WorldWideScience

Sample records for understanding biological mechanisms

  1. Understanding the biological mechanisms of Zika virus disease ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project will use advanced biomolecular, genomics and proteomics techniques to explain the molecular mechanisms by which the Zika virus infects and persists in the human body, how it affects the human reproductive and central nervous system, and how the risk of fetal abnormalities can be better predicted in infected ...

  2. Features of Knowledge Building in Biology: Understanding Undergraduate Students' Ideas about Molecular Mechanisms.

    Science.gov (United States)

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning. © 2016 K. Southard et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Features of Knowledge Building in Biology: Understanding Undergraduate Students’ Ideas about Molecular Mechanisms

    Science.gov (United States)

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S.

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning. PMID:26931398

  4. Stress biology and aging mechanisms: toward understanding the deep connection between adaptation to stress and longevity.

    Science.gov (United States)

    Epel, Elissa S; Lithgow, Gordon J

    2014-06-01

    The rate of biological aging is modulated in part by genes interacting with stressor exposures. Basic research has shown that exposure to short-term stress can strengthen cellular responses to stress ("hormetic stress"). Hormetic stress promotes longevity in part through enhanced activity of molecular chaperones and other defense mechanisms. In contrast, prolonged exposure to stress can overwhelm compensatory responses ("toxic stress") and shorten lifespan. One key question is whether the stressors that are well understood in basic models of aging can help us understand psychological stressors and human health. The psychological stress response promotes regulatory changes important in aging (e.g., increases in stress hormones, inflammation, oxidative stress, insulin). The negative effects of severe stress are well documented in humans. Potential positive effects of acute stress (stress resistance) are less studied, especially at the cellular level. Can stress resistance slow the rate of aging in humans, as it does in model organisms? If so, how can we promote stress resistance in humans? We urge a new research agenda embracing the continuum from cellular stress to psychological stress, using basic and human research in tandem. This will require interdisciplinary novel approaches that hold much promise for understanding and intervening in human chronic disease. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Is synthetic biology mechanical biology?

    Science.gov (United States)

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  6. Stress Biology and Aging Mechanisms: Toward Understanding the Deep Connection Between Adaptation to Stress and Longevity

    OpenAIRE

    Epel, Elissa S.; Lithgow, Gordon J.

    2014-01-01

    The rate of biological aging is modulated in part by genes interacting with stressor exposures. Basic research has shown that exposure to short-term stress can strengthen cellular responses to stress (“hormetic stress”). Hormetic stress promotes longevity in part through enhanced activity of molecular chaperones and other defense mechanisms. In contrast, prolonged exposure to stress can overwhelm compensatory responses (“toxic stress”) and shorten lifespan. One key question is whether the str...

  7. Emerging systems biology approaches in nanotoxicology: Towards a mechanism-based understanding of nanomaterial hazard and risk

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Pedro M.; Fadeel, Bengt, E-mail: Bengt.Fadeel@ki.se

    2016-05-15

    Engineered nanomaterials are being developed for a variety of technological applications. However, the increasing use of nanomaterials in society has led to concerns about their potential adverse effects on human health and the environment. During the first decade of nanotoxicological research, the realization has emerged that effective risk assessment of the multitudes of new nanomaterials would benefit from a comprehensive understanding of their toxicological mechanisms, which is difficult to achieve with traditional, low-throughput, single end-point oriented approaches. Therefore, systems biology approaches are being progressively applied within the nano(eco)toxicological sciences. This novel paradigm implies that the study of biological systems should be integrative resulting in quantitative and predictive models of nanomaterial behaviour in a biological system. To this end, global ‘omics’ approaches with which to assess changes in genes, proteins, metabolites, etc. are deployed allowing for computational modelling of the biological effects of nanomaterials. Here, we highlight omics and systems biology studies in nanotoxicology, aiming towards the implementation of a systems nanotoxicology and mechanism-based risk assessment of nanomaterials. - Highlights: • Systems nanotoxicology is a multi-disciplinary approach to quantitative modelling. • Transcriptomics, proteomics and metabolomics remain the most common methods. • Global “omics” techniques should be coupled to computational modelling approaches. • The discovery of nano-specific toxicity pathways and biomarkers is a prioritized goal. • Overall, experimental nanosafety research must endeavour reproducibility and relevance.

  8. Emerging systems biology approaches in nanotoxicology: Towards a mechanism-based understanding of nanomaterial hazard and risk

    International Nuclear Information System (INIS)

    Costa, Pedro M.; Fadeel, Bengt

    2016-01-01

    Engineered nanomaterials are being developed for a variety of technological applications. However, the increasing use of nanomaterials in society has led to concerns about their potential adverse effects on human health and the environment. During the first decade of nanotoxicological research, the realization has emerged that effective risk assessment of the multitudes of new nanomaterials would benefit from a comprehensive understanding of their toxicological mechanisms, which is difficult to achieve with traditional, low-throughput, single end-point oriented approaches. Therefore, systems biology approaches are being progressively applied within the nano(eco)toxicological sciences. This novel paradigm implies that the study of biological systems should be integrative resulting in quantitative and predictive models of nanomaterial behaviour in a biological system. To this end, global ‘omics’ approaches with which to assess changes in genes, proteins, metabolites, etc. are deployed allowing for computational modelling of the biological effects of nanomaterials. Here, we highlight omics and systems biology studies in nanotoxicology, aiming towards the implementation of a systems nanotoxicology and mechanism-based risk assessment of nanomaterials. - Highlights: • Systems nanotoxicology is a multi-disciplinary approach to quantitative modelling. • Transcriptomics, proteomics and metabolomics remain the most common methods. • Global “omics” techniques should be coupled to computational modelling approaches. • The discovery of nano-specific toxicity pathways and biomarkers is a prioritized goal. • Overall, experimental nanosafety research must endeavour reproducibility and relevance.

  9. Quantum Mechanics predicts evolutionary biology.

    Science.gov (United States)

    Torday, J S

    2018-07-01

    Nowhere are the shortcomings of conventional descriptive biology more evident than in the literature on Quantum Biology. In the on-going effort to apply Quantum Mechanics to evolutionary biology, merging Quantum Mechanics with the fundamentals of evolution as the First Principles of Physiology-namely negentropy, chemiosmosis and homeostasis-offers an authentic opportunity to understand how and why physics constitutes the basic principles of biology. Negentropy and chemiosmosis confer determinism on the unicell, whereas homeostasis constitutes Free Will because it offers a probabilistic range of physiologic set points. Similarly, on this basis several principles of Quantum Mechanics also apply directly to biology. The Pauli Exclusion Principle is both deterministic and probabilistic, whereas non-localization and the Heisenberg Uncertainty Principle are both probabilistic, providing the long-sought after ontologic and causal continuum from physics to biology and evolution as the holistic integration recognized as consciousness for the first time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Mechanical Biological Treatment

    DEFF Research Database (Denmark)

    Bilitewski, B-; Oros, Christiane; Christensen, Thomas Højlund

    2011-01-01

    The basic processes and technologies of composting and anaerobic digestion, as described in the previous chapters, are usually used for specific or source-separated organic waste flows. However, in the 1990s mechanical biological waste treatment technologies (MBT) were developed for unsorted...... or residual waste (after some recyclables removed at the source). The concept was originally to reduce the amount of waste going to landfill, but MBT technologies are today also seen as plants recovering fuel as well as material fractions. As the name suggests the technology combines mechanical treatment...... technologies (screens, sieves, magnets, etc.) with biological technologies (composting, anaerobic digestion). Two main technologies are available: Mechanical biological pretreatment (MBP), which first removes an RDF fraction and then biologically treats the remaining waste before most of it is landfilled...

  11. Theoretical study of chromophores for biological sensing: Understanding the mechanism of rhodol based multi-chromophoric systems

    Science.gov (United States)

    Rivera-Jacquez, Hector J.; Masunov, Artëm E.

    2018-06-01

    Development of two-photon fluorescent probes can aid in visualizing the cellular environment. Multi-chromophore systems display complex manifolds of electronic transitions, enabling their use for optical sensing applications. Time-Dependent Density Functional Theory (TDDFT) methods allow for accurate predictions of the optical properties. These properties are related to the electronic transitions in the molecules, which include two-photon absorption cross-sections. Here we use TDDFT to understand the mechanism of aza-crown based fluorescent probes for metals sensing applications. Our findings suggest changes in local excitation in the rhodol chromophore between unbound form and when bound to the metal analyte. These changes are caused by a charge transfer from the aza-crown group and pyrazol units toward the rhodol unit. Understanding this mechanism leads to an optimized design with higher two-photon excited fluorescence to be used in medical applications.

  12. Understanding Biological Regulation Through Synthetic Biology.

    Science.gov (United States)

    Bashor, Caleb J; Collins, James J

    2018-03-16

    Engineering synthetic gene regulatory circuits proceeds through iterative cycles of design, building, and testing. Initial circuit designs must rely on often-incomplete models of regulation established by fields of reductive inquiry-biochemistry and molecular and systems biology. As differences in designed and experimentally observed circuit behavior are inevitably encountered, investigated, and resolved, each turn of the engineering cycle can force a resynthesis in understanding of natural network function. Here, we outline research that uses the process of gene circuit engineering to advance biological discovery. Synthetic gene circuit engineering research has not only refined our understanding of cellular regulation but furnished biologists with a toolkit that can be directed at natural systems to exact precision manipulation of network structure. As we discuss, using circuit engineering to predictively reorganize, rewire, and reconstruct cellular regulation serves as the ultimate means of testing and understanding how cellular phenotype emerges from systems-level network function. Expected final online publication date for the Annual Review of Biophysics Volume 47 is May 20, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  13. Recent advances in the understanding of brown spider venoms: From the biology of spiders to the molecular mechanisms of toxins.

    Science.gov (United States)

    Gremski, Luiza Helena; Trevisan-Silva, Dilza; Ferrer, Valéria Pereira; Matsubara, Fernando Hitomi; Meissner, Gabriel Otto; Wille, Ana Carolina Martins; Vuitika, Larissa; Dias-Lopes, Camila; Ullah, Anwar; de Moraes, Fábio Rogério; Chávez-Olórtegui, Carlos; Barbaro, Katia Cristina; Murakami, Mario Tyago; Arni, Raghuvir Krishnaswamy; Senff-Ribeiro, Andrea; Chaim, Olga Meiri; Veiga, Silvio Sanches

    2014-06-01

    The Loxosceles genus spiders (the brown spiders) are encountered in all the continents, and the clinical manifestations following spider bites include skin necrosis with gravitational lesion spreading and occasional systemic manifestations, such as intravascular hemolysis, thrombocytopenia and acute renal failure. Brown spider venoms are complex mixtures of toxins especially enriched in three molecular families: the phospholipases D, astacin-like metalloproteases and Inhibitor Cystine Knot (ICK) peptides. Other toxins with low level of expression also present in the venom include the serine proteases, serine protease inhibitors, hyaluronidases, allergen factors and translationally controlled tumor protein (TCTP). The mechanisms by which the Loxosceles venoms act and exert their noxious effects are not fully understood. Except for the brown spider venom phospholipase D, which causes dermonecrosis, hemolysis, thrombocytopenia and renal failure, the pathological activities of the other venom toxins remain unclear. The objective of the present review is to provide insights into the brown spider venoms and loxoscelism based on recent results. These insights include the biology of brown spiders, the clinical features of loxoscelism and the diagnosis and therapy of brown spider bites. Regarding the brown spider venom, this review includes a description of the novel toxins revealed by molecular biology and proteomics techniques, the data regarding three-dimensional toxin structures, and the mechanism of action of these molecules. Finally, the biotechnological applications of the venom components, especially for those toxins reported as recombinant molecules, and the challenges for future study are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Understanding the mechanisms of lung mechanical stress

    Directory of Open Access Journals (Sweden)

    C.S.N.B. Garcia

    2006-06-01

    Full Text Available Physical forces affect both the function and phenotype of cells in the lung. Bronchial, alveolar, and other parenchymal cells, as well as fibroblasts and macrophages, are normally subjected to a variety of passive and active mechanical forces associated with lung inflation and vascular perfusion as a result of the dynamic nature of lung function. These forces include changes in stress (force per unit area or strain (any forced change in length in relation to the initial length and shear stress (the stress component parallel to a given surface. The responses of cells to mechanical forces are the result of the cell's ability to sense and transduce these stimuli into intracellular signaling pathways able to communicate the information to its interior. This review will focus on the modulation of intracellular pathways by lung mechanical forces and the intercellular signaling. A better understanding of the mechanisms by which lung cells transduce physical forces into biochemical and biological signals is of key importance for identifying targets for the treatment and prevention of physical force-related disorders.

  15. A Systems Biology Approach to Understanding the Mechanisms of Action of an Alternative Anticancer Compound in Comparison to Cisplatin

    Science.gov (United States)

    Wright, Elise P.; Padula, Matthew P.; Higgins, Vincent J.; Aldrich-Wright, Janice R.; Coorssen, Jens R.

    2014-01-01

    Many clinically available anticancer compounds are designed to target DNA. This commonality of action often yields overlapping cellular response mechanisms and can thus detract from drug efficacy. New compounds are required to overcome resistance mechanisms that effectively neutralise compounds like cisplatin and those with similar chemical structures. Studies have shown that 56MESS is a novel compound which, unlike cisplatin, does not covalently bind to DNA, but is more toxic to many cell lines and active against cisplatin-resistant cells. Furthermore, a transcriptional study of 56MESS in yeast has implicated iron and copper metabolism as well as the general yeast stress response following challenge with 56MESS. Beyond this, the cytotoxicity of 56MESS remains largely uncharacterised. Here, yeast was used as a model system to facilitate a systems-level comparison between 56MESS and cisplatin. Preliminary experiments indicated that higher concentrations than seen in similar studies be used. Although a DNA interaction with 56MESS had been theorized, this work indicated that an effect on protein synthesis/ degradation was also implicated in the mechanism(s) of action of this novel anticancer compound. In contrast to cisplatin, the different mechanisms of action that are indicated for 56MESS suggest that this compound could overcome cisplatin resistance either as a stand-alone treatment or a synergistic component of therapeutics. PMID:28250393

  16. Understand quantum mechanics

    International Nuclear Information System (INIS)

    Omnes, R.

    2000-01-01

    The author presents the interpretation of quantum mechanics in a simple and direct way. This book may be considered as a complement of specialized books whose aim is to present the mathematical developments of quantum mechanics. As early as the beginning of quantum theory, Bohr, Heisenberg and Pauli proposed the basis of what is today called the interpretation of Copenhagen. This interpretation is still valid but 2 important discoveries have led to renew some aspects of the interpretation of Copenhagen. The first one was the discovery of the decoherence phenomenon which is responsible for the absence of quantum interferences in the macroscopic world. The second discovery was the achievement of the complete derivation of classical physics from quantum physics, it means that the classical determinism fits in the framework of quantum probabilism. A short summary ends each chapter. (A.C.)

  17. Understanding mechanical ventilators.

    Science.gov (United States)

    Chatburn, Robert L

    2010-12-01

    The respiratory care academic community has not yet adopted a standardized system for classifying and describing modes of ventilation. As a result, there is enough confusion that patient care, clinician education and even ventilator sales are all put at risk. This article summarizes a ventilator mode taxonomy that has been extensively published over the last 15 years. Specifically, the classification system has three components: a description of the control variables within breath; a description of the sequence of mandatory and spontaneous breaths; and a specification for the targeting scheme. This three-level specification provides scalability of detail to make the mode description appropriate for the particular need. At the bedside, we need only refer to a mode briefly using the first or perhaps first and second components. To distinguish between similar modes and brand names, we would need to include all components. This taxonomy uses the equation of motion for the respiratory system as the underlying theoretical framework. All terms relevant to describing modes of mechanical ventilation are defined in an extensive appendix.

  18. Mechanics rules cell biology

    Directory of Open Access Journals (Sweden)

    Wang James HC

    2010-07-01

    Full Text Available Abstract Cells in the musculoskeletal system are subjected to various mechanical forces in vivo. Years of research have shown that these mechanical forces, including tension and compression, greatly influence various cellular functions such as gene expression, cell proliferation and differentiation, and secretion of matrix proteins. Cells also use mechanotransduction mechanisms to convert mechanical signals into a cascade of cellular and molecular events. This mini-review provides an overview of cell mechanobiology to highlight the notion that mechanics, mainly in the form of mechanical forces, dictates cell behaviors in terms of both cellular mechanobiological responses and mechanotransduction.

  19. Mechanics of biological polymer composites

    Science.gov (United States)

    Lomakin, Joseph

    2009-12-01

    displayed a darker coloration and significantly increased n of 0.0470.004, suggesting both cuticles to be less cross-linked, a finding consistent with reduced beta-alanine metabolism. Suppression of the tanning enzyme laccase2 (TcLac2) resulted in a pale cuticle with an n of 0.043+/-0.005, implicating laccases in the formation of both pigments and cross-links during sclerotization. Cuticular cross-linking was increased and n decreased with decreased expression of structural proteins, CP10 and CP20. This work establishes n as an important novel parameter for confirming metabolic pathways within load bearing tissues and for understanding structure function relationships within biological polymer composites. Additionally, Tribolium castaneum elytral indentation modulus (800+/-200 MPa) was determined by nanoindentation and a 4nm regular hexagonal pattern on the dorsal side of elytra investigated via scanning, transmission and atomic microscopy. Based on studied biological materials, the combination of rigid macromolecules immersed in a ductile matrix was found to be significant in achieving exceptional mechanical performance. Inspired by this biological design principle, the synthesis, properties and structure of Poly(ethylene glycol) diacrylate/agarose semi-interpenetrating network hydrogels were explored. The resulting novel composite materials were 9x stiffer than agarose and 5x tougher than PEGDA alone and showed good biocompatibility, suggesting promise as a scaffold material for tissue engineering constructs for cartilage regeneration.

  20. Placebo analgesia: understanding the mechanisms

    OpenAIRE

    Medoff, Zev M; Colloca, Luana

    2015-01-01

    Expectations of pain relief drive placebo analgesia. Understanding how expectations of improvement trigger distinct biological systems to shape therapeutic analgesic outcomes has been the focus of recent pharmacologic and neuroimaging studies in the field of pain. Recent findings indicate that placebo effects can imitate the actions of real painkillers and promote the endogenous release of opioids and nonopioids in humans. Social support and observational learning also contribute to placebo a...

  1. Physical mechanisms of biological molecular motors

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John H. Jr. [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Ste. 617 SR1 Houston, TX 77204-5005 (United States)], E-mail: jhmiller@uh.edu; Vajrala, Vijayanand; Infante, Hans L. [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Ste. 617 SR1 Houston, TX 77204-5005 (United States); Claycomb, James R. [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Ste. 617 SR1 Houston, TX 77204-5005 (United States); Department of Mathematics and Physics, Houston Baptist University, 7502 Fondren Road, Houston, TX 77074-3298 (United States); Palanisami, Akilan; Fang Jie; Mercier, George T. [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Ste. 617 SR1 Houston, TX 77204-5005 (United States)

    2009-03-01

    Biological motors generally fall into two categories: (1) those that convert chemical into mechanical energy via hydrolysis of a nucleoside triphosphate, usually adenosine triphosphate, regarded as life's chemical currency of energy and (2) membrane bound motors driven directly by an ion gradient and/or membrane potential. Here we argue that electrostatic interactions play a vital role for both types of motors and, therefore, the tools of physics can greatly contribute to understanding biological motors.

  2. Physical mechanisms of biological molecular motors

    International Nuclear Information System (INIS)

    Miller, John H. Jr.; Vajrala, Vijayanand; Infante, Hans L.; Claycomb, James R.; Palanisami, Akilan; Fang Jie; Mercier, George T.

    2009-01-01

    Biological motors generally fall into two categories: (1) those that convert chemical into mechanical energy via hydrolysis of a nucleoside triphosphate, usually adenosine triphosphate, regarded as life's chemical currency of energy and (2) membrane bound motors driven directly by an ion gradient and/or membrane potential. Here we argue that electrostatic interactions play a vital role for both types of motors and, therefore, the tools of physics can greatly contribute to understanding biological motors

  3. How to understand quantum mechanics

    CERN Document Server

    Ralston, John P

    2018-01-01

    How to Understand Quantum Mechanics presents an accessible introduction to understanding quantum mechanics in a natural and intuitive way, which was advocated by Erwin Schroedinger and Albert Einstein. A theoretical physicist reveals dozens of easy tricks that avoid long calculations, makes complicated things simple, and bypasses the worthless anguish of famous scientists who died in angst. The author's approach is light-hearted, and the book is written to be read without equations, however all relevant equations still appear with explanations as to what they mean. The book entertainingly rejects quantum disinformation, the MKS unit system (obsolete), pompous non-explanations, pompous people, the hoax of the 'uncertainty principle' (it is just a math relation), and the accumulated junk-DNA that got into the quantum operating system by misreporting it. The order of presentation is new and also unique by warning about traps to be avoided, while separating topics such as quantum probability to let the Schroeding...

  4. Understanding the biology of urothelial cancer metastasis

    Directory of Open Access Journals (Sweden)

    Takashi Kobayashi

    2016-10-01

    Full Text Available Management of unresectable urothelial cancer (UC has been a clinical challenge for decades. While drug resistance is a key issue, precise understanding of biology of UC metastasis is another challenge for the improvement of treatment outcome of UC patients. Introduction of the cell biology concepts including epithelial-mesenchymal transition (EMT and cancer stemness seems to explain UC metastasis. Molecular genetics based on gene expression profiling, next generation sequencing, and explosion of non-coding RNA world has opened the door to intrinsic molecular subtyping of UC. Next steps include, based on the recently accumulated understanding, the establishment of novel disease models representing UC metastasis in various experimental platforms, particularly in vivo animal systems. Indeed, novel knowledge molecular genetics has not been fully linked to the modeling of UC metastasis. Further understanding of bladder carcinogenesis is needed particularly with regard to cell of origin related to tumor characteristics including driver gene alterations, pathological differentiations, and metastatic ability. Then we will be able to establish better disease models, which will consequently lead us to further understanding of biology and eventually the development of novel therapeutic strategies for UC metastasis.

  5. The mathematics and mechanics of biological growth

    CERN Document Server

    Goriely, Alain

    2017-01-01

    This monograph presents a general mechanical theory for biological growth. It provides both a conceptual and a technical foundation for the understanding and analysis of problems arising in biology and physiology. The theory and methods is illustrated on a wide range of examples and applications. A process of extreme complexity, growth plays a fundamental role in many biological processes and is considered to be the hallmark of life itself. Its description has been one of the fundamental problems of life sciences, but until recently, it has not attracted much attention from mathematicians, physicists, and engineers. The author herein presents the first major technical monograph on the problem of growth since D’Arcy Wentworth Thompson’s 1917 book On Growth and Form. The emphasis of the book is on the proper mathematical formulation of growth kinematics and mechanics. Accordingly, the discussion proceeds in order of complexity and the book is divided into five parts. First, a general introduction on the pro...

  6. Biological mechanisms, one molecule at a time

    Science.gov (United States)

    Tinoco, Ignacio; Gonzalez, Ruben L.

    2011-01-01

    The last 15 years have witnessed the development of tools that allow the observation and manipulation of single molecules. The rapidly expanding application of these technologies for investigating biological systems of ever-increasing complexity is revolutionizing our ability to probe the mechanisms of biological reactions. Here, we compare the mechanistic information available from single-molecule experiments with the information typically obtained from ensemble studies and show how these two experimental approaches interface with each other. We next present a basic overview of the toolkit for observing and manipulating biology one molecule at a time. We close by presenting a case study demonstrating the impact that single-molecule approaches have had on our understanding of one of life's most fundamental biochemical reactions: the translation of a messenger RNA into its encoded protein by the ribosome. PMID:21685361

  7. Mechanics of Biological Tissues and Biomaterials : Current Trends (editorial)

    NARCIS (Netherlands)

    Zadpoor, A.A.

    2015-01-01

    Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the

  8. The mechanics of soft biological composites.

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thao D. (Sandia National Laboratories, Livermore, CA); Grazier, John Mark; Boyce, Brad Lee; Jones, Reese E. (Sandia National Laboratories, Livermore, CA)

    2007-10-01

    Biological tissues are uniquely structured materials with technologically appealing properties. Soft tissues such as skin, are constructed from a composite of strong fibrils and fluid-like matrix components. This was the first coordinated experimental/modeling project at Sandia or in the open literature to consider the mechanics of micromechanically-based anisotropy and viscoelasticity of soft biological tissues. We have exploited and applied Sandia's expertise in experimentation and mechanics modeling to better elucidate the behavior of collagen fibril-reinforced soft tissues. The purpose of this project was to provide a detailed understanding of the deformation of ocular tissues, specifically the highly structured skin-like tissue in the cornea. This discovery improved our knowledge of soft/complex materials testing and modeling. It also provided insight into the way that cornea tissue is bio-engineered such that under physiologically-relevant conditions it has a unique set of properties which enhance functionality. These results also provide insight into how non-physiologic loading conditions, such as corrective surgeries, may push the cornea outside of its natural design window, resulting in unexpected non-linear responses. Furthermore, this project created a clearer understanding of the mechanics of soft tissues that could lead to bio-inspired materials, such as highly supple and impact resistant body armor, and improve our design of human-machine interfaces, such as micro-electrical-mechanical (MEMS) based prosthetics.

  9. Understanding the biological underpinnings of ecohydrological processes

    Science.gov (United States)

    Huxman, T. E.; Scott, R. L.; Barron-Gafford, G. A.; Hamerlynck, E. P.; Jenerette, D.; Tissue, D. T.; Breshears, D. D.; Saleska, S. R.

    2012-12-01

    Climate change presents a challenge for predicting ecosystem response, as multiple factors drive both the physical and life processes happening on the land surface and their interactions result in a complex, evolving coupled system. For example, changes in surface temperature and precipitation influence near-surface hydrology through impacts on system energy balance, affecting a range of physical processes. These changes in the salient features of the environment affect biological processes and elicit responses along the hierarchy of life (biochemistry to community composition). Many of these structural or process changes can alter patterns of soil water-use and influence land surface characteristics that affect local climate. Of the many features that affect our ability to predict the future dynamics of ecosystems, it is this hierarchical response of life that creates substantial complexity. Advances in the ability to predict or understand aspects of demography help describe thresholds in coupled ecohydrological system. Disentangling the physical and biological features that underlie land surface dynamics following disturbance are allowing a better understanding of the partitioning of water in the time-course of recovery. Better predicting the timing of phenology and key seasonal events allow for a more accurate description of the full functional response of the land surface to climate. In addition, explicitly considering the hierarchical structural features of life are helping to describe complex time-dependent behavior in ecosystems. However, despite this progress, we have yet to build an ability to fully account for the generalization of the main features of living systems into models that can describe ecohydrological processes, especially acclimation, assembly and adaptation. This is unfortunate, given that many key ecosystem services are functions of these coupled co-evolutionary processes. To date, both the lack of controlled measurements and experimentation

  10. Understanding Mechanical Design with Respect to Manufacturability

    Science.gov (United States)

    Mondell, Skyler

    2010-01-01

    At the NASA Prototype Development Laboratory in Kennedy Space Center, Fl, several projects concerning different areas of mechanical design were undertaken in order to better understand the relationship between mechanical design and manufacturabiIity. The assigned projects pertained specifically to the NASA Space Shuttle, Constellation, and Expendable Launch Vehicle programs. During the work term, mechanical design practices relating to manufacturing processes were learned and utilized in order to obtain an understanding of mechanical design with respect to manufacturability.

  11. Understanding Mechanisms of Radiological Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Rick Demmer; John Drake; Ryan James, PhD

    2014-03-01

    Over the last 50 years, the study of radiological contamination and decontamination has expanded significantly. This paper addresses the mechanisms of radiological contamination that have been reported and then discusses which methods have recently been used during performance testing of several different decontamination technologies. About twenty years ago the Idaho Nuclear Technology Engineering Center (INTEC) at the INL began a search for decontamination processes which could minimize secondary waste. In order to test the effectiveness of these decontamination technologies, a new simulated contamination, termed SIMCON, was developed. SIMCON was designed to replicate the types of contamination found on stainless steel, spent fuel processing equipment. Ten years later, the INL began research into methods for simulating urban contamination resulting from a radiological dispersal device (RDD). This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and included the initial development an aqueous application of contaminant to substrate. Since 2007, research sponsored by the US Environmental Protection Agency (EPA) has advanced that effort and led to the development of a contamination method that simulates particulate fallout from an Improvised Nuclear Device (IND). The IND method diverges from previous efforts to create tenacious contamination by simulating a reproducible “loose” contamination. Examining these different types of contamination (and subsequent decontamination processes), which have included several different radionuclides and substrates, sheds light on contamination processes that occur throughout the nuclear industry and in the urban environment.

  12. Toward mechanical systems biology in bone.

    Science.gov (United States)

    Trüssel, Andreas; Müller, Ralph; Webster, Duncan

    2012-11-01

    Cyclic mechanical loading is perhaps the most important physiological factor regulating bone mass and shape in a way which balances optimal strength with minimal weight. This bone adaptation process spans multiple length and time scales. Forces resulting from physiological exercise at the organ scale are sensed at the cellular scale by osteocytes, which reside inside the bone matrix. Via biochemical pathways, osteocytes orchestrate the local remodeling action of osteoblasts (bone formation) and osteoclasts (bone resorption). Together these local adaptive remodeling activities sum up to strengthen bone globally at the organ scale. To resolve the underlying mechanisms it is required to identify and quantify both cause and effect across the different scales. Progress has been made at the different scales experimentally. Computational models of bone adaptation have been developed to piece together various experimental observations at the different scales into coherent and plausible mechanisms. However additional quantitative experimental validation is still required to build upon the insights which have already been achieved. In this review we discuss emerging as well as state of the art experimental and computational techniques and how they might be used in a mechanical systems biology approach to further our understanding of the mechanisms governing load induced bone adaptation, i.e., ways are outlined in which experimental and computational approaches could be coupled, in a quantitative manner to create more reliable multiscale models of bone.

  13. Using biological networks to improve our understanding of infectious diseases

    Directory of Open Access Journals (Sweden)

    Nicola J. Mulder

    2014-08-01

    Full Text Available Infectious diseases are the leading cause of death, particularly in developing countries. Although many drugs are available for treating the most common infectious diseases, in many cases the mechanism of action of these drugs or even their targets in the pathogen remain unknown. In addition, the key factors or processes in pathogens that facilitate infection and disease progression are often not well understood. Since proteins do not work in isolation, understanding biological systems requires a better understanding of the interconnectivity between proteins in different pathways and processes, which includes both physical and other functional interactions. Such biological networks can be generated within organisms or between organisms sharing a common environment using experimental data and computational predictions. Though different data sources provide different levels of accuracy, confidence in interactions can be measured using interaction scores. Connections between interacting proteins in biological networks can be represented as graphs and edges, and thus studied using existing algorithms and tools from graph theory. There are many different applications of biological networks, and here we discuss three such applications, specifically applied to the infectious disease tuberculosis, with its causative agent Mycobacterium tuberculosis and host, Homo sapiens. The applications include the use of the networks for function prediction, comparison of networks for evolutionary studies, and the generation and use of host–pathogen interaction networks.

  14. Mechanics of Biological Tissues and Biomaterials: Current Trends

    OpenAIRE

    Amir A. Zadpoor

    2015-01-01

    Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the development of novel biomaterials for new fields of application, along with the emergence of advanced computational techniques. The current Special Issue is a collection of studies that address variou...

  15. Mechanics of Biological Tissues and Biomaterials: Current Trends (editorial)

    OpenAIRE

    Zadpoor, A.A.

    2015-01-01

    Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the development of novel biomaterials for new fields of application, along with the emergence of advanced computational techniques. The current Special Issue is a collection of studies that address variou...

  16. Understanding biochar mechanisms for practical implementation

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Bruno [Halle-Wittenberg Univ. (Germany). Inst. fuer Agrar- und Ernaehrungeswissenschaften Bodenbiogeochemie; Kammann, Claudia [Arbeitskreis zur Nutzung von Sekundaerrohstoffen und fuer Klimaschutz (ANS) e.V., Braunschweig (Germany). Fachausschuss Biokohle; Hochschule Geisenheim Univ. (Germany). Klimafolgenforschung-Klimawandel in Spezialkulturen; Loewen, Achim (ed.) [Arbeitskreis zur Nutzung von Sekundaerrohstoffen und fuer Klimaschutz (ANS) e.V., Braunschweig (Germany); HAWK Hochschule fuer Angewandte Wissenschaft und Kunst Hildesheim, Holzminden, Goettingen (Germany). Fachgebiet Nachhaltige Energie- und Umwelttechnik NEUtec

    2015-07-01

    The conference on ''understanding biochar mechanisms for practical implementation'' 2015 at the Geisenheim University aims at understanding biochar mechanism, that are crucial for beneficial and safety biochar technology implementation. Further issues are ecotoxicology, biochar in agriculture, horticulture, and animal husbandry. Practical issues concern analysis and characterization of technological processes, sustainable uses and certification, regulation and marketing aspects. The Conference is structured in 10 sessions.

  17. Biology and Mechanics of Blood Flows Part I: Biology

    CERN Document Server

    Thiriet, Marc

    2008-01-01

    Biology and Mechanics of Blood Flows presents the basic knowledge and state-of-the-art techniques necessary to carry out investigations of the cardiovascular system using modeling and simulation. Part I of this two-volume sequence, Biology, addresses the nanoscopic and microscopic scales. The nanoscale corresponds to the scale of biochemical reaction cascades involved in cell adaptation to mechanical stresses among other stimuli. The microscale is the scale of stress-induced tissue remodeling associated with acute or chronic loadings. The cardiovascular system, like any physiological system, has a complicated three-dimensional structure and composition. Its time dependent behavior is regulated, and this complex system has many components. In this authoritative work, the author provides a survey of relevant cell components and processes, with detailed coverage of the electrical and mechanical behaviors of vascular cells, tissues, and organs. Because the behaviors of vascular cells and tissues are tightly coupl...

  18. Understanding Mechanism of Photocatalytic Microbial Decontamination of Environmental Wastewater

    Directory of Open Access Journals (Sweden)

    Chhabilal Regmi

    2018-02-01

    Full Text Available Several photocatalytic nanoparticles are synthesized and studied for potential application for the degradation of organic and biological wastes. Although these materials degrade organic compounds by advance oxidation process, the exact mechanisms of microbial decontamination remains partially known. Understanding the real mechanisms of these materials for microbial cell death and growth inhibition helps to fabricate more efficient semiconductor photocatalyst for large-scale decontamination of environmental wastewater or industries and hospitals/biomedical labs generating highly pathogenic bacteria and toxic molecules containing liquid waste by designing a reactor. Recent studies on microbial decontamination by photocatalytic nanoparticles and their possible mechanisms of action is highlighted with examples in this mini review.

  19. Next-Generation Sequencing: From Understanding Biology to Personalized Medicine

    Directory of Open Access Journals (Sweden)

    Benjamin Meder

    2013-03-01

    Full Text Available Within just a few years, the new methods for high-throughput next-generation sequencing have generated completely novel insights into the heritability and pathophysiology of human disease. In this review, we wish to highlight the benefits of the current state-of-the-art sequencing technologies for genetic and epigenetic research. We illustrate how these technologies help to constantly improve our understanding of genetic mechanisms in biological systems and summarize the progress made so far. This can be exemplified by the case of heritable heart muscle diseases, so-called cardiomyopathies. Here, next-generation sequencing is able to identify novel disease genes, and first clinical applications demonstrate the successful translation of this technology into personalized patient care.

  20. Bioinspiration: applying mechanical design to experimental biology.

    Science.gov (United States)

    Flammang, Brooke E; Porter, Marianne E

    2011-07-01

    The production of bioinspired and biomimetic constructs has fostered much collaboration between biologists and engineers, although the extent of biological accuracy employed in the designs produced has not always been a priority. Even the exact definitions of "bioinspired" and "biomimetic" differ among biologists, engineers, and industrial designers, leading to confusion regarding the level of integration and replication of biological principles and physiology. By any name, biologically-inspired mechanical constructs have become an increasingly important research tool in experimental biology, offering the opportunity to focus research by creating model organisms that can be easily manipulated to fill a desired parameter space of structural and functional repertoires. Innovative researchers with both biological and engineering backgrounds have found ways to use bioinspired models to explore the biomechanics of organisms from all kingdoms to answer a variety of different questions. Bringing together these biologists and engineers will hopefully result in an open discourse of techniques and fruitful collaborations for experimental and industrial endeavors.

  1. Mechanics of Biological Tissues and Biomaterials: Current Trends

    Directory of Open Access Journals (Sweden)

    Amir A. Zadpoor

    2015-07-01

    Full Text Available Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the development of novel biomaterials for new fields of application, along with the emergence of advanced computational techniques. The current Special Issue is a collection of studies that address various topics within the general theme of “mechanics of biomaterials”. This editorial aims to present the context within which the studies of this Special Issue could be better understood. I, therefore, try to identify some of the most important research trends in the study of the mechanical behavior of biological tissues and biomaterials.

  2. Epistemological Predictors of Prospective Biology Teachers' Nature of Science Understandings

    Science.gov (United States)

    Köseoglu, Pinar; Köksal, Mustafa Serdar

    2015-01-01

    The purpose of this study was to investigate epistemological predictors of nature of science understandings of 281 prospective biology teachers surveyed using the Epistemological Beliefs Scale Regarding Science and the Nature of Science Scale. The findings on multiple linear regression showed that understandings about definition of science and…

  3. Respiratory mechanics to understand ARDS and guide mechanical ventilation.

    Science.gov (United States)

    Mauri, Tommaso; Lazzeri, Marta; Bellani, Giacomo; Zanella, Alberto; Grasselli, Giacomo

    2017-11-30

    As precision medicine is becoming a standard of care in selecting tailored rather than average treatments, physiological measurements might represent the first step in applying personalized therapy in the intensive care unit (ICU). A systematic assessment of respiratory mechanics in patients with the acute respiratory distress syndrome (ARDS) could represent a step in this direction, for two main reasons. Approach and Main results: On the one hand, respiratory mechanics are a powerful physiological method to understand the severity of this syndrome in each single patient. Decreased respiratory system compliance, for example, is associated with low end expiratory lung volume and more severe lung injury. On the other hand, respiratory mechanics might guide protective mechanical ventilation settings. Improved gravitationally dependent regional lung compliance could support the selection of positive end-expiratory pressure and maximize alveolar recruitment. Moreover, the association between driving airway pressure and mortality in ARDS patients potentially underlines the importance of sizing tidal volume on respiratory system compliance rather than on predicted body weight. The present review article aims to describe the main alterations of respiratory mechanics in ARDS as a potent bedside tool to understand severity and guide mechanical ventilation settings, thus representing a readily available clinical resource for ICU physicians.

  4. Proteomics Improves the New Understanding of Honeybee Biology.

    Science.gov (United States)

    Hora, Zewdu Ararso; Altaye, Solomon Zewdu; Wubie, Abebe Jemberie; Li, Jianke

    2018-04-11

    The honeybee is one of the most valuable insect pollinators, playing a key role in pollinating wild vegetation and agricultural crops, with significant contribution to the world's food production. Although honeybees have long been studied as model for social evolution, honeybee biology at the molecular level remained poorly understood until the year 2006. With the availability of the honeybee genome sequence and technological advancements in protein separation, mass spectrometry, and bioinformatics, aspects of honeybee biology such as developmental biology, physiology, behavior, neurobiology, and immunology have been explored to new depths at molecular and biochemical levels. This Review comprehensively summarizes the recent progress in honeybee biology using proteomics to study developmental physiology, task transition, and physiological changes in some of the organs, tissues, and cells based on achievements from the authors' laboratory in this field. The research advances of honeybee proteomics provide new insights for understanding of honeybee biology and future research directions.

  5. Biological Applications of Hybrid Quantum Mechanics/Molecular Mechanics Calculation

    Directory of Open Access Journals (Sweden)

    Jiyoung Kang

    2012-01-01

    Full Text Available Since in most cases biological macromolecular systems including solvent water molecules are remarkably large, the computational costs of performing ab initio calculations for the entire structures are prohibitive. Accordingly, QM calculations that are jointed with MM calculations are crucial to evaluate the long-range electrostatic interactions, which significantly affect the electronic structures of biological macromolecules. A UNIX-shell-based interface program connecting the quantum mechanics (QMs and molecular mechanics (MMs calculation engines, GAMESS and AMBER, was developed in our lab. The system was applied to a metalloenzyme, azurin, and PU.1-DNA complex; thereby, the significance of the environmental effects on the electronic structures of the site of interest was elucidated. Subsequently, hybrid QM/MM molecular dynamics (MD simulation using the calculation system was employed for investigation of mechanisms of hydrolysis (editing reaction in leucyl-tRNA synthetase complexed with the misaminoacylated tRNALeu, and a novel mechanism of the enzymatic reaction was revealed. Thus, our interface program can play a critical role as a powerful tool for state-of-the-art sophisticated hybrid ab initio QM/MM MD simulations of large systems, such as biological macromolecules.

  6. Mechanically driven interface propagation in biological tissues

    International Nuclear Information System (INIS)

    Ranft, Jonas; Joanny, Jean-François; Aliee, Maryam; Jülicher, Frank; Prost, Jacques

    2014-01-01

    Many biological tissues consist of more than one cell type. We study the dynamics of an interface between two different cell populations as it occurs during the growth of a tumor in a healthy host tissue. Recent work suggests that the rates of cell division and cell death are under mechanical control, characterized by a homeostatic pressure. The difference in the homeostatic pressures of two cell types drives the propagation of the interface, corresponding to the invasion of one cell type into the other. We derive a front propagation equation that takes into account the coupling between cell number balance and tissue mechanics. We show that in addition to pulled fronts, pushed-front solutions occur as a result of convection driven by mechanics. (paper)

  7. Quantum mechanics formalism for biological evolution

    International Nuclear Information System (INIS)

    Bianconi, Ginestra; Rahmede, Christoph

    2012-01-01

    Highlights: ► Biological evolution is an off-equilibrium process described by path integrals over phylogenies. ► The phylogenies are sums of linear lineages for asexual populations. ► For sexual populations, each lineage is a tree and the path integral is given by a sum over these trees. ► Quantum statistics describe the stationary state of biological populations in simple cases. - Abstract: We study the evolution of sexual and asexual populations in fitness landscapes compatible with epistatic interactions. We find intriguing relations between the mathematics of biological evolution and quantum mechanics formalism. We give the general structure of the evolution of sexual and asexual populations which is in general an off-equilibrium process that can be expressed by path integrals over phylogenies. These phylogenies are the sum of linear lineages for asexual populations. For sexual populations, instead, each lineage is a tree of branching ratio two and the path integral describing the evolving population is given by a sum over these trees. Finally we show that the Bose–Einstein and the Fermi–Dirac distributions describe the stationary state of biological populations in simple cases.

  8. Understanding the molecular mechanisms of reprogramming

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Marie N. [Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla 92037, CA (United States); University Hospital of Würzburg, Department of Pediatrics, 2 Josef-Schneiderstrasse, 97080 Würzburg (Germany); Sancho-Martinez, Ignacio [Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla 92037, CA (United States); Centre for Stem Cells and Regenerative Medicine, King' s College London, 28th Floor, Tower Wing, Guy' s Hospital, Great Maze Pond, London (United Kingdom); Izpisua Belmonte, Juan Carlos, E-mail: belmonte@salk.edu [Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla 92037, CA (United States)

    2016-05-06

    Despite the profound and rapid advancements in reprogramming technologies since the generation of the first induced pluripotent stem cells (iPSCs) in 2006[1], the molecular basics of the process and its implications are still not fully understood. Recent work has suggested that a subset of TFs, so called “Pioneer TFs”, play an important role during the stochastic phase of iPSC reprogramming [2–6]. Pioneer TFs activities differ from conventional transcription factors in their mechanism of action. They bind directly to condensed chromatin and elicit a series of chromatin remodeling events that lead to opening of the chromatin. Chromatin decondensation by pioneer factors progressively occurs during cell division and in turn exposes specific gene promoters in the DNA to which TFs can now directly bind to promoters that are readily accessible[2, 6]. Here, we will summarize recent advancements on our understanding of the molecular mechanisms underlying reprogramming to iPSC as well as the implications that pioneer Transcription Factor activities might play during different lineage conversion processes. - Highlights: • Pioneer transcription factor activity underlies the initial steps of iPSC generation. • Reprogramming can occur by cis- and/or trans- reprogramming events. • Cis-reprogramming implies remodeling of the chromatin for enabling TF accessibility. • Trans-reprogramming encompasses direct binding of Tfs to their target gene promoters.

  9. The Cytoskeleton: Mechanical, Physical, and Biological Interactions

    Science.gov (United States)

    1996-01-01

    This workshop, entitled "The Cytoskeleton: Mechanical, Physical, and Biological Interactions," was sponsored by the Center for Advanced Studies in the Space Life Sciences at the Marine Biological Laboratory. This Center was established through a cooperative agreement between the MBL and the Life Sciences Division of the National Aeronautics and Space Administration. To achieve these goals, the Center sponsors a series of workshops on various topics in the life sciences. Elements of the cytoskeleton have been implicated in the effects of gravity on the growth of plants fungi. An intriguing finding in this regard is the report indicating that an integrin-like protein may be the gravireceptor in the internodal cells of Chara. Involvement of the cytoskeleton in cellular graviperception of the basidiomycete Flammulina velutipes has also been reported. Although the responses of mammalian cells to gravity are not well documented, it has been proposed that integrins can act as mechanochemical transducers in mammalian cells. Little is known about the integrated mechanical and physical properties of cytoplasm, this workshop would be the best place to begin developing interdisciplinary approaches to the effects of mechanical stresses on cells and their most likely responsive cytoplasmic elements- the fibrous proteins comprising the cytoskeleton.

  10. An Integrative Systems Biology Approach to Understanding Pulmonary Diseases

    NARCIS (Netherlands)

    Auffray, Charles; Adcock, Ian M.; Chung, Kian Fan; Djukanovic, Ratko; Pison, Christophe; Sterk, Peter J.

    2010-01-01

    Chronic inflammatory pulmonary diseases such as COPD and asthma are highly prevalent and associated with a major health burden worldwide. Despite a wealth of biologic and clinical information on normal and pathologic airway structure and function, the primary causes and mechanisms of disease remain

  11. Quantum mechanical simulation methods for studying biological systems

    International Nuclear Information System (INIS)

    Bicout, D.; Field, M.

    1996-01-01

    Most known biological mechanisms can be explained using fundamental laws of physics and chemistry and a full understanding of biological processes requires a multidisciplinary approach in which all the tools of biology, chemistry and physics are employed. An area of research becoming increasingly important is the theoretical study of biological macromolecules where numerical experimentation plays a double role of establishing a link between theoretical models and predictions and allowing a quantitative comparison between experiments and models. This workshop brought researchers working on different aspects of the development and application of quantum mechanical simulation together, assessed the state-of-the-art in the field and highlighted directions for future research. Fourteen lectures (theoretical courses and specialized seminars) deal with following themes: 1) quantum mechanical calculations of large systems, 2) ab initio molecular dynamics where the calculation of the wavefunction and hence the energy and forces on the atoms for a system at a single nuclear configuration are combined with classical molecular dynamics algorithms in order to perform simulations which use a quantum mechanical potential energy surface, 3) quantum dynamical simulations, electron and proton transfer processes in proteins and in solutions and finally, 4) free seminars that helped to enlarge the scope of the workshop. (N.T.)

  12. Understanding the biological and environmental implications of nanomaterials

    Science.gov (United States)

    Lin, Sijie

    The last two decades have witnessed the discovery, development, and large-scale manufacturing of novel nanomaterials. While nanomaterials bring in exciting and extraordinary properties in all areas of materials, electronics, mechanics, and medicine, they also could generate potential adverse effects in biological systems and in the environment. The currently limited application of nanomaterials in biological and ecological systems results from the insufficient and often controversial data on describing the complex behaviors of nanomaterials in living systems. The purpose of this dissertation intends to fill such a knowledge void with methodologies from the disciplines of biophysics, biology, and materials science and engineering. Chapter 1 of this dissertation provides a comprehensive review on the structures and properties of carbon nanomaterials (CBNMs), metal oxides, and quantum dots (QDs). This chapter also details the state-of-the-art on the biological applications, ecological applications, and toxicity of nanomaterials. With Chapter 1 serving as a background, Chapters 2-5 present my PhD research, an inquiry on the fate of nanomaterials in biological and ecological systems, on the whole organism and cellular levels. Specifically, CBNMs are introduced to rice plant seedlings and the uptake, translocation and generational transfer of fullerene C70 in the plant compartments are imaged and characterized. The interactions between CBNMs and rice plants on the whole organism level are initiated by the binding between CBNMs and natural organic matter (NOM), driven by the transpiration of water from the roots to the leaves of the plants and mediated by both the physiochemical properties of the CBNMs and plant physiology. In Chapter 3, semiconducting nanocrystals quantum dots (QDs) are introduced to green algae Chlamydomonas to probe the interactions of nanomaterials with ecological systems on the cellular level. The adsorption of QDs onto the algal cell wall is

  13. Xenon preconditioning: molecular mechanisms and biological effects

    Directory of Open Access Journals (Sweden)

    Liu Wenwu

    2013-01-01

    Full Text Available Abstract Xenon is one of noble gases and has been recognized as an anesthetic for more than 50 years. Xenon possesses many of the characteristics of an ideal anesthetic, but it is not widely applied in clinical practice mainly because of its high cost. In recent years, numerous studies have demonstrated that xenon as an anesthetic can exert neuroprotective and cardioprotective effects in different models. Moreover, xenon has been applied in the preconditioning, and the neuroprotective and cardioprotective effects of xenon preconditioning have been investigated in a lot of studies in which some mechanisms related to these protections are proposed. In this review, we summarized these mechanisms and the biological effects of xenon preconditioning.

  14. Students' Energy Understanding Across Biology, Chemistry, and Physics Contexts

    Science.gov (United States)

    Opitz, S. T.; Neumann, K.; Bernholt, S.; Harms, U.

    2017-07-01

    Energy is considered both as a disciplinary core idea and as a concept cutting across science disciplines. Most previous approaches studied progressing energy understanding in specific disciplinary contexts, while disregarding the relation of understanding across them. Hence, this study provides a systematic analysis of cross-disciplinary energy learning. On the basis of a cross-sectional study with n = 742 students from grades 6, 8, and 10, we analyze students' progression in understanding energy across biology, chemistry, and physics contexts. The study is guided by three hypothetical scenarios that describe how the connection between energy understanding in the three disciplinary contexts changes across grade levels. These scenarios are compared using confirmatory factor analysis (CFA). The results suggest that, from grade 6 to grade 10, energy understanding in the three disciplinary contexts is highly interrelated, thus indicating a parallel progression of energy understanding in the three disciplinary contexts. In our study, students from grade 6 onwards appeared to have few problems to apply one energy understanding across the three disciplinary contexts. These findings were unexpected, as previous research concluded that students likely face difficulties in connecting energy learning across disciplinary boundaries. Potential reasons for these results and the characteristics of the observed cross-disciplinary energy understanding are discussed in the light of earlier findings and implications for future research, and the teaching of energy as a core idea and a crosscutting concept are addressed.

  15. Synthetic biology: a challenge to mechanical explanations in biology?

    Science.gov (United States)

    Morange, Michel

    2012-01-01

    In their plans to modify organisms, synthetic biologists have contrasted engineering and tinkering. By drawing this contrast between their endeavors and what has happened during the evolution of organisms by natural selection, they underline the novelty of their projects and justify their ambitions. Synthetic biologists are at odds with a long tradition that has considered organisms as "perfect machines." This tradition had already been questioned by Stephen Jay Gould in the 1970s and received a major blow with the comparison made by François Jacob between organisms and the results of "bricolage" (tinkering). These contrasts between engineering and tinkering, synthetic biology and evolution, have no raison d'être. Machines built by humans are increasingly inspired by observations made on organisms. This is not a simple reversal of the previous trend-the mechanical conception of organisms-in which the characteristics of the latter were explained by comparison with human-built machines. Relations between organisms and machines have always been complex and ambiguous.

  16. Cognition and Rhetoric: Biological Basis of Meaning and Understanding

    Directory of Open Access Journals (Sweden)

    Francisco Arenas-Dolz

    2017-02-01

    Full Text Available The aim of this paper is twofold: on the one hand, to explore those approaches that understand cognitive processes as embodied and as a result of our interaction with the environment, and not merely as as a information processing system; and, on the other hand, to show their connexion with the neurophysiological mechanisms underlying meaning and understanding, giving and overview of some of the insights from recent studies in neurorhetorics.

  17. Mechanical properties of nanostructure of biological materials

    Science.gov (United States)

    Ji, Baohua; Gao, Huajian

    2004-09-01

    Natural biological materials such as bone, teeth and nacre are nanocomposites of protein and mineral with superior strength. It is quite a marvel that nature produces hard and tough materials out of protein as soft as human skin and mineral as brittle as classroom chalk. What are the secrets of nature? Can we learn from this to produce bio-inspired materials in the laboratory? These questions have motivated us to investigate the mechanics of protein-mineral nanocomposite structure. Large aspect ratios and a staggered alignment of mineral platelets are found to be the key factors contributing to the large stiffness of biomaterials. A tension-shear chain (TSC) model of biological nanostructure reveals that the strength of biomaterials hinges upon optimizing the tensile strength of the mineral crystals. As the size of the mineral crystals is reduced to nanoscale, they become insensitive to flaws with strength approaching the theoretical strength of atomic bonds. The optimized tensile strength of mineral crystals thus allows a large amount of fracture energy to be dissipated in protein via shear deformation and consequently enhances the fracture toughness of biocomposites. We derive viscoelastic properties of the protein-mineral nanostructure and show that the toughness of biocomposite can be further enhanced by the viscoelastic properties of protein.

