves have generally become more frequent across the United States, while cold waves have been decreasing. While this is in keeping with expectations in a warming climate, it turns out that decadal variations in the number of U.S. heat and cold waves do not correlate well with the observed U.S. warming during the last century. Annual peak flow data reveal that river flooding trends on the century scale do not show uniform changes across the country. While flood magnitudes in the Southwest have been decreasing, flood magnitudes in the Northeast and north-central United States have been increasing. Confounding the analysis of trends in river flooding is multiyear and even multidecadal variability likely caused by both large-scale atmospheric circulation changes and basin-scale “memory” in the form of soil moisture. Droughts also have long-term trends as well as multiyear and decadal variability. Instrumental data indicate that the Dust Bowl of the 1930s and the drought in the 1950s were the most significant twentieth-century droughts in the United States, while tree ring data indicate that the megadroughts over the twelfth century exceeded anything in the twentieth century in both spatial extent and duration. The state of knowledge of the factors that cause heat waves, cold waves, floods, and drought to change is fairly good with heat waves being the best understood.

  2. Cold tolerance at the germination stage of rice: methods of evaluation and characterization of genotypes Tolerância ao frio no estádio de germinação em arroz: métodos de avaliação e caracterização de genótipos

    Directory of Open Access Journals (Sweden)

    Renata Pereira da Cruz

    2004-02-01

    Full Text Available Rice cold tolerance at the germination stage is important in Rio Grande do Sul (RS where temperatures below 15°C prevent or reduce germination and plant establishment in early sowings. The present study aimed at identifying an adequate method for cold tolerance evaluation of the rice germination stage and at verifying the variability among 24 rice genotypes of different origins. Cold tolerance was evaluated in experiment I, germination under two conditions: 13°C for 28 days and 28°C for seven days, and in experiment II, germination under 28°C for 72 hours, 13°C for 96 hours and again 28°C for 72 hours. In experiment I measured characteristics were germination index, percentage of seeds with coleoptile length superior to 5 mm and percentage of reduction in coleoptile length due to cold. In experiment II the measured characteristic was coleoptile regrowth after the cold period. Cold tolerance varied among genotypes studied in both experiments, but only the percentage of reduction in coleoptile length and coleoptile regrowth allowed a better distinction between the tolerant checks and the susceptible one. In general, genotypes belonging to the Japonica subspecies presented higher cold tolerance than Indica, but there was variability within subspecies. The most adequate method of evaluation of cold tolerance is through percentage of reduction in coleoptile length and coleoptile regrowth. Among Japonica genotypes, Quilla 64117 and Diamante presented the highest cold tolerance, and among Indica, cultivars BR-IRGA 410 and IRGA 416 were the most cold tolerant at the germination stage.A tolerância ao frio em arroz no estádio de germinação é importante no Rio Grande do Sul (RS onde temperaturas abaixo de 15°C impedem ou reduzem a germinação e o estabelecimento das plantas em semeaduras precoces. O presente trabalho teve por objetivos identificar uma metodologia adequada para avaliação da tolerância ao frio na germinação em arroz e

  3. Calcium addition at the Hubbard Brook Experimental Forest increases the capacity for stress tolerance and carbon capture in red spruce (Picea rubens) trees during the cold season

    Science.gov (United States)

    Paul G. Schaberg; Rakesh Minocha; Stephanie Long; Joshua M. Halman; Gary J. Hawley; Christopher. Eagar

    2011-01-01

    Red spruce (Picea rubens Sarg.) trees are uniquely vulnerable to foliar freezing injury during the cold season (fall and winter), but are also capable of photosynthetic activity if temperatures moderate. To evaluate the influence of calcium (Ca) addition on the physiology of red spruce during the cold season, we measured concentrations of foliar...

  4. Cold Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH COLD STRESS Recommend on Facebook Tweet Share Compartir Workers who ... cold environments may be at risk of cold stress. Extreme cold weather is a dangerous situation that ...

  5. Perspective Research Progress in Cold Responses of Capsella bursa-pastoris

    Directory of Open Access Journals (Sweden)

    Ali Noman

    2017-08-01

    Full Text Available Plants respond to cold stress by modulating biochemical pathways and array of molecular events. Plant morphology is also affected by the onset of cold conditions culminating at repression in growth as well as yield reduction. As a preventive measure, cascades of complex signal transduction pathways are employed that permit plants to endure freezing or chilling periods. The signaling pathways and related events are regulated by the plant hormonal activity. Recent investigations have provided a prospective understanding about plant response to cold stress by means of developmental pathways e.g., moderate growth involved in cold tolerance. Cold acclimation assays and bioinformatics analyses have revealed the role of potential transcription factors and expression of genes like CBF, COR in response to low temperature stress. Capsella bursa-pastoris is a considerable model plant system for evolutionary and developmental studies. On different occasions it has been proved that C. bursa-pastoris is more capable of tolerating cold than A. thaliana. But, the mechanism for enhanced low or freezing temperature tolerance is still not clear and demands intensive research. Additionally, identification and validation of cold responsive genes in this candidate plant species is imperative for plant stress physiology and molecular breeding studies to improve cold tolerance in crops. We have analyzed the role of different genes and hormones in regulating plant cold resistance with special reference to C. bursa-pastoris. Review of collected data displays potential ability of Capsella as model plant for improvement in cold stress regulation. Information is summarized on cold stress signaling by hormonal control which highlights the substantial achievements and designate gaps that still happen in our understanding.

  6. Genomic, transcriptomic, and proteomic approaches towards understanding the molecular mechanisms of salt tolerance in Frankia strains isolated from Casuarina trees.

    Science.gov (United States)

    Oshone, Rediet; Ngom, Mariama; Chu, Feixia; Mansour, Samira; Sy, Mame Ourèye; Champion, Antony; Tisa, Louis S

    2017-08-18

    Soil salinization is a worldwide problem that is intensifying because of the effects of climate change. An effective method for the reclamation of salt-affected soils involves initiating plant succession using fast growing, nitrogen fixing actinorhizal trees such as the Casuarina. The salt tolerance of Casuarina is enhanced by the nitrogen-fixing symbiosis that they form with the actinobacterium Frankia. Identification and molecular characterization of salt-tolerant Casuarina species and associated Frankia is imperative for the successful utilization of Casuarina trees in saline soil reclamation efforts. In this study, salt-tolerant and salt-sensitive Casuarina associated Frankia strains were identified and comparative genomics, transcriptome profiling, and proteomics were employed to elucidate the molecular mechanisms of salt and osmotic stress tolerance. Salt-tolerant Frankia strains (CcI6 and Allo2) that could withstand up to 1000 mM NaCl and a salt-sensitive Frankia strain (CcI3) which could withstand only up to 475 mM NaCl were identified. The remaining isolates had intermediate levels of salt tolerance with MIC values ranging from 650 mM to 750 mM. Comparative genomic analysis showed that all of the Frankia isolates from Casuarina belonged to the same species (Frankia casuarinae). Pangenome analysis revealed a high abundance of singletons among all Casuarina isolates. The two salt-tolerant strains contained 153 shared single copy genes (most of which code for hypothetical proteins) that were not found in the salt-sensitive(CcI3) and moderately salt-tolerant (CeD) strains. RNA-seq analysis of one of the two salt-tolerant strains (Frankia sp. strain CcI6) revealed hundreds of genes differentially expressed under salt and/or osmotic stress. Among the 153 genes, 7 and 7 were responsive to salt and osmotic stress, respectively. Proteomic profiling confirmed the transcriptome results and identified 19 and 8 salt and/or osmotic stress-responsive proteins in the

  7. Melatonin alleviates low PS I-limited carbon assimilation under elevated CO2 and enhances the cold tolerance of offspring in chlorophyll b-deficient mutant wheat

    DEFF Research Database (Denmark)

    Li, Xiangnan; Brestic, Marian; Tan, Dun-xian

    2018-01-01

    the activities of ATPase and sucrose synthesis and maintaining a relatively higher level of total chlorophyll concentration in leaves. In addition, melatonin priming in maternal plants at grain filling promoted the seed germination in offspring by accelerating the starch degradation and improved the cold...... tolerance of seedlings through activating the antioxidant enzymes and enhancing the photosynthetic electron transport efficiency. These findings suggest the important roles of melatonin in plant response to future climate change, indicating that the melatonin priming at grain filling in maternal plants...

  8. Crafting tolerance

    DEFF Research Database (Denmark)

    Kirchner, Antje; Freitag, Markus; Rapp, Carolin

    2011-01-01

    Ongoing changes in social structures, orientation, and value systems confront us with the growing necessity to address and understand transforming patterns of tolerance as well as specific aspects, such as social tolerance. Based on hierarchical analyses of the latest World Values Survey (2005......–08) and national statistics for 28 countries, we assess both individual and contextual aspects that influence an individual's perception of different social groupings. Using a social tolerance index that captures personal attitudes toward these groupings, we present an institutional theory of social tolerance. Our...

  9. Heat shock protection against cold stress of Drosophila melanogaster

    OpenAIRE

    Burton, Vicky; Mitchell, Herschel K.; Young, Patricia; Petersen, Nancy S.

    1988-01-01

    Heat shock protein synthesis can be induced during recovery from cold treatment of Drosophila melanogaster larvae. Survival of larvae after a cold treatment is dramatically improved by a mild heat shock just before the cold shock. The conditions which induce tolerance to cold are similar to those which confer tolerance to heat.

  10. Comparative genomic and proteomic analyses of Clostridium acetobutylicum Rh8 and its parent strain DSM 1731 revealed new understandings on butanol tolerance

    International Nuclear Information System (INIS)

    Bao, Guanhui; Dong, Hongjun; Zhu, Yan; Mao, Shaoming; Zhang, Tianrui; Zhang, Yanping; Chen, Zugen; Li, Yin

    2014-01-01

    Highlights: • Genomes of a butanol tolerant strain and its parent strain were deciphered. • Comparative genomic and proteomic was applied to understand butanol tolerance. • None differentially expressed proteins have mutations in its corresponding genes. • Mutations in ribosome might be responsible for the global difference of proteomics. - Abstract: Clostridium acetobutylicum strain Rh8 is a butanol-tolerant mutant which can tolerate up to 19 g/L butanol, 46% higher than that of its parent strain DSM 1731. We previously performed comparative cytoplasm- and membrane-proteomic analyses to understand the mechanism underlying the improved butanol tolerance of strain Rh8. In this work, we further extended this comparison to the genomic level. Compared with the genome of the parent strain DSM 1731, two insertion sites, four deletion sites, and 67 single nucleotide variations (SNVs) are distributed throughout the genome of strain Rh8. Among the 67 SNVs, 16 SNVs are located in the predicted promoters and intergenic regions; while 29 SNVs are located in the coding sequence, affecting a total of 21 proteins involved in transport, cell structure, DNA replication, and protein translation. The remaining 22 SNVs are located in the ribosomal genes, affecting a total of 12 rRNA genes in different operons. Analysis of previous comparative proteomic data indicated that none of the differentially expressed proteins have mutations in its corresponding genes. Rchange Algorithms analysis indicated that the mutations occurred in the ribosomal genes might change the ribosome RNA thermodynamic characteristics, thus affect the translation strength of these proteins. Take together, the improved butanol tolerance of C. acetobutylicum strain Rh8 might be acquired through regulating the translational process to achieve different expression strength of genes involved in butanol tolerance

  11. Comparative genomic and proteomic analyses of Clostridium acetobutylicum Rh8 and its parent strain DSM 1731 revealed new understandings on butanol tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Guanhui [CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing (China); University of Chinese Academy of Sciences, Beijing (China); Dong, Hongjun; Zhu, Yan; Mao, Shaoming [CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing (China); Zhang, Tianrui [CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing (China); Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin (China); Zhang, Yanping [CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing (China); Chen, Zugen [Department of Human Genetics, School of Medicine, University of California, Los Angeles, CA 90095 (United States); Li, Yin, E-mail: yli@im.ac.cn [CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing (China)

    2014-08-08

    Highlights: • Genomes of a butanol tolerant strain and its parent strain were deciphered. • Comparative genomic and proteomic was applied to understand butanol tolerance. • None differentially expressed proteins have mutations in its corresponding genes. • Mutations in ribosome might be responsible for the global difference of proteomics. - Abstract: Clostridium acetobutylicum strain Rh8 is a butanol-tolerant mutant which can tolerate up to 19 g/L butanol, 46% higher than that of its parent strain DSM 1731. We previously performed comparative cytoplasm- and membrane-proteomic analyses to understand the mechanism underlying the improved butanol tolerance of strain Rh8. In this work, we further extended this comparison to the genomic level. Compared with the genome of the parent strain DSM 1731, two insertion sites, four deletion sites, and 67 single nucleotide variations (SNVs) are distributed throughout the genome of strain Rh8. Among the 67 SNVs, 16 SNVs are located in the predicted promoters and intergenic regions; while 29 SNVs are located in the coding sequence, affecting a total of 21 proteins involved in transport, cell structure, DNA replication, and protein translation. The remaining 22 SNVs are located in the ribosomal genes, affecting a total of 12 rRNA genes in different operons. Analysis of previous comparative proteomic data indicated that none of the differentially expressed proteins have mutations in its corresponding genes. Rchange Algorithms analysis indicated that the mutations occurred in the ribosomal genes might change the ribosome RNA thermodynamic characteristics, thus affect the translation strength of these proteins. Take together, the improved butanol tolerance of C. acetobutylicum strain Rh8 might be acquired through regulating the translational process to achieve different expression strength of genes involved in butanol tolerance.

  12. Chilling- and Freezing-Induced Alterations in Cytosine Methylation and Its Association with the Cold Tolerance of an Alpine Subnival Plant, Chorispora bungeana.

    Directory of Open Access Journals (Sweden)

    Yuan Song

    Full Text Available Chilling (0-18°C and freezing (<0°C are two distinct types of cold stresses. Epigenetic regulation can play an important role in plant adaptation to abiotic stresses. However, it is not yet clear whether and how epigenetic modification (i.e., DNA methylation mediates the adaptation to cold stresses in nature (e.g., in alpine regions. Especially, whether the adaptation to chilling and freezing is involved in differential epigenetic regulations in plants is largely unknown. Chorispora bungeana is an alpine subnival plant that is distributed in the freeze-thaw tundra in Asia, where chilling and freezing frequently fluctuate daily (24 h. To disentangle how C. bungeana copes with these intricate cold stresses through epigenetic modifications, plants of C. bungeana were treated at 4°C (chilling and -4°C (freezing over five periods of time (0-24 h. Methylation-sensitive amplified fragment-length polymorphism markers were used to investigate the variation in DNA methylation of C. bungeana in response to chilling and freezing. It was found that the alterations in DNA methylation of C. bungeana largely occurred over the period of chilling and freezing. Moreover, chilling and freezing appeared to gradually induce distinct DNA methylation variations, as the treatment went on (e.g., after 12 h. Forty-three cold-induced polymorphic fragments were randomly selected and further analyzed, and three of the cloned fragments were homologous to genes encoding alcohol dehydrogenase, UDP-glucosyltransferase and polygalacturonase-inhibiting protein. These candidate genes verified the existence of different expressive patterns between chilling and freezing. Our results showed that C. bungeana responded to cold stresses rapidly through the alterations of DNA methylation, and that chilling and freezing induced different DNA methylation changes. Therefore, we conclude that epigenetic modifications can potentially serve as a rapid and flexible mechanism for C. bungeana

  13. Identification of quantitative trait loci (QTL) controlling cold tolerance in chickpea recombinant RIL population (CRIL2) from Cicer arietinum L. x Cicer reticulatum

    Science.gov (United States)

    Published yields for chickpea (Cicer arietinum L.) are higher when the crop is planted in the fall rather than in the spring seasons (Singh et al 1989, Singh et al 1997). Because of its lack of cold hardiness alleles to survive freezing temperatures, chickpea is planted in the spring in temperate re...

  14. Comparative proteomic and metabolomic analyses reveal mechanisms of improved cold stress tolerance in bermudagrass (Cynodon dactylon (L.) Pers.) by exogenous calcium.

    Science.gov (United States)

    Shi, Haitao; Ye, Tiantian; Zhong, Bao; Liu, Xun; Chan, Zhulong

    2014-11-01

    As an important second messenger, calcium is involved in plant cold stress response, including chilling (Cynodon dactylon (L.) Pers.). Physiological analyses showed that CaCl2 treatment alleviated the reactive oxygen species (ROS) burst and cell damage triggered by chilling stress, via activating antioxidant enzymes, non-enzymatic glutathione antioxidant pool, while EGTA treatment had the opposite effects. Additionally, comparative proteomic analysis identified 51 differentially expressed proteins that were enriched in redox, tricarboxylicacid cycle, glycolysis, photosynthesis, oxidative pentose phosphate pathway, and amino acid metabolisms. Consistently, 42 metabolites including amino acids, organic acids, sugars, and sugar alcohols were regulated by CaCl2 treatment under control and cold stress conditions, further confirming the common modulation of CaCl2 treatment in carbon metabolites and amino acid metabolism. Taken together, this study reported first evidence of the essential and protective roles of endogenous and exogenous calcium in bermudagrass response to cold stress, partially via activation of the antioxidants and modulation of several differentially expressed proteins and metabolic homeostasis in the process of cold acclimation. © 2014 Institute of Botany, Chinese Academy of Sciences.

  15. Cassava C-repeat binding factor 1 gene responds to low temperature and enhances cold tolerance when overexpressed in Arabidopsis and cassava.

    Science.gov (United States)

    An, Dong; Ma, Qiuxiang; Wang, Hongxia; Yang, Jun; Zhou, Wenzhi; Zhang, Peng

    2017-05-01

    Cassava MeCBF1 is a typical CBF transcription factor mediating cold responses but its low expression in apical buds along with a retarded response cause inefficient upregulation of downstream cold-related genes, rendering cassava chilling-sensitive. Low temperature is a major abiotic stress factor affecting survival, productivity and geographic distribution of important crops worldwide. The C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB) are important regulators of abiotic stress response in plants. In this study, MeCBF1, a CBF-like gene, was identified in the tropical root crop cassava (Manihot esculenta Crantz). The MeCBF1 encodes a protein that shares strong homology with DREB1As/CBFs from Arabidopsis as well as other species. The MeCBF1 was localized to the nucleus and is mainly expressed in stem and mature leaves, but not in apical buds or stem cambium. MeCBF1 expression was not only highly responsive to cold, but also significantly induced by salt, PEG and ABA treatment. Several stress-associated cis-elements were found in its promoter region, e.g., ABRE-related, MYC recognition sites, and MYB responsive element. Compared with AtCBF1, the MeCBF1 expression induced by cold in cassava was retarded and upregulated only after 4 h, which was also confirmed by its promoter activity. Overexpression of MeCBF1 in transgenic Arabidopsis and cassava plants conferred enhanced crytolerance. The CBF regulon was smaller and not entirely co-regulated with MeCBF1 expression in overexpressed cassava. The retarded MeCBF1 expression in response to cold and attenuated CBF-regulon might lead cassava to chilling sensitivity.

  16. Chroococcidiopsis sp. strain AAB1, a new model from the Atacama desert for the understanding of extreme UV tolerance in an astrobiological context

    International Nuclear Information System (INIS)

    Azua-Bustos, A.; Arenas, C.; Paulino-Lima, I G.; Galante, D.

    2012-01-01

    Full text: The Atacama Desert in northern Chile is the driest and oldest desert on Earth. In a recently published report [Azua-Bustos, 2011] we showed that along its Coastal Range, fog can support hypolithic colonization rates of 80From these hypolithic communities we were able to obtain a previously unknown strain of Chroococcidiopsis which we characterized by morphological and molecular means. Due to the extreme tolerance of cyanobacteria of this genus to UV, and since the Atacama Desert has constantly high UV radiation levels all year long, we propose this strain as a pertinent model for understanding the limits UV tolerance for life as we know it. We have measured the viability of the isolate by using the DEAD/LIVE BacLight kit which allows the detection of dead cells by measuring the loss of integrity of the plasma membrane, and found that it remains almost unchanged with control cultures when desiccated. In addition, desiccated samples readily start new cultures. Transmission electron microscopy (TEM) of desiccated samples show no evident changes compared with controls. Pigments extracts from desiccated samples show a decrease in photosynthetic pigments like Chlorophyll-a, measured by fluorescence spectra and by tissue layer chromatography. Desiccated samples also synthesize sucrose, an intracellular compatible solute known to play a role in desiccation tolerance. As desiccation and extreme UV tolerance are thought to share similar metabolic routes [Rebecchi, 2007], we expect that our isolate (as suggested by preliminary experiments performed with our strain at LNLS in 2010) should be extremely tolerant to UV radiation. Future work include exposition of monolayers of our strain using the VUV line, and the determination of its comparative tolerance levels with a Chroococcidiopsis strain (N76) isolated from the Mojave Desert which we also have in culture. The experiments will consist of different exposition times in order to achieve increasing UV accumulation

  17. Understanding producers’ motives to adopt sustainable practices: the role of expected rewards, risk perception, and risk tolerance

    NARCIS (Netherlands)

    Hofenk, D.J.B.; Pennings, J.M.E.; Trujillo Barrera, A.A.

    2014-01-01

    Abstract The purpose of this study is to examine producers’ motives underlying the adoption of sustainable practices. In particular, we focus on expected economic, social, and personal rewards, and examine the roles of producers’ risk perception and risk tolerance. Preliminary results from a survey

  18. Understanding Producers’ Motives for Adopting Sustainable Practices: The Role of Expected Rewards, Risk Perception, and Risk Tolerance

    NARCIS (Netherlands)

    Hofenk, D.J.B.; Pennings, J.M.E.; Trujillo Barrera, A.A.

    2014-01-01

    This paper examines producers’ motives underlying the adoption of sustainable practices. In particular, we focus on expected economic, social, and personal rewards, and examine the role of producers’ risk perception and risk tolerance. Results from personal computer-guided interviews with164 hog

  19. Anuran amphibians as comparative models for understanding extreme dehydration tolerance: a negative feedback lymphatic mechanism for blood volume regulation.

    Science.gov (United States)

    Hillman, Stanley S

    2018-06-06

    Anurans are the most terrestrial order of amphibians. Couple the high driving forces for evaporative loss in terrestrial environments and their low resistance to evaporation, dehydration is an inevitable stress on their water balance. Anurans have the greatest tolerances for dehydration of any vertebrate group, some species can tolerate evaporative losses up to 45% of their standard body mass. Anurans have remarkable capacities to regulate blood volume with hemorrhage and dehydration compared to mammals. Stabilization of blood volume is central to extending dehydration tolerance, since it avoids both the hypovolemic and hyperviscosity stresses on cardiac output and its consequential effects on aerobic capacity. Anurans, in contrast to mammals, seem incapable of generating a sufficient pressure difference, either oncotically or via interstitial compliance, to move fluid from the interstitium into the capillaries. Couple this inability to generate a sufficient pressure difference for transvascular uptake to a circulatory system with high filtration coefficients and a high rate of plasma turnover is the consequence. The novel lymphatic system of anurans is critical to a remarkable capacity for blood volume regulation. This review summarizes what is known about the anatomical and physiological specializations which are involved in explaining differential blood volume regulation and dehydration tolerance involving a true centrally mediated negative feedback of lymphatic function involving baroreceptors as sensors and lymph hearts, AVT, pulmonary ventilation and specialized skeletal muscles as effectors.

  20. Dynamics of cold acclimation and complex phytohormone responses in Triticum monococcum lines G3116 and DV92 differing in vernalization and frost tolerance level

    Czech Academy of Sciences Publication Activity Database

    Vaňková, Radomíra; Kosová, K.; Dobrev, Petre; Vítámvás, P.; Trávníčková, Alena; Cvikrová, Milena; Pešek, Bedřich; Gaudinová, Alena; Přerostová, Sylva; Musilová, J.; Galiba, G.; Prášil, I.T.

    2014-01-01

    Roč. 101, MAY 2014 (2014), s. 12-25 ISSN 0098-8472 R&D Projects: GA ČR GA522/09/2058 Grant - others:GA ČR GPP501/11/P637 Program:GP Institutional support: RVO:61389030 Keywords : Cold stress * Dehydrin * Einkorn wheat Subject RIV: ED - Physiology Impact factor: 3.359, year: 2014

  1. Environmental change and hydrological responses in the interior of western Canada: Towards improved understanding, diagnosis, and prediction by the Changing Cold Regions Network

    Science.gov (United States)

    DeBeer, C. M.; Wheater, H. S.; Carey, S. K.; Pomeroy, J. W.; Stewart, R. E.

    2016-12-01

    The past several decades have been a period of rapid climatic and environmental change. In western Canada, as in other areas globally, warming and changes in precipitation have led to vast reductions in seasonal snowcover and freshwater ice cover, retreating glaciers, thawing permafrost, changing forest composition and structure, increasing northern shrub coverage, and earlier timing of river flows in spring. Yet streamflow volume has exhibited a variety of responses across the region and over different time scales, and patterns of change are not easily generalizable. Improved understanding, diagnosis, and prediction of the rapidly changing components of the Earth system are key to managing uncertain water futures, but this is challenging due to complex system behavior and sometimes compensatory responses. The Changing Cold Regions Network (CCRN) is a Canadian research network and GEWEX Regional Hydroclimate Project that is addressing these issues, with a geographic focus on the Saskatchewan and Mackenzie River basins. This paper will present examples of the changes that have been observed at a set of long-term and well-studied headwater research basins, and highlight how various processes confound hydrological responses here, pointing to the need for careful diagnosis. We will discuss some recent CCRN activities and progress toward improving conceptual understanding and developing scenarios of change for the 21st century, which can then be applied within process-based hydrological models for future prediction. Several priority research areas that will be a focus of continued work in CCRN will be recommended.

  2. Major differences observed in transcript profiles of blueberry during cold acclimation under field and cold room conditions.

    Science.gov (United States)

    Dhanaraj, Anik L; Alkharouf, Nadim W; Beard, Hunter S; Chouikha, Imed B; Matthews, Benjamin F; Wei, Hui; Arora, Rajeev; Rowland, Lisa J

    2007-02-01

    Our laboratory has been working toward increasing our understanding of the genetic control of cold hardiness in blueberry (Vaccinium section Cyanococcus) to ultimately use this information to develop more cold hardy cultivars for the industry. Here, we report using cDNA microarrays to monitor changes in gene expression at multiple times during cold acclimation under field and cold room conditions. Microarrays contained over 2,500 cDNA inserts, approximately half of which had been picked and single-pass sequenced from each of two cDNA libraries that were constructed from cold acclimated floral buds and non-acclimated floral buds of the fairly cold hardy cv. Bluecrop (Vaccinium corymbosum L.). Two biological samples were examined at each time point. Microarray data were analyzed statistically using t tests, ANOVA, clustering algorithms, and online analytical processing (OLAP). Interestingly, more transcripts were found to be upregulated under cold room conditions than under field conditions. Many of the genes induced only under cold room conditions could be divided into three major types: (1) genes associated with stress tolerance; (2) those that encode glycolytic and TCA cycle enzymes, and (3) those associated with protein synthesis machinery. A few of the genes induced only under field conditions appear to be related to light stress. Possible explanations for these differences are discussed in physiological context. Although many similarities exist in how plants respond during cold acclimation in the cold room and in the field environment, there are major differences suggesting caution should be taken in interpreting results based only on artificial, cold room conditions.

  3. The quiet revolution in agri-food value chains in Asia: Understanding the fast emergence of cold storages in poor districts in India

    OpenAIRE

    Minten, Bart; Reardon, Thomas; Singh, K.M.; Sutradhar, Rajib

    2012-01-01

    In disadvantaged districts of Bihar, one of the poorest states in India and an area where smallholders dominate, we find that there have been dramatic increases and rapid up-scaling of modern cold storages, triggered by market reform, investment subsidies, and better overall public service provision and governance. Almost all potato farmers, small and large, participate in these cold storages. The availability of cold storages has seemingly led to improved efficiency in value chains because o...

  4. Transcriptomic analysis of (group I Clostridium botulinum ATCC 3502 cold shock response.

    Directory of Open Access Journals (Sweden)

    Elias Dahlsten

    Full Text Available Profound understanding of the mechanisms foodborne pathogenic bacteria utilize in adaptation to the environmental stress they encounter during food processing and storage is of paramount importance in design of control measures. Chill temperature is a central control measure applied in minimally processed foods; however, data on the mechanisms the foodborne pathogen Clostridium botulinum activates upon cold stress are scarce. Transcriptomic analysis on the C. botulinum ATCC 3502 strain upon temperature downshift from 37°C to 15°C was performed to identify the cold-responsive gene set of this organism. Significant up- or down-regulation of 16 and 11 genes, respectively, was observed 1 h after the cold shock. At 5 h after the temperature downshift, 199 and 210 genes were up- or down-regulated, respectively. Thus, the relatively small gene set affected initially indicated a targeted acute response to cold shock, whereas extensive metabolic remodeling appeared to take place after prolonged exposure to cold. Genes related to fatty acid biosynthesis, oxidative stress response, and iron uptake and storage were induced, in addition to mechanisms previously characterized as cold-tolerance related in bacteria. Furthermore, several uncharacterized DNA-binding transcriptional regulator-encoding genes were induced, suggesting involvement of novel regulatory mechanisms in the cold shock response of C. botulinum. The role of such regulators, CBO0477 and CBO0558A, in cold tolerance of C. botulinum ATCC 3502 was demonstrated by deteriorated growth of related mutants at 17°C.

  5. Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model.

    Science.gov (United States)

    Song, Jie; Wang, Baoshan

    2015-02-01

    As important components in saline agriculture, halophytes can help to provide food for a growing world population. In addition to being potential crops in their own right, halophytes are also potential sources of salt-resistance genes that might help plant breeders and molecular biologists increase the salt tolerance of conventional crop plants. One especially promising halophyte is Suaeda salsa, a euhalophytic herb that occurs both on inland saline soils and in the intertidal zone. The species produces dimorphic seeds: black seeds are sensitive to salinity and remain dormant in light under high salt concentrations, while brown seeds can germinate under high salinity (e.g. 600 mm NaCl) regardless of light. Consequently, the species is useful for studying the mechanisms by which dimorphic seeds are adapted to saline environments. S. salsa has succulent leaves and is highly salt tolerant (e.g. its optimal NaCl concentration for growth is 200 mm). A series of S. salsa genes related to salt tolerance have been cloned and their functions tested: these include SsNHX1, SsHKT1, SsAPX, SsCAT1, SsP5CS and SsBADH. The species is economically important because its fresh branches have high value as a vegetable, and its seed oil is edible and rich in unsaturated fatty acids. Because it can remove salts and heavy metals from saline soils, S. salsa can also be used in the restoration of salinized or contaminated saline land. Because of its economic and ecological value in saline agriculture, S. salsa is one of the most important halophytes in China. In this review, the value of S. salsa as a source of food, medicine and forage is discussed. Its uses in the restoration of salinized or contaminated land and as a source of salt-resistance genes are also considered. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Deep Super-SAGE transcriptomic analysis of cold acclimation in lentil (Lens culinaris Medik.).

    Science.gov (United States)

    Barrios, Abel; Caminero, Constantino; García, Pedro; Krezdorn, Nicolas; Hoffmeier, Klaus; Winter, Peter; Pérez de la Vega, Marcelino

    2017-06-30

    Frost is one of the main abiotic stresses limiting plant distribution and crop production. To cope with the stress, plants evolved adaptations known as cold acclimation or chilling tolerance to maximize frost tolerance. Cold acclimation is a progressive acquisition of freezing tolerance by plants subjected to low non-freezing temperatures which subsequently allows them to survive exposure to frost. Lentil is a cool season grain legume that is challenged by winter frost in some areas of its cultivation. To better understand the genetic base of frost tolerance differential gene expression in response to cold acclimation was investigated. Recombinant inbred lines (RILs) from the cross Precoz x WA8649041 were first classified as cold tolerant or cold susceptible according to their response to temperatures between -3 to -15 °C. Then, RILs from both extremes of the response curve were cold acclimated and the leaf transcriptomes of two bulks each of eight frost tolerant and seven cold susceptible RILs were investigated by Deep Super-SAGE transcriptome profiling. Thus, four RNA bulks were analysed: the acclimated susceptible, the acclimated tolerant and the respective controls (non-acclimated susceptible and non-acclimated tolerant). Approximately 16.5 million 26 nucleotide long Super-SAGE tags were sequenced in the four sets (between ~3 and 5.4 millions). In total, 133,077 different unitags, each representing a particular transcript isoform, were identified in these four sets. Tags which showed a significantly different abundance in any of the bulks (fold change ≥4.0 and a significant p-value <0.001) were selected and used to identify the corresponding lentil gene sequence. Three hundred of such lentil sequences were identified. Most of their known homologs coded for glycine-rich, cold and drought-regulated proteins, dormancy-associated proteins, proline-rich proteins (PRPs) and other membrane proteins. These were generally but not exclusively over-expressed in the

  7. Detection of cold pain, cold allodynia and cold hyperalgesia in freely behaving rats

    Directory of Open Access Journals (Sweden)

    Woolf Clifford J

    2005-12-01

    Full Text Available Abstract Background Pain is elicited by cold, and a major feature of many neuropathic pain states is that normally innocuous cool stimuli begin to produce pain (cold allodynia. To expand our understanding of cold induced pain states we have studied cold pain behaviors over a range of temperatures in several animal models of chronic pain. Results We demonstrate that a Peltier-cooled cold plate with ± 1°C sensitivity enables quantitative measurement of a detection withdrawal response to cold stimuli in unrestrained rats. In naïve rats the threshold for eliciting cold pain behavior is 5°C. The withdrawal threshold for cold allodynia is 15°C in both the spared nerve injury and spinal nerve ligation models of neuropathic pain. Cold hyperalgesia is present in the spared nerve injury model animals, manifesting as a reduced latency of withdrawal response threshold at temperatures that elicit cold pain in naïve rats. We also show that following the peripheral inflammation produced by intraplantar injection of complete Freund's adjuvant, a hypersensitivity to cold occurs. Conclusion The peltier-cooled provides an effective means of assaying cold sensitivity in unrestrained rats. Behavioral testing of cold allodynia, hyperalgesia and pain will greatly facilitate the study of the neurobiological mechanisms involved in cold/cool sensations and enable measurement of the efficacy of pharmacological treatments to reduce these symptoms.

  8. Cold stratification, but not stratification in salinity, enhances seedling ...

    African Journals Online (AJOL)

    use

    2011-10-26

    Oct 26, 2011 ... Cold stratification was reported to release seed dormancy and enhance plant tolerance to salt stress. ... Key words: Cold stratification, salt stress, seedling emergence, ... methods used to cope with salinity, seed pre-sowing.

  9. Cold plate

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin, Christopher M.; O' Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  10. Understanding the effect of an excessive cold tongue bias on projecting the tropical Pacific SST warming pattern in CMIP5 models

    Science.gov (United States)

    Ying, Jun; Huang, Ping; Lian, Tao; Tan, Hongjian

    2018-05-01

    An excessive cold tongue is a common bias among current climate models, and considered an important source of bias in projections of tropical Pacific climate change under global warming. Specifically, the excessive cold tongue bias is closely related to the tropical Pacific SST warming (TPSW) pattern. In this study, we reveal that two processes are the critical mechanisms by which the excessive cold tongue bias influences the projection of the TPSW pattern, based on 32 models from phase 5 of Coupled Model Intercomparison Projection (CMIP5). On the one hand, by assuming that the shortwave (SW) radiation to SST feedback is linearly correlated to the cold tongue SST, the excessive cold tongue bias can induce an overly weak negative SW-SST feedback in the central Pacific, which can lead to a positive SST warming bias in the central to western Pacific (around 150°E-140°W). Moreover, the overly weak local atmospheric dynamics response to SST is a key process of the overly weak SW-SST feedback, compared with the cloud response to atmospheric dynamics and the SW radiation response to cloud. On the other hand, the overly strong ocean zonal overturning circulation associated with the excessive cold tongue bias results in an overestimation of the ocean dynamical thermostat effect, with enhanced ocean stratification under global warming, leading to a negative SST warming bias in the central and eastern Pacific (around 170°W-120°W). These two processes jointly form a positive SST warming bias in the western Pacific, contributing to a La Niña-like warming bias. Therefore, we suggest a more realistic climatological cold tongue SST is needed for a more reliable projection of the TPSW pattern.

  11. De Novo Transcriptome Sequencing and the Hypothetical Cold Response Mode of Saussurea involucrata in Extreme Cold Environments.

    Science.gov (United States)

    Li, Jin; Liu, Hailiang; Xia, Wenwen; Mu, Jianqiang; Feng, Yujie; Liu, Ruina; Yan, Panyao; Wang, Aiying; Lin, Zhongping; Guo, Yong; Zhu, Jianbo; Chen, Xianfeng

    2017-06-07

    Saussurea involucrata grows in high mountain areas covered by snow throughout the year. The temperature of this habitat can change drastically in one day. To gain a better understanding of the cold response signaling pathways and molecular metabolic reactions involved in cold stress tolerance, genome-wide transcriptional analyses were performed using RNA-Seq technologies. A total of 199,758 transcripts were assembled, producing 138,540 unigenes with 46.8 Gb clean data. Overall, 184,416 (92.32%) transcripts were successfully annotated. The 365 transcription factors identified (292 unigenes) belonged to 49 transcription factor families associated with cold stress responses. A total of 343 transcripts on the signal transduction (132 upregulated and 212 downregulated in at least any one of the conditions) were strongly affected by cold temperature, such as the CBL-interacting serine/threonine-protein kinase ( CIPKs ), receptor-like protein kinases , and protein kinases . The circadian rhythm pathway was activated by cold adaptation, which was necessary to endure the severe temperature changes within a day. There were 346 differentially expressed genes (DEGs) related to transport, of which 138 were upregulated and 22 were downregulated in at least any one of the conditions. Under cold stress conditions, transcriptional regulation, molecular transport, and signal transduction were involved in the adaptation to low temperature in S. involucrata . These findings contribute to our understanding of the adaptation of plants to harsh environments and the survival traits of S. involucrata . In addition, the present study provides insight into the molecular mechanisms of chilling and freezing tolerance.

  12. Cold injuries.

    Science.gov (United States)

    Kruse, R J

    1995-01-01

    There are two categories of cold injury. The first is hypothermia, which is a systemic injury to cold, and the second is frostbite, which is a local injury. Throughout history, entire armies, from George Washington to the Germans on the Russian Front in World War II, have fallen prey to prolonged cold exposure. Cold injury is common and can occur in all seasons if ambient temperature is lower than the core body temperature. In the 1985 Boston Marathon, even though it was 76 degrees and sunny, there were 75 runners treated for hypothermia. In general, humans adapt poorly to cold exposure. Children are at particular risk because of their relatively greater surface area/body mass ratio, causing them to cool even more rapidly than adults. Because of this, the human's best defense against cold injury is to limit his/her exposure to cold and to dress appropriately. If cold injury has occurred and is mild, often simple passive rewarming such as dry blankets and a warm room are sufficient treatment.