  18. Biological mechanisms of gallium-67 tumor deposition

    International Nuclear Information System (INIS)

    Okuyama, Shinichi; Takeda, Shumpei; Sato, Tachio; Takusagawa, Kimihiko; Awano, Takayuki.

    1979-01-01

    This investigation was undertaken in order to clarify the tumor deposition mechanisms of 67 Ga citrate, a ''universal tumor labeler''. An interspecies comparison of various tumors in the rat and mouse indicated that its highest deposition was in the undifferentiated cell type. Amongst the siblings of experimental tumors, cellular membrane negative charge is greater in the free-cell types than the island-formers: a short-term labeling study revealed a greater 67 Ga deposition in the free-cell types. A subcellar fractionation showed an initial association of 67 Ga with the nuclear and membrane fractions, and a later transition to the lysosomal. Hypotonic lysis revealed a paralleled release of 67 Ga and lysosomal key enzymes. Morphological abnormality of the cancer lysosomes was thought to agree with their Ga retention. This property was clinically confirmed by a scintiscoring technique. Treatment with cold gallium of tumors modified the biological parameters of tumor growth: in vitro it suppressed cell proliferation, reduced saturation density; and produced cellular pleomorphism. In vivo it increased tumor consistency by reducing central necrosis and increasing the viable cell layer thickness. Thus, 67 Ga deposition is closely related to various biological parameters of malignancy including the cellular membrane negative charge as cancer is a membrane disorder, and the lysosomal morphology and function. (author)

  19. Neurotrophin Propeptides: Biological Functions and Molecular Mechanisms.

    Science.gov (United States)

    Rafieva, Lola M; Gasanov, Eugene V

    2016-01-01

    Neurotrophins constitute a family of growth factors that play a key role in the regulation of the development and function of the central and peripheral nervous systems. A common feature of all the neurotrophins is their synthesis in cells as long precursors (pre-pro-neurotrophins) that contain an N-terminal signal peptide, a following propeptide and the mature neurotrophin. Although the signal peptide functions have been well studied, the role of neurotrophin propeptides is not so clear. Here, we briefly summarize the biochemistry of neurotrophin propeptides, including their role as folding-assistants for the mature factor and their role in processing and in secretion of neurotrophins. In the main part of the review we summarize our current state of knowledge of the biological activity of neurotrophin propeptides, their possible mechanisms of action, and their potential influence on the activity of the mature neurotrophins.

  20. Biological Mechanism of Silver Nanoparticle Toxicity

    Science.gov (United States)

    Armstrong, Najealicka Nicole

    Silver nanoparticles (AgNPs), like almost all nanoparticles, are potentially toxic beyond a certain concentration because the survival of the organism is compromised due to scores of pathophysiological abnormalities above that concentration. However, the mechanism of AgNP toxicity remains undetermined. Instead of applying a toxic dose, these investigations were attempted to monitor the effects of AgNPs at a non-lethal concentration on wild type Drosophila melanogaster by exposing them to nanoparticles throughout their development. All adult flies raised in AgNP doped food indicated that of not more than 50 mg/L had no negative influence on median survival; however, these flies appeared uniformly lighter in body color due to the loss of melanin pigments in their cuticle. Additionally, fertility and vertical movement ability were compromised after AgNP feeding. The determination of the amount of free ionic silver (Ag+) indicated that the observed biological effects had resulted from the AgNPs and not from Ag+. Biochemical analysis suggests that the activity of copper dependent enzymes, namely tyrosinase and Cu-Zn superoxide dismutase, were decreased significantly following the consumption of AgNPs, despite the constant level of copper present in the tissue. Furthermore, copper supplementation restored the loss of AgNP induced demelanization, and the reduction of functional Ctr1 in Ctr1 heterozygous mutants caused the flies to be resistant to demelanization. Consequently, these studies proposed a mechanism whereby consumption of excess AgNPs in association with membrane bound copper transporter proteins cause sequestration of copper, thus creating a condition that resembles copper starvation. This model also explained the cuticular demelanization effect resulting from AgNP since tyrosinase activity is essential for melanin biosynthesis. Finally, these investigations demonstrated that Drosophila, an established genetic model system, can be well utilized for further

  1. Biological and social understanding of human nature: biopolitical dimension

    Directory of Open Access Journals (Sweden)

    S. K. Kostiuchkov

    2014-07-01

    Full Text Available This paper examines the position of the biopolitical nature of man as a biosocial being given supplies of both the two spheres of life – natural, biological and social. The necessity of understanding of human nature, which by definition are bio-social importance of the approach to the definition of man as an integral, binary-konnotovanoyi of the «social individual – a species» which is characterized by symmetrical opposition – upposition social and biological. It was found that the main task of modern political science, and in particular bio-political studies presented appeals to rethink the political picture of the world in order to predict the development of a new order or a new chaos. Understanding the formation of a new global civilization worldview is today one of the most important problems, which is connected with the main problem of the modern world – the task of preserving life on the planet. It is concluded that the contradictions of human nature – between the biological and the social, physical and spiritual, universal and the particular, natural and artificial, rational and emotional – in today’s conditions are extremely sharp. The said situation requires more in-depth scientific analysis of human nature, the study of the structural level as human biosocial system.

  2. Understanding mechanisms of toxicity: Insights from drug discovery research

    International Nuclear Information System (INIS)

    Houck, Keith A.; Kavlock, Robert J.

    2008-01-01

    Toxicology continues to rely heavily on use of animal testing for prediction of potential for toxicity in humans. Where mechanisms of toxicity have been elucidated, for example endocrine disruption by xenoestrogens binding to the estrogen receptor, in vitro assays have been developed as surrogate assays for toxicity prediction. This mechanistic information can be combined with other data such as exposure levels to inform a risk assessment for the chemical. However, there remains a paucity of such mechanistic assays due at least in part to lack of methods to determine specific mechanisms of toxicity for many toxicants. A means to address this deficiency lies in utilization of a vast repertoire of tools developed by the drug discovery industry for interrogating the bioactivity of chemicals. This review describes the application of high-throughput screening assays as experimental tools for profiling chemicals for potential for toxicity and understanding underlying mechanisms. The accessibility of broad panels of assays covering an array of protein families permits evaluation of chemicals for their ability to directly modulate many potential targets of toxicity. In addition, advances in cell-based screening have yielded tools capable of reporting the effects of chemicals on numerous critical cell signaling pathways and cell health parameters. Novel, more complex cellular systems are being used to model mammalian tissues and the consequences of compound treatment. Finally, high-throughput technology is being applied to model organism screens to understand mechanisms of toxicity. However, a number of formidable challenges to these methods remain to be overcome before they are widely applicable. Integration of successful approaches will contribute towards building a systems approach to toxicology that will provide mechanistic understanding of the effects of chemicals on biological systems and aid in rationale risk assessments

  3. Towards the understanding of network information processing in biology

    Science.gov (United States)

    Singh, Vijay

    Living organisms perform incredibly well in detecting a signal present in the environment. This information processing is achieved near optimally and quite reliably, even though the sources of signals are highly variable and complex. The work in the last few decades has given us a fair understanding of how individual signal processing units like neurons and cell receptors process signals, but the principles of collective information processing on biological networks are far from clear. Information processing in biological networks, like the brain, metabolic circuits, cellular-signaling circuits, etc., involves complex interactions among a large number of units (neurons, receptors). The combinatorially large number of states such a system can exist in makes it impossible to study these systems from the first principles, starting from the interactions between the basic units. The principles of collective information processing on such complex networks can be identified using coarse graining approaches. This could provide insights into the organization and function of complex biological networks. Here I study models of biological networks using continuum dynamics, renormalization, maximum likelihood estimation and information theory. Such coarse graining approaches identify features that are essential for certain processes performed by underlying biological networks. We find that long-range connections in the brain allow for global scale feature detection in a signal. These also suppress the noise and remove any gaps present in the signal. Hierarchical organization with long-range connections leads to large-scale connectivity at low synapse numbers. Time delays can be utilized to separate a mixture of signals with temporal scales. Our observations indicate that the rules in multivariate signal processing are quite different from traditional single unit signal processing.

  4. Understanding molecular structure from molecular mechanics.

    Science.gov (United States)

    Allinger, Norman L

    2011-04-01

    Molecular mechanics gives us a well known model of molecular structure. It is less widely recognized that valence bond theory gives us structures which offer a direct interpretation of molecular mechanics formulations and parameters. The electronic effects well-known in physical organic chemistry can be directly interpreted in terms of valence bond structures, and hence quantitatively calculated and understood. The basic theory is outlined in this paper, and examples of the effects, and their interpretation in illustrative examples is presented.

  5. Discriminative topological features reveal biological network mechanisms

    Directory of Open Access Journals (Sweden)

    Levovitz Chaya

    2004-11-01

    Full Text Available Abstract Background Recent genomic and bioinformatic advances have motivated the development of numerous network models intending to describe graphs of biological, technological, and sociological origin. In most cases the success of a model has been evaluated by how well it reproduces a few key features of the real-world data, such as degree distributions, mean geodesic lengths, and clustering coefficients. Often pairs of models can reproduce these features with indistinguishable fidelity despite being generated by vastly different mechanisms. In such cases, these few target features are insufficient to distinguish which of the different models best describes real world networks of interest; moreover, it is not clear a priori that any of the presently-existing algorithms for network generation offers a predictive description of the networks inspiring them. Results We present a method to assess systematically which of a set of proposed network generation algorithms gives the most accurate description of a given biological network. To derive discriminative classifiers, we construct a mapping from the set of all graphs to a high-dimensional (in principle infinite-dimensional "word space". This map defines an input space for classification schemes which allow us to state unambiguously which models are most descriptive of a given network of interest. Our training sets include networks generated from 17 models either drawn from the literature or introduced in this work. We show that different duplication-mutation schemes best describe the E. coli genetic network, the S. cerevisiae protein interaction network, and the C. elegans neuronal network, out of a set of network models including a linear preferential attachment model and a small-world model. Conclusions Our method is a first step towards systematizing network models and assessing their predictability, and we anticipate its usefulness for a number of communities.

  6. Recent advances in understanding the biology of marginal zone lymphoma

    Science.gov (United States)

    Zucca, Emanuele

    2018-01-01

    There are three different marginal zone lymphomas (MZLs): the extranodal MZL of mucosa-associated lymphoid tissue (MALT) type (MALT lymphoma), the splenic MZL, and the nodal MZL. The three MZLs share common lesions and deregulated pathways but also present specific alterations that can be used for their differential diagnosis. Although trisomies of chromosomes 3 and 18, deletions at 6q23, deregulation of nuclear factor kappa B, and chromatin remodeling genes are frequent events in all of them, the three MZLs differ in the presence of recurrent translocations, mutations affecting the NOTCH pathway, and the transcription factor Kruppel like factor 2 ( KLF2) or the receptor-type protein tyrosine phosphatase delta ( PTPRD). Since a better understanding of the molecular events underlying each subtype may have practical relevance, this review summarizes the most recent and main advances in our understanding of the genetics and biology of MZLs. PMID:29657712

  7. Our Evolving Understanding of the Mechanism of Quinolones

    Directory of Open Access Journals (Sweden)

    Arnaud Gutierrez

    2018-04-01

    Full Text Available The maintenance of DNA supercoiling is essential for the proper regulation of a plethora of biological processes. As a consequence of this mode of regulation, ahead of the replication fork, DNA replication machinery is prone to introducing supercoiled regions into the DNA double helix. Resolution of DNA supercoiling is essential to maintain DNA replication rates that are amenable to life. This resolution is handled by evolutionarily conserved enzymes known as topoisomerases. The activity of topoisomerases is essential, and therefore constitutes a prime candidate for targeting by antibiotics. In this review, we present hallmark investigations describing the mode of action of quinolones, one of the antibacterial classes targeting the function of topoisomerases in bacteria. By chronologically analyzing data gathered on the mode of action of this imperative antibiotic class, we highlight the necessity to look beyond primary drug-target interactions towards thoroughly understanding the mechanism of quinolones at the level of the cell.

  8. The mechanism for the primary biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Byakov, Vsevolod M; Stepanov, Sergei V

    2006-01-01

    The primary biological response of living organisms to the passage of fast charged particles is traditionally believed to be dominated by the chemical reactions of the radical products from the radiolysis of cellular water (OH, H, e aq - , O 2 - , H 2 O 2 ) and by the bioradicals that they produce (and which can also result from the direct electronic activation of biomolecules). This understanding has provided insight into how ionizing radiations affect biological systems and, most importantly, what radioprotection and radiosensibilizing effects are produced by chemical compounds introduced into an organism. However, a number of key radiobiological facts remain unexplained by the current theory, stimulating a search for other biologically active factors that may be triggered by radiation. This review examines a fact that is usually ignored in discussing the biological impact of ionizing radiation: the local increase in acidity in the water solution along the track of a charged particle. The acidity in the track is very different from its value for cellular water in a living organism. Biological processes are well-known to be highly sensitive to changes in the environmental acidity. It seems that the biological impact of ionizing radiations is dominated not by the water radiolysis products (mostly radicals) listed above but particles of a different nature, hydroxonium ions H 3 O + , where the term hydroxonium refer to protonated water molecules. This modification of the mechanism of primary radiobiological effects is in good agreement with experimental data. In particular, the extremal dependence of the relative biological efficiency (RBE) of radiations on their ionizing energy losses is accounted for in quantitative terms, as is the increase in the RBE in the relativistic energy range. (reviews of topical problems)

  9. Quantum mechanics - a key to understanding magnetism

    International Nuclear Information System (INIS)

    Van Vleck, J.H.

    1978-01-01

    A translation is presented of J.H. van Vleck's lecture read at the 1977 Nobel Prize avarding ceremony. The basic results obtained using quantum mechanics in solving the problems of magnetism and especially paramagnetism are chronologically arranged. (Z.J.)

  10. Mechanical properties of JPDR biological shield concrete

    International Nuclear Information System (INIS)

    Idei, Yoshio; Kamata, Hiroshi; Akutsu, Youichi; Onizawa, Kunio; Nakajima, Nobuya; Sukegawa, Takenori; Kakizaki, Masayoshi.

    1990-11-01

    Plant life of nuclear power plant will be determined by the aging degradation of main components and structures because of the difficulty and the cost of the replacement. These components are the reactor pressure vessel, concrete structures and cables. Authors have performed the investigation of JPDR biological shield which was the succeeded in first generating electricity in Japan and is now being decommissioned in JAERI. The test core samples were bored from the shield concrete and tested to obtain the mechanical properties. Test results are summarized as below, (1) Peak value of fast neutron dose was estimated as 1 x 10 18 n/cm 2 which is equivalent to the dose at the end of life for commercial power reactor. (2) Averaged compressive strength of all specimens had been increased about 20 % compared with initial design strength. (3) It was identified that the compressive strength had a little trend to increase with the increase of neutron dose within the dose range obtained in this study. (4) Tensile strength, Elastic modulus and Poisson's ratio showed little effect of neutron dose. (5) It was suggested that the inside and the mid-section liners were effective to keep the water in concrete and to avoid the reduction in strength. (author)

  11. Understanding gene functions and disease mechanisms

    DEFF Research Database (Denmark)

    Fuchs, Helmut; Aguilar-Pimentel, Juan Antonio; Amarie, Oana V.

    2018-01-01

    Since decades, model organisms have provided an important approach for understanding the mechanistic basis of human diseases. The German Mouse Clinic (GMC) was the first phenotyping facility that established a collaboration-based platform for phenotype characterization of mouse lines. In order...... to address individual projects by a tailor-made phenotyping strategy, the GMC advanced in developing a series of pipelines with tests for the analysis of specific disease areas. For a general broad analysis, there is a screening pipeline that covers the key parameters for the most relevant disease areas...

  12. Systematic synergy modeling: understanding drug synergy from a systems biology perspective.

    Science.gov (United States)

    Chen, Di; Liu, Xi; Yang, Yiping; Yang, Hongjun; Lu, Peng

    2015-09-16

    Owing to drug synergy effects, drug combinations have become a new trend in combating complex diseases like cancer, HIV and cardiovascular diseases. However, conventional synergy quantification methods often depend on experimental dose-response data which are quite resource-demanding. In addition, these methods are unable to interpret the explicit synergy mechanism. In this review, we give representative examples of how systems biology modeling offers strategies toward better understanding of drug synergy, including the protein-protein interaction (PPI) network-based methods, pathway dynamic simulations, synergy network motif recognitions, integrative drug feature calculations, and "omic"-supported analyses. Although partially successful in drug synergy exploration and interpretation, more efforts should be put on a holistic understanding of drug-disease interactions, considering integrative pharmacology and toxicology factors. With a comprehensive and deep insight into the mechanism of drug synergy, systems biology opens a novel avenue for rational design of effective drug combinations.

  13. CRISPR-Cas: biology, mechanisms and relevance

    Science.gov (United States)

    Hille, Frank

    2016-01-01

    Prokaryotes have evolved several defence mechanisms to protect themselves from viral predators. Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas) display a prokaryotic adaptive immune system that memorizes previous infections by integrating short sequences of invading genomes—termed spacers—into the CRISPR locus. The spacers interspaced with repeats are expressed as small guide CRISPR RNAs (crRNAs) that are employed by Cas proteins to target invaders sequence-specifically upon a reoccurring infection. The ability of the minimal CRISPR-Cas9 system to target DNA sequences using programmable RNAs has opened new avenues in genome editing in a broad range of cells and organisms with high potential in therapeutical applications. While numerous scientific studies have shed light on the biochemical processes behind CRISPR-Cas systems, several aspects of the immunity steps, however, still lack sufficient understanding. This review summarizes major discoveries in the CRISPR-Cas field, discusses the role of CRISPR-Cas in prokaryotic immunity and other physiological properties, and describes applications of the system as a DNA editing technology and antimicrobial agent. This article is part of the themed issue ‘The new bacteriology’. PMID:27672148

  14. Understanding the biological responses of nanostructured metals and surfaces

    Science.gov (United States)

    Lowe, Terry C.; Reiss, Rebecca A.

    2014-08-01

    Metals produced by Severe Plastic Deformation (SPD) offer distinct advantages for medical applications such as orthopedic devices, in part because of their nanostructured surfaces. We examine the current theoretical foundations and state of knowledge for nanostructured biomaterials surface optimization within the contexts that apply to bulk nanostructured metals, differentiating how their microstructures impact osteogenesis, in particular, for Ultrafine Grained (UFG) titanium. Then we identify key gaps in the research to date, pointing out areas which merit additional focus within the scientific community. For example, we highlight the potential of next-generation DNA sequencing techniques (NGS) to reveal gene and non-coding RNA (ncRNA) expression changes induced by nanostructured metals. While our understanding of bio-nano interactions is in its infancy, nanostructured metals are already being marketed or developed for medical devices such as dental implants, spinal devices, and coronary stents. Our ability to characterize and optimize the biological response of cells to SPD metals will have synergistic effects on advances in materials, biological, and medical science.

  15. Understanding the biological responses of nanostructured metals and surfaces

    International Nuclear Information System (INIS)

    Lowe, Terry C; A Reiss, Rebecca

    2014-01-01

    Metals produced by Severe Plastic Deformation (SPD) offer distinct advantages for medical applications such as orthopedic devices, in part because of their nanostructured surfaces. We examine the current theoretical foundations and state of knowledge for nanostructured biomaterials surface optimization within the contexts that apply to bulk nanostructured metals, differentiating how their microstructures impact osteogenesis, in particular, for Ultrafine Grained (UFG) titanium. Then we identify key gaps in the research to date, pointing out areas which merit additional focus within the scientific community. For example, we highlight the potential of next-generation DNA sequencing techniques (NGS) to reveal gene and non-coding RNA (ncRNA) expression changes induced by nanostructured metals. While our understanding of bio-nano interactions is in its infancy, nanostructured metals are already being marketed or developed for medical devices such as dental implants, spinal devices, and coronary stents. Our ability to characterize and optimize the biological response of cells to SPD metals will have synergistic effects on advances in materials, biological, and medical science

  16. Understanding human action: integrating meanings, mechanisms, causes, and contexts

    NARCIS (Netherlands)

    Keestra, M.; Repko, A.F.; Newell, W.H.; Szostak, R.

    2012-01-01

    Humans are capable of understanding an incredible variety of actions performed by other humans. Even though these range from primary biological actions like eating and fleeing, to acts in parliament or in poetry, humans generally can make sense of each other’s actions. Understanding other people’s

  17. Multidisciplinary approaches to understanding collective cell migration in developmental biology.

    Science.gov (United States)

    Schumacher, Linus J; Kulesa, Paul M; McLennan, Rebecca; Baker, Ruth E; Maini, Philip K

    2016-06-01

    Mathematical models are becoming increasingly integrated with experimental efforts in the study of biological systems. Collective cell migration in developmental biology is a particularly fruitful application area for the development of theoretical models to predict the behaviour of complex multicellular systems with many interacting parts. In this context, mathematical models provide a tool to assess the consistency of experimental observations with testable mechanistic hypotheses. In this review, we showcase examples from recent years of multidisciplinary investigations of neural crest cell migration. The neural crest model system has been used to study how collective migration of cell populations is shaped by cell-cell interactions, cell-environmental interactions and heterogeneity between cells. The wide range of emergent behaviours exhibited by neural crest cells in different embryonal locations and in different organisms helps us chart out the spectrum of collective cell migration. At the same time, this diversity in migratory characteristics highlights the need to reconcile or unify the array of currently hypothesized mechanisms through the next generation of experimental data and generalized theoretical descriptions. © 2016 The Authors.

  18. Biology: An Important Agricultural Engineering Mechanism

    Science.gov (United States)

    Henderson, S. M.

    1974-01-01

    Describes the field of bioengineering with particular emphasis on agricultural engineering, and presents the results of a survey of schools that combine biology and engineering in their curricula. (JR)

  19. Towards a Unified Understanding of Lithium Action in Basic Biology and its Significance for Applied Biology.

    Science.gov (United States)

    Jakobsson, Eric; Argüello-Miranda, Orlando; Chiu, See-Wing; Fazal, Zeeshan; Kruczek, James; Nunez-Corrales, Santiago; Pandit, Sagar; Pritchet, Laura

    2017-12-01

    about the nature of this competition and suggest using and extending this knowledge towards the goal of a unified understanding of lithium in biology and the application of that understanding in medicine and nutrition.

  20. Lactose Intolerance in Adults: Biological Mechanism and Dietary Management.

    Science.gov (United States)

    Deng, Yanyong; Misselwitz, Benjamin; Dai, Ning; Fox, Mark

    2015-09-18

    Lactose intolerance related to primary or secondary lactase deficiency is characterized by abdominal pain and distension, borborygmi, flatus, and diarrhea induced by lactose in dairy products. The biological mechanism and lactose malabsorption is established and several investigations are available, including genetic, endoscopic and physiological tests. Lactose intolerance depends not only on the expression of lactase but also on the dose of lactose, intestinal flora, gastrointestinal motility, small intestinal bacterial overgrowth and sensitivity of the gastrointestinal tract to the generation of gas and other fermentation products of lactose digestion. Treatment of lactose intolerance can include lactose-reduced diet and enzyme replacement. This is effective if symptoms are only related to dairy products; however, lactose intolerance can be part of a wider intolerance to variably absorbed, fermentable oligo-, di-, monosaccharides and polyols (FODMAPs). This is present in at least half of patients with irritable bowel syndrome (IBS) and this group requires not only restriction of lactose intake but also a low FODMAP diet to improve gastrointestinal complaints. The long-term effects of a dairy-free, low FODMAPs diet on nutritional health and the fecal microbiome are not well defined. This review summarizes recent advances in our understanding of the genetic basis, biological mechanism, diagnosis and dietary management of lactose intolerance.

  1. Training to Improve Hearing Speech in Noise: Biological Mechanisms

    Science.gov (United States)

    Song, Judy H.; Skoe, Erika; Banai, Karen

    2012-01-01

    We investigated training-related improvements in listening in noise and the biological mechanisms mediating these improvements. Training-related malleability was examined using a program that incorporates cognitively based listening exercises to improve speech-in-noise perception. Before and after training, auditory brainstem responses to a speech syllable were recorded in quiet and multitalker noise from adults who ranged in their speech-in-noise perceptual ability. Controls did not undergo training but were tested at intervals equivalent to the trained subjects. Trained subjects exhibited significant improvements in speech-in-noise perception that were retained 6 months later. Subcortical responses in noise demonstrated training-related enhancements in the encoding of pitch-related cues (the fundamental frequency and the second harmonic), particularly for the time-varying portion of the syllable that is most vulnerable to perceptual disruption (the formant transition region). Subjects with the largest strength of pitch encoding at pretest showed the greatest perceptual improvement. Controls exhibited neither neurophysiological nor perceptual changes. We provide the first demonstration that short-term training can improve the neural representation of cues important for speech-in-noise perception. These results implicate and delineate biological mechanisms contributing to learning success, and they provide a conceptual advance to our understanding of the kind of training experiences that can influence sensory processing in adulthood. PMID:21799207

  2. Lactose Intolerance in Adults: Biological Mechanism and Dietary Management

    Directory of Open Access Journals (Sweden)

    Yanyong Deng

    2015-09-01

    Full Text Available Lactose intolerance related to primary or secondary lactase deficiency is characterized by abdominal pain and distension, borborygmi, flatus, and diarrhea induced by lactose in dairy products. The biological mechanism and lactose malabsorption is established and several investigations are available, including genetic, endoscopic and physiological tests. Lactose intolerance depends not only on the expression of lactase but also on the dose of lactose, intestinal flora, gastrointestinal motility, small intestinal bacterial overgrowth and sensitivity of the gastrointestinal tract to the generation of gas and other fermentation products of lactose digestion. Treatment of lactose intolerance can include lactose-reduced diet and enzyme replacement. This is effective if symptoms are only related to dairy products; however, lactose intolerance can be part of a wider intolerance to variably absorbed, fermentable oligo-, di-, monosaccharides and polyols (FODMAPs. This is present in at least half of patients with irritable bowel syndrome (IBS and this group requires not only restriction of lactose intake but also a low FODMAP diet to improve gastrointestinal complaints. The long-term effects of a dairy-free, low FODMAPs diet on nutritional health and the fecal microbiome are not well defined. This review summarizes recent advances in our understanding of the genetic basis, biological mechanism, diagnosis and dietary management of lactose intolerance.

  3. Molecular biological mechanisms I. DNA repair

    International Nuclear Information System (INIS)

    Friedl, A.A.

    2000-01-01

    Cells of all living systems possess a variety of mechanisms that allow to repair spontaneous and exogeneously induced DNA damage. DNA repair deficiencies may invoke enhanced sensitivity towards DNA-damaging agents such as ionizing radiation. They may also enhance the risk of cancer development, both spontaneously or after induction. This article reviews several DNA repair mechanisms, especially those dealing with DNA double-strand breaks, and describes hereditary diseases associated with DNA repair defects. (orig.) [de

  4. Biophysical mechanisms complementing "classical" cell biology.

    Science.gov (United States)

    Funk, Richard H W

    2018-01-01

    This overview addresses phenomena in cell- and molecular biology which are puzzling by their fast and highly coordinated way of organization. Generally, it appears that informative processes probably involved are more on the biophysical than on the classical biochemical side. The coordination problem is explained within the first part of the review by the topic of endogenous electrical phenomena. These are found e.g. in fast tissue organization and reorganization processes like development, wound healing and regeneration. Here, coupling into classical biochemical signaling and reactions can be shown by modern microscopy, electronics and bioinformatics. Further, one can follow the triggered reactions seamlessly via molecular biology till into genetics. Direct observation of intracellular electric processes is very difficult because of e.g. shielding through the cell membrane and damping by other structures. Therefore, we have to rely on photonic and photon - phonon coupling phenomena like molecular vibrations, which are addressed within the second part. Molecules normally possess different charge moieties and thus small electromagnetic (EMF) patterns arise during molecular vibration. These patterns can now be measured best within the optical part of the spectrum - much less in the lower terahertz till kHz and lower Hz part (third part of this review). Finally, EMFs facilitate quantum informative processes in coherent domains of molecular, charge and electron spin motion. This helps to coordinate such manifold and intertwined processes going on within cells, tissues and organs (part 4). Because the phenomena described in part 3 and 4 of the review still await really hard proofs we need concerted efforts and a combination of biophysics, molecular biology and informatics to unravel the described mysteries in "physics of life".

  5. Understanding Federal regulations as guidelines for classical biological control programs

    Science.gov (United States)

    Michael E. Montgomery

    2011-01-01

    This chapter reviews the legislation and rules that provide the foundation for federal regulation of the introduction of natural enemies of insects as biological control agents. It also outlines the steps for complying with regulatory requirements, using biological control of Adelges tsugae Annand, the hemlock woolly adelgid (HWA), as an example. The...

  6. Universal biology and the statistical mechanics of early life

    Science.gov (United States)

    Goldenfeld, Nigel; Biancalani, Tommaso; Jafarpour, Farshid

    2017-11-01

    All known life on the Earth exhibits at least two non-trivial common features: the canonical genetic code and biological homochirality, both of which emerged prior to the Last Universal Common Ancestor state. This article describes recent efforts to provide a narrative of this epoch using tools from statistical mechanics. During the emergence of self-replicating life far from equilibrium in a period of chemical evolution, minimal models of autocatalysis show that homochirality would have necessarily co-evolved along with the efficiency of early-life self-replicators. Dynamical system models of the evolution of the genetic code must explain its universality and its highly refined error-minimization properties. These have both been accounted for in a scenario where life arose from a collective, networked phase where there was no notion of species and perhaps even individuality itself. We show how this phase ultimately terminated during an event sometimes known as the Darwinian transition, leading to the present epoch of tree-like vertical descent of organismal lineages. These examples illustrate concrete examples of universal biology: the quest for a fundamental understanding of the basic properties of living systems, independent of precise instantiation in chemistry or other media. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  7. New biological research and understanding of Papanicolaou's test.

    Science.gov (United States)

    Smith, Elizabeth R; George, Sophia H; Kobetz, Erin; Xu, Xiang-Xi

    2018-06-01

    The development of the Papanicolaou smear test by Dr. George Nicholas Papanicolaou (1883-1962) is one of the most significant achievements in screening for disease and cancer prevention in history. The Papanicolaou smear has been used for screening of cervical cancer since the 1950s. The test is technically straightforward and practical and based on a simple scientific observation: malignant cells have an aberrant nuclear morphology that can be distinguished from benign cells. Here, we review the scientific understanding that has been achieved and continues to be made on the causes and consequences of abnormal nuclear morphology, the basis of Dr. Papanicolaou's invention. The deformed nuclear shape is caused by the loss of lamina and nuclear envelope structural proteins. The consequences of a nuclear envelope defect include chromosomal numerical instability, altered chromatin organization and gene expression, and increased cell mobility because of a malleable nuclear envelope. HPV (Human Papilloma Virus) infection is recognized as the key etiology in the development of cervical cancer. Persistent HPV infection causes disruption of the nuclear lamina, which presents as a change in nuclear morphology detectable by a Papanicolaou smear. Thus, the causes and consequences of nuclear deformation are now linked to the mechanisms of viral carcinogenesis, and are still undergoing active investigation to reveal the details. Recently a statue was installed in front of the Papanicolaou's Cancer Research Building to honor the inventor. Remarkably, the invention nearly 60 years ago by Dr. Papanicolaou still exerts clinical impacts and inspires scientific inquiries. © 2018 Wiley Periodicals, Inc.

  8. The biological significance of brain barrier mechanisms

    DEFF Research Database (Denmark)

    Saunders, Norman R; Habgood, Mark D; Møllgård, Kjeld

    2016-01-01

    , but more work is required to evaluate the method before it can be tried in patients. Overall, our view is that much more fundamental knowledge of barrier mechanisms and development of new experimental methods will be required before drug targeting to the brain is likely to be a successful endeavor......Barrier mechanisms in the brain are important for its normal functioning and development. Stability of the brain's internal environment, particularly with respect to its ionic composition, is a prerequisite for the fundamental basis of its function, namely transmission of nerve impulses....... In addition, the appropriate and controlled supply of a wide range of nutrients such as glucose, amino acids, monocarboxylates, and vitamins is also essential for normal development and function. These are all cellular functions across the interfaces that separate the brain from the rest of the internal...

  9. Immunomodulatory Effects of Macrolide Antibiotics - Part 1 : Biological Mechanisms

    NARCIS (Netherlands)

    Altenburg, J.; de Graaff, C. S.; van der Werf, T. S.; Boersma, W. G.

    2011-01-01

    Macrolide antibiotics are well known for their antibacterial and anti-inflammatory properties. This article provides an overview of the biological mechanisms through which macrolides exert this 'double effect'. Their antibacterial effect consists of the inhibition of bacterial protein synthesis,

  10. Multilevel functional genomics data integration as a tool for understanding physiology: a network biology perspective.

    Science.gov (United States)

    Davidsen, Peter K; Turan, Nil; Egginton, Stuart; Falciani, Francesco

    2016-02-01

    The overall aim of physiological research is to understand how living systems function in an integrative manner. Consequently, the discipline of physiology has since its infancy attempted to link multiple levels of biological organization. Increasingly this has involved mathematical and computational approaches, typically to model a small number of components spanning several levels of biological organization. With the advent of "omics" technologies, which can characterize the molecular state of a cell or tissue (intended as the level of expression and/or activity of its molecular components), the number of molecular components we can quantify has increased exponentially. Paradoxically, the unprecedented amount of experimental data has made it more difficult to derive conceptual models underlying essential mechanisms regulating mammalian physiology. We present an overview of state-of-the-art methods currently used to identifying biological networks underlying genomewide responses. These are based on a data-driven approach that relies on advanced computational methods designed to "learn" biology from observational data. In this review, we illustrate an application of these computational methodologies using a case study integrating an in vivo model representing the transcriptional state of hypoxic skeletal muscle with a clinical study representing muscle wasting in chronic obstructive pulmonary disease patients. The broader application of these approaches to modeling multiple levels of biological data in the context of modern physiology is discussed. Copyright © 2016 the American Physiological Society.

  11. Low dose irradiation and biological defense mechanisms

    International Nuclear Information System (INIS)

    Sugahara, Tsutomu; Sagan, L.A.; Aoyama, Takashi

    1992-01-01

    It has been generally accepted in the context of radiation protection that ionizing radiation has some adverse effect even at low doses. However, epidemiological studies of human populations cannot definitively show its existence or absence. Furthermore, recent studies of populations living in areas of different background radiation levels reported some decrease in adverse health effects at high background levels. Genetic studies of atomic bomb survivors failed to produce statistically significant findings on the mutagenic effects of ionizing radiation. A British study however, suggests that a father's exposure to low dose radiation on the job may increase his children's risk of leukemia. On the other hand, many experimental studies have raised the possibility that low doses of ionizing radiation may not be harmful or may even produce stimulating or adaptive responses. The term 'hormesis' has come to be used to describe these phenomena produced by low doses of ionizing radiation when they were beneficial for the organisms studied. At the end of the International Conference on Low Dose Irradiation one conclusion appeared to be justified: radiation produces an adaptive response, though it is not universally detected yet. The conference failed to obtain any consensus on risk assessment at low doses, but raised many problems to be dealt with by future studies. The editors therefore believe that the Proceedings will be useful for all scientists and people concerned with radiation protection and the biological effects of low-dose irradiation

  12. Modeling the mechanisms of biological GTP hydrolysis

    DEFF Research Database (Denmark)

    Carvalho, Alexandra T.P.; Szeler, Klaudia; Vavitsas, Konstantinos

    2015-01-01

    Enzymes that hydrolyze GTP are currently in the spotlight, due to their molecular switch mechanism that controls many cellular processes. One of the best-known classes of these enzymes are small GTPases such as members of the Ras superfamily, which catalyze the hydrolysis of the γ-phosphate bond...... in GTP. In addition, the availability of an increasing number of crystal structures of translational GTPases such as EF-Tu and EF-G have made it possible to probe the molecular details of GTP hydrolysis on the ribosome. However, despite a wealth of biochemical, structural and computational data, the way...

  13. Membrane Binding of Recoverin: From Mechanistic Understanding to Biological Functionality

    Czech Academy of Sciences Publication Activity Database

    Timr, S.; Pleskot, Roman; Kadlec, J.; Kohagen, M.; Magarkar, A.; Jungwirth, P.

    2017-01-01

    Roč. 3, č. 8 (2017), s. 868-874 ISSN 2374-7943 Institutional support: RVO:61389030 Keywords : recoverin * membrane * myristoyl Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Cell biology Impact factor: 7.481, year: 2016

  14. The role of mechanics in biological and bio-inspired systems.

    Science.gov (United States)

    Egan, Paul; Sinko, Robert; LeDuc, Philip R; Keten, Sinan

    2015-07-06

    Natural systems frequently exploit intricate multiscale and multiphasic structures to achieve functionalities beyond those of man-made systems. Although understanding the chemical make-up of these systems is essential, the passive and active mechanics within biological systems are crucial when considering the many natural systems that achieve advanced properties, such as high strength-to-weight ratios and stimuli-responsive adaptability. Discovering how and why biological systems attain these desirable mechanical functionalities often reveals principles that inform new synthetic designs based on biological systems. Such approaches have traditionally found success in medical applications, and are now informing breakthroughs in diverse frontiers of science and engineering.

  15. Understanding life together: A brief history of collaboration in biology

    Science.gov (United States)

    Vermeulen, Niki; Parker, John N.; Penders, Bart

    2013-01-01

    The history of science shows a shift from single-investigator ‘little science’ to increasingly large, expensive, multinational, interdisciplinary and interdependent ‘big science’. In physics and allied fields this shift has been well documented, but the rise of collaboration in the life sciences and its effect on scientific work and knowledge has received little attention. Research in biology exhibits different historical trajectories and organisation of collaboration in field and laboratory – differences still visible in contemporary collaborations such as the Census of Marine Life and the Human Genome Project. We employ these case studies as strategic exemplars, supplemented with existing research on collaboration in biology, to expose the different motives, organisational forms and social dynamics underpinning contemporary large-scale collaborations in biology and their relations to historical patterns of collaboration in the life sciences. We find the interaction between research subject, research approach as well as research organisation influencing collaboration patterns and the work of scientists. PMID:23578694

  16. Cytoprotection of human endothelial cells against oxidative stress by 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im): application of systems biology to understand the mechanism of action.

    Science.gov (United States)

    Wang, Xinyu; Bynum, James A; Stavchansky, Solomon; Bowman, Phillip D

    2014-07-05

    Cellular damage from oxidative stress, in particular following ischemic injury, occurs during heart attack, stroke, or traumatic injury, and is potentially reducible with appropriate drug treatment. We previously reported that caffeic acid phenethyl ester (CAPE), a plant-derived polyphenolic compound, protected human umbilical vein endothelial cells (HUVEC) from menadione-induced oxidative stress and that this cytoprotective effect was correlated with the capacity to induce heme oxygenase-1 (HMOX1) and its protein product, a phase II cytoprotective enzyme. To further improve this cytoprotective effect, we studied a synthetic triterpenoid, 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im), which is known as a potent phase II enzyme inducer with antitumor and anti-inflammatory activities, and compared it to CAPE. CDDO-Im at 200nM provided more protection to HUVEC against oxidative stress than 20μM CAPE. We explored the mechanism of CDDO-Im cytoprotection with gene expression profiling and pathway analysis and compared to that of CAPE. In addition to potent up-regulation of HMOX1, heat shock proteins (HSP) were also found to be highly induced by CDDO-Im in HUVEC. Pathway analysis results showed that transcription factor Nrf2-mediated oxidative stress response was among the top canonical pathways commonly activated by both CDDO-Im and CAPE. Compared to CAPE, CDDO-Im up-regulated more HSP and some of them to a much higher extent. In addition, CDDO-Im treatment affected Nrf2 pathway more significantly. These findings may provide an explanation why CDDO-Im is a more potent cytoprotectant than CAPE against oxidative stress in HUVEC. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Exploring the MACH Model's Potential as a Metacognitive Tool to Help Undergraduate Students Monitor Their Explanations of Biological Mechanisms

    Science.gov (United States)

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2016-01-01

    When undergraduate biology students learn to explain biological mechanisms, they face many challenges and may overestimate their understanding of living systems. Previously, we developed the MACH model of four components used by expert biologists to explain mechanisms: Methods, Analogies, Context, and How. This study explores the implementation of…

  18. On the mechanism of the biological effect of ionizing radiation

    International Nuclear Information System (INIS)

    Margulis, M.A.; Margulis, I.M.

    2005-01-01

    The mechanisms of the biological effects of ionizing radiation (IR) and ultrasound (US) were considered. The current views on the nature of toxicity of IR, which is usually assigned to the formation of radicals in living tissues and to the straight-line collision of an ionizing particle with the DNA molecule, were analyzed. It was established that the amount of radicals formed in biological tissues in conditions of ultrasonically induced cavitation can be as large as that for IR; however, the biological effect of US is much softer as compared to IR. It was shown that the contribution of the indirect mechanism to the total biological effect of IR can be estimated by comparing US and IR in their chemical action; the contribution of the indirect mechanism to the biological effect of IR was found to be negligibly small. An alternative mechanism was proposed to explain the biological effect of IR. In accordance with the proposed model, IR with a high linear energy transfer (LET) value breaks through cell walls and biological membranes and causes damage to them, such that the cell can lose its regenerative capacity. Moreover, high-energy heavy ionizing particles perforate cytoplasm to form channels. Ionizing radiation with a low LET value (γ- and X-rays) causes multiple damages to biological membranes. Ionizing particles can also cause damages to membranes of mitochondria thus affecting the mechanism of cellular respiration, which will cause neoplastic diseases. The straight-line collision of an ionizing particle with a DNA molecule was found to be 5-7 orders of magnitude less probable as compared to the collision with a wall or membrane. It was shown that multiple perforations of cell walls and damages to membranes are characteristic only of ionizing particles, which have sufficiently long tracks, and do not occur upon exposure to ultrasonic waves, microwaves, UV radiation, and magnetic fields [ru

  19. Molecular biological mechanism II. Molecular mechanisms of cell cycle regulation

    International Nuclear Information System (INIS)

    Jung, T.

    2000-01-01

    The cell cycle in eukaryotes is regulated by central cell cycle controlling protein kinase complexes. These protein kinase complexes consist of a catalytic subunit from the cyclin-dependent protein kinase family (CDK), and a regulatory subunit from the cyclin family. Cyclins are characterised by their periodic cell cycle related synthesis and destruction. Each cell cycle phase is characterised by a specific set of CDKs and cyclins. The activity of CDK/cyclin complexes is mainly regulated on four levels. It is controlled by specific phosphorylation steps, the synthesis and destruction of cyclins, the binding of specific inhibitor proteins, and by active control of their intracellular localisation. At several critical points within the cell cycle, named checkpoints, the integrity of the cellular genome is monitored. If damage to the genome or an unfinished prior cell cycle phase is detected, the cell cycle progression is stopped. These cell cycle blocks are of great importance to secure survival of cells. Their primary importance is to prevent the manifestation and heritable passage of a mutated genome to daughter cells. Damage sensing, DNA repair, cell cycle control and apoptosis are closely linked cellular defence mechanisms to secure genome integrity. Disregulation in one of these defence mechanisms are potentially correlated with an increased cancer risk and therefore in at least some cases with an increased radiation sensitivity. (orig.) [de

  20. Perspectives of a systems biology of the brain: the big data conundrum understanding psychiatric diseases.

    Science.gov (United States)

    Mewes, H W

    2013-05-01

    Psychiatric diseases provoke human tragedies. Asocial behaviour, mood imbalance, uncontrolled affect, and cognitive malfunction are the price for the biological and social complexity of neurobiology. To understand the etiology and to influence the onset and progress of mental diseases remains of upmost importance, but despite the much improved care for the patients, more then 100 years of research have not succeeded to understand the basic disease mechanisms and enabling rationale treatment. With the advent of the genome based technologies, much hope has been created to join the various dimension of -omics data to uncover the secrets of mental illness. Big Data as generated by -omics do not come with explanations. In this essay, I will discuss the inherent, not well understood methodological foundations and problems that seriously obstacle in striving for a quick success and may render lucky strikes impossible. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Toward Understanding the Biology of Crime in Trinidad and Tobago

    Science.gov (United States)

    Emmanuel, D

    2014-01-01

    ABSTRACT Serious crime is a scourge within Trinidad and Tobago's borders and seems to be escalating yearly with no resolution in sight. It is commonplace for governments to view/implement policies targeting crime based on sociological and psychological paradigms. What is most often overlooked, however, is that crime has unique biological underpinnings, which, if characterized, could lead toward clinical interventions that could mitigate its incidence within the population. PMID:25803384

  2. Transient resetting: a novel mechanism for synchrony and its biological examples.

    Directory of Open Access Journals (Sweden)

    Chunguang Li

    2006-08-01

    Full Text Available The study of synchronization in biological systems is essential for the understanding of the rhythmic phenomena of living organisms at both molecular and cellular levels. In this paper, by using simple dynamical systems theory, we present a novel mechanism, named transient resetting, for the synchronization of uncoupled biological oscillators with stimuli. This mechanism not only can unify and extend many existing results on (deterministic and stochastic stimulus-induced synchrony, but also may actually play an important role in biological rhythms. We argue that transient resetting is a possible mechanism for the synchronization in many biological organisms, which might also be further used in the medical therapy of rhythmic disorders. Examples of the synchronization of neural and circadian oscillators as well as a chaotic neuron model are presented to verify our hypothesis.

  3. Student Understanding of Time Dependence in Quantum Mechanics

    Science.gov (United States)

    Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.

    2015-01-01

    The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing…

  4. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT I, UNDERSTANDING MECHANICAL CLUTCHES.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    ONE OF A 25-MODULE COURSE DESIGNED TO UPGRADE THE JOB SKILLS AND TECHNICAL KNOWLEDGE OF DIESEL MAINENANCE MECHANICS THIS MATERIAL WAS DEVELOPED BY INDUSTRIAL TRAINING AND SUBJECT-MATTER SPECIALISTS AND TESTED IN INDUSTRIAL TRAINING SITUATIONS. THE PURPOSE OF THIS FIRST UNIT IS TO DEVELOP AN UNDERSTANDING OF COMPONENTS, OPERATION, AND ADJUSTMENTS…

  5. Understanding genetic variation - the value of systems biology.

    Science.gov (United States)

    Hütt, Marc-Thorsten

    2014-04-01

    Pharmacology is currently transformed by the vast amounts of genome-associated information available for system-level interpretation. Here I review the potential of systems biology to facilitate this interpretation, thus paving the way for the emerging field of systems pharmacology. In particular, I will show how gene regulatory and metabolic networks can serve as a framework for interpreting high throughput data and as an interface to detailed dynamical models. In addition to the established connectivity analyses of effective networks, I suggest here to also analyze higher order architectural properties of effective networks. © 2013 The British Pharmacological Society.

  6. Molecular genetics of glioblastomas: defining subtypes and understanding the biology.

    Science.gov (United States)

    Renault, Ilana Zalcberg; Golgher, Denise

    2015-02-01

    Despite comprehensive therapy, which includes surgery, radiotherapy, and chemotherapy, the prognosis of glioblastoma multiforme is very poor. Diagnosed individuals present an average of 12 to 18 months of life. This article provides an overview of the molecular genetics of these tumors. Despite the overwhelming amount of data available, so far little has been translated into real benefits for the patient. Because this is such a complex topic, the goal is to point out the main alterations in the biological pathways that lead to tumor formation, and how this can contribute to the development of better therapies and clinical care. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Advanced waterflooding in chalk reservoirs: Understanding of underlying mechanisms

    DEFF Research Database (Denmark)

    Zahid, Adeel; Sandersen, Sara Bülow; Stenby, Erling Halfdan

    2011-01-01

    Over the last decade, a number of studies have shown SO42−, Ca2+ and Mg2+ to be potential determining ions, which may be added to the injected brine for improving oil recovery during waterflooding in chalk reservoirs. However the understanding of the mechanism leading to an increase in oil recove...... of a microemulsion phase could be the possible reasons for the observed increase in oil recovery with sulfate ions at high temperature in chalk reservoirs besides the mechanism of the rock wettability alteration, which has been reported in most previous studies.......Over the last decade, a number of studies have shown SO42−, Ca2+ and Mg2+ to be potential determining ions, which may be added to the injected brine for improving oil recovery during waterflooding in chalk reservoirs. However the understanding of the mechanism leading to an increase in oil recovery...

  8. Nondestructive mechanical characterization of developing biological tissues using inflation testing.

    Science.gov (United States)

    Oomen, P J A; van Kelle, M A J; Oomens, C W J; Bouten, C V C; Loerakker, S

    2017-10-01

    One of the hallmarks of biological soft tissues is their capacity to grow and remodel in response to changes in their environment. Although it is well-accepted that these processes occur at least partly to maintain a mechanical homeostasis, it remains unclear which mechanical constituent(s) determine(s) mechanical homeostasis. In the current study a nondestructive mechanical test and a two-step inverse analysis method were developed and validated to nondestructively estimate the mechanical properties of biological tissue during tissue culture. Nondestructive mechanical testing was achieved by performing an inflation test on tissues that were cultured inside a bioreactor, while the tissue displacement and thickness were nondestructively measured using ultrasound. The material parameters were estimated by an inverse finite element scheme, which was preceded by an analytical estimation step to rapidly obtain an initial estimate that already approximated the final solution. The efficiency and accuracy of the two-step inverse method was demonstrated on virtual experiments of several material types with known parameters. PDMS samples were used to demonstrate the method's feasibility, where it was shown that the proposed method yielded similar results to tensile testing. Finally, the method was applied to estimate the material properties of tissue-engineered constructs. Via this method, the evolution of mechanical properties during tissue growth and remodeling can now be monitored in a well-controlled system. The outcomes can be used to determine various mechanical constituents and to assess their contribution to mechanical homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Characterising the development of the understanding of human body systems in high-school biology students - a longitudinal study

    Science.gov (United States)

    Snapir, Zohar; Eberbach, Catherine; Ben-Zvi-Assaraf, Orit; Hmelo-Silver, Cindy; Tripto, Jaklin

    2017-10-01

    Science education today has become increasingly focused on research into complex natural, social and technological systems. In this study, we examined the development of high-school biology students' systems understanding of the human body, in a three-year longitudinal study. The development of the students' system understanding was evaluated using the Components Mechanisms Phenomena (CMP) framework for conceptual representation. We coded and analysed the repertory grid personal constructs of 67 high-school biology students at 4 points throughout the study. Our data analysis builds on the assumption that systems understanding entails a perception of all the system categories, including structures within the system (its Components), specific processes and interactions at the macro and micro levels (Mechanisms), and the Phenomena that present the macro scale of processes and patterns within a system. Our findings suggest that as the learning process progressed, the systems understanding of our students became more advanced, moving forward within each of the major CMP categories. Moreover, there was an increase in the mechanism complexity presented by the students, manifested by more students describing mechanisms at the molecular level. Thus, the 'mechanism' category and the micro level are critical components that enable students to understand system-level phenomena such as homeostasis.

  10. RI: Rheology as a Tool for Understanding the Mechanics of Live Ant Aggregations, Part 2

    Science.gov (United States)

    2016-11-04

    earwax of pigs, dogs , cows, and humans. We find that earwax is shear-thinning for all these animals. This ability enables it to cling to the ear in low...self-cleaning.” Society for Integrative and Comparative Biology annual meeting, 2017.  P. Yang, D. Dao, R. Lehner, D. Hu, “ The hydrodynamics of...RI: Rheology as a Tool for Understanding the Mechanics of Live Ant Aggregations, Part 2 An Anton Paarr MCR 501 rheometer was purchased in order to

  11. Understanding the Reading Attributes and Their Cognitive Relationships on a High-Stakes Biology Assessment

    Science.gov (United States)

    Rawlusyk, Kevin James

    Test items used to assess learners' knowledge on high-stakes science examinations contain contextualized questions that unintentionally assess reading skill along with conceptual knowledge. Therefore, students who are not proficient readers are unable to comprehend the text within the test item to demonstrate effectively their level of science knowledge. The purpose of this quantitative study was to understand what reading attributes were required to successfully answer the Biology 30 Diploma Exam. Furthermore, the research sought to understand the cognitive relationships among the reading attributes through quantitative analysis structured by the Attribute Hierarchy Model (AHM). The research consisted of two phases: (1) Cognitive development, where the cognitive attributes of the Biology 30 Exam were specified and hierarchy structures were developed; and (2) Psychometric analysis, that statistically tested the attribute hierarchy using the Hierarchy Consistency Index (HCI), and calculate attribute probabilities. Phase one of the research used January 2011, Biology 30 Diploma Exam, while phase two accessed archival data for the 9985 examinees who took the assessment on January 24th, 2011. Phase one identified ten specific reading attributes, of which five were identified as unique subsets of vocabulary, two were identified as reading visual representations, and three corresponded to general reading skills. Four hierarchical cognitive model were proposed then analyzed using the HCI as a mechanism to explain the relationship among the attributes. Model A had the highest HCI value (0.337), indicating an overall poor data fit, yet for the top achieving examinees the model had an excellent model fit with an HCI value of 0.888, and for examinees that scored over 60% there was a moderate model fit (HCI = 0.592). Linear regressions of the attribute probability estimates suggest that there is a cognitive relationship among six of the ten reading attributes (R2 = 0.958 and 0

  12. Early mechanisms in radiation-induced biological damage

    International Nuclear Information System (INIS)

    Powers, E.L.