  13. Salt Tolerance

    OpenAIRE

    Xiong, Liming; Zhu, Jian-Kang

    2002-01-01

    Studying salt stress is an important means to the understanding of plant ion homeostasis and osmo-balance. Salt stress research also benefits agriculture because soil salinity significantly limits plant productivity on agricultural lands. Decades of physiological and molecular studies have generated a large body of literature regarding potential salt tolerance determinants. Recent advances in applying molecular genetic analysis and genomics tools in the model plant Arabidopsis thaliana are sh...

  14. Overexpression of a peach CBF gene in apple: a model for understanding the integration of growth, dormancy, and cold hardiness in woody plants

    Science.gov (United States)

    The timing of cold acclimation and de-acclimation, dormancy, and bud break play an integral role in the life cycle of woody plants. The molecular events that regulate these parameters have been the subject of much study, however, in most studies these events have been investigated independently of ...

  15. Cold Sore

    Science.gov (United States)

    ... may reduce how often they return. Symptoms A cold sore usually passes through several stages: Tingling and itching. Many people feel an itching, burning or tingling sensation around their lips for a day or so ...

  16. Coordinated Regulations of mRNA Synthesis and Decay during Cold Acclimation in Arabidopsis Cells.

    KAUST Repository

    Arae, Toshihiro

    2017-04-18

    Plants possess a cold acclimation system to acquire freezing tolerance through pre-exposure to non-freezing low temperatures. The transcriptional cascade of C-repeat binding factors (CBFs)/dehydration response element-binding factors (DREBs) is considered a major transcriptional regulatory pathway during cold acclimation. However, little is known regarding the functional significance of mRNA stability regulation in the response of gene expression to cold stress. The actual level of individual mRNAs is determined by a balance between mRNA synthesis and degradation. Therefore, it is important to assess the regulatory steps to increase our understanding of gene regulation. Here, we analyzed temporal changes in mRNA amounts and half-lives in response to cold stress in Arabidopsis cell cultures based on genome-wide analysis. In this mRNA decay array method, mRNA half-life measurements and microarray analyses were combined. In addition, temporal changes in the integrated value of transcription rates were estimated from the above two parameters using a mathematical approach. Our results showed that several cold-responsive genes, including Cold-regulated 15a, were relatively destabilized, whereas the mRNA amounts were increased during cold treatment by accelerating the transcription rate to overcome the destabilization. Considering the kinetics of mRNA synthesis and degradation, this apparently contradictory result supports that mRNA destabilization is advantageous for the swift increase in CBF-responsive genes in response to cold stress.

  17. RAP2.4a Is Transported through the Phloem to Regulate Cold and Heat Tolerance in Papaya Tree (Carica papaya cv. Maradol: Implications for Protection Against Abiotic Stress.

    Directory of Open Access Journals (Sweden)

    Luis Figueroa-Yañez

    Full Text Available Plants respond to stress through metabolic and morphological changes that increase their ability to survive and grow. To this end, several transcription factor families are responsible for transmitting the signals that are required for these changes. Here, we studied the transcription factor superfamily AP2/ERF, particularly, RAP2.4 from Carica papaya cv. Maradol. We isolated four genes (CpRap2.4a, CpRAap2.4b, CpRap2.1 and CpRap2.10, and an in silico analysis showed that the four genes encode proteins that contain a conserved APETALA2 (AP2 domain located within group I and II transcription factors of the AP2/ERF superfamily. Semiquantitative PCR experiments indicated that each CpRap2 gene is differentially expressed under stress conditions, such as extreme temperatures. Moreover, genetic transformants of tobacco plants overexpressing CpRap2.4a and CpRap2.4b genes show a high level of tolerance to cold and heat stress compared to non-transformed plants. Confocal microscopy analysis of tobacco transgenic plants showed that CpRAP2.4a and CpRAP2.4b proteins were mainly localized to the nuclei of cells from the leaves and roots and also in the sieve elements. Moreover, the movement of CpRap2.4a RNA in tobacco grafting was analyzed. Our results indicate that CpRap2.4a and CpRap2.4b RNA in the papaya tree have a functional role in the response to stress conditions such as exposure to extreme temperatures via direct translation outside the parental RNA cell.

  18. Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development

    KAUST Repository

    Park, Myoungryoul

    2010-09-28

    The R2R3-type OsMyb4 transcription factor of rice has been shown to play a role in the regulation of osmotic adjustment in heterologous overexpression studies. However, the exact composition and organization of its underlying transcriptional network has not been established to be a robust tool for stress tolerance enhancement by regulon engineering. OsMyb4 network was dissected based on commonalities between the global chilling stress transcriptome and the transcriptome configured by OsMyb4 overexpression. OsMyb4 controls a hierarchical network comprised of several regulatory sub-clusters associated with cellular defense and rescue, metabolism and development. It regulates target genes either directly or indirectly through intermediary MYB, ERF, bZIP, NAC, ARF and CCAAT-HAP transcription factors. Regulatory sub-clusters have different combinations of MYB-like, GCC-box-like, ERD1-box-like, ABRE-like, G-box-like, as1/ocs/TGA-like, AuxRE-like, gibberellic acid response element (GARE)-like and JAre-like cis-elements. Cold-dependent network activity enhanced cellular antioxidant capacity through radical scavenging mechanisms and increased activities of phenylpropanoid and isoprenoid metabolic processes involving various abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), ethylene and reactive oxygen species (ROS) responsive genes. OsMyb4 network is independent of drought response element binding protein/C-repeat binding factor (DREB/CBF) and its sub-regulons operate with possible co-regulators including nuclear factor-Y. Because of its upstream position in the network hierarchy, OsMyb4 functions quantitatively and pleiotrophically. Supra-optimal expression causes misexpression of alternative targets with costly trade-offs to panicle development. © 2010 Blackwell Publishing Ltd.

  19. Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development.

    Science.gov (United States)

    Park, Myoung-Ryoul; Yun, Kil-Young; Mohanty, Bijayalaxmi; Herath, Venura; Xu, Fuyu; Wijaya, Edward; Bajic, Vladimir B; Yun, Song-Joong; De Los Reyes, Benildo G

    2010-12-01

    The R2R3-type OsMyb4 transcription factor of rice has been shown to play a role in the regulation of osmotic adjustment in heterologous overexpression studies. However, the exact composition and organization of its underlying transcriptional network has not been established to be a robust tool for stress tolerance enhancement by regulon engineering. OsMyb4 network was dissected based on commonalities between the global chilling stress transcriptome and the transcriptome configured by OsMyb4 overexpression. OsMyb4 controls a hierarchical network comprised of several regulatory sub-clusters associated with cellular defense and rescue, metabolism and development. It regulates target genes either directly or indirectly through intermediary MYB, ERF, bZIP, NAC, ARF and CCAAT-HAP transcription factors. Regulatory sub-clusters have different combinations of MYB-like, GCC-box-like, ERD1-box-like, ABRE-like, G-box-like, as1/ocs/TGA-like, AuxRE-like, gibberellic acid response element (GARE)-like and JAre-like cis-elements. Cold-dependent network activity enhanced cellular antioxidant capacity through radical scavenging mechanisms and increased activities of phenylpropanoid and isoprenoid metabolic processes involving various abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), ethylene and reactive oxygen species (ROS) responsive genes. OsMyb4 network is independent of drought response element binding protein/C-repeat binding factor (DREB/CBF) and its sub-regulons operate with possible co-regulators including nuclear factor-Y. Because of its upstream position in the network hierarchy, OsMyb4 functions quantitatively and pleiotrophically. Supra-optimal expression causes misexpression of alternative targets with costly trade-offs to panicle development. © 2010 Blackwell Publishing Ltd.

  20. Cold stratification, but not stratification in salinity, enhances seedling ...

    African Journals Online (AJOL)

    Cold stratification, but not stratification in salinity, enhances seedling growth of wheat under salt treatment. L Wang, HL Wang, CH Yin, CY Tian. Abstract. Cold stratification was reported to release seed dormancy and enhance plant tolerance to salt stress. Experiments were conducted to test the hypothesis that cold ...

  1. An atypical R2R3 MYB transcription factor increases cold hardiness by CBF-dependent and CBF-independent pathways in apple

    NARCIS (Netherlands)

    Xie, Yinpeng; Chen, Pengxiang; Yan, Yan; Bao, Chana; Li, Xuewei; Wang, Liping; Shen, Xiaoxia; Li, Haiyan; Liu, Xiaofang; Niu, Chundong; Zhu, Chen; Fang, Nan; Shao, Yun; Zhao, Tao; Yu, Jiantao; Zhu, Jianhua; Xu, Lingfei; Nocker, van Steven; Ma, Fengwang; Guan, Qingmei

    2018-01-01

    Apple (Malus × domestica) trees are vulnerable to freezing temperatures. However, there has been only limited success in developing cold-hardy cultivars. This lack of progress is due at least partly to lack of understanding of the molecular mechanisms of freezing tolerance in apple. In this study,

  2. A transcriptomic analysis of bermudagrass (Cynodon dactylon) provides novel insights into the basis of low temperature tolerance.

    Science.gov (United States)

    Chen, Liang; Fan, Jibiao; Hu, Longxing; Hu, Zhengrong; Xie, Yan; Zhang, Yingzi; Lou, Yanhong; Nevo, Eviatar; Fu, Jinmin

    2015-09-11

    Cold stress is regarded as a key factor limiting widespread use for bermudagrass (Cynodon dactylon). Therefore, to improve cold tolerance for bermudagrass, it is urgent to understand molecular mechanisms of bermudagrass response to cold stress. However, our knowledge about the molecular responses of this species to cold stress is largely unknown. The objective of this study was to characterize the transcriptomic response to low temperature in bermudagrass by using RNA-Seq platform. Ten cDNA libraries were generated from RNA samples of leaves from five different treatments in the cold-resistant (R) and the cold-sensitive (S) genotypes, including 4 °C cold acclimation (CA) for 24 h and 48 h, freezing (-5 °C) treatments for 4 h with or without prior CA, and controls. When subjected to cold acclimation, global gene expressions were initiated more quickly in the R genotype than those in the S genotype. The R genotype activated gene expression more effectively in response to freezing temperature after 48 h CA than the S genotype. The differentially expressed genes were identified as low temperature sensing and signaling-related genes, functional proteins and transcription factors, many of which were specifically or predominantly expressed in the R genotype under cold treatments, implying that these genes play important roles in the enhanced cold hardiness of bermudagrass. KEGG pathway enrichment analysis for DEGs revealed that photosynthesis, nitrogen metabolism and carbon fixation pathways play key roles in bermudagrass response to cold stress. The results of this study may contribute to our understanding the molecular mechanism underlying the responses of bermudagrass to cold stress, and also provide important clues for further study and in-depth characterization of cold-resistance breeding candidate genes in bermudagrass.

  3. Cold fusion

    International Nuclear Information System (INIS)

    Koster, J.

    1989-01-01

    In this contribution the author the phenomenom of so-called cold fusion, inspired by the memorable lecture of Moshe Gai on his own search for this effect. Thus much of what follows was presented by Dr. Gai; the rest is from independent reading. What is referred to as cold fusion is of course the observation of possible products of deuteron-deuteron (d-d) fusion within deuterium-loaded (dentended) electrodes. The debate over the two vanguard cold fusion experiments has raged under far more public attention than usually accorded new scientific phenomena. The clamor commenced with the press conference of M. Fleishmann and S. Pons on March 23, 1989 and the nearly simultaneous wide circulation of a preprint of S. Jones and collaborators. The majority of work attempting to confirm these observations has at the time of this writing yet to appear in published form, but contributions to conferences and electronic mail over computer networks were certainly filled with preliminary results. To keep what follows to a reasonable length the author limit this discussion to the searches for neutron (suggested by ref. 2) or for excessive heat production (suggested by ref. 1), following a synopsis of the hypotheses of cold fusion

  4. Project COLD.

    Science.gov (United States)

    Kazanjian, Wendy C.

    1982-01-01

    Describes Project COLD (Climate, Ocean, Land, Discovery) a scientific study of the Polar Regions, a collection of 35 modules used within the framework of existing subjects: oceanography, biology, geology, meterology, geography, social science. Includes a partial list of topics and one activity (geodesic dome) from a module. (Author/SK)

  5. Cold fusion

    International Nuclear Information System (INIS)

    Seo, Suk Yong; You, Jae Jun

    1996-01-01

    Nearly every technical information is chased in the world. All of them are reviewed and analyzed. Some of them are chosen to study further more to review every related documents. And a probable suggestion about the excitonic process in deuteron absorbed condensed matter is proposed a way to cold fusion. 8 refs. (Author)

  6. Induction of proliferation of basal epidermal keratinocytes by cold atmospheric-pressure plasma.

    Science.gov (United States)

    Hasse, S; Duong Tran, T; Hahn, O; Kindler, S; Metelmann, H-R; von Woedtke, T; Masur, K

    2016-03-01

    Over the past few decades, new cold plasma sources have been developed that have the great advantage of operating at atmospheric pressure and at temperatures tolerable by biological material. New applications for these have emerged, especially in the field of dermatology. Recently it was demonstrated that cold atmospheric-pressure plasma positively influences healing of chronic wounds. The potential of cold plasma lies in its capacity to reduce bacterial load in the wound while at the same time stimulating skin cells and therefore promoting wound closure. In recent years, there have been great advances in the understanding of the molecular mechanisms triggered by cold plasma involving signalling pathways and gene regulation in cell culture. To investigate cold plasma-induced effects in ex vivo treated human skin biopsies. Human skin tissue was exposed to cold plasma for different lengths of time, and analysed by immunofluorescence with respect to DNA damage, apoptosis, proliferation and differentiation markers. After cold plasma treatment, the epidermal integrity and keratin expression pattern remained unchanged. As expected, the results revealed an increase in apoptotic cells after 3 and 5 min of treatment. Strikingly, an induction of proliferating basal keratinocytes was detected after cold plasma exposure for 1 and 3 min. As these are the cells that regenerate the epidermis, this could indeed be beneficial for wound closure. We investigated the effect of cold plasma on human skin by detecting molecules for growth and apoptosis, and found that both processes are dependent on treatment time. Therefore, this approach offers promising results for further applications of cold plasma in clinical dermatology. © 2015 British Association of Dermatologists.

  7. Global analysis of transcriptome responses and gene expression profiles to cold stress of Jatropha curcas L.

    Science.gov (United States)

    Wang, Haibo; Zou, Zhurong; Wang, Shasha; Gong, Ming

    2013-01-01

    Jatropha curcas L., also called the Physic nut, is an oil-rich shrub with multiple uses, including biodiesel production, and is currently exploited as a renewable energy resource in many countries. Nevertheless, because of its origin from the tropical MidAmerican zone, J. curcas confers an inherent but undesirable characteristic (low cold resistance) that may seriously restrict its large-scale popularization. This adaptive flaw can be genetically improved by elucidating the mechanisms underlying plant tolerance to cold temperatures. The newly developed Illumina Hiseq™ 2000 RNA-seq and Digital Gene Expression (DGE) are deep high-throughput approaches for gene expression analysis at the transcriptome level, using which we carefully investigated the gene expression profiles in response to cold stress to gain insight into the molecular mechanisms of cold response in J. curcas. In total, 45,251 unigenes were obtained by assembly of clean data generated by RNA-seq analysis of the J. curcas transcriptome. A total of 33,363 and 912 complete or partial coding sequences (CDSs) were determined by protein database alignments and ESTScan prediction, respectively. Among these unigenes, more than 41.52% were involved in approximately 128 known metabolic or signaling pathways, and 4,185 were possibly associated with cold resistance. DGE analysis was used to assess the changes in gene expression when exposed to cold condition (12°C) for 12, 24, and 48 h. The results showed that 3,178 genes were significantly upregulated and 1,244 were downregulated under cold stress. These genes were then functionally annotated based on the transcriptome data from RNA-seq analysis. This study provides a global view of transcriptome response and gene expression profiling of J. curcas in response to cold stress. The results can help improve our current understanding of the mechanisms underlying plant cold resistance and favor the screening of crucial genes for genetically enhancing cold resistance

  8. Global analysis of transcriptome responses and gene expression profiles to cold stress of Jatropha curcas L.

    Directory of Open Access Journals (Sweden)

    Haibo Wang

    Full Text Available BACKGROUND: Jatropha curcas L., also called the Physic nut, is an oil-rich shrub with multiple uses, including biodiesel production, and is currently exploited as a renewable energy resource in many countries. Nevertheless, because of its origin from the tropical MidAmerican zone, J. curcas confers an inherent but undesirable characteristic (low cold resistance that may seriously restrict its large-scale popularization. This adaptive flaw can be genetically improved by elucidating the mechanisms underlying plant tolerance to cold temperatures. The newly developed Illumina Hiseq™ 2000 RNA-seq and Digital Gene Expression (DGE are deep high-throughput approaches for gene expression analysis at the transcriptome level, using which we carefully investigated the gene expression profiles in response to cold stress to gain insight into the molecular mechanisms of cold response in J. curcas. RESULTS: In total, 45,251 unigenes were obtained by assembly of clean data generated by RNA-seq analysis of the J. curcas transcriptome. A total of 33,363 and 912 complete or partial coding sequences (CDSs were determined by protein database alignments and ESTScan prediction, respectively. Among these unigenes, more than 41.52% were involved in approximately 128 known metabolic or signaling pathways, and 4,185 were possibly associated with cold resistance. DGE analysis was used to assess the changes in gene expression when exposed to cold condition (12°C for 12, 24, and 48 h. The results showed that 3,178 genes were significantly upregulated and 1,244 were downregulated under cold stress. These genes were then functionally annotated based on the transcriptome data from RNA-seq analysis. CONCLUSIONS: This study provides a global view of transcriptome response and gene expression profiling of J. curcas in response to cold stress. The results can help improve our current understanding of the mechanisms underlying plant cold resistance and favor the screening of

  9. Cold fusion

    International Nuclear Information System (INIS)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik

    1995-02-01

    So called 'cold fusion phenomena' are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording 4 He, 3 He, 3 H, which are not rich in quantity basically. An experiment where plenty of 4 He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author)

  10. Cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    So called `cold fusion phenomena` are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording {sup 4}He, {sup 3}He, {sup 3}H, which are not rich in quantity basically. An experiment where plenty of {sup 4}He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author).

  11. Comparative Transcriptome Analysis of Shoots and Roots of TNG67 and TCN1 Rice Seedlings under Cold Stress and Following Subsequent Recovery: Insights into Metabolic Pathways, Phytohormones, and Transcription Factors.

    Directory of Open Access Journals (Sweden)

    Yun-Wei Yang

    Full Text Available Cold stress affects rice growth, quality and yield. The investigation of genome-wide gene expression is important for understanding cold stress tolerance in rice. We performed comparative transcriptome analysis of the shoots and roots of 2 rice seedlings (TNG67, cold-tolerant; and TCN1, cold-sensitive in response to low temperatures and restoration of normal temperatures following cold exposure. TNG67 tolerated cold stress via rapid alterations in gene expression and the re-establishment of homeostasis, whereas the opposite was observed in TCN1, especially after subsequent recovery. Gene ontology and pathway analyses revealed that cold stress substantially regulated the expression of genes involved in protein metabolism, modification, translation, stress responses, and cell death. TNG67 takes advantage of energy-saving and recycling resources to more efficiently synthesize metabolites compared with TCN1 during adjustment to cold stress. During recovery, expression of OsRR4 type-A response regulators was upregulated in TNG67 shoots, whereas that of genes involved in oxidative stress, chemical stimuli and carbohydrate metabolic processes was downregulated in TCN1. Expression of genes related to protein metabolism, modification, folding and defense responses was upregulated in TNG67 but not in TCN1 roots. In addition, abscisic acid (ABA-, polyamine-, auxin- and jasmonic acid (JA-related genes were preferentially regulated in TNG67 shoots and roots and were closely associated with cold stress tolerance. The TFs AP2/ERF were predominantly expressed in the shoots and roots of both TNG67 and TCN1. The TNG67-preferred TFs which express in shoot or root, such as OsIAA23, SNAC2, OsWRKY1v2, 24, 53, 71, HMGB, OsbHLH and OsMyb, may be good candidates for cold stress tolerance-related genes in rice. Our findings highlight important alterations in the expression of cold-tolerant genes, metabolic pathways, and hormone-related and TF-encoding genes in TNG67 rice

  12. Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes

    DEFF Research Database (Denmark)

    Barah, Pankaj; Jayavelu, Naresh Doni; Rasmussen, Simon

    2013-01-01

    available from Arabidopsis thaliana 1001 genome project, we further investigated sequence polymorphisms in the core cold stress regulon genes. Significant numbers of non-synonymous amino acid changes were observed in the coding region of the CBF regulon genes. Considering the limited knowledge about......BACKGROUND: Low temperature leads to major crop losses every year. Although several studies have been conducted focusing on diversity of cold tolerance level in multiple phenotypically divergent Arabidopsis thaliana (A. thaliana) ecotypes, genome-scale molecular understanding is still lacking....... RESULTS: In this study, we report genome-scale transcript response diversity of 10 A. thaliana ecotypes originating from different geographical locations to non-freezing cold stress (10°C). To analyze the transcriptional response diversity, we initially compared transcriptome changes in all 10 ecotypes...

  13. Cold Shock Proteins: a Minireview with Special Emphasis on Csp-family of Enteropathogenic Yersinia

    Directory of Open Access Journals (Sweden)

    Riikka Keto-Timonen

    2016-07-01

    Full Text Available Bacteria have evolved a number of mechanisms for coping with stress and adapting to changing environmental conditions. Many bacteria produce small cold shock proteins (Csp as a response to rapid temperature downshift (cold shock. During cold shock, the cell membrane fluidity and enzyme activity decrease, and the efficiency of transcription and translation is reduced due to stabilization of nucleic acid secondary structures. Moreover, protein folding is inefficient and ribosome function is hampered. Csps are thought to counteract these harmful effects by serving as nucleic acid chaperons that may prevent the formation of secondary structures in mRNA at low temperature and thus facilitate the initiation of translation. However, some Csps are non-cold inducible and they are reported to be involved in various cellular processes to promote normal growth and stress adaptation responses. Csps have been shown to contribute to osmotic, oxidative, starvation, pH and ethanol stress tolerance as well as to host cell invasion. Therefore, Csps seem to have a wider role in stress tolerance of bacteria than previously assumed. Yersinia enterocolitica and Yersinia pseudotuberculosis are enteropathogens that can spread through foodstuffs and cause an enteric infection called yersiniosis. Enteropathogenic Yersinia are psychrotrophs that are able to grow at temperatures close to 0ºC and thus they set great challenges for the modern food industry. To be able to efficiently control psychrotrophic Yersinia during food production and storage, it is essential to understand the functions and roles of Csps in stress response of enteropathogenic Yersinia.

  14. Cough & Cold Medicine Abuse

    Science.gov (United States)

    ... Videos for Educators Search English Español Cough & Cold Medicine Abuse KidsHealth / For Teens / Cough & Cold Medicine Abuse ... resfriado Why Do People Use Cough and Cold Medicines to Get High? There's an ingredient in many ...

  15. Regulatory networks in pollen development under cold stress

    Directory of Open Access Journals (Sweden)

    Kamal Dev Sharma

    2016-03-01

    Full Text Available Cold stress modifies anthers’ metabolic pathways to induce pollen sterility. Cold-tolerant plants, unlike the susceptible ones, produce high proportion of viable pollen. Anthers in susceptible plants, when exposed to cold stress, increase abscisic acid (ABA metabolism and reduce ABA catabolism. Increased ABA negatively regulates expression of tapetum cell wall bound invertase and monosaccharide transport genes resulting in distorted carbohydrate pool in anther. Cold-stress also reduces endogenous levels of the bioactive gibberellins (GAs, GA4 and GA7, in susceptible anthers by repression of the GA biosynthesis genes. Here we discuss recent findings on mechanisms of cold susceptibility in anthers which determine pollen sterility. We also discuss differences in regulatory pathways between cold-stressed anthers of susceptible and tolerant plants that decide pollen sterility or viability.

  16. Cold fusion

    International Nuclear Information System (INIS)

    Bush, R.T.

    1991-01-01

    The transmission resonance model (TRM) is combined with some electrochemistry of the cathode surface and found to provide a good fit to new data on excess heat. For the first time, a model for cold fusion not only fits calorimetric data but also predicts optimal trigger points. This suggests that the model is meaningful and that the excess heat phenomenon claimed by Fleischmann and Pons is genuine. A crucial role is suggested for the overpotential and, in particular, for the concentration overpotential, i.e., the hydrogen overvoltage. Self-similar geometry, or scale invariance, i.e., a fractal nature, is revealed by the relative excess power function. Heat bursts are predicted with a scale invariance in time, suggesting a possible link between the TRM and chaos theory. The model describes a near-surface phenomenon with an estimated excess power yield of ∼1 kW/cm 3 Pd, as compared to 50 W/cm 3 of reactor core for a good fission reactor. Transmission resonance-induced nuclear transmutation, a new type of nuclear reaction, is strongly suggested with two types emphasized: transmission resonance-induced neutron transfer reactions yielding essentially the same end result as Teller's hypothesized catalytic neutron transfer and a three-body reaction promoted by standing de Broglie waves. In this paper suggestions for the anomalous production of heat, particles, and radiation are given

  17. Inducing Cold-Sensitivity in the Frigophilic Fly Drosophila montana by RNAi.

    Directory of Open Access Journals (Sweden)

    Felipe M Vigoder

    Full Text Available Cold acclimation is a critical physiological adaptation for coping with seasonal cold. By increasing their cold tolerance individuals can remain active for longer at the onset of winter and can recover more quickly from a cold shock. In insects, despite many physiological studies, little is known about the genetic basis of cold acclimation. Recently, transcriptomic analyses in Drosophila virilis and D. montana revealed candidate genes for cold acclimation by identifying genes upregulated during exposure to cold. Here, we test the role of myo-inositol-1-phosphate synthase (Inos, in cold tolerance in D. montana using an RNAi approach. D. montana has a circumpolar distribution and overwinters as an adult in northern latitudes with extreme cold. We assessed cold tolerance of dsRNA knock-down flies using two metrics: chill-coma recovery time (CCRT and mortality rate after cold acclimation. Injection of dsRNAInos did not alter CCRT, either overall or in interaction with the cold treatment, however it did induced cold-specific mortality, with high levels of mortality observed in injected flies acclimated at 5°C but not at 19°C. Overall, injection with dsRNAInos induced a temperature-sensitive mortality rate of over 60% in this normally cold-tolerant species. qPCR analysis confirmed that dsRNA injection successfully reduced gene expression of Inos. Thus, our results demonstrate the involvement of Inos in increasing cold tolerance in D. montana. The potential mechanisms involved by which Inos increases cold tolerance are also discussed.

  18. Opiates Modulate Thermosensation by Internalizing Cold Receptor TRPM8

    Directory of Open Access Journals (Sweden)

    George Shapovalov

    2013-08-01

    Full Text Available Stimulation of μ-opioid receptors (OPRMs brings powerful pain relief, but it also leads to the development of tolerance and addiction. Ensuing withdrawal in abstinent patients manifests itself with severe symptoms, including cold hyperalgesia, often preventing addicted patients from successfully completing the rehabilitation. Unsurprisingly, OPRMs have been a central point of many studies. Nonetheless, a satisfactory understanding of the pathways leading to distorted sensory responses during opiate administration and abstinence is far from complete. Here, we present a mechanism that leads to modulation by OPRMs of one of the sensory responses, thermosensation. Activation of OPRM1 leads to internalization of a cold-sensor TRPM8, which can be reversed by a follow-up treatment with the inverse OPRM agonist naloxone. Knockout of TRPM8 protein leads to a decrease in morphine-induced cold analgesia. The proposed pathway represents a universal mechanism that is probably shared by regulatory pathways modulating general pain sensation in response to opioid treatment.

  19. Identification and expression analysis of cold and freezing stress responsive genes of Brassica oleracea.

    Science.gov (United States)

    Ahmed, Nasar Uddin; Jung, Hee-Jeong; Park, Jong-In; Cho, Yong-Gu; Hur, Yoonkang; Nou, Ill-Sup

    2015-01-10

    Cold and freezing stress is a major environmental constraint to the production of Brassica crops. Enhancement of tolerance by exploiting cold and freezing tolerance related genes offers the most efficient approach to address this problem. Cold-induced transcriptional profiling is a promising approach to the identification of potential genes related to cold and freezing stress tolerance. In this study, 99 highly expressed genes were identified from a whole genome microarray dataset of Brassica rapa. Blast search analysis of the Brassica oleracea database revealed the corresponding homologous genes. To validate their expression, pre-selected cold tolerant and susceptible cabbage lines were analyzed. Out of 99 BoCRGs, 43 were differentially expressed in response to varying degrees of cold and freezing stress in the contrasting cabbage lines. Among the differentially expressed genes, 18 were highly up-regulated in the tolerant lines, which is consistent with their microarray expression. Additionally, 12 BoCRGs were expressed differentially after cold stress treatment in two contrasting cabbage lines, and BoCRG54, 56, 59, 62, 70, 72 and 99 were predicted to be involved in cold regulatory pathways. Taken together, the cold-responsive genes identified in this study provide additional direction for elucidating the regulatory network of low temperature stress tolerance and developing cold and freezing stress resistant Brassica crops. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Large reptiles and cold temperatures: Do extreme cold spells set distributional limits for tropical reptiles in Florida?

    Science.gov (United States)

    Mazzotti, Frank J.; Cherkiss, Michael S.; Parry, Mark; Beauchamp, Jeff; Rochford, Mike; Smith, Brian J.; Hart, Kristen M.; Brandt, Laura A.

    2016-01-01

    Distributional limits of many tropical species in Florida are ultimately determined by tolerance to low temperature. An unprecedented cold spell during 2–11 January 2010, in South Florida provided an opportunity to compare the responses of tropical American crocodiles with warm-temperate American alligators and to compare the responses of nonnative Burmese pythons with native warm-temperate snakes exposed to prolonged cold temperatures. After the January 2010 cold spell, a record number of American crocodiles (n = 151) and Burmese pythons (n = 36) were found dead. In contrast, no American alligators and no native snakes were found dead. American alligators and American crocodiles behaved differently during the cold spell. American alligators stopped basking and retreated to warmer water. American crocodiles apparently continued to bask during extreme cold temperatures resulting in lethal body temperatures. The mortality of Burmese pythons compared to the absence of mortality for native snakes suggests that the current population of Burmese pythons in the Everglades is less tolerant of cold temperatures than native snakes. Burmese pythons introduced from other parts of their native range may be more tolerant of cold temperatures. We documented the direct effects of cold temperatures on crocodiles and pythons; however, evidence of long-term effects of cold temperature on their populations within their established ranges remains lacking. Mortality of crocodiles and pythons outside of their current established range may be more important in setting distributional limits.

  1. Tip model of cold fission

    International Nuclear Information System (INIS)

    Goennenwein, F.; Boersig, B.

    1991-01-01

    Cold fission is defined to be the limiting case of nuclear fission where virtually all of the available energy is converted into the total kinetic energy of the fragments. The fragments have, therefore, to be born in or at least close to their respective ground states. Starting from the viewpoint that cold fission corresponds to most compact scission configurations, energy constraints have been exploited to calculate minimum tip distances between the two nascent fragments in binary fission. Crucial input parameters to this tip model of cold fission are the ground-state deformations of fragment nuclei. It is shown that the minimum tip distances being compatible with energy conservation vary strongly with both the mass and charge fragmentation of the fission prone nucleus. The tip distances refer to nuclei with equivalent sharp surfaces. In keeping with the size of the surface width of leptodermous nuclei, only configurations where the tip distances are smaller than a few fm may be considered as valid scission configurations. From a comparison with experimental data on cold fission this critical tip distance appears to be 3.0 fm for the model parameters chosen. Whenever the model calculation yields tip distances being smaller than the critical value, a necessary condition for attaining cold fission is considered to be fulfilled. It is shown that this criterion allows to understand in fair agreement with experiment which mass fragmentations are susceptible to lead to cold fission and which fragment-charge divisions are the most favored in each isobaric mass chain. Being based merely on energy arguments, the model cannot aim at predicting fragment yields in cold fission. However, the tip model proposed appears well suited to delineate the phase space where cold fission phenomena may come into sight. (orig.)

  2. Psychrotrophic metal tolerant bacteria for mobilisation of metals in Antarctic waters

    Digital Repository Service at National Institute of Oceanography (India)

    Gonsalves, M.J.B.D.

    Cold tolerant psychrotrophic bacteria abound in the Antarctic waters. While Antarctic krills are known to concentrate heavy metals at ppm levels, psychrotrophic bacteria from Antarctic fresh and marine waters have been reported to tolerate them...

  3. Effects of Starvation and Thermal Stress on the Thermal Tolerance of Silkworm, Bombyx mori: Existence of Trade-offs and Cross-Tolerances.

    Science.gov (United States)

    Mir, A H; Qamar, A

    2017-09-27

    Organisms, in nature, are often subjected to multiple stressors, both biotic and abiotic. Temperature and starvation are among the main stressors experienced by organisms in their developmental cycle and the responses to these stressors may share signaling pathways, which affects the way these responses are manifested. Temperature is a major factor governing the performance of ectothermic organisms in ecosystems worldwide and, therefore, the thermal tolerance is a central issue in the thermobiology of these organisms. Here, we investigated the effects of starvation as well as mild heat and cold shocks on the thermal tolerance of the larvae of silkworm, Bombyx mori (Linnaeus). Starvation acted as a meaningful or positive stressor as it improved cold tolerance, measured as chill coma recovery time (CCRT), but, at the same time, it acted as a negative stressor and impaired the heat tolerance, measured as heat knockdown time (HKT). In the case of heat tolerance, starvation negated the positive effects of both mild cold as well as mild heat shocks and thus indicated the existence of trade-off between these stressors. Both mild heat and cold shocks improved the thermal tolerance, but the effects were more prominent when the indices were measured in response to a stressor of same type, i.e., a mild cold shock improved the cold tolerance more than the heat tolerance and vice versa. This improvement in thermal tolerance by both mild heat as well as cold shocks indicated the possibility of cross-tolerance between these stressors.

  4. Review on Cold-Formed Steel Connections

    Science.gov (United States)

    Tan, Cher Siang; Mohammad, Shahrin; Md Tahir, Mahmood; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed. PMID:24688448

  5. Persistence and drug tolerance in pathogenic yeast

    DEFF Research Database (Denmark)

    Bojsen, Rasmus Kenneth; Regenberg, Birgitte; Folkesson, Sven Anders

    2017-01-01

    In this review, we briefly summarize the current understanding of how fungal pathogens can persist antifungal treatment without heritable resistance mutations by forming tolerant persister cells. Fungal infections tolerant to antifungal treatment have become a major medical problem. One mechanism...

  6. Om tolerance

    DEFF Research Database (Denmark)

    Huggler, Jørgen

    2007-01-01

    Begrebet tolerance og dets betydninger diskuteres med henblik på en tydeliggørelse af begrebets forbindelse med stat, religion, ytringsfrihed, skeptisk erkendelsesteori, antropologi og pædagogik.......Begrebet tolerance og dets betydninger diskuteres med henblik på en tydeliggørelse af begrebets forbindelse med stat, religion, ytringsfrihed, skeptisk erkendelsesteori, antropologi og pædagogik....

  7. Molecular Plasticity under Ocean Warming: Proteomics and Fitness Data Provides Clues for a Better Understanding of the Thermal Tolerance in Fish.

    Science.gov (United States)

    Madeira, Diana; Araújo, José E; Vitorino, Rui; Costa, Pedro M; Capelo, José L; Vinagre, Catarina; Diniz, Mário S

    2017-01-01

    Ocean warming is known to alter the performance and fitness of marine organisms albeit the proteome underpinnings of species thermal tolerance are still largely unknown. In this 1-month experiment we assessed the vulnerability of the gilt-head sea bream Sparus aurata , taken here as a biological model for some key fisheries species, to ocean warming (control 18°C, nursery ground temperature 24°C and heat wave 30°C). Survival was impaired after 28 days, mainly at 30°C although fishes' condition was unaltered. Muscle proteome modulation was assessed at 14 and 21 days, showing that protein expression profiles were similar between fish exposed to 18 and 24°C, differing from fish exposed to 30°C. Fish subjected to 24°C showed an enhanced glycolytic potential and decreased glycogenolysis mainly at 14 days of exposure. Fish subjected to 30°C also showed enhanced glycolytic potential and up-regulated proteins related to gene expression, cellular stress response (CSR), and homeostasis (mostly cytoskeletal dynamics, acid-base balance, chaperoning). However, inflammatory processes were elicited at 21 days along with a down-regulation of the tricarboxylic acid cycle. Thus, juvenile fish seem able to acclimate to 24°C but possibly not to 30°C, which is the predicted temperature for estuaries during heat waves by the year 2100. This may be related with increasing constraints on organism physiology associated with metabolic scope available for performance and fitness at higher temperatures. Consequently, recruitment of commercial sea breams may be in jeopardy, highlighting the need for improved management plans for fish stocks.

  8. Molecular Plasticity under Ocean Warming: Proteomics and Fitness Data Provides Clues for a Better Understanding of the Thermal Tolerance in Fish

    Directory of Open Access Journals (Sweden)

    Diana Madeira

    2017-10-01

    Full Text Available Ocean warming is known to alter the performance and fitness of marine organisms albeit the proteome underpinnings of species thermal tolerance are still largely unknown. In this 1-month experiment we assessed the vulnerability of the gilt-head sea bream Sparus aurata, taken here as a biological model for some key fisheries species, to ocean warming (control 18°C, nursery ground temperature 24°C and heat wave 30°C. Survival was impaired after 28 days, mainly at 30°C although fishes' condition was unaltered. Muscle proteome modulation was assessed at 14 and 21 days, showing that protein expression profiles were similar between fish exposed to 18 and 24°C, differing from fish exposed to 30°C. Fish subjected to 24°C showed an enhanced glycolytic potential and decreased glycogenolysis mainly at 14 days of exposure. Fish subjected to 30°C also showed enhanced glycolytic potential and up-regulated proteins related to gene expression, cellular stress response (CSR, and homeostasis (mostly cytoskeletal dynamics, acid-base balance, chaperoning. However, inflammatory processes were elicited at 21 days along with a down-regulation of the tricarboxylic acid cycle. Thus, juvenile fish seem able to acclimate to 24°C but possibly not to 30°C, which is the predicted temperature for estuaries during heat waves by the year 2100. This may be related with increasing constraints on organism physiology associated with metabolic scope available for performance and fitness at higher temperatures. Consequently, recruitment of commercial sea breams may be in jeopardy, highlighting the need for improved management plans for fish stocks.