    1983-01-01

    An introduction to the mechanisms of radiation action in biological systems is presented. Several questions about the nature of the radiation damage process are discussed, including recognition of the oxygen effects, dose-response relationships, and the importance of the hydroxyl radical

  13. Advances in the understanding of crystal growth mechanisms

    CERN Document Server

    Nishinaga, T; Harada, J; Sasaki, A; Takei, H

    1997-01-01

    This book contains the results of a research project entitled Crystal Growth Mechanisms on an Atomic Scale, which was carried out for 3 years by some 72 reseachers. Until recently in Japan, only the technological aspects of crystal growth have been emphasized and attention was paid only to its importance in industry. However the scientific aspects also need to be considered so that the technology of crystal growth can be developed even further. This project therefore aimed at understanding crystal growth and the emphasis was on finding growth mechanisms on an atomic scale.

  14. Understanding the basic biology underlying the flavor world of children

    Directory of Open Access Journals (Sweden)

    Julie A. MENNELLA, Alison K. VENTURA

    2010-12-01

    Full Text Available Health organizations worldwide recommend that adults and children minimize intakes of excess energy and salty, sweet, and fatty foods (all of which are highly preferred tastes and eat diets richer in whole grains, low- and non- fat dairy products, legumes, fish, lean meat, fruits, and vegetables (many of which taste bitter. Despite such recommendations and the well-established benefits of these foods to human health, adults are not complying, nor are their children. A primary reason for this difficulty is the remarkably potent rewarding properties of the tastes and flavors of foods high in sweetness, saltiness, and fatness. While we cannot easily change children’s basic ingrained biology of liking sweets and avoiding bitterness, we can modulate their flavor preferences by providing early exposure, starting in utero, to a wide variety of flavors within healthy foods, such as fruits, vegetables, and whole grains. Because the flavors of foods mothers eat during pregnancy and lactation also flavor amniotic fluid and breast milk and become preferred by infants, pregnant and lactating women should widen their food choices to include as many flavorful and healthy foods as possible. These experiences, combined with repeated exposure to nutritious foods and flavor variety during the weaning period and beyond, should maximize the chances that children will select and enjoy a healthier diet [Current Zoology 56 (6: 834–841, 2010].

  15. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals

    International Nuclear Information System (INIS)

    Dao, M.; Lu, L.; Asaro, R.J.; Hosson, J.T.M. de; Ma, E.

    2007-01-01

    Focusing on nanocrystalline (nc) pure face-centered cubic metals, where systematic experimental data are available, this paper presents a brief overview of the recent progress made in improving mechanical properties of nc materials, and in quantitatively and mechanistically understanding the underlying mechanisms. The mechanical properties reviewed include strength, ductility, strain rate and temperature dependence, fatigue and tribological properties. The highlighted examples include recent experimental studies in obtaining both high strength and considerable ductility, the compromise between enhanced fatigue limit and reduced crack growth resistance, the stress-assisted dynamic grain growth during deformation, and the relation between rate sensitivity and possible deformation mechanisms. The recent advances in obtaining quantitative and mechanics-based models, developed in line with the related transmission electron microscopy and relevant molecular dynamics observations, are discussed with particular attention to mechanistic models of partial/perfect-dislocation or deformation-twin-mediated deformation processes interacting with grain boundaries, constitutive modeling and simulations of grain size distribution and dynamic grain growth, and physically motivated crystal plasticity modeling of pure Cu with nanoscale growth twins. Sustained research efforts have established a group of nanocrystalline and nanostructured metals that exhibit a combination of high strength and considerable ductility in tension. Accompanying the gradually deepening understanding of the deformation mechanisms and their relative importance, quantitative and mechanisms-based constitutive models that can realistically capture experimentally measured and grain-size-dependent stress-strain behavior, strain-rate sensitivity and even ductility limit are becoming available. Some outstanding issues and future opportunities are listed and discussed

  16. How Electroconvulsive Therapy Works?: Understanding the Neurobiological Mechanisms

    Science.gov (United States)

    Singh, Amit; Kar, Sujita Kumar

    2017-01-01

    Electroconvulsive therapy (ECT) is a time tested treatment modality for the management of various psychiatric disorders. There have been a lot of modifications in the techniques of delivering ECT over decades. Despite lots of criticisms encountered, ECT has still been used commonly in clinical practice due to its safety and efficacy. Research evidences found multiple neuro-biological mechanisms for the therapeutic effect of ECT. ECT brings about various neuro-physiological as well as neuro-chemical changes in the macro- and micro-environment of the brain. Diverse changes involving expression of genes, functional connectivity, neurochemicals, permeability of blood-brain-barrier, alteration in immune system has been suggested to be responsible for the therapeutic effects of ECT. This article reviews different neurobiological mechanisms responsible for the therapeutic efficacy of ECT. PMID:28783929

  17. From structure of the complex to understanding of the biology

    Energy Technology Data Exchange (ETDEWEB)

    Rossmann, Michael G., E-mail: mr@purdue.edu [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Arisaka, Fumio [Graduate School and School of Bioscience and Biotechnology, Tokyo Institute of Technology, 5249 Nagatsuta-cho, Yokohama 226-8501-B39 (Japan); Battisti, Anthony J.; Bowman, Valorie D.; Chipman, Paul R.; Fokine, Andrei; Hafenstein, Susan [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Kanamaru, Shuji [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Graduate School and School of Bioscience and Biotechnology, Tokyo Institute of Technology, 5249 Nagatsuta-cho, Yokohama 226-8501-B39 (Japan); Kostyuchenko, Victor A. [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Mesyanzhinov, Vadim V.; Shneider, Mikhail M. [Laboratory of Molecular Bioengineering, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow, 117997 (Russian Federation); Morais, Marc C.; Leiman, Petr G. [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Palermo, Laura M.; Parrish, Colin R. [James A. Baker Institute, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853 (United States); Xiao, Chuan [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States)

    2007-01-01

    The most extensive structural information on viruses relates to apparently icosahedral virions and is based on X-ray crystallography and on cryo-electron microscopy single-particle reconstructions. This paper concerns itself with the study of the macromolecular complexes that constitute viruses, using structural hybrid techniques. The most extensive structural information on viruses relates to apparently icosahedral virions and is based on X-ray crystallography and on cryo-electron microscopy (cryo-EM) single-particle reconstructions. Both techniques lean heavily on imposing icosahedral symmetry, thereby obscuring any deviation from the assumed symmetry. However, tailed bacteriophages have icosahedral or prolate icosahedral heads that have one obvious unique vertex where the genome can enter for DNA packaging and exit when infecting a host cell. The presence of the tail allows cryo-EM reconstructions in which the special vertex is used to orient the head in a unique manner. Some very large dsDNA icosahedral viruses also develop special vertices thought to be required for infecting host cells. Similarly, preliminary cryo-EM data for the small ssDNA canine parvovirus complexed with receptor suggests that these viruses, previously considered to be accurately icosahedral, might have some asymmetric properties that generate one preferred receptor-binding site on the viral surface. Comparisons are made between rhinoviruses that bind receptor molecules uniformly to all 60 equivalent binding sites, canine parvovirus, which appears to have a preferred receptor-binding site, and bacteriophage T4, which gains major biological advantages on account of its unique vertex and tail organelle.

  18. From structure of the complex to understanding of the biology

    International Nuclear Information System (INIS)

    Rossmann, Michael G.; Arisaka, Fumio; Battisti, Anthony J.; Bowman, Valorie D.; Chipman, Paul R.; Fokine, Andrei; Hafenstein, Susan; Kanamaru, Shuji; Kostyuchenko, Victor A.; Mesyanzhinov, Vadim V.; Shneider, Mikhail M.; Morais, Marc C.; Leiman, Petr G.; Palermo, Laura M.; Parrish, Colin R.; Xiao, Chuan

    2007-01-01

    The most extensive structural information on viruses relates to apparently icosahedral virions and is based on X-ray crystallography and on cryo-electron microscopy single-particle reconstructions. This paper concerns itself with the study of the macromolecular complexes that constitute viruses, using structural hybrid techniques. The most extensive structural information on viruses relates to apparently icosahedral virions and is based on X-ray crystallography and on cryo-electron microscopy (cryo-EM) single-particle reconstructions. Both techniques lean heavily on imposing icosahedral symmetry, thereby obscuring any deviation from the assumed symmetry. However, tailed bacteriophages have icosahedral or prolate icosahedral heads that have one obvious unique vertex where the genome can enter for DNA packaging and exit when infecting a host cell. The presence of the tail allows cryo-EM reconstructions in which the special vertex is used to orient the head in a unique manner. Some very large dsDNA icosahedral viruses also develop special vertices thought to be required for infecting host cells. Similarly, preliminary cryo-EM data for the small ssDNA canine parvovirus complexed with receptor suggests that these viruses, previously considered to be accurately icosahedral, might have some asymmetric properties that generate one preferred receptor-binding site on the viral surface. Comparisons are made between rhinoviruses that bind receptor molecules uniformly to all 60 equivalent binding sites, canine parvovirus, which appears to have a preferred receptor-binding site, and bacteriophage T4, which gains major biological advantages on account of its unique vertex and tail organelle

  19. Understanding the biological concept "bird": A kindergarten case study

    Science.gov (United States)

    Buchholz, Dilek

    The purpose of this qualitative, multiple case study of 14 students in a metropolitan public school in the Deep South was to find out, during a period of three months, what these kindergarten-aged children knew about birds, whether this knowledge represented current scientific thought, if such science instruction meaningfully affected their prior knowledge, and if so, what the factors during instruction that seemed to influence their understanding of the concept of bird were. The research was conducted in three phases; preinstruction interviews, instruction, and postinstruction interviews. The theoretical framework for this research was based on the Human Constructivism theory of learning (Mintzes, Wandersee and Novak, 1997). Instructional materials consisted of carefully chosen books (both fiction and non-fiction), guest speakers, field trips, a live bird in the classroom, students' observation journals, teacher-made classification and sorting activities, and picture-based concept maps. The findings suggest that young children's knowledge of birds was limited chiefly to birds' anatomical and morphological characteristics, with repeated references being made by the children to human characteristics. There was a positive, significant difference in young children's pre- and postinstruction scientific knowledge of birds. Although performance varied from child to child after instruction, most children were able to identify some common birds by name. Just one child resisted conceptual change. Kindergarten children's basic knowledge of bird behavior was limited to flight and eating. Although the children had more conceptual knowledge at the end, understanding still appeared to be shallow. The children did develop their skill in observing markedly. It also became evident that these kindergarten children needed more (a) experience in asking questions, (b) practice in techniques of visual representation, and (c) language development in order to be able to explain what they

  20. Using STOQS to Understand Molecular Biology and Oceanographic Data

    Science.gov (United States)

    McCann, M. P.; Ryan, J. P.; Messié, M.; Harvey, J.; Cline, D.; Michisaki, R.

    2014-12-01

    Advances in technology enable us to collect massive amounts of diverse data. With the ability to collect more data, the problem of comparative analysis becomes increasing difficult. The Monterey Bay Aquarium Research Institute (MBARI) designed the Spatial Temporal Oceanographic Query System (STOQS) to create new capabilities for scientists to gain insight from data collected by oceanographic platforms. STOQS uses a geospatial database and a web-based user interface (UI) to allow scientists to explore large collections of data. The UI is optimized to provide a quick overview of data in spatial and temporal dimensions, as well as in parameter and platform space. A user may zoom into a feature of interest and select it, initiating a filter operation updating the UI with an overview of all the data in the new filtered selection. When details are desired, radio buttons and check boxes can be selected to generate a number of different types of visualizations. These include color-filled temporal section plots, parameter-parameter plots, and both 2D and 3D spatial visualizations. The ISO/IEC 19775-1, Extensible 3D (X3D) standard provides the technology for presenting 3D data in a web browser. STOQS has been in use at MBARI for four years and is helping us manage and visualize data from month-long multi-platform observational campaigns. These campaigns produce tens of millions of diverse measurements. These volumes are too great to really understand - even with an effective data exploration UI. Effective management of these diverse data in STOQS is achieved through a two-step harmonization process: 1) conversion of all data to OGC CF-NetCDF Discrete Sampling Geometry feature types and 2) loading all data into the STOQS data model. Having all of the data easily accessible via this data model made development of the UI possible. This same method of access is also being used for development of visualization and analysis programs for tasks that cannot be executed within the UI

  1. Intact and Impaired Mechanisms of Action Understanding in Autism

    Science.gov (United States)

    Vivanti, Giacomo; McCormick, Carolyn; Young, Gregory S.; Abucayan, Floridette; Hatt, Naomi; Nadig, Aparna; Ozonoff, Sally; Rogers, Sally J.

    2016-01-01

    Typically developing children understand and predict others’ behavior by extracting and processing relevant information such as the logic of their actions within the situational constraints and the intentions conveyed by their gaze direction and emotional expressions. Children with autism have difficulties understanding and predicting others’ actions. With the use of eye tracking and behavioral measures, we investigated action understanding mechanisms used by 18 children with autism and a well-matched group of 18 typically developing children. Results showed that children with autism (a) consider situational constraints in order to understand the logic of an agent’s action and (b) show typical usage of the agent’s emotional expressions to infer his or her intentions. We found (c) subtle atypicalities in the way children with autism respond to an agent’s direct gaze and (d) marked impairments in their ability to attend to and interpret referential cues such as a head turn for understanding an agent’s intentions. PMID:21401220

  2. Understanding and imitating unfamiliar actions: distinct underlying mechanisms.

    Directory of Open Access Journals (Sweden)

    Joana C Carmo

    Full Text Available The human "mirror neuron system" has been proposed to be the neural substrate that underlies understanding and, possibly, imitating actions. However, since the brain activity with mirror properties seems insufficient to provide a good description for imitation of actions outside one's own repertoire, the existence of supplementary processes has been proposed. Moreover, it is unclear whether action observation requires the same neural mechanisms as the explicit access to their meaning. The aim of this study was two-fold as we investigated whether action observation requires different processes depending on 1 whether the ultimate goal is to imitate or understand the presented actions and 2 whether the to-be-imitated actions are familiar or unfamiliar to the subject. Participants were presented with both meaningful familiar actions and meaningless unfamiliar actions that they had to either imitate or discriminate later. Event-related Potentials were used as differences in brain activity could have been masked by the use of other techniques with lower temporal resolution. In the imitation task, a sustained left frontal negativity was more pronounced for meaningless actions than for meaningful ones, starting from an early time-window. Conversely, observing unfamiliar versus familiar actions with the intention of discriminating them led to marked differences over right centro-posterior scalp regions, in both middle and latest time-windows. These findings suggest that action imitation and action understanding may be sustained by dissociable mechanisms: while imitation of unfamiliar actions activates left frontal processes, that are likely to be related to learning mechanisms, action understanding involves dedicated operations which probably require right posterior regions, consistent with their involvement in social interactions.

  3. Effect of Process-Oriented Guided-Inquiry Learning on Non-majors Biology Students' Understanding of Biological Classification

    Science.gov (United States)

    Wozniak, Breann M.

    The purpose of this study was to examine the effect of process-oriented guided-inquiry learning (POGIL) on non-majors college biology students' understanding of biological classification. This study addressed an area of science instruction, POGIL in the non-majors college biology laboratory, which has yet to be qualitatively and quantitatively researched. A concurrent triangulation mixed methods approach was used. Students' understanding of biological classification was measured in two areas: scores on pre and posttests (consisting of 11 multiple choice questions), and conceptions of classification as elicited in pre and post interviews and instructor reflections. Participants were Minnesota State University, Mankato students enrolled in BIOL 100 Summer Session. One section was taught with the traditional curriculum (n = 6) and the other section in the POGIL curriculum (n = 10) developed by the researcher. Three students from each section were selected to take part in pre and post interviews. There were no significant differences within each teaching method (p familiar animal categories and aquatic habitats, unfamiliar organisms, combining and subdividing initial groupings, and the hierarchical nature of classification. The POGIL students were the only group to surpass these challenges after the teaching intervention. This study shows that POGIL is an effective technique at eliciting students' misconceptions, and addressing these misconceptions, leading to an increase in student understanding of biological classification.

  4. Conceptions of Memorizing and Understanding in Learning, and Self-Efficacy Held by University Biology Majors

    Science.gov (United States)

    Lin, Tzu-Chiang; Liang, Jyh-Chong; Tsai, Chin-Chung

    2015-01-01

    This study aims to explore Taiwanese university students' conceptions of learning biology as memorizing or as understanding, and their self-efficacy. To this end, two questionnaires were utilized to survey 293 Taiwanese university students with biology-related majors. A questionnaire for measuring students' conceptions of memorizing and…

  5. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms.

    Science.gov (United States)

    Wei, Min; Li, Song; Le, Weidong

    2017-10-25

    Stem cells are unspecialized cells that have the potential for self-renewal and differentiation into more specialized cell types. The chemical and physical properties of surrounding microenvironment contribute to the growth and differentiation of stem cells and consequently play crucial roles in the regulation of stem cells' fate. Nanomaterials hold great promise in biological and biomedical fields owing to their unique properties, such as controllable particle size, facile synthesis, large surface-to-volume ratio, tunable surface chemistry, and biocompatibility. Over the recent years, accumulating evidence has shown that nanomaterials can facilitate stem cell proliferation and differentiation, and great effort is undertaken to explore their possible modulating manners and mechanisms on stem cell differentiation. In present review, we summarize recent progress in the regulating potential of various nanomaterials on stem cell differentiation and discuss the possible cell uptake, biological interaction and underlying mechanisms.

  6. Student understanding of time dependence in quantum mechanics

    Directory of Open Access Journals (Sweden)

    Paul J. Emigh

    2015-09-01

    Full Text Available [This paper is part of the Focused Collection on Upper Division Physics Courses.] The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing the key role of the energy eigenbasis in determining the time dependence of wave functions. Through analysis of student responses to a set of four interrelated tasks, we categorize some of the difficulties that underlie common errors. The conceptual and reasoning difficulties that have been identified are illustrated through student responses to four sets of questions administered at different points in a junior-level course on quantum mechanics. Evidence is also given that the problems persist throughout undergraduate instruction and into the graduate level.

  7. Biological timing and the clock metaphor: oscillatory and hourglass mechanisms.

    Science.gov (United States)

    Rensing, L; Meyer-Grahle, U; Ruoff, P

    2001-05-01

    Living organisms have developed a multitude of timing mechanisms--"biological clocks." Their mechanisms are based on either oscillations (oscillatory clocks) or unidirectional processes (hourglass clocks). Oscillatory clocks comprise circatidal, circalunidian, circadian, circalunar, and circannual oscillations--which keep time with environmental periodicities--as well as ultradian oscillations, ovarian cycles, and oscillations in development and in the brain, which keep time with biological timescales. These clocks mainly determine time points at specific phases of their oscillations. Hourglass clocks are predominantly found in development and aging and also in the brain. They determine time intervals (duration). More complex timing systems combine oscillatory and hourglass mechanisms, such as the case for cell cycle, sleep initiation, or brain clocks, whereas others combine external and internal periodicities (photoperiodism, seasonal reproduction). A definition of a biological clock may be derived from its control of functions external to its own processes and its use in determining temporal order (sequences of events) or durations. Biological and chemical oscillators are characterized by positive and negative feedback (or feedforward) mechanisms. During evolution, living organisms made use of the many existing oscillations for signal transmission, movement, and pump mechanisms, as well as for clocks. Some clocks, such as the circadian clock, that time with environmental periodicities are usually compensated (stabilized) against temperature, whereas other clocks, such as the cell cycle, that keep time with an organismic timescale are not compensated. This difference may be related to the predominance of negative feedback in the first class of clocks and a predominance of positive feedback (autocatalytic amplification) in the second class. The present knowledge of a compensated clock (the circadian oscillator) and an uncompensated clock (the cell cycle), as well

  8. Recent progress on understanding the mechanisms of amyloid nucleation.

    Science.gov (United States)

    Chatani, Eri; Yamamoto, Naoki

    2018-04-01

    Amyloid fibrils are supramolecular protein assemblies with a fibrous morphology and cross-β structure. The formation of amyloid fibrils typically follows a nucleation-dependent polymerization mechanism, in which a one-step nucleation scheme has widely been accepted. However, a variety of oligomers have been identified in early stages of fibrillation, and a nucleated conformational conversion (NCC) mechanism, in which oligomers serve as a precursor of amyloid nucleation and convert to amyloid nuclei, has been proposed. This development has raised the need to consider more complicated multi-step nucleation processes in addition to the simplest one-step process, and evidence for the direct involvement of oligomers as nucleation precursors has been obtained both experimentally and theoretically. Interestingly, the NCC mechanism has some analogy with the two-step nucleation mechanism proposed for inorganic and organic crystals and protein crystals, although a more dramatic conformational conversion of proteins should be considered in amyloid nucleation. Clarifying the properties of the nucleation precursors of amyloid fibrils in detail, in comparison with those of crystals, will allow a better understanding of the nucleation of amyloid fibrils and pave the way to develop techniques to regulate it.

  9. Understanding the thermal, mechanical and electrical properties of epoxy nanocomposites

    International Nuclear Information System (INIS)

    Sarathi, R.; Sahu, R.K.; Rajeshkumar, P.

    2007-01-01

    In the present work, the electrical, mechanical and thermal properties of epoxy nanocomposite materials were studied. The electrical insulation characteristics were analyzed through short time breakdown voltage test, accelerated electrical ageing test, and by tracking test. The breakdown voltage increases with increase in nano-clay content up to 5 wt%, under AC and DC voltages. The volume resistivity, permittivity and tan(δ) of the epoxy nanocomposites were measured. The Weibull studies indicate that addition of nanoclay upto 5 wt% enhances the characteristic life of epoxy nanocomposite insulation material. The tracking test results indicate that the tracking time is high with epoxy nanocomposites as compared to pure epoxy. Ageing studies were carried out to understand the surface characteristic variation through contact angle measurement. The hydrophobicity of the insulating material was analysed through contact angle measurement. The diffusion coefficients of the material with different percentage of clay in epoxy nanocomposites were calculated. The exfoliation characteristics in epoxy nanocomposites were analyzed through wide angle X-ray diffraction (WAXD) studies. The thermal behaviour of the epoxy nanocomposites was analyzed by carrying out thermo gravimetric-differential thermal analysis (TG-DTA) studies. Heat deflection temperature of the material was measured to understand the stability of the material for intermittent temperature variation. The dynamic mechanical analysis (DMA) results indicated that storage modulus of the material increases with small amount of clay in epoxy resin. The activation energy of the material was calculated from the DMA results

  10. Using chemistry and microfluidics to understand the spatial dynamics of complex biological networks.

    Science.gov (United States)

    Kastrup, Christian J; Runyon, Matthew K; Lucchetta, Elena M; Price, Jessica M; Ismagilov, Rustem F

    2008-04-01

    Understanding the spatial dynamics of biochemical networks is both fundamentally important for understanding life at the systems level and also has practical implications for medicine, engineering, biology, and chemistry. Studies at the level of individual reactions provide essential information about the function, interactions, and localization of individual molecular species and reactions in a network. However, analyzing the spatial dynamics of complex biochemical networks at this level is difficult. Biochemical networks are nonequilibrium systems containing dozens to hundreds of reactions with nonlinear and time-dependent interactions, and these interactions are influenced by diffusion, flow, and the relative values of state-dependent kinetic parameters. To achieve an overall understanding of the spatial dynamics of a network and the global mechanisms that drive its function, networks must be analyzed as a whole, where all of the components and influential parameters of a network are simultaneously considered. Here, we describe chemical concepts and microfluidic tools developed for network-level investigations of the spatial dynamics of these networks. Modular approaches can be used to simplify these networks by separating them into modules, and simple experimental or computational models can be created by replacing each module with a single reaction. Microfluidics can be used to implement these models as well as to analyze and perturb the complex network itself with spatial control on the micrometer scale. We also describe the application of these network-level approaches to elucidate the mechanisms governing the spatial dynamics of two networkshemostasis (blood clotting) and early patterning of the Drosophila embryo. To investigate the dynamics of the complex network of hemostasis, we simplified the network by using a modular mechanism and created a chemical model based on this mechanism by using microfluidics. Then, we used the mechanism and the model to

  11. Mechanisms influencing student understanding on an outdoor guided field trip

    Science.gov (United States)

    Caskey, Nourah Al-Rashid

    Field trips are a basic and important, yet often overlooked part of the student experience. They provide the opportunity to integrate real world knowledge with classroom learning and student previous personal experiences. Outdoor guided field trips leave students with an increased understanding, awareness and interest and in science. However, the benefits of this experience are ambiguous at best (Falk and Balling, 1982; Falk and Dierking, 1992; Kisiel, 2006.) Students on an outdoor guided field trip to a local nature park experienced a significant increase in their understanding of the rock cycle. The changes in the pre-field trip test and the post-field trip test as well as their answers in interviews showed a profound change in the students' understanding and in their interest in the subject matter. The use of the "student's voice" (Bamberger and Tal, 2008) was the motivation for data analysis. By using the students' voice, I was able to determine the mechanisms that might influence their understanding of a subject. The central concepts emerging from the data were: the outdoor setting; the students' interest; the social interaction. From these central concepts, a conceptual model was developed. The outdoor setting allows for the freedom to explore, touch, smell and movement. This, in turn, leads to an increased interest in subject matter. As the students are exploring, they are enjoying themselves and become more open to learning. Interest leads to a desire to learn (Dewey, 1975). In addition to allowing the freedom to explore and move, the outdoor setting creates the condition for social interaction. The students talk to each other as they walk; they have in-depth discourse regarding the subject matter---with the teachers, each other and with the guides. The guides have an extremely important role in the students' learning. The more successful guides not only act as experts, but also adjust to the students' needs and act or speak accordingly. The

  12. Understanding Neurological Disease Mechanisms in the Era of Epigenetics

    Science.gov (United States)

    Qureshi, Irfan A.; Mehler, Mark F.

    2015-01-01

    The burgeoning field of epigenetics is making a significant impact on our understanding of brain evolution, development, and function. In fact, it is now clear that epigenetic mechanisms promote seminal neurobiological processes, ranging from neural stem cell maintenance and differentiation to learning and memory. At the molecular level, epigenetic mechanisms regulate the structure and activity of the genome in response to intracellular and environmental cues, including the deployment of cell type–specific gene networks and those underlying synaptic plasticity. Pharmacological and genetic manipulation of epigenetic factors can, in turn, induce remarkable changes in neural cell identity and cognitive and behavioral phenotypes. Not surprisingly, it is also becoming apparent that epigenetics is intimately involved in neurological disease pathogenesis. Herein, we highlight emerging paradigms for linking epigenetic machinery and processes with neurological disease states, including how (1) mutations in genes encoding epigenetic factors cause disease, (2) genetic variation in genes encoding epigenetic factors modify disease risk, (3) abnormalities in epigenetic factor expression, localization, or function are involved in disease pathophysiology, (4) epigenetic mechanisms regulate disease-associated genomic loci, gene products, and cellular pathways, and (5) differential epigenetic profiles are present in patient-derived central and peripheral tissues. PMID:23571666

  13. Interaction mechanisms and biological effects of static magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Tenforde, T.S.

    1994-06-01

    Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals, there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.

  14. Tumour biology of obesity-related cancers: understanding the molecular concept for better diagnosis and treatment.

    Science.gov (United States)

    Teoh, Seong Lin; Das, Srijit

    2016-11-01

    Obesity continues to be a major global problem. Various cancers are related to obesity and proper understanding of their aetiology, especially their molecular tumour biology is important for early diagnosis and better treatment. Genes play an important role in the development of obesity. Few genes such as leptin, leptin receptor encoded by the db (diabetes), pro-opiomelanocortin, AgRP and NPY and melanocortin-4 receptors and insulin-induced gene 2 were linked to obesity. MicroRNAs control gene expression via mRNA degradation and protein translation inhibition and influence cell differentiation, cell growth and cell death. Overexpression of miR-143 inhibits tumour growth by suppressing B cell lymphoma 2, extracellular signal-regulated kinase-5 activities and KRAS oncogene. Cancers of the breast, uterus, renal, thyroid and liver are also related to obesity. Any disturbance in the production of sex hormones and insulin, leads to distortion in the balance between cell proliferation, differentiation and apoptosis. The possible mechanism linking obesity to cancer involves alteration in the level of adipokines and sex hormones. These mediators act as biomarkers for cancer progression and act as targets for cancer therapy and prevention. Interestingly, many anti-cancerous drugs are also beneficial in treating obesity and vice versa. We also reviewed the possible link in the mechanism of few drugs which act both on cancer and obesity. The present review may be important for molecular biologists, oncologists and clinicians treating cancers and also pave the way for better therapeutic options.

  15. Elastic Multi-scale Mechanisms: Computation and Biological Evolution.

    Science.gov (United States)

    Diaz Ochoa, Juan G

    2018-01-01

    Explanations based on low-level interacting elements are valuable and powerful since they contribute to identify the key mechanisms of biological functions. However, many dynamic systems based on low-level interacting elements with unambiguous, finite, and complete information of initial states generate future states that cannot be predicted, implying an increase of complexity and open-ended evolution. Such systems are like Turing machines, that overlap with dynamical systems that cannot halt. We argue that organisms find halting conditions by distorting these mechanisms, creating conditions for a constant creativity that drives evolution. We introduce a modulus of elasticity to measure the changes in these mechanisms in response to changes in the computed environment. We test this concept in a population of predators and predated cells with chemotactic mechanisms and demonstrate how the selection of a given mechanism depends on the entire population. We finally explore this concept in different frameworks and postulate that the identification of predictive mechanisms is only successful with small elasticity modulus.

  16. Shell and membrane theories in mechanics and biology from macro- to nanoscale structures

    CERN Document Server

    Mikhasev, Gennadi

    2015-01-01

    This book presents the latest results related to shells  characterize and design shells, plates, membranes and other thin-walled structures, a multidisciplinary approach from macro- to nanoscale is required which involves the classical disciplines of mechanical/civil/materials engineering (design, analysis, and properties) and physics/biology/medicine among others. The book contains contributions of a meeting of specialists (mechanical engineers, mathematicians, physicists and others) in such areas as classical and non-classical shell theories. New trends with respect to applications in mechanical, civil and aero-space engineering, as well as in new branches like medicine and biology are presented which demand improvements of the theoretical foundations of these theories and a deeper understanding of the material behavior used in such structures.

  17. Understanding quantum mechanics by measuring the properties of mesoscopic devices

    International Nuclear Information System (INIS)

    Webb, R.

    1993-01-01

    Measurements of the electrical transport and magnetic properties of micron-size scale insulators, metals, semi-metals, and semiconductors at low temperatures have uncovered a wealth of unexpected phenomena. The only way to understand these new properties is by invoking many of the postulates of quantum mechanics. The author has confirmed that the electron acts as a long-range phase-coherent wave and conventional classical forces are not as important as scalar and vector potentials in determining the response of the electron as it moves through its environment. This talk will focus on the measurement of the Aharonov-Bohm self-interference effects, nonlocal transport phenomena, and persistent currents in normal metal ring structures that have been observed in these nanostructures

  18. Context dependence of students' views about the role of equations in understanding biology.

    Science.gov (United States)

    Watkins, Jessica; Elby, Andrew

    2013-06-01

    Students' epistemological views about biology--their ideas about what "counts" as learning and understanding biology--play a role in how they approach their courses and respond to reforms. As introductory biology courses incorporate more physics and quantitative reasoning, student attitudes about the role of equations in biology become especially relevant. However, as documented in research in physics education, students' epistemologies are not always stable and fixed entities; they can be dynamic and context-dependent. In this paper, we examine an interview with an introductory student in which she discusses the use of equations in her reformed biology course. In one part of the interview, she expresses what sounds like an entrenched negative stance toward the role equations can play in understanding biology. However, later in the interview, when discussing a different biology topic, she takes a more positive stance toward the value of equations. These results highlight how a given student can have diverse ways of thinking about the value of bringing physics and math into biology. By highlighting how attitudes can shift in response to different tasks, instructional environments, and contextual cues, we emphasize the need to attend to these factors, rather than treating students' beliefs as fixed and stable.

  19. Understanding Liver Regeneration: From Mechanisms to Regenerative Medicine.

    Science.gov (United States)

    Gilgenkrantz, Hélène; Collin de l'Hortet, Alexandra

    2018-04-16

    Liver regeneration is a complex and unique process. When two-thirds of a mouse liver is removed, the remaining liver recovers its initial weight in approximately 10 days. The understanding of the mechanisms responsible for liver regeneration may help patients needing large liver resections or transplantation and may be applied to the field of regenerative medicine. All differentiated hepatocytes are capable of self-renewal, but different subpopulations of hepatocytes seem to have distinct proliferative abilities. In the setting of chronic liver diseases, a ductular reaction ensues in which liver progenitor cells (LPCs) proliferate in the periportal region. Although these LPCs have the capacity to differentiate into hepatocytes and biliary cells in vitro, their ability to participate in liver regeneration is far from clear. Their expansion has even been associated with increased fibrosis and poorer prognosis in chronic liver diseases. Controversies also remain on their origin: lineage studies in experimental mouse models of chronic injury have recently suggested that these LPCs originate from hepatocyte dedifferentiation, whereas in other situations, they seem to come from cholangiocytes. This review summarizes data published in the past 5 years in the liver regeneration field, discusses the mechanisms leading to regeneration disruption in chronic liver disorders, and addresses the potential use of novel approaches for regenerative medicine. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  20. Quantum selfish gene (biological evolution in terms of quantum mechanics)

    OpenAIRE

    Ozhigov, Yuri I.

    2013-01-01

    I propose to treat the biological evolution of genoms by means of quantum mechanical tools. We start with the concept of meta- gene, which specifies the "selfish gene" of R.Dawkins. Meta- gene encodes the abstract living unity, which can live relatively independently of the others, and can contain a few real creatures. Each population of living creatures we treat as the wave function on meta- genes, which module squared is the total number of creatures with the given meta-gene, and the phase ...

  1. Direct landfill disposal versus Mechanical Biological Treatment (MBT

    Directory of Open Access Journals (Sweden)

    Kulhawik Katarzyna

    2016-09-01

    Full Text Available After the implementation of a new waste management system, in which recycling is the most dominating process, landfill disposal still appears to be the most popular method of waste management in Poland, in which waste undergoes gradual decomposition and the influence of climate conditions, for example, air and atmospheric fallout, leads to the production of leachate and biogas emissions, which contribute to continual threats to the natural environment and humans. The above-mentioned threats can be limited by applying suitable techniques of waste treatment before its disposal. A technology that is oriented to these aims is a mechanical biological treatment (MBT before disposal.

  2. Review: Bioenergetic Fields and Their Biologic Effects Mechanism

    Directory of Open Access Journals (Sweden)

    Zahra Movaffaghi

    2007-04-01

    Full Text Available As interests in complementary and alternative medicine grows, the scientists are looking forward in researches which determine the mechanisms in which they exert their effectiveness. Some of these modalities like Yoga, Acupuncture, and especially other bio-field therapies such as none contact therapeutic touch, affects the bio-field which spreads throughout the body and into the space around it. According to physic’s law, when electricity flows throw the living tissues, like what happens in our heart and brain, biomagnetic fields are being induced in the surrounding space. Beside that moving charges like ions and free radicals which finally produce electromagnetic fields. Using very sensitive magnetometers, biomagnetic fields have been detected and get amplified up to 1000 times by meditation. This phenomenon could be the basis for most of most complementaty therapeutic approaches like therapeutic touch. On the other hand the electrical, magnetic and bio-magnetic fields have a well known application in conventional medicine. Modern research about bio-magnetism and magneto-biology suggests that in term of both aspects, the effects and the mechanisms for all the different looking modalities used in conventional medicine and complementary medicine which have commons in their fundamentals. This article reviews some of the recent works on biological effects of natural or artificial electromagnetic fields.

  3. On the mechanism of biological activation by tritium.

    Science.gov (United States)

    Rozhko, T V; Badun, G A; Razzhivina, I A; Guseynov, O A; Guseynova, V E; Kudryasheva, N S

    2016-06-01

    The mechanism of biological activation by beta-emitting radionuclide tritium was studied. Luminous marine bacteria were used as a bioassay to monitor the biological effect of tritium with luminescence intensity as the physiological parameter tested. Two different types of tritium sources were used: HTO molecules distributed regularly in the surrounding aqueous medium, and a solid source with tritium atoms fixed on its surface (tritium-labeled films, 0.11, 0.28, 0.91, and 2.36 MBq/cm(2)). When using the tritium-labeled films, tritium penetration into the cells was prevented. The both types of tritium sources revealed similar changes in the bacterial luminescence kinetics: a delay period followed by bioluminescence activation. No monotonic dependences of bioluminescence activation efficiency on specific radioactivities of the films were found. A 15-day exposure to tritiated water (100 MBq/L) did not reveal mutations in bacterial DNA. The results obtained give preference to a "non-genomic" mechanism of bioluminescence activation by tritium. An activation of the intracellular bioluminescence process develops without penetration of tritium atoms into the cells and can be caused by intensification of trans-membrane cellular processes stimulated by ionization and radiolysis of aqueous media. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles.

    Directory of Open Access Journals (Sweden)

    Olga Kononova

    2016-01-01

    Full Text Available The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams modeling the particle structure. The beams' deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F-deformation (X spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young's moduli for Hertzian and bending deformations, and the structural damage dependent beams' survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications.

  5. A Thai pre-service teacher's understanding of nature of science in biology teaching

    Science.gov (United States)

    Srisawat, Akkarawat; Aiemsum-ang, Napapan; Yuenyong, Chokchai

    2018-01-01

    This study was conducted on the effect of understanding and instruction of the nature of science of Ms. Wanida, a pre-service student under science education program in biology, Faculty of Education, Khon Kaen University. Wanida was a teaching practicum student majoring in biology at Khon Kaen University Demonstration School (Modindaeng). She was teaching biology for 38 Grade 10 students. Methodology regarded interpretive paradigm. The study aimed to examine 1) Wanida's understanding of the nature of science, 2) Wanida's instruction of the nature of science, 3 students' understanding of the nature of science from Wanida's instruction, and 4) the effects of Wanida's understanding and instruction of the nature of science on students' understanding of the nature of science from Wanida's instruction. Tools of interpretation included teaching observation, a semi-structured interview, open-ended questionnaire, and an observation record form for the instruction of the nature of science. The data obtained was interpreted, encoded, and classified, using the descriptive statistics. The findings indicated that Wanida held good understanding of the nature of science. She could apply the deficient nature of science approach mostly, followed by the implicit nature of science approach. Unfortunately, she could not show her teaching as explicit nature of science. However, her students' the understanding of the nature of science was good.

  6. Understanding the mechanisms behind coking pressure: Relationship to pore structure

    Energy Technology Data Exchange (ETDEWEB)

    John J. Duffy; M. Castro Diaz; Colin E. Snape; Karen M. Steel; Merrick R. Mahoney [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

    2007-09-15

    Three low volatile coals A, B and C with oven wall pressures of 100 kPa, 60 kPa and 20 kPa respectively were investigated using high-temperature rheometry, {sup 1}H NMR, thermogravimetric analysis and SEM, with the primary aim to better understand the mechanisms behind the coking pressure phenomenon. Rheometer plate displacement measurements ({Delta}L) have shown differences in the expansion and contraction behaviour of the three coals, which seem to correlate with changes in rheological properties; while SEM images have shown that the expansion process coincides with development of pore structure. It is considered that the point of maximum plate height ({Delta}L{sub max}) prior to contraction may be indicative of a cell opening or pore network forming process, based on analogies with other foam systems. Such a process may be considered important for coking pressure since it provides a potential mechanism for volatile escape, relieving internal gas pressure and inducing charge contraction. For coal C, which has the highest fluidity {delta}L{sub max} occurs quite early in the softening process and consequently a large degree of contraction is observed; while for the lower fluidity coal B, the process is delayed since pore development and consequently wall thinning progress at a slower rate. When {Delta}L{sub max} is attained, a lower degree of contraction is observed because the event occurs closer to resolidification where the increasing viscosity/elasticity can stabilise the expanded pore structure. For coal A which is relatively high fluidity, but also high coking pressure, a greater degree of swelling is observed prior to cell rupture, which may be due to greater fluid elasticity during the expansion process. This excessive expansion is considered to be a potential reason for its high coking pressure. 58 refs., 15 figs., 1 tab.

  7. Draft Genome of the Pearl Oyster Pinctada fucata: A Platform for Understanding Bivalve Biology

    Science.gov (United States)

    Takeuchi, Takeshi; Kawashima, Takeshi; Koyanagi, Ryo; Gyoja, Fuki; Tanaka, Makiko; Ikuta, Tetsuro; Shoguchi, Eiichi; Fujiwara, Mayuki; Shinzato, Chuya; Hisata, Kanako; Fujie, Manabu; Usami, Takeshi; Nagai, Kiyohito; Maeyama, Kaoru; Okamoto, Kikuhiko; Aoki, Hideo; Ishikawa, Takashi; Masaoka, Tetsuji; Fujiwara, Atushi; Endo, Kazuyoshi; Endo, Hirotoshi; Nagasawa, Hiromichi; Kinoshita, Shigeharu; Asakawa, Shuichi; Watabe, Shugo; Satoh, Nori

    2012-01-01

    The study of the pearl oyster Pinctada fucata is key to increasing our understanding of the molecular mechanisms involved in pearl biosynthesis and biology of bivalve molluscs. We sequenced ∼1150-Mb genome at ∼40-fold coverage using the Roche 454 GS-FLX and Illumina GAIIx sequencers. The sequences were assembled into contigs with N50 = 1.6 kb (total contig assembly reached to 1024 Mb) and scaffolds with N50 = 14.5 kb. The pearl oyster genome is AT-rich, with a GC content of 34%. DNA transposons, retrotransposons, and tandem repeat elements occupied 0.4, 1.5, and 7.9% of the genome, respectively (a total of 9.8%). Version 1.0 of the P. fucata draft genome contains 23 257 complete gene models, 70% of which are supported by the corresponding expressed sequence tags. The genes include those reported to have an association with bio-mineralization. Genes encoding transcription factors and signal transduction molecules are present in numbers comparable with genomes of other metazoans. Genome-wide molecular phylogeny suggests that the lophotrochozoan represents a distinct clade from ecdysozoans. Our draft genome of the pearl oyster thus provides a platform for the identification of selection markers and genes for calcification, knowledge of which will be important in the pearl industry. PMID:22315334

  8. Experimental and Modeling Approaches for Understanding the Effect of Gene Expression Noise in Biological Development

    Directory of Open Access Journals (Sweden)

    David M. Holloway

    2018-04-01

    Full Text Available Biological development involves numerous chemical and physical processes which must act in concert to reliably produce a cell, a tissue, or a body. To be successful, the developing organism must be robust to variability at many levels, such as the environment (e.g., temperature, moisture, upstream information (such as long-range positional information gradients, or intrinsic noise due to the stochastic nature of low concentration chemical kinetics. The latter is especially relevant to the regulation of gene expression in cell differentiation. The temporal stochasticity of gene expression has been studied in single celled organisms for nearly two decades, but only recently have techniques become available to gather temporally-resolved data across spatially-distributed gene expression patterns in developing multicellular organisms. These demonstrate temporal noisy “bursting” in the number of gene transcripts per cell, raising the question of how the transcript number defining a particular cell type is produced, such that one cell type can reliably be distinguished from a neighboring cell of different type along a tissue boundary. Stochastic spatio-temporal modeling of tissue-wide expression patterns can identify signatures for specific types of gene regulation, which can be used to extract regulatory mechanism information from experimental time series. This Perspective focuses on using this type of approach to study gene expression noise during the anterior-posterior segmentation of the fruit fly embryo. Advances in experimental and theoretical techniques will lead to an increasing quantification of expression noise that can be used to understand how regulatory mechanisms contribute to embryonic robustness across a range of developmental processes.

  9. Biological pathways and genetic mechanisms involved in social functioning.

    Science.gov (United States)

    Ordoñana, Juan R; Bartels, Meike; Boomsma, Dorret I; Cella, David; Mosing, Miriam; Oliveira, Joao R; Patrick, Donald L; Veenhoven, Ruut; Wagner, Gert G; Sprangers, Mirjam A G

    2013-08-01

    To describe the major findings in the literature regarding associations between biological and genetic factors and social functioning, paying special attention to: (1) heritability studies on social functioning and related concepts; (2) hypothesized biological pathways and genetic variants that could be involved in social functioning, and (3) the implications of these results for quality-of-life research. A search of Web of Science and PubMed databases was conducted using combinations of the following keywords: genetics, twins, heritability, social functioning, social adjustment, social interaction, and social dysfunction. Variability in the definitions and measures of social functioning was extensive. Moderate to high heritability was reported for social functioning and related concepts, including prosocial behavior, loneliness, and extraversion. Disorders characterized by impairments in social functioning also show substantial heritability. Genetic variants hypothesized to be involved in social functioning are related to the network of brain structures and processes that are known to affect social cognition and behavior. Better knowledge and understanding about the impact of genetic factors on social functioning is needed to help us to attain a more comprehensive view of health-related quality-of-life (HRQOL) and will ultimately enhance our ability to identify those patients who are vulnerable to poor social functioning.

  10. Dissecting the Molecular Mechanisms of Neurodegenerative Diseases through Network Biology

    Directory of Open Access Journals (Sweden)

    Jose A. Santiago

    2017-05-01

    Full Text Available Neurodegenerative diseases are rarely caused by a mutation in a single gene but rather influenced by a combination of genetic, epigenetic and environmental factors. Emerging high-throughput technologies such as RNA sequencing have been instrumental in deciphering the molecular landscape of neurodegenerative diseases, however, the interpretation of such large amounts of data remains a challenge. Network biology has become a powerful platform to integrate multiple omics data to comprehensively explore the molecular networks in the context of health and disease. In this review article, we highlight recent advances in network biology approaches with an emphasis in brain-networks that have provided insights into the molecular mechanisms leading to the most prevalent neurodegenerative diseases including Alzheimer’s (AD, Parkinson’s (PD and Huntington’s diseases (HD. We discuss how integrative approaches using multi-omics data from different tissues have been valuable for identifying biomarkers and therapeutic targets. In addition, we discuss the challenges the field of network medicine faces toward the translation of network-based findings into clinically actionable tools for personalized medicine applications.

  11. Quantum information and the problem of mechanisms of biological evolution.

    Science.gov (United States)

    Melkikh, Alexey V

    2014-01-01

    One of the most important conditions for replication in early evolution is the de facto elimination of the conformational degrees of freedom of the replicators, the mechanisms of which remain unclear. In addition, realistic evolutionary timescales can be established based only on partially directed evolution, further complicating this issue. A division of the various evolutionary theories into two classes has been proposed based on the presence or absence of a priori information about the evolving system. A priori information plays a key role in solving problems in evolution. Here, a model of partially directed evolution, based on the learning automata theory, which includes a priori information about the fitness space, is proposed. A potential repository of such prior information is the states of biologically important molecules. Thus, the need for extended evolutionary synthesis is discussed. Experiments to test the hypothesis of partially directed evolution are proposed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Can We Describe Biological Systems with Quantum Mechanics?

    International Nuclear Information System (INIS)

    Granados-Ramírez, C G; Benítez-Cardoza, C G; Carbajal-Tinoco, M D

    2016-01-01

    Quantum Mechanics is the favourite theory to predict the structure of any group of atoms, including biological molecules. Due to numerous difficulties, however, it is necessary to introduce a series of approximations to overcome such impediments. We present a coarse-grained model of circular dichroism (CD) that is based on the theory of optical activity, developed by DeVoe, in order to predict CD spectra. In first stage, we determine the polarisability of individual monomers (residues, in the case of peptides) from experiments of molar absorptivity. The complex polarisabilities are used together with peptide structures obtained by density functional theory and other methods to determine their corresponding CD spectra, which are in reasonable agreement with their experimental counterparts. (paper)

  13. Obstructive renal injury: from fluid mechanics to molecular cell biology.

    Science.gov (United States)

    Ucero, Alvaro C; Gonçalves, Sara; Benito-Martin, Alberto; Santamaría, Beatriz; Ramos, Adrian M; Berzal, Sergio; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto

    2010-04-22

    Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1) and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.

  14. Cognitive neuroepigenetics: the next evolution in our understanding of the molecular mechanisms underlying learning and memory?

    Science.gov (United States)

    Marshall, Paul; Bredy, Timothy W.

    2016-07-01

    A complete understanding of the fundamental mechanisms of learning and memory continues to elude neuroscientists. Although many important discoveries have been made, the question of how memories are encoded and maintained at the molecular level remains. So far, this issue has been framed within the context of one of the most dominant concepts in molecular biology, the central dogma, and the result has been a protein-centric view of memory. Here, we discuss the evidence supporting a role for neuroepigenetic mechanisms, which constitute dynamic and reversible, state-dependent modifications at all levels of control over cellular function, and their role in learning and memory. This neuroepigenetic view suggests that DNA, RNA and protein each influence one another to produce a holistic cellular state that contributes to the formation and maintenance of memory, and predicts a parallel and distributed system for the consolidation, storage and retrieval of the engram.

  15. Molecular phenology in plants: in natura systems biology for the comprehensive understanding of seasonal responses under natural environments.

    Science.gov (United States)

    Kudoh, Hiroshi

    2016-04-01

    Phenology refers to the study of seasonal schedules of organisms. Molecular phenology is defined here as the study of the seasonal patterns of organisms captured by molecular biology techniques. The history of molecular phenology is reviewed briefly in relation to advances in the quantification technology of gene expression. High-resolution molecular phenology (HMP) data have enabled us to study phenology with an approach of in natura systems biology. I review recent analyses of FLOWERING LOCUS C (FLC), a temperature-responsive repressor of flowering, along the six steps in the typical flow of in natura systems biology. The extensive studies of the regulation of FLC have made this example a successful case in which a comprehensive understanding of gene functions has been progressing. The FLC-mediated long-term memory of past temperatures creates time lags with other seasonal signals, such as photoperiod and short-term temperature. Major signals that control flowering time have a phase lag between them under natural conditions, and hypothetical phase lag calendars are proposed as mechanisms of season detection in plants. Transcriptomic HMP brings a novel strategy to the study of molecular phenology, because it provides a comprehensive representation of plant functions. I discuss future perspectives of molecular phenology from the standpoints of molecular biology, evolutionary biology and ecology. © 2015 The Author. New Phytologist © 2015 New Phytologist Trust.

  16. In search of mitochondrial mechanisms: interfield excursions between cell biology and biochemistry.

    Science.gov (United States)

    Bechtel, William; Abrahamsen, Adele

    2007-01-01

    Developing models of biological mechanisms, such as those involved in respiration in cells, often requires collaborative effort drawing upon techniques developed and information generated in different disciplines. Biochemists in the early decades of the 20th century uncovered all but the most elusive chemical operations involved in cellular respiration, but were unable to align the reaction pathways with particular structures in the cell. During the period 1940-1965 cell biology was emerging as a new discipline and made distinctive contributions to understanding the role of the mitochondrion and its component parts in cellular respiration. In particular, by developing techniques for localizing enzymes or enzyme systems in specific cellular components, cell biologists provided crucial information about the organized structures in which the biochemical reactions occurred. Although the idea that biochemical operations are intimately related to and depend on cell structures was at odds with the then-dominant emphasis on systems of soluble enzymes in biochemistry, a reconceptualization of energetic processes in the 1960s and 1970s made it clear why cell structure was critical to the biochemical account. This paper examines how numerous excursions between biochemistry and cell biology contributed a new understanding of the mechanism of cellular respiration.

  17. Understanding schizophrenia as a disorder of consciousness: biological correlates and translational implications from quantum theory perspectives.

    Science.gov (United States)

    Venkatasubramanian, Ganesan

    2015-04-30

    From neurophenomenological perspectives, schizophrenia has been conceptualized as "a disorder with heterogeneous manifestations that can be integrally understood to involve fundamental perturbations in consciousness". While these theoretical constructs based on consciousness facilitate understanding the 'gestalt' of schizophrenia, systematic research to unravel translational implications of these models is warranted. To address this, one needs to begin with exploration of plausible biological underpinnings of "perturbed consciousness" in schizophrenia. In this context, an attractive proposition to understand the biology of consciousness is "the orchestrated object reduction (Orch-OR) theory" which invokes quantum processes in the microtubules of neurons. The Orch-OR model is particularly important for understanding schizophrenia especially due to the shared 'scaffold' of microtubules. The initial sections of this review focus on the compelling evidence to support the view that "schizophrenia is a disorder of consciousness" through critical summary of the studies that have demonstrated self-abnormalities, aberrant time perception as well as dysfunctional intentional binding in this disorder. Subsequently, these findings are linked with 'Orch-OR theory' through the research evidence for aberrant neural oscillations as well as microtubule abnormalities observed in schizophrenia. Further sections emphasize the applicability and translational implications of Orch-OR theory in the context of schizophrenia and elucidate the relevance of quantum biology to understand the origins of this puzzling disorder as "fundamental disturbances in consciousness".