  9. Grooved cold moderator tests

    International Nuclear Information System (INIS)

    Inoue, K.; Kiyanagi, Y.; Iwasa, H.; Watanabe, N.; Ikeda, S.; Carpenter, J.M.; Ishikawa, Y.

    1983-01-01

    We performed some grooved cold moderator experiments for methane at 20 K by using the Hokkaido University linac to obtain information to be used in the planning of the KENS-I' project. Cold neutron gains, spatial distribution of emitted beams and time distribution of the neutrons in the grooved cold moderator were measured. Furthermore, we assessed the effects of the grooved cold moderator on the performances of the spectrometers presently installed at the KENS-I cold source. We concluded that the grooved cold moderator benefited appreciably the performances of the spectrometers

  10. Salicylic-Acid-Induced Chilling- and Oxidative-Stress Tolerance in Relation to Gibberellin Homeostasis, C-Repeat/Dehydration-Responsive Element Binding Factor Pathway, and Antioxidant Enzyme Systems in Cold-Stored Tomato Fruit.

    Science.gov (United States)

    Ding, Yang; Zhao, Jinhong; Nie, Ying; Fan, Bei; Wu, Shujuan; Zhang, Yu; Sheng, Jiping; Shen, Lin; Zhao, Ruirui; Tang, Xuanming

    2016-11-02

    Effects of salicylic acid (SA) on gibberellin (GA) homeostasis, C-repeat/dehydration-responsive element binding factor (CBF) pathway, and antioxidant enzyme systems linked to chilling- and oxidative-stress tolerance in tomato fruit were investigated. Mature green tomatoes (Solanum lycopersicum L. cv. Moneymaker) were treated with 0, 0.5, and 1 mM SA solution for 15 min before storage at 4 °C for 28 days. In comparison to 0 or 0.5 mM SA, 1 mM SA significantly decreased the chilling injury (CI) index in tomato fruit. In the SA-treated fruit, the upregulation of GA biosynthetic gene (GA3ox1) expression was followed by gibberellic acid (GA 3 ) surge and DELLA protein degradation. CBF1 participated in the SA-modulated tolerance and stimulated the expression of GA catabolic gene (GA2ox1). Furthermore, 1 mM SA enhanced activities of antioxidant enzymes and, thus, reduced reactive oxygen species accumulation. Our findings suggest that SA might protect tomato fruit from CI and oxidative damage through regulating GA metabolism, CBF1 gene expression, and antioxidant enzyme activities.

  11. Cold Plasmas for Biofilm Control: Opportunities and Challenges.

    Science.gov (United States)

    Gilmore, Brendan F; Flynn, Padrig B; O'Brien, Séamus; Hickok, Noreen; Freeman, Theresa; Bourke, Paula

    2018-06-01

    Bacterial biofilm infections account for a major proportion of chronic and medical device associated infections in humans, yet our ability to control them is compromised by their inherent tolerance to antimicrobial agents. Cold atmospheric plasma (CAP) represents a promising therapeutic option. CAP treatment of microbial biofilms represents the convergence of two complex phenomena: the production of a chemically diverse mixture of reactive species and intermediates, and their interaction with a heterogeneous 3D interface created by the biofilm extracellular polymeric matrix. Therefore, understanding these interactions and physiological responses to CAP exposure are central to effective management of infectious biofilms. We review the unique opportunities and challenges for translating CAP to the management of biofilms. Copyright © 2018. Published by Elsevier Ltd.

  12. The impact of cold spells on mortality and effect modification by cold spell characteristics

    Science.gov (United States)

    Wang, Lijun; Liu, Tao; Hu, Mengjue; Zeng, Weilin; Zhang, Yonghui; Rutherford, Shannon; Lin, Hualiang; Xiao, Jianpeng; Yin, Peng; Liu, Jiangmei; Chu, Cordia; Tong, Shilu; Ma, Wenjun; Zhou, Maigeng

    2016-12-01

    In China, the health impact of cold weather has received little attention, which limits our understanding of the health impacts of climate change. We collected daily mortality and meteorological data in 66 communities across China from 2006 to 2011. Within each community, we estimated the effect of cold spell exposure on mortality using a Distributed Lag Nonlinear Model (DLNM). We also examined the modification effect of cold spell characteristics (intensity, duration, and timing) and individual-specific factors (causes of death, age, gender and education). Meta-analysis method was finally used to estimate the overall effects. The overall cumulative excess risk (CER) of non-accidental mortality during cold spell days was 28.2% (95% CI: 21.4%, 35.3%) compared with non-cold spell days. There was a significant increase in mortality when the cold spell duration and intensity increased or occurred earlier in the season. Cold spell effects and effect modification by cold spell characteristics were more pronounced in south China. The elderly, people with low education level and those with respiratory diseases were generally more vulnerable to cold spells. Cold spells statistically significantly increase mortality risk in China, with greater effects in southern China. This effect is modified by cold spell characteristics and individual-level factors.

  13. Conceptualizing Cold Disasters

    DEFF Research Database (Denmark)

    Lauta, Kristian Cedervall; Dahlberg, Rasmus; Vendelø, Morten Thanning

    2017-01-01

    In the present article, we explore in more depth the particular circumstances and characteristics of governing what we call ‘cold disasters’, and thereby, the paper sets out to investigate how disasters in cold contexts distinguish themselves from other disasters, and what the implications hereof...... are for the conceptualization and governance of cold disasters. Hence, the paper can also be viewed as a response to Alexander’s (2012a) recent call for new theory in the field of disaster risk reduction. The article is structured in four overall parts. The first part, Cold Context, provides an overview of the specific...... conditions in a cold context, exemplified by the Arctic, and zooms in on Greenland to provide more specific background for the paper. The second part, Disasters in Cold Contexts, discusses “cold disasters” in relation to disaster theory, in order to, elucidate how cold disasters challenge existing...

  14. Working in the Cold

    Centers for Disease Control (CDC) Podcasts

    During the winter, many workers are outdoors, working in cold, wet, icy, or snowy conditions. Learn how to identify symptoms that tell you there may be a problem and protect yourself from cold stress.

  15. Colds and the Flu

    Science.gov (United States)

    ... disease (COPD). What medicines can I give my child? There is no cure for the cold or the flu, and antibiotics do not work against the viruses that cause colds and the flu. Pain relievers such as ...

  16. Cold knife cone biopsy

    Science.gov (United States)

    ... biopsy; Pap smear - cone biopsy; HPV - cone biopsy; Human papilloma virus - cone biopsy; Cervix - cone biopsy; Colposcopy - cone biopsy Images Female reproductive anatomy Cold cone biopsy Cold cone removal References Baggish ...

  17. Cold medicines and children

    Science.gov (United States)

    ... ingredient. Avoid giving more than one OTC cold medicine to your child. It may cause an overdose with severe side ... the dosage instructions strictly while giving an OTC medicine to your child. When giving OTC cold medicines to your child: ...

  18. Towards Tolerance

    NARCIS (Netherlands)

    Lisette Kuyper; Jurjen Iedema; Saskia Keuzenkamp

    2013-01-01

    Across Europe, public attitudes towards lesbian, gay and bisexual (LGB) individuals range from broad tolerance to widespread rejection. Attitudes towards homosexuality are more than mere individual opinions, but form part of the social and political structures which foster or hinder the equality

  19. Intolerant tolerance.

    Science.gov (United States)

    Khushf, G

    1994-04-01

    The Hyde Amendment and Roman Catholic attempts to put restrictions on Title X funding have been criticized for being intolerant. However, such criticism fails to appreciate that there are two competing notions of tolerance, one focusing on the limits of state force and accepting pluralism as unavoidable, and the other focusing on the limits of knowledge and advancing pluralism as a good. These two types of tolerance, illustrated in the writings of John Locke and J.S. Mill, each involve an intolerance. In a pluralistic context where the free exercise of religion is respected, John Locke's account of tolerance is preferable. However, it (in a reconstructed form) leads to a minimal state. Positive entitlements to benefits like artificial contraception or nontherapeutic abortions can legitimately be resisted, because an intolerance has already been shown with respect to those that consider the benefit immoral, since their resources have been coopted by taxation to advance an end that is contrary to their own. There is a sliding scale from tolerance (viewed as forbearance) to the affirmation of communal integrity, and this scale maps on to the continuum from negative to positive rights.

  20. The peer effect on pain tolerance.

    Science.gov (United States)

    Engebretsen, Solveig; Frigessi, Arnoldo; Engø-Monsen, Kenth; Furberg, Anne-Sofie; Stubhaug, Audun; de Blasio, Birgitte Freiesleben; Nielsen, Christopher Sivert

    2018-05-19

    Twin studies have found that approximately half of the variance in pain tolerance can be explained by genetic factors, while shared family environment has a negligible effect. Hence, a large proportion of the variance in pain tolerance is explained by the (non-shared) unique environment. The social environment beyond the family is a potential candidate for explaining some of the variance in pain tolerance. Numerous individual traits have previously shown to be associated with friendship ties. In this study, we investigate whether pain tolerance is associated with friendship ties. We study the friendship effect on pain tolerance by considering data from the Tromsø Study: Fit Futures I, which contains pain tolerance measurements and social network information for adolescents attending first year of upper secondary school in the Tromsø area in Northern Norway. Pain tolerance was measured with the cold-pressor test (primary outcome), contact heat and pressure algometry. We analyse the data by using statistical methods from social network analysis. Specifically, we compute pairwise correlations in pain tolerance among friends. We also fit network autocorrelation models to the data, where the pain tolerance of an individual is explained by (among other factors) the average pain tolerance of the individual's friends. We find a significant and positive relationship between the pain tolerance of an individual and the pain tolerance of their friends. The estimated effect is that for every 1 s increase in friends' average cold-pressor tolerance time, the expected cold-pressor pain tolerance of the individual increases by 0.21 s (p-value: 0.0049, sample size n=997). This estimated effect is controlled for sex. The friendship effect remains significant when controlling for potential confounders such as lifestyle factors and test sequence among the students. Further investigating the role of sex on this friendship effect, we only find a significant peer effect of male friends

  1. Finger cold-induced vasodilation of older Korean female divers, haenyeo: effects of chronic cold exposure and aging

    Science.gov (United States)

    Lee, Joo-Young; Park, Joonhee; Koh, Eunsook; Cha, Seongwon

    2017-07-01

    The aim of the present study was to evaluate the local cold tolerance of older Korean female divers, haenyeo ( N = 22) in terms of cold acclimatization and ageing. As control groups, older non-diving females ( N = 25) and young females from a rural area ( N = 15) and an urban area ( N = 51) participated in this study. To evaluate local cold tolerance, finger cold-induced vasodilation (CIVD) during finger immersion of 4 °C water was examined. As a result, older haenyeos showed greater minimum finger temperature and recovery finger temperature than older non-diving females ( P < 0.05), but similar responses in onset time, peak time, maximum finger temperature, frequency of CIVD, heart rate, blood pressure, and thermal and pain sensations as those of older non-diving females. Another novel finding was that young urban females showed more vulnerable responses to local cold in CIVD variables and subjective sensations when compared to older females, whereas young rural females had the most excellent cold tolerance in terms of maximum temperature and frequency of CIVD among the four groups ( P < 0.05). The present results imply that older haenyeos still retain cold acclimatized features on the periphery even though they changed their cotton diving suits to wet suits in the early 1980s. However, cardiovascular responses and subjective sensations to cold reflect aging effects. In addition, we suggest that young people who have been adapted to highly insulated clothing and indoor heating systems in winter should be distinguished from young people who were exposed to less modern conveniences when compared to the aged in terms of cold tolerance.

  2. How cold is cold dark matter?

    International Nuclear Information System (INIS)

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T.

    2014-01-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter today (away from collapsed structures). These limits imply that the present cold dark matter velocity dispersion has to be smaller than 54 m/s. Cold dark matter has to be quite cold, indeed

  3. Cold perception and gene expression differ in Olea europaea seed coat and embryo during drupe cold acclimation.

    Science.gov (United States)

    D'Angeli, S; Falasca, G; Matteucci, M; Altamura, M M

    2013-01-01

    FAD2 and FAD7 desaturases are involved in cold acclimation of olive (Olea europaea) mesocarp. There is no research information available on cold acclimation of seeds during mesocarp cold acclimation or on differences in the cold response of the seed coat and embryo. How FAD2 and FAD7 affect seed coat and embryo cold responses is unknown. Osmotin positively affects cold acclimation in olive tree vegetative organs, but its role in the seeds requires investigation. OeFAD2.1, OeFAD2.2, OeFAD7 and Oeosmotin were investigated before and after mesocarp acclimation by transcriptomic, lipidomic and immunolabelling analyses, and cytosolic calcium concentration ([Ca(2+)](cyt)) signalling, F-actin changes and seed development were investigated by epifluorescence/histological analyses. Transient [Ca(2+)](cyt) rises and F-actin disassembly were found in cold-shocked protoplasts from the seed coat, but not from the embryo. The thickness of the outer endosperm cuticle increased during drupe exposure to lowering of temperature, whereas the embryo protoderm always lacked cuticle. OeFAD2 transcription increased in both the embryo and seed coat in the cold-acclimated drupe, but linoleic acid (i.e. the product of FAD2 activity) increased solely in the seed coat. Osmotin was immunodetected in the seed coat and endosperm of the cold-acclimated drupe, and not in the embryo. The results show cold responsiveness in the seed coat and cold tolerance in the embryo. We propose a role for the seed coat in maintaining embryo cold tolerance by increasing endosperm cutinization through FAD2 and osmotin activities. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  4. Performance differences of Rhode Island Red, Bashang Long-tail Chicken, and their reciprocal crossbreds under natural cold stress.

    Science.gov (United States)

    Xie, Shanshan; Yang, Xukai; Gao, Yahui; Jiao, Wenjie; Li, Xinghua; Li, Yajie; Ning, Zhonghua

    2017-10-01

    The Bashang Long-tail chicken (BS), an indigenous Chinese breed, is considered cold tolerant. We selected BS, the Rhode Island Red (RIR), and their reciprocal crossbreds for the present study. The objectives were: i) to validate whether BS is cold tolerant and whether egg production and cold tolerance of crossbreds could be improved; and ii) to determine the physiological characteristics that underlie cold tolerance and favorable egg production performance in cold environments. A total of 916 chickens were reared in warm and natural cold environments (daily mean ambient temperature varied from 7.4°C to 26.5°C in the warm environment and from -17.5°C to 27.0°C in the cold environment). To investigate their adaptability to the cold environment, the egg production performance and body weight were monitored and compared between breeds and environments. The cloacal temperature and serum biochemical parameters were monitored to reveal the physiological characteristics underlie cold tolerance and favorable egg production performance in the cold environment. The warm environment experiment showed that RIR had the highest egg production performance, and that the reciprocal crossbreds had a higher egg production performance than BS. While in the cold environment RIR had the lowest egg production performance, and the reciprocal crossbreds had a higher egg production performance than BS. In the cold environment BS and reciprocal crossbreds had higher triiodothyronine, tetraiodothyronine levels than RIR. At 35 and 39 wk of age, when the ambient temperature was extremely low (varied from -20°C to 0°C), serum glucose, follicle-stimulating hormone, luteinizing hormone, estradiol of BS and crossbreds were higher than RIR. Bashang Long-tail chicken has a favorable cold tolerance ability. Crossbreeding with RIR and BS is an effective way to develop cold tolerant chickens with improved egg production performance.

  5. Cold temperatures increase cold hardiness in the next generation Ophraella communa beetles.

    Directory of Open Access Journals (Sweden)

    Zhong-Shi Zhou

    Full Text Available The leaf beetle, Ophraella communa, has been introduced to control the spread of the common ragweed, Ambrosia artemisiifolia, in China. We hypothesized that the beetle, to be able to track host-range expansion into colder climates, can phenotypically adapt to cold temperatures across generations. Therefore, we questioned whether parental experience of colder temperatures increases cold tolerance of the progeny. Specifically, we studied the demography, including development, fecundity, and survival, as well as physiological traits, including supercooling point (SCP, water content, and glycerol content of O. communa progeny whose parents were maintained at different temperature regimes. Overall, the entire immature stage decreased survival of about 0.2%-4.2% when parents experienced cold temperatures compared to control individuals obtained from parents raised at room temperature. However, intrinsic capacity for increase (r, net reproductive rate (R 0 and finite rate of increase (λ of progeny O. communa were maximum when parents experienced cold temperatures. Glycerol contents of both female and male in progeny was significantly higher when maternal and paternal adults were cold acclimated as compared to other treatments. This resulted in the supercooling point of the progeny adults being significantly lower compared to beetles emerging from parents that experienced room temperatures. These results suggest that cold hardiness of O. communa can be promoted by cold acclimation in previous generation, and it might counter-balance reduced survival in the next generation, especially when insects are tracking their host-plants into colder climates.

  6. Is the wide distribution of aspen a result of its stress tolerance?

    Science.gov (United States)

    V. J. Lieffers; S. M. Landhausser; E. H. Hogg

    2001-01-01

    Populus tremuloides is distributed from drought-prone fringes of the Great Plains to extremely cold sites at arctic treeline. To occupy these conditions aspen appears to be more tolerant of stress than the other North American species of the genus Populus. Cold winters, cold soil conditions during the growing season, periodic drought, insect defoliation, and...

  7. Heat tolerance in wheat

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari

    As a consequence of global climate change, heat stress together with other abiotic stresses will remain an important determinant of future food security. Wheat (Triticum aestivum L.) is the third most important crop of the world feeding one third of the world population. Being a crop of temperate...... climate, wheat is sensitive to heat stress. We need to understand how our crops will perform in these changing climatic conditions and how we can develop varieties, which are more tolerant. The PhD study focussed on understanding heat tolerance in wheat with a combined approach of plant physiology...... and quantitative genetics in particular, plant phenotyping based quantitative trait loci (QTL) discovery for a physiological trait under heat stress. Chlorophyll a fluorescence trait, Fv/Fm was used as a phenotyping tool, as it reflects the effect of heat stress on maximum photochemical efficiency of photosystem...

  8. The molecular and cellular basis of cold sensation.

    Science.gov (United States)

    McKemy, David D

    2013-02-20

    Of somatosensory modalities, cold is one of the more ambiguous percepts, evoking the pleasant sensation of cooling, the stinging bite of cold pain, and welcome relief from chronic pain. Moreover, unlike the precipitous thermal thresholds for heat activation of thermosensitive afferent neurons, thresholds for cold fibers are across a range of cool to cold temperatures that spans over 30 °C. Until recently, how cold produces this myriad of biological effects has been poorly studied, yet new advances in our understanding of cold mechanisms may portend a better understanding of sensory perception as well as provide novel therapeutic approaches. Chief among these was the identification of a number of ion channels that either serve as the initial detectors of cold as a stimulus in the peripheral nervous system, or are part of rather sophisticated differential expression patterns of channels that conduct electrical signals, thereby endowing select neurons with properties that are amenable to electrical signaling in the cold. This review highlights the current understanding of the channels involved in cold transduction as well as presents a hypothetical model to account for the broad range of cold thermal thresholds and distinct functions of cold fibers in perception, pain, and analgesia.

  9. Cold formability of steels

    International Nuclear Information System (INIS)

    Lafond, G.; Leclerq, G.; Moliexe, F.; Namdar, R.; Roesch, L.; Sanz, G.

    1977-01-01

    This work was essentially aimed to the study of the following three questions. Is it possible to assess the cold formability of steels using simple material properties as criteria. What values of mechanical properties can one expect to reach in cold formed parts. Are there simple ways of characterizing the speroidization treatments carried out on steels before cold forming operations. The present report describes the results obtained during this investigation. It is logically divided into three separate parts. Experimental study of cold formability in wire drawing. Influence of metallurgical variables on mechanical properties of high carbon cold drawn wires. Contribution to the study of characterization methods of cold forming steels subjected to a spheroidization heat treatment

  10. Cold fusion, Alchemist's dream

    International Nuclear Information System (INIS)

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D 2 molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D 2 fusion at low energies; fusion of deuterons into 4 He; secondary D+T fusion within the hydrogenated metal lattice; 3 He to 4 He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of 3 He/ 4 He

  11. Cold Antimatter Plasmas, and Aspirations for Cold Antihydrogen

    Science.gov (United States)

    2002-06-24

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012494 TITLE: Cold Antimatter Plasmas, and Aspirations for Cold...part numbers comprise the compilation report: ADP012489 thru ADP012577 UNCLASSIFIED Cold Antimatter Plasmas, and Aspirations for Cold Antihydrogen G...and positrons. The antiprotons come initially from the new Antiproton Decel- erator facility at CERN. Good control of such cold antimatter plasmas is

  12. Comparative Phosphoproteomics Reveals an Important Role of MKK2 in Banana (Musa spp.) Cold Signal Network

    Science.gov (United States)

    Gao, Jie; Zhang, Sheng; He, Wei-Di; Shao, Xiu-Hong; Li, Chun-Yu; Wei, Yue-Rong; Deng, Gui-Ming; Kuang, Rui-Bin; Hu, Chun-Hua; Yi, Gan-Jun; Yang, Qiao-Song

    2017-01-01

    Low temperature is one of the key environmental stresses, which greatly affects global banana production. However, little is known about the global phosphoproteomes in Musa spp. and their regulatory roles in response to cold stress. In this study, we conducted a comparative phosphoproteomic profiling of cold-sensitive Cavendish Banana and relatively cold tolerant Dajiao under cold stress. Phosphopeptide abundances of five phosphoproteins involved in MKK2 interaction network, including MKK2, HY5, CaSR, STN7 and kinesin-like protein, show a remarkable difference between Cavendish Banana and Dajiao in response to cold stress. Western blotting of MKK2 protein and its T31 phosphorylated peptide verified the phosphoproteomic results of increased T31 phosphopeptide abundance with decreased MKK2 abundance in Daojiao for a time course of cold stress. Meanwhile increased expression of MKK2 with no detectable T31 phosphorylation was found in Cavendish Banana. These results suggest that the MKK2 pathway in Dajiao, along with other cold-specific phosphoproteins, appears to be associated with the molecular mechanisms of high tolerance to cold stress in Dajiao. The results also provide new evidence that the signaling pathway of cellular MKK2 phosphorylation plays an important role in abiotic stress tolerance that likely serves as a universal plant cold tolerance mechanism. PMID:28106078

  13. Mechanical tolerance stackup and analysis

    CERN Document Server

    Fischer, Bryan R

    2011-01-01

    Use Tolerance Analysis Techniques to Avoid Design, Quality, and Manufacturing Problems Before They Happen Often overlooked and misunderstood, tolerance analysis is a critical part of improving products and their design processes. Because all manufactured products are subject to variation, it is crucial that designers predict and understand how these changes can affect form, fit, and function of parts and assemblies--and then communicate their findings effectively. Written by one of the developers of ASME Y14.5 and other geometric dimension and tolerancing (GD&T) standards, Mechanical Tolerance

  14. The Small-RNA Profiles of Almond (Prunus dulcis Mill. Reproductive Tissues in Response to Cold Stress.

    Directory of Open Access Journals (Sweden)

    Marzieh Karimi

    Full Text Available Spring frost is an important environmental stress that threatens the production of Prunus trees. However, little information is available regarding molecular response of these plants to the frost stress. Using high throughput sequencing, this study was conducted to identify differentially expressed miRNAs, both the conserved and the non-conserved ones, in the reproductive tissues of almond tolerant H genotype under cold stress. Analysis of 50 to 58 million raw reads led to identification of 174 unique conserved and 59 novel microRNAs (miRNAs. Differential expression pattern analysis showed that 50 miRNA families were expressed differentially in one or both of almond reproductive tissues (anther and ovary. Out of these 50 miRNA families, 12 and 15 displayed up-regulation and down-regulation, respectively. The distribution of conserved miRNA families indicated that miR482f harbor the highest number of members. Confirmation of miRNAs expression patterns by quantitative real- time PCR (qPCR was performed in cold tolerant (H genotype alongside a sensitive variety (Sh12 genotype. Our analysis revealed differential expression for 9 miRNAs in anther and 3 miRNAs in ovary between these two varieties. Target prediction of miRNAs followed by differential expression analysis resulted in identification of 83 target genes, mostly transcription factors. This study comprehensively catalogued expressed miRNAs under different temperatures in two reproductive tissues (anther and ovary. Results of current study and the previous RNA-seq study, which was conducted in the same tissues by our group, provide a unique opportunity to understand the molecular basis of responses of almond to cold stress. The results can also enhance the possibility for gene manipulation to develop cold tolerant plants.

  15. The Small-RNA Profiles of Almond (Prunus dulcis Mill.) Reproductive Tissues in Response to Cold Stress.

    Science.gov (United States)

    Karimi, Marzieh; Ghazanfari, Farahnaz; Fadaei, Adeleh; Ahmadi, Laleh; Shiran, Behrouz; Rabei, Mohammad; Fallahi, Hossein

    2016-01-01

    Spring frost is an important environmental stress that threatens the production of Prunus trees. However, little information is available regarding molecular response of these plants to the frost stress. Using high throughput sequencing, this study was conducted to identify differentially expressed miRNAs, both the conserved and the non-conserved ones, in the reproductive tissues of almond tolerant H genotype under cold stress. Analysis of 50 to 58 million raw reads led to identification of 174 unique conserved and 59 novel microRNAs (miRNAs). Differential expression pattern analysis showed that 50 miRNA families were expressed differentially in one or both of almond reproductive tissues (anther and ovary). Out of these 50 miRNA families, 12 and 15 displayed up-regulation and down-regulation, respectively. The distribution of conserved miRNA families indicated that miR482f harbor the highest number of members. Confirmation of miRNAs expression patterns by quantitative real- time PCR (qPCR) was performed in cold tolerant (H genotype) alongside a sensitive variety (Sh12 genotype). Our analysis revealed differential expression for 9 miRNAs in anther and 3 miRNAs in ovary between these two varieties. Target prediction of miRNAs followed by differential expression analysis resulted in identification of 83 target genes, mostly transcription factors. This study comprehensively catalogued expressed miRNAs under different temperatures in two reproductive tissues (anther and ovary). Results of current study and the previous RNA-seq study, which was conducted in the same tissues by our group, provide a unique opportunity to understand the molecular basis of responses of almond to cold stress. The results can also enhance the possibility for gene manipulation to develop cold tolerant plants.

  16. Infectious Tolerance

    OpenAIRE

    Jonuleit, Helmut; Schmitt, Edgar; Kakirman, Hacer; Stassen, Michael; Knop, Jürgen; Enk, Alexander H.

    2002-01-01

    Regulatory CD4+CD25+ T cells (Treg) are mandatory for maintaining immunologic self-tolerance. We demonstrate that the cell-cell contact–mediated suppression of conventional CD4+ T cells by human CD25+ Treg cells is fixation resistant, independent from membrane-bound TGF-β but requires activation and protein synthesis of CD25+ Treg cells. Coactivation of CD25+ Treg cells with Treg cell–depleted CD4+ T cells results in anergized CD4+ T cells that in turn inhibit the activation of conventional, ...

  17. Urban physiology: city ants possess high heat tolerance.

    Directory of Open Access Journals (Sweden)

    Michael J Angilletta

    Full Text Available Urbanization has caused regional increases in temperature that exceed those measured on a global scale, leading to urban heat islands as much as 12 degrees C hotter than their surroundings. Optimality models predict ectotherms in urban areas should tolerate heat better and cold worse than ectotherms in rural areas. We tested these predications by measuring heat and cold tolerances of leaf-cutter ants from South America's largest city (São Paulo, Brazil. Specifically, we compared thermal tolerances of ants from inside and outside of the city. Knock-down resistance and chill-coma recovery were used as indicators of heat and cold tolerances, respectively. Ants from within the city took 20% longer to lose mobility at 42 degrees C than ants from outside the city. Interestingly, greater heat tolerance came at no obvious expense of cold tolerance; hence, our observations only partially support current theory. Our results indicate that thermal tolerances of some organisms can respond to rapid changes in climate. Predictive models should account for acclimatory and evolutionary responses during climate change.

  18. Population structure, genetic variation and linkage disequilibrium in perennial ryegrass populations divergently selected for freezing tolerance

    Directory of Open Access Journals (Sweden)

    Mallikarjuna Rao eKovi

    2015-11-01

    Full Text Available Low temperature is one of the abiotic stresses seriously affecting the growth of perennial ryegrass (Lolium perenne L. Understanding the genetic control of freezing tolerance would aid in the development of cultivars of perennial ryegrass with improved adaptation to frost. A total number of 80 individuals (24 of High frost [HF]; 29 of Low frost [LF] and 27 of Unselected [US] from the second generation of the two divergently selected populations and an unselected control population were genotyped using 278 genome-wide SNPs derived from Lolium perenne L. transcriptome sequence. Our studies showed that the HF and LF populations are very divergent after selection for freezing tolerance, whereas the HF and US populations are more similar. Linkage disequilibrium (LD decay varied across the seven chromosomes and the conspicuous pattern of LD between the HF and LF population confirmed their divergence in freezing tolerance. Furthermore, two Fst outlier methods; finite island model (fdist by LOSITAN and hierarchical structure model using ARLEQUIN detected six loci under directional selection. These outlier loci are most probably linked to genes involved in freezing tolerance, cold adaptation and abiotic stress and might be the potential marker resources for breeding perennial ryegrass cultivars with improved freezing tolerance.

  19. Working in the Cold

    Centers for Disease Control (CDC) Podcasts

    2016-02-08

    During the winter, many workers are outdoors, working in cold, wet, icy, or snowy conditions. Learn how to identify symptoms that tell you there may be a problem and protect yourself from cold stress.  Created: 2/8/2016 by National Institute for Occupational Safety and Health (NIOSH).   Date Released: 2/8/2016.

  20. Cold-Weather Sports

    Science.gov (United States)

    ... Videos for Educators Search English Español Cold-Weather Sports KidsHealth / For Teens / Cold-Weather Sports What's in this article? What to Do? Classes ... weather. What better time to be outdoors? Winter sports can help you burn calories, increase your cardiovascular ...

  1. Cold fusion research

    International Nuclear Information System (INIS)

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy

  2. COLD-WORKED HARDWARE

    Directory of Open Access Journals (Sweden)

    N. M. Strizhak

    2007-01-01

    Full Text Available The different types of cold-worked accessory are examined in the article. The necessity of development of such type of accessory in the Republic of Belarus due to requirements of market is shown. High emphasis is placed on the methods of increase of plasticity of cold-worked accessory from usual mill of RUP and CIS countries.

  3. Liquid metal cold trap

    International Nuclear Information System (INIS)

    Hundal, R.

    1976-01-01

    A cold trap assembly for removing impurities from a liquid metal is described. A hole between the incoming impure liquid metal and purified outgoing liquid metal acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly

  4. Infectious Tolerance

    Science.gov (United States)

    Jonuleit, Helmut; Schmitt, Edgar; Kakirman, Hacer; Stassen, Michael; Knop, Jürgen; Enk, Alexander H.

    2002-01-01

    Regulatory CD4+CD25+ T cells (Treg) are mandatory for maintaining immunologic self-tolerance. We demonstrate that the cell-cell contact–mediated suppression of conventional CD4+ T cells by human CD25+ Treg cells is fixation resistant, independent from membrane-bound TGF-β but requires activation and protein synthesis of CD25+ Treg cells. Coactivation of CD25+ Treg cells with Treg cell–depleted CD4+ T cells results in anergized CD4+ T cells that in turn inhibit the activation of conventional, freshly isolated CD4+ T helper (Th) cells. This infectious suppressive activity, transferred from CD25+ Treg cells via cell contact, is cell contact–independent and partially mediated by soluble transforming growth factor (TGF)-β. The induction of suppressive properties in conventional CD4+ Th cells represents a mechanism underlying the phenomenon of infectious tolerance. This explains previously published conflicting data on the role of TGF-β in CD25+ Treg cell–induced immunosuppression. PMID:12119350

  5. Revisiting the natural history of tuberculosis. The inclusion of constant reinfection, host tolerance, and damage-response frameworks leads to a better understanding of latent infection and its evolution towards active disease.

    Science.gov (United States)

    Cardona, Pere-Joan

    2010-02-01

    Once Mycobacterium tuberculosis infects a person it can persist for a long time in a process called latent tuberculosis infection (LTBI). LTBI has traditionally been considered to involve the bacilli remaining in a non-replicating state (dormant) in old lesions but still retaining their ability to induce reactivation and cause active tuberculosis (TB) once a disruption of the immune response takes place. The present review aims to challenge these concepts by including recent experimental data supporting LTBI as a constant endogenous reinfection process as well as the recently introduced concepts of damage-response and tolerance frameworks to explain TB induction. These frameworks highlight the key role of an exaggerated and intolerant host response against M. tuberculosis bacilli which induces the classical TB cavity in immunocompetent adults once the constant endogenous reinfection process has resulted in the presence of bacilli in the upper lobes, where they can grow faster and the immune response is delayed. This essay intends to provide new clues to understanding the induction of TB in non-immunosuppressed patients.

  6. Proteomic Characterization of Inbreeding-Related Cold Sensitivity in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Vermeulen, C.J.; Pedersen, Kamilla Sofie; Beck, Hans C.

    2013-01-01

    insight into the molecular interplay between intrinsic stress responses, inbreeding depression and temperature tolerance, we performed a proteomic characterization of a well-defined conditional inbreeding effect in a single line of Drosophila melanogaster, which suffers from extreme cold sensitivity...

  7. Human whole body cold adaptation.

    NARCIS (Netherlands)

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced

  8. The Cold man. A clinical case of the cold sensation.

    Directory of Open Access Journals (Sweden)

    Salvatore Settineri

    2013-09-01

    Full Text Available The lack of correlation between available knowledge and the current approach to Somatoform Disorders is highlighted.. Methods: the study, via the analysis of an unusual clinical case of an anomalous sensation of cold, examines various hypotheses on the physiopathology of somatization. Conclusions: a conceptualization would focus attention on the level of patients’ preoccupation with their symptoms, on the anomalies of the variations of perceptions and on patients’ hyperarousal. It could lead to a more harmonious position in psychiatry, between anthropologically-based understanding and interpretation of psychophysical information.

  9. Cold Fusion Has Now Come Out of the Cold

    Science.gov (United States)

    Storms, Edmund

    2003-10-01

    The phenomenon called cold fusion or LENR (Low-Energy-Nuclear-Reaction) has now achieved a level of reproducibility and understanding that warrants re-examination of the claims. A summary of what is known and want is being done worldwide to obtain more knowledge will be given. Rather than disappearing as better data are obtained, the effects are becoming more reproducible and of greater magnitude. Justification for this claim can be obtained at www.LENR-CANR.org. The phenomenon is too important to ignore any longer even though it conflicts with conventional theory.

  10. Gene-expression analysis of cold-stress response in the sexually transmitted protist Trichomonas vaginalis.

    Science.gov (United States)

    Fang, Yi-Kai; Huang, Kuo-Yang; Huang, Po-Jung; Lin, Rose; Chao, Mei; Tang, Petrus

    2015-12-01

    Trichomonas vaginalis is the etiologic agent of trichomoniasis, the most common nonviral sexually transmitted disease in the world. This infection affects millions of individuals worldwide annually. Although direct sexual contact is the most common mode of transmission, increasing evidence indicates that T. vaginalis can survive in the external environment and can be transmitted by contaminated utensils. We found that the growth of T. vaginalis under cold conditions is greatly inhibited, but recovers after placing these stressed cells at the normal cultivation temperature of 37 °C. However, the mechanisms by which T. vaginalis regulates this adaptive process are unclear. An expressed sequence tag (EST) database generated from a complementary DNA library of T. vaginalis messenger RNAs expressed under cold-culture conditions (4 °C, TvC) was compared with a previously published normal-cultured EST library (37 °C, TvE) to assess the cold-stress responses of T. vaginalis. A total of 9780 clones were sequenced from the TvC library and were mapped to 2934 genes in the T. vaginalis genome. A total of 1254 genes were expressed in both the TvE and TvC libraries, and 1680 genes were only found in the TvC library. A functional analysis showed that cold temperature has effects on many cellular mechanisms, including increased H2O2 tolerance, activation of the ubiquitin-proteasome system, induction of iron-sulfur cluster assembly, and reduced energy metabolism and enzyme expression. The current study is the first large-scale transcriptomic analysis in cold-stressed T. vaginalis and the results enhance our understanding of this important protist. Copyright © 2014. Published by Elsevier B.V.

  11. Effects of photoperiod, growth temperature and cold acclimatisation on glucosinolates, sugars and fatty acids in kale.

    Science.gov (United States)

    Steindal, Anne Linn Hykkerud; Rødven, Rolf; Hansen, Espen; Mølmann, Jørgen

    2015-05-01

    Curly kale is a robust, cold tolerant plant with a high content of health-promoting compounds, grown at a range of latitudes. To assess the effects of temperature, photoperiod and cold acclimatisation on levels of glucosinolates, fatty acids and soluble sugars in kale, an experiment was set up under controlled conditions. Treatments consisted of combinations of the temperatures 15/9 or 21/15 °C, and photoperiods of 12 or 24h, followed by a cold acclimatisation period. Levels of glucosinolates and fatty acid types in leaves were affected by growth conditions and cold acclimatisation, being generally highest before acclimatisation. The effects of growth temperature and photoperiod on freezing tolerance were most pronounced in plants grown without cold acclimatisation. The results indicate that cold acclimatisation can increase the content of soluble sugar and can thereby improve the taste, whilst the content of unsaturated fatty and glucosinolates acids may decrease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Mechanisms of cold fusion: comprehensive explanations by the Nattoh model

    International Nuclear Information System (INIS)

    Matsumoto, Takaaki

    1995-01-01

    The phenomena of cold fusion seem to be very complicated; inconsistent data between the production rates of heat, neutrons, tritiums and heliums. Our thoughts need to drastically change in order to appropriately understand the mechanisms of cold fusion. Here, a review is described for the Nattoh model, that has been developed extensively to provide comprehensive explanations for the mechanisms of cold fusion. Important experimental findings that prove the model are described. Furthermore several subjects including impacts on other fields are also discussed. (author)

  13. Chilling Out With Colds

    Science.gov (United States)

    ... and use the time to read, listen to music, or watch a movie. In other words, chill out and you might prevent a cold! Reviewed by: Patricia ... Policy Permissions Guidelines Privacy Policy & Terms of Use Notice ...

  14. Cold Vacuum Drying Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the K-Basins (see K-Basins link) in Hanford's 100 Area is a facility called the Cold Vacuum Drying Facility (CVDF).Between 2000 and 2004, workers at the...

  15. Dence Cold Matter

    Directory of Open Access Journals (Sweden)

    Stavinskiy Alexey

    2014-04-01

    Full Text Available Possible way to create dense cold baryonic matter in the laboratory is discussed. The density of this matter is comparable or even larger than the density of neutron star core. The properties of this matter can be controlled by trigger conditions. Experimental program for the study of properties of dense cold matter for light and heavy ion collisions at initial energy range √sNN~2-3GeV is proposed..