  18. Understanding and Enhancing Soil Biological Health: The Solution for Reversing Soil Degradation

    Directory of Open Access Journals (Sweden)

    R. Michael Lehman

    2015-01-01

    Full Text Available Our objective is to provide an optimistic strategy for reversing soil degradation by increasing public and private research efforts to understand the role of soil biology, particularly microbiology, on the health of our world’s soils. We begin by defining soil quality/soil health (which we consider to be interchangeable terms, characterizing healthy soil resources, and relating the significance of soil health to agroecosystems and their functions. We examine how soil biology influences soil health and how biological properties and processes contribute to sustainability of agriculture and ecosystem services. We continue by examining what can be done to manipulate soil biology to: (i increase nutrient availability for production of high yielding, high quality crops; (ii protect crops from pests, pathogens, weeds; and (iii manage other factors limiting production, provision of ecosystem services, and resilience to stresses like droughts. Next we look to the future by asking what needs to be known about soil biology that is not currently recognized or fully understood and how these needs could be addressed using emerging research tools. We conclude, based on our perceptions of how new knowledge regarding soil biology will help make agriculture more sustainable and productive, by recommending research emphases that should receive first priority through enhanced public and private research in order to reverse the trajectory toward global soil degradation.

  19. The value of mechanistic biophysical information for systems-level understanding of complex biological processes such as cytokinesis.

    Science.gov (United States)

    Pollard, Thomas D

    2014-12-02

    This review illustrates the value of quantitative information including concentrations, kinetic constants and equilibrium constants in modeling and simulating complex biological processes. Although much has been learned about some biological systems without these parameter values, they greatly strengthen mechanistic accounts of dynamical systems. The analysis of muscle contraction is a classic example of the value of combining an inventory of the molecules, atomic structures of the molecules, kinetic constants for the reactions, reconstitutions with purified proteins and theoretical modeling to account for the contraction of whole muscles. A similar strategy is now being used to understand the mechanism of cytokinesis using fission yeast as a favorable model system. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Effects of Ionizing Radiation on Biological Molecules—Mechanisms of Damage and Emerging Methods of Detection

    Science.gov (United States)

    Reisz, Julie A.; Bansal, Nidhi; Qian, Jiang; Zhao, Weiling

    2014-01-01

    Abstract Significance: The detrimental effects of ionizing radiation (IR) involve a highly orchestrated series of events that are amplified by endogenous signaling and culminating in oxidative damage to DNA, lipids, proteins, and many metabolites. Despite the global impact of IR, the molecular mechanisms underlying tissue damage reveal that many biomolecules are chemoselectively modified by IR. Recent Advances: The development of high-throughput “omics” technologies for mapping DNA and protein modifications have revolutionized the study of IR effects on biological systems. Studies in cells, tissues, and biological fluids are used to identify molecular features or biomarkers of IR exposure and response and the molecular mechanisms that regulate their expression or synthesis. Critical Issues: In this review, chemical mechanisms are described for IR-induced modifications of biomolecules along with methods for their detection. Included with the detection methods are crucial experimental considerations and caveats for their use. Additional factors critical to the cellular response to radiation, including alterations in protein expression, metabolomics, and epigenetic factors, are also discussed. Future Directions: Throughout the review, the synergy of combined “omics” technologies such as genomics and epigenomics, proteomics, and metabolomics is highlighted. These are anticipated to lead to new hypotheses to understand IR effects on biological systems and improve IR-based therapies. Antioxid. Redox Signal. 21: 260–292. PMID:24382094

  1. [Molecular Biology on the Mechanisms of Autism Spectrum Disorder for Clinical Psychiatrists].

    Science.gov (United States)

    Makinodan, Manabu

    2015-01-01

    While, in general, a certain number of clinical psychiatrists might not be familiar with molecular biology, the mechanisms of mental illnesses have been uncovered by molecular biology for decades. Among mental illnesses, even biological psychiatrists and neuroscientists have paid less attention to the biological treatment of autism spectrum disorder (ASD) than Alzheimer's disease and schizophrenia since ASD has been regarded as a developmental disorder that was seemingly untreatable. However, multifaceted methods of molecular biology have revealed the mechanisms that would lead to the medication of ASD. In this article, how molecular biology dissects the pathobiology of ASD is described in order to announce the possibilities of biological treatment for clinical psychiatrists.

  2. Formamidopyrimidines in DNA: mechanisms of formation, repair, and biological effects.

    Science.gov (United States)

    Dizdaroglu, Miral; Kirkali, Güldal; Jaruga, Pawel

    2008-12-15

    Oxidatively induced damage to DNA results in a plethora of lesions comprising modified bases and sugars, DNA-protein cross-links, tandem lesions, strand breaks, and clustered lesions. Formamidopyrimidines, 4,6-diamino-5-formamidopyrimidine (FapyAde) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua), are among the major lesions generated in DNA by hydroxyl radical attack, UV radiation, or photosensitization under numerous in vitro and in vivo conditions. They are formed by one-electron reduction of C8-OH-adduct radicals of purines and thus have a common precursor with 8-hydroxypurines generated upon one-electron oxidation. Methodologies using mass spectrometry exist to accurately measure FapyAde and FapyGua in vitro and in vivo. Formamidopyrimidines are repaired by base excision repair. Numerous prokaryotic and eukaryotic DNA glycosylases are highly specific for removal of these lesions from DNA in the first step of this repair pathway, indicating their biological importance. FapyAde and FapyGua are bypassed by DNA polymerases with the insertion of the wrong intact base opposite them, leading to mutagenesis. In mammalian cells, the mutagenicity of FapyGua exceeds that of 8-hydroxyguanine, which is thought to be the most mutagenic of the oxidatively induced lesions in DNA. The background and formation levels of the former in vitro and in vivo equal or exceed those of the latter under various conditions. FapyAde and FapyGua exist in living cells at significant background levels and are abundantly generated upon exposure to oxidative stress. Mice lacking the genes that encode specific DNA glycosylases accumulate these lesions in different organs and, in some cases, exhibit a series of pathological conditions including metabolic syndrome and cancer. Animals exposed to environmental toxins accumulate formamidopyrimidines in their organs. Here, we extensively review the mechanisms of formation, measurement, repair, and biological effects of formamidopyrimidines

  3. A network biology approach to understanding the importance of chameleon proteins in human physiology and pathology.

    Science.gov (United States)

    Bahramali, Golnaz; Goliaei, Bahram; Minuchehr, Zarrin; Marashi, Sayed-Amir

    2017-02-01

    Chameleon proteins are proteins which include sequences that can adopt α-helix-β-strand (HE-chameleon) or α-helix-coil (HC-chameleon) or β-strand-coil (CE-chameleon) structures to operate their crucial biological functions. In this study, using a network-based approach, we examined the chameleon proteins to give a better knowledge on these proteins. We focused on proteins with identical chameleon sequences with more than or equal to seven residues long in different PDB entries, which adopt HE-chameleon, HC-chameleon, and CE-chameleon structures in the same protein. One hundred and ninety-one human chameleon proteins were identified via our in-house program. Then, protein-protein interaction (PPI) networks, Gene ontology (GO) enrichment, disease network, and pathway enrichment analyses were performed for our derived data set. We discovered that there are chameleon sequences which reside in protein-protein interaction regions between two proteins critical for their dual function. Analysis of the PPI networks for chameleon proteins introduced five hub proteins, namely TP53, EGFR, HSP90AA1, PPARA, and HIF1A, which were presented in four PPI clusters. The outcomes demonstrate that the chameleon regions are in critical domains of these proteins and are important in the development and treatment of human cancers. The present report is the first network-based functional study of chameleon proteins using computational approaches and might provide a new perspective for understanding the mechanisms of diseases helping us in developing new medical therapies along with discovering new proteins with chameleon properties which are highly important in cancer.

  4. Chemical, mechanical and biological properties of contemporary composite surface sealers.

    Science.gov (United States)

    Anagnostou, Maria; Mountouris, George; Silikas, Nick; Kletsas, Dimitris; Eliades, George

    2015-12-01

    To evaluate the chemical, mechanical, and biological properties of modern composite surface sealers (CSS) having different compositions. The CSS products tested were Biscover LV (BC), Durafinish (DF), G-Coat Plus (GC), and Permaseal (PS). The tests performed were: (A): degree of conversion (DC%) by ATR-FTIR spectroscopy; (B): thickness of O2-inhibition layer by transmission optical microscopy; (C): surface hardness, 10 min after irradiation and following 1 week water storage, employing a Vickers indenter (VHN); (D): color (ΔE*) and gloss changes (ΔGU) after toothbrush abrasion, using L*a*b* colorimetry and glossimetry; (E): accelerated wear (GC,PS only) by an OHSU wear simulator plus 3D profilometric analysis, and (F): cytotoxicity testing of aqueous CSS eluents on human gingival fibroblast cultures employing the methyl-(3)H thymidine DNA labeling method. Statistical analyses included 1-way (A, B, ΔE*, ΔGU) and 2-way (C, F) ANOVAs, plus Tukey post hoc tests. Student's t-test was used to evaluate the results of the accelerated wear test (α=0.05 for all). The rankings of the statistical significant differences were: (A) PS (64.9)>DF,BC,GC (56.1-53.9) DC%; (B) DF,PS (12.3,9.8)>GC,BC (5.2,4.8) μm; (C): GC (37.6)>BC,DF (32.6,31.1)>PS (26.6) VHN (10 min/dry) and BC,DF (29.3,28.7)>GC(26.5)>PS(21.6) VHN (1w/water), with no significant material/storage condition interaction; (D): no differences were found among GC,DF,BC,PS (0.67-1.11) ΔE*, with all values within the visually acceptable range and PS,BC (32.8,29.4)>GC,DF (19.4,12.9) ΔGU; (E): no differences were found between GC and PS in volume loss (0.10,0.11 mm(3)), maximum (113.9,130.5 μm) and mean wear depths (30.3,27.5 μm); (F): at 1% v/v concentration, DF showed toxicity (23% vital cells vs 95-102% for others). However, at 5% v/v concentration DF (0%) and BC (9%) were the most toxic, whereas GC (58%) and PS (56%) showed moderate toxicity. Important chemical, mechanical, and biological properties exist among

  5. Biological mechanisms of radiation effects; Biologische Mechanismen der Strahlenwirkung

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, S.; Doerr, W. [Medizinische Universitaet Wien, ATRAB - Angewandte und Translationale Radiobiologie, Univ.-Klinik fuer Strahlentherapie, Wien (Austria)

    2017-07-15

    Exposure to ionizing radiation for diagnostic purposes is inevitable in modern medicine. The therapeutic application of irradiation is highly effective against cancer; however, this implies exposure of normal tissue structures to significant doses of radiation. Diagnostic or therapeutic exposure to ionizing radiation can result in tissue changes and tumor induction in the long term. Knowledge of the biological mechanisms underlying these effects is essential for individualization of the application. This article examines the biological mechanisms at the tissue and molecular level, the clinical manifestation of radiation effects, dose-dependence of the risk and the temporal progression as well as influencing factors. The time course of the reaction of tissues to radiation exposure extends over wide ranges up to many decades. The effects of radiation on tissues are classified into early and late and their pathobiology is significantly different. Various factors (R) influencing the clinical manifestation of radiation effects have been identified related to the exposure pattern. The radiation tolerance of normal tissue structures regarding the induction of functional deficits shows great variation but always has a threshold value, which is usually not exceeded in diagnostic procedures. The risk of a radiation-induced fatal malignancy (total body exposure 5%/Gy) for a medical administration of radiation must be considered as very low in comparison to the natural risks. Informed consent of patients must reflect this in a balanced way. (orig.) [German] Eine Exposition mit ionisierender Strahlung fuer diagnostische Zwecke ist in der modernen Medizin unumgaenglich. Bei einer Tumorerkrankung ist die therapeutische Anwendung dieser Strahlung hoch effektiv. Dies impliziert immer eine Exposition normaler Gewebestrukturen mit signifikanten Strahlendosen. Die diagnostische oder therapeutische Exposition mit ionisierender Strahlung kann langfristig zu Gewebeveraenderungen und

  6. Understanding the mechanism of base development of HSQ

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jihoon; Chao, Weilun; Griedel, Brian; Liang, Xiaogan; Lewis, Mark; Hilken, Dawn; Olynick, Deirdre

    2009-06-16

    We study the dissolution mechanism of HSQ (hydrogen silsesquioxane) in base solutions with the addition of chloride salts to elucidate the development mechanism. Reaction mechanisms are proposed based on the dissolution mechanism of quartz. Development kinetics points to two dose-dependent development mechanisms. Considering ion sizes, both hydrated and non-hydrated, and ion exchange, we propose that a combination of a surface dominated reaction at higher doses and a matrix dominated reaction at lower doses accounts for the high development contrast with a NaOH base/NaCl salt mixture. The interplay between the hydrated and non-hydrated ion size leads to higher contrast developers, such as tetramethyl ammonium hydroxide (TMAH) with NaCl.

  7. Biology and Mechanics of Blood Flows Part II: Mechanics and Medical Aspects

    CERN Document Server

    Thiriet, Marc

    2008-01-01

    Biology and Mechanics of Blood Flows presents the basic knowledge and state-of-the-art techniques necessary to carry out investigations of the cardiovascular system using modeling and simulation. Part II of this two-volume sequence, Mechanics and Medical Aspects, refers to the extraction of input data at the macroscopic scale for modeling the cardiovascular system, and complements Part I, which focuses on nanoscopic and microscopic components and processes. This volume contains chapters on anatomy, physiology, continuum mechanics, as well as pathological changes in the vasculature walls including the heart and their treatments. Methods of numerical simulations are given and illustrated in particular by application to wall diseases. This authoritative book will appeal to any biologist, chemist, physicist, or applied mathematician interested in the functioning of the cardiovascular system.

  8. [Bone Cell Biology Assessed by Microscopic Approach. A mathematical approach to understand bone remodeling].

    Science.gov (United States)

    Kameo, Yoshitaka; Adachi, Taiji

    2015-10-01

    It is well known that bone tissue can change its outer shape and internal structure by remodeling according to a changing mechanical environment. However, the mechanism of bone functional adaptation induced by the collaborative metabolic activities of bone cells in response to mechanical stimuli remains elusive. In this article, we focus on the hierarchy of bone structure and function from the microscopic cellular level to the macroscopic tissue level. We provide an overview of a mathematical approach to understand the adaptive changes in trabecular morphology under the application of mechanical stress.

  9. A CRISPR-based MLST Scheme for Understanding the Population Biology and Epidemiology of Salmonella Enterica

    Science.gov (United States)

    2015-05-26

    N. Shariat, R. E. Timme, J. B. Pettengill, R. Barrangou, E. G. Dudley. Characterization and evolution of Salmonella CRISPR - Cas systems...Barrangou, Edward G. Dudley. Characterization of CRISPR - Cas in Salmonella, 3rd European CRISPR meeting. 14-MAY-14, . : , Margaret K. Kirchner, Nikki... CRISPRs Beyond subtyping approaches, we were motivated to understand the biology of CRISPR - Cas systems in Salmonella. We performed in-depth sequence

  10. Confronting actual influence of radiation on human bodies and biological defense mechanism

    International Nuclear Information System (INIS)

    Matsubara, Junko

    2012-01-01

    After the accident at Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Company, social, economical, psychological pressures on local residents and fears of radiation among the general public have not been resolved. Based on the assumption that the negligence of specialists to clearly explain the influence of radiation on human bodies to the general public is the factor for above mentioned pressures and fears, the influence of radiation from a realistic view was discussed. The topics covered are: (1) understanding the meaning of radiation regulation, (2) radiation and threshold values, (3) actual influence of low-dose radiation, (4) chemical and biological defense in defense mechanism against radiation, (5) problems raised by Fukushima Daiichi nuclear accident. Furthermore, the article explains the principles and the applications of biological defense function activation, and suggested that self-help efforts to fight against stress are from now on. (S.K.)

  11. Epigenetic Mechanisms in Bone Biology and Osteoporosis: Can They Drive Therapeutic Choices?

    Science.gov (United States)

    Marini, Francesca; Cianferotti, Luisella; Brandi, Maria Luisa

    2016-08-12

    Osteoporosis is a complex multifactorial disorder of the skeleton. Genetic factors are important in determining peak bone mass and structure, as well as the predisposition to bone deterioration and fragility fractures. Nonetheless, genetic factors alone are not sufficient to explain osteoporosis development and fragility fracture occurrence. Indeed, epigenetic factors, representing a link between individual genetic aspects and environmental influences, are also strongly suspected to be involved in bone biology and osteoporosis. Recently, alterations in epigenetic mechanisms and their activity have been associated with aging. Also, bone metabolism has been demonstrated to be under the control of epigenetic mechanisms. Runt-related transcription factor 2 (RUNX2), the master transcription factor of osteoblast differentiation, has been shown to be regulated by histone deacetylases and microRNAs (miRNAs). Some miRNAs were also proven to have key roles in the regulation of Wnt signalling in osteoblastogenesis, and to be important for the positive or negative regulation of both osteoblast and osteoclast differentiation. Exogenous and environmental stimuli, influencing the functionality of epigenetic mechanisms involved in the regulation of bone metabolism, may contribute to the development of osteoporosis and other bone disorders, in synergy with genetic determinants. The progressive understanding of roles of epigenetic mechanisms in normal bone metabolism and in multifactorial bone disorders will be very helpful for a better comprehension of disease pathogenesis and translation of this information into clinical practice. A deep understanding of these mechanisms could help in the future tailoring of proper individual treatments, according to precision medicine's principles.

  12. Mechanism of biological liquid superlubricity of Brasenia schreberi mucilage.

    Science.gov (United States)

    Liu, Pengxiao; Liu, Yuhong; Yang, Ye; Chen, Zhe; Li, Jinjin; Luo, Jianbin

    2014-04-08

    In the present work, an excellent biological lubricant extracted from an aquatic plant called Brasenia schreberi (B.s) is reported. With a rotary cylinder-on-ring tribometer, the lubrication properties of the B.s mucilage between quartz glass surfaces have been investigated under different rotation velocity, and an ultralow friction coefficient between 0.004 and 0.006 is obtained. It is observed that the ultralow friction coefficient is independent of the rotation speed, when it is less than 0.1 m/s. SEM images indicate that the mucilage surrounding B.s is composed of polysaccharide gels with a layered structure, which are called nanosheets in the following work. Moreover, it can be deduced that the liquid superlubricity is closely related to the B.s mucilage layer absorbed on the quartz glass surface by hydrogen bonds and the superlubricity behavior only occurs when the adsorption layer stably forms between the quartz glass surface and the B.s mucilage. It is also found that superlubricity is closely dependent upon the sheet structure of the B.s mucilage and water molecules in the mucilage. According to these results, a layered nanosheets lubrication mechanism has been revealed, i.e., the ultralow friction coefficient is due to the adsorption layer of polysaccharide on the quartz glass surface and the hydration layers of water molecules bonded on the polysaccharide nanosheets between the sliding surfaces.

  13. Physicochemical Mechanisms of Synergistic Biological Action of Combinations of Aromatic Heterocyclic Compounds

    OpenAIRE

    Evstigneev, Maxim P.

    2013-01-01

    The mechanisms of synergistic biological effects observed in the simultaneous use of aromatic heterocyclic compounds in combination are reviewed, and the specific biological role of heteroassociation of aromatic molecules is discussed.

  14. Understanding the Mechanism behind Maternal Imprisonment and Adolescent School Dropout

    Science.gov (United States)

    Cho, Rosa M.

    2011-01-01

    This study empirically tested 3 mechanisms commonly suggested to disadvantage youths whose mothers are incarcerated in prison. An event history analysis of school dropout was conducted on a sample of 6,008 adolescents in a large city created by merging several Illinois state administrative data. Findings revealed that adolescents are indeed at…

  15. Understanding "Understanding" Flow for Network-Centric Warfare: Military Knowledge-Flow Mechanics

    National Research Council Canada - National Science Library

    Nissen, Mark

    2002-01-01

    Network-centric warfare (NCW) emphasizes information superiority for battlespace efficacy, but it is clear that the mechanics of how knowledge flows are just as important as those pertaining to the networks and communication...

  16. The potential biological mechanisms of arsenic-induced diabetes mellitus

    International Nuclear Information System (INIS)

    Tseng, C.-H.

    2004-01-01

    Although epidemiologic studies carried out in Taiwan, Bangladesh, and Sweden have demonstrated a diabetogenic effect of arsenic, the mechanisms remain unclear and require further investigation. This paper reviewed the potential biological mechanisms of arsenic-induced diabetes mellitus based on the current knowledge of the biochemical properties of arsenic. Arsenate can substitute phosphate in the formation of adenosine triphosphate (ATP) and other phosphate intermediates involved in glucose metabolism, which could theoretically slow down the normal metabolism of glucose, interrupt the production of energy, and interfere with the ATP-dependent insulin secretion. However, the concentration of arsenate required for such reaction is high and not physiologically relevant, and these effects may only happen in acute intoxication and may not be effective in subjects chronically exposed to low-dose arsenic. On the other hand, arsenite has high affinity for sulfhydryl groups and thus can form covalent bonds with the disulfide bridges in the molecules of insulin, insulin receptors, glucose transporters (GLUTs), and enzymes involved in glucose metabolism (e.g., pyruvate dehydrogenase and α-ketoglutarate dehydrogenase). As a result, the normal functions of these molecules can be hampered. However, a direct effect on these molecules caused by arsenite at physiologically relevant concentrations seems unlikely. Recent evidence has shown that treatment of arsenite at lower and physiologically relevant concentrations can stimulate glucose transport, in contrary to an inhibitory effect exerted by phenylarsine oxide (PAO) or by higher doses of arsenite. Induction of oxidative stress and interferences in signal transduction or gene expression by arsenic or by its methylated metabolites are the most possible causes to arsenic-induced diabetes mellitus through mechanisms of induction of insulin resistance and β cell dysfunction. Recent studies have shown that, in subjects with chronic

  17. A proposed chemical mechanism for biological phosphate removal ...

    African Journals Online (AJOL)

    This paper presents an alternative for the ";all biological"; phosphate removal model. It is postulated that a chemical substance in wastewater reacts with orthophosphate under anaerobic conditions to make the so-called luxury uptake of phosphorus possible in biological nutrient removal (BNR) activated sludge plants.

  18. Biological defense mechanisms against DNA double-strand break and their possible medical applications

    International Nuclear Information System (INIS)

    Matsumoto, Yoshihisa

    2011-01-01

    Radiation is now widely used for clinical diagnosis and therapeutics. On the other hand, radiation influences various tissues represented by immunological and reproductive systems, and is also recognized as one of the cause of carcinogenesis. Such pleiotropic effects of radiation are mediated through generation of damages on DNA molecule, vitally important genetic macromolecule. Among various types of DNA damages, double-strand break (DSB) is considered most critical and, therefore, responsible for biological effects. DSB is repaired mainly through two pathways: non-homologous end joining (NHEJ) and homologous recombination (HR). Understanding of these mechanisms has been greatly deepened in past 20 years and is now providing a promising approach toward cancer therapy. We have studied the mechanisms of NHEJ, focusing especially on the role of phosphorylation and the assembly of machinery therein, which will be introduced below. (author)

  19. Next Steps Toward Understanding Human Habitation of Space: Environmental Impacts and Mechanisms

    Science.gov (United States)

    Globus, Ruth

    2016-01-01

    factor alone implying at least some shared underlying mechanisms. Thus, both ground based and spaceflight research utilizing model organisms provide the opportunity to better understand environmental factors and biological mechanisms that contribute to human health and survival in space.

  20. Quality of Life Philosophy III. Towards a New Biology: Understanding the Biological Connection between Quality of Life, Disease, and Healing

    Directory of Open Access Journals (Sweden)

    Soren Ventegodt

    2003-01-01

    Full Text Available This paper addresses (in a philosophical way the complex and enigmatic interface between matter, life, and consciousness in modern medical science. The problem today in understanding living matter is not at the molecular level, but at the macro level where all molecular activities in the individual cell are coordinated, and especially at a higher level, where the activities of all the organism’s cells are coordinated. Although we understand very much of the body’s chemistry, we have only just started to get the gist of the tremendous organization of living matter. We are just beginning to acknowledge the enormous flow of information that is needed to make everything function in a healthy organism, including consciousness, where every cell does exactly what it has to do to make the organs function.A concept that seems to be able to bridge the scientifically very different domains of matter, life, and consciousness seems to be “biological information”. If a cell is seen as a liquid crystal in which the cell’s molecules constantly connect in firm mutual relationships only to dissolve again and become fluid and free, whenever the cell needs it, the backbone of the cell seems to be the information that organizes the cell. For example, in cell motion a cell is able to crawl with the help of a skeleton of fibers that can be created guided by biological information, whenever the cell needs the solidity provided by the fibers. The moment it has finished crawling or intends to crawl in another direction, these fibers will dissolve again. The fibers are made of millions of molecules that connect in an arranged pattern, and they dissolve when these molecules again let go of each other. How the cell precisely regulates such processes is today a complete mystery. How cells cocreate consciousness is also an enigma. All we can do is describe the cell and the organisms arising from its cells as filled with energy and information as well as an

  1. Preparation and Characterization Challenges to Understanding Environmental and Biological Impacts of Ceria Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Karakoti, Ajay S.; Munusamy, Prabhakaran; Hostetler, Kasey E.; Kodali, Vamsi K.; Kuchibhatla, Satyanarayana V N T; Orr, Galya; Pounds, Joel G.; Teeguarden, Justin G.; Thrall, Brian D.; Baer, Donald R.

    2012-08-01

    It has been increasingly recognized that understanding and predicting the behaviors of nanoparticles is often limited by the degree to which the particles can be reliably produced and are adequately characterized. Examining data from the literature for ceria nanoparticles suggests that thermal history is one factor that has a strong influence on biological impact. Thermal processing may alter many physicochemical properties of the particles including density, crystal structure and the presence of surface contamination, but these may not be sufficiently recorded or reported to determine the ultimate source of an observed impact. A second example shows the types of difficulties that can be encountered in efforts to apply a well-studied synthesis route to producing well defined particles for biological studies. These examples and others highlight the importance of characterizing particles thoroughly and recording details of particle processing and history that are often not recorded and/or reported.

  2. Biological agents and respiratory infections: Causative mechanisms and practice management.

    Science.gov (United States)

    Takayanagi, Noboru

    2015-09-01

    Biological agents are increasingly being used to treat patients with immune-mediated inflammatory disease. In Japan, currently approved biological agents for patients with rheumatoid arthritis (RA) include tumor necrosis factor inhibitors, interleukin-6 receptor-blocking monoclonal antibody, and T-cell costimulation inhibitor. Rheumatologists have recognized that safety issues are critical aspects of treatment decisions in RA. Therefore, a wealth of safety data has been gathered from a number of sources, including randomized clinical trials and postmarketing data from large national registries. These data revealed that the most serious adverse events from these drugs are respiratory infections, especially pneumonia, tuberculosis, nontuberculous mycobacteriosis, and Pneumocystis jirovecii pneumonia, and that the most common risk factors associated with these respiratory infections are older age, concomitant corticosteroid use, and underlying respiratory comorbidities. Because of this background, in 2014, the Japanese Respiratory Society published their consensus statement of biological agents and respiratory disorders. This review summarizes this statement and adds recent evidence, especially concerning respiratory infections in RA patients, biological agents and respiratory infections, and practice management of respiratory infections in patients treated with biological agents. To decrease the incidence of infections and reduce mortality, we should know the epidemiology, risk factors, management, and methods of prevention of respiratory infections in patients receiving biological agents. Copyright © 2015 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  3. Beyond the therapeutic shackles of the monoamines: New mechanisms in bipolar disorder biology.

    Science.gov (United States)

    Data-Franco, João; Singh, Ajeet; Popovic, Dina; Ashton, Melanie; Berk, Michael; Vieta, Eduard; Figueira, M L; Dean, Olivia M

    2017-01-04

    Multiple novel biological mechanisms putatively involved in the etiology of bipolar disorders are being explored. These include oxidative stress, altered glutamatergic neurotransmission, mitochondrial dysfunction, inflammation, cell signaling, apoptosis and impaired neurogenesis. Important clinical translational potential exists for such mechanisms to help underpin development of novel therapeutics - much needed given limitations of current therapies. These new mechanisms also help improve our understanding of how current therapeutics might exert their effects. Lithium, for example, appears to have antioxidant, immunomodulatory, signaling, anti-apoptotic and neuroprotective properties. Similar properties have been attributed to other mood stabilizers such as valproate, lamotrigine, and quetiapine. Perhaps of greatest translational value has been the recognition of such mechanisms leading to the emergence of novel therapeutics for bipolar disorders. These include the antioxidant N-acetylcysteine, the anti-inflammatory celecoxib, and ketamine - with effects on the glutamatergic system and microglial inhibition. We review these novel mechanisms and emerging therapeutics, and comment on next steps in this space. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Understanding mechanisms of autoimmunity through translational research in vitiligo

    Science.gov (United States)

    Strassner, James P; Harris, John E

    2016-01-01

    Vitiligo is an autoimmune disease of the skin that leads to life-altering depigmentation and remains difficult to treat. However, clinical observations and translational studies over 30-40 years have led to the development of an insightful working model of disease pathogenesis: Genetic risk spanning both immune and melanocyte functions is pushed over a threshold by known and suspected environmental factors to initiate autoimmune T cell-mediated killing of melanocytes. While under cellular stress, melanocytes appear to signal innate immunity to activate T cells. Once the autoimmune T cell response is established, the IFN-γ-STAT1-CXCL10 signaling axis becomes the primary inflammatory pathway driving both progression and maintenance of vitiligo. This pathway is a tempting target for both existing and developing pharmaceuticals, but further detailing how melanocytes signal their own demise may also lead to new therapeutic targets. Research in vitiligo may be the future key to understand the pathogenesis of organ-specific autoimmunity, as vitiligo is common, reversible, progresses over the life of the individual, has been relatively well-defined, and is quite easy to study using translational and clinical approaches. What is revealed in these studies can lead to innovative treatments and also help elucidate the principles that underlie similar organ-specific autoimmune diseases, especially in cases where the target organ is less accessible. PMID:27764715

  5. Understanding mechanisms to predict and optimize biochar for agrochemical sorption

    Science.gov (United States)

    Hall, Kathleen; Gámiz, Beatriz; Cox, Lucia; Spokas, Kurt; Koskinen, William

    2017-04-01

    The ability of biochars to bind various organic compounds has been widely studied due to the potential effects on pesticide fate in soil and interest in the adoption of biochar as a "low-cost" filter material. However, the sorptive behaviors of biochars are extremely variable and much of the reported data is limited to specific biochar-chemical interactions. The lack of knowledge regarding biochar sorption mechanisms limits our current ability to predict and optimize biochar's use. This work unveils mechanistic drivers of organic pesticide sorption on biochars through targeted alteration of biochar surface chemistry. Changes in the quantity and type of functional groups on biochars and other black carbon materials were achieved through treatments with H2O2, and CO2, and characterized using Fourier transform infrared spectroscopy and scanning electron microscope (SEM/EDX). The sorption capacities of these treated biochars were subsequently measured to evaluate the effects of different surface moieties on the binding of target herbicides cyhalofop acid ((R)-2-[4-(4-cyano-2-fluorophenoxy)phenoxy]propionic acid) and clomazone (2-[(2-chlorophenyl)methyl]-4,4-dimethyl-1,2-oxazolidin-3-one). Sorption of both herbicides on the studied biochars increased following H2O2 activation; however, the influence of the H2O2 activation on sorption was more pronounced for cyhalofop acid (pKa = 3.9) than clomazone, which is non-ionizable. Increased cyhalofop acid sorption on H2O2 treated biochars can be attributed to the increase in oxygen containing functional groups as well as the decrease in biochar pH. In contrast, CO2 activation reduced the sorption of cyhalofop acid compared to untreated biochar. FTIR data suggest the reduced sorption on CO2 -treated biochar was due to the removal of surface carboxyl groups, further supporting the role of specific functionality in the sorption of ionizable herbicides. Results from this work offer insight into the mechanisms of sorption and

  6. Understanding the mechanisms of amorphous creep through molecular simulation.

    Science.gov (United States)

    Cao, Penghui; Short, Michael P; Yip, Sidney

    2017-12-26

    Molecular processes of creep in metallic glass thin films are simulated at experimental timescales using a metadynamics-based atomistic method. Space-time evolutions of the atomic strains and nonaffine atom displacements are analyzed to reveal details of the atomic-level deformation and flow processes of amorphous creep in response to stress and thermal activations. From the simulation results, resolved spatially on the nanoscale and temporally over time increments of fractions of a second, we derive a mechanistic explanation of the well-known variation of creep rate with stress. We also construct a deformation map delineating the predominant regimes of diffusional creep at low stress and high temperature and deformational creep at high stress. Our findings validate the relevance of two original models of the mechanisms of amorphous plasticity: one focusing on atomic diffusion via free volume and the other focusing on stress-induced shear deformation. These processes are found to be nonlinearly coupled through dynamically heterogeneous fluctuations that characterize the slow dynamics of systems out of equilibrium.

  7. Mechanical properties of the beetle elytron, a biological composite material

    Science.gov (United States)

    We determined the relationship between composition and mechanical properties of elytral (modified forewing) cuticle of the beetles Tribolium castaneum and Tenebrio molitor. Elytra of both species have similar mechanical properties at comparable stages of maturation (tanning). Shortly after adult ecl...

  8. A comparison of molecular biology mechanism of Shewanella putrefaciens between fresh and terrestrial sewage wastewater

    Directory of Open Access Journals (Sweden)

    Jiajie Xu

    2016-11-01

    Full Text Available Municipal and industrial wastewater is often discharged into the environment without appropriate treatment, especially in developing countries. As a result, many rivers and oceans are contaminated. It is urgent to control and administer treatments to these contaminated rivers and oceans. However, most mechanisms of bacterial colonization in contaminated rivers and oceans were unknown, especially in sewage outlets. We found Shewanella putrefaciens to be the primary bacteria in the terrestrial sewage wastewater outlets around Ningbo City, China. Therefore, in this study, we applied a combination of differential proteomics, metabolomics, and real-time fluorescent quantitative PCR techniques to identify bacteria intracellular metabolites. We found S. putrefaciens had 12 different proteins differentially expressed in freshwater culture than when grown in wastewater, referring to the formation of biological membranes (Omp35, OmpW, energy metabolism (SOD, deoxyribose-phosphate pyrophosphokinase, fatty acid metabolism (beta-ketoacyl synthase, secondary metabolism, TCA cycle, lysine degradation (2-oxoglutarate reductase, and propionic acid metabolism (succinyl coenzyme A synthetase. The sequences of these 12 differentially expressed proteins were aligned with sequences downloaded from NCBI. There are also 27 differentially concentrated metabolites detected by NMR, including alcohols (ethanol, isopropanol, amines (dimethylamine, ethanolamine, amino acids (alanine, leucine, amine compounds (bilinerurine, nucleic acid compounds (nucleosides, inosines, organic acids (formate, acetate. Formate and ethanolamine show significant difference between the two environments and are possibly involved in energy metabolism, glycerophospholipid and ether lipids metabolism to provide energy supply and material basis for engraftment in sewage. Because understanding S. putrefaciens’s biological mechanism of colonization (protein, gene express and metabolites in

  9. Modeling of the bacterial mechanism of methicillin-resistance by a systems biology approach.

    Directory of Open Access Journals (Sweden)

    Ida Autiero

    Full Text Available BACKGROUND: A microorganism is a complex biological system able to preserve its functional features against external perturbations and the ability of the living systems to oppose to these external perturbations is defined "robustness". The antibiotic resistance, developed by different bacteria strains, is a clear example of robustness and of ability of the bacterial system to acquire a particular functional behaviour in response to environmental changes. In this work we have modeled the whole mechanism essential to the methicillin-resistance through a systems biology approach. The methicillin is a beta-lactamic antibiotic that act by inhibiting the penicillin-binding proteins (PBPs. These PBPs are involved in the synthesis of peptidoglycans, essential mesh-like polymers that surround cellular enzymes and are crucial for the bacterium survival. METHODOLOGY: The network of genes, mRNA, proteins and metabolites was created using CellDesigner program and the data of molecular interactions are stored in Systems Biology Markup Language (SBML. To simulate the dynamic behaviour of this biochemical network, the kinetic equations were associated with each reaction. CONCLUSIONS: Our model simulates the mechanism of the inactivation of the PBP by methicillin, as well as the expression of PBP2a isoform, the regulation of the SCCmec elements (SCC: staphylococcal cassette chromosome and the synthesis of peptidoglycan by PBP2a. The obtained results by our integrated approach show that the model describes correctly the whole phenomenon of the methicillin resistance and is able to respond to the external perturbations in the same way of the real cell. Therefore, this model can be useful to develop new therapeutic approaches for the methicillin control and to understand the general mechanism regarding the cellular resistance to some antibiotics.

  10. Thai in-service teacher understanding of nature of science in biology teaching: Case of Mali

    Science.gov (United States)

    Aiemsum-ang, Napapan; Yuenyong, Chokchai

    2018-01-01

    This paper aimed to investigate the existing ideas of nature of science (NOS) teaching in Thailand biology classroom. The study reported the existing ideas of nature of science (NOS) teaching of one biology teacher Mrs. Mali who had been teaching for 6 years at in a school in Khon Kaen city. Methodology regarded interpretive paradigm. Tools of interpretation included 2 months of classroom observation, interviewing, and questionnaire of NOS. The findings revealed Mali held good understanding of the nature of science in the aspect of the use of evidence, the aspect of knowledge inquiry through different observation and deduction, the aspect of creativity and imagination influencing science knowledge inquiry, and the aspect of changeable scientific knowledge. Her biology teaching indicated that she used both the deficient nature of science approach and the implicit nature of science approach. The implicit nature of science approach was applied mostly in 7 periods and only 2 periods were arranged using the deficient nature of science approach. The paper has implication for professional development and pre-service program on NOS teaching in Thailand.

  11. Modeling systems-level dynamics: Understanding without mechanistic explanation in integrative systems biology.

    Science.gov (United States)

    MacLeod, Miles; Nersessian, Nancy J

    2015-02-01

    In this paper we draw upon rich ethnographic data of two systems biology labs to explore the roles of explanation and understanding in large-scale systems modeling. We illustrate practices that depart from the goal of dynamic mechanistic explanation for the sake of more limited modeling goals. These processes use abstract mathematical formulations of bio-molecular interactions and data fitting techniques which we call top-down abstraction to trade away accurate mechanistic accounts of large-scale systems for specific information about aspects of those systems. We characterize these practices as pragmatic responses to the constraints many modelers of large-scale systems face, which in turn generate more limited pragmatic non-mechanistic forms of understanding of systems. These forms aim at knowledge of how to predict system responses in order to manipulate and control some aspects of them. We propose that this analysis of understanding provides a way to interpret what many systems biologists are aiming for in practice when they talk about the objective of a "systems-level understanding." Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Uncovering the underlying physical mechanisms of biological systems via quantification of landscape and flux

    International Nuclear Information System (INIS)

    Xu Li; Chu Xiakun; Yan Zhiqiang; Zheng Xiliang; Zhang Kun; Zhang Feng; Yan Han; Wu Wei; Wang Jin

    2016-01-01

    In this review, we explore the physical mechanisms of biological processes such as protein folding and recognition, ligand binding, and systems biology, including cell cycle, stem cell, cancer, evolution, ecology, and neural networks. Our approach is based on the landscape and flux theory for nonequilibrium dynamical systems. This theory provides a unifying principle and foundation for investigating the underlying mechanisms and physical quantification of biological systems. (topical review)

  13. Understanding ozone mechanisms to alleviate ceramic membrane fouling

    Science.gov (United States)

    Chu, Irma Giovanna Llamosas

    Ceramic membranes are a strong prospect as an advanced treatment in the drinking water domain. But their high capital cost and the lack of specific research on their performance still discourage their application in this field. Thus, knowing that fouling is the main drawback experienced in filtration processes, this bench-scale study was aimed to assess the impact of an ozonation pre-treatment on the alleviation of the fouling of UF ceramic membranes. Preozonation and filtration steps were performed under two different pH and ozone doses. Chosen pH values were at the limits of natural surface waters range (6.5 and 8.5) to keep practicability. Raw water from the Thousand Isle's river at Quebec-Canada was used for the tests. The filtration setup involved an unstirred dead-end filtration cell operated at constant flux. Results showed that pre-oxidation by ozone indeed reduced the fouling degree of the membranes according to the dose applied (up to 60 and 85% for membranes 8 and 50 kDa, respectively). Direct NOM oxidation was found responsible for this effect as the presence of molecular ozone was not essential to achieve these results. In the context of this experiment, however, pH showed to be more effective than the ozonation pre-treatment to keep fouling at low levels: 70% lower at pH 6.5 than at pH 8.5 for un-ozonated waters, which was contrary to most of the literature found on the topic (Changwon, 2013; De Angelis & Fidalgo, 2013; Karnik et al., 2005; S. Lee & Kim, 2014). This behaviour results mainly from the operation mode used in the experiment, the electrical repulsions between MON molecules at basic pH that led to the accumulation of material on the feed side of the membranes (concentration polarisation) and ulterior cake formation. In addition, solution pH showed an influence in the definition of fouling mechanisms. At solution pH 6.5, which was precisely the isoelectric point of the membranes (+/-6.5), the blocking fouling mode was frequently detected

  14. Understanding cracking failures of coatings: A fracture mechanics approach

    Science.gov (United States)

    Kim, Sung-Ryong

    A fracture mechanics analysis of coating (paint) cracking was developed. A strain energy release rate (G(sub c)) expression due to the formation of a new crack in a coating was derived for bending and tension loadings in terms of the moduli, thicknesses, Poisson's ratios, load, residual strain, etc. Four-point bending and instrumented impact tests were used to determine the in-situ fracture toughness of coatings as functions of increasing baking (drying) time. The system used was a thin coating layer on a thick substrate layer. The substrates included steel, aluminum, polycarbonate, acrylonitrile-butadiene-styrene (ABS), and Noryl. The coatings included newly developed automotive paints. The four-point bending configuration promoted nice transversed multiple coating cracks on both steel and polymeric substrates. The crosslinked type automotive coatings on steel substrates showed big cracks without microcracks. When theoretical predictions for energy release rate were compared to experimental data for coating/steel substrate samples with multiple cracking, the agreement was good. Crosslinked type coatings on polymeric substrates showed more cracks than theory predicted and the G(sub c)'s were high. Solvent evaporation type coatings on polymeric substrates showed clean multiple cracking and the G(sub c)'s were higher than those obtained by tension analysis of tension experiments with the same substrates. All the polymeric samples showed surface embrittlement after long baking times using four-point bending tests. The most apparent surface embrittlement was observed in the acrylonitrile-butadiene-styrene (ABS) substrate system. The impact properties of coatings as a function of baking time were also investigated. These experiments were performed using an instrumented impact tester. There was a rapid decrease in G(sub c) at short baking times and convergence to a constant value at long baking times. The surface embrittlement conditions and an embrittlement toughness

  15. Perceptual Influence of Ugandan Biology Students' Understanding of HIV/AIDS

    Science.gov (United States)

    Mutonyi, Harriet; Nashon, Samson; Nielsen, Wendy S.

    2010-08-01

    In Uganda, curbing the spread of HIV/AIDS has largely depended on public and private media messages about the disease. Media campaigns based on Uganda’s cultural norms of communication are metaphorical, analogical and simile-like. The topic of HIV/AIDS has been introduced into the Senior Three (Grade 11) biology curriculum in Uganda. To what extent do students’ pre-conceptions of the disease, based on these media messages influence students’ development of conceptual understanding of the disease, its transmission and prevention? Of significant importance is the impact the conceptions students have developed from the indirect media messages on classroom instruction on HIV/AIDS. The study is based in a theoretical framework of conceptual change in science learning. An interpretive case study to determine the impact of Ugandan students’ conceptions or perceptions on classroom instruction about HIV/AIDS, involving 160 students aged 15-17, was conducted in four different Ugandan high schools: girls boarding, boys boarding, mixed boarding, and mixed day. Using questionnaires, focus group discussions, recorded biology lessons and informal interviews, students’ preconceptions of HIV/AIDS and how these impact lessons on HIV/AIDS were discerned. These preconceptions fall into four main categories: religious, political, conspiracy and traditional African worldviews. Results of data analysis suggest that students’ prior knowledge is persistent even after biology instructions. This has implications for current teaching approaches, which are mostly teacher-centred in Ugandan schools. A rethinking of the curriculum with the intent of offering science education programs that promote understanding of the science of HIV/AIDS as opposed to what is happening now—insensitivity to misconceptions about the disease—is needed.

  16. Understanding the molecular mechanisms of human microtia via a pig model of HOXA1 syndrome

    Directory of Open Access Journals (Sweden)

    Ruimin Qiao

    2015-06-01

    Full Text Available Microtia is a congenital malformation of the outer ears. Although both genetic and environmental components have been implicated in microtia, the genetic causes of this innate disorder are poorly understood. Pigs have naturally occurring diseases comparable to those in humans, providing exceptional opportunity to dissect the molecular mechanism of human inherited diseases. Here we first demonstrated that a truncating mutation in HOXA1 causes a monogenic disorder of microtia in pigs. We further performed RNA sequencing (RNA-Seq analysis on affected and healthy pig embryos (day 14.25. We identified a list of 337 differentially expressed genes (DEGs between the normal and mutant samples, shedding light on the transcriptional network involving HOXA1. The DEGs are enriched in biological processes related to cardiovascular system and embryonic development, and neurological, renal and urological diseases. Aberrant expressions of many DEGs have been implicated in human innate deformities corresponding to microtia-associated syndromes. After applying three prioritizing algorithms, we highlighted appealing candidate genes for human microtia from the 337 DEGs. We searched for coding variants of functional significance within six candidate genes in 147 microtia-affected individuals. Of note, we identified one EVC2 non-synonymous mutation (p.Asp1174Asn as a potential disease-implicating variant for a human microtia-associated syndrome. The findings advance our understanding of the molecular mechanisms underlying human microtia, and provide an interesting example of the characterization of human disease-predisposing variants using pig models.

  17. Understanding Biological Rates and their Temperature Dependence, from Enzymes to Ecosystems

    Science.gov (United States)

    Prentice, E.; Arcus, V. L.

    2017-12-01

    Temperature responses over various scales in biological systems follow a similar pattern; negative curvature results in an optimum temperature (Topt) for activity/growth/turnover, with decreases in rates on either side of Topt. Previously this downturn in rates at high temperatures has been attributed to enzyme denaturation, where a failing of the basic driving units of metabolism was used to describe curvature at the enzyme and organism level. However, recent developments in our understanding of the factors governing enzyme rates at different temperatures have guided a new understanding of the responses of biological systems. Enzymes catalyse reactions by driving the substrate through a high energy species, which is tightly bound to the enzyme. Macromolecular rate theory (MMRT) has recently been developed to account for the changes in the system brought about by this tight binding, specifically the change in the physical parameter heat capacity (ΔCǂp), and the effect this has on the temperature dependence of enzyme reactions. A negative ΔCǂp imparts the signature negative curvature to rates in the absence of denaturation, and finds that Topt, ΔCǂp and curvature are all correlated, placing constraints on biological systems. The simplest of cells comprise thousands of enzymatically catalysed reactions, functioning in series and in parallel in metabolic pathways to determine the overall growth rate of an organism. Intuitively, the temperature effects of enzymes play a role in determining the overall temperature dependence of an organism, in tandem with cellular level regulatory responses. However, the effect of individual Topt values and curvature on overall pathway behaviour is less apparent. Here, this is investigated in the context of MMRT through the in vitro characterisation of a six-step metabolic pathway to understand the steps in isolation and functioning in series. Pathway behaviour is found to be approximately an average of the properties of the

  18. Epigenetic Mechanisms in Bone Biology and Osteoporosis: Can They Drive Therapeutic Choices?

    Directory of Open Access Journals (Sweden)

    Francesca Marini

    2016-08-01

    Full Text Available Osteoporosis is a complex multifactorial disorder of the skeleton. Genetic factors are important in determining peak bone mass and structure, as well as the predisposition to bone deterioration and fragility fractures. Nonetheless, genetic factors alone are not sufficient to explain osteoporosis development and fragility fracture occurrence. Indeed, epigenetic factors, representing a link between individual genetic aspects and environmental influences, are also strongly suspected to be involved in bone biology and osteoporosis. Recently, alterations in epigenetic mechanisms and their activity have been associated with aging. Also, bone metabolism has been demonstrated to be under the control of epigenetic mechanisms. Runt-related transcription factor 2 (RUNX2, the master transcription factor of osteoblast differentiation, has been shown to be regulated by histone deacetylases and microRNAs (miRNAs. Some miRNAs were also proven to have key roles in the regulation of Wnt signalling in osteoblastogenesis, and to be important for the positive or negative regulation of both osteoblast and osteoclast differentiation. Exogenous and environmental stimuli, influencing the functionality of epigenetic mechanisms involved in the regulation of bone metabolism, may contribute to the development of osteoporosis and other bone disorders, in synergy with genetic determinants. The progressive understanding of roles of epigenetic mechanisms in normal bone metabolism and in multifactorial bone disorders will be very helpful for a better comprehension of disease pathogenesis and translation of this information into clinical practice. A deep understanding of these mechanisms could help in the future tailoring of proper individual treatments, according to precision medicine’s principles.

  19. Deciphering complement mechanisms: The contributions of structural biology.

    NARCIS (Netherlands)

    Arlaud, G.J.; Barlow, P.N.; Gaboriaud, C.; Gros, P.; Narayana, S.V.L.

    2007-01-01

    Since the resolution of the first three-dimensional structure of a complement component in 1980, considerable efforts have been put into the investigation of this system through structural biology techniques, resulting in about a hundred structures deposited in the Protein Data Bank by the beginning

  20. Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change

    Science.gov (United States)

    Visintainer, Tammie; Linn, Marcia

    2015-01-01

    Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in…

  1. Nanomechanical strength mechanisms of hierarchical biological materials and tissues.

    Science.gov (United States)

    Buehler, Markus J; Ackbarow, Theodor

    2008-12-01

    Biological protein materials (BPMs), intriguing hierarchical structures formed by assembly of chemical building blocks, are crucial for critical functions of life. The structural details of BPMs are fascinating: They represent a combination of universally found motifs such as alpha-helices or beta-sheets with highly adapted protein structures such as cytoskeletal networks or spider silk nanocomposites. BPMs combine properties like strength and robustness, self-healing ability, adaptability, changeability, evolvability and others into multi-functional materials at a level unmatched in synthetic materials. The ability to achieve these properties depends critically on the particular traits of these materials, first and foremost their hierarchical architecture and seamless integration of material and structure, from nano to macro. Here, we provide a brief review of this field and outline new research directions, along with a review of recent research results in the development of structure-property relationships of biological protein materials exemplified in a study of vimentin intermediate filaments.

  2. "Toward High School Biology": Helping Middle School Students Understand Chemical Reactions and Conservation of Mass in Nonliving and Living Systems

    Science.gov (United States)

    Herrmann-Abell, Cari F.; Koppal, Mary; Roseman, Jo Ellen

    2016-01-01

    Modern biology has become increasingly molecular in nature, requiring students to understand basic chemical concepts. Studies show, however, that many students fail to grasp ideas about atom rearrangement and conservation during chemical reactions or the application of these ideas to biological systems. To help provide students with a better…

  3. The role of mathematical models in understanding pattern formation in developmental biology.

    Science.gov (United States)

    Umulis, David M; Othmer, Hans G

    2015-05-01

    In a Wall Street Journal article published on April 5, 2013, E. O. Wilson attempted to make the case that biologists do not really need to learn any mathematics-whenever they run into difficulty with numerical issues, they can find a technician (aka mathematician) to help them out of their difficulty. He formalizes this in Wilsons Principle No. 1: "It is far easier for scientists to acquire needed collaboration from mathematicians and statisticians than it is for mathematicians and statisticians to find scientists able to make use of their equations." This reflects a complete misunderstanding of the role of mathematics in all sciences throughout history. To Wilson, mathematics is mere number crunching, but as Galileo said long ago, "The laws of Nature are written in the language of mathematics[Formula: see text] the symbols are triangles, circles and other geometrical figures, without whose help it is impossible to comprehend a single word." Mathematics has moved beyond the geometry-based model of Galileo's time, and in a rebuttal to Wilson, E. Frenkel has pointed out the role of mathematics in synthesizing the general principles in science (Both point and counter-point are available in Wilson and Frenkel in Notices Am Math Soc 60(7):837-838, 2013). We will take this a step further and show how mathematics has been used to make new and experimentally verified discoveries in developmental biology and how mathematics is essential for understanding a problem that has puzzled experimentalists for decades-that of how organisms can scale in size. Mathematical analysis alone cannot "solve" these problems since the validation lies at the molecular level, but conversely, a growing number of questions in biology cannot be solved without mathematical analysis and modeling. Herein, we discuss a few examples of the productive intercourse between mathematics and biology.

  4. The molecular biology of prostate cancer: current understanding and clinical implications.

    Science.gov (United States)

    Gandhi, Jason; Afridi, Adil; Vatsia, Sohrab; Joshi, Gargi; Joshi, Gunjan; Kaplan, Steven A; Smith, Noel L; Khan, Sardar Ali

    2018-04-01

    With continuous progress over the past few decades in understanding diagnosis, treatment, and genetics, much has been learned about the prostate cancer-diagnosed genome. A comprehensive MEDLINE® and Google scholar literature search was conducted using keyword variations relating to the genetics of prostate cancer such as chromosomal alterations, androgen receptor, castration-resistant, inheritance, polymorphisms, oncogenes, metastasis, biomarkers, and immunotherapy. Traditionally, androgen receptors (AR) have been the focus of research. Recently, identification of recurrent chromosomal alterations that lead to either multiplication of regions (gain-of-function) or deletion of regions (loss-of-function) has opened the door to greater genetic accessibility. These chromosomal aberrations lead to variation in copy number and gene expression. Some of these chromosomal alterations are inherited, while others undergo somatic mutations during disease progression. Inherited gene mutations that make one susceptible to prostate cancer have been identified with familial-linked studies. Somatic genes that progress tumorigenesis have also been identified. Research on the molecular biology of prostate cancer has characterized these genes into tumor suppressor genes or oncogenes. Additionally, genome-wide assay studies have identified many high-risk single-nucleotide polymorphisms recurrent throughout the prostate cancer-diagnosed genome. Castration-resistant prostate cancer is the most aggressive form of prostate cancer, and its research has elucidated many types of mutations associated with AR itself, including enhanced expression and amplification, point mutations, and alternative splicing. Understanding the molecular biology of prostate cancer has permitted more accurate identification using advanced biomarkers and therapy for aggressive forms using immunotherapy. An age-related disease, prostate cancer commands profound attention. With increasing life expectancy and the

  5. Routine medicare and radiation exposure (3) biology about radiation exposure for its understanding

    International Nuclear Information System (INIS)

    Saito, Tsutomu; Hirata, Hideki

    2013-01-01

    Radiation-induced biological responses are easily explained as follows. The process of cancer formation is on the hypothesis of multi-step carcinogenesis of the initiation, promotion and progression. Radiation is an exogenous physical initiator. Physical process of ionization in biomaterials by radiation occurs within the time of 10 -12 sec order, which resulting in chemical process (10 -6 sec) leading to tissue response or to cancerous change (several tens hours to several decades). Direct and indirect effects on DNA are yielded with the high LET (linear energy transfer) radiation and low, through OH-radical formation, respectively. Double strand break of DNA induced by radiation is repaired by the error-free homologous recombination or error-prone non-homologous end-joining. At the early phase of the damage, DNA damage response begins to work for repairing, and when the response is inoperable, cellular response is induced to lead radiation apoptosis as an exclusion mechanism of abnormal cells. The biological effects differ even at the same dose of different radiations when their LET is different, and relative biological effectiveness (RBE) is used. For correction of the stochastic radiation effect, the radiation weighting factor (W R ) is used for conversion to the single photon beam dose that ICRP defines as the equivalent dose (H T , Sv). ICRP (Pub. 103) also recommends the use of RBE (Gy) for the definitive effect. Radiation effects are known to be modified by such phenomena as the bystander effect, cluster damage of DNA, radiation adaptation, hormesis, dose rate effect and non-tumor inducing dose. ICRP employs linear non-threshold (LNT) hypothesis for low dose and low dose rate carcinogenesis. (T.T.)

  6. Understanding the biological effects of thorium in human cells and animals and developing efficient approaches for its decorporation and mitigation

    International Nuclear Information System (INIS)

    Kumar, Amit; Ali, Manjoor; Pandey, Badri N.

    2016-01-01

    Thorium-232 (Th) is being realized as a potential source of nuclear fuel for meeting long-term energy generation in India/other nations. In view of utilizing Th, it is hoped that mining, extraction, purification, back-end processing and disposal would increase significantly in near future. Therefore, understanding the biological effects of Th would enable its efficient utilization with adequate human health protection. Biological half-life and associated health effects of Th govern by its speciation, bio-kinetics, radiation decay and organ-specific accumulation due to Fe-like behaviour inside the body system. Our animal studies showed that Th mainly accumulates in liver and bone, in contrast to the accumulation of uranium in kidney. Cell culture experiments were performed to study the binding/internalization mechanism of Th (IV) with human liver cells (HepG2). Experiments using HepG2 cells suggested the role of transferrin (Tf), a blood protein in Th internalization. Recently, our in vitro study observed that the low concentration of Th nitrate induced proliferation in HepG2 through IGF-1R pathway. This study may have relevance to prevent early effects of Th using IGF-1 receptor-specific inhibitor. One of the major goals of our research group is to develop biological approaches for efficient decorporation of Th from liver. In this direction, liposomal form of DTPA has been optimized to effectively deliver DTPA to the liver. Testing of liposomal-DTPA in Th injected animal showed significant enhancement in removal of Th from liver and blood as compared to non-liposomal DTPA. Using ex-vivo human erythrocytes hemolysis assay and in whole blood condition, further efforts are in-progress to evaluate metal binding molecules in search of more effective decorporating agent than DTPA. In conclusion, this paper would discuss the results on mechanism of biological effects of Th on cells and proteins and newer molecules/approaches for its decorporation for human application

  7. [Biological and neural bases of partner preferences in rodents: models to understand human pair bonds].

    Science.gov (United States)

    Coria-Avila, G A; Hernández-Aguilar, M E; Toledo-Cárdenas, R; García-Hernández, L I; Manzo, J; Pacheco, P; Miquel, M; Pfaus, J G

    To analyse the biological and neural bases of partner preference formation in rodents as models to understand human pair bonding. Rodents are social individuals, capable of forming short- or long-lasting partner preferences that develop slowly by stimuli like cohabitation, or rapidly by stimuli like sex and stress. Dopamine, corticosteroids, oxytocin, vasopressin, and opioids form the neurochemical substrate for pair bonding in areas like the nucleus accumbens, the prefrontal cortex, the piriform cortex, the medial preoptic area, the ventral tegmental area and the medial amygdala, among others. Additional areas may participate depending on the nature of the conditioned stimuli by which and individual recognizes a preferred partner. Animal models help us understand that the capacity of an individual to display long-lasting and selective preferences depends on neural bases, selected throughout evolution. The challenge in neuroscience is to use this knowledge to create new solutions for mental problems associated with the incapacity of an individual to display a social bond, keep one, or cope with the disruption of a consolidated one.

  8. Understanding Biological Roles of Venoms Among the Caenophidia: The Importance of Rear-Fanged Snakes.

    Science.gov (United States)

    Mackessy, Stephen P; Saviola, Anthony J

    2016-11-01

    Snake venoms represent an adaptive trophic response to the challenges confronting a limbless predator for overcoming combative prey, and this chemical means of subduing prey shows several dominant phenotypes. Many front-fanged snakes, particularly vipers, feed on various vertebrate and invertebrate prey species, and some of their venom components (e.g., metalloproteinases, cobratoxin) appear to have been selected for "broad-brush" incapacitation of different prey taxa. Using proteomic and genomic techniques, the compositional diversity of front-fanged snakes is becoming well characterized; however, this is not the case for most rear-fanged colubroid snakes. Because these species consume a high diversity of prey, and because venoms are primarily a trophic adaptation, important clues for understanding specific selective pressures favoring venom component composition will be found among rear-fanged snake venoms. Rear-fanged snakes typically (but not always) produce venoms with lower complexity than front-fanged snakes, and there are even fewer dominant (and, arguably, biologically most relevant) venom protein families. We have demonstrated taxon-specific toxic effects, where lizards and birds show high susceptibility while mammals are largely unaffected, for both Old World and New World rear-fanged snakes, strongly indicating a causal link between toxin evolution and prey preference. New data are presented on myotoxin a, showing that the extremely rapid paralysis induced by this rattlesnake toxin is specific for rodents, and that myotoxin a is ineffectual against lizards. Relatively few rear-fanged snake venoms have been characterized, and basic natural history data are largely lacking, but directed sampling of specialized species indicates that novel compounds are likely among these specialists, particularly among those species feeding on invertebrate prey such as scorpions and centipedes. Because many of the more than 2200 species of colubroid snakes are rear

  9. Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles

    NARCIS (Netherlands)

    Kononova, Olga; Snijder, Joost; Kholodov, Yaroslav; Marx, Kenneth A; Wuite, Gijs J L; Roos, Wouter H; Barsegov, Valeri

    The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity,

  10. Biological evaluation of mechanical circulatory support systems in calves

    NARCIS (Netherlands)

    Rakhorst, G; VanDerMeer, J; Kik, C; Mihaylov, D; Havlik, P; Trinkl, J; Monties, [No Value

    Data from animal experiments with mechanical circulatory support systems (MCSS) performed in Groningen and Marseille over the past years were used to obtain normal values of hematological, coagulation, rheological and blood chemistry parameters in calves. These parameters were divided between two

  11. The Relationship between Biology Teachers' Understanding of the Nature of Science and the Understanding and Acceptance of the Theory of Evolution

    Science.gov (United States)

    Cofré, Hernán; Cuevas, Emilia; Becerra, Beatriz

    2017-01-01

    Despite the importance of the theory of evolution (TE) to scientific knowledge, a number of misconceptions continue to be found among biology teachers. In this context, the first objective of this study was to identify the impact of professional development programme (PDP) on teachers' understanding of nature of science (NOS) and evolution and on…

  12. Characterising the Development of the Understanding of Human Body Systems in High-School Biology Students--A Longitudinal Study

    Science.gov (United States)

    Snapir, Zohar; Eberbach, Catherine; Ben-Zvi-Assaraf, Orit; Hmelo-Silver, Cindy; Tripto, Jaklin

    2017-01-01

    Science education today has become increasingly focused on research into complex natural, social and technological systems. In this study, we examined the development of high-school biology students' systems understanding of the human body, in a three-year longitudinal study. The development of the students' system understanding was evaluated…

  13. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness

    Science.gov (United States)

    Blakely, E. A.; Kronenberg, A.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue.

  14. Understanding the biology of bone sarcoma from early initiating events through late events in metastasis and disease progression.

    Directory of Open Access Journals (Sweden)

    Limin eZhu

    2013-09-01

    Full Text Available The two most common primary bone malignancies, osteosarcoma and Ewing sarcoma, are both aggressive, highly metastatic cancers that most often strike teens, though both can be found in younger children and adults. Despite distinct origins and pathogenesis, both diseases share several mechanisms of progression and metastasis, including neovascularization, invasion, anoikis resistance, chemoresistance and evasion of the immune response. Some of these processes are well-studies in more common carcinoma models, and the observation from adult diseases may be readily applied to pediatric bone sarcomas. Neovascularization, which includes angiogenesis and vasculogenesis, is a clear example of a process that is likely to be similar between carcinomas and sarcomas, since the responding cells are the same in each case. Chemoresistance mechanisms also may be similar between other cancers and the bone sarcomas. Since osteosarcoma and Ewing sarcoma are mesenchymal in origin, the process of epithelial-to-mesenchymal transformation is largely absent in bone sarcomas, necessitating different approaches to study progression and metastasis in these diseases. One process that is less well-studied in bone sarcomas is dormancy, which allows micrometastatic disease to remain viable but not growing in distant sites – typically the lungs – for months or years before renewing growth to become overt metastatic disease. By understanding the basic biology of these processes, novel therapeutic strategies may be developed that could improve survival in children with osteosarcoma or Ewing sarcoma.

  15. Ebselen, a useful tool for understanding cellular redox biology and a promising drug candidate for use in human diseases.

    Science.gov (United States)

    Noguchi, Noriko

    2016-04-01

    Ebselen is an organoselenium compound with glutathione peroxidase (GPx)-like hydroperoxide reducing activity. Moreover, ebselen has its own unique reactivity, with functions that GPx does not have, since it reacts with many kinds of thiols other than glutathione. Ebselen may affect the thioredoxin systems, through which it may contribute to regulation of cell function. With high reactivity toward thiols, hydroperoxides, and peroxynitrite, ebselen has been used as a useful tool in research on cellular redox mechanisms. Unlike α-tocopherol, ebselen does not scavenge lipid peroxyl radicals, which is another advantage of ebselen for use as a research tool in comparison with radical scavenging antioxidants. Selenium is not released from the ebselen molecule, which explains the low toxicity of ebselen. To further understand the mechanism of cellular redox biology, it should be interesting to compare the effects of ebselen with that of selenoprotein P, which supplies selenium to GPx. New medical applications of ebselen as a drug candidate for human diseases such as cancer and diabetes mellitus as well as brain stroke and ischemia will be expected. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Mechanization and Control Concepts for Biologically Inspired Micro Aerial Vehicles

    Science.gov (United States)

    Raney, David L.; Slominski, Eric C.

    2003-01-01

    It is possible that MAV designs of the future will exploit flapping flight in order to perform missions that require extreme agility, such as rapid flight beneath a forest canopy or within the confines of a building. Many of nature's most agile flyers generate flapping motions through resonant excitation of an aeroelastically tailored structure: muscle tissue is used to excite a vibratory mode of their flexible wing structure that creates propulsion and lift. A number of MAV concepts have been proposed that would operate in a similar fashion. This paper describes an ongoing research activity in which mechanization and control concepts with application to resonant flapping MAVs are being explored. Structural approaches, mechanical design, sensing and wingbeat control concepts inspired by hummingbirds, bats and insects are examined. Experimental results from a testbed capable of generating vibratory wingbeat patterns that approximately match those exhibited by hummingbirds in hover, cruise, and reverse flight are presented.

  17. Biological Mechanisms by Which Antiproliferative Actions of Resveratrol Are Minimized.

    Science.gov (United States)

    Ho, Yih; Lin, Yu-Syuan; Liu, Hsuan-Liang; Shih, Ya-Jung; Lin, Shin-Ying; Shih, Ai; Chin, Yu-Tang; Chen, Yi-Ru; Lin, Hung-Yun; Davis, Paul J

    2017-09-21

    Preclinical and clinical studies have offered evidence for protective effects of various polyphenol-rich foods against cardiovascular diseases, neurodegenerative diseases, and cancers. Resveratrol is among the most widely studied polyphenols. However, the preventive and treatment effectiveness of resveratrol in cancer remain controversial because of certain limitations in existing studies. For example, studies of the activity of resveratrol against cancer cell lines in vitro have often been conducted at concentrations in the low μM to mM range, whereas dietary resveratrol or resveratrol-containing wine rarely achieve nM concentrations in the clinic. While the mechanisms underlying the failure of resveratrol to inhibit cancer growth in the intact organism are not fully understood, the interference by thyroid hormones with the anticancer activity of resveratrol have been well documented in both in vitro and xenograft studies. Thus, endogenous thyroid hormones may explain the failure of anticancer actions of resveratrol in intact animals, or in the clinic. In this review, mechanisms involved in resveratrol-induced antiproliferation and effects of thyroid hormones on these mechanisms are discussed.

  18. Spies and Bloggers: New Synthetic Biology Tools to Understand Microbial Processes in Soils and Sediments

    Science.gov (United States)

    Masiello, C. A.; Silberg, J. J.; Cheng, H. Y.; Del Valle, I.; Fulk, E. M.; Gao, X.; Bennett, G. N.

    2017-12-01

    Microbes can be programmed through synthetic biology to report on their behavior, informing researchers when their environment has triggered changes in their gene expression (e.g. in response to shifts in O2 or H2O), or when they have participated in a specific step of an elemental cycle (e.g. denitrification). This use of synthetic biology has the potential to significantly improve our understanding of microbes' roles in elemental and water cycling, because it allows reporting on the environment from the perspective of a microbe, matching the measurement scale exactly to the scale that a microbe experiences. However, synthetic microbes have not yet seen wide use in soil and sediment laboratory experiments because synthetic organisms typically report by fluorescing, making their signals difficult to detect outside the petri dish. We are developing a new suite of microbial programs that report instead by releasing easily-detected gases, allowing the real-time, noninvasive monitoring of behaviors in sediments and soils. Microbial biosensors can, in theory, be programmed to detect dynamic processes that contribute to a wide range of geobiological processes, including C cycling (biofilm production, methanogenesis, and synthesis of extracellular enzymes that degrade organic matter), N cycling (expression of enzymes that underlie different steps of the N cycle) and potentially S cycling. We will provide an overview of the potential uses of gas-reporting biosensors in soil and sediment lab experiments, and will report the development of the systematics of these sensors. Successful development of gas biosensors for laboratory use will require addressing issues including: engineering the intensity and selectivity of microbial gas production to maximize the signal to noise ratio; normalizing the gas reporter signal to cell population size, managing gas diffusion effects on signal shape; and developing multiple gases that can be used in parallel.

  19. Energy implications of mechanical and mechanical-biological treatment compared to direct waste-to-energy.

    Science.gov (United States)

    Cimpan, Ciprian; Wenzel, Henrik

    2013-07-01

    Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical-biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJprimary/100 MJinput waste, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3-9.5%, 1-18% and 1-8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat recovery, the biodrying MBS-based system achieved the highest savings, on the condition of SRF co-combustion. As a sensitivity scenario, alternative utilisation of SRF in cement kilns was modelled. It supported similar or higher net savings for all pre-treatment systems compared to mass combustion WtE, except when WtE CHP was possible in the first two background energy scenarios. Recovery of plastics for recycling before energy recovery increased net energy savings in most scenario variations, over those of full

  20. Mechanisms of sound seattering by biological targets and their aggregates

    Directory of Open Access Journals (Sweden)

    Natalia Gorska

    2006-03-01

    Full Text Available Natalia Gorska's thesis is based on a set of 9 papers published in scientific journals (Gorska & Klusek 1998, Gorska 2000, Gorska & Chu 2001a, b, Gorska & Ona 2003a, b and conference proceedings (Gorska & Klusek 1994, Gorska 1999, Gorska & Chu 2000, which broadly summarise her integrated research achievements in underwater acoustics from 1994 to 2003. She is the sole author of two of the articles (Gorska 1999, 2000, and is the first co-author, taking a leading part, in the others (Gorska & Klusek 1994, 1998, Gorska & Chu 2000, Gorska & Chu 200la, b, Gorska & Ona 2003a, b.     Her research objective was to work out the theoretical background to certain problems of sound scattering by biological targets - single individuals and aggregated layers of fish and zooplankton - in relation to environmental conditions in the sea. In the study she focused on acoustical extinction and backscattering, including the phenomenon of echo interference. In conjunction wit h the co-authors of papers Gorska & Ona 2003a, b, Gorska & Chu 2001a, b and Gorska & Chu 2000, she was able to apply and verify her theoretical results empirically.

  1. Bioactive glass/hydroxyapatite composites: mechanical properties and biological evaluation.

    Science.gov (United States)

    Bellucci, Devis; Sola, Antonella; Anesi, Alexandre; Salvatori, Roberta; Chiarini, Luigi; Cannillo, Valeria

    2015-06-01

    Bioactive glass/hydroxyapatite composites for bone tissue repair and regeneration have been produced and discussed. The use of a recently developed glass, namely BG_Ca/Mix, with its low tendency to crystallize, allowed one to sinter the samples at a relatively low temperature thus avoiding several adverse effects usually reported in the literature, such as extensive crystallization of the glassy phase, hydroxyapatite (HA) decomposition and reaction between HA and glass. The mechanical properties of the composites with 80wt.% BG_Ca/Mix and 20wt.% HA are sensibly higher than those of Bioglass® 45S5 reference samples due to the presence of HA (mechanically stronger than the 45S5 glass) and to the thermal behaviour of the BG_Ca/Mix, which is able to favour the sintering process of the composites. Biocompatibility tests, performed with murine fibroblasts BALB/3T3 and osteocites MLO-Y4 throughout a multi-parametrical approach, allow one to look with optimism to the produced composites, since both the samples themselves and their extracts do not induce negative effects in cell viability and do not cause inhibition in cell growth. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Neurodevelopmental consequences in offspring of mothers with preeclampsia during pregnancy: underlying biological mechanism via imprinting genes.

    Science.gov (United States)

    Nomura, Yoko; John, Rosalind M; Janssen, Anna Bugge; Davey, Charles; Finik, Jackie; Buthmann, Jessica; Glover, Vivette; Lambertini, Luca

    2017-06-01

    Preeclampsia is known to be a leading cause of mortality and morbidity among mothers and their infants. Approximately 3-8% of all pregnancies in the US are complicated by preeclampsia and another 5-7% by hypertensive symptoms. However, less is known about its long-term influence on infant neurobehavioral development. The current review attempts to demonstrate new evidence for imprinting gene dysregulation caused by hypertension, which may explain the link between maternal preeclampsia and neurocognitive dysregulation in offspring. Pub Med and Web of Science databases were searched using the terms "preeclampsia," "gestational hypertension," "imprinting genes," "imprinting dysregulation," and "epigenetic modification," in order to review the evidence demonstrating associations between preeclampsia and suboptimal child neurodevelopment, and suggest dysregulation of placental genomic imprinting as a potential underlying mechanism. The high mortality and morbidity among mothers and fetuses due to preeclampsia is well known, but there is little research on the long-term biological consequences of preeclampsia and resulting hypoxia on the fetal/child neurodevelopment. In the past decade, accumulating evidence from studies that transcend disciplinary boundaries have begun to show that imprinted genes expressed in the placenta might hold clues for a link between preeclampsia and impaired cognitive neurodevelopment. A sudden onset of maternal hypertension detected by the placenta may result in misguided biological programming of the fetus via changes in the epigenome, resulting in suboptimal infant development. Furthering our understanding of the molecular and cellular mechanisms through which neurodevelopmental trajectories of the fetus/infant are affected by preeclampsia and hypertension will represent an important first step toward preventing adverse neurodevelopment in infants.

  3. Reactivity of inorganic nanoparticles in biological environments: insights into nanotoxicity mechanisms

    International Nuclear Information System (INIS)

    Casals, E; Gonzalez, E; Puntes, V F

    2012-01-01

    A deeper understanding of the behaviour of inorganic nanoparticles in biological media is needed not only to fully control and develop the potential of these materials but also to increase knowledge of the physical chemistry of inorganic materials when their morphology approaches that of molecular entities. Although this knowledge and control is not yet entirely acquired, industry and society are already using nanomaterials in greater quantities and in consumer products. As normally happens when something new arrives in society, the interest in the broader implications of this emerging technology has grown together with unfounded ‘nanoeuphoria’ and ‘nanoscares’. In this context, only by understanding the mechanisms of the nano-bio interaction will it be possible to safely develop nanotechnology. In this review, we discuss on how nanoparticles behave once they are naturally or intentionally produced and are exposed to humans and the environment. The response of nanoparticles inside organisms or released to the environment is complex and diverse, and depends on a variety of parameters involved. Mainly, they may (i) be aggregated into microscopic particles or embedded in exposed materials; (ii) the surfaces of the nanoparticles, which determine their bioactivity, experience constant modifications; and (iii) nanoparticles may corrode and dissolve or they can suffer morphological modifications.

  4. Reactivity of inorganic nanoparticles in biological environments: insights into nanotoxicity mechanisms

    Science.gov (United States)

    Casals, E.; Gonzalez, E.; Puntes, V. F.

    2012-11-01

    A deeper understanding of the behaviour of inorganic nanoparticles in biological media is needed not only to fully control and develop the potential of these materials but also to increase knowledge of the physical chemistry of inorganic materials when their morphology approaches that of molecular entities. Although this knowledge and control is not yet entirely acquired, industry and society are already using nanomaterials in greater quantities and in consumer products. As normally happens when something new arrives in society, the interest in the broader implications of this emerging technology has grown together with unfounded ‘nanoeuphoria’ and ‘nanoscares’. In this context, only by understanding the mechanisms of the nano-bio interaction will it be possible to safely develop nanotechnology. In this review, we discuss on how nanoparticles behave once they are naturally or intentionally produced and are exposed to humans and the environment. The response of nanoparticles inside organisms or released to the environment is complex and diverse, and depends on a variety of parameters involved. Mainly, they may (i) be aggregated into microscopic particles or embedded in exposed materials; (ii) the surfaces of the nanoparticles, which determine their bioactivity, experience constant modifications; and (iii) nanoparticles may corrode and dissolve or they can suffer morphological modifications.

  5. A study on the ranges of low energy ions in biological samples and its mechanism of biological effects

    International Nuclear Information System (INIS)

    Lu Ting; Xie Liqing; Li Junping; Xia Ji

    1993-01-01

    The seeds of wheat and bean are irradiated by iron ion beam with energy 100 keV. The RBS spectra of the samples are observed and the ranges and distributions of the iron ions in the wheat and bean are calculated theoretically by means of Monte Carlo method. The results of theory and experiment are compared and the mechanism of biological effects induced by ion is discussed

  6. Framework for Understanding the Patterns of Student Difficulties in Quantum Mechanics

    Science.gov (United States)

    Marshman, Emily; Singh, Chandralekha

    2015-01-01

    Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. Here, we describe a framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that…

  7. Found in translation: understanding the biology and behavior of experimental traumatic brain injury

    Science.gov (United States)

    Bondi, Corina O.; Semple, Bridgette D.; Noble-Haeusslein, Linda J.; Osier, Nicole D.; Carlson, Shaun W.; Dixon, C. Edward; Giza, Christopher C.; Kline, Anthony E.

    2014-01-01

    BONDI, C.O., B.D. Semple, L.J. Noble-Haeusslein, N.D. Osier, S.W. Carlson, C.E. Dixon, C.C. Giza and A.E. Kline. Found in translation: understanding the biology and behavior of experimental traumatic brain injury. NEUROSCI BIOBEHAV REV. The aim of this review is to discuss in greater detail the topics covered in the recent symposium entitled “Traumatic brain injury: laboratory and clinical perspectives,” presented at the 2014 International Behavioral Neuroscience Society annual meeting. Herein we review contemporary laboratory models of traumatic brain injury (TBI) including common assays for sensorimotor and cognitive behavior. New modalities to evaluate social behavior after injury to the developing brain, as well as the attentional set-shifting test (AST) as a measure of executive function in TBI, will be highlighted. Environmental enrichment (EE) will be discussed as a preclinical model of neurorehabilitation, and finally, an evidence-based approach to sports-related concussion will be considered. The review consists predominantly of published data, but some discussion of ongoing or future directions is provided. PMID:25496906

  8. Understanding the biological activity of high rate algae ponds through the calculation of oxygen balances.

    Science.gov (United States)

    Arbib, Zouhayr; de Godos Crespo, Ignacio; Corona, Enrique Lara; Rogalla, Frank

    2017-06-01

    Microalgae culture in high rate algae ponds (HRAP) is an environmentally friendly technology for wastewater treatment. However, for the implementation of these systems, a better understanding of the oxygenation potential and the influence of climate conditions is required. In this work, the rates of oxygen production, consumption, and exchange with the atmosphere were calculated under varying conditions of solar irradiance and dilution rate during six months of operation in a real scale unit. This analysis allowed determining the biological response of these dynamic systems. The rates of oxygen consumption measured were considerably higher than the values calculated based on the organic loading rate. The response to light intensity in terms of oxygen production in the bioreactor was described with one of the models proposed for microalgae culture in dense concentrations. This model is based on the availability of light inside the culture and the specific response of microalgae to this parameter. The specific response to solar radiation intensity showed a reasonable stability in spite of the fluctuations due to meteorological conditions. The methodology developed is a useful tool for optimization and prediction of the performance of these systems.

  9. Unit mechanisms of fission gas release: Current understanding and future needs

    Science.gov (United States)

    Tonks, Michael; Andersson, David; Devanathan, Ram; Dubourg, Roland; El-Azab, Anter; Freyss, Michel; Iglesias, Fernando; Kulacsy, Katalin; Pastore, Giovanni; Phillpot, Simon R.; Welland, Michael

    2018-06-01

    Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel and gap properties. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are beginning to reveal new understanding of the unit mechanisms that define fission product behavior. Here, existing research on the basic mechanisms of fission gas release during normal reactor operation are summarized and critical areas where work is needed are identified. This basic understanding of the fission gas behavior mechanisms has the potential to revolutionize our ability to predict fission product behavior and to design fuels with improved performance. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.

  10. Understanding the Growth Mechanism of GaN Epitaxial Layers on Mechanically Exfoliated Graphite.

    Science.gov (United States)

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Gan, Lin; Xu, Bingshe; Jiang, Haiwei

    2018-04-27

    The growth mechanism of GaN epitaxial layers on mechanically exfoliated graphite is explained in detail based on classic nucleation theory. The number of defects on the graphite surface can be increased via O-plasma treatment, leading to increased nucleation density on the graphite surface. The addition of elemental Al can effectively improve the nucleation rate, which can promote the formation of dense nucleation layers and the lateral growth of GaN epitaxial layers. The surface morphologies of the nucleation layers, annealed layers and epitaxial layers were characterized by field-emission scanning electron microscopy, where the evolution of the surface morphology coincided with a 3D-to-2D growth mechanism. High-resolution transmission electron microscopy was used to characterize the microstructure of GaN. Fast Fourier transform diffraction patterns showed that cubic phase (zinc-blend structure) GaN grains were obtained using conventional GaN nucleation layers, while the hexagonal phase (wurtzite structure) GaN films were formed using AlGaN nucleation layers. Our work opens new avenues for using highly oriented pyrolytic graphite as a substrate to fabricate transferable optoelectronic devices.

  11. A Model of How Different Biology Experts Explain Molecular and Cellular Mechanisms

    Science.gov (United States)

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do…

  12. Change is good: variations in common biological mechanisms in the epsilonproteobacterial genera Campylobacter and Helicobacter.

    Science.gov (United States)

    Gilbreath, Jeremy J; Cody, William L; Merrell, D Scott; Hendrixson, David R

    2011-03-01

    Microbial evolution and subsequent species diversification enable bacterial organisms to perform common biological processes by a variety of means. The epsilonproteobacteria are a diverse class of prokaryotes that thrive in diverse habitats. Many of these environmental niches are labeled as extreme, whereas other niches include various sites within human, animal, and insect hosts. Some epsilonproteobacteria, such as Campylobacter jejuni and Helicobacter pylori, are common pathogens of humans that inhabit specific regions of the gastrointestinal tract. As such, the biological processes of pathogenic Campylobacter and Helicobacter spp. are often modeled after those of common enteric pathogens such as Salmonella spp. and Escherichia coli. While many exquisite biological mechanisms involving biochemical processes, genetic regulatory pathways, and pathogenesis of disease have been elucidated from studies of Salmonella spp. and E. coli, these paradigms often do not apply to the same processes in the epsilonproteobacteria. Instead, these bacteria often display extensive variation in common biological mechanisms relative to those of other prototypical bacteria. In this review, five biological processes of commonly studied model bacterial species are compared to those of the epsilonproteobacteria C. jejuni and H. pylori. Distinct differences in the processes of flagellar biosynthesis, DNA uptake and recombination, iron homeostasis, interaction with epithelial cells, and protein glycosylation are highlighted. Collectively, these studies support a broader view of the vast repertoire of biological mechanisms employed by bacteria and suggest that future studies of the epsilonproteobacteria will continue to provide novel and interesting information regarding prokaryotic cellular biology.

  13. Do Zoo Visitors Need Zoology Knowledge to Understand Conservation Messages? An Exploration of the Public Understanding of Animal Biology and of the Conservation of Biodiversity in a Zoo Setting

    Science.gov (United States)

    Dove, Tracy; Byrne, Jenny

    2014-01-01

    This study explores the current knowledge and understanding about animal biology of zoo visitors and investigates whether knowledge of animal biology influences the ability of people to understand how human activity affects biodiversity. Zoos can play a role in the development of scientific literacy in the fields of animal biology and biodiversity…

  14. Towards a system level understanding of non-model organisms sampled from the environment: a network biology approach.

    Directory of Open Access Journals (Sweden)

    Tim D Williams

    2011-08-01

    Full Text Available The acquisition and analysis of datasets including multi-level omics and physiology from non-model species, sampled from field populations, is a formidable challenge, which so far has prevented the application of systems biology approaches. If successful, these could contribute enormously to improving our understanding of how populations of living organisms adapt to environmental stressors relating to, for example, pollution and climate. Here we describe the first application of a network inference approach integrating transcriptional, metabolic and phenotypic information representative of wild populations of the European flounder fish, sampled at seven estuarine locations in northern Europe with different degrees and profiles of chemical contaminants. We identified network modules, whose activity was predictive of environmental exposure and represented a link between molecular and morphometric indices. These sub-networks represented both known and candidate novel adverse outcome pathways representative of several aspects of human liver pathophysiology such as liver hyperplasia, fibrosis, and hepatocellular carcinoma. At the molecular level these pathways were linked to TNF alpha, TGF beta, PDGF, AGT and VEGF signalling. More generally, this pioneering study has important implications as it can be applied to model molecular mechanisms of compensatory adaptation to a wide range of scenarios in wild populations.

  15. Towards a system level understanding of non-model organisms sampled from the environment: a network biology approach.

    Science.gov (United States)

    Williams, Tim D; Turan, Nil; Diab, Amer M; Wu, Huifeng; Mackenzie, Carolynn; Bartie, Katie L; Hrydziuszko, Olga; Lyons, Brett P; Stentiford, Grant D; Herbert, John M; Abraham, Joseph K; Katsiadaki, Ioanna; Leaver, Michael J; Taggart, John B; George, Stephen G; Viant, Mark R; Chipman, Kevin J; Falciani, Francesco

    2011-08-01

    The acquisition and analysis of datasets including multi-level omics and physiology from non-model species, sampled from field populations, is a formidable challenge, which so far has prevented the application of systems biology approaches. If successful, these could contribute enormously to improving our understanding of how populations of living organisms adapt to environmental stressors relating to, for example, pollution and climate. Here we describe the first application of a network inference approach integrating transcriptional, metabolic and phenotypic information representative of wild populations of the European flounder fish, sampled at seven estuarine locations in northern Europe with different degrees and profiles of chemical contaminants. We identified network modules, whose activity was predictive of environmental exposure and represented a link between molecular and morphometric indices. These sub-networks represented both known and candidate novel adverse outcome pathways representative of several aspects of human liver pathophysiology such as liver hyperplasia, fibrosis, and hepatocellular carcinoma. At the molecular level these pathways were linked to TNF alpha, TGF beta, PDGF, AGT and VEGF signalling. More generally, this pioneering study has important implications as it can be applied to model molecular mechanisms of compensatory adaptation to a wide range of scenarios in wild populations.

  16. How does undergraduate college biology students' level of understanding, in regard to the role of the seed plant root system, relate to their level of understanding of photosynthesis?

    Science.gov (United States)

    Njeng'ere, James Gicheha

    This research study investigated how undergraduate college biology students' level of understanding of the role of the seed plant root system relates to their level of understanding of photosynthesis. This research was conducted with 65 undergraduate non-majors biology who had completed 1 year of biology at Louisiana State University in Baton Rouge and Southeastern Louisiana University in Hammond. A root probe instrument was developed from some scientifically acceptable propositional statements about the root system, the process of photosynthesis, as well as the holistic nature of the tree. These were derived from research reviews of the science education and the arboriculture literature. This was administered to 65 students selected randomly from class lists of the two institutions. Most of the root probe's items were based on the Live Oak tree. An in-depth, clinical interview-based analysis was conducted with 12 of those tested students. A team of root experts participated by designing, validating and answering the same questions that the students were asked. A "systems" lens as defined by a team of college instructors, root experts (Shigo, 1991), and this researcher was used to interpret the results. A correlational coefficient determining students' level of understanding of the root system and their level of understanding of the process of photosynthesis was established by means of Pearson's r correlation (r = 0.328) using the SAS statistical analysis (SAS, 1987). From this a coefficient of determination (r2 = 0.104) was determined. Students' level of understanding of the Live Oak root system (mean score 5.94) was not statistically different from their level of understanding of the process of photosynthesis (mean score 5.54) as assessed by the root probe, t (129) = 0.137, p > 0.05 one tailed-test. This suggests that, to some degree, level of the root system limits level of understanding of photosynthesis and vice versa. Analysis of quantitative and qualitative

  17. Quantum Information Biology: From Information Interpretation of Quantum Mechanics to Applications in Molecular Biology and Cognitive Psychology

    Science.gov (United States)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    2015-10-01

    We discuss foundational issues of quantum information biology (QIB)—one of the most successful applications of the quantum formalism outside of physics. QIB provides a multi-scale model of information processing in bio-systems: from proteins and cells to cognitive and social systems. This theory has to be sharply distinguished from "traditional quantum biophysics". The latter is about quantum bio-physical processes, e.g., in cells or brains. QIB models the dynamics of information states of bio-systems. We argue that the information interpretation of quantum mechanics (its various forms were elaborated by Zeilinger and Brukner, Fuchs and Mermin, and D' Ariano) is the most natural interpretation of QIB. Biologically QIB is based on two principles: (a) adaptivity; (b) openness (bio-systems are fundamentally open). These principles are mathematically represented in the framework of a novel formalism— quantum adaptive dynamics which, in particular, contains the standard theory of open quantum systems.

  18. Radiation-induced DNA-protein cross-links: Mechanisms and biological significance.

    Science.gov (United States)

    Nakano, Toshiaki; Xu, Xu; Salem, Amir M H; Shoulkamy, Mahmoud I; Ide, Hiroshi

    2017-06-01

    Ionizing radiation produces various DNA lesions such as base damage, DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and DNA-protein cross-links (DPCs). Of these, the biological significance of DPCs remains elusive. In this article, we focus on radiation-induced DPCs and review the current understanding of their induction, properties, repair, and biological consequences. When cells are irradiated, the formation of base damage, SSBs, and DSBs are promoted in the presence of oxygen. Conversely, that of DPCs is promoted in the absence of oxygen, suggesting their importance in hypoxic cells, such as those present in tumors. DNA and protein radicals generated by hydroxyl radicals (i.e., indirect effect) are responsible for DPC formation. In addition, DPCs can also be formed from guanine radical cations generated by the direct effect. Actin, histones, and other proteins have been identified as cross-linked proteins. Also, covalent linkages between DNA and protein constituents such as thymine-lysine and guanine-lysine have been identified and their structures are proposed. In irradiated cells and tissues, DPCs are repaired in a biphasic manner, consisting of fast and slow components. The half-time for the fast component is 20min-2h and that for the slow component is 2-70h. Notably, radiation-induced DPCs are repaired more slowly than DSBs. Homologous recombination plays a pivotal role in the repair of radiation-induced DPCs as well as DSBs. Recently, a novel mechanism of DPC repair mediated by a DPC protease was reported, wherein the resulting DNA-peptide cross-links were bypassed by translesion synthesis. The replication and transcription of DPC-bearing reporter plasmids are inhibited in cells, suggesting that DPCs are potentially lethal lesions. However, whether DPCs are mutagenic and induce gross chromosomal alterations remains to be determined. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes.

    Science.gov (United States)

    Li, Juan; Zou, Chenggang; Xu, Jianping; Ji, Xinglai; Niu, Xuemei; Yang, Jinkui; Huang, Xiaowei; Zhang, Ke-Qin

    2015-01-01

    Plant-parasitic nematodes cause significant damage to a broad range of vegetables and agricultural crops throughout the world. As the natural enemies of nematodes, nematophagous microorganisms offer a promising approach to control the nematode pests. Some of these microorganisms produce traps to capture and kill the worms from the outside. Others act as internal parasites to produce toxins and virulence factors to kill the nematodes from within. Understanding the molecular basis of microbe-nematode interactions provides crucial insights for developing effective biological control agents against plant-parasitic nematodes. Here, we review recent advances in our understanding of the interactions between nematodes and nematophagous microorganisms, with a focus on the molecular mechanisms by which nematophagous microorganisms infect nematodes and on the nematode defense against pathogenic attacks. We conclude by discussing several key areas for future research and development, including potential approaches to apply our recent understandings to develop effective biocontrol strategies.

  20. First-Year Biology Students' Understandings of Meiosis: An Investigation Using a Structural Theoretical Framework

    Science.gov (United States)

    Quinn, Frances; Pegg, John; Panizzon, Debra

    2009-01-01

    Meiosis is a biological concept that is both complex and important for students to learn. This study aims to explore first-year biology students' explanations of the process of meiosis, using an explicit theoretical framework provided by the Structure of the Observed Learning Outcome (SOLO) model. The research was based on responses of 334…

  1. Understanding the Interaction of Peptides and Proteins with Abiotic Surfaces: Towards Water-Free Biologics

    Science.gov (United States)

    2018-02-03

    engineering , materials, spectroscopy, laser techniques, chemical biology, computational chemistry, and nanoscience and nanotechnology . We have regular bi...water-free biologics” based on engineered abiotic/biotic interfaces. Using knowledge gained from studies in Aim 1, we aim to a) engineer peptides...universities. The research is highly interdisciplinary, covering many research areas in biology, chemistry, engineering , and physics. The

  2. Exploring the MACH Model’s Potential as a Metacognitive Tool to Help Undergraduate Students Monitor Their Explanations of Biological Mechanisms

    Science.gov (United States)

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2016-01-01

    When undergraduate biology students learn to explain biological mechanisms, they face many challenges and may overestimate their understanding of living systems. Previously, we developed the MACH model of four components used by expert biologists to explain mechanisms: Methods, Analogies, Context, and How. This study explores the implementation of the model in an undergraduate biology classroom as an educational tool to address some of the known challenges. To find out how well students’ written explanations represent components of the MACH model before and after they were taught about it and why students think the MACH model was useful, we conducted an exploratory multiple case study with four interview participants. We characterize how two students explained biological mechanisms before and after a teaching intervention that used the MACH components. Inductive analysis of written explanations and interviews showed that MACH acted as an effective metacognitive tool for all four students by helping them to monitor their understanding, communicate explanations, and identify explanatory gaps. Further research, though, is needed to more fully substantiate the general usefulness of MACH for promoting students’ metacognition about their understanding of biological mechanisms. PMID:27252295

  3. How to Generate Understanding of the Scientific Process in Introductory Biology: A Student-Designed Laboratory Exercise on Yeast Fermentation

    Science.gov (United States)

    Collins, Linda T.; Bell, Rebekah P.

    2004-01-01

    Heavy faculty teaching loads and limited funds biology teachers designed certain objectives in order to increase the understandability of the subject matter of the laboratory exercises they write. In relation to these objectives an old "cookbook" laboratory exercise on yeast fermentation is introduced which involve students asking questions,…

  4. New Drugs for Anemia Treatment Based on a New Understanding of the Mechanisms of Stress Erythropoiesis

    Science.gov (United States)

    2015-11-01

    Award Number: W81XWH-12-1-0449 TITLE: New Drugs for Anemia Treatment Based on a New Understanding of the Mechanisms of Stress Erythropoiesis...COVERED 1Sep2012 - 31Aug2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER New Drugs for Anemia Treatment Based on a New Understanding of the...cell formation in "Nan" (neonatal anemia ) mice, raising the level of red cells to almost normal. It also causes an increase in the numbers of splenic

  5. Understanding the molecular mechanism(s) of hepatitis C virus (HCV) induced interferon resistance.

    Science.gov (United States)

    Qashqari, Hanadi; Al-Mars, Amany; Chaudhary, Adeel; Abuzenadah, Adel; Damanhouri, Ghazi; Alqahtani, Mohammed; Mahmoud, Maged; El Sayed Zaki, Maysaa; Fatima, Kaneez; Qadri, Ishtiaq

    2013-10-01

    Hepatitis C virus (HCV) is one of the foremost causes of chronic liver disease affecting over 300 million globally. HCV contains a positive-stranded RNA of ~9600 nt and is surrounded by the 5' and 3'untranslated regions (UTR). The only successful treatment regimen includes interferon (IFN) and ribavirin. Like many other viruses, HCV has also evolved various mechanisms to circumvent the IFN response by blocking (1) downstream signaling actions via STAT1, STAT2, IRF9 and JAK-STAT pathways and (2) repertoire of IFN Stimulatory Genes (ISGs). Several studies have identified complex host demographic and genetic factors as well as viral genetic heterogeneity associated with outcomes of IFN therapy. The genetic predispositions of over 2000 ISGS may render the patients to become resistant, thus identification of such parameters within a subset of population are necessary for management corollary. The ability of various HCV genotypes to diminish IFN antiviral responses plays critical role in the establishment of chronic infection at the acute stage of infection, thus highlighting importance of the resistance in HCV treated groups. The recently defined role of viral protein such as C, E2, NS3/NS4 and NS5A proteins in inducing the IFN resistance are discussed in this article. How the viral and host genetic composition and epistatic connectivity among polymorphic genomic sites synchronizes the evolutionary IFN resistance trend remains under investigation. However, these signals may have the potential to be employed for accurate prediction of therapeutic outcomes. In this review article, we accentuate the significance of host and viral components in IFN resistance with the aim to determine the successful outcome in patients. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Changes in diffusion properties of biological tissues associated with mechanical strain

    International Nuclear Information System (INIS)

    Tanaka, Kenichiro; Imae, T.; Mima, Kazuo; Sekino, Masaki; Ohsaki, Hiroyuki; Ueno, Shogo

    2007-01-01

    Mechanical strain in biological tissues causes a change in the diffusion properties of water molecules. This paper proposes a method of estimating mechanical strain in biological tissues using diffusion magnetic resonance imaging (MRI). Measurements were carried out on uncompressed and compressed chicken skeletal muscles. A theoretical model of the diffusion of water molecules in muscle fibers was derived based on Tanner's equation. Diameter of the muscle fibers was estimated by fitting the model equation to the measured signals. Changes in the mean diffusivity (MD), the fractional anisotropy (FA), and diameter of the muscle fiber did not have any statistical significance. The intracellular diffusion coefficient (D int ) was changed by mechanical strain (p<.05). This method has potential applications in the quantitative evaluation of strain in biological tissues, a though it poses several technical challenges. (author)

  7. Potential of development of the mechanical-biological waste treatment; Entwicklungspotenzial der Mechanisch-Biologischen Abfallbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Grundmann, Thomas; Balhar, Michael [ASA e.V., Ennigerloh (Germany); Abfallwirtschaftsgesellschaft des Kreises Warendorf mbH, Ennigerloh (Germany)

    2013-03-01

    The Consortium Material-Specific Waste Treatment eV (Ennigerloh, Federal Republic of Germany) is an association of plant operators having the opinion that an economic and ecologic waste treatment only can be guaranteed by material-specific processes permanently. Due to the specific treatment processes in plants with mechanical-biological waste treatment (MBA) material flows are resulting being available for the recycling or exploitation. Under this aspect, the authors of the contribution under consideration report on the development potential of the mechanical-biological waste treatment. The state of the art of the technology of mechanical-biological waste treatment in Germany as well as the contribution of this technology to the resource protection and climate protection are described. Further aspects of this contribution are the increase of the energy efficiency and reduction of emissions; further development of the efficient sorting technology; development of integrated total conceptions - MBA-sites as centres for the production of renewable energies.

  8. Investigating and Improving Student Understanding of Key Ideas in Quantum Mechanics throughout Instruction

    Science.gov (United States)

    Emigh, Paul Jeffrey

    This dissertation describes research on student understanding of quantum mechanics across multiple levels of instruction. The primary focus has been to identify patterns in student reasoning related to key concepts in quantum mechanics. The specific topics include quantum measurements, time dependence, vector spaces, and angular momentum. The research has spanned a variety of different quantum courses intended for introductory physics students, upper-division physics majors, and graduate students in physics. The results of this research have been used to develop a set of curriculum, Tutorials in Physics: Quantum Mechanics, for addressing the most persistent student difficulties. We document both the development of this curriculum and how it has impacted and improved student understanding of quantum mechanics.

  9. Neuroimaging mechanisms of change in psychotherapy for addictive behaviors: emerging translational approaches that bridge biology and behavior.

    Science.gov (United States)

    Feldstein Ewing, Sarah W; Chung, Tammy

    2013-06-01

    Research on mechanisms of behavior change provides an innovative method to improve treatment for addictive behaviors. An important extension of mechanisms of change research involves the use of translational approaches, which examine how basic biological (i.e., brain-based mechanisms) and behavioral factors interact in initiating and sustaining positive behavior change as a result of psychotherapy. Articles in this special issue include integrative conceptual reviews and innovative empirical research on brain-based mechanisms that may underlie risk for addictive behaviors and response to psychotherapy from adolescence through adulthood. Review articles discuss hypothesized mechanisms of change for cognitive and behavioral therapies, mindfulness-based interventions, and neuroeconomic approaches. Empirical articles cover a range of addictive behaviors, including use of alcohol, cigarettes, marijuana, cocaine, and pathological gambling and represent a variety of imaging approaches including fMRI, magneto-encephalography, real-time fMRI, and diffusion tensor imaging. Additionally, a few empirical studies directly examine brain-based mechanisms of change, whereas others examine brain-based indicators as predictors of treatment outcome. Finally, two commentaries discuss craving as a core feature of addiction, and the importance of a developmental approach to examining mechanisms of change. Ultimately, translational research on mechanisms of behavior change holds promise for increasing understanding of how psychotherapy may modify brain structure and functioning and facilitate the initiation and maintenance of positive treatment outcomes for addictive behaviors. 2013 APA, all rights reserved

  10. Forty Years of Ebolavirus Molecular Biology: Understanding a Novel Disease Agent Through the Development and Application of New Technologies.

    Science.gov (United States)

    Groseth, Allison; Hoenen, Thomas

    2017-01-01

    Molecular biology is a broad discipline that seeks to understand biological phenomena at a molecular level, and achieves this through the study of DNA, RNA, proteins, and/or other macromolecules (e.g., those involved in the modification of these substrates). Consequently, it relies on the availability of a wide variety of methods that deal with the collection, preservation, inactivation, separation, manipulation, imaging, and analysis of these molecules. As such the state of the art in the field of ebolavirus molecular biology research (and that of all other viruses) is largely intertwined with, if not driven by, advancements in the technical methodologies available for these kinds of studies. Here we review of the current state of our knowledge regarding ebolavirus biology and emphasize the associated methods that made these discoveries possible.

  11. A Framework for Understanding the Patterns of Student Difficulties in Quantum Mechanics

    Science.gov (United States)

    Singh, Chandralekha

    2015-04-01

    Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. We describe a theoretical framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that the challenges many students face in developing expertise in quantum mechanics are analogous to the challenges introductory students face in developing expertise in introductory classical mechanics. This framework incorporates the effects of diversity in students' prior preparation, goals and motivation for taking upper-level physics courses in general as well as the ``paradigm shift'' from classical mechanics to quantum mechanics. The framework is based on empirical investigations demonstrating that the patterns of reasoning, problem-solving, and self-monitoring difficulties in quantum mechanics bear a striking resemblance to those found in introductory classical mechanics. Examples from research in quantum mechanics and introductory classical mechanics will be discussed to illustrate how the patterns of difficulties are analogous as students learn to unpack the respective principles and grasp the formalism in each knowledge domain during the development of expertise. Embracing such a theoretical framework and contemplating the parallels between the difficulties in these two knowledge domains can enable researchers to leverage the extensive literature for introductory physics education research to guide the design of teaching and learning tools for helping students develop expertise in quantum mechanics. Support from the National Science Foundation is gratefully acknowledged.

  12. Understanding Creep Mechanisms in Graphite with Experiments, Multiscale Simulations, and Modeling

    International Nuclear Information System (INIS)

    2014-01-01

    Disordering mechanisms in graphite have a long history with conflicting viewpoints. Using Raman and x-ray photon spectroscopy, electron microscopy, x-ray diffraction experiments and atomistic modeling and simulations, the current project has developed a fundamental understanding of early-to-late state radiation damage mechanisms in nuclear reactor grade graphite (NBG-18 and PCEA). We show that the topological defects in graphite play an important role under neutron and ion irradiation.

  13. Understanding Creep Mechanisms in Graphite with Experiments, Multiscale Simulations, and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Eapen, Jacob [North Carolina State Univ., Raleigh, NC (United States); Murty, Korukonda [North Carolina State Univ., Raleigh, NC (United States); Burchell, Timothy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-06-02

    Disordering mechanisms in graphite have a long history with conflicting viewpoints. Using Raman and x-ray photon spectroscopy, electron microscopy, x-ray diffraction experiments and atomistic modeling and simulations, the current project has developed a fundamental understanding of early-to-late state radiation damage mechanisms in nuclear reactor grade graphite (NBG-18 and PCEA). We show that the topological defects in graphite play an important role under neutron and ion irradiation.

  14. The relationship between biology teachers' understanding of the nature of science and the understanding and acceptance of the theory of evolution

    Science.gov (United States)

    Cofré, Hernán; Cuevas, Emilia; Becerra, Beatriz

    2017-11-01

    Despite the importance of the theory of evolution (TE) to scientific knowledge, a number of misconceptions continue to be found among biology teachers. In this context, the first objective of this study was to identify the impact of professional development programme (PDP) on teachers' understanding of nature of science (NOS) and evolution and on the acceptance of this theory. Its second objective was to study the relationship among these variables. Three instruments were used to quantify these variables: the Views of the Nature of Science Version D (VNOS D+), the Assessing Contextual Reasoning about Natural Selection (ACORN), and the Measure of Acceptance of Theory of Evolution (MATE). The results indicate that the PDP had a positive impact on teachers, significantly improving their understanding of the NOS and natural selection, as well as their acceptance of the TE. Furthermore, a positive correlation between the understanding of the NOS obtained by teachers in the first part of the PDP and the understanding and acceptance of evolution that these teachers showed at the end of the programme was determined. However, no relationship between an understanding of the NOS and gains in the understanding and acceptance of evolution was found.