  16. Toleration, Synthesis or Replacement?

    DEFF Research Database (Denmark)

    Holtermann, Jakob v. H.; Madsen, Mikael Rask

    2016-01-01

    , in order to answer is not yet another partisan suggestion, but rather an attempt at making intelligible both the oppositions and the possibilities of synthesis between normative and empirical approaches to law. Based on our assessment and rational reconstruction of current arguments and positions, we...... therefore outline a taxonomy consisting of the following three basic, ideal-types in terms of the epistemological understanding of the interface of law and empirical studies: toleration, synthesis and replacement. This tripartite model proves useful with a view to teasing out and better articulating...

  17. Repressive Tolerance

    DEFF Research Database (Denmark)

    Pedersen, Morten Jarlbæk

    2017-01-01

    Consultation of organised interests and others when drafting laws is often seen as an important source of both input and output legitimacy. But whereas the input side of the equation stems from the very process of listening to societal actors, output legitimacy can only be strengthened if consult......Consultation of organised interests and others when drafting laws is often seen as an important source of both input and output legitimacy. But whereas the input side of the equation stems from the very process of listening to societal actors, output legitimacy can only be strengthened...... a substantial effect on the substance of laws – shows that there is a great difference in the amenability of different branches of government but that, in general, authorities do not listen much despite a very strong consultation institution and tradition. A suggestion for an explanation could be pointing...... to an administrative culture of repressive tolerance of organised interests: authorities listen but only reacts in a very limited sense. This bears in it the risk of jeopardising the knowledge transfer from societal actors to administrative ditto thus harming the consultation institutions’ potential for strengthening...

  18. Rapid cold hardening: a gut feeling.

    Science.gov (United States)

    Worland, M R; Convey, P; Luke ov , A

    2000-01-01

    This study examined the rate of cold hardening of a field population of Antarctic springtails and the effect of eating food with particular levels of ice nucleating activity on the animal's whole body freezing point. The SCPs of samples of c. 20, freshly collected, Cryptopygus antarcticus were measured hourly over a 32 hour collection period using differential scanning calorimetry and related to habitat temperature. The mean SCP of the springtails increased from -24 to -10 degree C during which time the habitat temperature warmed slowly from -2.5 to +2.5 degree C. In laboratory experiments, previously starved, cold tolerant springtails were fed on selected species of algae with measured SCP's but there was no clear correlation between the SCP of food and that of the animals after feeding. Microscopic examination of faecal pellets and guts from springtails showed that algal cells were completely destroyed during digestion.

  19. Hypothermic general cold adaptation induced by local cold acclimation.

    Science.gov (United States)

    Savourey, G; Barnavol, B; Caravel, J P; Feuerstein, C; Bittel, J H

    1996-01-01

    To study relationships between local cold adaptation of the lower limbs and general cold adaptation, eight subjects were submitted both to a cold foot test (CFT, 5 degrees C water immersion, 5 min) and to a whole-body standard cold air test (SCAT, 1 degree C, 2 h, nude at rest) before and after a local cold acclimation (LCA) of the lower limbs effected by repeated cold water immersions. The LCA induced a local cold adaptation confirmed by higher skin temperatures of the lower limbs during CFT and a hypothermic insulative general cold adaptation (decreased rectal temperature and mean skin temperature P adaptation was related to the habituation process confirmed by decreased plasma concentrations of noradrenaline (NA) during LCA (P general cold adaptation was unrelated either to local cold adaptation or to the habituation process, because an increased NA during SCAT after LCA (P syndrome" occurring during LCA.

  20. Proteomic analysis of cold stress responses in tobacco seedlings ...

    African Journals Online (AJOL)

    Cold stress is one of the major abiotic stresses limiting the productivity and the geographical distribution of many important crops. To gain a better understanding of cold stress responses in tobacco (Nicotiana tabacum), we carried out a comparative proteomic analysis. Five-week-old tobacco seedlings were treated at 4°C ...

  1. Cold moderators at ORNL

    International Nuclear Information System (INIS)

    Lucas, A. T.

    1997-09-01

    The Advanced Neutron Source (ANS) cold moderators were not an 'Oak Ridge first', but would have been the largest both physically and in terms of cold neutron flux. Two cold moderators were planned each 410 mm in diameter and containing about 30L of liquid deuterium. They were to be completely independent of each other. A modular system design was used to provide greater reliability and serviceability. When the ANS was terminated, upgrading of the resident High Flux Isotope Reactor (HFIR) was examined and an initial study was made into the feasibility of adding a cold source. Because the ANS design was modular, it was possible to use many identical design features. Sub-cooled liquid at 4 bar abs was initially chosen for the HFIR design concept, but this was subsequently changed to 15 bar abs to operate above the critical pressure. As in the ANS, the hydrogen will operate at a constant pressure throughout the temperature range and a completely closed loop with secondary containment was adopted. The heat load of 2 kW made the heat flux comparable with that of the ANS. Subsequent studies into the construction of cryogenic moderators for the proposed new Synchrotron Neutron source indicated that again many of the same design concepts could be used. By connecting the two cold sources together in series, the total heat load of 2 kW is very close to that of the HFIR allowing a very similar supercritical hydrogen system to be configured. The two hydrogen moderators of the SNS provide a comparable heat load to the HFIR moderator. It is subsequently planned to connect the two in series and operate from a single cold loop system, once again using supercritical hydrogen. The spallation source also provided an opportunity to re-examine a cold pellet solid methane moderator operating at 20K.

  2. A numerical model for cold welding of metals

    DEFF Research Database (Denmark)

    Zhang, Wenqi; Bay, Niels

    1996-01-01

    at the weld interface. Accordingly, the general model for bond strength in cold welding earlier developed by Bay has been extended and modified. The new model presented in this paper simulates the whole cold welding process including the deformation of base metals and the establishment of welds bonding......Based on experimental investigations of cold welding of different metal combinations applying various surface preparation methods, the understanding of the mechanisms of bond formation in cold welding has been improved by introducing two parameters representing the properties of surface layers...... similar as well as dissimilar metals The calculated bond strengths are verified by comparing with experimental measurements....

  3. Cold fusion: Need to keep door wide open

    International Nuclear Information System (INIS)

    Jones, S.E.

    1992-01-01

    Steven E. Jones of Brigham Young University in Provo, Utah, began work on cold fusion in 1986. Although insisting his work is markedly different from that of Stanley Pons and Martin Fleischmann at the nearby University of Utah, he nevertheless was tarred by the same brush that besmirched their sensational revelations in 1989. Whereas we were searching for tiny nuclear effects, they were looking for heat production, he explains. In no way, he insists, does his work substantiate the bold claims of heat generation by cold fusion in an electrochemical cell. In fact, Jones doublts Fleischmann and Pons' claims and sees evidence of either self-deception or hype in their actions. He adds, For useful energy production, thermonuclear (hot) fusion remains for more promising than that cold fusion claims of Pons and Fleischmann. But at the same time, Jones finds it necessary to appeal for tolerance for researchers brave enough to continue in the now unfashionable field of cold fusion

  4. Political Socialization, Tolerance, and Sexual Identity

    Science.gov (United States)

    Avery, Patricia G.

    2002-01-01

    Key concepts in political socialization, tolerance, groups, rights and responsibilities can be used to understand the way in which young people struggle with sexual identity issues. Educators may promote greater tolerance for homosexuality among heterosexuals by situating sexual identity issues within a broader discussion of democratic principles.…

  5. Preference for safflower oil in rats exposed to a cold environment under free-feeding conditions.

    Science.gov (United States)

    Saitoh, Masaji; Ishii, Toshiaki; Takewaki, Tadashi; Nishimura, Masakazu

    2005-07-01

    There are several benefits to a high-fat diet for animals exposed to cold, including improved tolerance to severe cold conditions and increased survival rates in cold environments. It is therefore of interest to examine whether animals exposed to cold will selectively consume lipids. We examined the intake of safflower oil (SO) by rats exposed to cold (4 +/- 2 degrees C) under a feeding condition in which the rats were given free access to SO. Rats exposed to cold consumed more SO than those housed at 25 +/- 2 degrees C. This finding suggests that rats prefer SO in a cold environment. There was no significant difference in the ratio of calories of SO ingested to that of matter (standard laboratory chow plus SO) ingested between rats exposed to cold and those at 25 +/- 2 degrees C. The high SO intake also affected cold tolerance and metabolite kinetics in the rats. Factors that affected the SO intake of rats exposed to cold are also discussed.

  6. Cold water injection nozzles

    International Nuclear Information System (INIS)

    Kura, Masaaki; Maeda, Masamitsu; Endo, Takio.

    1979-01-01

    Purpose: To inject cold water in a reactor without applying heat cycles to a reactor container and to the inner wall of a feedwater nozzle by securing a perforated plate at the outlet of the cold water injection nozzle. Constitution: A disc-like cap is secured to the final end of a return nozzle of a control rod drive. The cap prevents the flow of a high temperature water flowing downward in the reactor from entering into the nozzle. The cap is perforated with a plurality of bore holes for injecting cold water into the reactor. The cap is made to about 100 mm in thickness so that the cold water passing through the bore holes is heated by the heat conduction in the cap. Accordingly, the flow of high temperature water flowing downwardly in the reactor is inhibited by the cap from backward flowing into the nozzle. Moreover, the flow of the cold water in the nozzle is controlled and rectified when passed through the bore holes in the cap and then injected into the reactor. (Yoshino, Y.)

  7. Basking behavior predicts the evolution of heat tolerance in Australian rainforest lizards.

    Science.gov (United States)

    Muñoz, Martha M; Langham, Gary M; Brandley, Matthew C; Rosauer, Dan F; Williams, Stephen E; Moritz, Craig

    2016-11-01

    There is pressing urgency to understand how tropical ectotherms can behaviorally and physiologically respond to climate warming. We examine how basking behavior and thermal environment interact to influence evolutionary variation in thermal physiology of multiple species of lygosomine rainforest skinks from the Wet Tropics of northeastern Queensland, Australia (AWT). These tropical lizards are behaviorally specialized to exploit canopy or sun, and are distributed across marked thermal clines in the AWT. Using phylogenetic analyses, we demonstrate that physiological parameters are either associated with changes in local thermal habitat or to basking behavior, but not both. Cold tolerance, the optimal sprint speed, and performance breadth are primarily influenced by local thermal environment. Specifically, montane lizards are more cool tolerant, have broader performance breadths, and higher optimum sprinting temperatures than their lowland counterparts. Heat tolerance, in contrast, is strongly affected by basking behavior: there are two evolutionary optima, with basking species having considerably higher heat tolerance than shade skinks, with no effect of elevation. These distinct responses among traits indicate the multiple selective pressures and constraints that shape the evolution of thermal performance. We discuss how behavior and physiology interact to shape organisms' vulnerability and potential resilience to climate change. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  8. Physiological response and microRNA expression profiles in head kidney of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) exposed to acute cold stress.

    Science.gov (United States)

    Qiang, Jun; Cui, Yan T; Tao, Fan Y; Bao, Wen J; He, Jie; Li, Xia H; Xu, Pao; Sun, Lan Y

    2018-01-09

    Cold stress has a serious impact on the overwintering survival and yield of genetically improved farmed tilapia (GIFT, Oreochromis niloticus). Understanding the physiological and molecular regulation mechanisms of low-temperature adaptation is necessary to help breed new tolerant strains. The semi-lethal low temperature of juvenile GIFT at 96 h was determined as 9.4 °C. We constructed and sequenced two small RNA libraries from head kidney tissues, one for the control (CO) group and one for the 9.4 °C-stressed (LTS) group, and identified 1736 and 1481 known microRNAs (miRNAs), and 164 and 152 novel miRNAs in the CO and LTS libraries, respectively. We verify the expression of nine up-regulated miRNAs and eight down-regulation miRNAs by qRT-PCR, and found their expression patterns were consistent with the sequencing results. We found that cold stress may have produced dysregulation of free radical and lipid metabolism, decreased superoxide dismutase activity, reduced respiratory burst and phagocytic activity of macrophages, increased malondialdehyde content, and adversely affected the physiological adaptation of GIFT, eventually leading to death. This study revealed interactions among miRNAs and signal regulated pathways in GIFT under cold stress that may help to understand the pathways involved in cold resistance.

  9. Cold regions isotope applications

    International Nuclear Information System (INIS)

    Perrigo, L.D.; Divine, T.E.

    1976-04-01

    Pacific Northwest Laboratories (PNL) started the Cold Regions Isotope Applications Program in FY-1975 to identify special conditions in the Arctic and similar geographic areas (Cold Regions) where radioisotope power, heater, or sterilization systems would be desirable and economically viable. Significant progress was made in the first year of this program and all objectives for this initial 12-month period were achieved. The major conclusions and recommendations resulting for this effort are described below. The areas of interest covered include: radiosterilization of sewage; heating of septic tanks; and radioisotope thermoelectric generators as power sources for meteorological instruments and navigational aids

  10. Effects of freezing and cold acclimation on the plasma membrane of isolated protoplasts. [Annual report], May 16, 1993--January 29, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Steponkus, P.L.

    1994-06-01

    Our aim is to provide a mechanistic understanding of the cellular and molecular aspects of freezing injury and cold acclimation from a perspective of the structural and functional integrity of the plasma membrane-the primary site of freezing injury in winter cereals. We established that destabilization of the plasma membrane of winter rye, the most freezing-tolerant winter cereal, can result from several different lesions: expansion induced lysis, lamellar-to-hexagonal II phase transitions, and the fracture-jump lesion. The occurrence and incidence of these various lesions, depends on the freeze/thaw protocol and the stage of cold acclimation. In non-acclimated leaves and protoplasts, expansion-induced lysis is the predominant lesion at temperatures between {minus}2 and {minus}5{degree}C, whereas freeze-induced formation of the H{sub II} phase is the predominant lesion at temperatures below {minus}10{degree}C. We investigated whether the difference in freezing tolerance and the threshold temperatures at which the lesions occur in rye and oat are a consequence of differences in the lipid composition of the plasma membrane. There are substantial differences between rye and oat cell membranes both before and after cold acclimation. The plasma membrane of oat contains greater proportions of acylated sterylglucosides and cerebrosides than that of rye, and there is little change in these two lipid classes during cold acclimation. The lyotropic phase behavior of lipid mixtures that resemble the plasma membrane of rye and oat was studied. The differences in lipid composition of rye and oat are of mechanistic significance because of their influence on the hydration characteristics of the plasma membrane, the propensity for dehydration-induced lipid-lipid demixing, and the intrinsic curvature of the lipid monolayers. These studies suggest that strategies for improving the freezing tolerance of winter cereals should include approaches to modify membrane lipid composition.

  11. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold and heat

    Directory of Open Access Journals (Sweden)

    Kazuo eNakashima

    2014-05-01

    Full Text Available Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs are master regulators of gene expression. ABRE-binding protein (AREB and ABRE-binding factor (ABF TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein (DREB TFs and NAC TFs are also involved in stress responses including drought, heat and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these transcription factors in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.

  12. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat.

    Science.gov (United States)

    Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2014-01-01

    Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA) is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs) are master regulators of gene expression. ABRE-binding protein and ABRE-binding factor TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein TFs and NAC TFs are also involved in stress responses including drought, heat, and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these TFs in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.

  13. Modeling a cold-air drainage event with a wireless sensor network

    OpenAIRE

    Brian R. Zutta; Eric A. Graham; Philip W. Rundel

    2005-01-01

    A wireless network of sensors was used to characterize a cold-air drainage event in the canyon surrounding the James Reserve. The flow of cold air at night and the first hours of sunrise have major ecological consequences by limiting the vegetation types to those tolerant of freeze and thaw cycles. A network of wireless sensors provides the opportunity to track this event in real time and fully characterize the cold air flow down the canyon, which may last 1.5 hours, and the pooling of cold a...

  14. Commemoration of a cold war

    DEFF Research Database (Denmark)

    Farbøl, Rosanna

    2015-01-01

    This article brings together the fields of Cold War studies and memory studies. In Denmark, a remarkable institutionalisation of Cold War memory has taken place in the midst of a heated ideological battle over the past and whether to remember the Cold War as a ‘war’. Using Danish Cold War museums...... and heritage sites as case studies, this article sheds new light on the politics of history involved in Cold War commemoration. It suggests that the Cold War is commemorated as a war, yet this war memory is of a particular kind: it is a war memory without victims....

  15. Cold spray nozzle design

    Science.gov (United States)

    Haynes, Jeffrey D [Stuart, FL; Sanders, Stuart A [Palm Beach Gardens, FL

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  16. Cold fusion - todays situation

    International Nuclear Information System (INIS)

    Malmqvist, K.

    1993-01-01

    A brief review of the history of cold fusion is given. It is noted that it is not possible to draw any definite conclusions about all the experimental and theoretical details, but that some of the results presented do not seem to be reached according to the normal scientific methods. 6 figs

  17. Recent Cold War Studies

    Science.gov (United States)

    Pineo, Ronn

    2003-01-01

    Cold War historiography has undergone major changes since the 1991 collapse of the Soviet Union. For two years (1992-1993) the principal Soviet archives fell open to scholars, and although some of the richest holdings are now once again closed, new information continues to find its way out. Moreover, critical documentary information has become…

  18. Expert Cold Structure Development

    Science.gov (United States)

    Atkins, T.; Demuysere, P.

    2011-05-01

    The EXPERT Program is funded by ESA. The objective of the EXPERT mission is to perform a sub-orbital flight during which measurements of critical aero- thermodynamic phenomena will be obtained by using state-of-the-art instrumentation. As part of the EXPERT Flight Segment, the responsibility of the Cold Structure Development Design, Manufacturing and Validation was committed to the Belgian industrial team SONACA/SABCA. The EXPERT Cold Structure includes the Launcher Adapter, the Bottom Panel, the Upper Panel, two Cross Panels and the Parachute Bay. An additional Launcher Adapter was manufactured for the separation tests. The selected assembly definition and manufacturing technologies ( machined parts and sandwich panels) were dictated classically by the mass and stiffness, but also by the CoG location and the sensitive separation interface. Used as support for the various on-board equipment, the Cold Structure is fixed to but thermally uncoupled from the PM 1000 thermal shield. It is protect on its bottom panel by a thermal blanket. As it is a protoflight, analysis was the main tool for the verification. Low level stiffness and modal analysis tests have also been performed on the Cold Structure equipped with its ballast. It allowed to complete its qualification and to prepare SONACA/SABCA support for the system dynamic tests foreseen in 2011. The structure was finally coated with a thermal control black painting and delivered on time to Thales Alenia Space-Italy end of March 201.

  19. Burning Cold: Involvement of TRPA1 in Noxious Cold Sensation

    OpenAIRE

    Kwan, Kelvin Y.; Corey, David P.

    2009-01-01

    Soon after its discovery ten years ago, the ion channel TRPA1 was proposed as a sensor of noxious cold. Evidence for its activation by painfully cold temperatures (below ~15° C) has been mixed, however. Some groups found that cold elicits a nonselective conductance in cells expressing TRPA1; others found no activation, or argued that activation is an indirect effect of elevated \\(Ca^{ 2+}\\) . Sensory cells from the trigeminal and dorsal root ganglia that are activated by cold were sometimes c...

  20. B cells in operational tolerance.

    Science.gov (United States)

    Chesneau, M; Danger, R; Soulillou, J-P; Brouard, S

    2018-02-16

    Transplantation is currently the therapy of choice for endstage organ failure even though it requires long-term immunosuppresive therapy, with its numerous side effects, for acceptance of the transplanted organ. In rare cases however, patients develop operational tolerance, that is, graft survival without immunosuppression. Studies conducted on these patients reveal genetic, phenotypic, and functional signatures. They provide a better understanding of the immunological mechanisms involved in operational tolerance and define biomarkers that could be used to adapt immunosuppressive treatment to the individual, safely reduce immunosuppression doses, and ideally and safely guide immunosuppression withdrawal. This review summarizes studies that suggest a role for B cells as biomarkers of operational tolerance and discusses the use of B cells as a predictive tool for immunologic risk. Copyright © 2018. Published by Elsevier Inc.

  1. Teaching Teaching & Understanding Understanding

    DEFF Research Database (Denmark)

    2006-01-01

    "Teaching Teaching & Understanding Understanding" is a 19-minute award-winning short-film about teaching at university and higher-level educational institutions. It is based on the "Constructive Alignment" theory developed by Prof. John Biggs. The film delivers a foundation for understanding what...

  2. Flu and Colds: In Depth

    Science.gov (United States)

    ... to prevent colds or relieve cold symptoms. Andrographis (Andrographis paniculata) Chinese herbal medicines Green tea Guided imagery Hydrotherapy ... measurements (VAS) to assess the effectiveness of standardized Andrographis paniculata extract SHA-10 in reducing the symptoms of ...

  3. Herpes Simplex Virus (Cold Sores)

    Science.gov (United States)

    ... Print Share Cold Sores in Children: About the Herpes Simplex Virus Page Content ​A child's toddler and ... Cold sores (also called fever blisters or oral herpes) start as small blisters that form around the ...

  4. Imaging with cold neutrons

    International Nuclear Information System (INIS)

    Lehmann, E.H.; Kaestner, A.; Josic, L.; Hartmann, S.; Mannes, D.

    2011-01-01

    Neutrons for imaging purposes are provided mainly from thermal beam lines at suitable facilities around the world. The access to cold neutrons is presently limited to very few places only. However, many challenging options for imaging with cold neutrons have been found out, given by the interaction behavior of the observed materials with neutrons in the cold energy range (3-10 A). For absorbing materials, the interaction probability increases proportionally with the wavelength with the consequence of more contrast but less transmission with cold neutrons. Many materials are predominantly scattering neutrons, in particular most of crystalline structural materials. In these cases, cold neutrons play an important role by covering the energy range of the most important Bragg edges given by the lattice planes of the crystallites. This particular behavior can be used for at least two important aspects-choosing the right energy of the initial beam enables to have a material more or less transparent, and a direct macroscopic visualization of the crystalline structure and its change in a manufacturing process. Since 2006, PSI operates its second beam line for neutron imaging, where cold neutrons are provided from a liquid deuterium cold source (operated at 25 K). It has been designed to cover the most current aspects in neutron imaging research with the help of high flexibility. This has been done with changeable inlet apertures, a turbine based velocity selector, two beam positions and variable detector systems, satisfying the demands of the individual investigation. The most important detection system was found to be a micro-tomography system that enables studies in the presently best spatial resolution. In this case, the high contrast from the sample interaction process and the high detection probability for the cold neutrons combines in an ideal combination for the best possible performance. Recently, it was found out that the energy selective studies might become a

  5. Implications of Sino-American Strategic Competition on Southeast Asia's Post-Cold War Regional Order

    National Research Council Canada - National Science Library

    Suryodipuro, Sidharto

    2003-01-01

    .... The study of international politics after the Cold War has rediscovered the importance of regional interaction as the framework for understanding countries' security strategies and the great powers...

  6. Human whole body cold adaptation.

    OpenAIRE

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    ABSTRACT Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000?y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations...

  7. Genetically engineered Rice with transcription factor DREB genes for abiotic stress tolerance(abstract)

    International Nuclear Information System (INIS)

    Datta, S.K.; Datta, K.

    2005-01-01

    Water stress (drought and Salinity) is the most severe limitation to rice productivity. Several breeding approaches (MAS, QTL) applied to suitable genotypes are in place at IRRI and elsewhere. Phenotyping of water stress tolerance is in progress with potential predictability. Dr. Shinozaki's group has cloned a number of transcription factor genes, which have been shown to work in Arabidopsis to achieve drought, cold, and salinity tolerant plants. None of these genes have as yet displayed their potential functioning in rice. Genetic engineering aims at cross talk between different stress signaling pathways leading to stress tolerance. Osmotic Adjustment (OA) is an effective component of abiotic stress (drought and salinity) tolerance in many plants including rice. When plant experiences water stress, OA contributes to turgor maintenance of both shoots and roots. Conventional breeding could not achieve the OA in rice excepting a few rice cultivars, which are partially adapted to water-stress conditions. Several stress-related genes have now been cloned and transferred in to enhance the osmolytes and some transgenic lines showed increased tolerance to osmotic stress. A few strategies could be effectively deployed for a better understanding of water-stress tolerance in rice and to develop transgenic rice, which can survive for a critical period of water-stress conditions: 1) Switching on of transcription factor regulating the expression of several genes related to abiotic stress, 2) Use of a suitable stress inducible promoter driving the target gene for an efficient and directed expression in plants, 3) Understanding of phenotyping and GxE in a given environment, 4) Selection of a few adaptive rice cultivars suitable in drought/salinity prone areas, 5) Microarray, proteomics, QTL and MAS may expedite the cloning and characterizing the stress induced genes, and 6) Finally, the efficient transformation system for generating a large number of transgenic rice of different

  8. Human whole body cold adaptation.

    Science.gov (United States)

    Daanen, Hein A M; Van Marken Lichtenbelt, Wouter D

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold.

  9. Teaching Tolerance? Associational Diversity and Tolerance Formation

    DEFF Research Database (Denmark)

    Rapp, Carolin; Freitag, Markus

    2015-01-01

    , a closer look is taken at how associational diversity relates to the formation of tolerance and the importance of associations as schools of tolerance are evaluated. The main theoretical argument follows contact theory, wherein regular and enduring contact in diverse settings reduces prejudice and thereby...

  10. The need to be cold : cold warriors

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, L.

    2008-10-15

    This article discussed the changing climate of Ellesmere Island and the adaptation of the Inuit in response to the climate change, with particular reference to Canada's most northern community of Grise Fiord. Because of the changing climate, the vast northern landscape that the Inuit navigated for centuries by reading its subtle signs is becoming warmer, softer, and unpredictable. The geographic history and demographics of Grise Fiord were described. The community's main water supply comes from a glacier which is sinking. The negative impacts of ice shrinkage on this northern community and on the environment were presented. These included more international shipping through the Arctic, more resource exploration, a greater risk of environmental contamination, and reduced habitat for the polar bears and seals that eat, mate, and reproduce on the ice. Climate change impacts on the sea and sea ice were also discussed. Several photographs illustrating the changing climate were presented. The article noted that climate change could destroy the Inuit culture, making climate change an issue of human rights, notably the right to live connected to the land and the right to be cold. It was concluded that in one generation, Inuit were swept up by both a social and an economic upheaval. In one more generation, they will undergo an environmental shift. 13 figs.

  11. WISPy cold dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Paola [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica; Cadamuro, Davide; Redondo, Javier [Max-Planck-Institut fuer Physik, Muenchen (Germany); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Jaeckel, Joerg [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-01-15

    Very weakly interacting slim particles (WISPs), such as axion-like particles (ALPs) or hidden photons (HPs), may be non-thermally produced via the misalignment mechanism in the early universe and survive as a cold dark matter population until today. We find that, both for ALPs and HPs whose dominant interactions with the standard model arise from couplings to photons, a huge region in the parameter spaces spanned by photon coupling and ALP or HP mass can give rise to the observed cold dark matter. Remarkably, a large region of this parameter space coincides with that predicted in well motivated models of fundamental physics. A wide range of experimental searches - exploiting haloscopes (direct dark matter searches exploiting microwave cavities), helioscopes (searches for solar ALPs or HPs), or light-shining-through-a-wall techniques - can probe large parts of this parameter space in the foreseeable future. (orig.)

  12. Progress with cold antihydrogen

    CERN Document Server

    Charlton, M; Amsler, C; Bonomi, G; Bowe, P D; Canali, C; Carraro, C; Cesar, C L; Doser, M; Fontana, A; Fujiwara, M C; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Johnson, I; Jørgensen, L V; Kellerbauer, A G; Lagomarsino, V; Landua, Rolf; Lodi-Rizzini, E; Macri, M; Madsen, N; Manuzio, G; Mitchard, D; Montagna, P; Pruys, H; Regenfus, C; Rotondi, A; Testera, G; Variola, A; Venturelli, L; Van der Werf, D P; Yamazaki, Y; Zurlo, N

    2006-01-01

    The creation of cold antihydrogen by the ATHENA and ATRAP collaborations, working at CERN's unique Antiproton Decelerator (AD) facility, has ushered in a new era in atomic physics. This contribution will briefly review recent results from the ATHENA experiment. These include discussions of antiproton slowing down in a cold positron gas during antihydrogen formation, information derived on the dependence of the antihydrogen formation rate upon the temperature of the stored positron plasma and, finally, upon the spatial distribution of the emitted anti-atoms. We will discuss the implications of these studies for the major outstanding goal of trapping samples of antihydrogen for precise spectroscopic comparisons with hydrogen. The physics motivations for undertaking these challenging experiments will be briefly recalled.

  13. Cold nuclear fusion device

    International Nuclear Information System (INIS)

    Ogino, Shinji.

    1991-01-01

    Selection of cathode material is a key to the attainment of cold nuclear fusion. However, there are only few reports on the cathode material at present and an effective development has been demanded. The device comprises an anode and a cathode and an electrolytic bath having metal salts dissolved therein and containing heavy water in a glass container. The anode is made of gold or platinum and the cathode is made of metals of V, Sr, Y, Nb, Hf or Ta, and a voltage of 3-25V is applied by way of a DC power source between them. The metal comprising V, Sr, Y, Nb, Hf or Ta absorbs deuterium formed by electrolysis of heavy water effectively to cause nuclear fusion reaction at substantially the same frequency and energy efficiency as palladium and titanium. Accordingly, a cold nuclear fusion device having high nuclear fusion generation frequency can be obtained. (N.H.)

  14. Cold source economic study

    International Nuclear Information System (INIS)

    Fuster, Serge.

    1975-01-01

    This computer code is intended for the statement of the general economic balance resulting from using a given cold source. The balance includes the investments needed for constructing the various materials, and also production balances resulting from their utilization. The case of either using an open circuit condenser on sea or river, or using air cooling systems with closed circuits or as auxiliaries can be dealt with. The program can be used to optimize the characteristics of the various parts of the cold source. The performance of the various materials can be evaluated for a given situation from using very full, precise economic balances, these materials can also be classified according to their possible uses, the outer constraints being taken into account (limits for heat disposal into rivers or seas, water temperature, air temperature). Technical choices whose economic consequences are important have been such clarified [fr

  15. Role of CBFs as Integrators of Chloroplast Redox, Phytochrome and Plant Hormone Signaling during Cold Acclimation

    Directory of Open Access Journals (Sweden)

    Norman P. A. Hüner

    2013-06-01

    Full Text Available Cold acclimation of winter cereals and other winter hardy species is a prerequisite to increase subsequent freezing tolerance. Low temperatures upregulate the expression of C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB1 which in turn induce the expression of COLD-REGULATED (COR genes. We summarize evidence which indicates that the integration of these interactions is responsible for the dwarf phenotype and enhanced photosynthetic performance associated with cold-acclimated and CBF-overexpressing plants. Plants overexpressing CBFs but grown at warm temperatures mimic the cold-tolerant, dwarf, compact phenotype; increased photosynthetic performance; and biomass accumulation typically associated with cold-acclimated plants. In this review, we propose a model whereby the cold acclimation signal is perceived by plants through an integration of low temperature and changes in light intensity, as well as changes in light quality. Such integration leads to the activation of the CBF-regulon and subsequent upregulation of COR gene and GA 2-oxidase (GA2ox expression which results in a dwarf phenotype coupled with increased freezing tolerance and enhanced photosynthetic performance. We conclude that, due to their photoautotrophic nature, plants do not rely on a single low temperature sensor, but integrate changes in light intensity, light quality, and membrane viscosity in order to establish the cold-acclimated state. CBFs appear to act as master regulators of these interconnecting sensing/signaling pathways.

  16. Behavioral Assessment of the Negative Emotion Aspect of Distress Tolerance.

    Science.gov (United States)

    Veilleux, Jennifer C; Pollert, Garrett A; Zielinski, Melissa J; Shaver, Jennifer A; Hill, Morgan A

    2017-01-01

    The current behavioral tasks assessing distress tolerance measure tolerance to frustration and tolerance to physical discomfort, but do not explicitly assess tolerance to negative emotion. We closely evaluated the conceptual distinctions between current behavioral tasks and self-report tasks assessing distress tolerance, and then developed a new behavioral distress tolerance task called the Emotional Image Tolerance (EIT) task. The EIT task retains elements of existing behavioral tasks (e.g., indices of persistence) while augmenting the reliability and content sufficiency of existing measures by including multiple trials, including a variety of negative affect stimuli, and separating overall task persistence from task persistence after onset of distress. In a series of three studies, we found that the EIT correlated with extant behavioral measures of distress tolerance, the computerized mirror-tracing task and a physical cold pressor task. Across all of the studies, we also evaluated whether the EIT correlated with self-report measures of distress tolerance and measures of psychopathology (e.g., depression, anxiety, and binge eating). Implications for the refinement of the distress tolerance construct are discussed.

  17. Registration of four post-flowering drought tolerant grain sorghum lines with early season cold tolerance

    Science.gov (United States)

    Four sorghum (Sorghum bicolor L.) germplasm lines— PSLS-SGCTB01 (Reg. No.), PSLS-SGCTR02 (Reg. No.), PSLS-SGCTB03 (Reg. No.) and PSLS-SGCTB04 (Reg. No.) — were developed by the USDA-ARS in Lubbock TX, in 2017. The primary purpose for the release of these lines is to provide an alternative germplasm ...

  18. Enhancing drought tolerance in C(4) crops.

    Science.gov (United States)

    Lopes, Marta S; Araus, Jose Luis; van Heerden, Philippus D R; Foyer, Christine H

    2011-05-01

    Adaptation to abiotic stresses is a quantitative trait controlled by many different genes. Enhancing the tolerance of crop plants to abiotic stresses such as drought has therefore proved to be somewhat elusive in terms of plant breeding. While many C(4) species have significant agronomic importance, most of the research effort on improving drought tolerance has focused on maize. Ideally, drought tolerance has to be achieved without penalties in yield potential. Possibilities for success in this regard are highlighted by studies on maize hybrids performed over the last 70 years that have demonstrated that yield potential and enhanced stress tolerance are associated traits. However, while our understanding of the molecular mechanisms that enable plants to tolerate drought has increased considerably in recent years, there have been relatively few applications of DNA marker technologies in practical C(4) breeding programmes for improved stress tolerance. Moreover, until recently, targeted approaches to drought tolerance have concentrated largely on shoot parameters, particularly those associated with photosynthesis and stay green phenotypes, rather than on root traits such as soil moisture capture for transpiration, root architecture, and improvement of effective use of water. These root traits are now increasingly considered as important targets for yield improvement in C(4) plants under drought stress. Similarly, the molecular mechanisms underpinning heterosis have considerable potential for exploitation in enhancing drought stress tolerance. While current evidence points to the crucial importance of root traits in drought tolerance in C(4) plants, shoot traits may also be important in maintaining high yields during drought.

  19. The CMS COLD BOX

    CERN Multimedia

    Brice, Maximilien

    2015-01-01

    The CMS detector is built around a large solenoid magnet. This takes the form of a cylindrical coil of superconducting cable that generates a field of 3.8 Tesla: about 100,000 times the magnetic field of the Earth. To run, this superconducting magnet needs to be cooled down to very low temperature with liquid helium. Providing this is the job of a compressor station and the so-called “cold box”.

  20. Clumpy cold dark matter

    Science.gov (United States)

    Silk, Joseph; Stebbins, Albert

    1993-01-01

    A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.

  1. Engine Cold Start

    Science.gov (United States)

    2015-09-01

    matching pre- calibrated amplifier • BEI Shaft Encoder (0.2 CAD) • Wolff Instrumented Injector The high speed data was recorded and post-processed by...14. ABSTRACT These fuels were used for testing a GEP 6.5L turbocharged V-8 diesel engine operation in a cold box. This engine architecture is...Z39.18 UNCLASSIFIED UNCLASSIFIED v EXECUTIVE SUMMARY A fuel’s cetane number is very important for the operation of modern diesel

  2. Lactose tolerance tests

    Science.gov (United States)

    Hydrogen breath test for lactose tolerance ... Two common methods include: Lactose tolerance blood test Hydrogen breath test The hydrogen breath test is the preferred method. It measures the amount of hydrogen ...

  3. Using cold air for reducing needle-injection pain.

    Science.gov (United States)

    Al-Qarqaz, Firas; Al-Aboosi, Mustafa; Al-shiyab, Diala; Al Dabbagh, Ziad

    2012-07-01

    Pain is associated with skin injections. Reducing injection-associated pain is important especially when multiple injections are needed in difficult areas, such as the palms. We present a new safe application for cold air used in laser therapy. The main objectives of this study are to see whether cold air can reduce needle-injection pain and to evaluate the safety of this new application. Patients undergoing skin injection (n=40) were included. Assessment of pain level using visual analog scale (VAS) was done using cold air and again without cold air in the same patient. Comparison of pain scores was performed. Thirty-three patients had lower VAS scores using cold air. Five patients had worse VAS scores, and two patients did not have any change in their pain score. In the group of patients where injections were made to the palms (n=5), there was even more reduction in VAS scores. There were no significant immediate or delayed side effects. Cold air seems to be useful in reducing needle-injection pain in the majority of patients, especially in the palms. This procedure is safe, apart from immediate tolerable discomfort when used around the nose. © 2012 The International Society of Dermatology.

  4. Support for cold neutron utilization

    International Nuclear Information System (INIS)

    Lee, Kye Hong; Han, Young Soo; Choi, Sungmin; Choi, Yong; Kwon, Hoon; Lee, Kwang Hee

    2012-06-01

    - Support for experiments by users of cold neutron scattering instrument - Short-term training of current and potential users of cold neutron scattering instrument for their effective use of the instrument - International collaboration for advanced utilization of cold neutron scattering instruments - Selection and training of qualified instrument scientists for vigorous research endeavors and outstanding achievements in experiments with cold neutron - Research on nano/bio materials using cold neutron scattering instruments - Bulk nano structure measurement using small angle neutron scattering and development of analysis technique

  5. Freezing tolerance and the histology of recovering nodes in St. Augustinegrass

    Science.gov (United States)

    St. Augustinegrass [Stenataphrum secundatum (Walt.) Kuntze] is a coarse-textured turfgrass commonly utilized for its excellent shade tolerance. However, inferior cold tolerance in comparison to other warm-season grasses limits its range primarily to the southeastern U. S., The objectives of this stu...

  6. Cold neutron production and application

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Watanabe, Noboru.