  15. Recent advances in biological effect and molecular mechanism of arabidopsis thaliana irradiated by ion beams

    International Nuclear Information System (INIS)

    Wu Dali; Hou Suiwen; Li Wenjian

    2008-01-01

    Newly research progresses were summarized in effect of ion beams on seed surface, biological effect, growth, development, gravitropism and so on. Furthermore, mutation molecular mechanism of Arabidopsis thaliana was discussed, for example, alteration of DNA bases, DNA damage, chromosomal recombination, characteristics of mutant transmissibility, etc. Meanwhile, the achievements of transfer- ring extraneous gene to Arabidopsis thaliana by ion beams were reviewed in the paper. At last, the future prospective are also discussed here in mutation molecular mechanism and the potential application of biological effect of heavy ion beams. (authors)

  16. Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change

    Science.gov (United States)

    Visintainer, Tammie; Linn, Marcia

    2015-04-01

    Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in the Web-based Inquiry Science Environment (WISE), engages sixth-grade students in conducting virtual investigations using NetLogo models to foster an understanding of core mechanisms including the greenhouse effect. Students then test how the greenhouse effect is enhanced by everyday energy use. This study draws on three data sources: (1) pre- and post-unit interviews, (2) analysis of embedded assessments following virtual investigations, and (3) contrasting cases of two students (normative vs. non-normative understanding of the greenhouse effect). Results show the value of using virtual investigations for teaching the mechanisms associated with global climate change. Interviews document that students hold a wide range of ideas about the mechanisms driving global climate change. Investigations with models help students use evidence-based reasoning to distinguish their ideas. Results show that understanding the greenhouse effect offers a foundation for building connections between everyday energy use and increases in global temperature. An impediment to establishing coherent understanding was the persistence of an alternative conception about ozone as an explanation for climate change. These findings illustrate the need for regular revision of curriculum based on classroom trials. We discuss key design features of models and instructional revisions that can transform the teaching and learning of global climate change.

  17. Assessing Students' Understandings of Biological Models and Their Use in Science to Evaluate a Theoretical Framework

    Science.gov (United States)

    Grünkorn, Juliane; Upmeier zu Belzen, Annette; Krüger, Dirk

    2014-01-01

    Research in the field of students' understandings of models and their use in science describes different frameworks concerning these understandings. Currently, there is no conjoint framework that combines these structures and so far, no investigation has focused on whether it reflects students' understandings sufficiently (empirical evaluation).…

  18. Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition.

    Science.gov (United States)

    Schlundt, Andreas; Tants, Jan-Niklas; Sattler, Michael

    2017-04-15

    Recent advances in RNA sequencing technologies have greatly expanded our knowledge of the RNA landscape in cells, often with spatiotemporal resolution. These techniques identified many new (often non-coding) RNA molecules. Large-scale studies have also discovered novel RNA binding proteins (RBPs), which exhibit single or multiple RNA binding domains (RBDs) for recognition of specific sequence or structured motifs in RNA. Starting from these large-scale approaches it is crucial to unravel the molecular principles of protein-RNA recognition in ribonucleoprotein complexes (RNPs) to understand the underlying mechanisms of gene regulation. Structural biology and biophysical studies at highest possible resolution are key to elucidate molecular mechanisms of RNA recognition by RBPs and how conformational dynamics, weak interactions and cooperative binding contribute to the formation of specific, context-dependent RNPs. While large compact RNPs can be well studied by X-ray crystallography and cryo-EM, analysis of dynamics and weak interaction necessitates the use of solution methods to capture these properties. Here, we illustrate methods to study the structure and conformational dynamics of protein-RNA complexes in solution starting from the identification of interaction partners in a given RNP. Biophysical and biochemical techniques support the characterization of a protein-RNA complex and identify regions relevant in structural analysis. Nuclear magnetic resonance (NMR) is a powerful tool to gain information on folding, stability and dynamics of RNAs and characterize RNPs in solution. It provides crucial information that is complementary to the static pictures derived from other techniques. NMR can be readily combined with other solution techniques, such as small angle X-ray and/or neutron scattering (SAXS/SANS), electron paramagnetic resonance (EPR), and Förster resonance energy transfer (FRET), which provide information about overall shapes, internal domain

  19. Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jahnavi, S [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, TN 600036 (India); Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012 (India); Saravanan, U [Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, TN 600036 (India); Arthi, N [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, TN 600036 (India); Bhuvaneshwar, G S [Department of Engineering Design, Indian Institute of Technology Madras, Chennai, TN 600036 (India); Kumary, T V [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012 (India); Rajan, S [Madras Medical Mission, Institute of Cardio-Vascular Diseases, Mogappair, Chennai, Tamil Nadu 600037 (India); Verma, R S, E-mail: vermars@iitm.ac.in [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, TN 600036 (India)

    2017-04-01

    Major challenge in heart valve tissue engineering for paediatric patients is the development of an autologous valve with regenerative capacity. Hybrid tissue engineering approach is recently gaining popularity to design scaffolds with desired biological and mechanical properties that can remodel post implantation. In this study, we fabricated aligned nanofibrous Bio-Hybrid scaffold made of decellularized bovine pericardium: polycaprolactone-chitosan with optimized polymer thickness to yield the desired biological and mechanical properties. CD44{sup +}, αSMA{sup +}, Vimentin{sup +} and CD105{sup −} human valve interstitial cells were isolated and seeded on these Bio-Hybrid scaffolds. Subsequent biological evaluation revealed interstitial cell proliferation with dense extra cellular matrix deposition that indicated the viability for growth and proliferation of seeded cells on the scaffolds. Uniaxial mechanical tests along axial direction showed that the Bio-Hybrid scaffolds has at least 20 times the strength of the native valves and its stiffness is nearly 3 times more than that of native valves. Biaxial and uniaxial mechanical studies on valve interstitial cells cultured Bio-Hybrid scaffolds revealed that the response along the axial and circumferential direction was different, similar to native valves. Overall, our findings suggest that Bio-Hybrid scaffold is a promising material for future development of regenerative heart valve constructs in children. - Highlights: • We report detailed biological and mechanical investigations of a Bio-Hybrid scaffold. • Optimized polymer thickness yielded desired biological and mechanical properties. • Bio-Hybrid scaffold revealed hVIC proliferation with dense ECM deposition. • Biaxial testing indicated that Bio-Hybrid scaffolds are mechanically stronger than native valves. • Bio-Hybrid scaffold is a promising material for autologous valve tissue engineering.

  20. The complete genome sequence of Bacillus velezensis 9912D reveals its biocontrol mechanism as a novel commercial biological fungicide agent.

    Science.gov (United States)

    Pan, Hua-Qi; Li, Qing-Lian; Hu, Jiang-Chun

    2017-04-10

    A Bacillus sp. 9912 mutant, 9912D, was approved as a new biological fungicide agent by the Ministry of Agriculture of the People's Republic of China in 2016 owing to its excellent inhibitory effect on various plant pathogens and being environment-friendly. Here, we present the genome of 9912D with a circular chromosome having 4436 coding DNA sequences (CDSs), and a circular plasmid encoding 59 CDSs. This strain was finally designated as Bacillus velezensis based on phylogenomic analyses. Genome analysis revealed a total of 19 candidate gene clusters involved in secondary metabolite biosynthesis, including potential new type II lantibiotics. The absence of fengycin biosynthetic gene cluster is noteworthy. Our data offer insights into the genetic, biological and physiological characteristics of this strain and aid in deeper understanding of its biocontrol mechanism. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Understanding psychological stress, its biological processes, and impact on primary headache.

    Science.gov (United States)

    Nash, Justin M; Thebarge, Ronald W

    2006-10-01

    Psychological stress is generally acknowledged to be a central contributor to primary headache. Stress results from any challenge or threat, either real or perceived, to normal functioning. The stress response is the body's activation of physiological systems, namely the hypothalamic-pituitary-adrenal axis, to protect and restore functioning. Chronic activation of the stress response can lead to wear and tear that eventually can predispose an individual to disease. There are multiple ways that stress and headache are closely related. Stress can (a) be a predisposing factor that contributes to headache disorder onset, (b) accelerate the progression of the headache disorder into a chronic condition, and (c) precipitate and exacerbate individual headache episodes. How stress impacts headache is not often understood. However, stress is assumed to affect primary headache by directly impacting pain production and modulation processes at both the peripheral and central levels. Stress can also independently worsen headache-related disability and quality of life. Finally, the headache experience itself can serve as a stressor that compromises an individual's health and well-being. With the prominent role that stress plays in headache, there are implications for the evaluation of stress and the use of stress reduction strategies at the various stages of headache disorder onset and progression. Future directions can help to develop a better empirical understanding of the pattern of the stress and headache connections and the mechanisms that explain the connections. Further research can also examine the interactive effects of stress and other factors that impact headache disorder onset, course, and adjustment.

  2. Elucidating the molecular mechanisms underlying cellular response to biophysical cues using synthetic biology approaches

    NARCIS (Netherlands)

    Denning, Denise; Roos, Wouter H

    2016-01-01

    The use of synthetic surfaces and materials to influence and study cell behavior has vastly progressed our understanding of the underlying molecular mechanisms involved in cellular response to physicochemical and biophysical cues. Reconstituting cytoskeletal proteins and interfacing them with a

  3. Understanding the molecular mechanisms involved in the interfacial self-healing of supramolecular rubbers

    NARCIS (Netherlands)

    Bose, R.K.; Garcia Espallargas, S.J.; Van der Zwaag, S.

    2013-01-01

    Supramolecular rubbers based on 2-aminoethylimidazolidone and fatty acids with epoxy crosslinks have been shown to self-heal via multiple hydrogen bonding sites. In this work, several tools are used to investigate the molecular mechanisms taking place at the interface to understand cohesive healing

  4. Enhanced understanding of the relationship between chemical modification and mechanical properties of wood

    Science.gov (United States)

    Charles R. Frihart; Daniel J. Yelle; John Ralph; Robert J. Moon; Donald S. Stone; Joseph E. Jakes

    2008-01-01

    Chemical additions to wood often change its bulk properties, which can be determined using conventional macroscopic mechanical tests. However, the controlling interactions between chemicals and wood take place at and below the scale of individual cells and cell walls. To better understand the effects of chemical additions to wood, we have adapted and extended two...

  5. The Effects of Case-Based Instruction on Undergraduate Biology Students' Understanding of the Nature of Science

    Science.gov (United States)

    Burniston, Amy Lucinda

    Undergraduate science education is currently seeing a dramatic pedagogical push towards teaching the philosophies underpinning science as well as an increase in strategies that employ active learning. Many active learning strategies stem from constructivist ideals and have been shown to affect a student's understanding of how science operates and its impact on society- commonly referred to as the nature of science (NOS). One particular constructivist teaching strategy, case-based instruction (CBI), has been recommended by researchers and science education reformists as an effective instructional strategy for teaching NOS. Furthermore, when coupled with explicit-reflective instruction, CBI has been found to significantly increasing understanding of NOS in elementary and secondary students. However, few studies aimed their research on CBI and NOS towards higher education. Thus, this study uses a quasi-experimental, nonequivalent group design to study the effects of CBI on undergraduate science students understandings of NOS. Undergraduate biology student's understanding of NOS were assessed using the Views of Science Education (VOSE) instrument pre and post CBI intervention in Cellular and Molecular Biology and Human Anatomy and Physiology II. Data analysis indicated statistically significant differences between students NOS scores in experimental versus control sections for both courses, with experimental groups obtaining higher posttest scores. The results of this study indicate that undergraduate male and female students have similarly poor understandings of NOS and the use of historical case based instruction can be used as a means to increase undergraduate understanding of NOS.

  6. Progress in the understanding and utilization of biologic response modifiers in the treatment of uveitis.

    Science.gov (United States)

    Maleki, Arash; Meese, Halea; Sahawneh, Haitham; Foster, C Stephen

    2016-07-01

    Uveitis is the third most common cause of blindness in developed countries. Considering the systemic and local complications of long-term corticosteroid therapy and the intolerance due to side effects and ineffectiveness of conventional chemotherapy, use of biologic response modifiers is a reasonable alternative in the treatment of non-infectious uveitis and persistent uveitic macular edema. The majority of the evidence presented here comes from open uncontrolled analyses. Based on these studies, tumor necrosis factor alpha inhibitors, especially infliximab and adalimumab, have been shown to be effective in the treatment of non-infectious uveitis in numerous studies. More research is necessary, particularly multi-center randomized clinical trials, to address the choice of biologic response modifier agent and the length of treatment as we employ biologic response modifiers in different types of uveitis and persistent uveitic macular edema.

  7. On the mechanisms of interaction of low-intensity millimeter waves with biological objects

    Energy Technology Data Exchange (ETDEWEB)

    Betskii, O.V.

    1994-07-01

    The interaction of low-intensity millimeter-band electromagnetic waves with biological objects is examined. These waves are widely used in medical practice as a means of physiotherapy for the treatment of various human disorders. Principal attention is given to the mechanisms through which millimeter waves act on the human organism.

  8. I'm so tired: biological and genetic mechanisms of cancer-related fatigue

    NARCIS (Netherlands)

    Barsevick, Andrea; Frost, Marlene; Zwinderman, Aeilko; Hall, Per; Halyard, Michele; Abertnethy, Amy P.; Baas, Frank; Barsevick, Andrea M.; Bartels, Meike; Boomsma, Dorret I.; Chauhan, Cynthia; Cleeland, Charles S.; Dueck, Amylou C.; Frost, Marlene H.; Halyard, Michele Y.; Klepstad, Pål; Martin, Nicholas G.; Miaskowski, Christine; Mosing, Miriam; Movsas, Benjamin; van Noorden, Cornelis J. F.; Patrick, Donald L.; Pedersen, Nancy L.; Ropka, Mary E.; Shi, Quiling; Shinozaki, Gen; Singh, Jasvinder A.; Sloan, Jeff A.; Sprangers, Mirjam A. G.; Veenhoven, Ruut; Yang, Ping

    2010-01-01

    Objective The goal of this paper is to discuss cancer-related fatigue (CRF) and address issues related to the investigation into potential biological and genetic causal mechanisms. The objectives are to: (1) describe CRF as a component of quality of life (QOL); (2) address measurement issues that

  9. How preconditioning affects the measurement of poro-viscoelastic mechanical properties in biological tissues

    NARCIS (Netherlands)

    Hosseini, S.M.; Wilson, W.; Ito, K.; Donkelaar, van C.C.

    2014-01-01

    It is known that initial loading curves of soft biological tissues are substantially different from subsequent loadings. The later loading curves are generally used for assessing the mechanical properties of a tissue, and the first loading cycles, referred to as preconditioning, are omitted.

  10. Biological mechanisms underlying the role of physical fitness in health and resilience

    OpenAIRE

    Silverman, Marni N.; Deuster, Patricia A.

    2014-01-01

    Physical fitness, achieved through regular exercise and/or spontaneous physical activity, confers resilience by inducing positive psychological and physiological benefits, blunting stress reactivity, protecting against potentially adverse behavioural and metabolic consequences of stressful events and preventing many chronic diseases. In this review, we discuss the biological mechanisms underlying the beneficial effects of physical fitness on mental and physical health. Physical fitness appear...

  11. Biologically meaningful scents: a framework for understanding predator-prey research across disciplines.

    Science.gov (United States)

    Parsons, Michael H; Apfelbach, Raimund; Banks, Peter B; Cameron, Elissa Z; Dickman, Chris R; Frank, Anke S K; Jones, Menna E; McGregor, Ian S; McLean, Stuart; Müller-Schwarze, Dietland; Sparrow, Elisa E; Blumstein, Daniel T

    2018-02-01

    Fear of predation is a universal motivator. Because predators hunt using stealth and surprise, there is a widespread ability among prey to assess risk from chemical information - scents - in their environment. Consequently, scents often act as particularly strong modulators of memory and emotions. Recent advances in ecological research and analytical technology are leading to novel ways to use this chemical information to create effective attractants, repellents and anti-anxiolytic compounds for wildlife managers, conservation biologists and health practitioners. However, there is extensive variation in the design, results, and interpretation of studies of olfactory-based risk discrimination. To understand the highly variable literature in this area, we adopt a multi-disciplinary approach and synthesize the latest findings from neurobiology, chemical ecology, and ethology to propose a contemporary framework that accounts for such disparate factors as the time-limited stability of chemicals, highly canalized mechanisms that influence prey responses, and the context within which these scents are detected (e.g. availability of alternative resources, perceived shelter, and ambient physical parameters). This framework helps to account for the wide range of reported responses by prey to predator scents, and explains, paradoxically, how the same individual predator scent can be interpreted as either safe or dangerous to a prey animal depending on how, when and where the cue was deposited. We provide a hypothetical example to illustrate the most common factors that influence how a predator scent (from dingoes, Canis dingo) may both attract and repel the same target organism (kangaroos, Macropus spp.). This framework identifies the catalysts that enable dynamic scents, odours or odorants to be used as attractants as well as deterrents. Because effective scent tools often relate to traumatic memories (fear and/or anxiety) that cause future avoidance, this information may

  12. Using multi-criteria analysis of simulation models to understand complex biological systems

    Science.gov (United States)

    Maureen C. Kennedy; E. David. Ford

    2011-01-01

    Scientists frequently use computer-simulation models to help solve complex biological problems. Typically, such models are highly integrated, they produce multiple outputs, and standard methods of model analysis are ill suited for evaluating them. We show how multi-criteria optimization with Pareto optimality allows for model outputs to be compared to multiple system...

  13. Systems Modelling and the Development of Coherent Understanding of Cell Biology

    Science.gov (United States)

    Verhoeff, Roald P.; Waarlo, Arend Jan; Boersma, Kerst Th.

    2008-01-01

    This article reports on educational design research concerning a learning and teaching strategy for cell biology in upper-secondary education introducing "systems modelling" as a key competence. The strategy consists of four modelling phases in which students subsequently develop models of free-living cells, a general two-dimensional model of…

  14. Taiwan High School Biology Teachers' Acceptance and Understanding of Evolution and the Nature of Science

    Science.gov (United States)

    Chen, Li-Hua

    2015-01-01

    Evolution is the cornerstone of biological sciences, but anti-evolution teaching has become a global controversy since the introduction of evolutionary ideas into the United States high school science curricula in 1914. It is suggested that teachers' attitude toward and acceptance of the theory of evolution will influence their effect of teaching…

  15. Perceptual Influence of Ugandan Biology Students' Understanding of HIV/AIDS

    Science.gov (United States)

    Mutonyi, Harriet; Nashon, Samson; Nielsen, Wendy S.

    2010-01-01

    In Uganda, curbing the spread of HIV/AIDS has largely depended on public and private media messages about the disease. Media campaigns based on Uganda's cultural norms of communication are metaphorical, analogical and simile-like. The topic of HIV/AIDS has been introduced into the Senior Three (Grade 11) biology curriculum in Uganda. To what…

  16. Unit mechanisms of fission gas release: Current understanding and future needs

    Energy Technology Data Exchange (ETDEWEB)

    Tonks, Michael; Andersson, David; Devanathan, Ram; Dubourg, Roland; El-Azab, Anter; Freyss, Michel; Iglesias, Fernando; Kulacsy, Katalin; Pastore, Giovanni; Phillpot, Simon R.; Welland, Michael

    2018-06-01

    Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel properties and, once the gas is released into the gap between the fuel and cladding, lowering gap thermal conductivity and increasing gap pressure. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are being applied to provide unprecedented understanding of the unit mechanisms that define the fission product behavior. In this article, existing research on the basic mechanisms behind the various stages of fission gas release during normal reactor operation are summarized and critical areas where experimental and simulation work is needed are identified. This basic understanding of the fission gas behavior mechanisms has the potential to revolutionize our ability to predict fission product behavior during reactor operation and to design fuels that have improved fission product retention. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.

  17. Framework for understanding the patterns of student difficulties in quantum mechanics

    Directory of Open Access Journals (Sweden)

    Emily Marshman

    2015-09-01

    Full Text Available [This paper is part of the Focused Collection on Upper Division Physics Courses.] Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. Here, we describe a framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that the challenges many students face in developing expertise in quantum mechanics are analogous to the challenges introductory students face in developing expertise in introductory classical mechanics. This framework incorporates both the effects of diversity in upper-level students’ prior preparation, goals, and motivation in general (i.e., the facts that even in upper-level courses, students may be inadequately prepared, have unclear goals, and have insufficient motivation to excel as well as the “paradigm shift” from classical mechanics to quantum mechanics. The framework is based on empirical investigations demonstrating that the patterns of reasoning, problem-solving, and self-monitoring difficulties in quantum mechanics bear a striking resemblance to those found in introductory classical mechanics. Examples from research in quantum mechanics and introductory classical mechanics are discussed to illustrate how the patterns of difficulties are analogous as students learn to unpack the respective principles and grasp the formalism in each knowledge domain during the development of expertise. Embracing such a framework and contemplating the parallels between the difficulties in these two knowledge domains can enable researchers to leverage the extensive literature for introductory physics education research to guide the design of teaching and learning tools for helping students develop expertise in quantum mechanics.

  18. Framework for understanding the patterns of student difficulties in quantum mechanics

    Science.gov (United States)

    Marshman, Emily; Singh, Chandralekha

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. Here, we describe a framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that the challenges many students face in developing expertise in quantum mechanics are analogous to the challenges introductory students face in developing expertise in introductory classical mechanics. This framework incorporates both the effects of diversity in upper-level students' prior preparation, goals, and motivation in general (i.e., the facts that even in upper-level courses, students may be inadequately prepared, have unclear goals, and have insufficient motivation to excel) as well as the "paradigm shift" from classical mechanics to quantum mechanics. The framework is based on empirical investigations demonstrating that the patterns of reasoning, problem-solving, and self-monitoring difficulties in quantum mechanics bear a striking resemblance to those found in introductory classical mechanics. Examples from research in quantum mechanics and introductory classical mechanics are discussed to illustrate how the patterns of difficulties are analogous as students learn to unpack the respective principles and grasp the formalism in each knowledge domain during the development of expertise. Embracing such a framework and contemplating the parallels between the difficulties in these two knowledge domains can enable researchers to leverage the extensive literature for introductory physics education research to guide the design of teaching and learning tools for helping students develop expertise in quantum mechanics.

  19. Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold: mechanical and biological performance.

    Science.gov (United States)

    Gao, Chengde; Liu, Tingting; Shuai, Cijun; Peng, Shuping

    2014-04-16

    Graphene is a novel material and currently popular as an enabler for the next-generation nanocomposites. Here, we report the use of graphene to improve the mechanical properties of nano-58S bioactive glass for bone repair and regeneration. And the composite scaffolds were fabricated by a homemade selective laser sintering system. Qualitative and quantitative analysis demonstrated the successful incorporation of graphene into the scaffold without obvious structural damage and weight loss. The optimum compressive strength and fracture toughness reached 48.65 ± 3.19 MPa and 1.94 ± 0.10 MPa · m(1/2) with graphene content of 0.5 wt%, indicating significant improvements by 105% and 38% respectively. The mechanisms of pull-out, crack bridging, crack deflection and crack tip shielding were found to be responsible for the mechanical enhancement. Simulated body fluid and cell culture tests indicated favorable bioactivity and biocompatibility of the composite scaffold. The results suggest a great potential of graphene/nano-58S composite scaffold for bone tissue engineering applications.

  20. How LeuT shapes our understanding of the mechanisms of sodium-coupled neurotransmitter transporters.

    Science.gov (United States)

    Penmatsa, Aravind; Gouaux, Eric

    2014-03-01

    Neurotransmitter transporters are ion-coupled symporters that drive the uptake of neurotransmitters from neural synapses. In the past decade, the structure of a bacterial amino acid transporter, leucine transporter (LeuT), has given valuable insights into the understanding of architecture and mechanism of mammalian neurotransmitter transporters. Different conformations of LeuT, including a substrate-free state, inward-open state, and competitive and non-competitive inhibitor-bound states, have revealed a mechanistic framework for the transport and transport inhibition of neurotransmitters. The current review integrates our understanding of the mechanistic and pharmacological properties of eukaryotic neurotransmitter transporters obtained through structural snapshots of LeuT.

  1. Proteomic approaches to understanding the role of the cytoskeleton in host-defense mechanisms

    Science.gov (United States)

    Radulovic, Marko; Godovac-Zimmermann, Jasminka

    2014-01-01

    The cytoskeleton is a cellular scaffolding system whose functions include maintenance of cellular shape, enabling cellular migration, division, intracellular transport, signaling and membrane organization. In addition, in immune cells, the cytoskeleton is essential for phagocytosis. Following the advances in proteomics technology over the past two decades, cytoskeleton proteome analysis in resting and activated immune cells has emerged as a possible powerful approach to expand our understanding of cytoskeletal composition and function. However, so far there have only been a handful of studies of the cytoskeleton proteome in immune cells. This article considers promising proteomics strategies that could augment our understanding of the role of the cytoskeleton in host-defense mechanisms. PMID:21329431

  2. Structure property relationship of biological nano composites studies by combination of in-situ synchrotron scattering and mechanical tests

    International Nuclear Information System (INIS)

    Martinschitz, K.

    2005-06-01

    Biological materials represent hierarchical nano fibre composites with complicated morphology and architecture varying on the nm level. The mechanical response of those materials is influenced by many parameters like chemical composition and crystal structure of constituents, preferred orientation, internal morphology with specific sizes of features etc. In-situ wide-angle x-ray scattering (WAXS) combined with mechanical tests provide a unique means to evaluate structural changes in biological materials at specific stages of tensile experiments. In this way it is possible to identify distinct architectural/compositional elements responsible for specific mechanical characteristics of the biological materials. In this thesis, structure-property relationship is analyzed using in-situ WAXS in the tissues of Picea abies, coir fibre, bacterial cellulose and cellulose II based composites. The experiments were performed at the beamline ID01 of European synchrotron radiation facility in Grenoble, France. The tissues were strained in a tensile stage, while the structural changes were monitored using WAXS. Complex straining procedures were applied including cyclic straining. One of the main goals was to understand the stiffness recovery and strain hardening effects in the tissues. The results demonstrate that, in all cellulosics, the orientation of the cellulose crystallites is only the function of the external strain while the stiffness depends on the specific stage of the tensile experiment. Whenever the strain is increased, the tissues exhibit stiffness equal or larger than the initial one. The recovery of the mechanical function is attributed to the molecular mechanistic effects operating between the crystalline domains of the cellulose. (author)

  3. A Systems Biology Approach Reveals Converging Molecular Mechanisms that Link Different POPs to Common Metabolic Diseases.

    Science.gov (United States)

    Ruiz, Patricia; Perlina, Ally; Mumtaz, Moiz; Fowler, Bruce A

    2016-07-01

    A number of epidemiological studies have identified statistical associations between persistent organic pollutants (POPs) and metabolic diseases, but testable hypotheses regarding underlying molecular mechanisms to explain these linkages have not been published. We assessed the underlying mechanisms of POPs that have been associated with metabolic diseases; three well-known POPs [2,3,7,8-tetrachlorodibenzodioxin (TCDD), 2,2´,4,4´,5,5´-hexachlorobiphenyl (PCB 153), and 4,4´-dichlorodiphenyldichloroethylene (p,p´-DDE)] were studied. We used advanced database search tools to delineate testable hypotheses and to guide laboratory-based research studies into underlying mechanisms by which this POP mixture could produce or exacerbate metabolic diseases. For our searches, we used proprietary systems biology software (MetaCore™/MetaDrug™) to conduct advanced search queries for the underlying interactions database, followed by directional network construction to identify common mechanisms for these POPs within two or fewer interaction steps downstream of their primary targets. These common downstream pathways belong to various cytokine and chemokine families with experimentally well-documented causal associations with type 2 diabetes. Our systems biology approach allowed identification of converging pathways leading to activation of common downstream targets. To our knowledge, this is the first study to propose an integrated global set of step-by-step molecular mechanisms for a combination of three common POPs using a systems biology approach, which may link POP exposure to diseases. Experimental evaluation of the proposed pathways may lead to development of predictive biomarkers of the effects of POPs, which could translate into disease prevention and effective clinical treatment strategies. Ruiz P, Perlina A, Mumtaz M, Fowler BA. 2016. A systems biology approach reveals converging molecular mechanisms that link different POPs to common metabolic diseases. Environ

  4. Contribution of local probes in the understanding of mechanical effect on localized corrosion

    International Nuclear Information System (INIS)

    Vignal, Vincent; Oltra, Roland; Mary, Nicolas

    2004-01-01

    Understanding the actual effects of mechanical stresses on the processes leading to pitting corrosion necessitates to develop both a mechanical approach and electrochemical experiments at a microscopic scale. Typical embrittlement can be observed after straining around MnS inclusions on a re-sulfurized 316 stainless steels and their corrosion sensitivity have been classified using the micro-capillary electrochemical cell technique. It has been shown that the numerical simulation of the location of stress gradients is possible before the local electrochemical analysis and could be a very interesting way to define the pitting susceptibility of micro-cracked areas during straining. (authors)

  5. Biologically inspired control and modeling of (biorobotic systems and some applications of fractional calculus in mechanics

    Directory of Open Access Journals (Sweden)

    Lazarević Mihailo P.

    2013-01-01

    Full Text Available In this paper, the applications of biologically inspired modeling and control of (biomechanical (nonredundant mechanisms are presented, as well as newly obtained results of author in mechanics which are based on using fractional calculus. First, it is proposed to use biological analog-synergy due to existence of invariant features in the execution of functional motion. Second, the model of (biomechanical system may be obtained using another biological concept called distributed positioning (DP, which is based on the inertial properties and actuation of joints of considered mechanical system. In addition, it is proposed to use other biological principles such as: principle of minimum interaction, which takes a main role in hierarchical structure of control and self-adjusting principle (introduce local positive/negative feedback on control with great amplifying, which allows efficiently realization of control based on iterative natural learning. Also, new, recently obtained results of the author in the fields of stability, electroviscoelasticity, and control theory are presented which are based on using fractional calculus (FC. [Projekat Ministarstva nauke Republike Srbije, br. 35006

  6. Cognitive Deficits in Schizophrenia: Understanding the Biological Correlates and Remediation Strategies

    Science.gov (United States)

    Tripathi, Adarsh; Shukla, Rashmi

    2018-01-01

    Cognitive deficits are one of the core symptoms of schizophrenia that evolve during the course of schizophrenia, after being originated even before the onset of illness. Existing pharmacological and biological treatment modalities fall short to meet the needs to improve the cognitive symptoms; hence, various cognitive remediation strategies have been adopted to address these deficits. Research evidences suggest that cognitive remediation measures improve the functioning, limit disability bettering the quality of life. The functional outcomes of cognitive remediation in schizophrenia are resultant of neurobiological changes in specific brain areas. Recent years witnessed significant innovations in cognitive remediation strategies in schizophrenia. This comprehensive review highlights the biological correlates of cognitive deficits in schizophrenia and the remedial measures with evidence base. PMID:29397662

  7. Clinical indications and biological mechanisms of splenic irradiation in autoimmune diseases

    International Nuclear Information System (INIS)

    Weinmann, M.; Becker, G.; Einsele, H.; Bamberg, M.

    2001-01-01

    Background: Splenic irradiation (SI) is a fairly unknown treatment modality in autoimmune disorders like autoimmune thrombocytopenia (AIT) or autoimmune hemolytic anemia (AIHA), which may provide an effective, low toxic and cost-effective treatment for selected patients. Patients, Materials and Methods: This article reviews the limited experiences on splenic irradiation in autoimmune thrombocytopenia by analyzing the current studies including 71 patients and some preliminary reports on splenic irradiation in autoimmune hemolytic anemia. Results: In autoimmune thrombocytopenia between 40 and 90% of all patients responded, but most of them relapsed within 4 to 6 months after splenic irradiation. Between 10 and 20% of all patients had a sustained response. The efficacy of splenic irradiation in HIV-associated cases of thrombocytopenia is probably lower than in other forms of autoimmune thrombocytopenia, but especially in this group immunosuppressive drug treatment of autoimmune thrombocytopenia exposes some problems. In autoimmune hemolytic anemia there are some case reports about efficacy of splenic irradiation. Toxicity of splenic irradiation in both diseases was very moderate. Conclusions: For HIV patients, for elderly patients or patients at high risk for complications following splenectomy splenic irradiation might be a treatment option. Splenic irradiation as preoperative treatment in patients not responding to or not suitable for immunosuppressive drugs prior to splenectomy may be a promising new application of splenic irradiation to reduce adverse effects of splenectomy in thrombocytopenic patients. A further analysis of the biological mechanisms underlying splenic irradiation may help to improve patient selection, to optimize dose concepts and treatment schedules and will improve understanding of radiotherapy as an immunomodulatory treatment modality. (orig.) [de

  8. Understanding pathologic variants of renal cell carcinoma: distilling therapeutic opportunities from biologic complexity.

    Science.gov (United States)

    Shuch, Brian; Amin, Ali; Armstrong, Andrew J; Eble, John N; Ficarra, Vincenzo; Lopez-Beltran, Antonio; Martignoni, Guido; Rini, Brian I; Kutikov, Alexander

    2015-01-01

    Once believed to represent a uniform malignant phenotype, renal cell carcinoma (RCC) is now viewed as a diverse group of cancers that arise from the nephron. To review the pathologic characteristics, clinical behavior, molecular biology, and systemic therapy options of recognized RCC histologic subtypes. A systematic review of English-language articles was performed using the Medline and Web of Science databases. Manuscripts were selected with consensus of the coauthors and evaluated using the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) criteria. The major findings of the evaluated manuscripts are discussed with an emphasis on the description of the pathologic features, clinical behavior, prognosis, and therapeutic strategies. Classification schemes for kidney cancer have undergone dramatic changes over the past two decades. Improvements in these classification schemes are important, as pathologic variants differ not only in disease biology, but also in clinical behavior, prognosis, and response to systemic therapy. In the era of genomic medicine, further refinements in characterization of RCC subtypes will be critical to the progress of this burgeoning clinical space. Kidney cancer can be subdivided into related but different cancers that arise from the kidney's tubules. In this article we review current classifications for kidney cancer, discuss their characteristics, and provide an overview of each subtype's clinical behavior and treatment. We stress that each subtype harbors unique biology and thus responds differently to available treatment strategies. Copyright © 2014 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  9. The prognosis of infective endocarditis treated with biological valves versus mechanical valves: A meta-analysis.

    Science.gov (United States)

    Tao, Ende; Wan, Li; Wang, WenJun; Luo, YunLong; Zeng, JinFu; Wu, Xia

    2017-01-01

    Surgery remains the primary form of treatment for infective endocarditis (IE). However, it is not clear what type of prosthetic valve provides a better prognosis. We conducted a meta-analysis to compare the prognosis of infective endocarditis treated with biological valves to cases treated with mechanical valves. Pubmed, Embase and Cochrane databases were searched from January 1960 to November 2016.Randomized controlled trials, retrospective cohorts and prospective studies comparing outcomes between biological valve and mechanical valve management for infective endocarditis were analyzed. The Newcastle-Ottawa Scale(NOS) was used to evaluate the quality of the literature and extracted data, and Stata 12.0 software was used for the meta-analysis. A total of 11 publications were included; 10,754 cases were selected, involving 6776 cases of biological valves and 3,978 cases of mechanical valves. The all-cause mortality risk of the biological valve group was higher than that of the mechanical valve group (HR = 1.22, 95% CI 1.03 to 1.44, P = 0.023), as was early mortality (RR = 1.21, 95% CI 1.02 to 1.43, P = 0.033). The recurrence of endocarditis (HR = 1.75, 95% CI 1.26 to 2.42, P = 0.001), as well as the risk of reoperation (HR = 1.79, 95% CI 1.15 to 2.80, P = 0.010) were more likely to occur in the biological valve group. The incidence of postoperative embolism was less in the biological valve group than in the mechanical valve group, but this difference was not statistically significant (RR = 0.90, 95% CI 0.76 to 1.07, P = 0.245). For patients with prosthetic valve endocarditis (PVE), there was no significant difference in survival rates between the biological valve group and the mechanical valve group (HR = 0.91, 95% CI 0.68 to 1.21, P = 0.520). The results of our meta-analysis suggest that mechanical valves can provide a significantly better prognosis in patients with infective endocarditis. There were significant differences in the clinical features of patients

  10. Understanding the mechanism of catalytic fast pyrolysis by unveiling reactive intermediates in heterogeneous catalysis

    Science.gov (United States)

    Hemberger, Patrick; Custodis, Victoria B. F.; Bodi, Andras; Gerber, Thomas; van Bokhoven, Jeroen A.

    2017-06-01

    Catalytic fast pyrolysis is a promising way to convert lignin into fine chemicals and fuels, but current approaches lack selectivity and yield unsatisfactory conversion. Understanding the pyrolysis reaction mechanism at the molecular level may help to make this sustainable process more economic. Reactive intermediates are responsible for product branching and hold the key to unveiling these mechanisms, but are notoriously difficult to detect isomer-selectively. Here, we investigate the catalytic pyrolysis of guaiacol, a lignin model compound, using photoelectron photoion coincidence spectroscopy with synchrotron radiation, which allows for isomer-selective detection of reactive intermediates. In combination with ambient pressure pyrolysis, we identify fulvenone as the central reactive intermediate, generated by catalytic demethylation to catechol and subsequent dehydration. The fulvenone ketene is responsible for the phenol formation. This technique may open unique opportunities for isomer-resolved probing in catalysis, and holds the potential for achieving a mechanistic understanding of complex, real-life catalytic processes.

  11. Material properties of biofilms – key methods for understanding permeability and mechanics

    Science.gov (United States)

    Billings, Nicole; Birjiniuk, Alona; Samad, Tahoura S.; Doyle, Patrick S.; Ribbeck, Katharina

    2015-01-01

    Microorganisms can form biofilms, which are multicellular communities surrounded by a hydrated extracellular matrix of polymers. Central properties of the biofilm are governed by this extracellular matrix, which provides mechanical stability to the three-dimensional biofilm structure, regulates the ability of the biofilm to adhere to surfaces, and determines the ability of the biofilm to adsorb gasses, solutes, and foreign cells. Despite their critical relevance for understanding and eliminating of biofilms, the materials properties of the extracellular matrix are understudied. Here, we offer the reader a guide to current technologies that can be utilized to specifically assess the permeability and mechanical properties of the biofilm matrix and its interacting components. In particular, we highlight technological advances in instrumentation and interactions between multiple disciplines that have broadened the spectrum of methods available to conduct these studies. We review pioneering work that furthers our understanding of the material properties of biofilms. PMID:25719969

  12. An attempt to understand glioma stem cell biology through centrality analysis of a protein interaction network.

    Science.gov (United States)

    Mallik, Mrinmay Kumar

    2018-02-07

    Biological networks can be analyzed using "Centrality Analysis" to identify the more influential nodes and interactions in the network. This study was undertaken to create and visualize a biological network comprising of protein-protein interactions (PPIs) amongst proteins which are preferentially over-expressed in glioma cancer stem cell component (GCSC) of glioblastomas as compared to the glioma non-stem cancer cell (GNSC) component and then to analyze this network through centrality analyses (CA) in order to identify the essential proteins in this network and their interactions. In addition, this study proposes a new centrality analysis method pertaining exclusively to transcription factors (TFs) and interactions amongst them. Moreover the relevant molecular functions, biological processes and biochemical pathways amongst these proteins were sought through enrichment analysis. A protein interaction network was created using a list of proteins which have been shown to be preferentially expressed or over-expressed in GCSCs isolated from glioblastomas as compared to the GNSCs. This list comprising of 38 proteins, created using manual literature mining, was submitted to the Reactome FIViz tool, a web based application integrated into Cytoscape, an open source software platform for visualizing and analyzing molecular interaction networks and biological pathways to produce the network. This network was subjected to centrality analyses utilizing ranked lists of six centrality measures using the FIViz application and (for the first time) a dedicated centrality analysis plug-in ; CytoNCA. The interactions exclusively amongst the transcription factors were nalyzed through a newly proposed centrality analysis method called "Gene Expression Associated Degree Centrality Analysis (GEADCA)". Enrichment analysis was performed using the "network function analysis" tool on Reactome. The CA was able to identify a small set of proteins with consistently high centrality ranks that

  13. A Model of How Different Biology Experts Explain Molecular and Cellular Mechanisms

    Science.gov (United States)

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do explanations made by experts from different biology subdisciplines at a university support the validity of this model? Guided by the modeling framework of R. S. Justi and J. K. Gilbert, the validity of an initial model was tested by asking seven biologists to explain a molecular mechanism of their choice. Data were collected from interviews, artifacts, and drawings, and then subjected to thematic analysis. We found that biologists explained the specific activities and organization of entities of the mechanism. In addition, they contextualized explanations according to their biological and social significance; integrated explanations with methods, instruments, and measurements; and used analogies and narrated stories. The derived methods, analogies, context, and how themes informed the development of our final MACH model of mechanistic explanations. Future research will test the potential of the MACH model as a guiding framework for instruction to enhance the quality of student explanations. PMID:25999313

  14. Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering.

    Science.gov (United States)

    Jahnavi, S; Saravanan, U; Arthi, N; Bhuvaneshwar, G S; Kumary, T V; Rajan, S; Verma, R S

    2017-04-01

    Major challenge in heart valve tissue engineering for paediatric patients is the development of an autologous valve with regenerative capacity. Hybrid tissue engineering approach is recently gaining popularity to design scaffolds with desired biological and mechanical properties that can remodel post implantation. In this study, we fabricated aligned nanofibrous Bio-Hybrid scaffold made of decellularized bovine pericardium: polycaprolactone-chitosan with optimized polymer thickness to yield the desired biological and mechanical properties. CD44 + , αSMA + , Vimentin + and CD105 - human valve interstitial cells were isolated and seeded on these Bio-Hybrid scaffolds. Subsequent biological evaluation revealed interstitial cell proliferation with dense extra cellular matrix deposition that indicated the viability for growth and proliferation of seeded cells on the scaffolds. Uniaxial mechanical tests along axial direction showed that the Bio-Hybrid scaffolds has at least 20 times the strength of the native valves and its stiffness is nearly 3 times more than that of native valves. Biaxial and uniaxial mechanical studies on valve interstitial cells cultured Bio-Hybrid scaffolds revealed that the response along the axial and circumferential direction was different, similar to native valves. Overall, our findings suggest that Bio-Hybrid scaffold is a promising material for future development of regenerative heart valve constructs in children. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Towards Biological Control of Kudzu Through an Improved Understanding of Insect-Kudzu Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Orr, D.; Barber, G.; DeBarr, G.; Thornton, M.

    2001-08-03

    The authors evaluated various approaches to the biological control of kudzu and exotic weed that infests the SRS. A large number of native pollinators were found to be attracted to kudzu. The viability of seed was found to be low, between 2% and 11%. This is the result of native Hemiptera. The results suggest that seed feeding insects should not be targeted for importation. Both kudzu and soybeans had the same level of abundance and diversity of herbivore insects and the same levels of defoliation. No vine or root damaging species were found. Efforts should be targeted to the latter insects to control kudzu.

  16. Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands

    NARCIS (Netherlands)

    Santello, M.; Bianchi, M.; Gabiccini, M.; Ricciardi, E.; Salvietti, G.; Prattichizzo, D.; Ernst, M.; Moscatelli, A.; Jörntell, H.; Kappers, A.M.L.; Kyriakopoulos, K.; Albu-Schäffer, A.; Castellini, C.; Bicchi, A.

    The term ‘synergy’ – from the Greek synergia – means ‘working together’. The concept of multiple elements working together towards a common goal has been extensively used in neuroscience to develop theoretical frameworks, experimental approaches, and analytical techniques to understand neural

  17. Understanding a Basic Biological Process: Expert and Novice Models of Meiosis.

    Science.gov (United States)

    Kindfield, Ann C. H.

    The results of a study of the meiosis models utilized by individuals at varying levels of expertise while reasoning about the process of meiosis are presented. Based on these results, the issues of sources of misconceptions/difficulties and the construction of a sound understanding of meiosis are discussed. Five individuals from each of three…

  18. Toward an Understanding of the Epistemic Values of Biological Scientists as Expressed in Scholarly Publication

    Science.gov (United States)

    Dunn, Kathel

    2010-01-01

    This dissertation develops a deeper understanding of the epistemic values of scientists, specifically exploring the proposed values of community, collaboration, connectivity and credit as part of the scholarly communication system. These values are the essence of scientists actively engaged in conducting science and in communicating their work to…

  19. Student Teachers' Ways of Thinking and Ways of Understanding Digestion and the Digestive System in Biology

    Science.gov (United States)

    Çimer, Sabiha Odabasi; Ursavas, Nazihan

    2012-01-01

    The purpose of this study was to identify the ways in which student teachers understand digestion and the digestive system and, subsequently, their ways of thinking, as reflected in their problem solving approaches and the justification schemes that they used to validate their claims. For this purpose, clinical interviews were conducted with 10…

  20. Future development of biological understanding of radiation protection: implications of nonstochastic effects

    International Nuclear Information System (INIS)

    Hahn, F.F.; McClellan, R.O.; Boecker, B.B.; Muggenburg, B.A.

    1988-01-01

    Radiation-protection standards are based on minimizing or preventing biological effects in exposed populations. Radiation-induced biological effects can be classified as stochastic--malignant and hereditary diseases for which the probability of an effect occurring is a function of dose without threshold--and nonstochastic--inflammatory and degenerative diseases for which the severity and frequency of the effect varies with the dose and for which a threshold is present. The current International Commission on Radiation Protection (ICRP) approach for setting limits for intakes of radionuclides by workers, which accounts for doses to significantly exposed organs of the body, is based on limitation of stochastic effects in most situations. When setting exposure limits, nonstochastic effects are generally considered to be unlikely at the limits for stochastic effects. In some situations, limits based on prevention of nonstochastic effects are lower than for stochastic effects. This review considers the threshold radiation doses for thyroid, bone, liver and lung and their relationship to the limits recommended by the ICRP and the cancer risks at the limits. This review indicates that the threshold dose for nonstochastic effects in thyroid and lung is much above the dose limit as advocated by ICRP. The threshold dose for nonstochastic effects in bone and liver is much closer to the dose limit, but protection from nonstochastic effects should still be afforded by the dose limits

  1. Oligometastatic prostate cancer: shaping the definition with molecular imaging and an improved understanding of tumor biology.

    Science.gov (United States)

    Joice, Gregory A; Rowe, Steven P; Pienta, Kenneth J; Gorin, Michael A

    2017-11-01

    The aim of this review is to discuss how novel imaging modalities and molecular markers are shaping the definition of oligometastatic prostate cancer. To effectively classify a patient as having oligometastatic prostate cancer, diagnostic tests must be sensitive enough to detect subtle sites of metastatic disease. Conventional imaging modalities can readily detect widespread polymetastatic disease but do not have the sensitivity necessary to reliably classify patients as oligometastatic. Molecular imaging using both metabolic- and molecularly-targeted radiotracers has demonstrated great promise in aiding in our ability to define the oligometastatic state. Perhaps the most promising data to date have been generated with radiotracers targeting prostate-specific membrane antigen. In addition, early studies are beginning to define biologic markers in the oligometastatic state that may be indicative of disease with minimal metastatic potential. Recent developments in molecular imaging have allowed for improved detection of metastatic prostate cancer allowing for more accurate staging of patients with oligometastatic disease. Future development of biologic markers may assist in defining the oligometastatic state and determining prognosis.

  2. Mechanical-biological waste conditioning with controlled venting - the Meisenheim mechanical-biological waste conditioning plant; Mechanisch-biologische Restabfallbehandlung nach dem Kaminzugverfahren - MBRA Meisenheim

    Energy Technology Data Exchange (ETDEWEB)

    Hangen, H.O. [Abfallwirtschaftsbetrieb Landkreis Bad Kreuznach, Bad Kreuznach (Germany)

    1998-12-31

    The decision of the rural district of Bad Kreuznach to propose creating facilities for mechanical-biological waste conditioning at the new northern Meisenheim landfill was consistent and correct. It will ensure that the material deposited at this new, state-of-the-art landfill is organically `lean` and can be deposited with a high density. Preliminary sifting of the material prior to depositing safeguards that no improper components are inadvertently included. Three years of operation warrant the statement that waste components that cannot be appropriately biologically conditioned should be eliminated prior to rotting. (orig.) [Deutsch] Die Entscheidung des Landkreises Bad Kreuznach, der neu eingerichteten Norddeponie Meisenheim eine MBRA vorzuschlaten, war auf jeden Fall konsequent und richtig. Es ist damit sicher gestellt, dass in diesem neuen nach dem Stand der Technik eingerichteten Deponiebereich von Anfang an ein Material eingelagert wird, das `organisch abgemagert` ist und mit hoher Einbaudichte eingebaut werden kann. Die Sichtung des gesamten Deponie-Inputs in der Vorsortierhalle gibt ein Stueck Sicherheit, dass keine nicht zugelassenen Stoffe verdeckt dem Ablagerungsbereich der Deponie zugefuehrt werden. Nach mehr als 3 Jahren Betriebszeit kann festgestellt werden, dass biologisch nicht sinnvoll behandelbare Abfallbestandteile vor dem Rotteprozess abgetrennt werden sollten. (orig.)

  3. Advances in understanding of soil biogeochemical cycles: the mechanism of HS entry into the root interior

    Science.gov (United States)

    Aleksandrova, Olga

    2017-04-01

    Humic substances represent the major reservoir of carbon (C) in ecosystems, and their turnover is crucial for understanding the global C cycle. As shown by some investigators [1-2], the phenomenon of the uptake of the whole humic particles by plant roots is a significant step of biogeochemical cycle of carbon in soils. The mechanism of HS entry the root interior remained unknown for a long time. However recently, the last one was discovered [3]. An advanced model [3] includes two hypotheses. These hypotheses are as follows: (1) each nano-size particle possesses a quantum image that can be revealed as a packet of electromagnetic waves; (2) the interaction of nano-size particle with the membrane (plasma membrane) of living cells, on which it is adsorbed, occurs via the development of the Rayleigh-Taylor (RT) instability on the membrane surface. An advanced model allows us to look insight some into some phenomena that were observed by experiments but remained not understood [2]. The authors [2] applied tritium autoradiography to wheat seedlings cultivated with tritium-labeled HS to consider the uptake of humic particles by plant roots. They found a significant increase in the content of some polar (monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyl diacylglycerol (SQDG) and phosphatidylcholine (PC)) and neutral (free fatty acids, FFA) lipids which were detected in the wheat seedlings treated with humic particles. Authors [2] pointed that lipids MGDG, DGDG, SQDG are crucial for functional and structural integrity of the photosystem complex. Therefore, a stimulating action of adsorbed humic particles evoked phenomena like photosynthesis in root cells that can be interpreted using an advanced model: humic particles being nano-size particles become adsorbed on the plant roots in soils, and influence their micro environment, where they are located, with the specific electromagnetic exposure. Another finding of authors consisted in the

  4. Solid recovered fuel production through the mechanical-biological treatment of wastes

    OpenAIRE

    Velis, C. A.

    2010-01-01

    This thesis is concerned with the production of solid recovered fuel (SRF) from municipal solid waste using mechanical biological treatment (MBT) plants. It describes the first in-depth analysis of a UK MBT plant and addresses the fundamental research question: are MBT plants and their unit operations optimised to produce high quality SRF in the UK? A critical review of the process science and engineering of MBT provides timely insights into the quality management and standa...

  5. Influences of mechanical pretreatment on the non-biological treatment of municipal wastewater by forward osmosis.

    Science.gov (United States)

    Hey, Tobias; Zarebska, Agata; Bajraktari, Niada; Vogel, Jörg; Hélix-Nielsen, Claus; la Cour Jansen, Jes; Jönsson, Karin

    2017-09-01

    Municipal wastewater treatment involves mechanical, biological and chemical treatment steps for protecting the environment from adverse effects. The biological treatment step consumes the most energy and can create greenhouse gases. This study investigates municipal wastewater treatment without the biological treatment step, including the effects of different pretreatment configurations, for example, direct membrane filtration before forward osmosis. Forward osmosis was tested using raw wastewater and wastewater subjected to different types of mechanical pretreatment, for example, microsieving and microfiltration permeation, as a potential technology for municipal wastewater treatment. Forward osmosis was performed using Aquaporin Inside™ and Hydration Technologies Inc. (HTI) membranes with NaCl as the draw solution. Both types of forward osmosis membranes were tested in parallel for the different types of pretreated feed and evaluated in terms of water flux and solute rejection, that is, biochemical oxygen demand (BOD 7 ) and total and soluble phosphorus contents. The Aquaporin and HTI membranes achieved a stable water flux with rejection rates of more than 96% for BOD 7 and total and soluble phosphorus, regardless of the type of mechanical pretreated wastewater considered. This result indicates that forward osmosis membranes can tolerate exposure to municipal waste water and that the permeate can fulfil the Swedish discharge limits.

  6. Behavior of selected organic pollutants in municipal waste during the mechanical-biological progress of composting

    International Nuclear Information System (INIS)

    Drahosch, W.

    1998-06-01

    Municipal waste was investigated during the mechanical-biological process of composting. Waste from Burgenland is treated mechanically and biologically to reduce organic matter in the material and to keep gas building potential low before deposition. Samples were taken and analyzed during a period of 80 days. The parameters: temperature, dry-weight, glow loss, ammonium, nitrate and phenolic substances were measured to follow the composting process. It was found that the process was almost finished after a period of 40 days in which the material was breathed intensively. The content of polycyclic aromatic hydrocarbons and polychlorinated phenols decreased slightly. It was not clear whether this was due to microbiological activity or blowing-out effects. Polychlorinated biphenyls were found to be stable during composting. The concentrations were considered as high. Hepta- and octachlorinated dibenzodioxines were formed during the first 10 days. The increase of octachlorinated dibenzodioxin was threefold. Other dioxines and furanes remained unchanged. Finally it was found out that mechanical-biological waste treatment is insufficient in order to reduce organic pollutants effectively. (author)

  7. Borderline personality disorder and childhood trauma: exploring the affected biological systems and mechanisms.

    Science.gov (United States)

    Cattane, Nadia; Rossi, Roberta; Lanfredi, Mariangela; Cattaneo, Annamaria

    2017-06-15

    According to several studies, the onset of the Borderline Personality Disorder (BPD) depends on the combination between genetic and environmental factors (GxE), in particular between biological vulnerabilities and the exposure to traumatic experiences during childhood. We have searched for studies reporting possible alterations in several biological processes and brain morphological features in relation to childhood trauma experiences and to BPD. We have also looked for epigenetic mechanisms as they could be mediators of the effects of childhood trauma in BPD vulnerability. We prove the role of alterations in Hypothalamic-Pituitary-Adrenal (HPA) axis, in neurotrasmission, in the endogenous opioid system and in neuroplasticity in the childhood trauma-associated vulnerability to develop BPD; we also confirm the presence of morphological changes in several BPD brain areas and in particular in those involved in stress response. Not so many studies are available on epigenetic changes in BPD patients, although these mechanisms are widely investigated in relation to stress-related disorders. A better comprehension of the biological and epigenetic mechanisms, affected by childhood trauma and altered in BPD patients, could allow to identify "at high risk" subjects and to prevent or minimize the development of the disease later in life.

  8. Genetically engineered mouse models of craniopharyngioma: an opportunity for therapy development and understanding of tumor biology.

    Science.gov (United States)

    Apps, John Richard; Martinez-Barbera, Juan Pedro

    2017-05-01

    Adamantinomatous craniopharyngioma (ACP) is the commonest tumor of the sellar region in childhood. Two genetically engineered mouse models have been developed and are giving valuable insights into ACP biology. These models have identified novel pathways activated in tumors, revealed an important function of paracrine signalling and extended conventional theories about the role of organ-specific stem cells in tumorigenesis. In this review, we summarize these mouse models, what has been learnt, their limitations and open questions for future research. We then discussed how these mouse models may be used to test novel therapeutics against potentially targetable pathways recently identified in human ACP. © 2017 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.

  9. Reactive Molecular Dynamics Simulations to Understand Mechanical Response of Thaumasite under Temperature and Strain Rate Effects.

    Science.gov (United States)

    Hajilar, Shahin; Shafei, Behrouz; Cheng, Tao; Jaramillo-Botero, Andres

    2017-06-22

    Understanding the structural, thermal, and mechanical properties of thaumasite is of great interest to the cement industry, mainly because it is the phase responsible for the aging and deterioration of civil infrastructures made of cementitious materials attacked by external sources of sulfate. Despite the importance, effects of temperature and strain rate on the mechanical response of thaumasite had remained unexplored prior to the current study, in which the mechanical properties of thaumasite are fully characterized using the reactive molecular dynamics (RMD) method. With employing a first-principles based reactive force field, the RMD simulations enable the description of bond dissociation and formation under realistic conditions. From the stress-strain curves of thaumasite generated in the x, y, and z directions, the tensile strength, Young's modulus, and fracture strain are determined for the three orthogonal directions. During the course of each simulation, the chemical bonds undergoing tensile deformations are monitored to reveal the bonds responsible for the mechanical strength of thaumasite. The temperature increase is found to accelerate the bond breaking rate and consequently the degradation of mechanical properties of thaumasite, while the strain rate only leads to a slight enhancement of them for the ranges considered in this study.

  10. Nutritional sub-fertility in the dairy cow: towards improved reproductive management through a better biological understanding

    DEFF Research Database (Denmark)

    Friggens, Nic; Disenhaus, C; Petit, H V

    2010-01-01

    for the dairy producer. In this study we focus on understanding the overall biological phenomena associated with nutritional sub-fertility rather than the underlying multiplicity of physiological interactions (already described in a number of recent studies). These phenomena are important because they represent...... the natural adaptations of the animal for dealing with variations in the nutritional environment. They can also be used to monitor and modulate reproductive performance on-farm. There is an underlying trade-off between two aspects of reproduction: investment in the viability of the current calf and investment...... embryos, which are of poorer quality, than do non-lactating cows. The same applies to high- compared to medium-genetic merit cows. Another important biological property is the adaptive use of body reserves in support of reproduction. Orchestrated endocrine changes in pregnancy and lactation facilitate...

  11. Toward High School Biology: Helping Middle School Students Understand Chemical Reactions and Conservation of Mass in Nonliving and Living Systems.

    Science.gov (United States)

    Herrmann-Abell, Cari F; Koppal, Mary; Roseman, Jo Ellen

    2016-01-01

    Modern biology has become increasingly molecular in nature, requiring students to understand basic chemical concepts. Studies show, however, that many students fail to grasp ideas about atom rearrangement and conservation during chemical reactions or the application of these ideas to biological systems. To help provide students with a better foundation, we used research-based design principles and collaborated in the development of a curricular intervention that applies chemistry ideas to living and nonliving contexts. Six eighth grade teachers and their students participated in a test of the unit during the Spring of 2013. Two of the teachers had used an earlier version of the unit the previous spring. The other four teachers were randomly assigned either to implement the unit or to continue teaching the same content using existing materials. Pre- and posttests were administered, and the data were analyzed using Rasch modeling and hierarchical linear modeling. The results showed that, when controlling for pretest score, gender, language, and ethnicity, students who used the curricular intervention performed better on the posttest than the students using existing materials. Additionally, students who participated in the intervention held fewer misconceptions. These results demonstrate the unit's promise in improving students' understanding of the targeted ideas. © 2016 C. F. Herrmann-Abell et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Designing and testing a classroom curriculum to teach preschoolers about the biology of physical activity: The respiration system as an underlying biological causal mechanism

    Science.gov (United States)

    Ewing, Tracy S.

    The present study examined young children's understanding of respiration and oxygen as a source of vital energy underlying physical activity. Specifically, the purpose of the study was to explore whether a coherent biological theory, characterized by an understanding that bodily parts (heart and lungs) and processes (oxygen in respiration) as part of a biological system, can be taught as a foundational concept to reason about physical activity. The effects of a biology-based intervention curriculum designed to teach preschool children about bodily functions as a part of the respiratory system, the role of oxygen as a vital substance and how physical activity acts an energy source were examined. Participants were recruited from three private preschool classrooms (two treatment; 1 control) in Southern California and included a total of 48 four-year-old children (30 treatment; 18 control). Findings from this study suggested that young children could be taught relevant biological concepts about the role of oxygen in respiratory processes. Children who received biology-based intervention curriculum made significant gains in their understanding of the biology of respiration, identification of physical and sedentary activities. In addition these children demonstrated that coherence of conceptual knowledge was correlated with improved accuracy at activity identification and reasoning about the inner workings of the body contributing to endurance. Findings from this study provided evidence to support the benefits of providing age appropriate but complex coherent biological instruction to children in early childhood settings.

  13. Biological Principles and Threshold Concepts for Understanding Natural Selection. Implications for Developing Visualizations as a Pedagogic Tool

    Science.gov (United States)

    Tibell, Lena A. E.; Harms, Ute

    2017-11-01

    Modern evolutionary theory is both a central theory and an integrative framework of the life sciences. This is reflected in the common references to evolution in modern science education curricula and contexts. In fact, evolution is a core idea that is supposed to support biology learning by facilitating the organization of relevant knowledge. In addition, evolution can function as a pivotal link between concepts and highlight similarities in the complexity of biological concepts. However, empirical studies in many countries have for decades identified deficiencies in students' scientific understanding of evolution mainly focusing on natural selection. Clearly, there are major obstacles to learning natural selection, and we argue that to overcome them, it is essential to address explicitly the general abstract concepts that underlie the biological processes, e.g., randomness or probability. Hence, we propose a two-dimensional framework for analyzing and structuring teaching of natural selection. The first—purely biological—dimension embraces the three main principles variation, heredity, and selection structured in nine key concepts that form the core idea of natural selection. The second dimension encompasses four so-called thresholds, i.e., general abstract and/or non-perceptual concepts: randomness, probability, spatial scales, and temporal scales. We claim that both of these dimensions must be continuously considered, in tandem, when teaching evolution in order to allow development of a meaningful understanding of the process. Further, we suggest that making the thresholds tangible with the aid of appropriate kinds of visualizations will facilitate grasping of the threshold concepts, and thus, help learners to overcome the difficulties in understanding the central theory of life.

  14. Understanding dental CAD/CAM for restorations--the digital workflow from a mechanical engineering viewpoint.

    Science.gov (United States)

    Tapie, L; Lebon, N; Mawussi, B; Fron Chabouis, H; Duret, F; Attal, J-P

    2015-01-01

    As digital technology infiltrates every area of daily life, including the field of medicine, so it is increasingly being introduced into dental practice. Apart from chairside practice, computer-aided design/computer-aided manufacturing (CAD/CAM) solutions are available for creating inlays, crowns, fixed partial dentures (FPDs), implant abutments, and other dental prostheses. CAD/CAM dental solutions can be considered a chain of digital devices and software for the almost automatic design and creation of dental restorations. However, dentists who want to use the technology often do not have the time or knowledge to understand it. A basic knowledge of the CAD/CAM digital workflow for dental restorations can help dentists to grasp the technology and purchase a CAM/CAM system that meets the needs of their office. This article provides a computer-science and mechanical-engineering approach to the CAD/CAM digital workflow to help dentists understand the technology.

  15. Understanding specificity in metabolic pathways-Structural biology of human nucleotide metabolism

    International Nuclear Information System (INIS)

    Welin, Martin; Nordlund, Paer

    2010-01-01

    Interactions are the foundation of life at the molecular level. In the plethora of activities in the cell, the evolution of enzyme specificity requires the balancing of appropriate substrate affinity with a negative selection, in order to minimize interactions with other potential substrates in the cell. To understand the structural basis for enzyme specificity, the comparison of structural and biochemical data between enzymes within pathways using similar substrates and effectors is valuable. Nucleotide metabolism is one of the largest metabolic pathways in the human cell and is of outstanding therapeutic importance since it activates and catabolises nucleoside based anti-proliferative drugs and serves as a direct target for anti-proliferative drugs. In recent years the structural coverage of the enzymes involved in human nucleotide metabolism has been dramatically improved and is approaching completion. An important factor has been the contribution from the Structural Genomics Consortium (SGC) at Karolinska Institutet, which recently has solved 33 novel structures of enzymes and enzyme domains in human nucleotide metabolism pathways and homologs thereof. In this review we will discuss some of the principles for substrate specificity of enzymes in human nucleotide metabolism illustrated by a selected set of enzyme families where a detailed understanding of the structural determinants for specificity is now emerging.

  16. Prospects of Understanding the Molecular Biology of Disease Resistance in Rice

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Singh

    2018-04-01

    Full Text Available Rice is one of the important crops grown worldwide and is considered as an important crop for global food security. Rice is being affected by various fungal, bacterial and viral diseases resulting in huge yield losses every year. Deployment of resistance genes in various crops is one of the important methods of disease management. However, identification, cloning and characterization of disease resistance genes is a very tedious effort. To increase the life span of resistant cultivars, it is important to understand the molecular basis of plant host–pathogen interaction. With the advancement in rice genetics and genomics, several rice varieties resistant to fungal, bacterial and viral pathogens have been developed. However, resistance response of these varieties break down very frequently because of the emergence of more virulent races of the pathogen in nature. To increase the durability of resistance genes under field conditions, understanding the mechanismof resistance response and its molecular basis should be well understood. Some emerging concepts like interspecies transfer of pattern recognition receptors (PRRs and transgenerational plant immunitycan be employed to develop sustainable broad spectrum resistant varieties of rice.

  17. Recent advances in understanding the biology, epidemiology and control of chlamydial infections in koalas.

    Science.gov (United States)

    Polkinghorne, Adam; Hanger, Jon; Timms, Peter

    2013-08-30

    The koala (Phascolarctos cinereus) is recognised as a threatened wildlife species in various parts of Australia. A major contributing factor to the decline and long-term viability of affected populations is disease caused by the obligate intracellular bacteria, Chlamydia. Two chlamydial species infect the koala, Chlamydia pecorum and Chlamydia pneumoniae, and have been reported in nearly all mainland koala populations. Chlamydial infections of koalas are associated with ocular infections leading to blindness and genital tract infections linked to infertility, among other serious clinical manifestations. Diagnosis can be based on clinical presentation alone, however, it is complicated by the observation that many koala chlamydial infections occur with no overt signs of clinical disease. Instead, accurate diagnosis requires detailed clinical assessment and confirmatory testing by a range of PCR-based assays. Antibiotic treatment for koala chlamydial infection is possible, however, results on its success are mixed. A more practical solution for the protection of diseased populations is the application of a koala Chlamydia vaccine, with recent trials indicating promising results. Interestingly, molecular epidemiology studies of koala C. pecorum infections and recent comparative genomic analyses of koala C. pneumoniae have revealed potential differences in their origin that will have wider ramifications for our understanding of human chlamydial infections and host adaptation of the chlamydiae. This review summarises changes to the taxonomy of koala chlamydial infections and recent advances in our understanding of the epidemiology, diagnosis, treatment, control and evolution of Chlamydia infections in this iconic wildlife species. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Towards the Biological Understanding of CTC: Capture Technologies, Definitions and Potential to Create Metastasis

    Directory of Open Access Journals (Sweden)

    Ana M.C. Barradas

    2013-12-01

    Full Text Available Circulating Tumor Cells (CTC are rare cells originated from tumors that travel into the blood stream, extravasate to different organs of which only a small fraction will develop into metastasis. The presence of CTC enumerated with the CellSearch system is associated with a relative short survival and their continued presence after the first cycles of therapy indicates a futile therapy in patients with metastatic carcinomas. Detailed characterization of CTC holds the promise to enable the choice of the optimal therapy for the individual patients during the course of the disease. The phenotype, physical and biological properties are however not well understood making it difficult to assess the merit of recent technological advancements to improve upon the capture of CTC or to evaluate their metastatic potential. Here we will discuss the recent advances in the classification of CTC captured by the CellSearch system, the implications of their features and numbers. Latest capture platforms are reviewed and placed in the light of technology improvements needed to detect CTC. Physical properties, phenotype, viability and proliferative potential and means to assess their proliferation and metastatic capacity will be summarized and placed in the context of the latest CTC capture platforms.

  19. A MODELING AND SIMULATION LANGUAGE FOR BIOLOGICAL CELLS WITH COUPLED MECHANICAL AND CHEMICAL PROCESSES.

    Science.gov (United States)

    Somogyi, Endre; Glazier, James A

    2017-04-01

    Biological cells are the prototypical example of active matter. Cells sense and respond to mechanical, chemical and electrical environmental stimuli with a range of behaviors, including dynamic changes in morphology and mechanical properties, chemical uptake and secretion, cell differentiation, proliferation, death, and migration. Modeling and simulation of such dynamic phenomena poses a number of computational challenges. A modeling language describing cellular dynamics must naturally represent complex intra and extra-cellular spatial structures and coupled mechanical, chemical and electrical processes. Domain experts will find a modeling language most useful when it is based on concepts, terms and principles native to the problem domain. A compiler must then be able to generate an executable model from this physically motivated description. Finally, an executable model must efficiently calculate the time evolution of such dynamic and inhomogeneous phenomena. We present a spatial hybrid systems modeling language, compiler and mesh-free Lagrangian based simulation engine which will enable domain experts to define models using natural, biologically motivated constructs and to simulate time evolution of coupled cellular, mechanical and chemical processes acting on a time varying number of cells and their environment.

  20. Mass balance to assess the efficiency of a mechanical-biological treatment

    International Nuclear Information System (INIS)

    Araujo Morais, J. de; Ducom, G.; Achour, F.; Rouez, M.; Bayard, R.

    2008-01-01

    Using mechanical-biological treatment of residual municipal solid waste, it is possible to significantly lower landfill volume and gas and leachate emissions. Moreover, the landfill characteristics are improved. The performance of the Mende (France) mechanical-biological treatment plant is assessed via mass balances coupled with manual sorting according to the MODECOM TM methodology and biochemical methane potential after 90 days of incubation. The site includes mechanical sorting operations, a rotary sequential bioreactor, controlled aerobic stabilisation corridors, maturation platforms, and a sanitary landfill site for waste disposal in separated cells. Results showed that several steps could be improved: after a first sieving step, about 12% of the potentially biodegradable matter is landfilled directly without any treatment; mechanical disintegration of papers and cardboards in the rotary sequential bioreactor is insufficient and leads to a high proportion of papers and cardboards being landfilled without further treatment. Two fine fractions go through stabilisation and maturation steps. At the end of the maturation step, about 54% of the potentially biodegradable matter is degraded. The biochemical methane potential after 90 days of incubation is reduced by 81% for one of the two fine fractions and reduced by 88% for the other one. Considering the whole plant, there is a reduction of nearly 20% DM of the entering residual municipal solid waste

  1. Biological mechanisms discriminating growth rate and adult body weight phenotypes in two Chinese indigenous chicken breeds.

    Science.gov (United States)

    Dou, Tengfei; Zhao, Sumei; Rong, Hua; Gu, Dahai; Li, Qihua; Huang, Ying; Xu, Zhiqiang; Chu, Xiaohui; Tao, Linli; Liu, Lixian; Ge, Changrong; Te Pas, Marinus F W; Jia, Junjing

    2017-06-20

    Intensive selection has resulted in increased growth rates and muscularity in broiler chickens, in addition to adverse effects, including delayed organ development, sudden death syndrome, and altered metabolic rates. The biological mechanisms underlying selection responses remain largely unknown. Non-artificially-selected indigenous Chinese chicken breeds display a wide variety of phenotypes, including differential growth rate, body weight, and muscularity. The Wuding chicken breed is a fast growing large chicken breed, and the Daweishan mini chicken breed is a slow growing small chicken breed. Together they form an ideal model system to study the biological mechanisms underlying broiler chicken selection responses in a natural system. The objective of this study was to study the biological mechanisms underlying differential phenotypes between the two breeds in muscle and liver tissues, and relate these to the growth rate and body development phenotypes of the two breeds. The muscle tissue in the Wuding breed showed higher expression of muscle development genes than muscle tissue in the Daweishan chicken breed. This expression was accompanied by higher expression of acute inflammatory response genes in Wuding chicken than in Daweishan chicken. The muscle tissue of the Daweishan mini chicken breed showed higher expression of genes involved in several metabolic mechanisms including endoplasmic reticulum, protein and lipid metabolism, energy metabolism, as well as specific immune traits than in the Wuding chicken. The liver tissue showed fewer differences between the two breeds. Genes displaying higher expression in the Wuding breed than in the Daweishan breed were not associated with a specific gene network or biological mechanism. Genes highly expressed in the Daweishan mini chicken breed compared to the Wuding breed were enriched for protein metabolism, ABC receptors, signal transduction, and IL6-related mechanisms. We conclude that faster growth rates and larger

  2. Utilizing toxicogenomic data to understand chemical mechanism of action in risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Vickie S., E-mail: wilson.vickie@epa.gov [National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Keshava, Nagalakshmi [National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 1200 Pennsylvania Ave., NW, Washington, DC 20460 (United States); Hester, Susan [National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Segal, Deborah; Chiu, Weihsueh [National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 1200 Pennsylvania Ave., NW, Washington, DC 20460 (United States); Thompson, Chad M. [ToxStrategies, Inc., 23501 Cinco Ranch Blvd., Suite G265, Katy, TX 77494 (United States); Euling, Susan Y. [National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 1200 Pennsylvania Ave., NW, Washington, DC 20460 (United States)

    2013-09-15

    The predominant role of toxicogenomic data in risk assessment, thus far, has been one of augmentation of more traditional in vitro and in vivo toxicology data. This article focuses on the current available examples of instances where toxicogenomic data has been evaluated in human health risk assessment (e.g., acetochlor and arsenicals) which have been limited to the application of toxicogenomic data to inform mechanism of action. This article reviews the regulatory policy backdrop and highlights important efforts to ultimately achieve regulatory acceptance. A number of research efforts on specific chemicals that were designed for risk assessment purposes have employed mechanism or mode of action hypothesis testing and generating strategies. The strides made by large scale efforts to utilize toxicogenomic data in screening, testing, and risk assessment are also discussed. These efforts include both the refinement of methodologies for performing toxicogenomics studies and analysis of the resultant data sets. The current issues limiting the application of toxicogenomics to define mode or mechanism of action in risk assessment are discussed together with interrelated research needs. In summary, as chemical risk assessment moves away from a single mechanism of action approach toward a toxicity pathway-based paradigm, we envision that toxicogenomic data from multiple technologies (e.g., proteomics, metabolomics, transcriptomics, supportive RT-PCR studies) can be used in conjunction with one another to understand the complexities of multiple, and possibly interacting, pathways affected by chemicals which will impact human health risk assessment.

  3. Utilizing toxicogenomic data to understand chemical mechanism of action in risk assessment

    International Nuclear Information System (INIS)

    Wilson, Vickie S.; Keshava, Nagalakshmi; Hester, Susan; Segal, Deborah; Chiu, Weihsueh; Thompson, Chad M.; Euling, Susan Y.

    2013-01-01

    The predominant role of toxicogenomic data in risk assessment, thus far, has been one of augmentation of more traditional in vitro and in vivo toxicology data. This article focuses on the current available examples of instances where toxicogenomic data has been evaluated in human health risk assessment (e.g., acetochlor and arsenicals) which have been limited to the application of toxicogenomic data to inform mechanism of action. This article reviews the regulatory policy backdrop and highlights important efforts to ultimately achieve regulatory acceptance. A number of research efforts on specific chemicals that were designed for risk assessment purposes have employed mechanism or mode of action hypothesis testing and generating strategies. The strides made by large scale efforts to utilize toxicogenomic data in screening, testing, and risk assessment are also discussed. These efforts include both the refinement of methodologies for performing toxicogenomics studies and analysis of the resultant data sets. The current issues limiting the application of toxicogenomics to define mode or mechanism of action in risk assessment are discussed together with interrelated research needs. In summary, as chemical risk assessment moves away from a single mechanism of action approach toward a toxicity pathway-based paradigm, we envision that toxicogenomic data from multiple technologies (e.g., proteomics, metabolomics, transcriptomics, supportive RT-PCR studies) can be used in conjunction with one another to understand the complexities of multiple, and possibly interacting, pathways affected by chemicals which will impact human health risk assessment

  4. New elements to understand hydrogen diffusion and trapping mechanisms in quenched and tempered HSLA martensitic steels

    International Nuclear Information System (INIS)

    Frappart, S.

    2011-01-01

    Hydrogen Embrittlement is a complex phenomenon responsible of metal degradation. It mainly depends on the material (chemical composition, heat treatment), the environment or the mechanical state. The main goal of this study is to give new elements to understand hydrogen diffusion and trapping mechanisms in High Strength Low Alloy martensitic steels used in the field of 'Oil and Gas' applications and nuclear industry. In this way, the purpose is to identify hydrogen trapping sites related to microstructural features as a basis for a better knowledge concerning hydrogen embrittlement. Thus, accurate electrochemical permeation set-up (with or without a mechanical state) were developed as well as a procedure to thoroughly analyze experimental data. An original approach on how to interpret electrochemical permeation results has been therefore performed. Afterward, the effect of different critical parameters has been assessed i.e. the membrane thickness, the surface state of the detection side as well as the microstructure and the mechanical state. The relationship between physical parameters associated to diffusion and trapping with the microstructure evolution will give rise to a first thought 'toward the embrittlement'

  5. The infection biology of Sphaerulina musiva: clues to understanding a forest pathogen.

    Directory of Open Access Journals (Sweden)

    Ruqian Qin

    Full Text Available Trees in the genus Populus and their interspecific hybrids are used across North America for fiber production and as a potential source of biofuel. Plantations of these species are severely impacted by a fungal pathogen, Sphaerulina musiva, the cause of leaf spot and stem canker. An inoculation protocol that does not rely on stem wounding to achieve infection was recently developed. Using this protocol two experiments were conducted to examine infection biology and disease development in the S. musiva-Populus interaction. In the first experiment non-wounded stems of one moderately resistant clone (NM6 and one susceptible clone (NC11505 were inoculated and examined by scanning electron microscopy at six different times (6 h, 12 h, 24 h, 72 h, 1 week, and 3 weeks post-inoculation. The images indicate that the pathogen appears to enter host tissue through small openings and lenticels and that there are no significant differences in the penetration rate between the moderately resistant (NM6 and susceptible (NC11505 clones at 12 h post-inoculation. In a second experiment a histological comparison of stem cankers for resistant clone DN74 and susceptible clone NC11505 were conducted at three time points (3 weeks, 5 weeks, and 7 weeks post-inoculation. Distinct differences in disease development were apparent between the resistant and susceptible clones at each time point, with the susceptible clone exhibiting a weak and delayed defense response. These results suggest, that following penetration, the pathogen may be able to interfere with the defense response in the susceptible host.

  6. Theoretical study of electron transfer mechanism in biological systems with a QM (MRSCI+DFT)/MM method

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Toshikazu [Research Program for Computational Science, RIKEN 2-1, Hirosawa, Wako, Saitama 351-0198 (Japan)

    2007-07-15

    The goal of this project is to understand the charge separation mechanisms in biological systems using the molecular orbital theories. Specially, the charge separation in the photosynthetic reaction center is focused on, since the efficiency in use of the solar energy is extraordinary and the reason for it is still kept unknown. Here, a QM/MM theoretical scheme is employed to take the effects of the surrounding proteins onto the pigments into account. To describe such excited electronic structures, a unified theory by MRSCI and DFT is newly invented. For atoms in the MM space, a new sampling method has also been created, based on the statistical physics. By using these theoretical framework, the excited and positively charged states of the special pair, that is, chlorophyll dimmer are planning to be calculated this year.

  7. Theoretical study of electron transfer mechanism in biological systems with a QM (MRSCI+DFT)/MM method

    International Nuclear Information System (INIS)

    Takada, Toshikazu

    2007-01-01

    The goal of this project is to understand the charge separation mechanisms in biological systems using the molecular orbital theories. Specially, the charge separation in the photosynthetic reaction center is focused on, since the efficiency in use of the solar energy is extraordinary and the reason for it is still kept unknown. Here, a QM/MM theoretical scheme is employed to take the effects of the surrounding proteins onto the pigments into account. To describe such excited electronic structures, a unified theory by MRSCI and DFT is newly invented. For atoms in the MM space, a new sampling method has also been created, based on the statistical physics. By using these theoretical framework, the excited and positively charged states of the special pair, that is, chlorophyll dimmer are planning to be calculated this year

  8. Improvement of mechanical and biological properties of Polycaprolactone loaded with Hydroxyapatite and Halloysite nanotubes.

    Science.gov (United States)

    Torres, E; Fombuena, V; Vallés-Lluch, A; Ellingham, T

    2017-06-01

    Hydroxyapatite (HA) and Halloysite nanotubes (HNTs) percentages have been optimized in Polycaprolactone (PCL) polymeric matrices to improve mechanical, thermal and biological properties of the composites, thus, to be applied in bone tissue engineering or as fixation plates. Addition of HA guarantees a proper compatibility with human bone due to its osteoconductive and osteoinductive properties, facilitating bone regeneration in tissue engineering applications. Addition of HNTs ensures the presence of tubular structures for subsequent drug loading in their lumen, of molecules such as curcumin, acting as controlled drug delivery systems. The addition of 20% of HA and different amounts of HNTs leads to a substantial improvement in mechanical properties with values of flexural strength up to 40% over raw PCL, with an increase in degradation temperature. DMA analyses showed stability in mechanical and thermal properties, having as a result a potential composite to be used as tissue engineering scaffold or resorbable fixation plate. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Systems biology elucidates common pathogenic mechanisms between nonalcoholic and alcoholic-fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Silvia Sookoian

    Full Text Available The abnormal accumulation of fat in the liver is often related either to metabolic risk factors associated with metabolic syndrome in the absence of alcohol consumption (nonalcoholic fatty liver disease, NAFLD or to chronic alcohol consumption (alcoholic fatty liver disease, AFLD. Clinical and histological studies suggest that NAFLD and AFLD share pathogenic mechanisms. Nevertheless, current data are still inconclusive as to whether the underlying biological process and disease pathways of NAFLD and AFLD are alike. Our primary aim was to integrate omics and physiological data to answer the question of whether NAFLD and AFLD share molecular processes that lead to disease development. We also explored the extent to which insulin resistance (IR is a distinctive feature of NAFLD. To answer these questions, we used systems biology approaches, such as gene enrichment analysis, protein-protein interaction networks, and gene prioritization, based on multi-level data extracted by computational data mining. We observed that the leading disease pathways associated with NAFLD did not significantly differ from those of AFLD. However, systems biology revealed the importance of each molecular process behind each of the two diseases, and dissected distinctive molecular NAFLD and AFLD-signatures. Comparative co-analysis of NAFLD and AFLD clarified the participation of NAFLD, but not AFLD, in cardiovascular disease, and showed that insulin signaling is impaired in fatty liver regardless of the noxa, but the putative regulatory mechanisms associated with NAFLD seem to encompass a complex network of genes and proteins, plausible of epigenetic modifications. Gene prioritization showed a cancer-related functional map that suggests that the fatty transformation of the liver tissue is regardless of the cause, an emerging mechanism of ubiquitous oncogenic activation. In conclusion, similar underlying disease mechanisms lead to NAFLD and AFLD, but specific ones depict a

  10. Compounds Released from Biomass Deconstruction: Understanding Their Effect on Cellulose Enzyme Hydrolysis and Their Biological Activity

    Science.gov (United States)

    Djioleu, Angele Mezindjou

    The effect of compounds produced during biomass pretreatment on cellulolytic enzyme was investigated. Liquid prehydrolyzates were prepared by pretreating switchgrass using 24 combinations of temperature, time, and sulfuric acid concentration based on a full factorial design. Temperature was varied from 140°C to 180°C; time ranged from 10 to 40 min; and the sulfuric acid concentrations were 0.5% or 1% (v/v). Identified products in the prehydrolyzates included xylose, glucose, hydroxymethylfurfural (HMF), furfural, acetic acid, formic acid, and phenolic compounds at concentration ranging from 0 to 21.4 g/L. Pretreatment conditions significantly affected the concentrations of compounds detected in prehydrolyzates. When assayed in the presence of switchgrass prehydrolyzates against model substrates, activities of cellulase, betaglucosidase, and exoglucanase, were significantly reduced by at least 16%, 31.8%, and 57.8%, respectively, as compared to the control. A strong positive correlation between inhibition of betaglucosidase and concentration of glucose, acetic acid, and furans in prehydrolyzate was established. Exoglucanase inhibition correlated with the presence of phenolic compounds and acetic acid. The prehydrolyzate, prepared at 160°C, 30 min, and 1% acid, was fractionated by centrifugal partition chromatography (CPC) into six fractions; the inhibition effect of these fractions on betaglucosidase and exoglucanase was determined. The initial hydrolysis rate of cellobiose by betaglucosidase was significantly reduced by the CPC sugar-rich fraction; however, exoglucanase was deactivated by the CPC phenolic-rich fraction. Finally, biological activities of water-extracted compounds from sweetgum bark and their effect on cellulase was investigated. It was determined that 12% of solid content of the bark extract could be accounted by phenolic compounds with gallic acid identified as the most concentrated phytochemical. Sweetgum bark extract inhibited Staphylococcus

  11. Toward High School Biology: Helping Middle School Students Understand Chemical Reactions and Conservation of Mass in Nonliving and Living Systems

    Science.gov (United States)

    Herrmann-Abell, Cari F.; Koppal, Mary; Roseman, Jo Ellen

    2016-01-01

    Modern biology has become increasingly molecular in nature, requiring students to understand basic chemical concepts. Studies show, however, that many students fail to grasp ideas about atom rearrangement and conservation during chemical reactions or the application of these ideas to biological systems. To help provide students with a better foundation, we used research-based design principles and collaborated in the development of a curricular intervention that applies chemistry ideas to living and nonliving contexts. Six eighth grade teachers and their students participated in a test of the unit during the Spring of 2013. Two of the teachers had used an earlier version of the unit the previous spring. The other four teachers were randomly assigned either to implement the unit or to continue teaching the same content using existing materials. Pre- and posttests were administered, and the data were analyzed using Rasch modeling and hierarchical linear modeling. The results showed that, when controlling for pretest score, gender, language, and ethnicity, students who used the curricular intervention performed better on the posttest than the students using existing materials. Additionally, students who participated in the intervention held fewer misconceptions. These results demonstrate the unit’s promise in improving students’ understanding of the targeted ideas. PMID:27909024

  12. Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands

    Science.gov (United States)

    Santello, Marco; Bianchi, Matteo; Gabiccini, Marco; Ricciardi, Emiliano; Salvietti, Gionata; Prattichizzo, Domenico; Ernst, Marc; Moscatelli, Alessandro; Jörntell, Henrik; Kappers, Astrid M. L.; Kyriakopoulos, Kostas; Albu-Schäffer, Alin; Castellini, Claudio; Bicchi, Antonio

    2016-07-01

    The term 'synergy' - from the Greek synergia - means 'working together'. The concept of multiple elements working together towards a common goal has been extensively used in neuroscience to develop theoretical frameworks, experimental approaches, and analytical techniques to understand neural control of movement, and for applications for neuro-rehabilitation. In the past decade, roboticists have successfully applied the framework of synergies to create novel design and control concepts for artificial hands, i.e., robotic hands and prostheses. At the same time, robotic research on the sensorimotor integration underlying the control and sensing of artificial hands has inspired new research approaches in neuroscience, and has provided useful instruments for novel experiments. The ambitious goal of integrating expertise and research approaches in robotics and neuroscience to study the properties and applications of the concept of synergies is generating a number of multidisciplinary cooperative projects, among which the recently finished 4-year European project ;The Hand Embodied; (THE). This paper reviews the main insights provided by this framework. Specifically, we provide an overview of neuroscientific bases of hand synergies and introduce how robotics has leveraged the insights from neuroscience for innovative design in hardware and controllers for biomedical engineering applications, including myoelectric hand prostheses, devices for haptics research, and wearable sensing of human hand kinematics. The review also emphasizes how this multidisciplinary collaboration has generated new ways to conceptualize a synergy-based approach for robotics, and provides guidelines and principles for analyzing human behavior and synthesizing artificial robotic systems based on a theory of synergies.

  13. Statistical grand rounds: understanding the mechanism: mediation analysis in randomized and nonrandomized studies.

    Science.gov (United States)

    Mascha, Edward J; Dalton, Jarrod E; Kurz, Andrea; Saager, Leif

    2013-10-01

    In comparative clinical studies, a common goal is to assess whether an exposure, or intervention, affects the outcome of interest. However, just as important is to understand the mechanism(s) for how the intervention affects outcome. For example, if preoperative anemia was shown to increase the risk of postoperative complications by 15%, it would be important to quantify how much of that effect was due to patients receiving intraoperative transfusions. Mediation analysis attempts to quantify how much, if any, of the effect of an intervention on outcome goes though prespecified mediator, or "mechanism" variable(s), that is, variables sitting on the causal pathway between exposure and outcome. Effects of an exposure on outcome can thus be divided into direct and indirect, or mediated, effects. Mediation is claimed when 2 conditions are true: the exposure affects the mediator and the mediator (adjusting for the exposure) affects the outcome. Understanding how an intervention affects outcome can validate or invalidate one's original hypothesis and also facilitate further research to modify the responsible factors, and thus improve patient outcome. We discuss the proper design and analysis of studies investigating mediation, including the importance of distinguishing mediator variables from confounding variables, the challenge of identifying potential mediators when the exposure is chronic versus acute, and the requirements for claiming mediation. Simple designs are considered, as well as those containing multiple mediators, multiple outcomes, and mixed data types. Methods are illustrated with data collected by the National Surgical Quality Improvement Project (NSQIP) and utilized in a companion paper which assessed the effects of preoperative anemic status on postoperative outcomes.

  14. Understanding the limits of animal models as predictors of human biology: lessons learned from the sbv IMPROVER Species Translation Challenge.

    Science.gov (United States)

    Rhrissorrakrai, Kahn; Belcastro, Vincenzo; Bilal, Erhan; Norel, Raquel; Poussin, Carine; Mathis, Carole; Dulize, Rémi H J; Ivanov, Nikolai V; Alexopoulos, Leonidas; Rice, J Jeremy; Peitsch, Manuel C; Stolovitzky, Gustavo; Meyer, Pablo; Hoeng, Julia

    2015-02-15

    Inferring how humans respond to external cues such as drugs, chemicals, viruses or hormones is an essential question in biomedicine. Very often, however, this question cannot be addressed because it is not possible to perform experiments in humans. A reasonable alternative consists of generating responses in animal models and 'translating' those results to humans. The limitations of such translation, however, are far from clear, and systematic assessments of its actual potential are urgently needed. sbv IMPROVER (systems biology verification for Industrial Methodology for PROcess VErification in Research) was designed as a series of challenges to address translatability between humans and rodents. This collaborative crowd-sourcing initiative invited scientists from around the world to apply their own computational methodologies on a multilayer systems biology dataset composed of phosphoproteomics, transcriptomics and cytokine data derived from normal human and rat bronchial epithelial cells exposed in parallel to 52 different stimuli under identical conditions. Our aim was to understand the limits of species-to-species translatability at different levels of biological organization: signaling, transcriptional and release of secreted factors (such as cytokines). Participating teams submitted 49 different solutions across the sub-challenges, two-thirds of which were statistically significantly better than random. Additionally, similar computational methods were found to range widely in their performance within the same challenge, and no single method emerged as a clear winner across all sub-challenges. Finally, computational methods were able to effectively translate some specific stimuli and biological processes in the lung epithelial system, such as DNA synthesis, cytoskeleton and extracellular matrix, translation, immune/inflammation and growth factor/proliferation pathways, better than the expected response similarity between species. pmeyerr@us.ibm.com or Julia

  15. Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands

    Science.gov (United States)

    Santello, Marco; Bianchi, Matteo; Gabiccini, Marco; Ricciardi, Emiliano; Salvietti, Gionata; Prattichizzo, Domenico; Ernst, Marc; Moscatelli, Alessandro; Jörntell, Henrik; Kappers, Astrid M.L.; Kyriakopoulos, Kostas; Albu-Schäffer, Alin; Castellini, Claudio; Bicchi, Antonio

    2017-01-01

    The term ‘synergy’ – from the Greek synergia – means ‘working together’. The concept of multiple elements working together towards a common goal has been extensively used in neuroscience to develop theoretical frameworks, experimental approaches, and analytical techniques to understand neural control of movement, and for applications for neuro-rehabilitation. In the past decade, roboticists have successfully applied the framework of synergies to create novel design and control concepts for artificial hands, i.e., robotic hands and prostheses. At the same time, robotic research on the sensorimotor integration underlying the control and sensing of artificial hands has inspired new research approaches in neuroscience, and has provided useful instruments for novel experiments. The ambitious goal of integrating expertise and research approaches in robotics and neuroscience to study the properties and applications of the concept of synergies is generating a number of multidisciplinary cooperative projects, among which the recently finished 4-year European project “The Hand Embodied” (THE). This paper reviews the main insights provided by this framework. Specifically, we provide an overview of neuroscientific bases of hand synergies and introduce how robotics has leveraged the insights from neuroscience for innovative design in hardware and controllers for biomedical engineering applications, including myoelectric hand prostheses, devices for haptics research, and wearable sensing of human hand kinematics. The review also emphasizes how this multidisciplinary collaboration has generated new ways to conceptualize a synergy-based approach for robotics, and provides guidelines and principles for analyzing human behavior and synthesizing artificial robotic systems based on a theory of synergies. PMID:26923030

  16. Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands.

    Science.gov (United States)

    Santello, Marco; Bianchi, Matteo; Gabiccini, Marco; Ricciardi, Emiliano; Salvietti, Gionata; Prattichizzo, Domenico; Ernst, Marc; Moscatelli, Alessandro; Jörntell, Henrik; Kappers, Astrid M L; Kyriakopoulos, Kostas; Albu-Schäffer, Alin; Castellini, Claudio; Bicchi, Antonio

    2016-07-01

    The term 'synergy' - from the Greek synergia - means 'working together'. The concept of multiple elements working together towards a common goal has been extensively used in neuroscience to develop theoretical frameworks, experimental approaches, and analytical techniques to understand neural control of movement, and for applications for neuro-rehabilitation. In the past decade, roboticists have successfully applied the framework of synergies to create novel design and control concepts for artificial hands, i.e., robotic hands and prostheses. At the same time, robotic research on the sensorimotor integration underlying the control and sensing of artificial hands has inspired new research approaches in neuroscience, and has provided useful instruments for novel experiments. The ambitious goal of integrating expertise and research approaches in robotics and neuroscience to study the properties and applications of the concept of synergies is generating a number of multidisciplinary cooperative projects, among which the recently finished 4-year European project "The Hand Embodied" (THE). This paper reviews the main insights provided by this framework. Specifically, we provide an overview of neuroscientific bases of hand synergies and introduce how robotics has leveraged the insights from neuroscience for innovative design in hardware and controllers for biomedical engineering applications, including myoelectric hand prostheses, devices for haptics research, and wearable sensing of human hand kinematics. The review also emphasizes how this multidisciplinary collaboration has generated new ways to conceptualize a synergy-based approach for robotics, and provides guidelines and principles for analyzing human behavior and synthesizing artificial robotic systems based on a theory of synergies. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Similar verbal memory impairments in schizophrenia and healthy aging. Implications for understanding of neural mechanisms.

    Science.gov (United States)

    Silver, Henry; Bilker, Warren B

    2015-03-30

    Memory is impaired in schizophrenia patients but it is not clear whether this is specific to the illness and whether different types of memory (verbal and nonverbal) or memories in different cognitive domains (executive, object recognition) are similarly affected. To study relationships between memory impairments and schizophrenia we compared memory functions in 77 schizophrenia patients, 58 elderly healthy individuals and 41 young healthy individuals. Tests included verbal associative and logical memory and memory in executive and object recognition domains. We compared relationships of memory functions to each other and to other cognitive functions including psychomotor speed and verbal and spatial working memory. Compared to the young healthy group, schizophrenia patients and elderly healthy individuals showed similar severe impairment in logical memory and in the ability to learn new associations (NAL), and similar but less severe impairment in spatial working memory and executive and object memory. Verbal working memory was significantly more impaired in schizophrenia patients than in the healthy elderly. Verbal episodic memory impairment in schizophrenia may share common mechanisms with similar impairment in healthy aging. Impairment in verbal working memory in contrast may reflect mechanisms specific to schizophrenia. Study of verbal explicit memory impairment tapped by the NAL index may advance understanding of abnormal hippocampus dependent mechanisms common to schizophrenia and aging. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Understanding comorbidity among internalizing problems: Integrating latent structural models of psychopathology and risk mechanisms

    Science.gov (United States)

    Hankin, Benjamin L.; Snyder, Hannah R.; Gulley, Lauren D.; Schweizer, Tina H.; Bijttebier, Patricia; Nelis, Sabine; Toh, Gim; Vasey, Michael W.

    2016-01-01

    It is well known that comorbidity is the rule, not the exception, for categorically defined psychiatric disorders, and this is also the case for internalizing disorders of depression and anxiety. This theoretical review paper addresses the ubiquity of comorbidity among internalizing disorders. Our central thesis is that progress in understanding this co-occurrence can be made by employing latent dimensional structural models that organize both psychopathology as well as vulnerabilities and risk mechanisms and by connecting the multiple levels of risk and psychopathology outcomes together. Different vulnerabilities and risk mechanisms are hypothesized to predict different levels of the structural model of psychopathology. We review the present state of knowledge based on concurrent and developmental sequential comorbidity patterns among common discrete psychiatric disorders in youth, and then we advocate for the use of more recent bifactor dimensional models of psychopathology (e.g., p factor, Caspi et al., 2014) that can help to explain the co-occurrence among internalizing symptoms. In support of this relatively novel conceptual perspective, we review six exemplar vulnerabilities and risk mechanisms, including executive function, information processing biases, cognitive vulnerabilities, positive and negative affectivity aspects of temperament, and autonomic dysregulation, along with the developmental occurrence of stressors in different domains, to show how these vulnerabilities can predict the general latent psychopathology factor, a unique latent internalizing dimension, as well as specific symptom syndrome manifestations. PMID:27739389

  19. Progress in Understanding Degradation Mechanisms and Improving Stability in Organic Photovoltaics

    KAUST Repository

    Mateker, William R.

    2016-12-23

    Understanding the degradation mechanisms of organic photovoltaics is particularly important, as they tend to degrade faster than their inorganic counterparts, such as silicon and cadmium telluride. An overview is provided here of the main degradation mechanisms that researchers have identified so far that cause extrinsic degradation from oxygen and water, intrinsic degradation in the dark, and photo-induced burn-in. In addition, it provides methods for researchers to identify these mechanisms in new materials and device structures to screen them more quickly for promising long-term performance. These general strategies will likely be helpful in other photovoltaic technologies that suffer from insufficient stability, such as perovskite solar cells. Finally, the most promising lifetime results are highlighted and recommendations to improve long-term performance are made. To prevent degradation from oxygen and water for sufficiently long time periods, OPVs will likely need to be encapsulated by barrier materials with lower permeation rates of oxygen and water than typical flexible substrate materials. To improve stability at operating temperatures, materials will likely require glass transition temperatures above 100 °C. Methods to prevent photo-induced burn-in are least understood, but recent research indicates that using pure materials with dense and ordered film morphologies can reduce the burn-in effect.

  20. Progress in Understanding Degradation Mechanisms and Improving Stability in Organic Photovoltaics

    KAUST Repository

    Mateker, William R.; McGehee, Michael D.

    2016-01-01

    Understanding the degradation mechanisms of organic photovoltaics is particularly important, as they tend to degrade faster than their inorganic counterparts, such as silicon and cadmium telluride. An overview is provided here of the main degradation mechanisms that researchers have identified so far that cause extrinsic degradation from oxygen and water, intrinsic degradation in the dark, and photo-induced burn-in. In addition, it provides methods for researchers to identify these mechanisms in new materials and device structures to screen them more quickly for promising long-term performance. These general strategies will likely be helpful in other photovoltaic technologies that suffer from insufficient stability, such as perovskite solar cells. Finally, the most promising lifetime results are highlighted and recommendations to improve long-term performance are made. To prevent degradation from oxygen and water for sufficiently long time periods, OPVs will likely need to be encapsulated by barrier materials with lower permeation rates of oxygen and water than typical flexible substrate materials. To improve stability at operating temperatures, materials will likely require glass transition temperatures above 100 °C. Methods to prevent photo-induced burn-in are least understood, but recent research indicates that using pure materials with dense and ordered film morphologies can reduce the burn-in effect.

  1. Floral biology and reproductive mechanisms of the Ocimum canum Sims (Lamiaceae

    Directory of Open Access Journals (Sweden)

    Cláudio Lúcio Fernandes Amaral

    2008-06-01

    Full Text Available The Ocimum genus (Lamiaceae presents essential oils used in the pharmaceutical, perfume, cosmetics and culinary industries. The aim of this paper was to study the fl oral biology and breeding mechanisms of Ocimum canum Sims. in relation to improved plant breeding. Ocimum canum has inflorescences with white, protandrous and hermaphoditic flowers. The osmophores are located at the anthers and stigma. Anthesis occurs between 10:30 and 11:30 a.m. The main fl oral visitors were bees of the Apis and Augochloropsis genuses. Ocimum canum presents a breeding system with a predominance of outcrossing that possibly demonstrates the wide reproductive flexibility of this species.

  2. Understanding the mechanism of DNA deactivation in ion therapy of cancer cells: hydrogen peroxide action*

    Science.gov (United States)

    Piatnytskyi, Dmytro V.; Zdorevskyi, Oleksiy O.; Perepelytsya, Sergiy M.; Volkov, Sergey N.

    2015-11-01

    Changes in the medium of biological cells under ion beam irradiation has been considered as a possible cause of cell function disruption in the living body. The interaction of hydrogen peroxide, a long-lived molecular product of water radiolysis, with active sites of DNA macromolecule was studied, and the formation of stable DNA-peroxide complexes was considered. The phosphate groups of the macromolecule backbone were picked out among the atomic groups of DNA double helix as a probable target for interaction with hydrogen peroxide molecules. Complexes consisting of combinations including: the DNA phosphate group, H2O2 and H2O molecules, and Na+ counterion, were considered. The counterions have been taken into consideration insofar as under the natural conditions they neutralise DNA sugar-phosphate backbone. The energy of the complexes have been determined by considering the electrostatic and the Van der Waals interactions within the framework of atom-atom potential functions. As a result, the stability of various configurations of molecular complexes was estimated. It was shown that DNA phosphate groups and counterions can form stable complexes with hydrogen peroxide molecules, which are as stable as the complexes with water molecules. It has been demonstrated that the formation of stable complexes of H2O2-Na+-PO4- may be detected experimentally by observing specific vibrations in the low-frequency Raman spectra. The interaction of H2O2 molecule with phosphate group of the double helix backbone can disrupt DNA biological function and induce the deactivation of the cell genetic apparatus. Thus, the production of hydrogen peroxide molecules in the nucleus of living cells can be considered as an additional mechanism by which high-energy ion beams destroy tumour cells during ion beam therapy. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene

  3. Biologically Safe Poly(l-lactic acid) Blends with Tunable Degradation Rate: Microstructure, Degradation Mechanism, and Mechanical Properties.

    Science.gov (United States)

    Oyama, Hideko T; Tanishima, Daisuke; Ogawa, Ryohei

    2017-04-10

    Although poly(l-lactic acid) (PLLA) is reputed to be biodegradable in the human body, its hydrophobic nature lets it persist for ca. 5.5 years. This study demonstrates that biologically safe lactide copolymers, poly(aspartic acid-co-l-lactide) (PAL) and poly(malic acid-co-l-lactide) (PML), dispersed in the PLLA function as detonators (triggers) for its hydrolytic degradation under physiological conditions. The copolymers significantly enhance hydrolysis, and consequently, the degradation rate of PLLA becomes easily tunable by controlling the amounts of PAL and PML. The present study elucidates the effects of uniaxial drawing on the structural development, mechanical properties, and hydrolytic degradation under physiological conditions of PLLA blend films. At initial degradation stages, the mass loss was not affected by uniaxial drawing; however, at late degradation stages, less developed crystals as well as amorphous chains were degradable at low draw ratio (DR), whereas not only highly developed crystals but also the oriented amorphous chains became insensitive to hydrolysis at high DR. Our work provides important molecular level results that demonstrate that biodegradable materials can have superb mechanical properties and also disappear in a required time under physiological conditions.

  4. Sustainable Materials Management (SMM) Web Academy Webinar: Compost from Food Waste: Understanding Soil Chemistry and Soil Biology on a College/University Campus

    Science.gov (United States)

    This page contains information about the Sustainable Materials Management (SMM) Web Academy Webinar Series titled Compost from Food Waste:Understanding Soil Chemistry and Soil Biology on a College/University Campus

  5. Microstructure, mechanical properties, and biological response to functionally graded HA coatings

    International Nuclear Information System (INIS)

    Rabiei, Afsaneh; Blalock, Travis; Thomas, Brent; Cuomo, Jerry; Yang, Y.; Ong, Joo

    2007-01-01

    Hydroxyapatite (HA) [Ca 10 (PO 4 ) 6 (OH) 2 ] is the primary mineral content, representing 43% by weight, of bone. Applying a thin layer of HA, to the surface of a metal implant, can promote osseointegration and increase the mechanical stability of the implant. In this study, a biocompatible coating comprising an HA film with functionally graded crystallinity is being deposited on a heated substrate in an Ion Beam Assisted Deposition (IBAD) system. The microstructure of the film was studied using Transmission Electron Microscopy techniques. Finally, initial cell adhesion and cell differentiation on the coating was evaluated using ATCC CRL 1486 human embryonic palatal mesenchymal cell, an osteoblast precursor cell line. The results have shown superior mechanical properties and biological response to the functionally graded HA film

  6. The Biology of Atherosclerosis: General Paradigms and Distinct Pathogenic Mechanisms Among HIV-Infected Patients

    OpenAIRE

    Lo, Janet; Plutzky, Jorge

    2012-01-01

    Complications of atherosclerosis, including myocardial infarction and stroke, are the leading cause of death and disability worldwide. Recent data strongly implicate cardiovascular death as a contributor to mortality among patients with human immunodeficiency virus (HIV) infection, with evidence suggesting increased incidence of atherosclerosis among these patients. Therefore, greater understanding of atherosclerotic mechanisms and how these responses may be similar or distinct in HIV-infecte...