    1976-01-01

    The first part gives general introduction to cold neutrons, namely the definition and the role as a probe in basic science and technology. The second part reviews various methods of cold neutron production. Some physical characteristics required for cold moderators are presented, and a list summarizes a number of cold moderators and their reactor physics constants. The definition of flux gain factor and the measured values for liquid light- and heavy-hydrogen are also given. The cold neutron spectra in methane and liquid hydrogen measured by LINAC time-of-flight method are presented to show the advantage of solid methane. The cold neutron sources using experimental reactors or linear accelerators are explained along with the examples of existing facilities. Two Japanese programs, the one is the use of a high flux reactor and the other is the use of a LINAC, are also presented. The third part of this report reviews the application areas of cold neutrons. (Aoki, K.)

  7. Ionic mechanisms of spinal neuronal cold hypersensitivity in ciguatera.

    Science.gov (United States)

    Patel, Ryan; Brice, Nicola L; Lewis, Richard J; Dickenson, Anthony H

    2015-12-01

    Cold hypersensitivity is evident in a range of neuropathies and can evoke sensations of paradoxical burning cold pain. Ciguatoxin poisoning is known to induce a pain syndrome caused by consumption of contaminated tropical fish that can persist for months and include pruritus and cold allodynia; at present no suitable treatment is available. This study examined, for the first time, the neural substrates and molecular components of Pacific ciguatoxin-2-induced cold hypersensitivity. Electrophysiological recordings of dorsal horn lamina V/VI wide dynamic range neurones were made in non-sentient rats. Subcutaneous injection of 10 nm ciguatoxin-2 into the receptive field increased neuronal responses to innocuous and noxious cooling. In addition, neuronal responses to low-threshold but not noxious punctate mechanical stimuli were also elevated. The resultant cold hypersensitivity was not reversed by 6-({2-[2-fluoro-6-(trifluoromethyl)phenoxy]-2-methylpropyl}carbamoyl)pyridine-3-carboxylic acid, an antagonist of transient receptor potential melastatin 8 (TRPM8). Both mechanical and cold hypersensitivity were completely prevented by co-injection with the Nav 1.8 antagonist A803467, whereas the transient receptor potential ankyrin 1 (TRPA1) antagonist A967079 only prevented hypersensitivity to innocuous cooling and partially prevented hypersensitivity to noxious cooling. In naive rats, neither innocuous nor noxious cold-evoked neuronal responses were inhibited by antagonists of Nav 1.8, TRPA1 or TRPM8 alone. Ciguatoxins may confer cold sensitivity to a subpopulation of cold-insensitive Nav 1.8/TRPA1-positive primary afferents, which could underlie the cold allodynia reported in ciguatera. These data expand the understanding of central spinal cold sensitivity under normal conditions and the role of these ion channels in this translational rat model of ciguatoxin-induced hypersensitivity. © 2015 The Authors. European Journal of Neuroscience published by Federation of

  8. Cognitive component of Tolerance in Pedagogic Education

    Directory of Open Access Journals (Sweden)

    O. V. Akimova

    2013-01-01

    Full Text Available The paper looks at one of the urgent educational problems of tolerance development by teachers and students; tolerance being viewed as the openness to the new knowledge acquisition, willingness to understand other people and cooperate with them, and therefore the opportunity for self- development.The paper outlines the ways of tolerant attitudes formation by all the human subjects of educational process; the concept of person oriented teaching is considered to be the basic one for tolerance development. To optimize the specialists’ training for communication at any level of professional environment, the cognitive activity educational model is suggested, providing the ways out of any complicated pedagogical situation. The cognitive psychology concepts give the background for the above model. The education in question promotes the intellectual level of the prospective teachers, intensifies their creative potential, methodological thinking and practical experience, as well as tolerance development in professional communication process. 

  9. Recognition and Toleration

    DEFF Research Database (Denmark)

    Lægaard, Sune

    2010-01-01

    Recognition and toleration are ways of relating to the diversity characteristic of multicultural societies. The article concerns the possible meanings of toleration and recognition, and the conflict that is often claimed to exist between these two approaches to diversity. Different forms...... or interpretations of recognition and toleration are considered, confusing and problematic uses of the terms are noted, and the compatibility of toleration and recognition is discussed. The article argues that there is a range of legitimate and importantly different conceptions of both toleration and recognition...

  10. Fault Tolerant Feedback Control

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.

    2001-01-01

    An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out...... that there is a separation be-tween the feedback controller and the fault tolerant part. The closed loop feedback properties are handled by the nominal feedback controller and the fault tolerant part is handled by the design of the Youla parameter. The design of the fault tolerant part will not affect the design...... of the nominal feedback con-troller....

  11. Salt Tolerance and Polyphyly in the Cyanobacterium Chroococcidiopsis (Pleurocapsales)1

    Science.gov (United States)

    Cumbers, John Robert; Rothschild, Lynn J.

    2014-01-01

    Chroococcidiopsis Geitler (Geitler 1933) is a genus of cyanobacteria containing desiccation and radiation resistant species. Members of the genus live in habitats ranging from hot and cold deserts to fresh and saltwater environments. Morphology and cell division pattern have historically been used to define the genus. To better understand the genetic and phenotypic diversity of the genus, 15 species were selected that had been previously isolated from different locations, including salt and freshwater environments. Four markers were sequenced from these 15 species, the 16S rRNA, rbcL, desC1 and gltX genes. Phylogenetic trees were generated which identified two distinct clades, a salt-tolerant clade and a freshwater clade. This study demonstrates that the genus is polyphyletic based on saltwater and freshwater phenotypes. To understand the resistance to salt in more details, species were grown on a range of sea salt concentrations which demonstrated that the freshwater species were salt-intolerant whilst the saltwater species required salt for growth. This study shows an increased resolution of the phylogeny of Chroococcidiopsis and provides further evidence that the genus is polyphyletic and should be reclassified to improve clarity in the literature.

  12. Nuclear Waste Vitrification Efficiency: Cold Cap Reactions

    International Nuclear Information System (INIS)

    Kruger, A.A.; Hrma, P.R.; Pokorny, R.

    2011-01-01

    The cost and schedule of nuclear waste treatment and immobilization are greatly affected by the rate of glass production. Various factors influence the performance of a waste-glass melter. One of the most significant, and also one of the least understood, is the process of batch melting. Studies are being conducted to gain fundamental understanding of the batch reactions, particularly those that influence the rate of melting, and models are being developed to link batch makeup and melter operation to the melting rate. Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass. The conversion of batch to glass consists of various chemical reactions, phase transitions, and diffusion-controlled processes. These include water evaporation (slurry feed contains as high as 60% water), gas evolution, the melting of salts, the formation of borate melt, reactions of borate melt with molten salts and with amorphous oxides (Fe 2 O 3 and Al 2 O 3 ), the formation of intermediate crystalline phases, the formation of a continuous glass-forming melt, the growth and collapse of primary foam, and the dissolution of residual solids. To this list we also need to add the formation of secondary foam that originates from molten glass but accumulates on the bottom of the cold cap. This study presents relevant data obtained for a high-level-waste melter feed and introduces a one-dimensional (1D) mathematical model of the cold cap as a step toward an advanced three-dimensional (3D) version for a complete model of the waste glass melter. The 1D model describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, the model provides sensitivity analysis of the response of the cold cap to the batch makeup and melter

  13. Mechanical tolerance stackup and analysis

    CERN Document Server

    Fischer, Bryan R

    2004-01-01

    BackgroundDimensioning and TolerancingTolerance Format and Decimal PlacesConverting Plus/Minus Dimensions and Tolerances into Equal Bilaterally Toleranced DimensionsVariation and Sources of VariationTolerance AnalysisWorst-case Tolerance StackupsStatistical Tolerance StackupsGeometric Dimensioning and Tolerancing (GD&T)Converting Plus/Minus Tolerancing to Positional Tolerancing and Projected Tolerance ZonesDiametral and Radial Tolerance StackupsSpecifying Material Condition Modifiers and Their Effect on Tolerance Stackups The Tolerance Stackup SketchThe Tolerance Stackup Report FormTolerance S

  14. Salinity and temperature tolerance of the invasive freshwater gastropod Tarebia granifera

    Directory of Open Access Journals (Sweden)

    Renzo Perissinotto

    2010-04-01

    Full Text Available Invasive aquatic species, such as the gastropod Tarebia granifera, can cause ecological isturbances and potentially reduce biodiversity by displacing indigenous invertebrates. In South Africa, T. granifera was first recorded in an estuarine environment in the St Lucia Estuary. Its tolerance to salinity and temperature was investigated through the experimental manipulation of these factors. T. granifera can tolerate temperatures between 0 ºC and 47.5 ºC, allowing it to survive high temperature extremes. The species may also survive cold snaps and invade higher altitude areas. More remarkably, this snail survives high salinity for a relatively long time, as LS50 (lethal salinity for 50% of the population was reached at 30 psu over 65–75 days. However, higher salinity adversely affected the T. granifera population. Snails acclimated to freshwater conditions and suddenly transferred to 30 psu experienced 100% mortality within 48 h. Snail activity also declined with increasing salinity. T. granifera’s environmental tolerance and parthenogenetic characteristics are the keys to successful introduction and establishment. Therefore, the management of T. granifera may prove diffcult in the short to medium term. The present findings constitute a contribution to the knowledge of biological invasions in Africa and to the understanding of estuarine invasions by T. granifera.

  15. Cold fusion in perspective

    International Nuclear Information System (INIS)

    Sanford, L.

    1989-01-01

    Since early April a great deal of excitement has been created over the Fleischmann/Pons cold fusion experiment, which if it performs as advertised, could turn out to be mankind's best hope of heading off the energy crisis scheduled for early in the next century. Dozens of groups around the world are now attempting to duplicate the experiment to see if Fleischmann and Pons' discovery is an experimental mistake, an unknown electrochemical effect or a new kind of fusion reaction. This article puts the experiment into the perspective of today and looks at how it might affect the energy scene tomorrow if it should turn out to be commercially exploitable. (author)

  16. How cold is it? TRPM8 and TRPA1 in the molecular logic of cold sensation

    Directory of Open Access Journals (Sweden)

    McKemy David D

    2005-04-01

    Full Text Available Abstract Recognition of temperature is a critical element of sensory perception and allows us to evaluate both our external and internal environments. In vertebrates, the somatosensory system can discriminate discrete changes in ambient temperature, which activate nerve endings of primary afferent fibers. These thermosensitive nerves can be further segregated into those that detect either innocuous or noxious (painful temperatures; the latter neurons being nociceptors. We now know that thermosensitive afferents express ion channels of the transient receptor potential (TRP family that respond at distinct temperature thresholds, thus establishing the molecular basis for thermosensation. Much is known of those channels mediating the perception of noxious heat; however, those proposed to be involved in cool to noxious cold sensation, TRPM8 and TRPA1, have only recently been described. The former channel is a receptor for menthol, and links the sensations provided by this and other cooling compounds to temperature perception. While TRPM8 almost certainly performs a critical role in cold signaling, its part in nociception is still at issue. The latter channel, TRPA1, is activated by the pungent ingredients in mustard and cinnamon, but has also been postulated to mediate our perception of noxious cold temperatures. However, a number of conflicting reports have suggested that the role of this channel in cold sensation needs to be confirmed. Thus, the molecular logic for the perception of cold-evoked pain remains enigmatic. This review is intended to summarize our current understanding of these cold thermoreceptors, as well as address the current controversy regarding TRPA1 and cold signaling.

  17. Introduction: the human sciences and Cold War America.

    Science.gov (United States)

    Isaac, Joel

    2011-01-01

    Studies of the history of the human sciences during the Cold War era have proliferated over the past decade--in JHBS and elsewhere. This special issue focuses on the connections between the behavioral sciences and the culture and politics of the Cold War in the United States. In the recent literature, there is a tendency to identify the Cold War human sciences with two main paradigms: that of psychocultural analysis, on the one hand, and of the systems sciences, on the other. The essays in the special issue both extend understanding of each of these interpretive frameworks and help us to grasp their interconnection. © 2011 Wiley Periodicals, Inc.

  18. Context-dependent effects of cold stress on behavioral, physiological, and life-history traits of the red flour beetle.

    Science.gov (United States)

    Scharf, Inon; Wertheimer, Keren-Or; Xin, Joy Lim; Gilad, Tomer; Goldenberg, Inna; Subach, Aziz

    2017-06-20

    Animals are exposed in nature to a variety of stressors. While stress is generally harmful, mild stress can also be beneficial and contribute to reproduction and survival. We studied the effect of five cold shock events versus a single cold shock and a control group, representing three levels of stress (harsh, mild, and no stress), on behavioral, physiological, and life-history traits of the red flour beetle (Tribolium castaneum, Herbst 1797). Beetles exposed to harsh cold stress were less active than a control group: they moved less and failed more frequently to detect a food patch. Their probability to mate was also lower. Beetle pairs exposed to harsh cold stress frequently failed to reproduce at all, and if reproducing, females laid fewer eggs, which were, as larvae in mid-development, smaller than those in the control group. However, harsh cold stress led to improved female starvation tolerance, probably due to enhanced lipid accumulation. Harsh cold shock also improved tolerance to an additional cold shock compared to the control. Finally, a single cold shock event negatively affected fewer measured response variables than the harsh cold stress, but also enhanced neither starvation tolerance nor tolerance to an additional cold shock. The consequences of a harsher cold stress are thus not solely detrimental but might even enhance survival under stressful conditions. Under benign conditions, nevertheless, harsh stress impedes beetle performance. The harsh stress probably shifted the balance point of the survival-reproduction trade-off, a shift that did not take place following exposure to mild stress. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  19. Proteomic Analysis of Differentially Accumulated Proteins in Cucumber (Cucumis sativus) Fruit Peel in Response to Pre-storage Cold Acclimation.

    Science.gov (United States)

    Wang, Bin; Shen, Fei; Zhu, Shijiang

    2017-01-01

    Harvested fruits are still living organs and respond to environmental stimuli. Low temperature storage is effective in extending life of harvested fruit, but it may also cause chilling injury. Cold acclimation has been shown to induce chilling tolerance in plants, but what proteomic changes caused by cold acclimation are related to defense against chilling stress remains largely unclear. Here, 3 d of pre-storage cold acclimation (PsCA) at 10°C reduced chilling injury and secondary disease severity in cucumber stored at 5°C by 51 and 94%, respectively, compared with the control which was directly stored at 5°C. Proteomic analysis of cucumber peel identified 21 significant differentially-accumulated proteins (SDAPs) right after PsCA treatment and 23 after the following cold storage (PsCA+CS). These proteins are mainly related to stress response and defense (SRD), energy metabolism, protein metabolism, signal transduction, primary metabolism, and transcription. The SRD proteins, which made up 37% of the 21 and 47% of the 23, respectively, represented the largest class of SDAPs, and all but one protein were up-regulated, suggesting accumulation of proteins involved in defense response is central feature of proteomic profile changes brought about by PsCA. In fruit just after PsCA treatment, the identified SDAPs are related to responses to various stresses, including chilling, salt stress, dehydration, fungi, bacteria, insects, and DNA damage. However, after prolonged cold storage, the targeted proteins in acclimated fruit were narrowed down in scope to those involved in defense against chilling and pathogens. The change patterns at the transcription level of the majority of the up-regulated differentially-accumulated proteins were highly consistent with those at protein level. Taken all, the results suggest that the short-time cold acclimation initiated comprehensive defense responses in cucumber fruit at first, while the long term storage thereafter altered the

  20. Proteomic Analysis of Differentially Accumulated Proteins in Cucumber (Cucumis sativus Fruit Peel in Response to Pre-storage Cold Acclimation

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2018-01-01

    Full Text Available Harvested fruits are still living organs and respond to environmental stimuli. Low temperature storage is effective in extending life of harvested fruit, but it may also cause chilling injury. Cold acclimation has been shown to induce chilling tolerance in plants, but what proteomic changes caused by cold acclimation are related to defense against chilling stress remains largely unclear. Here, 3 d of pre-storage cold acclimation (PsCA at 10°C reduced chilling injury and secondary disease severity in cucumber stored at 5°C by 51 and 94%, respectively, compared with the control which was directly stored at 5°C. Proteomic analysis of cucumber peel identified 21 significant differentially-accumulated proteins (SDAPs right after PsCA treatment and 23 after the following cold storage (PsCA+CS. These proteins are mainly related to stress response and defense (SRD, energy metabolism, protein metabolism, signal transduction, primary metabolism, and transcription. The SRD proteins, which made up 37% of the 21 and 47% of the 23, respectively, represented the largest class of SDAPs, and all but one protein were up-regulated, suggesting accumulation of proteins involved in defense response is central feature of proteomic profile changes brought about by PsCA. In fruit just after PsCA treatment, the identified SDAPs are related to responses to various stresses, including chilling, salt stress, dehydration, fungi, bacteria, insects, and DNA damage. However, after prolonged cold storage, the targeted proteins in acclimated fruit were narrowed down in scope to those involved in defense against chilling and pathogens. The change patterns at the transcription level of the majority of the up-regulated differentially-accumulated proteins were highly consistent with those at protein level. Taken all, the results suggest that the short-time cold acclimation initiated comprehensive defense responses in cucumber fruit at first, while the long term storage thereafter

  1. Fault tolerant control design for hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao; Jiang, Bin [Nanjing University of Aeronautics and Astronautics, Nanjing (China); Cocquempot, Vincent [Universite des Sciences et Technologies de Lille, Villeneuve d' Ascq (France)

    2010-07-01

    This book intends to provide the readers a good understanding on how to achieve Fault Tolerant Control goal of Hybrid Systems. The book can be used as a reference for the academic research on Fault Tolerant Control and Hybrid Systems or used in Ph.D. study of control theory and engineering. The knowledge background for this monograph would be some undergraduate and graduate courses on Fault Diagnosis and Fault Tolerant Control theory, linear system theory, nonlinear system theory, Hybrid Systems theory and Discrete Event System theory. (orig.)

  2. Bibliography on Cold Regions Science and Technology. Volume 51, Part 2.

    Science.gov (United States)

    1997-12-01

    1997, eng] 51-2291 PäIsson,O.P. Statistical methods in district heating in Iceland [1997, eng] 51-4259 Palta ,J.P. Molecular mechanisms of...Molecular mechanisms of herbaceous plant cold acclimation. Palta , J.P., et al, [I993,eng) 51-664 Mutations affecting freezing tolerance of plant tissues...51-2692 Molecular mechanisms of herbaceous plant cold acclimation. Palta , J.P, et al, [1993,eng] 51-664 Nitrification and denitrification enzyme

  3. Videogame distraction using virtual reality technology for children experiencing cold pressor pain: the role of cognitive processing.

    Science.gov (United States)

    Law, Emily F; Dahlquist, Lynnda M; Sil, Soumitri; Weiss, Karen E; Herbert, Linda Jones; Wohlheiter, Karen; Horn, Susan Berrin

    2011-01-01

    This study examined whether increasing the demand for central cognitive processing involved in a distraction task, by involving the child in ongoing, effortful interaction with the distraction stimulus, would increase children's tolerance for cold pressor pain. Seventy-nine children ages 6-15 years underwent a baseline cold pressor trial followed by two cold pressor trials in which they received interactive distraction (i.e., used voice commands to play a videogame) or passive distraction (in which they merely watched the output from the same videogame segment) in counterbalanced order. Both distraction conditions were presented via a virtual reality-type helmet. As expected, children demonstrated significant improvement in pain tolerance during distraction relative to baseline. Children showed the greatest improvement during the interactive distraction task. The effects of distraction on children's cold pressor pain tolerance are significantly enhanced when the distraction task also includes greater demands for central cognitive processing.

  4. A specific glycerol kinase induces rapid cold hardening of the diamondback moth, Plutella xylostella.

    Science.gov (United States)

    Park, Youngjin; Kim, Yonggyun

    2014-08-01

    Insects in temperate zones survive low temperatures by migrating or tolerating the cold. The diamondback moth, Plutella xylostella, is a serious insect pest on cabbage and other cruciferous crops worldwide. We showed that P. xylostella became cold-tolerant by expressing rapid cold hardiness (RCH) in response to a brief exposure to moderately low temperature (4°C) for 7h along with glycerol accumulation in hemolymph. Glycerol played a crucial role in the cold-hardening process because exogenously supplying glycerol significantly increased the cold tolerance of P. xylostella larvae without cold acclimation. To determine the genetic factor(s) responsible for RCH and the increase of glycerol, four glycerol kinases (GKs), and glycerol-3-phosphate dehydrogenase (PxGPDH) were predicted from the whole P. xylostella genome and analyzed for their function associated with glycerol biosynthesis. All predicted genes were expressed, but differed in their expression during different developmental stages and in different tissues. Expression of the predicted genes was individually suppressed by RNA interference (RNAi) using double-stranded RNAs specific to target genes. RNAi of PxGPDH expression significantly suppressed RCH and glycerol accumulation. Only PxGK1 among the four GKs was responsible for RCH and glycerol accumulation. Furthermore, PxGK1 expression was significantly enhanced during RCH. These results indicate that a specific GK, the terminal enzyme to produce glycerol, is specifically inducible during RCH to accumulate the main cryoprotectant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Toleration out of respect?

    DEFF Research Database (Denmark)

    Lægaard, Sune

    2013-01-01

    Under conditions of pluralism different cultures, interests or values can come into conflict, which raises the problem of how to secure peaceful co-existence. The idea of toleration historically emerged as an answer to this problem. Recently Rainer Forst has argued that toleration should not just...... be based on a modus vivendi designed to secure peaceful co-existence, but should be based on moral reasons. Forst therefore advances what he calls the ‘respect conception’ of toleration as an in itself morally desirable type of relationship, which is furthermore the only conception of toleration...... that avoids various so-called ‘paradoxes of toleration’. The paper first examines whether Forst’s respect conception can be applied descriptively to distinguish between actual patterns of behaviour and classify different acts of toleration. Then the focus is shifted to toleration out of respect as a normative...

  6. Tolerance in Drosophila

    OpenAIRE

    Atkinson, Nigel S.

    2009-01-01

    The set of genes that underlie ethanol tolerance (inducible resistance) are likely to overlap with the set of genes responsible for ethanol addiction. Whereas addiction is difficult to recognize in simple model systems, behavioral tolerance is readily identifiable and can be induced in large populations of animals. Thus, tolerance lends itself to analysis in model systems with powerful genetics. Drosophila melanogaster has been used by a variety of laboratories for the identification of genes...

  7. An analysis of the development of cauliflower seed as a model to improve the molecular mechanism of abiotic stress tolerance in cauliflower artificial seeds.

    Science.gov (United States)

    Rihan, Hail Z; Al-Issawi, Mohammed; Fuller, Michael P

    2017-07-01

    The development stages of conventional cauliflower seeds were studied and the accumulation of dehydrin proteins through the maturation stages was investigated with the aim of identifying methods to improve the viability of artificial seeds of cauliflower. While carbohydrate, ash and lipids increased throughout the development of cauliflower traditional seeds, proteins increased with the development of seed and reached the maximum level after 75 days of pollination, however, the level of protein started to decrease after that. A significant increase in the accumulation of small size dehydrin proteins (12, 17, 26 KDa) was observed during the development of cauliflower seeds. Several experiments were conducted in order to increase the accumulation of important dehydrin proteins in cauliflower microshoots (artificial seeds). Mannitol and ABA (Absisic acid) increased the accumulation of dehydrins in cauliflower microshoots while cold acclimation did not have a significant impact on the accumulation of these proteins. Molybdenum treatments had a negative impact on dehydrin accumulation. Dehydrins have an important role in the drought tolerance of seeds and, therefore, the current research helps to improve the accumulation of these proteins in cauliflower artificial seeds. This in turns improves the quality of these artificial seeds. The current results suggest that dehydrins do not play an important role in cold tolerance of cauliflower artificial seeds. This study could have an important role in improving the understanding of the molecular mechanism of abiotic stress tolerance in plants. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Cold moderator scattering kernels

    International Nuclear Information System (INIS)

    MacFarlane, R.E.

    1989-01-01

    New thermal-scattering-law files in ENDF format have been developed for solid methane, liquid methane liquid ortho- and para-hydrogen, and liquid ortho- and para-deuterium using up-to-date models that include such effects as incoherent elastic scattering in the solid, diffusion and hindered vibration and rotations in the liquids, and spin correlations for the hydrogen and deuterium. These files were generated with the new LEAPR module of the NJOY Nuclear Data Processing System. Other modules of this system were used to produce cross sections for these moderators in the correct format for the continuous-energy Monte Carlo code (MCNP) being used for cold-moderator-design calculations at the Los Alamos Neutron Scattering Center (LANSCE). 20 refs., 14 figs

  9. Experiments in cold fusion

    International Nuclear Information System (INIS)

    Palmer, E.P.

    1986-01-01

    The work of Steve Jones and others in muon-catalyzed cold fusion of deuterium and hydrogen suggests the possibility of such fusion catalyzed by ions, or combinations of atoms, or more-or-less free electrons in solid and liquid materials. A hint that this might occur naturally comes from the heat generated in volcanic action in subduction zones on the earth. It is questionable whether the potential energy of material raised to the height of a midocean ridge and falling to the depth of an ocean trench can produce the geothermal effects seen in the volcanoes of subduction zones. If the ridge, the trench, the plates, and the asthenosphere are merely visible effects of deeper density-gradient driven circulations, it is still uncertain that observed energy-concentration effects fit the models

  10. A cold mass support system based on the use of oriented fiberglass epoxy rods in bending

    International Nuclear Information System (INIS)

    Green, Michael A.; Corradi, Carol A.; LaMantia, Roberto F.; Zbasnik, Jon P.

    2002-01-01

    This report describes a cold mass support system that uses oriented fiberglass epoxy (other low heat leak oriented fiber material can also be used) rods. In the direction of the rods, where forces are carried in tension or compression, the support system is very stiff. In the other directions, the rods are subjected to bending stresses. When the support rods are put in bending the cold mass support is quite compliant. This type of support system can be used in situation where space for a cold mass support system is limited and where compliance can be tolerated in at least one direction. Break test data for 15.9-mm and 19.1-mm diameter oriented fiberglass rods is presented in this report. The cold mass supports for the DFBX distribution boxes are presented as an example of this type of cold mass support system

  11. Monitoring the vaccine cold chain.

    OpenAIRE

    Cheriyan, E

    1993-01-01

    Maintaining the vaccine cold chain is an essential part of a successful immunisation programme. A continuous electronic temperature monitor helped to identify breaks in the cold chain in the community and the study led to the issue of proper guidelines and replacement of faulty equipment.

  12. Cold gelation of globular proteins

    NARCIS (Netherlands)

    Alting, A.C.

    2003-01-01

    Keywords : globular proteins, whey protein, ovalbumin, cold gelation, disulfide bonds, texture, gel hardnessProtein gelation in food products is important to obtain desirable sensory and textural properties. Cold gelation is a novel method to produce protein-based gels. It is a two step process in

  13. Initial heating in cold cars

    NARCIS (Netherlands)

    Daanen, H.A.M.; Teunissen, L.P.J.; Hoogh, I.M. de

    2012-01-01

    During the initial minutes after entering a cold car, people feel uncomfortably cold. Six different warming systems were investigated in a small car in order to find out how to improve the feeling of comfort using 16 volunteers. The methods were: no additional warming next to a standard heating

  14. The status of cold fusion

    Science.gov (United States)

    Storms, E.

    This report attempts to update the status of the phenomenon of cold fusion. The new field is continuing to grow as a variety of nuclear reactions are discovered to occur in a variety of chemical environments at modest temperatures. However, it must be cautioned that most scientists consider cold fusion as something akin to UFO's, ESP, and numerology.

  15. Facts about the Common Cold

    Science.gov (United States)

    ... different viruses. Rhinovirus is the most common cause, accounting for 10 to 40 percent of colds. Other common cold viruses include coronavirus and ... RSS | Terms Of Use | Privacy | Sitemap Our Family Of Sites ... Introduction Risk Factors Screening Symptoms Tumor Testing Summary '; var ...

  16. The relationship between codon usage bias and cold resistant genes

    International Nuclear Information System (INIS)

    Barozai, M.Y.; Din, M.

    2014-01-01

    This research is based on synonymous codon usage which has been well-known as a feature that affects typical expression level of protein in an organism. Different organisms prefer different codons for same amino acid and this is called Codon Usage Bias (CUB). The codon usage directly affects the level or even direction of changes in protein expression in responses to environmental stimuli. Cold stress is a major abiotic factor that limits the agricultural productivity of plants. In the recent study CUB has been studied in Arabidopsis thaliana cold resistant and housekeeping genes and their homologs in rice (Oryza sativa) to understand the cold stress and housekeeping genes relation with CUB. Six cold resistant and three housekeeping genes in Arabidopsis thaliana and their homologs in rice, were subjected to CUB analysis. The three cold resistant genes (DREB1B, RCI and MYB15) showed more than 50% (52%, 61% and 66% respectively) similar codon usage bias for Arabidopsis thaliana and rice. On the other hand three cold resistant genes (MPK3, ICE1 and ZAT12) showed less than 50% (38%, 38% and 47% respectively) similar codon usage bias for Arabidopsis thaliana and rice. The three housekeeping genes (Actin, Tubulin and Ubiquitin) showed 76% similar codon usage bias for Arabidopsis thaliana and rice. This study will help to manage the plant gene expression through codon optimization under the cold stress. (author)

  17. Development of cold neutron spectrometers

    International Nuclear Information System (INIS)

    Lee, Changhee; Lee, C. H.; So, J. Y.; Park, S.; Han, Y. S.; Cho, S. J.; Moon, M. K.; Choi, Y. H.; Sun, G. M.

    2012-03-01

    Cold Neutron Triple Axsis Spectrometer (Cold-TAS) Development Ο Fabrication and Installation of the Major Cold-TAS Components Ο Performance Test of the Cold-TAS □ Cold Neutron Time-of-Flight Spectrometer(DC-TOF) Development Ο Fabrication of the Major DC-TOF Components Ο Development DC-TOF Data Reduction Software □ Expected Contribution The two world-class inelastic neutron scattering instruments measure atomic or molecular scale dynamics of meV energy range. This unprecedented measurement capability in the country will enable domestic and international scientists to observe new phenomena in their materials research to obtain world class results. Especially those who work in the fields of magnetic properties of superconductors and multiferroics, molecular dynamics, etc. will get more benefit from these two instruments

  18. Tolerance to environmental desiccation in moss sperm.

    Science.gov (United States)

    Shortlidge, Erin E; Rosenstiel, Todd N; Eppley, Sarah M

    2012-05-01

    • Sexual reproduction in mosses requires that sperm be released freely into the environment before finding and fertilizing a receptive female. After release from the male plant, moss sperm may experience a range of abiotic stresses; however, few data are available examining stress tolerance of moss sperm and whether there is genetic variation for stress tolerance in this important life stage. • Here, we investigated the effects of environmental desiccation and recovery on the sperm cells of three moss species (Bryum argenteum, Campylopus introflexus, and Ceratodon purpureus). • We found that a fraction of sperm cells were tolerant to environmental desiccation for extended periods (d) and that tolerance did not vary among species. We found that this tolerance occurs irrespective of ambient dehydration conditions, and that the addition of sucrose during dry-down improved cell recovery. Although we observed no interspecific variation, significant variation among individuals within species in sperm cell tolerance to environmental desiccation was observed, suggesting selection could potentially act on this basic reproductive trait. • The observation of desiccation-tolerant sperm in multiple moss species has important implications for understanding bryophyte reproduction, suggesting the presence of a significant, uncharacterized complexity in the ecology of moss mating systems. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  19. Compromise and Toleration

    DEFF Research Database (Denmark)

    Rostbøll, Christian F.

    Political compromise is akin to toleration, since both consist of an "agreement to disagree." Compromise and toleration also share a predicament of being regarded as ambiguous virtues that require of us to accept something we actually regard as wrong. However, we misunderstand the nature, justifi...... in compromise are more stringent than those for being tolerated. Still, the limits of compromise cannot be drawn to narrowly if it is to remain its value as a form of agreement that respects and embodies the differences of opinion in society.......Political compromise is akin to toleration, since both consist of an "agreement to disagree." Compromise and toleration also share a predicament of being regarded as ambiguous virtues that require of us to accept something we actually regard as wrong. However, we misunderstand the nature......, justification, and limits of compromise if we see it merely as a matter of toleration. While toleration is mainly a matter of accepting citizens' equal right to co-existence as subjects to law, political compromise includes the parties in making law – it makes them co-authors of law. Toleration entails...

  20. Tolerances in micro manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Zhang, Yang; Islam, Aminul

    This paper describes a method for analysis of tolerances in micro manufacturing. It proposes a mapping oftolerances to dimensions and compares this with current available international standards. The analysisdocuments that tolerances are not scaled down as the absolute dimension. In practice...

  1. Fault tolerant computing systems

    International Nuclear Information System (INIS)

    Randell, B.

    1981-01-01

    Fault tolerance involves the provision of strategies for error detection damage assessment, fault treatment and error recovery. A survey is given of the different sorts of strategies used in highly reliable computing systems, together with an outline of recent research on the problems of providing fault tolerance in parallel and distributed computing systems. (orig.)

  2. Toleration out of respect?

    DEFF Research Database (Denmark)

    Lægaard, Sune

    2014-01-01

    be based on a modus vivendi designed to secure peaceful co-existence, but should be based on moral reasons. Forst therefore advances what he calls the ‘respect conception’ of toleration as an in itself morally desirable type of relationship, which is furthermore the only conception of toleration...

  3. Recognition and Toleration

    DEFF Research Database (Denmark)

    Lægaard, Sune

    2010-01-01

    Recognition and toleration are ways of relating to the diversity characteristic of multicultural societies. The article concerns the possible meanings of toleration and recognition, and the conflict that is often claimed to exist between these two approaches to diversity. Different forms or inter...

  4. Integrative omic analysis reveals distinctive cold responses in leaves and roots of strawberry, Fragaria × ananassa ‘Korona’

    Directory of Open Access Journals (Sweden)

    Gage eKoehler

    2015-10-01

    Full Text Available To assess underlying metabolic processes and regulatory mechanisms during cold exposure of strawberry, integrative omic approaches were applied to Fragaria × ananassa Duch. ‘Korona’. Both root and leaf tissues were examined for responses to the cold acclimation processes. Levels of metabolites, proteins, and transcripts in tissues from plants grown at 18°C were compared to those following 1 to 10 days of cold (2°C exposure. Overall, ‘Korona’ showed a modest increase of protective metabolites such as amino acids (aspartic acid, leucine, isoleucine, and valine, pentoses, phosphorylated and non-phosphorylated hexoses, and distinct compounds of the raffinose pathway (galactinol and raffinose. By 2DE proteomics a total of 845 spots were observed in leaves; 4.6% changed significantly in response to cold.Transcript levels in leaves were determined by microarray, where dozens of cold associated transcripts were quantitatively characterized, and levels of several potential key contributors (e.g., the dehydrin COR47 and GADb to cold tolerance were confirmed by qRT-PCR. Cold responses are placed within the existing knowledge base of low temperature stress change in plants, allowing an evaluation of the uniqueness or generality of Fragaria responses in photosynthetic tissues. Overall, the cold response characteristics of ‘Korona’ are consistent with a moderately cold tolerant plant.

  5. Focus: new perspectives on science and the Cold War. Introduction.

    Science.gov (United States)

    Heyck, Hunter; Kaiser, David

    2010-06-01

    Twenty years after the fall of the Berlin Wall, the Cold War looks ever more like a slice of history rather than a contemporary reality. During those same twenty years, scholarship on science, technology, and the state during the Cold War era has expanded dramatically. Building on major studies of physics in the American context--often couched in terms of "big science"--recent work has broached scientific efforts in other domains as well, scrutinizing Cold War scholarship in increasingly international and comparative frameworks. The essays in this Focus section take stock of current thinking about science and the Cold War, revisiting the question of how best to understand tangled (and sometimes surprising) relationships between government patronage and the world of ideas.

  6. Powder consolidation using cold spray process modeling and emerging applications

    CERN Document Server

    Moridi, Atieh

    2017-01-01

    This book first presents different approaches to modeling of the cold spray process with the aim of extending current understanding of its fundamental principles and then describes emerging applications of cold spray. In the coverage of modeling, careful attention is devoted to the assessment of critical and erosion velocities. In order to reveal the phenomenological characteristics of interface bonding, severe, localized plastic deformation and material jet formation are studied. Detailed consideration is also given to the effect of macroscopic defects such as interparticle boundaries and subsequent splat boundary cracking on the mechanical behavior of cold spray coatings. The discussion of applications focuses in particular on the repair of damaged parts and additive manufacturing in various disciplines from aerospace to biomedical engineering. Key aspects include a systematic study of defect shape and the ability of cold spray to fill the defect, examination of the fatigue behavior of coatings for structur...

  7. Dynamic of cold-atom tips in anharmonic potentials

    Science.gov (United States)

    Menold, Tobias; Federsel, Peter; Rogulj, Carola; Hölscher, Hendrik; Fortágh, József

    2016-01-01

    Background: Understanding the dynamics of ultracold quantum gases in an anharmonic potential is essential for applications in the new field of cold-atom scanning probe microscopy. Therein, cold atomic ensembles are used as sensitive probe tips to investigate nanostructured surfaces and surface-near potentials, which typically cause anharmonic tip motion. Results: Besides a theoretical description of this anharmonic tip motion, we introduce a novel method for detecting the cold-atom tip dynamics in situ and real time. In agreement with theory, the first measurements show that particle interactions and anharmonic motion have a significant impact on the tip dynamics. Conclusion: Our findings will be crucial for the realization of high-sensitivity force spectroscopy with cold-atom tips and could possibly allow for the development of advanced spectroscopic techniques such as Q-control. PMID:28144505

  8. Remember Tolerance Differently

    DEFF Research Database (Denmark)

    Tønder, Lars

    2012-01-01

    This essay questions the linear conception of history which often accompanies the way contemporary democratic theory tends to disavow tolerance's discontinuities and remainders. In the spirit of Foucault's genealogy of descent, the idea is to develop a new sense of tolerance's history, not by inv......This essay questions the linear conception of history which often accompanies the way contemporary democratic theory tends to disavow tolerance's discontinuities and remainders. In the spirit of Foucault's genealogy of descent, the idea is to develop a new sense of tolerance's history......, not by invoking a critique external to contemporary democratic theory, but by witnessing the history of tolerance paraliptically, with an eye to what it obscures and yet presupposes....

  9. Cold hardiness research on agricultural and horticultural crops in Finland

    Directory of Open Access Journals (Sweden)

    L. LINDÉN

    2008-12-01

    Full Text Available This paper represents an overview of cold hardiness research conducted on agricultural and horticultural crops, as well as on amenity plants in Finland. Inadequate freezing tolerance and/or winter hardiness often prevents introduction of new species and cultivars to Finland. Field observations on winter hardiness and more recently the results from laboratory freezing tests, have assisted breeders to select hardy genotypes. Research approaches for agricultural crops have evolved from observations on winter and frost damage to studies on molecular mechanisms of cold acclimation and freezing injury. The results of experiments on survival of winter cereals, grasses and clovers and frost tolerance of potato and turnip rape are discussed. The studies conducted on horticultural crops, including apple, strawberry, raspberry, currants, blueberry, sea buckthorn, perennial herbs as well as on ornamental trees and shrubs have included field evaluations of cultivars, or selections for winter hardiness, and studies on the effects of cultural management practices on winter survival. During the last decade detailed studies including controlled freezing tests have provided tools to assist in explanation of the underlying mechanisms of cold hardiness also in horticultural plants. ;

  10. Cold fusion method

    International Nuclear Information System (INIS)

    Takahashi, Akihito.

    1994-01-01

    A Pt wire electrode is supported from the periphery relative to a Pd electrode by way of a polyethylene or teflon plate in heavy water, and electrolysis is applied while varying conditions successively in a sawteeth fashion at an initial stage, and after elapse of about one week, a pulse current is supplied to promote nuclear reaction and to generate excess heat greater than a charged electric power. That is, small amount of neutron emission is increased and electrolytic cell temperature is elevated by varying the electrolysis conditions successively in the sawteeth fashion at the initial stage. In addition, when the pulse electric current is supplied after elapse of about one week, the electrolytic cell temperature is abnormally elevated, so that the promotion of nuclear reaction phenomenon and the generation of excess heat greater than the charged electric power are recognized. Then, a way to control power level and time fluctuation of cold fusion is attained, thereby contributing to development of a further method for generating excess heat as desired. In addition, it contributes to a development for a method of obtaining such an excess heat that can be taken as a new energy. (N.H.)

  11. Cold Rydberg molecules

    Science.gov (United States)

    Raithel, Georg; Zhao, Jianming

    2017-04-01

    Cold atomic systems have opened new frontiers at the interface of atomic and molecular physics. These include research on novel types of Rydberg molecules. Three types of molecules will be reviewed. Long-range, homonuclear Rydberg molecules, first predicted in [1] and observed in [2], are formed via low-energy electron scattering of the Rydberg electron from a ground-state atom within the Rydberg atom's volume. The binding mostly arises from S- and P-wave triplet scattering. We use a Fermi model that includes S-wave and P-wave singlet and triplet scattering, the fine structure coupling of the Rydberg atom and the hyperfine structure coupling of the 5S1/2 atom (in rubidium [3]). The hyperfine structure gives rise to mixed singlet-triplet potentials for both low-L and high-L Rydberg molecules [3]. A classification into Hund's cases [3, 4, 5] will be discussed. The talk further includes results on adiabatic potentials and adiabatic states of Rydberg-Rydberg molecules in Rb and Cs. These molecules, which have even larger bonding length than Rydberg-ground molecules, are formed via electrostatic multipole interactions. The leading interaction term of neutral Rydberg-Rydberg molecules is between two dipoles, while for ionic Rydberg molecules it is between a dipole and a monopole. NSF (PHY-1506093), NNSF of China (61475123).

  12. Cold-Adapted Enzymes

    Science.gov (United States)

    Georlette, D.; Bentahir, M.; Claverie, P.; Collins, T.; D'amico, S.; Delille, D.; Feller, G.; Gratia, E.; Hoyoux, A.; Lonhienne, T.; Meuwis, M.-a.; Zecchinon, L.; Gerday, Ch.

    In the last few years, increased attention has been focused on enzymes produced by cold-adapted micro-organisms. It has emerged that psychrophilic enzymes represent an extremely powerful tool in both protein folding investigations and for biotechnological purposes. Such enzymes are characterised by an increased thermosensitivity and, most of them, by a higher catalytic efficiency at low and moderate temperatures, when compared to their mesophilic counterparts. The high thermosensitivity probably originates from an increased flexibility of either a selected area of the molecular edifice or the overall protein structure, providing enhanced abilities to undergo conformational changes during catalysis at low temperatures. Structure modelling and recent crystallographic data have allowed to elucidate the structural parameters that could be involved in this higher resilience. It was demonstrated that each psychrophilic enzyme adopts its own adaptive strategy. It appears, moreover, that there is a continuum in the strategy of protein adaptation to temperature, as the previously mentioned structural parameters are implicated in the stability of thermophilic proteins. Additional 3D crystal structures, site-directed and random mutagenesis experiments should now be undertaken to further investigate the stability-flexibility-activity relationship.

  13. Observations of cold antihydrogen

    CERN Document Server

    Tan, J N; Gabrielse, G; Oxley, P; Speck, A; Storry, C H; Wessels, M; Grzonka, D; Oelert, W; Schepers, G; Sefzick, T; Walz, J; Pittner, H; Hänsch, T W; Hessels, E A

    2004-01-01

    ATRAP's e/sup +/ cooling of p in a nested Penning trap has led to reports of cold H produced during such cooling by the ATHENA and ATRAP collaborations. To observe H, ATHENA uses coincident annihilation detection and ATRAP uses field ionization followed by p storage. Advantages of ATRAP's field ionization method include the complete absence of any background events, and the first way to measure which H states are produced. ATRAP enhances the H production rate by driving many cycles of e/sup +/ cooling in the nested trap, with more H counted in an hour than the sum of all the other antimatter atoms ever reported. The number of H counted per incident high energy p is also higher than ever observed. The first measured distribution of H states is made using a pre-ionizing electric field between separated production and detection regions. The high rate and the high Rydberg states suggest that the H is formed via three-body recombination, as expected. (22 refs).

  14. Observations of cold antihydrogen

    International Nuclear Information System (INIS)

    Tan, J.N.; Bowden, N.S.; Gabrielse, G.; Oxley, P.; Speck, A.; Storry, C.H.; Wessels, M.; Grzonka, D.; Oelert, W.; Schepers, G.; Sefzick, T.; Walz, J.; Pittner, H.; Haensch, T.W.; Hessels, E.A.

    2004-01-01

    ATRAP's e + cooling of p-bar in a nested Penning trap has led to reports of cold H-bar produced during such cooling by the ATHENA and ATRAP collaborations. To observe H-bar, ATHENA uses coincident annihilation detection and ATRAP uses field ionization followed by p-bar storage. Advantages of ATRAP's field ionization method include the complete absence of any background events, and the first way to measure which H-bar states are produced. ATRAP enhances the H-bar production rate by driving many cycles of e + cooling in the nested trap, with more H-bar counted in an hour than the sum of all the other antimatter atoms ever reported. The number of H-bar counted per incident high energy p-bar is also higher than ever observed. The first measured distribution of H-bar states is made using a pre-ionizing electric field between separated production and detection regions. The high rate and the high Rydberg states suggest that the H-bar is formed via three-body recombination, as expected

  15. Aerobic methanotrophic bacteria of cold ecosystems.

    Science.gov (United States)

    Trotsenko, Yuri A; Khmelenina, Valentina N

    2005-06-01

    This review summarizes the recent advances in understanding the ecophysiological role and structure-function features of methanotrophic bacteria living in various cold ecosystems. The occurrence of methanotrophs in a majority of psychrosphere sites was verified by direct measurement of their methane-utilizing activity, by electron microscopy and immunofluorescent observations, and analyses of specific signatures in cellular phospholipids and total DNAs extracted from environmental samples. Surprisingly, the phenotypic and genotypic markers of virtually all extant methanotrophs were detected in various cold habitats, such as underground waters, Northern taiga and tundra soils, polar lakes and permafrost sediments. Also, recent findings indicated that even after long-term storage in permafrost, some methanotrophs can oxidize and assimilate methane not only at positive but also at subzero temperatures. Pure cultures of psychrophilic and psychrotolerant methanotrophs were isolated and characterized as new genera and species: Methylobacter psychrophilus, Methylosphaera hansonii, Methylocella palustris, Methylocella silvestris, Methylocella tundrae, Methylocapsa acidiphila and Methylomonas scandinavica. However, our knowledge about their adaptive mechanisms and survival in cold ecosystems remains limited and needs to be established using both traditional and molecular microbiological methods.

  16. Cold-formed steel design

    CERN Document Server

    Yu, Wei-Wen

    2010-01-01

    The definitive text in the field, thoroughly updated and expanded Hailed by professionals around the world as the definitive text on the subject, Cold-Formed Steel Design is an indispensable resource for all who design for and work with cold-formed steel. No other book provides such exhaustive coverage of both the theory and practice of cold-formed steel construction. Updated and expanded to reflect all the important developments that have occurred in the field over the past decade, this Fourth Edition of the classic text provides you with more of the detailed, up-to-the-minute techni

  17. A Multirelational Account of Toleration

    DEFF Research Database (Denmark)

    Ferretti, Maria Paola; Lægaard, Sune

    2013-01-01

    Toleration classically denotes a relation between two agents that is characterised by three components: objection, power, and acceptance overriding the objection. Against recent claims that classical toleration is not applicable in liberal democracies and that toleration must therefore either be ...

  18. Proteomic analysis of endothelial cold-adaptation

    Directory of Open Access Journals (Sweden)

    Zieger Michael AJ

    2011-12-01

    Full Text Available Abstract Background Understanding how human cells in tissue culture adapt to hypothermia may aid in developing new clinical procedures for improved ischemic and hypothermic protection. Human coronary artery endothelial cells grown to confluence at 37°C and then transferred to 25°C become resistant over time to oxidative stress and injury induced by 0°C storage and rewarming. This protection correlates with an increase in intracellular glutathione at 25°C. To help understand the molecular basis of endothelial cold-adaptation, isolated proteins from cold-adapted (25°C/72 h and pre-adapted cells were analyzed by quantitative proteomic methods and differentially expressed proteins were categorized using the DAVID Bioinformatics Resource. Results Cells adapted to 25°C expressed changes in the abundance of 219 unique proteins representing a broad range of categories such as translation, glycolysis, biosynthetic (anabolic processes, NAD, cytoskeletal organization, RNA processing, oxidoreductase activity, response-to-stress and cell redox homeostasis. The number of proteins that decreased significantly with cold-adaptation exceeded the number that increased by 2:1. Almost half of the decreases were associated with protein metabolic processes and a third were related to anabolic processes including protein, DNA and fatty acid synthesis. Changes consistent with the suppression of cytoskeletal dynamics provided further evidence that cold-adapted cells are in an energy conserving state. Among the specific changes were increases in the abundance and activity of redox proteins glutathione S-transferase, thioredoxin and thioredoxin reductase, which correlated with a decrease in oxidative stress, an increase in protein glutathionylation, and a recovery of reduced protein thiols during rewarming from 0°C. Increases in S-adenosylhomocysteine hydrolase and nicotinamide phosphoribosyltransferase implicate a central role for the methionine

  19. Cold nuclear fusion

    Energy Technology Data Exchange (ETDEWEB)

    Tsyganov, E.N., E-mail: edward.tsyganov@coldfusion-power.com [Cold Fusion Power, International (United States); Bavizhev, M.D. [LLC “Radium”, Moscow (Russian Federation); Buryakov, M.G. [Joint Institute for Nuclear Research (JINR), Dubna (Russian Federation); Dabagov, S.B. [RAS P.N. Lebedev Physical Institute, Leninsky pr. 53, 119991 Moscow (Russian Federation); National Research Nuclear University MEPhI, Kashirskoe shosse 31, 115409 Moscow (Russian Federation); Golovatyuk, V.M.; Lobastov, S.P. [Joint Institute for Nuclear Research (JINR), Dubna (Russian Federation)

    2015-07-15

    If target deuterium atoms were implanted in a metal crystal in accelerator experiments, a sharp increase in the probability of DD-fusion reaction was clearly observed when compared with the reaction’s theoretical value. The electronic screening potential, which for a collision of free deuterium atoms is about 27 eV, reached 300–700 eV in the case of the DD-fusion in metallic crystals. These data leads to the conclusion that a ban must exist for deuterium atoms to be in the ground state 1s in a niche filled with free conduction electrons. At the same time, the state 2p whose energy level is only 10 eV above that of state 1s is allowed in these conditions. With anisotropy of 2p, 3p or above orbitals, their spatial positions are strictly determined in the lattice coordinate system. When filling out the same potential niches with two deuterium atoms in the states 2p, 3p or higher, the nuclei of these atoms can be permanently positioned without creating much Coulomb repulsion at a very short distance from each other. In this case, the transparency of the potential barrier increases dramatically compared to the ground state 1s for these atoms. The probability of the deuterium nuclei penetrating the Coulomb barrier by zero quantum vibration of the DD-system also increases dramatically. The so-called cold nuclear DD-fusion for a number of years was registered in many experiments, however, was still rejected by mainstream science for allegedly having no consistent scientific explanation. Finally, it received the validation. Below, we outline the concept of this explanation and give the necessary calculations. This paper also considers the further destiny of the formed intermediate state of {sup 4}He{sup ∗}.

  20. Hydrothermal Cold Sintering

    Science.gov (United States)

    Kang, Xiaoyu

    C, respectively. Process variables were defined and effects of individual parameters were studied systematically through control variable method with Li2MoO4-water system. Crystalline structure, fractured surface morphology and chemical bonding information of the cold sintered pellets were studied with X-ray diffraction (XRD), field effect scanning electron microscopy (FE-SEM) and Raman spectroscopy, etc. Densification mechanism studies were conducted on ZnO. Through comparison experiments, it was found that the Zn2+ concentration in the solution is critical for densification, while dissolution of grains only serves as a means to the former. Through pressure dependent studies, a critical value was found, which correlated well with the hydrostatic pressure keeping liquid water from thermal expansion. These results confirmed establishment of hydrothermal condition that would be important for mass transport in densification. Densification rate variations with process time was estimated and similar time dependence to Kingery's model was found. The densification process was proposed to be consist of three consecutive stages, which are quick initial compaction, grain rearrangement and dissolution-reprecipitation events. Binary metal oxides with different acidities were subjected to cold sintering with various aqueous solutions in establishing a criteria for material selection. It was found that in general materials with high solubility at around neutral pH, high dissolution kinetics and similar free energy to their hydroxides or hydrates at ambient would be more likely for full densification with high phase purity. The anions in solution should also be wisely selected to avoid stable compound or complex formation. To extend the applicable material list for full densification, non-aqueous solvent of dimethyl sulfoxide (DMSO) based solution was studied for cold sintering. Both improvement of pellet density and suppression of hydroxide formation were achieved for MnO by using DMSO

  1. Phonon forces and cold denaturatio

    DEFF Research Database (Denmark)

    Bohr, Jakob

    2003-01-01

    Protein unfolds upon temperature reduction as Well as upon In increase in temperature, These phenomena are called cold denaturation and hot denaturation, respectively. The contribution from quantum mode forces to denaturation is estimated using a simple phenomenological model describing the molec......Protein unfolds upon temperature reduction as Well as upon In increase in temperature, These phenomena are called cold denaturation and hot denaturation, respectively. The contribution from quantum mode forces to denaturation is estimated using a simple phenomenological model describing...... the molecule Is a continuum. The frequencies of the vibrational modes depend on the molecular dimensionality; hence, the zero-point energies for the folded and the denatured protein are estimated to differ by several electron volts. For a biomolecule such an energy is significant and may contribute to cold...... denaturing. This is consistent with the empirical observation that cold denaturation is exothermic anti hot denaturation endothermic....

  2. Cold Weather and Cardiovascular Disease

    Science.gov (United States)

    ... Venous Thromboembolism Aortic Aneurysm More Cold Weather and Cardiovascular Disease Updated:Sep 16,2015 Th is winter ... and procedures related to heart disease and stroke. Cardiovascular Conditions • Conditions Home • Arrhythmia and Atrial Fibrillation • Cardiac ...

  3. Magnesium Repair by Cold Spray

    National Research Council Canada - National Science Library

    Champagne, V. K; Leyman, P.F; Helfritch, D. J

    2008-01-01

    .... Army Research Laboratory has developed a cold spray process to reclaim magnesium components that shows significant improvement over existing methods and is in the process of qualification for use on rotorcraft...

  4. Thermal acclimation mitigates cold-induced paracellular leak from the Drosophila gut.

    Science.gov (United States)

    MacMillan, Heath A; Yerushalmi, Gil Y; Jonusaite, Sima; Kelly, Scott P; Donini, Andrew

    2017-08-18

    Chill susceptible insects suffer tissue damage and die at low temperatures. The mechanisms that cause chilling injury are not well understood but a growing body of evidence suggests that a cold-induced loss of ion and water homeostasis leads to hemolymph hyperkalemia that depolarizes cells, leading to cell death. The apparent root of this cascade is the net leak of osmolytes down their concentration gradients in the cold. Many insects, however, are capable of adjusting their thermal physiology, and cold-acclimated Drosophila can maintain homeostasis and avoid injury better than warm-acclimated flies. Here, we test whether chilling causes a loss of epithelial barrier function in female adult Drosophila, and provide the first evidence of cold-induced epithelial barrier failure in an invertebrate. Flies had increased rates of paracellular leak through the gut epithelia at 0 °C, but cold acclimation reduced paracellular permeability and improved cold tolerance. Improved barrier function was associated with changes in the abundance of select septate junction proteins and the appearance of a tortuous ultrastructure in subapical intercellular regions of contact between adjacent midgut epithelial cells. Thus, cold causes paracellular leak in a chill susceptible insect and cold acclimation can mitigate this effect through changes in the composition and structure of transepithelial barriers.

  5. Tolerance – a Culturally Dependent Concept?

    Directory of Open Access Journals (Sweden)

    Trond Jørgensen

    2014-12-01

    Full Text Available This article presents research on Japanese interpretations of the first article of the Universal Declaration of Human Rights as a point of departure for discussing how the Japanese cultural contexts present an alternative understanding of tolerance to the Western liberal. According to Rainer Forst, tolerance is a normatively dependent concept (Forst 2010. This implies that the specific cultural values or the ‘normative context’ and environment become relevant. Since the praxis of tolerance always takes place in a specific cultural and moral environment, the cultural context influences how tolerance is carried out in practice as well as the norms defining its limits. Japanese informants held that cultural norms and values in Japan differ somewhat from those in the West. They perceived the human rights discourse as culturally dependent and culturally marked and clearly considered the first article of the Universal Declaration of Human Rights to be a product of Western thought. It states that ‘All human beings are born free and equal in dignity and rights. They are endowed with reason and conscience and should act towards one another in the spirit of brotherhood’ (United Nations 1948. While the role of tolerance in Western political philosophy seems to be attached to liberal values of autonomy and freedom, the Confucian-influenced environment in Japan places more emphasis on inter-dependency, cultivation, and learning social rules and proper-place-occupation as bases for moral conduct and deserving of respect. According to the Japanese informants, people are not ‘born with rights’ or ‘born free and equal’. Maintaining harmony, consensus, and proper behaviour according to relationships and hierarchy creates a different kind of setting for tolerance. The inter-dependent perspectives of Japanese culture may restrain freedom and can thus be expected to limit toleration of divergent views or behaviour. The culture-specific perception of

  6. Nonfreezing Cold-Induced Injuries

    Science.gov (United States)

    2012-01-01

    cold injury. ( Modi - fi ed from Jia J, Pollock M: The pathogenesis of non-freezing cold nerve injury: Observations in the rat, Brain 120:631, 1997...myelitis and sinus development ( Figures 7-17 to 7-19 ). Appearance and behavior of the neuropathic foot have many similarities to those of the diabetic ...foot. In the diabetic foot, infections tend to be polymicrobial with Staphylococcus aureus, Staphylococcus epidermidis, and Enterococcus and

  7. Transcriptome response mediated by cold stress in Lotus japonicus

    Directory of Open Access Journals (Sweden)

    Pablo Ignacio Calzadilla

    2016-03-01

    Full Text Available Members of the Lotus genus are important as agricultural forage sources under marginal environmental conditions given their high nutritional value and tolerance of various abiotic stresses. However, their dry matter production is drastically reduced in cooler seasons, while their response to such conditions is not well studied. This paper analyzes cold acclimation of the genus by studying Lotus japonicus over a stress period of 24 h. High-throughput RNA sequencing was used to identify and classify 1077 differentially expressed genes, of which 713 were up-regulated and 364 were down-regulated. Up-regulated genes were principally related to lipid, cell wall, phenylpropanoid, sugar, and proline regulation, while down-regulated genes affected the photosynthetic process and chloroplast development. Together, a total of 41 cold-inducible transcription factors were identified, including members of the AP2/ERF, NAC, MYB, and WRKY families; two of them were described as putative novel transcription factors. Finally, DREB1/CBFs were described with respect to their cold stress expression profiles. This is the first transcriptome profiling of the model legume L. japonicus under cold stress. Data obtained may be useful in identifying candidate genes for breeding modified species of forage legumes that more readily acclimate to low temperatures

  8. Cognitive Performance during a 24-Hour Cold Exposure Survival Simulation

    Directory of Open Access Journals (Sweden)

    Michael J. Taber

    2016-01-01

    Full Text Available Survivor of a ship ground in polar regions may have to wait more than five days before being rescued. Therefore, the purpose of this study was to explore cognitive performance during prolonged cold exposure. Core temperature (Tc and cognitive test battery (CTB performance data were collected from eight participants during 24 hours of cold exposure (7.5°C ambient air temperature. Participants (recruited from those who have regular occupational exposure to cold were instructed that they could freely engage in minimal exercise that was perceived to maintaining a tolerable level of thermal comfort. Despite the active engagement, test conditions were sufficient to significantly decrease Tc after exposure and to eliminate the typical 0.5–1.0°C circadian rise and drop in core temperature throughout a 24 h cycle. Results showed minimal changes in CTB performance regardless of exposure time. Based on the results, it is recommended that survivors who are waiting for rescue should be encouraged to engage in mild physical activity, which could have the benefit of maintaining metabolic heat production, improve motivation, and act as a distractor from cold discomfort. This recommendation should be taken into consideration during future research and when considering guidelines for mandatory survival equipment regarding cognitive performance.

  9. State, religion and toleration

    DEFF Research Database (Denmark)

    Huggler, Jørgen

    2009-01-01

    Contribution to Religion and State - From separation to cooperation? Legal-philosophical reflections for a de-secularized world. (IVR Cracow Special Workshop). Eds. Bart. C. Labuschagne & Ari M. Solon. Abstract: Toleration is indeed a complex phenomenon. A discussion of the concept will have...... to underline not only the broadmindedness and liberty of individuals or of groups, but also the relevant distinctions and arguments in political philosophy, epistemology, philosophy of religion and philosophical anthropology and their connection with educational issues. Through a discussion of these relations......, the essay argues three theses: (1) Toleration is not reducible to an ethics of spiritual freedom. (2) Toleration is not neutral to fanatism. (3) Toleration involves esteem for the person....

  10. Genetic dissection of drought tolerance in potato

    NARCIS (Netherlands)

    Anithakumari, A.M.

    2011-01-01

    Drought is the most important cause of crop and yield loss around the world. Breeding for

    drought tolerance is not straightforward, as drought is a complex trait. A better understanding

    of the expression of drought traits, the genes underlying the traits and the way these

  11. Cold Water, Warm Ice?

    Science.gov (United States)

    Yang, Li-Hsuan

    2012-01-01

    This article describes engaging students in two simple observations to address the concepts of changes of states, heat, temperature, and molecular potential and kinetic energy. It also discusses how these concepts can enable students to further explore and understand interesting and significant phenomena and research in multiple areas of science.…

  12. A Theory of Tolerance

    OpenAIRE

    Corneo, Giacomo; Jeanne, Olivier

    2006-01-01

    We develop an economic theory of tolerance where styles of behaviour are invested with symbolic value. Value systems are endogenous and taught by parents to their children. In conjunction with actual behaviour, value systems determine the esteem enjoyed by individuals. Intolerant individuals have all symbolic value invested in a single style of behaviour, whereas tolerant people have diversified values. The proposed model identifies a link between the unpredictability of children's lifestyles...

  13. Chiling slows anaerobic metabolism to improve anoxia tolerance of insects

    Czech Academy of Sciences Publication Activity Database

    Boardman, L.; Sorensen, J. G.; Košťál, Vladimír; Šimek, Petr; Terblanche, J. S.

    2016-01-01

    Roč. 12, č. 12 (2016), č. článku 176. ISSN 1573-3882 R&D Projects: GA ČR GA13-18509S Institutional support: RVO:60077344 Keywords : anoxia * anaerobism * cold tolerance Subject RIV: ED - Physiology Impact factor: 3.692, year: 2016 http://link.springer.com/article/10.1007/s11306-016-1119-1

  14. Constructed wetlands for wastewater treatment in cold climate - A review.

    Science.gov (United States)

    Wang, Mo; Zhang, Dong Qing; Dong, Jian Wen; Tan, Soon Keat

    2017-07-01

    Constructed wetlands (CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option worldwide. However, the application of CW for wastewater treatment in frigid climate presents special challenges. Wetland treatment of wastewater relies largely on biological processes, and reliable treatment is often a function of climate conditions. To date, the rate of adoption of wetland technology for wastewater treatment in cold regions has been slow and there are relatively few published reports on CW applications in cold climate. This paper therefore highlights the practice and applications of treatment wetlands in cold climate. A comprehensive review of the effectiveness of contaminant removal in different wetland systems including: (1) free water surface (FWS) CWs; (2) subsurface flow (SSF) CWs; and (3) hybrid wetland systems, is presented. The emphasis of this review is also placed on the influence of cold weather conditions on the removal efficacies of different contaminants. The strategies of wetland design and operation for performance intensification, such as the presence of plant, operational mode, effluent recirculation, artificial aeration and in-series design, which are crucial to achieve the sustainable treatment performance in cold climate, are also discussed. This study is conducive to further research for the understanding of CW design and treatment performance in cold climate. Copyright © 2017. Published by Elsevier B.V.

  15. Task-dependent cold stress during expeditions in Antarctic environments.

    Science.gov (United States)

    Morris, Drew M; Pilcher, June J; Powell, Robert B

    2017-01-01

    This study seeks to understand the degree of body cooling, cold perception and physical discomfort during Antarctic tour excursions. Eight experienced expedition leaders across three Antarctic cruise voyages were monitored during occupational tasks: kayaking, snorkelling and zodiac outings. Subjective cold perception and discomfort were recorded using a thermal comfort assessment and skin temperature was recorded using a portable data logger. Indoor cabin temperature and outdoor temperature with wind velocity were used as measures of environmental stress. Physical activity level and clothing insulation were estimated using previous literature. Tour leaders experienced a 6°C (2°C wind chill) environment for an average of 6 hours each day. Leaders involved in kayaking reported feeling colder and more uncomfortable than other leaders, but zodiac leaders showed greater skin temperature cooling. Occupational experience did not predict body cooling or cold stress perception. These findings indicate that occupational cold stress varies by activity and measurement methodology. The current study effectively used objective and subjective measures of cold-stress to identify factors which can contribute to risk in the Antarctic tourism industry. Results suggest that the type of activity may moderate risk of hypothermia, but not discomfort, potentially putting individuals at risk for cognitive related mistakes and cold injuries.

  16. Cold-induced vasodilation comparison between Bangladeshi and Japanese natives.

    Science.gov (United States)

    Khatun, Aklima; Ashikaga, Sakura; Nagano, Hisaho; Hasib, Md Abdul; Taimura, Akihiro

    2016-05-03

    The human thermoregulation system responds to changes in environmental temperature, so humans can self-adapt to a wide range of climates. People from tropical and temperate areas have different cold tolerance. This study compared the tolerance of Bangladeshi (tropical) and Japanese (temperate) people to local cold exposure on cold-induced vasodilation (CIVD). Eight Bangladeshi males (now residing in Japan) and 14 Japanese males (residing in Japan) participated in this study. All are sedentary, regular university students. The Bangladeshi subject's duration of stay in Japan was 2.50 ± 2.52 years. The subject's left hand middle finger was immersed in 5 °C water for 20 min to assess their CIVD response (the experiment was conducted in an artificial climate chamber controlled at 25 °C with 50% RH). Compared with the Bangladeshi (BD) group, the Japanese (JP) group displayed some differences. There were significant differences between the BD and JP groups in temperature before immersion (TBI), which were 33.04 ± 1.98 and 34.62 ± 0.94 °C, and time of temperature rise (TTR), which were 5.35 ± 0.82 and 3.72 ± 0.68 min, respectively. There was also a significant difference in the time of sensation rise (TSR) of 8.69 ± 6.49 and 3.26 ± 0.97 min between the BD and JP groups, respectively (P cold exposure than the Bangladeshi group (tropical) evaluated by the CIVD test.

  17. Cold urticaria. Dissociation of cold-evoked histamine release and urticara following cold challenge.

    Science.gov (United States)

    Keahey, T M; Greaves, M W

    1980-02-01

    Nine patients with acquired cold urticaria were studied to assess the effects of beta-adrenergic agents, xanthines, and corticosteroids on cold-evoked histamine release from skin in vivo. The patients, in all of whom an immediate urticarial response developed after cooling of the forearm, demonstrated release of histamine into the venous blood draining that forearm. Following treatment with aminophylline and albuterol in combination or prednisone alone, suppression of histamine release occurred in all but one patient. In some patients, this was accompanied by a subjective diminution in pruritus or buring, but there was no significant improvement in the ensuing edema or erythema. In one patient, total suppression of histamine release was achieved without any effect on whealing and erythema in response to cold challenge. Our results suggest that histamine is not central to the pathogenesis of vascular changes in acquired cold urticaria.

  18. Cold acclimation and cognitive performance: A review.

    Science.gov (United States)

    Jones, Douglas M; Bailey, Stephen P; Roelands, Bart; Buono, Michael J; Meeusen, Romain

    2017-12-01

    Athletes, occupational workers, and military personnel experience cold temperatures through cold air exposure or cold water immersion, both of which impair cognitive performance. Prior work has shown that neurophysiological pathways may be sensitive to the effects of temperature acclimation and, therefore, cold acclimation may be a potential strategy to attenuate cold-induced cognitive impairments for populations that are frequently exposed to cold environments. This review provides an overview of studies that examine repeated cold stress, cold acclimation, and measurements of cognitive performance to determine whether or not cold acclimation provides beneficial protection against cold-induced cognitive performance decrements. Studies included in this review assessed cognitive measures of reaction time, attention, logical reasoning, information processing, and memory. Repeated cold stress, with or without evidence of cold acclimation, appears to offer no added benefit of improving cognitive performance. However, research in this area is greatly lacking and, therefore, it is difficult to draw any definitive conclusions regarding the use of cold acclimation to improve cognitive performance during subsequent cold exposures. Given the current state of minimal knowledge on this topic, athletes, occupational workers, and military commands looking to specifically enhance cognitive performance in cold environments would likely not be advised to spend the time and effort required to become acclimated to cold. However, as more knowledge becomes available in this area, recommendations may change. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Relationship Between ABCB1 Polymorphisms and Cold Pain Sensitivity Among Healthy Opioid-naive Malay Males.

    Science.gov (United States)

    Zahari, Zalina; Lee, Chee Siong; Ibrahim, Muslih Abdulkarim; Musa, Nurfadhlina; Mohd Yasin, Mohd Azhar; Lee, Yeong Yeh; Tan, Soo Choon; Mohamad, Nasir; Ismail, Rusli

    2017-09-01

    Endogenous and exogenous opioids are substrates of the permeability glycoprotein (P-gp) efflux transporter, which is encoded by the ABCB1 (MDR1) gene. Genetic polymorphisms of ABCB1 may contribute to interindividual differences in pain modulation and analgesic responses. We investigated the relationship between ABCB1 polymorphisms and cold pain sensitivity among healthy males. Cold pain responses, including pain threshold and pain tolerance, were measured using the cold-pressor test (CPT). DNA was extracted from whole blood and genotyped for ABCB1 polymorphisms, including c.1236C>T (rs1128503), c.2677G>T/A (rs2032582), and c.3435C>T (rs1045642), using the allelic discrimination real-time polymerase chain reaction. A total of 152 participants were recruited in this observational study. Frequencies of mutated allele for c.1236C>T, c.2677G>T/A, and c.3435C>T polymorphisms were 56.6%, 49.7%, and 43.4%, respectively. Our results revealed an association of the CGC/CGC diplotype (c.1236C>T, c.2677G>T/A, and c.3435C>T) with cold pain sensitivity. Participants with the CGC/CGC diplotype had 90% and 72% higher cold pain thresholds (87.62 seconds vs. 46.19 seconds, P = 0.010) and cold pain tolerances (97.24 seconds vs. 56.54 seconds, P = 0.021), respectively, when compared with those without the diplotype. The CGC/CGC diplotype of ABCB1 polymorphisms was associated with variability in cold pain threshold and pain tolerance in healthy males. © 2016 World Institute of Pain.

  20. Should We Use Colours as Symbolic Representations of Hot and Cold?

    Science.gov (United States)

    Carvalho, Paulo Simeao; Sampaio e Sousa, Adriano

    2006-01-01

    People usually talk about "hot and cold" colours without really thinking of the impact these definitions may have on scientific understanding. These colours are associated with the human sensations of hot and cold, and this idea is consistent with commonsense and daily experience. Interacting with students, we detect conceptual conflicts when they…

  1. Discrepancy between stimulus response and tolerance of pain in Alzheimer disease

    DEFF Research Database (Denmark)

    Jensen-Dahm, Christina; Werner, Mads U; Jensen, Troels Staehelin

    2015-01-01

    BACKGROUND: Affective-motivational and sensory-discriminative aspects of pain were investigated in patients with mild to moderate Alzheimer disease (AD) and healthy elderly controls using the cold pressor test tolerance and repetitive stimuli of warmth and heat stimuli, evaluating the stimulus....... The results further suggest that the attenuated cold pressor pain tolerance may relate to impairment of coping abilities. Paradoxically, we found an attenuated stimulus-response function, compared to controls, suggesting that AD dementia interferes with pain ratings over time, most likely due to memory...

  2. Effects of videogame distraction using a virtual reality type head-mounted display helmet on cold pressor pain in children.

    Science.gov (United States)

    Dahlquist, Lynnda M; Weiss, Karen E; Clendaniel, Lindsay Dillinger; Law, Emily F; Ackerman, Claire Sonntag; McKenna, Kristine D

    2009-06-01

    To test whether a head-mounted display helmet enhances the effectiveness of videogame distraction for children experiencing cold pressor pain. Forty-one children, aged 6-14 years, underwent one or two baseline cold pressor trials followed by two distraction trials in which they played the same videogame with and without the helmet in counterbalanced order. Pain threshold (elapsed time until the child reported pain) and pain tolerance (total time the child kept the hand submerged in the cold water) were measured for each cold pressor trial. Both distraction conditions resulted in improved pain tolerance relative to baseline. Older children appeared to experience additional benefits from using the helmet, whereas younger children benefited equally from both conditions. The findings suggest that virtual reality technology can enhance the effects of distraction for some children. Research is needed to identify the characteristics of children for whom this technology is best suited.

  3. Effects of Videogame Distraction using a Virtual Reality Type Head-Mounted Display Helmet on Cold Pressor Pain in Children

    Science.gov (United States)

    Weiss, Karen E.; Dillinger Clendaniel, Lindsay; Law, Emily F.; Ackerman, Claire Sonntag; McKenna, Kristine D.

    2009-01-01

    Objective To test whether a head-mounted display helmet enhances the effectiveness of videogame distraction for children experiencing cold pressor pain. Method Forty-one children, aged 6–14 years, underwent one or two baseline cold pressor trials followed by two distraction trials in which they played the same videogame with and without the helmet in counterbalanced order. Pain threshold (elapsed time until the child reported pain) and pain tolerance (total time the child kept the hand submerged in the cold water) were measured for each cold pressor trial. Results Both distraction conditions resulted in improved pain tolerance relative to baseline. Older children appeared to experience additional benefits from using the helmet, whereas younger children benefited equally from both conditions. The findings suggest that virtual reality technology can enhance the effects of distraction for some children. Research is needed to identify the characteristics of children for whom this technology is best suited. PMID:18367495

  4. Salt tolerance in wheat - an overview. (abstract)

    International Nuclear Information System (INIS)

    Ashraf, M.

    2005-01-01

    Considerable efforts have been made during the past few years to overcome the problem of salinity through the development of salt tolerant lines of important crop species using screening, breeding and molecular biology techniques. In view of considerable importance of spring wheat as a major staple food crop of many countries, plant scientists have directed there attention to identify and develop salt tolerant genotypes that can be of direct use on salt-affected soils. Although considerable progress in understanding individual phenomenon and genes involved in plant response to salinity stress has been made over the past few years, underlying physiological mechanisms producing salt tolerant plants is still unclear. It has been suggested that salt tolerance of plants could be improved by defining genes or characters. Twenty years ago, it was suggested that genes located on the D genome of bread wheat confer salinity tolerance to hexaploid wheat by reducing Na/sup +/ accumulation in the leaf tissue and increasing discrimination in favour of K/sup +/. However, recently, low Na/sup +/ accumulation and high K/sup +/Na/sup +/ discrimination, of similar magnitude to bread wheat, in several selections of durum wheat has been observed, supporting the notion that salt tolerance is controlled by multiple genes, which are distributed throughout the entire set of chromosomes. In addition, various physiological selection criteria such as compatible osmolytes (glycinebetaine, proline, trehalose, mannitol etc.), antioxidants, carbon discrimination, high K/sup +//Na/sup +/ ratio etc. have been discussed. Although tolerance to salinity is known to have a multigenic inheritance, mediated by a large number of genes, knowledge of heritability and the genetic mode of salinity tolerance is still lacking because few studies have yet been conducted in these areas. Indeed, genetic information is lagging behind the physiological information. Modern methods such as recombinant DNA technology

  5. Cold exposure affects carbohydrates and lipid metabolism, and induces Hog1p phosphorylation in Dekkera bruxellensis strain CBS 2499.

    Science.gov (United States)

    Galafassi, Silvia; Toscano, Marco; Vigentini, Ileana; Zambelli, Paolo; Simonetti, Paolo; Foschino, Roberto; Compagno, Concetta

    2015-05-01

    Dekkera bruxellensis is a yeast known to affect the quality of wine and beer. This species, due to its high ethanol and acid tolerance, has been reported also to compete with Saccharomyces cerevisiae in distilleries producing fuel ethanol. In order to understand how this species responds when exposed to low temperatures, some mechanisms like synthesis and accumulation of intracellular metabolites, changes in lipid composition and activation of the HOG-MAPK pathway were investigated in the genome sequenced strain CBS 2499. We show that cold stress caused intracellular accumulation of glycogen, but did not induce accumulation of trehalose and glycerol. The cellular fatty acid composition changed after the temperature downshift, and a significant increase of palmitoleic acid was observed. RT-PCR analysis revealed that OLE1 encoding for Δ9-fatty acid desaturase was up-regulated, whereas TPS1 and INO1 didn't show changes in their expression. In D. bruxellensis Hog1p was activated by phosphorylation, as described in S. cerevisiae, highlighting a conserved role of the HOG-MAP kinase signaling pathway in cold stress response.

  6. COLDDIAG: A Cold Vacuum Chamber for Diagnostics

    CERN Document Server

    Casalbuoni, S; Gerstl, S; Grau, A W; Hagelstein, M; Saez de Jauregui, D; Boffo, C; Sikler, G; Baglin, V; Cox, M P; Schouten, J C; Cimino, R; Commisso, M; Spataro, B; Mostacci, A; Wallen, E J; Weigel, R; Clarke, J; Scott, D; Bradshaw, T; Jones, R; Shinton, I

    2011-01-01

    One of the still open issues for the development of superconducting insertion devices is the understanding of the beam heat load. With the aim of measuring the beam heat load to a cold bore and the hope to gain a deeper understanding in the beam heat load mechanisms, a cold vacuum chamber for diagnostics is under construction. The following diagnostics will be implemented: i) retarding field analyzers to measure the electron energy and flux, ii) temperature sensors to measure the total heat load, iii) pressure gauges, iv) and mass spectrometers to measure the gas content. The inner vacuum chamber will be removable in order to test different geometries and materials. This will allow the installation of the cryostat in different synchrotron light sources. COLDDIAG will be built to fit in a short straight section at ANKA. A first installation at the synchrotron light source Diamond is foreseen in June 2011. Here we describe the technical design report of this device and the planned measurements with beam.

  7. Thyroid transcriptome analysis reveals different adaptive responses to cold environmental conditions between two chicken breeds.

    Science.gov (United States)

    Xie, Shanshan; Yang, Xukai; Wang, Dehe; Zhu, Feng; Yang, Ning; Hou, Zhuocheng; Ning, Zhonghua

    2018-01-01

    Selection for cold tolerance in chickens is important for improving production performance and animal welfare. The identification of chicken breeds with higher cold tolerance and production performance will help to target candidates for the selection. The thyroid gland plays important roles in thermal adaptation, and its function is influenced by breed differences and transcriptional plasticity, both of which remain largely unknown in the chicken thyroid transcriptome. In this study, we subjected Bashang Long-tail (BS) and Rhode Island Red (RIR) chickens to either cold or warm environments for 21 weeks and investigated egg production performance, body weight changes, serum thyroid hormone concentrations, and thyroid gland transcriptome profiles. RIR chickens had higher egg production than BS chickens under warm conditions, but BS chickens produced more eggs than RIRs under cold conditions. Furthermore, BS chickens showed stable body weight gain under cold conditions while RIRs did not. These results suggested that BS breed is a preferable candidate for cold-tolerance selection and that the cold adaptability of RIRs should be improved in the future. BS chickens had higher serum thyroid hormone concentrations than RIRs under both environments. RNA-Seq generated 344.3 million paired-end reads from 16 sequencing libraries, and about 90% of the processed reads were concordantly mapped to the chicken reference genome. Differential expression analysis identified 46-1,211 genes in the respective comparisons. With regard to breed differences in the thyroid transcriptome, BS chickens showed higher cell replication and development, and immune response-related activity, while RIR chickens showed higher carbohydrate and protein metabolism activity. The cold environment reduced breed differences in the thyroid transcriptome compared with the warm environment. Transcriptional plasticity analysis revealed different adaptive responses in BS and RIR chickens to cope with the cold

  8. Coordinated Fault Tolerance for High-Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, Jack; Bosilca, George; et al.

    2013-04-08

    Our work to meet our goal of end-to-end fault tolerance has focused on two areas: (1) improving fault tolerance in various software currently available and widely used throughout the HEC domain and (2) using fault information exchange and coordination to achieve holistic, systemwide fault tolerance and understanding how to design and implement interfaces for integrating fault tolerance features for multiple layers of the software stack—from the application, math libraries, and programming language runtime to other common system software such as jobs schedulers, resource managers, and monitoring tools.

  9. TOLERANCE: FEATURES AND PROBLEMS OF EVALUATION

    Directory of Open Access Journals (Sweden)

    M. V. Karmanov

    2018-01-01

    Full Text Available In the media and in specialized literature, publications related to attempts to assess the place and role of tolerance in the life of modern society are increasingly encountered. In this connection, a comprehensive scientific analysis of tolerance as an independent and distinctive object of applied research is of great scientific and practical interest. Considering the points of view on the category of "tolerance" gave grounds to believe that there are a number of "white spots" and gaps of methodological nature that do not allow collecting reliable information and identify the main indicators characterizing the state and features of the transformation of tolerance as a social norm reflecting changes in society's value orientations . Tolerance as a characteristic of the moral state of society is a "medal with two sides": on the one hand, it is positive that it promotes mutual understanding, taking into account the recognition of rights and freedoms, with the coordination of different motives, attitudes and orientations without violence and suppression of human dignity, allows to smooth existing irreconcilable interethnic, interethnic, racial contradictions; on the other negative, because it can be perceived as permissiveness, and instill indifference to values. All of the above was justification for the need to present in the article a critical analysis of approaches to the definition and directions of the study of tolerance, which made it possible to reveal its principal features as a complex and multifaceted object of statistical research. In order to implement the principle of objectivity of conclusions, the study was conducted using the following methods: analysis and synthesis, comparison and comparison, generalization, the method of scientific abstraction. The article presents a substantiation of the possibilities of making a quantitative assessment of changes in tolerance in time, taking into account the analysis of information sources

  10. Social Studies Teachers’ Perceptions of Tolerance

    Directory of Open Access Journals (Sweden)

    Hatice Türe

    2014-10-01

    Full Text Available Problem: Tolerance is one of the values which citizens should have in today's multicultural and democratic society. Educational system should teach tolerance to the individuals in a democratic society. Tolerance can be given through curricula in educational process. Social studies is one of the courses for conducting tolerance education. Skills and perspectives of teachers are important for tolerance education in social studies. The purpose of this study is to understand social studies teachers' perceptions of tolerance. Method: In the study, qualitative research method and phenomenology that is one of the qualitative research designs was employed. The participants were determined using criterion sampling. 10 social studies teachers graduated from social studies education departments working at schools of Eskisehir Provincial Directorate of National Education participated in the study. The research process consisted of two phases. The data were gathered through semi-structured interviews. The interviews were conducted in two steps in order to make an in-depth analysis. In Phase I of the study, semi-structured interviews were conducted with 10 teachers in December and January months during the 2012-2013 school year. The data obtained from the first interviews were also the base for the questions in the second interviews. In Phase II of the study, semi-structured interviews were again conducted with 10 teachers who participated in the first interviews in April and May months during the 2012-2013 school year. Teacher Interview Form-1 in the first interviews and Teacher Interview Form-2 in the second interviews were used for data collection. As for data analysis, thematic analysis technique was used. The data were analysed, the findings were defined and interpreted based on the research questions. Findings: The findings of the study revealed that the social studies teachers described tolerance as respecting ideas, values, beliefs and behaviors

  11. 77 FR 43117 - Meeting of the Cold War Advisory Committee for the Cold War Theme Study

    Science.gov (United States)

    2012-07-23

    ... the Cold War Advisory Committee for the Cold War Theme Study AGENCY: National Park Service, Interior... Committee Act, 5 U.S.C. Appendix, that the Cold War Advisory Committee for the Cold War Theme Study will... National Park Service (NPS) concerning the Cold War Theme Study. DATES: The teleconference meeting will be...

  12. Effects of Videogame Distraction using a Virtual Reality Type Head-Mounted Display Helmet on Cold Pressor Pain in Children

    OpenAIRE

    Dahlquist, Lynnda M.; Weiss, Karen E.; Dillinger Clendaniel, Lindsay; Law, Emily F.; Ackerman, Claire Sonntag; McKenna, Kristine D.

    2008-01-01

    Objective To test whether a head-mounted display helmet enhances the effectiveness of videogame distraction for children experiencing cold pressor pain. Method Forty-one children, aged 6–14 years, underwent one or two baseline cold pressor trials followed by two distraction trials in which they played the same videogame with and without the helmet in counterbalanced order. Pain threshold (elapsed time until the child reported pain) and pain tolerance (total time the child kept the hand submer...

  13. Spectroscopy with cold and ultra-cold neutrons

    Directory of Open Access Journals (Sweden)

    Abele Hartmut

    2015-01-01

    Full Text Available We present two new types of spectroscopy methods for cold and ultra-cold neutrons. The first method, which uses the R×B drift effect to disperse charged particles in a uniformly curved magnetic field, allows to study neutron β-decay. We aim for a precision on the 10−4 level. The second method that we refer to as gravity resonance spectroscopy (GRS allows to test Newton’s gravity law at short distances. At the level of precision we are able to provide constraints on any possible gravity-like interaction. In particular, limits on dark energy chameleon fields are improved by several orders of magnitude.

  14. Hesitant birth of cold fusion

    International Nuclear Information System (INIS)

    Bockris, J.O.

    1992-01-01

    John O'M. Bockris, a distinguished chemistry professor at Texas A ampersand M University, finds the reaction to the announcement of the discovery of cold fusion curious. Two years earlier, he notes, there had been a comparable announcement concerning the discovery of high-temperature superconductivity; it received favorable press coverage for months. The cold-fusion announcement, on the other hand, was met with dour skepticism. When other researchers failed in efforts to duplicate the findings of Martin Fleischmann and B. Stanley Pons, Bockris says, the two scientists were held up to ridicule. Bockris says he found a deep emotional opposition to cold fusion, even within his own department and university. This opposition is fueled in large part, he believes, by big science and the hot fusion lobby. A key indicator of cold fusion is the presence of tritium, Brockis claims. At Texas A ampersand M, large amounts of tritium have been found in some experiments; this also has occurred in experiments at more than 40 laboratories in nine countries, he says. Excess heat production is more difficult to attain, he acknowledges. The cold-fusion controversy has uncovered some unflattering characteristics of the scientific community, Bockris says. Among them are: scientists are no less driven by emotion that business people or politicians; research funding decisions serve to perpetuate the goals of politically powerful interest groups; and ideas have great inertia once planted in a scientist's mind

  15. Steel weldability. Underbead cold cracking

    International Nuclear Information System (INIS)

    Marquet, F.; Defourny, J.; Bragard, A.

    1977-01-01

    The problem of underbead cold cracking has been studied by the implant technique. This approach allows to take into account in a quantitative manner the different factors acting on the cold cracking phenomenon: structure under the weld bead, level of restraint, hydrogen content in the molten metal. The influence of the metallurgical factors depending from the chemical composition of the steel has been examined. It appeared that carbon equivalent is an important factor to explain cold cracking sensitivity but that it is not sufficient to characterize the steel. The results have shown that vanadium may have a deleterious effect on the resistance to cold cracking when the hydrogen content is high and that small silicon additions are beneficient. The influence of the diffusible hydrogen content has been checked and the important action of pre- and postheating has been shown. These treatments allow the hydrogen to escape from the weld before the metal has been damaged. Some inclusions (sulphides) may also decrease the influence of hydrogen. A method based on the implant tests has been proposed which allows to choose and to control safe welding conditions regarding cold cracking

  16. Quarantine cold treatments for Ceratitis capitata and Anastrepha fraterculus (Diptera: Tephritidae) for citrus in Argentina: conclusions after 10 years of research

    International Nuclear Information System (INIS)

    Willink, Eduardo; Gastaminza, Gerardo; Salvatore, Analia; Gramajo, M. Cecilia; Acenolaza, Mariana; Avila, Rosana; Favre, Paola

    2006-01-01

    Argentina has quarantine restrictions in some markets due to the presence of two quarantine fruit fly pests: Ceratitis capitata and Anastrepha fraterculus. One alternative is the use of cold quarantine treatments during transport of the commodities. Since 1996, the Estacion Experimental Agroindustrial Obispo Colombres (EEAOC), Tucuman, Argentina, has developed different cold quarantine treatments for citrus. In the present work we present all the data the EEAOC generated in the last ten years in order to facilitate the development of such cold treatments. Fruit flies were obtained from the colonies reared at EEAOC. Four citrus species were analyzed: lemon, grapefruit, orange and tangerines. Different varieties were analyzed for each fruit species. Sensitivity trials aiming at determine the most tolerant stage as well as to asses if there is any influence of varieties on cold tolerance were performed. Finally we compared the tolerance to cold between the two species. Sensitivity trials showed that mature larvae (L3) are the most tolerant stage for both fruit fly species. There was no effect of the varieties and the two fruit fly species were equally sensible to cold. Our results provide strong evidence in favor of concluding that any cold treatment developed for C. capitata is effective for A. fraterculus. (author)

  17. Quarantine cold treatments for Ceratitis capitata and Anastrepha fraterculus (Diptera: Tephritidae) for citrus in Argentina: conclusions after 10 years of research

    Energy Technology Data Exchange (ETDEWEB)

    Willink, Eduardo; Gastaminza, Gerardo; Salvatore, Analia; Gramajo, M. Cecilia; Acenolaza, Mariana; Avila, Rosana; Favre, Paola, E-mail: ewillink@eeaoc.org.a [Estacion Experimental Agroindustrial Obispo Colombres (EEAOC), Tucuman (Argentina)

    2006-07-01

    Argentina has quarantine restrictions in some markets due to the presence of two quarantine fruit fly pests: Ceratitis capitata and Anastrepha fraterculus. One alternative is the use of cold quarantine treatments during transport of the commodities. Since 1996, the Estacion Experimental Agroindustrial Obispo Colombres (EEAOC), Tucuman, Argentina, has developed different cold quarantine treatments for citrus. In the present work we present all the data the EEAOC generated in the last ten years in order to facilitate the development of such cold treatments. Fruit flies were obtained from the colonies reared at EEAOC. Four citrus species were analyzed: lemon, grapefruit, orange and tangerines. Different varieties were analyzed for each fruit species. Sensitivity trials aiming at determine the most tolerant stage as well as to asses if there is any influence of varieties on cold tolerance were performed. Finally we compared the tolerance to cold between the two species. Sensitivity trials showed that mature larvae (L3) are the most tolerant stage for both fruit fly species. There was no effect of the varieties and the two fruit fly species were equally sensible to cold. Our results provide strong evidence in favor of concluding that any cold treatment developed for C. capitata is effective for A. fraterculus. (author)

  18. Plant abiotic stress tolerance analysis in cauliflower using a curd micropropagation system

    OpenAIRE

    Rihan, HZ; Al-Issawi, M; Al-Shamari, M; Elmahrouk, M; Fuller, MP

    2015-01-01

    © 2015 ISHS. An effective protocol for cauliflower micropropagation was optimised and developed which enabled the production of tens of thousands of cauliflower microshoots from one cauliflower curd. The large number of microshoots that can be produced per culture unit facilitates the use of this protocol to analyse both the physiological and molecular components of abiotic stress tolerance. The protocol was used for cauliflower cold tolerance analysis and it was demonstrated that low tempera...

  19. A comparison of the low temperature transcriptomes and CBF regulons of three plant species that differ in freezing tolerance: Solanum commersonii, Solanum tuberosum, and Arabidopsis thaliana

    OpenAIRE

    Carvallo, Marcela A.; Pino, María-Teresa; Jeknić, Zoran; Zou, Cheng; Doherty, Colleen J.; Shiu, Shin-Han; Chen, Tony H. H.; Thomashow, Michael F.

    2011-01-01

    Solanum commersonii and Solanum tuberosum are closely related plant species that differ in their abilities to cold acclimate; whereas S. commersonii increases in freezing tolerance in response to low temperature, S. tuberosum does not. In Arabidopsis thaliana, cold-regulated genes have been shown to contribute to freezing tolerance, including those that comprise the CBF regulon, genes that are controlled by the CBF transcription factors. The low temperature transcriptomes and CBF regulons of ...

  20. Escaping the tolerance trap

    International Nuclear Information System (INIS)

    Hammoudeh, S.; Madan, V.

    1994-01-01

    In order to examine the implications of the weakening of OPEC's responsiveness in adjusting its production levels, this paper explicitly incorporates rigidity in the quantity adjustment mechanism, thereby extending previous research which assumed smooth quantity adjustments. The rigidity is manifested in a tolerance range for the discrepancy between the declared target price and that of the market. This environment gives rise to a 'tolerance trap' which impedes the convergence process and inevitably brings the market to a standstill before its reaches the targeted price and revenue objectives. OPEC's reaction to the standstill has important implications for the achievement of the target-based equilibrium and for the potential collapse of the market price. This paper examines OPEC's policy options in the tolerance trap and reveals that the optional policy in order to break this impasse and move closer to the equilibrium point is gradually to reduce output and not to flood the market. (Author)

  1. The failure-tolerant leader.

    Science.gov (United States)

    Farson, Richard; Keyes, Ralph

    2002-08-01

    "The fastest way to succeed," IBM's Thomas Watson, Sr., once said, "is to double your failure rate." In recent years, more and more executives have embraced Watson's point of view, coming to understand what innovators have always known: Failure is a prerequisite to invention. But while companies may grasp the value of making mistakes at the level of corporate practices, they have a harder time accepting the idea at the personal level. People are afraid to fail, and corporate culture reinforces that fear. In this article, psychologist and former Harvard Business School professor Richard Farson and coauthor Ralph Keyes discuss how companies can reduce the fear of miscues. What's crucial is the presence of failure-tolerant leaders--executives who, through their words and actions, help employees overcome their anxieties about making mistakes and, in the process, create a culture of intelligent risk-taking that leads to sustained innovation. Such leaders don't just accept productive failure, they promote it. Drawing from their research in business, politics, sports, and science, the authors identify common practices among failure-tolerant leaders. These leaders break down the social and bureaucratic barriers that separate them from their followers. They engage at a personal level with the people they lead. They avoid giving either praise or criticism, preferring to take a nonjudgmental, analytical posture as they interact with staff. They openly admit their own mistakes rather than trying to cover them up or shifting the blame. And they try to root out the destructive competitiveness built into most organizations. Above all else, failure-tolerant leaders push people to see beyond traditional definitions of success and failure. They know that as long as a person views failure as the opposite of success, rather than its complement, he or she will never be able to take the risks necessary for innovation.

  2. In vivo assessment of cold adaptation in insect larvae by magnetic resonance imaging and magnetic resonance spectroscopy.

    Directory of Open Access Journals (Sweden)

    Daniel Mietchen

    Full Text Available Temperatures below the freezing point of water and the ensuing ice crystal formation pose serious challenges to cell structure and function. Consequently, species living in seasonally cold environments have evolved a multitude of strategies to reorganize their cellular architecture and metabolism, and the underlying mechanisms are crucial to our understanding of life. In multicellular organisms, and poikilotherm animals in particular, our knowledge about these processes is almost exclusively due to invasive studies, thereby limiting the range of conclusions that can be drawn about intact living systems.Given that non-destructive techniques like (1H Magnetic Resonance (MR imaging and spectroscopy have proven useful for in vivo investigations of a wide range of biological systems, we aimed at evaluating their potential to observe cold adaptations in living insect larvae. Specifically, we chose two cold-hardy insect species that frequently serve as cryobiological model systems--the freeze-avoiding gall moth Epiblema scudderiana and the freeze-tolerant gall fly Eurosta solidaginis.In vivo MR images were acquired from autumn-collected larvae at temperatures between 0 degrees C and about -70 degrees C and at spatial resolutions down to 27 microm. These images revealed three-dimensional (3D larval anatomy at a level of detail currently not in reach of other in vivo techniques. Furthermore, they allowed visualization of the 3D distribution of the remaining liquid water and of the endogenous cryoprotectants at subzero temperatures, and temperature-weighted images of these distributions could be derived. Finally, individual fat body cells and their nuclei could be identified in intact frozen Eurosta larvae.These findings suggest that high resolution MR techniques provide for interesting methodological options in comparative cryobiological investigations, especially in vivo.

  3. Chlorophyll fluorescence imaging accurately quantifies freezing damage and cold acclimation responses in Arabidopsis leaves

    Directory of Open Access Journals (Sweden)

    Hincha Dirk K

    2008-05-01

    Full Text Available Abstract Background Freezing tolerance is an important factor in the geographical distribution of plants and strongly influences crop yield. Many plants increase their freezing tolerance during exposure to low, nonfreezing temperatures in a process termed cold acclimation. There is considerable natural variation in the cold acclimation capacity of Arabidopsis that has been used to study the molecular basis of this trait. Accurate methods for the quantitation of freezing damage in leaves that include spatial information about the distribution of damage and the possibility to screen large populations of plants are necessary, but currently not available. In addition, currently used standard methods such as electrolyte leakage assays are very laborious and therefore not easily applicable for large-scale screening purposes. Results We have performed freezing experiments with the Arabidopsis accessions C24 and Tenela, which differ strongly in their freezing tolerance, both before and after cold acclimation. Freezing tolerance of detached leaves was investigated using the well established electrolyte leakage assay as a reference. Chlorophyll fluorescence imaging was used as an alternative method that provides spatial resolution of freezing damage over the leaf area. With both methods, LT50 values (i.e. temperature where 50% damage occurred could be derived as quantitative measures of leaf freezing tolerance. Both methods revealed the expected differences between acclimated and nonacclimated plants and between the two accessions and LT50 values were tightly correlated. However, electrolyte leakage assays consistently yielded higher LT50 values than chlorophyll fluorescence imaging. This was to a large part due to the incubation of leaves for electrolyte leakage measurements in distilled water, which apparently led to secondary damage, while this pre-incubation was not necessary for the chlorophyll fluorescence measurements. Conclusion Chlorophyll

  4. Elevated Temperature and CO2 Stimulate Late-Season Photosynthesis But Impair Cold Hardening in Pine.

    Science.gov (United States)

    Chang, Christine Y; Fréchette, Emmanuelle; Unda, Faride; Mansfield, Shawn D; Ensminger, Ingo

    2016-10-01

    Rising global temperature and CO 2 levels may sustain late-season net photosynthesis of evergreen conifers but could also impair the development of cold hardiness. Our study investigated how elevated temperature, and the combination of elevated temperature with elevated CO 2 , affected photosynthetic rates, leaf carbohydrates, freezing tolerance, and proteins involved in photosynthesis and cold hardening in Eastern white pine (Pinus strobus). We designed an experiment where control seedlings were acclimated to long photoperiod (day/night 14/10 h), warm temperature (22°C/15°C), and either ambient (400 μL L -1 ) or elevated (800 μmol mol -1 ) CO 2 , and then shifted seedlings to growth conditions with short photoperiod (8/16 h) and low temperature/ambient CO 2 (LTAC), elevated temperature/ambient CO 2 (ETAC), or elevated temperature/elevated CO 2 (ETEC). Exposure to LTAC induced down-regulation of photosynthesis, development of sustained nonphotochemical quenching, accumulation of soluble carbohydrates, expression of a 16-kD dehydrin absent under long photoperiod, and increased freezing tolerance. In ETAC seedlings, photosynthesis was not down-regulated, while accumulation of soluble carbohydrates, dehydrin expression, and freezing tolerance were impaired. ETEC seedlings revealed increased photosynthesis and improved water use efficiency but impaired dehydrin expression and freezing tolerance similar to ETAC seedlings. Sixteen-kilodalton dehydrin expression strongly correlated with increases in freezing tolerance, suggesting its involvement in the development of cold hardiness in P. strobus Our findings suggest that exposure to elevated temperature and CO 2 during autumn can delay down-regulation of photosynthesis and stimulate late-season net photosynthesis in P. strobus seedlings. However, this comes at the cost of impaired freezing tolerance. Elevated temperature and CO 2 also impaired freezing tolerance. However, unless the frequency and timing of extreme low

  5. Effect of manipulated state aggression on pain tolerance.

    Science.gov (United States)

    Stephens, Richard; Allsop, Claire

    2012-08-01

    Swearing produces a pain lessening (hypoalgesic) effect for many people; an emotional response may be the underlying mechanism. In this paper, the role of manipulated state aggression on pain tolerance and pain perception is assessed. In a repeated-measures design, pain outcomes were assessed in participants asked to play for 10 minutes a first-person shooter video game vs a golf video game. Sex differences were explored. After playing the first-person shooter video game, aggressive cognitions, aggressive affect, heart rate, and cold pressor latency were increased, and pain perception was decreased. These data indicate that people become more pain tolerant with raised state aggression and support our theory that raised pain tolerance from swearing occurs via an emotional response.

  6. Effects of Transcranial Direct Current Stimulation (tDCS) on Pain Distress Tolerance: A Preliminary Study.

    Science.gov (United States)

    Mariano, Timothy Y; van't Wout, Mascha; Jacobson, Benjamin L; Garnaat, Sarah L; Kirschner, Jason L; Rasmussen, Steven A; Greenberg, Benjamin D

    2015-08-01

    Pain remains a critical medical challenge. Current treatments target nociception without addressing affective symptoms. Medically intractable pain is sometimes treated with cingulotomy or deep brain stimulation to increase tolerance of pain-related distress. Transcranial direct current stimulation (tDCS) may noninvasively modulate cortical areas related to sensation and pain representations. The present study aimed to test the hypothesis that cathodal ("inhibitory") stimulation targeting left dorsal anterior cingulate cortex (dACC) would increase tolerance to distress from acute painful stimuli vs anodal stimulation. Forty healthy volunteers received both anodal and cathodal stimulation. During stimulation, we measured pain distress tolerance with three tasks: pressure algometer, cold pressor, and breath holding. We measured pain intensity with a visual-analog scale before and after each task. Mixed ANOVA revealed that mean cold pressor tolerance tended to be higher with cathodal vs anodal stimulation (P = 0.055) for participants self-completing the task. Pressure algometer (P = 0.81) and breath holding tolerance (P = 0.19) did not significantly differ. The pressure algometer exhibited a statistically significant order effect irrespective of stimulation polarity (all P tDCS (P = 0.072). Although our primary results were nonsignificant, there is a preliminary suggestion that cathodal tDCS targeting left dACC may increase pain distress tolerance to cold pressor. Pressure algometer results are consistent with task-related sensitization. Future studies are needed to refine this novel approach for pain neuromodulation. Wiley Periodicals, Inc.

  7. Thermal Recovery from Cold-Working in Type K Bare-Wire Thermocouples

    Science.gov (United States)

    Greenen, A. D.; Webster, E. S.

    2017-12-01

    Cold-working of most thermocouples has a significant, direct impact on the Seebeck coefficient which can lead to regions of thermoelectric inhomogeneity and accelerated drift. Cold-working can occur during the wire swaging process, when winding the wire onto a bobbin, or during handling by the end user—either accidentally or deliberately. Swaging-induced cold-work in thermocouples, if uniformly applied, may result in a high level of homogeneity. However, on exposure to elevated temperatures, the subsequent recovery process from the cold-working can then result in significant drift, and this can in turn lead to erroneous temperature measurements, often in excess of the specified manufacturer tolerances. Several studies have investigated the effects of cold-work in Type K thermocouples usually by bending, or swaging. However, the amount of cold-work applied to the thermocouple is often difficult to quantify, as the mechanisms for applying the strains are typically nonlinear when applied in this fashion. A repeatable level of cold-working is applied to the different wires using a tensional loading apparatus to apply a known yield displacement to the thermoelements. The effects of thermal recovery from cold-working can then be accurately quantified as a function of temperature, using a linear gradient furnace and a high-resolution homogeneity scanner. Variation in these effects due to differing alloy compositions in Type K wire is also explored, which is obtained by sourcing wire from a selection of manufacturers. The information gathered in this way will inform users of Type K thermocouples about the potential consequences of varying levels of cold-working and its impact on the Seebeck coefficient at a range of temperatures between ˜ 70°C and 600° C. This study will also guide users on the temperatures required to rapidly alleviate the effects of cold-working using thermal annealing treatments.

  8. Fault tolerant linear actuator

    Science.gov (United States)

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  9. Inequality, Tolerance, and Growth

    DEFF Research Database (Denmark)

    Bjørnskov, Christian

    This paper argues for the importance of individuals' tolerance of inequality for economic growth. By using the political ideology of governments as a measure of revealed tolerance of inequality, the paper shows that controlling for ideology improves the accuracy with which the effects of inequality...... are measured. Results show that inequality reduces growth but more so in societies where people perceive it as being relatively unfair. Further results indicate that legal quality and social trust are likely transmission channels for the effects of inequality....

  10. Inequality, Tolerance, and Growth

    DEFF Research Database (Denmark)

    Bjørnskov, Christian

    2004-01-01

    This paper argues for the importance of individuals' tolerance of inequality for economic growth. By using the political ideology of governments as a measure of revealed tolerance of inequality, the paper shows that controlling for ideology improves the accuracy with which the effects of inequality...... are measured. Results show that inequality reduces growth but more so in societies where people perceive it as being relatively unfair. Further results indicate that legal quality and social trust are likely transmission channels for the effects of inequality....

  11. Relationship of the Cold-Heat Sensation of the Limbs and Abdomen with Physiological Biomarkers

    Directory of Open Access Journals (Sweden)

    Duong Duc Pham

    2016-01-01

    Full Text Available The present study explored the relationship between the regional Cold-Heat sensation, the key indicator of the Cold-Heat patterns in traditional East Asian medicine (TEAM, and various biomarkers in Korean population. 734 apparently healthy volunteers aged 20 years and older were enrolled. Three scale self-report questions on the general thermal feel in hands, legs, and abdomen were examined. We found that 65% of women tended to perceive their body, particularly their hands and legs, to be cold, versus 25% of men. Energy expenditure and temperature load at resting state were lower in women, independently of body mass index (BMI. Those with warm hands and warm legs had a 0.74 and 0.52 kg/m2 higher BMI than those with cold hands and cold legs, respectively, regardless of age, gender, and body weight. Norepinephrine was higher, whereas the dynamic changes in glucose and insulin during an oral glucose tolerance test were lower in those with cold extremities, particularly hands. No consistent differences in biomarkers were found for the abdominal dimension. These results suggest that gender, BMI, the sympathetic nervous system, and glucose metabolism are potential determinants of the Cold-Heat sensation in the hands and legs, but not the abdomen.

  12. Relationship of the Cold-Heat Sensation of the Limbs and Abdomen with Physiological Biomarkers.

    Science.gov (United States)

    Pham, Duong Duc; Lee, JeongHoon; Kim, GaYul; Song, JiYeon; Kim, JiEun; Leem, Chae Hun

    2016-01-01

    The present study explored the relationship between the regional Cold-Heat sensation, the key indicator of the Cold-Heat patterns in traditional East Asian medicine (TEAM), and various biomarkers in Korean population. 734 apparently healthy volunteers aged 20 years and older were enrolled. Three scale self-report questions on the general thermal feel in hands, legs, and abdomen were examined. We found that 65% of women tended to perceive their body, particularly their hands and legs, to be cold, versus 25% of men. Energy expenditure and temperature load at resting state were lower in women, independently of body mass index (BMI). Those with warm hands and warm legs had a 0.74 and 0.52 kg/m 2 higher BMI than those with cold hands and cold legs, respectively, regardless of age, gender, and body weight. Norepinephrine was higher, whereas the dynamic changes in glucose and insulin during an oral glucose tolerance test were lower in those with cold extremities, particularly hands. No consistent differences in biomarkers were found for the abdominal dimension. These results suggest that gender, BMI, the sympathetic nervous system, and glucose metabolism are potential determinants of the Cold-Heat sensation in the hands and legs, but not the abdomen.

  13. Spectroscopy and Chemistry of Cold Molecules

    Science.gov (United States)

    Momose, Takamasa

    2012-06-01

    Molecules at low temperatures are expected to behave quite differently from those at high temperatures because pronounced quantum effects emerge from thermal averages. Even at 10 K, a significant enhancement of reaction cross section is expected due to tunneling and resonance effects. Chemistry at this temperature is very important in order to understand chemical reactions in interstellar molecular clouds. At temperatures lower than 1 K, collisions and intermolecular interactions become qualitatively different from those at high temperatures because of the large thermal de Broglie wavelength of molecules. Collisions at these temperatures must be treated as the interference of molecular matter waves, but not as hard sphere collisions. A Bose-Einstein condensate is a significant state of matter as a result of coherent matter wave interaction. Especially, dense para-H_2 molecules are predicted to become a condensate even around 1 K. A convenient method to investigate molecules around 1 K is to dope molecules in cold matrices. Among various matrices, quantum hosts such as solid para-H_2 and superfluid He nano-droplets have been proven to be an excellent host for high-resolution spectroscopy. Rovibrational motion of molecules in these quantum hosts is well quantized on account of the weak interactions and the softness of quantum environment. The linewidths of infrared spectra of molecules in the quantum hosts are extremely narrow compared with those in other matrices. The sharp linewidths allow us to resolve fine spectral structures originated in subtle interactions between guest and host molecules. In this talk, I will describe how the splitting and lineshape of high-resolution spectra of molecules in quantum hosts give us new information on the static and dynamical interactions of molecules in quantum medium. The topics include dynamical response of superfluid environment upon rotational excitation, and possible superfluid phase of para-H_2 clusters. I will also

  14. Pre-symptomatic transcriptome changes during cold storage of chilling sensitive and resistant peach cultivars to elucidate chilling injury mechanisms

    OpenAIRE

    Puig, Clara Pons; Dagar, Anurag; Marti Ibanez, Cristina; Singh, Vikram; Crisosto, Carlos H; Friedman, Haya; Lurie, Susan; Granell, Antonio

    2015-01-01

    Background: Cold storage induces chilling injury (CI) disorders in peach fruit (woolliness/mealiness, flesh browning and reddening/bleeding) manifested when ripened at shelf life. To gain insight into the mechanisms underlying CI, we analyzed the transcriptome of 'Oded' (high tolerant) and 'Hermoza' (relatively tolerant to woolliness, but sensitive to browning and bleeding) peach cultivars at pre-symptomatic stages. The expression profiles were compared and validated with two previously analy...

  15. Cold vacuum chamber for diagnostics: Instrumentation and first results

    Science.gov (United States)

    Gerstl, S.; Voutta, R.; Casalbuoni, S.; Grau, A. W.; Holubek, T.; de Jauregui, D. Saez; Bartolini, R.; Cox, M. P.; Longhi, E. C.; Rehm, G.; Schouten, J. C.; Walker, R. P.; Sikler, G.; Migliorati, M.; Spataro, B.

    2014-10-01

    For a proper design of the cryogenic layout of superconducting insertion devices it is necessary to take into account the heat load from the beam to the cold beam tube. In order to measure and possibly understand the beam heat load to a cold bore, a cold vacuum chamber for diagnostics (COLDDIAG) has been built. COLDDIAG is designed in a flexible way, to allow its installation in different light sources. In order to study the beam heat load and the influence of the cryosorbed gas layer, the instrumentation comprises temperature sensors, pressure gauges, and mass spectrometers as well as retarding field analyzers with which it is possible to measure the beam heat load, total pressure, and gas content as well as the flux of particles hitting the chamber walls. In this paper we describe the experimental equipment, the installation of COLDDIAG in the Diamond Light Source and selected examples of the measurements performed to show the capabilities of this unique instrument.

  16. Toleration, Groups, and Multiculturalism

    DEFF Research Database (Denmark)

    Lægaard, Sune

    2014-01-01

    have the ability to interfere with the group’s activities, an object of dislike or disapproval, an agent enjoying non-interference or a moral patient. This means that 'toleration of groups' can mean quite different things depending on the exact meaning of 'group' in relation to each component...

  17. Fault Tolerant Control Systems

    DEFF Research Database (Denmark)

    Bøgh, S. A.

    This thesis considered the development of fault tolerant control systems. The focus was on the category of automated processes that do not necessarily comprise a high number of identical sensors and actuators to maintain safe operation, but still have a potential for improving immunity to component...

  18. Toleration and its enemies

    DEFF Research Database (Denmark)

    Jarvad, Ib Martin

    2010-01-01

    After a presentation of the development of freedom of expression in Danish constitutional law, to freedom of the press in European human rights law - the Jersild case- to a right to mock and ridicule other faiths in recent Danish practice, the essay of Locke on toleration is examined, its...

  19. A little toleration, please

    Science.gov (United States)

    McKnight, C.

    2000-01-01

    Value pluralism does not imply relativism or subjectivism about values. What it does is allow respect for an at least limited toleration of values with which one may profoundly disagree. Thus a doctor can respect the autonomy of a patient whose values he does not share. Key Words: Pluralism • multiculturalism • relativism • subjectivism • patient autonomy PMID:11129842

  20. Effect of Cold-Water Irrigation on Grain Quality Traits in japonica Rice Varieties from Yunnan Province, China

    Directory of Open Access Journals (Sweden)

    Guo-zhen ZHAO

    2009-09-01

    Full Text Available The response of grain quality traits to cold-water irrigation and its correlation with cold tolerance were studied in 11 japonica rice varieties from Yunnan Province, China. The results indicated that the response of grain quality traits to the cold-water stress varied with rice varieties and grain quality traits. Under the cold-water stress, grain width, chalky rice rate, whiteness, 1000-grain weight, brown rice rate, taste meter value, peak viscosity, trough viscosity, breakdown viscosity and final viscosity significantly decreased, whereas grain length-width ratio, head rice rate, alkali digestion value, protein content and setback viscosity markedly increased. However, the other traits such as grain length, amylose content, milled rice rate, peak viscosity time and pasting temperature were not significantly affected by the cold-water stress. Significant correlations were discovered between phenotypic acceptability and cold response indices of taste meter value, protein content, peak viscosity and breakdown viscosity. Therefore, it would be very important to improve the cold tolerance of Yunnan rice varieties in order to stabilize and improve their eating quality.

  1. Hotter nests produce hatchling lizards with lower thermal tolerance.

    Science.gov (United States)

    Dayananda, Buddhi; Murray, Brad R; Webb, Jonathan K

    2017-06-15

    In many regions, the frequency and duration of summer heatwaves is predicted to increase in future. Hotter summers could result in higher temperatures inside lizard nests, potentially exposing embryos to thermally stressful conditions during development. Potentially, developmentally plastic shifts in thermal tolerance could allow lizards to adapt to climate warming. To determine how higher nest temperatures affect the thermal tolerance of hatchling geckos, we incubated eggs of the rock-dwelling velvet gecko, Amalosia lesueurii , at two fluctuating temperature regimes to mimic current nest temperatures (mean 23.2°C, range 10-33°C, 'cold') and future nest temperatures (mean 27.0°C, range 14-37°C, 'hot'). Hatchlings from the hot incubation group hatched 27 days earlier and had a lower critical thermal maximum (CT max 38.7°C) and a higher critical thermal minimum (CT min 6.2°C) than hatchlings from cold incubation group (40.2 and 5.7°C, respectively). In the field, hatchlings typically settle under rocks near communal nests. During the hatching period, rock temperatures ranged from 13 to 59°C, and regularly exceeded the CT max of both hot- and cold-incubated hatchlings. Because rock temperatures were so high, the heat tolerance of lizards had little effect on their ability to exploit rocks as retreat sites. Instead, the timing of hatching dictated whether lizards could exploit rocks as retreat sites; that is, cold-incubated lizards that hatched later encountered less thermally stressful environments than earlier hatching hot-incubated lizards. In conclusion, we found no evidence that CT max can shift upwards in response to higher incubation temperatures, suggesting that hotter summers may increase the vulnerability of lizards to climate warming. © 2017. Published by The Company of Biologists Ltd.

  2. Study of exposure to cold stress and body physiological responses in auto mechanic employees in Hamadan city

    Directory of Open Access Journals (Sweden)

    Keivan Saedpanah

    2017-09-01

    Full Text Available Introduction: Continuous exposure to cold air is considered to be a hazardous agent in the workplace in cold seasons. This study aimed to determine the level of cold stress and relation with physiological responses in auto mechanic employees. Method: This cross-sectional study was conducted in the winter of 1395 on auto mechanic employees in Hamadan city. Physiological responses during daily activity were measured in accordance with ISO 9886 standard method. Environmental air measures like air temperature and air velocity were measured simultaneously and cold stress indexes were also determined. Data was analyzed using SPSS 21 software. Result: The result showed that mean wind chill index, equivalent chill temperature and required clothing insulation were 489.97±47.679 kcal/m2.h, 13.78± 1.869 0c and 2.04 ± 0.246 clo, respectively. According to the results of cold stress indexes, the studied employees are exposed to cold stress. Pearson correlation test showed that there are significant relationship between cold stress indexes with physiological responses (p<0.05, however, IREQ min showed more correlation than the others.  There is also a significant relationship between body fat percentage and deep temperature (p<0.05, r=0.314. Conclusion: The result confirmed that IREQ min index has high validity for estimation of cold stress among auto mechanic employees. Moreover, the increase of body fat percentage leads to an increase of cold tolerance power of employees.

  3. Scientists study 'cold war' fallout

    International Nuclear Information System (INIS)

    Stone, R.

    1993-01-01

    This article describes the epidemiological studies being carried out to determine radiation doses to the public from intentional and accidental releases of radioactive compounds during the Cold War. These studies at present are focused on Hanford, Oak Ridge, and Fernald, with studies beginning at Rocky Flats and Savannah

  4. Encyclopedia of the Cold War

    NARCIS (Netherlands)

    van Dijk, R.

    2008-01-01

    Between 1945 and 1991, tension between the USA, its allies, and a group of nations led by the USSR, dominated world politics. This period was called the Cold War - a conflict that stopped short to a full-blown war. Benefiting from the recent research of newly open archives, the Encyclopedia of the

  5. Cold gas accretion in galaxies

    NARCIS (Netherlands)

    Sancisi, Renzo; Fraternali, Filippo; Oosterloo, Tom; van der Hulst, Thijs

    Evidence for the accretion of cold gas in galaxies has been rapidly accumulating in the past years. HI observations of galaxies and their environment have brought to light new facts and phenomena which are evidence of ongoing or recent accretion: (1) A large number of galaxies are accompanied by

  6. Cold fusion and hot history

    International Nuclear Information System (INIS)

    Lewenstein, B.

    1996-01-01

    The history of cold fusion research following the announcement of the Pons-Fleischmann experiment is described in detail, including all the confusion, responses of scientists, personal impressions, personal quotations, reactions of the media, references to contemporary sources, etc. (P.A.). 5 figs

  7. Brown Fat AKT2 Is a Cold-Induced Kinase that Stimulates ChREBP-Mediated De Novo Lipogenesis to Optimize Fuel Storage and Thermogenesis

    DEFF Research Database (Denmark)

    Sanchez-Gurmaches, Joan; Tang, Yuefeng; Jespersen, Naja Zenius

    2018-01-01

    Brown adipose tissue (BAT) is a therapeutic target for metabolic diseases; thus, understanding its metabolic circuitry is clinically important. Many studies of BAT compare rodents mildly cold to those severely cold. Here, we compared BAT remodeling between thermoneutral and mild-cold-adapted mice...

  8. Deconstructing tolerance with clobazam

    Science.gov (United States)

    Wechsler, Robert T.; Sankar, Raman; Montouris, Georgia D.; White, H. Steve; Cloyd, James C.; Kane, Mary Clare; Peng, Guangbin; Tworek, David M.; Shen, Vivienne; Isojarvi, Jouko

    2016-01-01

    Objective: To evaluate potential development of tolerance to adjunctive clobazam in patients with Lennox-Gastaut syndrome. Methods: Eligible patients enrolled in open-label extension study OV-1004, which continued until clobazam was commercially available in the United States or for a maximum of 2 years outside the United States. Enrolled patients started at 0.5 mg·kg−1·d−1 clobazam, not to exceed 40 mg/d. After 48 hours, dosages could be adjusted up to 2.0 mg·kg−1·d−1 (maximum 80 mg/d) on the basis of efficacy and tolerability. Post hoc analyses evaluated mean dosages and drop-seizure rates for the first 2 years of the open-label extension based on responder categories and baseline seizure quartiles in OV-1012. Individual patient listings were reviewed for dosage increases ≥40% and increasing seizure rates. Results: Data from 200 patients were included. For patients free of drop seizures, there was no notable change in dosage over 24 months. For responder groups still exhibiting drop seizures, dosages were increased. Weekly drop-seizure rates for 100% and ≥75% responders demonstrated a consistent response over time. Few patients had a dosage increase ≥40% associated with an increase in seizure rates. Conclusions: Two-year findings suggest that the majority of patients do not develop tolerance to the antiseizure actions of clobazam. Observed dosage increases may reflect best efforts to achieve seizure freedom. It is possible that the clinical development of tolerance to clobazam has been overstated. ClinicalTrials.gov identifier: NCT00518713 and NCT01160770. Classification of evidence: This study provides Class III evidence that the majority of patients do not develop tolerance to clobazam over 2 years of treatment. PMID:27683846

  9. Cold atoms in singular potentials

    International Nuclear Information System (INIS)

    Denschlag, J. P.

    1998-09-01

    We studied both theoretically and experimentally the interaction between cold Li atoms from a magnetic-optical trap (MOT) and a charged or current-carrying wire. With this system, we were able to realize 1/r 2 and 1/r potentials in two dimensions and to observe the motion of cold atoms in both potentials. For an atom in an attractive 1/r 2 potential, there exist no stable trajectories, instead there is a characteristic class of trajectories for which atoms fall into the singularity. We were able to observe this falling of atoms into the center of the potential. Moreover, by probing the singular 1/r 2 potential with atomic clouds of varying size and temperature we extracted scaling properties of the atom-wire interaction. For very cold atoms, and very thin wires the motion of the atoms must be treated quantum mechanically. Here we predict that the absorption cross section for the 1/r 2 potential should exhibit quantum steps. These quantum steps are a manifestation of the quantum mechanical decomposition of plane waves into partial waves. For the second part of this work, we realized a two dimensional 1/r potential for cold atoms. If the potential is attractive, the atoms can be bound and follow Kepler-like orbits around the wire. The motion in the third dimension along the wire is free. We were able to exploit this property and constructed a novel cold atom guide, the 'Kepler guide'. We also demonstrated another type of atom guide (the 'side guide'), by combining the magnetic field of the wire with a homogeneous offset magnetic field. In this case, the atoms are held in a potential 'tube' on the side of the wire. The versatility, simplicity, and scaling properties of this guide make it an interesting technique. (author)

  10. Overexpression of a heat shock protein (ThHSP18.3) from Tamarix hispida confers stress tolerance to yeast.

    Science.gov (United States)

    Gao, Caiqiu; Jiang, Bo; Wang, Yucheng; Liu, Guifeng; Yang, Chuanping

    2012-04-01

    It is well known that plant heat shock proteins (HSPs) play important roles both in response to adverse environmental conditions and in various developmental processes. However, among plant HSPs, the functions of tree plant HSPs are poorly characterized. To improve our understanding of tree HSPs, we cloned and characterized an HSP gene (ThHSP18.3) from Tamarix hispida. Sequence alignment reveals that ThHSP18.3 belongs to the class I small heat shock protein family. A transient expression assay showed that ThHSP18.3 protein was targeted to the cell nucleus. Treatment of Tamarix hispida with cold and heat shock highly induced ThHSP18.3 expression in all studied leaves, roots and stems, whereas, treatment of T. hispida with NaCl, NaHCO(3), and PEG induced ThHSP18.3 expression in leaves and decreased its expression in roots and stems. Further, to study the role of ThHSP18.3 in stress tolerance under different stress conditions, we cloned ThHSP18.3 into the pYES2 vector, transformed and expressed the vector in yeast Saccharomyces cerevisiae. Yeast cells transformed with an empty pYES2 vector were employed as a control. Compared to the control, yeast cells expressing ThHSP18.3 showed greater tolerance to salt, drought, heavy metals, and both low and high temperatures, indicating that ThHSP18.3 confers tolerance to these stress conditions. These results suggested that ThHSP18.3 is involved in tolerance to a variety of stress conditions in T. hispida.

  11. Public Perception of Extreme Cold Weather-Related Health Risk in a Cold Area of Northeast China.

    Science.gov (United States)

    Ban, Jie; Lan, Li; Yang, Chao; Wang, Jian; Chen, Chen; Huang, Ganlin; Li, Tiantian

    2017-08-01

    A need exists for public health strategies regarding extreme weather disasters, which in recent years have become more frequent. This study aimed to understand the public's perception of extreme cold and its related health risks, which may provide detailed information for public health preparedness during an extreme cold weather event. To evaluate public perceptions of cold-related health risk and to identify vulnerable groups, we collected responses from 891 participants in a face-to-face survey in Harbin, China. Public perception was measured by calculating the score for each perception question. Locals perceived that extreme cold weather and related health risks were serious, but thought they could not avoid these risks. The significant difference in perceived acceptance level between age groups suggested that the elderly are a "high health risk, low risk perception" group, meaning that they are relatively more vulnerable owing to their high susceptibility and low awareness of the health risks associated with extreme cold weather. The elderly should be a priority in risk communication and health protective interventions. This study demonstrated that introducing risk perception into the public health field can identify vulnerable groups with greater needs, which may improve the decision-making of public health intervention strategies. (Disaster Med Public Health Preparedness. 2017;11:417-421).

  12. Ciliates from ancient permafrost: Assessment of cold resistance of the resting cysts.

    Science.gov (United States)

    Shatilovich, Anastasia; Stoupin, Daniel; Rivkina, Elizaveta

    2015-06-01

    There is evidence that resting cysts of soil ciliates and numerous taxa of other protists can survive in permafrost for thousands of years at subzero temperatures; however, our knowledge about mechanisms of long term cryobiosis remains incomplete. In order to better understand the means by which ancient cysts survive, we investigated resistance to cyclical supercooling stress of resting cysts of the soil ciliate Colpoda steinii (Colpodida, Ciliophora). Three clonal strains were used for comparison, isolated from Siberian tundra soil, ancient Holocene (5-7,000 y) and late Pleistocene (32-35,000 y) permafrost sediments. To determine the viability of the ancient and contemporary ciliate cysts we improved and validated a cultivation-independent method of vital fluorescent staining with a combination of two nucleic acid binding dyes, acridine orange and propidium iodide. The viability of Colpoda steinii cysts during low-temperature experiments was measured using both the proposed vital fluorescent staining method and standard germination test. Our results indicate that the dual-fluorescence technique is a more accurate, rapid, and efficient method for estimating cyst viability. We found that cysts of ancient ciliates display lower tolerance to the impact of cyclical cold compared to cysts of contemporary ciliates from Siberian permafrost affected soils. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. Brain Oscillations Elicited by the Cold Pressor Test: A Putative Index of Untreated Essential Hypertension

    Directory of Open Access Journals (Sweden)

    Christos Papageorgiou

    2017-01-01

    Full Text Available Objective. Essential hypertension is associated with reduced pain sensitivity of unclear aetiology. This study explores this issue using the Cold Pressor Test (CPT, a reliable pain/stress model, comparing CPT-related EEG activity in first episode hypertensives and controls. Method. 22 untreated hypertensives and 18 matched normotensives underwent 24-hour ambulatory blood pressure monitoring (ABPM. EEG recordings were taken before, during, and after CPT exposure. Results. Significant group differences in CPT-induced EEG oscillations were covaried with the most robust cardiovascular differentiators by means of a Canonical Analysis. Positive correlations were noted between ABPM variables and Delta (1–4 Hz oscillations during the tolerance phase; in high-alpha (10–12 Hz oscillations during the stress unit and posttest phase; and in low-alpha (8–10 Hz oscillations during CPT phases overall. Negative correlations were found between ABPM variables and Beta2 oscillations (16.5–20 Hz during the posttest phase and Gamma (28.5–45 Hz oscillations during the CPT phases overall. These relationships were localised at several sites across the cerebral hemispheres with predominance in the right hemisphere and left frontal lobe. Conclusions. These findings provide a starting point for increasing our understanding of the complex relationships between cerebral activation and cardiovascular functioning involved in regulating blood pressure changes.

  14. Brain Oscillations Elicited by the Cold Pressor Test: A Putative Index of Untreated Essential Hypertension.

    Science.gov (United States)

    Papageorgiou, Christos; Manios, Efstathios; Tsaltas, Eleftheria; Koroboki, Eleni; Alevizaki, Maria; Angelopoulos, Elias; Dimopoulos, Meletios-Athanasios; Papageorgiou, Charalabos; Zakopoulos, Nikolaos

    2017-01-01

    Essential hypertension is associated with reduced pain sensitivity of unclear aetiology. This study explores this issue using the Cold Pressor Test (CPT), a reliable pain/stress model, comparing CPT-related EEG activity in first episode hypertensives and controls. 22 untreated hypertensives and 18 matched normotensives underwent 24-hour ambulatory blood pressure monitoring (ABPM). EEG recordings were taken before, during, and after CPT exposure. Significant group differences in CPT-induced EEG oscillations were covaried with the most robust cardiovascular differentiators by means of a Canonical Analysis. Positive correlations were noted between ABPM variables and Delta (1-4 Hz) oscillations during the tolerance phase; in high-alpha (10-12 Hz) oscillations during the stress unit and posttest phase; and in low-alpha (8-10 Hz) oscillations during CPT phases overall. Negative correlations were found between ABPM variables and Beta2 oscillations (16.5-20 Hz) during the posttest phase and Gamma (28.5-45 Hz) oscillations during the CPT phases overall. These relationships were localised at several sites across the cerebral hemispheres with predominance in the right hemisphere and left frontal lobe. These findings provide a starting point for increasing our understanding of the complex relationships between cerebral activation and cardiovascular functioning involved in regulating blood pressure changes.

  15. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster

    Czech Academy of Sciences Publication Activity Database

    Košťál, Vladimír; Korbelová, Jaroslava; Poupardin, Rodolphe; Moos, Martin; Šimek, Petr

    2016-01-01

    Roč. 219, č. 15 (2016), s. 2358-2367 ISSN 0022-0949 R&D Projects: GA ČR GA13-01057S EU Projects: European Commission(XE) 316304 Institutional support: RVO:60077344 Keywords : fruit fly * diet augmentation * cold tolerance Subject RIV: ED - Physiology Impact factor: 3.320, year: 2016

  16. Genetics Home Reference: familial cold autoinflammatory syndrome

    Science.gov (United States)

    ... inflammatory response. Monarch-1 is involved in the inhibition of the inflammatory response. Mutations in the NLRP12 ... cold autoinflammatory syndrome Orphanet: Familial cold urticaria Patient Support and Advocacy Resources (3 links) Autoinflammatory Alliance National ...

  17. Center for Cold Spray Research and Development

    Data.gov (United States)

    Federal Laboratory Consortium — This is the only DoD facility capable of cold spray research and development, production, and field-repair. It features three stationary cold spray systems used for...

  18. Understanding the 3-hydroxypropionic acid tolerance mechanism in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kildegaard, Kanchana Rueksomtawin; Juncker, Agnieszka; Hallstrom, Bjorn

    2013-01-01

    3-Hydroxypropionic acid (3HP) is an important platform chemical that can be converted into other valuable chemicals such as acrylic acid and its derivatives that are used in baby diap ers, various plastics, and paints. With the oil and gas resources becoming limiting, biotechnolo gy offers...

  19. Understanding Risk Tolerance and Building an Effective Safety Culture

    Science.gov (United States)

    Loyd, David

    2018-01-01

    Estimates range from 65-90 percent of catastrophic mishaps are due to human error. NASA's human factors-related mishaps causes are estimated at approximately 75 percent. As much as we'd like to error-proof our work environment, even the most automated and complex technical endeavors require human interaction... and are vulnerable to human frailty. Industry and government are focusing not only on human factors integration into hazardous work environments, but also looking for practical approaches to cultivating a strong Safety Culture that diminishes risk. Industry and government organizations have recognized the value of monitoring leading indicators to identify potential risk vulnerabilities. NASA has adapted this approach to assess risk controls associated with hazardous, critical, and complex facilities. NASA's facility risk assessments integrate commercial loss control, OSHA (Occupational Safety and Health Administration) Process Safety, API (American Petroleum Institute) Performance Indicator Standard, and NASA Operational Readiness Inspection concepts to identify risk control vulnerabilities.

  20. A bulk segregant gene expression analysis of a peach population reveals components of the underlying mechanism of the fruit cold response.

    Science.gov (United States)

    Pons, Clara; Martí, Cristina; Forment, Javier; Crisosto, Carlos H; Dandekar, Abhaya M; Granell, Antonio

    2014-01-01

    Peach fruits subjected for long periods of cold storage are primed to develop chilling injury once fruits are shelf ripened at room temperature. Very little is known about the molecular changes occurring in fruits during cold exposure. To get some insight into this process a transcript profiling analyses was performed on fruits from a PopDG population segregating for chilling injury CI responses. A bulked segregant gene expression analysis based on groups of fruits showing extreme CI responses indicated that the transcriptome of peach fruits was modified already during cold storage consistently with eventual CI development. Most peach cold-responsive genes have orthologs in Arabidopsis that participate in cold acclimation and other stresses responses, while some of them showed expression patterns that differs in fruits according to their susceptibility to develop mealiness. Members of ICE1, CBF1/3 and HOS9 regulons seem to have a prominent role in differential cold responses between low and high sensitive fruits. In high sensitive fruits, an alternative cold response program is detected. This program is probably associated with dehydration/osmotic stress and regulated by ABA, auxins and ethylene. In addition, the observation that tolerant siblings showed a series of genes encoding for stress protective activities with higher expression both at harvest and during cold treatment, suggests that preprogrammed mechanisms could shape fruit ability to tolerate postharvest cold-induced stress. A number of genes differentially expressed were validated and extended to individual genotypes by medium-throughput RT-qPCR. Analyses presented here provide a global view of the responses of peach fruits to cold storage and highlights new peach genes that probably play important roles in the tolerance/sensitivity to cold storage. Our results provide a roadmap for further experiments and would help to develop new postharvest protocols and gene directed breeding strategies to better

  1. A bulk segregant gene expression analysis of a peach population reveals components of the underlying mechanism of the fruit cold response.

    Directory of Open Access Journals (Sweden)

    Clara Pons

    Full Text Available Peach fruits subjected for long periods of cold storage are primed to develop chilling injury once fruits are shelf ripened at room temperature. Very little is known about the molecular changes occurring in fruits during cold exposure. To get some insight into this process a transcript profiling analyses was performed on fruits from a PopDG population segregating for chilling injury CI responses. A bulked segregant gene expression analysis based on groups of fruits showing extreme CI responses indicated that the transcriptome of peach fruits was modified already during cold storage consistently with eventual CI development. Most peach cold-responsive genes have orthologs in Arabidopsis that participate in cold acclimation and other stresses responses, while some of them showed expression patterns that differs in fruits according to their susceptibility to develop mealiness. Members of ICE1, CBF1/3 and HOS9 regulons seem to have a prominent role in differential cold responses between low and high sensitive fruits. In high sensitive fruits, an alternative cold response program is detected. This program is probably associated with dehydration/osmotic stress and regulated by ABA, auxins and ethylene. In addition, the observation that tolerant siblings showed a series of genes encoding for stress protective activities with higher expression both at harvest and during cold treatment, suggests that preprogrammed mechanisms could shape fruit ability to tolerate postharvest cold-induced stress. A number of genes differentially expressed were validated and extended to individual genotypes by medium-throughput RT-qPCR. Analyses presented here provide a global view of the responses of peach fruits to cold storage and highlights new peach genes that probably play important roles in the tolerance/sensitivity to cold storage. Our results provide a roadmap for further experiments and would help to develop new postharvest protocols and gene directed breeding

  2. Cold moderators for pulsed neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1990-01-01

    This paper reviews cold moderators in pulsed neutron sources and provides details of the performance of different cold moderator materials and configurations. Analytical forms are presented which describe wavelength spectra and emission time distributions. Several types of cooling arrangements used in pulsed source moderators are described. Choices of materials are surveyed. The author examines some of the radiation damage effects in cold moderators, including the phenomenon of ''burping'' in irradiated cold solid methane. 9 refs., 15 figs., 4 tabs

  3. A transcription factor for cold sensation!

    OpenAIRE

    Kim, Susan J; Qu, Zhican; Milbrandt, Jeffrey; Zhuo, Min

    2005-01-01

    Abstract The ability to feel hot and cold is critical for animals and human beings to survive in the natural environment. Unlike other sensations, the physiology of cold sensation is mostly unknown. In the present study, we use genetically modified mice that do not express nerve growth factor-inducible B (NGFIB) to investigate the possible role of NGFIB in cold sensation. We found that genetic deletion of NGFIB selectively affected behavioral responses to cold stimuli while behavioral respons...

  4. Cold fusion anomalies more perplexing than ever

    International Nuclear Information System (INIS)

    Dagani, R.

    1989-01-01

    This article addresses the debate over research on cold fusion. Analysis is made of the research efforts that have taken place since cold fusion was first thought to have been discovered in Utah. Research in the Soviet Union on the cold fusion phenomenon is also discussed

  5. Catching a Cold When It's Warm

    Science.gov (United States)

    ... Print this issue Catching a Cold When It’s Warm What’s the Deal with Summertime Sniffles? En español ... more unfair than catching a cold when it’s warm? How can cold symptoms arise when it’s not ...

  6. Socially-Tolerable Discrimination

    OpenAIRE

    Amegashie, J. Atsu

    2008-01-01

    History is replete with overt discrimination on the basis of race, gender, age, citizenship, ethnicity, marital status, academic performance, health status, volume of market transactions, religion, sexual orientation, etc. However, these forms of discrimination are not equally tolerable. For example, discrimination based on immutable or prohibitively unalterable characteristics such as race, gender, or ethnicity is much less acceptable. Why? I develop a simple rent-seeking model of conflict w...

  7. Dietary live yeast alters metabolic profiles, protein biosynthesis and thermal stress tolerance of Drosophila melanogaster.

    Science.gov (United States)

    Colinet, Hervé; Renault, David

    2014-04-01

    The impact of nutritional factors on insect's life-history traits such as reproduction and lifespan has been excessively examined; however, nutritional determinant of insect's thermal tolerance has not received a lot of attention. Dietary live yeast represents a prominent source of proteins and amino acids for laboratory-reared drosophilids. In this study, Drosophila melanogaster adults were fed on diets supplemented or not with live yeast. We hypothesized that manipulating nutritional conditions through live yeast supplementation would translate into altered physiology and stress tolerance. We verified how live yeast supplementation affected body mass characteristics, total lipids and proteins, metabolic profiles and cold tolerance (acute and chronic stress). Females fed with live yeast had increased body mass and contained more lipids and proteins. Using GC/MS profiling, we found distinct metabolic fingerprints according to nutritional conditions. Metabolite pathway enrichment analysis corroborated that live yeast supplementation was associated with amino acid and protein biosyntheses. The cold assays revealed that the presence of dietary live yeast greatly promoted cold tolerance. Hence, this study conclusively demonstrates a significant interaction between nutritional conditions and thermal tolerance. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Cold Stowage: An ISS Project

    Science.gov (United States)

    Hartley, Garen

    2018-01-01

    NASA's vision for humans pursuing deep space flight involves the collection of science in low earth orbit aboard the International Space Station (ISS). As a service to the science community, Johnson Space Center (JSC) has developed hardware and processes to preserve collected science on the ISS and transfer it safely back to the Principal Investigators. This hardware includes an array of freezers, refrigerators, and incubators. The Cold Stowage team is part of the International Space Station (ISS) program. JSC manages the operation, support and integration tasks provided by Jacobs Technology and the University of Alabama Birmingham (UAB). Cold Stowage provides controlled environments to meet temperature requirements during ascent, on-orbit operations and return, in relation to International Space Station Payload Science.

  9. Ultra-cold molecule production

    International Nuclear Information System (INIS)

    Ramirez-Serrano, Jamie; Chandler, David W.; Strecker, Kevin; Rahn, Larry A.

    2005-01-01

    The production of Ultra-cold molecules is a goal of many laboratories through out the world. Here we are pursuing a unique technique that utilizes the kinematics of atomic and molecular collisions to achieve the goal of producing substantial numbers of sub Kelvin molecules confined in a trap. Here a trap is defined as an apparatus that spatially localizes, in a known location in the laboratory, a sample of molecules whose temperature is below one degree absolute Kelvin. Further, the storage time for the molecules must be sufficient to measure and possibly further cool the molecules. We utilize a technique unique to Sandia to form cold molecules from near mass degenerate collisions between atoms and molecules. This report describes the progress we have made using this novel technique and the further progress towards trapping molecules we have cooled

  10. Cosmicflows-3: Cold Spot Repeller?

    Energy Technology Data Exchange (ETDEWEB)

    Courtois, Hélène M.; Graziani, Romain; Dupuy, Alexandra [University of Lyon, UCB Lyon 1, CNRS/IN2P3, IPN, Lyon (France); Tully, R. Brent [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Hoffman, Yehuda [Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Pomarède, Daniel [Institut de Recherche sur les Lois Fondamentales de l’Univers, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France)

    2017-09-20

    The three-dimensional gravitational velocity field within z ∼ 0.1 has been modeled with the Wiener filter methodology applied to the Cosmicflows-3 compilation of galaxy distances. The dominant features are a basin of attraction and two basins of repulsion. The major basin of attraction is an extension of the Shapley concentration of galaxies. One basin of repulsion, the Dipole Repeller, is located near the anti-apex of the cosmic microwave background dipole. The other basin of repulsion is in the proximate direction toward the “Cold Spot” irregularity in the cosmic microwave background. It has been speculated that a vast void might contribute to the amplitude of the Cold Spot from the integrated Sachs–Wolfe effect.

  11. Plasma Membrane CRPK1-Mediated Phosphorylation of 14-3-3 Proteins Induces Their Nuclear Import to Fine-Tune CBF Signaling during Cold Response.

    Science.gov (United States)

    Liu, Ziyan; Jia, Yuxin; Ding, Yanglin; Shi, Yiting; Li, Zhen; Guo, Yan; Gong, Zhizhong; Yang, Shuhua

    2017-04-06

    In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the cell transduces and fine-tunes cold signals remain elusive. Here we show that the cold-activated plasma membrane protein cold-responsive protein kinase 1 (CRPK1) phosphorylates 14-3-3 proteins. The phosphorylated 14-3-3 proteins shuttle from the cytosol to the nucleus, where they interact with and destabilize the key cold-responsive C-repeat-binding factor (CBF) proteins. Consistent with this, the crpk1 and 14-3-3κλ mutants show enhanced freezing tolerance, and transgenic plants overexpressing 14-3-3λ show reduced freezing tolerance. Further study shows that CRPK1 is essential for the nuclear translocation of 14-3-3 proteins and for 14-3-3 function in freezing tolerance. Thus, our study reveals that the CRPK1-14-3-3 module transduces the cold signal from the plasma membrane to the nucleus to modulate CBF stability, which ensures a faithfully adjusted response to cold stress of plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Cold hardiness increases with age in juvenile Rhododendron populations

    Directory of Open Access Journals (Sweden)

    Rajeev eArora

    2014-10-01

    Full Text Available Winter survival in woody plants is controlled by environmental and genetic factors that affect the plant's ability to cold acclimate. Because woody perennials are long-lived and often have a prolonged juvenile (pre-flowering phase, it is conceivable that both chronological and physiological age factors influence adaptive traits such as stress tolerance. This study investigated annual cold hardiness (CH changes in several hybrid Rhododendron populations based on Tmax, an estimate of the maximum rate of freezing injury (ion leakage in cold-acclimated leaves from juvenile progeny. Data from F2 and backcross populations derived from R. catawbiense and R. fortunei parents indicated significant annual increases in Tmax ranging from 3.7 to to 6.4 C as the seedlings aged from 3 to 5 years old. A similar yearly increase (6.7° C was observed in comparisons of 1- and 2-year-old F1 progenies from a R. catawbiense x R. dichroanthum cross. In contrast, CH of the mature parent plants (> 10 years old did not change significantly over the same evaluation period. In leaf samples from a natural population of R. maximum, CH evaluations over two years resulted in an average Tmax value for juvenile 2- to 3- year- old plants that was 9.2 C lower than the average for mature (~30 years old plants. . A reduction in CH was also observed in three hybrid rhododendron cultivars clonally propagated by rooted cuttings (ramets - Tmax of 4-year-old ramets was significantly lower than the Tmax estimates for the 30- to 40-year-old source plants (ortets. In both the wild R. maximum population and the hybrid cultivar group, higher accumulation of a cold-acclimation responsive 25kDa leaf dehydrin was associated with older plants and higher CH. The feasibility of identifying hardy phenotypes at juvenile period and research implications of age-dependent changes in CH are discussed.

  13. The status of 'cold fusion'

    International Nuclear Information System (INIS)

    Nagel, David J.

    1998-01-01

    The questions raised by reports of nuclear reactions at low energies, so called 'cold fusion', are not yet answered to the satisfaction of many scientists. Further experimental investigations of these and related questions seems desirable, at least for scientific if not practical reasons. Properly conducted, such investigations would be indistinguishable from normal research. They would yield information germane to accepted areas of scientific inquiry and technological utility

  14. Intraspecific competition facilitates the evolution of tolerance to insect damage in the perennial plant Solanum carolinense.

    Science.gov (United States)

    McNutt, David W; Halpern, Stacey L; Barrows, Kahaili; Underwood, Nora

    2012-12-01

    Tolerance to herbivory (the degree to which plants maintain fitness after damage) is a key component of plant defense, so understanding how natural selection and evolutionary constraints act on tolerance traits is important to general theories of plant-herbivore interactions. These factors may be affected by plant competition, which often interacts with damage to influence trait expression and fitness. However, few studies have manipulated competitor density to examine the evolutionary effects of competition on tolerance. In this study, we tested whether intraspecific competition affects four aspects of the evolution of tolerance to herbivory in the perennial plant Solanum carolinense: phenotypic expression, expression of genetic variation, the adaptive value of tolerance, and costs of tolerance. We manipulated insect damage and intraspecific competition for clonal lines of S. carolinense in a greenhouse experiment, and measured tolerance in terms of sexual and asexual fitness components. Compared to plants growing at low density, plants growing at high density had greater expression of and genetic variation in tolerance, and experienced greater fitness benefits from tolerance when damaged. Tolerance was not costly for plants growing at either density, and only plants growing at low density benefited from tolerance when undamaged, perhaps due to greater intrinsic growth rates of more tolerant genotypes. These results suggest that competition is likely to facilitate the evolution of tolerance in S. carolinense, and perhaps in other plants that regularly experience competition, while spatio-temporal variation in density may maintain genetic variation in tolerance.

  15. A pilot study exploring the effects of reflexology on cold intolerance.

    Science.gov (United States)

    Zhang, Wenping; Takahashi, Shougo; Miki, Takashi; Fujieda, Hisayo; Ishida, Torao

    2010-03-01

    Cold intolerance is an inability to tolerate cold temperatures and is accompanied by symptoms including headache, shoulder discomfort, dizziness and palpitations. The current study was performed to examine whether reflexology therapy affected cold intolerance in human subjects and whether the treatment was systemically effective. Ten female volunteer examinees with subjective feelings of cold were examined. After a 5-minute foot bath, 10 minutes of reflexology therapy was performed on their left foot. Skin temperature and blood flow were estimated before and after treatment, together with an interview concerning their feelings of cold and daily habits. In addition, how the recovery rate was affected by the application of a chilled-water load was also estimated. Along with significant increases in skin temperature and blood flow compared with pre-treatment at the bilateral points of KI-1, LR-3, and BL-60, a faster recovery after the application of the chilled-water load was also seen in the lower limbs on both sides. From these results, we conclude that reflexology has systemic effects and is an alternative method for treating cold intolerance. Copyright (c) 2010 Korean Pharmacopuncture Institute. Published by .. All rights reserved.

  16. Isolation of mutations affecting the development of freezing tolerance in Arabidopsis thaliana (L.) Heynh.

    Science.gov (United States)

    Warren, G; McKown, R; Marin, A L; Teutonico, R

    1996-08-01

    We screened for mutations deleterious to the freezing tolerance of Arabidopsis thaliana (L.) Heynh. ecotype Columbia. Tolerance was assayed by the vigor and regrowth of intact plants after cold acclimation and freezing. From a chemically mutagenized population, we obtained 13 lines of mutants with highly penetrant phenotypes. In 5 of these, freezing sensitivity was attributable to chilling injury sustained during cold acclimation, but in the remaining 8 lines, the absence of injury prior to freezing suggested that they were affected specifically in the development of freezing tolerance. In backcrosses, freezing sensitivity from each line segregated as a single nuclear mutation. Complementation tests indicated that the 8 lines contained mutations in 7 different genes. The mutants' freezing sensitivity was also detectable in the leakage of electrolytes from frozen leaves. However, 1 mutant line that displayed a strong phenotype at the whole-plant level showed a relatively weak phenotype by the electrolyte leakage assay.

  17. The Potential of Cold Plasma for Safe and Sustainable Food Production.

    Science.gov (United States)

    Bourke, Paula; Ziuzina, Dana; Boehm, Daniela; Cullen, Patrick J; Keener, Kevin

    2018-06-01

    Cold plasma science and technology is increasingly investigated for translation to a plethora of issues in the agriculture and food sectors. The diversity of the mechanisms of action of cold plasma, and the flexibility as a standalone technology or one that can integrate with other technologies, provide a rich resource for driving innovative solutions. The emerging understanding of the longer-term role of cold plasma reactive species and follow-on effects across a range of systems will suggest how cold plasma may be optimally applied to biological systems in the agricultural and food sectors. Here we present the current status, emerging issues, regulatory context, and opportunities of cold plasma with respect to the broad stages of primary and secondary food production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Ectopic overexpression of WsSGTL1, a sterol glucosyltransferase gene in Withania somnifera, promotes growth, enhances glycowithanolide and provides tolerance to abiotic and biotic stresses.

    Science.gov (United States)

    Saema, Syed; Rahman, Laiq Ur; Singh, Ruchi; Niranjan, Abhishek; Ahmad, Iffat Zareen; Misra, Pratibha

    2016-01-01

    Overexpression of sterol glycosyltransferase (SGTL1) gene of Withania somnifera showing its involvement in glycosylation of withanolide that leads to enhanced growth and tolerance to biotic and abiotic stresses. Withania somnifera is widely used in Ayurvedic medicines for over 3000 years due to its therapeutic properties. It contains a variety of glycosylated steroids called withanosides that possess neuroregenerative, adaptogenic, anticonvulsant, immunomodulatory and antioxidant activities. The WsSGTL1 gene specific for 3β-hydroxy position has a catalytic specificity to glycosylate withanolide and sterols. Glycosylation not only stabilizes the products but also alters their physiological activities and governs intracellular distribution. To understand the functional significance and potential of WsSGTL1 gene, transgenics of W. somnifera were generated using Agrobacterium tumefaciens-mediated transformation. Stable integration and overexpression of WsSGTL1 gene were confirmed by Southern blot analysis followed by quantitative real-time PCR. The WsGTL1 transgenic plants displayed number of alterations at phenotypic and metabolic level in comparison to wild-type plants which include: (1) early and enhanced growth with leaf expansion and increase in number of stomata; (2) increased production of glycowithanolide (majorly withanoside V) and campesterol, stigmasterol and sitosterol in glycosylated forms with reduced accumulation of withanolides (withaferin A, withanolide A and withanone); (3) tolerance towards biotic stress (100 % mortality of Spodoptera litura), improved survival capacity under abiotic stress (cold stress) and; (4) enhanced recovery capacity after cold stress, as indicated by better photosynthesis performance, chlorophyll, anthocyanin content and better quenching regulation of PSI and PSII. Our data demonstrate overexpression of WsSGTL1 gene which is responsible for increase in glycosylated withanolide and sterols, and confers better growth and

  19. Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster

    DEFF Research Database (Denmark)

    Overgaard, Johannes; Tomcala, Ales; Sørensen, Jesper G

    2008-01-01

    and the composition of membrane GPLs in adult Drosophila melanogaster. Long-term cold survival was significantly improved by low acclimation temperature. After 60h at 0 degrees C, more than 80% of the 15 degrees C-acclimated flies survived while none of the 25 degrees C-acclimated flies survived. Cold shock tolerance...... acclimation temperature and correlated with the changes in GPL composition in membranes of adult D. melanogaster. Udgivelsesdato: 2008-Mar...

  20. Effects of transcranial direct current stimulation (tDCS) on pain distress tolerance: a preliminary study

    Science.gov (United States)

    Mariano, Timothy Y.; Wout, Mascha van’t; Jacobson, Benjamin L.; Garnaat, Sarah L.; Kirschner, Jason L.; Rasmussen, Steven A.; Greenberg, Benjamin D.

    2015-01-01

    Objective Pain remains a critical medical challenge. Current treatments target nociception without addressing affective symptoms. Medically intractable pain is sometimes treated with cingulotomy or deep brain stimulation to increase tolerance of pain-related distress. Transcranial direct current stimulation (tDCS) may noninvasively modulate cortical areas related to sensation and pain representations. The present study aimed to test the hypothesis that cathodal (“inhibitory”) stimulation targeting left dorsal anterior cingulate cortex (dACC) would increase tolerance to distress from acute painful stimuli versus anodal stimulation. Methods Forty healthy volunteers received both anodal and cathodal stimulation. During stimulation, we measured pain distress tolerance with three tasks: pressure algometer, cold pressor, and breath holding. We measured pain intensity with a visual-analog scale before and after each task. Results Mixed ANOVA revealed that mean cold pressor tolerance tended to be higher with cathodal versus anodal stimulation (p = 0.055) for participants self-completing the task. Pressure algometer (p = 0.81) and breath holding tolerance (p = 0.19) did not significantly differ. The pressure algometer exhibited a statistically significant order effect irrespective of stimulation polarity (all p Pain intensity ratings increased acutely after cold pressor and pressure algometer tasks (both p pain ratings tended to rise less after cathodal versus anodal tDCS (p = 0.072). Conclusions Although our primary results were nonsignificant, there is a preliminary suggestion that cathodal tDCS targeting left dACC may increase pain distress tolerance to cold pressor. Pressure algometer results are consistent with task-related sensitization. Future studies are needed to refine this novel approach for pain neuromodulation. PMID:26115372