  7. A few nascent methods for measuring mechanical properties of the biological cell.

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, Gayle Echo; de Boer, Maarten Pieter; Corvalan, Carlos (Purdue University, West Lafayette, IN); Corwin, Alex David; Campanella, Osvaldo H. (Purdue University, West Lafayette, IN); Nivens, David (Purdue University, West Lafayette, IN); Werely, Steven (Purdue University, West Lafayette, IN); Sumali, Anton Hartono; Koch, Steven John

    2006-01-01

    This report summarizes a survey of several new methods for obtaining mechanical and rheological properties of single biological cells, in particular: (1) The use of laser Doppler vibrometry (LDV) to measure the natural vibrations of certain cells. (2) The development of a novel micro-electro-mechanical system (MEMS) for obtaining high-resolution force-displacement curves. (3) The use of the atomic force microscope (AFM) for cell imaging. (4) The adaptation of a novel squeezing-flow technique to micro-scale measurement. The LDV technique was used to investigate the recent finding reported by others that the membranes of certain biological cells vibrate naturally, and that the vibration can be detected clearly with recent instrumentation. The LDV has been reported to detect motions of certain biological cells indirectly through the motion of a probe. In this project, trials on Saccharomyces cerevisiae tested and rejected the hypothesis that the LDV could measure vibrations of the cell membranes directly. The MEMS investigated in the second technique is a polysilicon surface-micromachined force sensor that is able to measure forces to a few pN in both air and water. The simple device consists of compliant springs with force constants as low as 0.3 milliN/m and Moire patterns for nanometer-scale optical displacement measurement. Fields from an electromagnet created forces on magnetic micro beads glued to the force sensors. These forces were measured and agreed well with finite element prediction. It was demonstrated that the force sensor was fully functional when immersed in aqueous buffer. These results show the force sensors can be useful for calibrating magnetic forces on magnetic beads and also for direct measurement of biophysical forces on-chip. The use of atomic force microscopy (AFM) for profiling the geometry of red blood cells was the third technique investigated here. An important finding was that the method commonly used for attaching the cells to a

  8. Chitosan fibers with improved biological and mechanical properties for tissue engineering applications.

    Science.gov (United States)

    Albanna, Mohammad Z; Bou-Akl, Therese H; Blowytsky, Oksana; Walters, Henry L; Matthew, Howard W T

    2013-04-01

    The low mechanical properties of hydrogel materials such as chitosan hinder their broad utility for tissue engineering applications. Previous research efforts improved the mechanical properties of chitosan fiber through chemical and physical modifications; however, unfavorable toxicity effects on cells were reported. In this paper, we report the preparation of chitosan fibers with improved mechanical and biocompatibility properties. The structure-property relationships of extruded chitosan fibers were explored by varying acetic acid (AA) concentration, ammonia concentration, annealing temperature and degree of heparin crosslinking. Results showed that optimizing AA concentration to 2vol% improved fiber strength and stiffness by 2-fold. Extruding chitosan solution into 25wt% of ammonia solution reduced fiber diameters and improved fiber strength by 2-fold and stiffness by 3-fold, due to an increase in crystallinity as confirmed by XRD. Fiber annealing further reduced fiber diameter and improved fiber strength and stiffness as temperature increased. Chitosan fibers crosslinked with heparin had increased diameter but lower strength and stiffness properties and higher breaking strain values. When individual parameters were combined, further improvement in fiber mechanical properties was achieved. All mechanically improved fibers and heparin crosslinked fibers promoted valvular interstitial cells (VIC) attachment and growth over 10 day cultures. Our results demonstrate the ability to substantially improve the mechanical properties of chitosan fibers without adversely affecting their biological properties. The investigated treatments offer numerous advantages over previous physical/chemical modifications and thus are expected to expand the utility of chitosan fibers with tunable mechanical properties in various tissue engineering applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Gender differences in conceptual understanding of Newtonian mechanics: a UK cross-institution comparison

    International Nuclear Information System (INIS)

    Bates, Simon; Donnelly, Robyn; MacPhee, Cait; Sands, David; Birch, Marion; Walet, Niels R

    2013-01-01

    We present the results of a combined study from three UK universities where we investigate the existence and persistence of a performance gender gap in conceptual understanding of Newtonian mechanics. Using the Force Concept Inventory, we find that students at all three universities exhibit a statistically significant gender gap, with males outperforming females. This gap is narrowed but not eliminated after instruction, using a variety of instructional approaches. Furthermore, we find that before instruction the quartile with the lowest performance on the diagnostic instrument comprises a disproportionately high fraction (∼50%) of the total female cohort. The majority of these students remain in the lowest-performing quartile post-instruction. Analysis of responses to individual items shows that male students outperform female students on practically all items on the instrument. Comparing the performance of the same group of students on end-of-course examinations, we find no statistically significant gender gaps. (paper)

  10. The contributions of cognitive neuroscience and neuroimaging to understanding mechanisms of behavior change in addiction.

    Science.gov (United States)

    Morgenstern, Jon; Naqvi, Nasir H; Debellis, Robert; Breiter, Hans C

    2013-06-01

    In the last decade, there has been an upsurge of interest in understanding the mechanisms of behavior change (MOBC) and effective behavioral interventions as a strategy to improve addiction-treatment efficacy. However, there remains considerable uncertainty about how treatment research should proceed to address the MOBC issue. In this article, we argue that limitations in the underlying models of addiction that inform behavioral treatment pose an obstacle to elucidating MOBC. We consider how advances in the cognitive neuroscience of addiction offer an alternative conceptual and methodological approach to studying the psychological processes that characterize addiction, and how such advances could inform treatment process research. In addition, we review neuroimaging studies that have tested aspects of neurocognitive theories as a strategy to inform addiction therapies and discuss future directions for transdisciplinary collaborations across cognitive neuroscience and MOBC research. 2013 APA, all rights reserved

  11. Investigations on mechanical biological treatment of waste in South America: Towards more sustainable MSW management strategies

    International Nuclear Information System (INIS)

    Bezama, Alberto; Aguayo, Pablo; Konrad, Odorico; Navia, Rodrigo; Lorber, Karl E.

    2007-01-01

    This work presents an analysis on the suitability of mechanical biological treatment of municipal solid waste in South America, based on two previous experimental investigations carried out in two different countries. The first experiment was performed for determining the mass and volume reduction of MSW in the province of Concepcion (Chile). The implemented bench-scale process consisted of a manual classification and separation stage, followed by an in-vessel biological degradation process. The second experiment consisted of a full-scale experiment performed in the city of Estrela (Brazil), where the existing municipal waste management facility was adapted to enhance the materials sorting and separation. Expressed in wet weight composition, 85.5% of the material input in the first experiment was separated for biological degradation. After 27 days of processing, 60% of the initial mass was reduced through degradation and water evaporation. The final fraction destined for landfilling equals 59% of the total input mass, corresponding to about 50% of the initial volume. In the second experiment, the fraction destined to landfill reaches 46.6% of the total input waste mass, whilst also significantly reducing the total volume to be disposed. These results, and the possible recovery of material streams suitable for recycling or for preparing solid recovered fuels, are the main advantages of the studied process

  12. The biological basis of treating jaw discrepancies: An interplay of mechanical forces and skeletal configuration.

    Science.gov (United States)

    Karamesinis, Konstantinos; Basdra, Efthimia K

    2018-05-01

    Jaw discrepancies and malrelations affect a large proportion of the general population and their treatment is of utmost significance for individuals' health and quality of life. The aim of their therapy is the modification of aberrant jaw development mainly by targeting the growth potential of the mandibular condyle through its cartilage, and the architectural shape of alveolar bone through a suture type of structure, the periodontal ligament. This targeted treatment is achieved via external mechanical force application by using a wide variety of intraoral and extraoral appliances. Condylar cartilage and sutures exhibit a remarkable plasticity due to the mechano-responsiveness of the chondrocytes and the multipotent mesenchymal cells of the sutures. The tissues respond biologically and adapt to mechanical force application by a variety of signaling pathways and a final interplay between the proliferative activity and the differentiation status of the cells involved. These targeted therapeutic functional alterations within temporo-mandibular joint ultimately result in the enhancement or restriction of mandibular growth, while within the periodontal ligament lead to bone remodeling and change of its architectural structure. Depending on the form of the malrelation presented, the above treatment approaches, in conjunction or separately, lead to the total correction of jaw discrepancies and the achievement of facial harmony and function. Overall, the treatment of craniofacial and jaw anomalies can be seen as an interplay of mechanical forces and adaptations occurring within temporo-mandibular joint and alveolar bone. The aim of the present review is to present up-to-date knowledge on the mechano-biology behind jaw growth modification and alveolar bone remodeling. Furthermore, future molecular targeted therapeutic strategies are discussed aiming at the improvement of mechanically-driven chondrogenesis and osteogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Toward a better understanding of the mechanisms of symbiosis: a comprehensive proteome map of a nascent insect symbiont.

    Science.gov (United States)

    Renoz, François; Champagne, Antoine; Degand, Hervé; Faber, Anne-Marie; Morsomme, Pierre; Foray, Vincent; Hance, Thierry

    2017-01-01

    Symbiotic bacteria are common in insects and can affect various aspects of their hosts' biology. Although the effects of insect symbionts have been clarified for various insect symbiosis models, due to the difficulty of cultivating them in vitro , there is still limited knowledge available on the molecular features that drive symbiosis. Serratia symbiotica is one of the most common symbionts found in aphids. The recent findings of free-living strains that are considered as nascent partners of aphids provide the opportunity to examine the molecular mechanisms that a symbiont can deploy at the early stages of the symbiosis (i.e., symbiotic factors). In this work, a proteomic approach was used to establish a comprehensive proteome map of the free-living S. symbiotica strain CWBI-2.3 T . Most of the 720 proteins identified are related to housekeeping or primary metabolism. Of these, 76 were identified as candidate proteins possibly promoting host colonization. Our results provide strong evidence that S. symbiotica CWBI-2.3 T is well-armed for invading insect host tissues, and suggest that certain molecular features usually harbored by pathogenic bacteria are no longer present. This comprehensive proteome map provides a series of candidate genes for further studies to understand the molecular cross-talk between insects and symbiotic bacteria.

  14. Toward a better understanding of the mechanisms of symbiosis: a comprehensive proteome map of a nascent insect symbiont

    Directory of Open Access Journals (Sweden)

    François Renoz

    2017-05-01

    Full Text Available Symbiotic bacteria are common in insects and can affect various aspects of their hosts’ biology. Although the effects of insect symbionts have been clarified for various insect symbiosis models, due to the difficulty of cultivating them in vitro, there is still limited knowledge available on the molecular features that drive symbiosis. Serratia symbiotica is one of the most common symbionts found in aphids. The recent findings of free-living strains that are considered as nascent partners of aphids provide the opportunity to examine the molecular mechanisms that a symbiont can deploy at the early stages of the symbiosis (i.e., symbiotic factors. In this work, a proteomic approach was used to establish a comprehensive proteome map of the free-living S. symbiotica strain CWBI-2.3T. Most of the 720 proteins identified are related to housekeeping or primary metabolism. Of these, 76 were identified as candidate proteins possibly promoting host colonization. Our results provide strong evidence that S. symbiotica CWBI-2.3T is well-armed for invading insect host tissues, and suggest that certain molecular features usually harbored by pathogenic bacteria are no longer present. This comprehensive proteome map provides a series of candidate genes for further studies to understand the molecular cross-talk between insects and symbiotic bacteria.

  15. Molecular Biology and Prevention of Endometrial Cancer

    National Research Council Canada - National Science Library

    Maxwell, George L

    2006-01-01

    To increase our understanding of the molecular aberrations associated with endometrial carcinogenesis and the biologic mechanisms underlying the protective effect of oral contraceptive (OC) therapy. 1...

  16. Molecular Biology and Prevention of Endometrial Cancer

    National Research Council Canada - National Science Library

    Maxwell, George

    2003-01-01

    To increase our understanding of the molecular aberrations associated with endometrial carcinogenesis and the biologic mechanisms underlying the protective effect of oral contraceptive therapy. Methods: 1...

  17. Molecular Biology and Prevention of Endometrial Cancer

    National Research Council Canada - National Science Library

    Maxwell, George L

    2004-01-01

    To increase our understanding of the molecular aberrations associated with endometrial carcinogenesis and the biologic mechanisms underlying the protective effect of oral contraceptive therapy. Methods: 1...

  18. Smartphone users: Understanding how security mechanisms are perceived and new persuasive methods

    Science.gov (United States)

    Alsaleh, Mansour; Alomar, Noura; Alarifi, Abdulrahman

    2017-01-01

    Protecting smartphones against security threats is a multidimensional problem involving human and technological factors. This study investigates how smartphone users’ security- and privacy-related decisions are influenced by their attitudes, perceptions, and understanding of various security threats. In this work, we seek to provide quantified insights into smartphone users’ behavior toward multiple key security features including locking mechanisms, application repositories, mobile instant messaging, and smartphone location services. To the best of our knowledge, this is the first study that reveals often unforeseen correlations and dependencies between various privacy- and security-related behaviors. Our work also provides evidence that making correct security decisions might not necessarily correlate with individuals’ awareness of the consequences of security threats. By comparing participants’ behavior and their motives for adopting or ignoring certain security practices, we suggest implementing additional persuasive approaches that focus on addressing social and technological aspects of the problem. On the basis of our findings and the results presented in the literature, we identify the factors that might influence smartphone users’ security behaviors. We then use our understanding of what might drive and influence significant behavioral changes to propose several platform design modifications that we believe could improve the security levels of smartphones. PMID:28297719

  19. Smartphone users: Understanding how security mechanisms are perceived and new persuasive methods.

    Directory of Open Access Journals (Sweden)

    Mansour Alsaleh

    Full Text Available Protecting smartphones against security threats is a multidimensional problem involving human and technological factors. This study investigates how smartphone users' security- and privacy-related decisions are influenced by their attitudes, perceptions, and understanding of various security threats. In this work, we seek to provide quantified insights into smartphone users' behavior toward multiple key security features including locking mechanisms, application repositories, mobile instant messaging, and smartphone location services. To the best of our knowledge, this is the first study that reveals often unforeseen correlations and dependencies between various privacy- and security-related behaviors. Our work also provides evidence that making correct security decisions might not necessarily correlate with individuals' awareness of the consequences of security threats. By comparing participants' behavior and their motives for adopting or ignoring certain security practices, we suggest implementing additional persuasive approaches that focus on addressing social and technological aspects of the problem. On the basis of our findings and the results presented in the literature, we identify the factors that might influence smartphone users' security behaviors. We then use our understanding of what might drive and influence significant behavioral changes to propose several platform design modifications that we believe could improve the security levels of smartphones.

  20. Investigating and improving student understanding of the expectation values of observables in quantum mechanics

    International Nuclear Information System (INIS)

    Marshman, Emily; Singh, Chandralekha

    2017-01-01

    The expectation value of an observable is an important concept in quantum mechanics since measurement outcomes are, in general, probabilistic and we only have information about the probability distribution of measurement outcomes in a given quantum state of a system. However, we find that upper-level undergraduate and PhD students in physics have both conceptual and procedural difficulties when determining the expectation value of a physical observable in a given quantum state in terms of the eigenstates and eigenvalues of the corresponding operator, especially when using Dirac notation. Here we first describe the difficulties that these students have with determining the expectation value of an observable in Dirac notation. We then discuss how the difficulties found via student responses to written surveys and individual interviews were used as a guide in the development of a quantum interactive learning tutorial (QuILT) to help students develop a good grasp of the expectation value. The QuILT strives to help students integrate conceptual understanding and procedural skills to develop a coherent understanding of the expectation value. We discuss the effectiveness of the QuILT in helping students learn this concept from in-class evaluations. (paper)

  1. Understanding dental CAD/CAM for restorations--accuracy from a mechanical engineering viewpoint.

    Science.gov (United States)

    Tapie, Laurent; Lebon, Nicolas; Mawussi, Bernardin; Fron-Chabouis, Hélène; Duret, Francois; Attal, Jean-Pierre

    2015-01-01

    As is the case in the field of medicine, as well as in most areas of daily life, digital technology is increasingly being introduced into dental practice. Computer-aided design/ computer-aided manufacturing (CAD/CAM) solutions are available not only for chairside practice but also for creating inlays, crowns, fixed partial dentures (FPDs), implant abutments, and other dental prostheses. CAD/CAM dental practice can be considered as the handling of devices and software processing for the almost automatic design and creation of dental restorations. However, dentists who want to use dental CAD/CAM systems often do not have enough information to understand the variations offered by such technology practice. Knowledge of the random and systematic errors in accuracy with CAD/CAM systems can help to achieve successful restorations with this technology, and help with the purchasing of a CAD/CAM system that meets the clinical needs of restoration. This article provides a mechanical engineering viewpoint of the accuracy of CAD/ CAM systems, to help dentists understand the impact of this technology on restoration accuracy.

  2. Introducing memory and association mechanism into a biologically inspired visual model.

    Science.gov (United States)

    Qiao, Hong; Li, Yinlin; Tang, Tang; Wang, Peng

    2014-09-01

    A famous biologically inspired hierarchical model (HMAX model), which was proposed recently and corresponds to V1 to V4 of the ventral pathway in primate visual cortex, has been successfully applied to multiple visual recognition tasks. The model is able to achieve a set of position- and scale-tolerant recognition, which is a central problem in pattern recognition. In this paper, based on some other biological experimental evidence, we introduce the memory and association mechanism into the HMAX model. The main contributions of the work are: 1) mimicking the active memory and association mechanism and adding the top down adjustment to the HMAX model, which is the first try to add the active adjustment to this famous model and 2) from the perspective of information, algorithms based on the new model can reduce the computation storage and have a good recognition performance. The new model is also applied to object recognition processes. The primary experimental results show that our method is efficient with a much lower memory requirement.

  3. Mechanisms of action of sacubitril/valsartan on cardiac remodeling: a systems biology approach.

    Science.gov (United States)

    Iborra-Egea, Oriol; Gálvez-Montón, Carolina; Roura, Santiago; Perea-Gil, Isaac; Prat-Vidal, Cristina; Soler-Botija, Carolina; Bayes-Genis, Antoni

    2017-01-01

    Sacubitril/Valsartan, proved superiority over other conventional heart failure management treatments, but its mechanisms of action remains obscure. In this study, we sought to explore the mechanistic details for Sacubitril/Valsartan in heart failure and post-myocardial infarction remodeling, using an in silico, systems biology approach. Myocardial transcriptome obtained in response to myocardial infarction in swine was analyzed to address post-infarction ventricular remodeling. Swine transcriptome hits were mapped to their human equivalents using Reciprocal Best (blast) Hits, Gene Name Correspondence, and InParanoid database. Heart failure remodeling was studied using public data available in gene expression omnibus (accession GSE57345, subseries GSE57338), processed using the GEO2R tool. Using the Therapeutic Performance Mapping System technology, dedicated mathematical models trained to fit a set of molecular criteria, defining both pathologies and including all the information available on Sacubitril/Valsartan, were generated. All relationships incorporated into the biological network were drawn from public resources (including KEGG, REACTOME, INTACT, BIOGRID, and MINT). An artificial neural network analysis revealed that Sacubitril/Valsartan acts synergistically against cardiomyocyte cell death and left ventricular extracellular matrix remodeling via eight principal synergistic nodes. When studying each pathway independently, Valsartan was found to improve cardiac remodeling by inhibiting members of the guanine nucleotide-binding protein family, while Sacubitril attenuated cardiomyocyte cell death, hypertrophy, and impaired myocyte contractility by inhibiting PTEN. The complex molecular mechanisms of action of Sacubitril/Valsartan upon post-myocardial infarction and heart failure cardiac remodeling were delineated using a systems biology approach. Further, this dataset provides pathophysiological rationale for the use of Sacubitril/Valsartan to prevent post

  4. Effect of calcium hydroxide on mechanical strength and biological properties of bioactive glass.

    Science.gov (United States)

    Shah, Asma Tufail; Batool, Madeeha; Chaudhry, Aqif Anwar; Iqbal, Farasat; Javaid, Ayesha; Zahid, Saba; Ilyas, Kanwal; Bin Qasim, Saad; Khan, Ather Farooq; Khan, Abdul Samad; Ur Rehman, Ihtesham

    2016-08-01

    In this manuscript for the first time calcium hydroxide (Ca(OH)2) has been used for preparation of bioactive glass (BG-2) by co-precipitation method and compared with glass prepared using calcium nitrate tetrahydrate Ca(NO3)2·4H2O (BG-1), which is a conventional source of calcium. The new source positively affected physical, biological and mechanical properties of BG-2. The glasses were characterized by Fourier transform infrared (FTIR), X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis/Differential Scanning Calorimetry (TGA-DSC), BET surface area analysis and Knoop hardness. The results showed that BG-2 possessed relatively larger surface properties (100m(2)g(-1) surface area) as compared to BG-1 (78m(2)g(-1)), spherical morphology and crystalline phases (wollastonite and apatite) after sintering at lower than conventional temperature. These properties contribute critical role in both mechanical and biological properties of glasses. The Knoop hardness measurements revealed that BG-2 possessed much better hardness (0.43±0.06GPa at 680°C and 2.16±0.46GPa at 980°C) than BG-1 (0.24±0.01 at 680°C and 0.57±0.07GPA at 980°C) under same conditions. Alamar blue Assay and confocal microscopy revealed that BG-2 exhibited better attachment and proliferation of MG63 cells. Based on the improved biological properties of BG-2 as a consequent of novel calcium source selection, BG-2 is proposed as a bioactive ceramic for hard tissue repair and regeneration applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Molecular mechanisms of temperature-dependent sex determination in the context of ecological developmental biology.

    Science.gov (United States)

    Matsumoto, Yuiko; Crews, David

    2012-05-06

    Temperature-dependent sex determination (TSD) is a prime example of phenotypic plasticity in that gonadal sex is determined by the temperature of the incubating egg. In the red-eared slider turtle (Trachemys scripta), the effect of temperature can be overridden by exogenous ligands, i.e., sex steroid hormones and steroid metabolism enzyme inhibitors, during the temperature-sensitive period (TSP) of development. Precisely how the physical signal of temperature is transduced into a biological signal that ultimately results in sex determination remains unknown. In this review, we discuss the sex determining pathway underlying TSD by focusing on two candidate sex determining genes, Forkhead box protein L2 (FoxL2) and Doublesex mab3- related transcription factor 1 (Dmrt1). They appear to be involved in transducing the environmental temperature signal into a biological signal that subsequently determines gonadal sex. FoxL2 and Dmrt1 exhibit gonad-typical patterns of expression in response to temperature during the TSP in the red-eared slider turtle. Further, the biologically active ligands regulate the expression of FoxL2 and Dmrt1 during development to modify gonad trajectory. The precise regulatory mechanisms of expression of these genes by temperature or exogenous ligands are not clear. However, the environment often influences developmental gene expression by altering the epigenetic status in regulatory regions. Here, we will discuss if the regulation of FoxL2 and Dmrt1 expression by environment is mediated through epigenetic mechanisms during development in species with TSD. Published by Elsevier Ireland Ltd.

  6. Towards a Better Understanding of the Molecular Mechanisms Involved in Sunlight-Induced Melanoma

    Directory of Open Access Journals (Sweden)

    Williams Mandy

    2005-01-01

    Full Text Available Although much less prevalent than its nonmelanoma skin cancer counterparts, cutaneous malignant melanoma (CMM is the most lethal human skin cancer. Epidemiological and biological studies have established a strong link between lifetime exposure to ultraviolet (UV light, particularly sunburn in childhood, and the development of melanoma. However, the specific molecular targets of this environmental carcinogen are not known. Data obtained from genetic and molecular studies over the last few years have identified the INK4a/ARF locus as the “gatekeeper” melanoma suppressor, encoding two tumour suppressor proteins in human, p16 INK4a and p14 ARF . Recent developments in molecular biotechnology and research using laboratory animals have made a significant gene breakthrough identifying the components of the p16 INK4a /Rb pathway as the principal and rate-limiting targets of UV radiation actions in melanoma formation. This review summarizes the current knowledge of the molecular mechanisms involved in melanoma development and its relationship to sunlight UV radiation.

  7. Understanding Physiological and Degenerative Natural Vision Mechanisms to Define Contrast and Contour Operators

    Science.gov (United States)

    Demongeot, Jacques; Fouquet, Yannick; Tayyab, Muhammad; Vuillerme, Nicolas

    2009-01-01

    Background Dynamical systems like neural networks based on lateral inhibition have a large field of applications in image processing, robotics and morphogenesis modeling. In this paper, we will propose some examples of dynamical flows used in image contrasting and contouring. Methodology First we present the physiological basis of the retina function by showing the role of the lateral inhibition in the optical illusions and pathologic processes generation. Then, based on these biological considerations about the real vision mechanisms, we study an enhancement method for contrasting medical images, using either a discrete neural network approach, or its continuous version, i.e. a non-isotropic diffusion reaction partial differential system. Following this, we introduce other continuous operators based on similar biomimetic approaches: a chemotactic contrasting method, a viability contouring algorithm and an attentional focus operator. Then, we introduce the new notion of mixed potential Hamiltonian flows; we compare it with the watershed method and we use it for contouring. Conclusions We conclude by showing the utility of these biomimetic methods with some examples of application in medical imaging and computed assisted surgery. PMID:19547712

  8. Understanding physiological and degenerative natural vision mechanisms to define contrast and contour operators.

    Directory of Open Access Journals (Sweden)

    Jacques Demongeot

    Full Text Available BACKGROUND: Dynamical systems like neural networks based on lateral inhibition have a large field of applications in image processing, robotics and morphogenesis modeling. In this paper, we will propose some examples of dynamical flows used in image contrasting and contouring. METHODOLOGY: First we present the physiological basis of the retina function by showing the role of the lateral inhibition in the optical illusions and pathologic processes generation. Then, based on these biological considerations about the real vision mechanisms, we study an enhancement method for contrasting medical images, using either a discrete neural network approach, or its continuous version, i.e. a non-isotropic diffusion reaction partial differential system. Following this, we introduce other continuous operators based on similar biomimetic approaches: a chemotactic contrasting method, a viability contouring algorithm and an attentional focus operator. Then, we introduce the new notion of mixed potential Hamiltonian flows; we compare it with the watershed method and we use it for contouring. CONCLUSIONS: We conclude by showing the utility of these biomimetic methods with some examples of application in medical imaging and computed assisted surgery.

  9. Toward understanding the mechanics of hovering in insects, hummingbirds and bats

    Science.gov (United States)

    Vejdani, Hamid; Boerma, David; Swartz, Sharon; Breuer, Kenneth

    2016-11-01

    We present results on the dynamical characteristics of two different mechanisms of hovering, corresponding to the behavior of hummingbirds and bats. Using a Lagrangian formulation, we have developed a dynamical model of a body (trunk) and two rectangular wings. The trunk has 3 degrees of freedom (x, z and pitch angle) and each wing has 3 modes of actuation: flapping, pronation/supination, and wingspan extension/flexion (only present for bats). Wings can be effectively massless (hummingbird and insect wings) or relatively massive (important in the case of bats). The aerodynamic drag and lift forces are calculated using a quasi-steady blade-element model. The regions of state space in which hovering is possible are computed by over an exhaustive range of parameters. The effect of wing mass is to shrink the phase space available for viable hovering and, in general, to require higher wingbeat frequency. Moreover, by exploring hovering energy requirements, we find that the pronation angle of the wings also plays a critical role. For bats, who have relatively heavy wings, we show wing extension and flexion is critical in order to maintain a plausible hovering posture with reasonable power requirements. Comparisons with biological data show good agreement with our model predictions.

  10. Measurement of Androgen and Estrogen Concentrations in Cord Blood: Accuracy, Biological Interpretation and Applications to Understanding Human Behavioural Development

    Directory of Open Access Journals (Sweden)

    Lauren P Hollier

    2014-05-01

    Full Text Available Accurately measuring hormone exposure during prenatal life presents a methodological challenge and there is currently no ‘gold standard’ approach. Ideally, circulating fetal hormone levels would be measured at repeated time points during pregnancy. However, it is not currently possible to obtain fetal blood samples without significant risk to the fetus, and therefore surrogate markers of fetal hormone levels must be utilized. Umbilical cord blood can be readily obtained at birth and largely reflects fetal circulation in late gestation. This review examines the accuracy and biological interpretation of the measurement of androgens and estrogens in cord blood. The use of cord blood hormones to understand and investigate human development is then discussed.

  11. Towards understanding the mechanisms and the kinetics of nanoparticle penetration through protective gloves

    International Nuclear Information System (INIS)

    Vinches, L; Boutrigue, N; Zemzem, M; Hallé, S; Peyrot, C; Lemarchand, L; Wilkinson, K J; Tufenkji, N

    2015-01-01

    Parallel to the increased use of engineered nanoparticles (ENP) in the formulation of commercial products or in medicine, numerous health and safety agencies have recommended the application of the precautionary principle to handle ENP; namely, the recommendation to use protective gloves against chemicals. However, recent studies reveal the penetration of titanium dioxide nanoparticles through nitrile rubber protective gloves in conditions simulating occupational use. This project is designed to understand the links between the penetration of gold nanoparticles (nAu) through nitrile rubber protective gloves and the mechanical and physical behaviour of the elastomer material subjected to conditions simulating occupational use (i.e., mechanical deformations (MD) and sweat). Preliminary analyses show that nAu suspensions penetrate selected glove materials after exposure to prolonged (3 hours) dynamic deformations. Significant morphological changes are observed on the outer surface of the glove sample; namely, the number and the surface of the micropores on the surface increase. Moreover, nitrile rubber protective gloves are also shown to be sensitive to the action of nAu suspension and to the action of the saline solution used to simulate sweat (swelling). (paper)

  12. Understanding deformation mechanisms during powder compaction using principal component analysis of compression data.

    Science.gov (United States)

    Roopwani, Rahul; Buckner, Ira S

    2011-10-14

    Principal component analysis (PCA) was applied to pharmaceutical powder compaction. A solid fraction parameter (SF(c/d)) and a mechanical work parameter (W(c/d)) representing irreversible compression behavior were determined as functions of applied load. Multivariate analysis of the compression data was carried out using PCA. The first principal component (PC1) showed loadings for the solid fraction and work values that agreed with changes in the relative significance of plastic deformation to consolidation at different pressures. The PC1 scores showed the same rank order as the relative plasticity ranking derived from the literature for common pharmaceutical materials. The utility of PC1 in understanding deformation was extended to binary mixtures using a subset of the original materials. Combinations of brittle and plastic materials were characterized using the PCA method. The relationships between PC1 scores and the weight fractions of the mixtures were typically linear showing ideal mixing in their deformation behaviors. The mixture consisting of two plastic materials was the only combination to show a consistent positive deviation from ideality. The application of PCA to solid fraction and mechanical work data appears to be an effective means of predicting deformation behavior during compaction of simple powder mixtures. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. The use of micro-/milli-fluidics to better understand the mechanisms behind deep venous thrombosis

    Science.gov (United States)

    Schofield, Zoe; Alexiadis, Alessio; Brill, Alexander; Nash, Gerard; Vigolo, Daniele

    2016-11-01

    Deep venous thrombosis (DVT) is a dangerous and painful condition in which blood clots form in deep veins (e.g., femoral vein). If these clots become unstable and detach from the thrombus they can be delivered to the lungs resulting in a life threatening complication called pulmonary embolism (PE). Mechanisms of clot development in veins remain unclear but researchers suspect that the specific flow patterns in veins, especially around the valve flaps, play a fundamental role. Here we show how it is now possible to mimic the current murine model by developing micro-/milli-fluidic experiments. We exploited a novel detection technique, ghost particle velocimetry (GPV), to analyse the velocity profiles for various geometries. These vary from regular microfluidics with a rectangular cross section with a range of geometries (mimicking the presence of side and back branches in veins, closed side branch and flexible valves) to a more accurate venous representation with a 3D cylindrical geometry obtained by 3D printing. In addition to the GPV experiments, we analysed the flow field developing in these geometries by using computational fluid dynamic simulations to develop a better understanding of the mechanisms behind DVT. ZS gratefully acknowledges financial support from the EPSRC through a studentship from the Sci-Phy-4-Health Centre for Doctoral Training (EP/L016346/1).

  14. Understanding the mechanisms of familiar voice-identity recognition in the human brain.

    Science.gov (United States)

    Maguinness, Corrina; Roswandowitz, Claudia; von Kriegstein, Katharina

    2018-03-31

    Humans have a remarkable skill for voice-identity recognition: most of us can remember many voices that surround us as 'unique'. In this review, we explore the computational and neural mechanisms which may support our ability to represent and recognise a unique voice-identity. We examine the functional architecture of voice-sensitive regions in the superior temporal gyrus/sulcus, and bring together findings on how these regions may interact with each other, and additional face-sensitive regions, to support voice-identity processing. We also contrast findings from studies on neurotypicals and clinical populations which have examined the processing of familiar and unfamiliar voices. Taken together, the findings suggest that representations of familiar and unfamiliar voices might dissociate in the human brain. Such an observation does not fit well with current models for voice-identity processing, which by-and-large assume a common sequential analysis of the incoming voice signal, regardless of voice familiarity. We provide a revised audio-visual integrative model of voice-identity processing which brings together traditional and prototype models of identity processing. This revised model includes a mechanism of how voice-identity representations are established and provides a novel framework for understanding and examining the potential differences in familiar and unfamiliar voice processing in the human brain. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Research Progress in Oncology. Highlighting and Exploiting the Roles of Several Strategic Proteins in Understanding Cancer Biology

    Directory of Open Access Journals (Sweden)

    Odiba Arome S.

    2016-01-01

    Full Text Available Although almost all biological processes are mediated by a variety of proteins, it is important to bring to spotlight recent experimental and clinical research advances that had their focus on highlighting and taking advantage of the roles of several strategic proteins in order to gain more understanding of cancer biology. Proteins have a major stake in the initiation, progression, sustenance and completion of cellular processes, and have also demonstrated their vital roles in cancer processes. The characteristic functions of proteins and modified proteins have been utilized in the understanding and treatment of cancer. Recent insights in such roles and applications include linker histone H1.2 in the compaction of chromatin and gene silencing via the recognition of H3K27me3; c-Jun with Fra-2/c-Fos in the promotion of aggressive tumour phenotypes in tongue cancer; the use of sodium channelinhibiting agents targeting the transmembrane protein in breast, colon and prostate cancer; SET-mediated activities; protein interaction networks in glioma; Gpnmb significance as a biomarker; β-carbolines inhibition on Wnt/β-catenin signaling; p53 mutants co-opt chromatin pathways; Bone morphogenetic protein 4 as regulator of the behaviors of cancer cell; Brain-Expressed X-linked (BEX proteins in human cancers; targeting CDK4/6 including protein kinases to make a reversal of multidrug resistance in sarcoma. In-depth knowledge of Proteomics will go a long way in helping us uncover a lot more strategies that will help us in the long fight against cancer.

  16. From technological advances to biological understanding: The main steps toward high-precision RT in breast cancer.

    Science.gov (United States)

    Leonardi, Maria Cristina; Ricotti, Rosalinda; Dicuonzo, Samantha; Cattani, Federica; Morra, Anna; Dell'Acqua, Veronica; Orecchia, Roberto; Jereczek-Fossa, Barbara Alicja

    2016-10-01

    Radiotherapy improves local control in breast cancer (BC) patients which increases overall survival in the long term. Improvements in treatment planning and delivery and a greater understanding of BC behaviour have laid the groundwork for high-precision radiotherapy, which is bound to further improve the therapeutic index. Precise identification of target volumes, better coverage and dose homogeneity have had a positive impact on toxicity and local control. The conformity of treatment dose due to three-dimensional radiotherapy and new techniques such as intensity modulated radiotherapy makes it possible to spare surrounding normal tissue. The widespread use of dose-volume constraints and histograms have increased awareness of toxicity. Real time image guidance has improved geometric precision and accuracy, together with the implementation of quality assurance programs. Advances in the precision of radiotherapy is also based on the choice of the appropriate fractionation and approach. Adaptive radiotherapy is not only a technical concept, but is also a biological concept based on the knowledge that different types of BC have distinctive patterns of locoregional spread. A greater understanding of cancer biology helps in choosing the treatment best suited to a particular situation. Biomarkers predictive of response play a crucial role. The combination of radiotherapy with molecular targeted therapies may enhance radiosensitivity, thus increasing the cytotoxic effects and improving treatment response. The appropriateness of an alternative fractionation, partial breast irradiation, dose escalating/de-escalating approaches, the extent of nodal irradiation have been examined for all the BC subtypes. The broadened concept of adaptive radiotherapy is vital to high-precision treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Does knowledge of seat design and whiplash injury mechanisms translate to understanding outcomes?

    Science.gov (United States)

    Ivancic, Paul C

    2011-12-01

    Review of whiplash injury mechanisms and effects of anti-whiplash systems including active head restraint (AHR) and Whiplash Protection System (WHIPS). This article provides an overview of previous biomechanical and epidemiological studies of AHR and WHIPS and investigates whether seat design and biomechanical knowledge of proposed whiplash injury mechanisms translates to understanding outcomes of rear crash occupants. In attempt to reduce whiplash injuries, some newer automobiles incorporate anti-whiplash systems such as AHR or WHIPS. During a rear crash, mechanically based systems activate by occupant momentum pressing into the seatback whereas electronically based systems activate using crash sensors and an electronic control unit linked to the head restraint. To investigate the effects of AHR and WHIPS on occupant responses including head and neck loads and motions, biomechanical studies of simulated rear crashes have been performed using human volunteers, mathematical models, crash dummies, whole cadavers, and hybrid cadaveric/surrogate models. Epidemiological studies have evaluated the effects of AHR and WHIPS on reducing whiplash injury claims and lessening subjective complaints of neck pain after rear crashes. RESULTS.: Biomechanical studies indicate that AHR and WHIPS reduced the potential for some whiplash injuries but did not completely eliminate the injury risk. Epidemiological outcomes indicate reduced whiplash injury claims or subjective complaints of crash-related neck pain between 43 and 75% due to AHR and between 21% and 49% due to WHIPS as compared to conventional seats and head restraints. Yielding energy-absorbing seats aim to reduce occupant loads and accelerations whereas AHRs aim to provide early head support to minimize head and neck motions. Continued objective biomechanical and epidemiological studies of anti-whiplash systems together with industry, governmental, and clinical initiatives will ultimately lead to reduced whiplash injuries

  18. A full understanding of oxygen reduction reaction mechanism on Au(1 1 1) surface

    Science.gov (United States)

    Yang, Yang; Dai, Changqing; Fisher, Adrian; Shen, Yanchun; Cheng, Daojian

    2017-09-01

    Oxygen reduction and hydrogen peroxide reduction are technologically important reactions in energy-conversion devices. In this work, a full understanding of oxygen reduction reaction (ORR) mechanism on Au(1 1 1) surface is investigated by density functional theory (DFT) calculations, including the reaction mechanisms of O2 dissociation, OOH dissociation, and H2O2 dissociation. Among these ORR mechanisms on Au(1 1 1), the activation energy of \\text{O}2* hydrogenation reaction is much lower than that of \\text{O}2* dissociation, indicating that \\text{O}2* hydrogenation reaction is more appropriate at the first step than \\text{O}2* dissociation. In the following, H2O2 can be formed with the lower activation energy compared with the OOH dissociation reaction, and finally H2O2 could be generated as a detectable product due to the high activation energy of H2O2 dissociation reaction. Furthermore, the potential dependent free energy study suggests that the H2O2 formation is thermodynamically favorable up to 0.4 V on Au(1 1 1), reducing the overpotential for 2e - ORR process. And the elementary step of first H2O formation becomes non-spontaneous at 0.4 V, indicating the difficulty of 4e - reduction pathway. Our DFT calculations show that H2O2 can be generated on Au(1 1 1) and the first electron transfer is the rate determining step. Our results show that gold surface could be used as a good catalyst for small-scale manufacture and on-site production of H2O2.

  19. Translational environmental biology: cell biology informing conservation.

    Science.gov (United States)

    Traylor-Knowles, Nikki; Palumbi, Stephen R

    2014-05-01

    Typically, findings from cell biology have been beneficial for preventing human disease. However, translational applications from cell biology can also be applied to conservation efforts, such as protecting coral reefs. Recent efforts to understand the cell biological mechanisms maintaining coral health such as innate immunity and acclimatization have prompted new developments in conservation. Similar to biomedicine, we urge that future efforts should focus on better frameworks for biomarker development to protect coral reefs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Biology

    Indian Academy of Sciences (India)

    the overarching scientific questions outlined in this essay can help advance both scientific understanding and ... Āyurveda which proclaimed over a thousand years ago that its claim to ..... traditions since a very long time past. The arts thus ...

  1. Understanding the mechanical and acoustical characteristics of sand aggregates compacting under triaxial conditions

    Science.gov (United States)

    Hangx, Suzanne; Brantut, Nicolas

    2016-04-01

    failure being present but occurring to a relatively limited extent. Acoustic emission localization showed that failure was focussed along a broad shear plane. At higher confining pressure pervasive grain failure clearly accommodated compaction, though no strain localization was observed and failure appeared to be through cataclastic flow. Chemical environment, i.e. chemically inert decane vs. water as a pore fluid, had no significant effect on compaction in the strain rate range tested. Grain size distribution or grain shape also appeared to not affect the observed mechanical behaviour. Our results can be used to better understand the compaction behaviour of poorly consolidated sandstones. Future research will focus on understanding the effect of cementation on strain localization in deforming artificial Ottawa sandstone.

  2. Toward modular biological models: defining analog modules based on referent physiological mechanisms.

    Science.gov (United States)

    Petersen, Brenden K; Ropella, Glen E P; Hunt, C Anthony

    2014-08-16

    Currently, most biomedical models exist in isolation. It is often difficult to reuse or integrate models or their components, in part because they are not modular. Modular components allow the modeler to think more deeply about the role of the model and to more completely address a modeling project's requirements. In particular, modularity facilitates component reuse and model integration for models with different use cases, including the ability to exchange modules during or between simulations. The heterogeneous nature of biology and vast range of wet-lab experimental platforms call for modular models designed to satisfy a variety of use cases. We argue that software analogs of biological mechanisms are reasonable candidates for modularization. Biomimetic software mechanisms comprised of physiomimetic mechanism modules offer benefits that are unique or especially important to multi-scale, biomedical modeling and simulation. We present a general, scientific method of modularizing mechanisms into reusable software components that we call physiomimetic mechanism modules (PMMs). PMMs utilize parametric containers that partition and expose state information into physiologically meaningful groupings. To demonstrate, we modularize four pharmacodynamic response mechanisms adapted from an in silico liver (ISL). We verified the modularization process by showing that drug clearance results from in silico experiments are identical before and after modularization. The modularized ISL achieves validation targets drawn from propranolol outflow profile data. In addition, an in silico hepatocyte culture (ISHC) is created. The ISHC uses the same PMMs and required no refactoring. The ISHC achieves validation targets drawn from propranolol intrinsic clearance data exhibiting considerable between-lab variability. The data used as validation targets for PMMs originate from both in vitro to in vivo experiments exhibiting large fold differences in time scale. This report demonstrates

  3. Understanding the fate and biological effects of Ag- and TiO2-nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts

    International Nuclear Information System (INIS)

    Schaumann, Gabriele E.; Philippe, Allan; Bundschuh, Mirco; Metreveli, George; Klitzke, Sondra; Rakcheev, Denis; Grün, Alexandra

    2015-01-01

    Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO 2 NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag 2 S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO 2 NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO 2 NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering fate and effect of

  4. Understanding the fate and biological effects of Ag- and TiO{sub 2}-nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts

    Energy Technology Data Exchange (ETDEWEB)

    Schaumann, Gabriele E., E-mail: schaumann@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Philippe, Allan, E-mail: philippe@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Bundschuh, Mirco, E-mail: mirco.bundschuh@slu.se [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Ecotoxicology and Environment, Fortstr. 7, D-76829 Landau (Germany); Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, Lennart Hjelms väg 9, SE-75007 Uppsala (Sweden); Metreveli, George, E-mail: metreveli@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Klitzke, Sondra, E-mail: sondra.klitzke@tu-berlin.de [Albert-Ludwigs-Universität Freiburg, Institute of Forest Sciences, Chair of Soil Ecology, 79085 Freiburg i.Br. (Germany); Berlin University of Technology, Institute of Ecology, Department of Soil Science, Ernst-Reuter-Platz 1, D-10587 Berlin (Germany); Rakcheev, Denis, E-mail: rakcheev@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Grün, Alexandra, E-mail: alexg@uni-koblenz.de [Universität Koblenz-Landau, Institute for Integrated Natural Sciences, Dept. of Biology, Universitätsstr. 1, D-56070 Koblenz (Germany); and others

    2015-12-01

    Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO{sub 2} NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag{sub 2}S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO{sub 2} NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO{sub 2} NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering

  5. The effects of academic literacy instruction on engagement and conceptual understanding of biology of ninth-grade students

    Science.gov (United States)

    Larson, Susan C.

    Academic language, discourse, vocabulary, motivation, and comprehension of complex texts and concepts are keys to learning subject-area content. The need for a disciplinary literacy approach in high school classrooms accelerates as students become increasing disengaged in school and as content complexity increases. In the present quasi-experimental mixed-method study, a ninth-grade biology unit was designed with an emphasis on promoting academic literacy skills, discourse, meaningful constructivist learning, interest development, and positive learning experiences in order to learn science content. Quantitative and qualitative analyses on a variety of measures completed by 222 students in two high schools revealed that those who received academic literacy instruction in science class performed at significantly higher levels of conceptual understanding of biology content, academic language and vocabulary use, reasoned thought, engagement, and quality of learning experience than control-group students receiving traditionally-organized instruction. Academic literacy was embedded into biology instruction to engage students in meaning-making discourses of science to promote learning. Academic literacy activities were organized according the phases of interest development to trigger and sustain interest and goal-oriented engagement throughout the unit. Specific methods included the Generative Vocabulary Matrix (GVM), scenario-based writing, and involvement in a variety of strategically-placed discourse activities to sustain or "boost" engagement for learning. Traditional instruction for the control group included teacher lecture, whole-group discussion, a conceptual organizer, and textbook reading. Theoretical foundations include flow theory, sociocultural learning theory, and interest theory. Qualitative data were obtained from field notes and participants' journals. Quantitative survey data were collected and analyzed using the Experience Sampling Method (ESM) to

  6. Diversity Generator Mechanisms Are Essential Components of Biological Systems: The Two Queen Hypothesis

    Directory of Open Access Journals (Sweden)

    Eric Muraille

    2018-02-01

    Full Text Available Diversity is widely known to fuel adaptation and evolutionary processes and increase robustness at the population, species and ecosystem levels. The Neo-Darwinian paradigm proposes that the diversity of biological entities is the consequence of genetic changes arising spontaneously and randomly, without regard for their usefulness. However, a growing body of evidence demonstrates that the evolutionary process has shaped mechanisms, such as horizontal gene transfer mechanisms, meiosis and the adaptive immune system, which has resulted in the regulated generation of diversity among populations. Though their origins are unrelated, these diversity generator (DG mechanisms share common functional properties. They (i contribute to the great unpredictability of the composition and/or behavior of biological systems, (ii favor robustness and collectivism among populations and (iii operate mainly by manipulating the systems that control the interaction of living beings with their environment. The definition proposed here for DGs is based on these properties and can be used to identify them according to function. Interestingly, prokaryotic DGs appear to be mainly reactive, as they generate diversity in response to environmental stress. They are involved in the widely described Red Queen/arms race/Cairnsian dynamic. The emergence of multicellular organisms harboring K selection traits (longer reproductive life cycle and smaller population size has led to the acquisition of a new class of DGs that act anticipatively to stress pressures and generate a distinct dynamic called the “White Queen” here. The existence of DGs leads to the view of evolution as a more “intelligent” and Lamarckian-like process. Their repeated selection during evolution could be a neglected example of convergent evolution and suggests that some parts of the evolutionary process are tightly constrained by ecological factors, such as the population size, the generation time and

  7. Bioprocess scale-up/down as integrative enabling technology: from fluid mechanics to systems biology and beyond.

    Science.gov (United States)

    Delvigne, Frank; Takors, Ralf; Mudde, Rob; van Gulik, Walter; Noorman, Henk

    2017-09-01

    Efficient optimization of microbial processes is a critical issue for achieving a number of sustainable development goals, considering the impact of microbial biotechnology in agrofood, environment, biopharmaceutical and chemical industries. Many of these applications require scale-up after proof of concept. However, the behaviour of microbial systems remains unpredictable (at least partially) when shifting from laboratory-scale to industrial conditions. The need for robust microbial systems is thus highly needed in this context, as well as a better understanding of the interactions between fluid mechanics and cell physiology. For that purpose, a full scale-up/down computational framework is already available. This framework links computational fluid dynamics (CFD), metabolic flux analysis and agent-based modelling (ABM) for a better understanding of the cell lifelines in a heterogeneous environment. Ultimately, this framework can be used for the design of scale-down simulators and/or metabolically engineered cells able to cope with environmental fluctuations typically found in large-scale bioreactors. However, this framework still needs some refinements, such as a better integration of gas-liquid flows in CFD, and taking into account intrinsic biological noise in ABM. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  8. Clinical indications and biological mechanisms of splenic irradiation in autoimmune diseases

    Energy Technology Data Exchange (ETDEWEB)

    Weinmann, M.; Becker, G. [Tuebingen Univ. (Germany). Abt. fuer Strahlenonkologie; Einsele, H.; Bamberg, M. [Tuebingen Univ. (Germany). Abt. fuer Innere Medizin 2

    2001-02-01

    Background: Splenic irradiation (SI) is a fairly unknown treatment modality in autoimmune disorders like autoimmune thrombocytopenia (AIT) or autoimmune hemolytic anemia (AIHA), which may provide an effective, low toxic and cost-effective treatment for selected patients. Patients, Materials and Methods: This article reviews the limited experiences on splenic irradiation in autoimmune thrombocytopenia by analyzing the current studies including 71 patients and some preliminary reports on splenic irradiation in autoimmune hemolytic anemia. Results: In autoimmune thrombocytopenia between 40 and 90% of all patients responded, but most of them relapsed within 4 to 6 months after splenic irradiation. Between 10 and 20% of all patients had a sustained response. The efficacy of splenic irradiation in HIV-associated cases of thrombocytopenia is probably lower than in other forms of autoimmune thrombocytopenia, but especially in this group immunosuppressive drug treatment of autoimmune thrombocytopenia exposes some problems. In autoimmune hemolytic anemia there are some case reports about efficacy of splenic irradiation. Toxicity of splenic irradiation in both diseases was very moderate. Conclusions: For HIV patients, for elderly patients or patients at high risk for complications following splenectomy splenic irradiation might be a treatment option. Splenic irradiation as preoperative treatment in patients not responding to or not suitable for immunosuppressive drugs prior to splenectomy may be a promising new application of splenic irradiation to reduce adverse effects of splenectomy in thrombocytopenic patients. A further analysis of the biological mechanisms underlying splenic irradiation may help to improve patient selection, to optimize dose concepts and treatment schedules and will improve understanding of radiotherapy as an immunomodulatory treatment modality. (orig.) [German] Hintergrund: Die Bestrahlung der Milz zur Behandlung von haematologischen

  9. Understanding the hydrolysis mechanism of ethyl acetate catalyzed by an aqueous molybdocene: a computational chemistry investigation.

    Science.gov (United States)

    Tílvez, Elkin; Cárdenas-Jirón, Gloria I; Menéndez, María I; López, Ramón

    2015-02-16

    , in general, the information reported here could be of interest in designing new catalysts and understanding the reaction mechanism of these and other metal-catalyzed hydrolysis reactions.

  10. The Impact of Different Instructional Strategies on Students' Understanding about the Cell Cycle in a General Education Biology Course

    Science.gov (United States)

    Krishnamurthy, Sanjana

    This study investigated the impact of different instructional strategies on students' understanding about the cell cycle in a general education biology course. Although several studies have documented gains in students' cell cycle understanding after instruction, these studies generally use only one instructional method, often without a comparison group. The goal of this study was to learn more about students' misconceptions about the cell cycle and how those ideas change after three different evidence-based learning experiences in undergraduate general education. Undergraduate students in six laboratory sections (n = 24; N = 144) in a large public institution in the western United States were surveyed pre- and post-instruction using a 14-item valid and reliable survey of cell cycle knowledge. Cronbach's alpha for the standard scoring convention was 0.264 and for the alternate scoring convention was 0.360, documenting serious problems with inconsistent validity and reliability of the survey. Operating as though the findings are at least a proxy for actual cell cycle knowledge, score comparisons by groups of interest were explored, including pre- and post-instruction differences among demographic groups of interest and three instructional settings: a bead modeling activity, a role-playing game, and 5E instructional strategy. No significant differences were found across groups of interest or by strategy, but some significant item-level differences were found. Implications and discussion of these shifts is noted in lieu of the literature.

  11. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications

    International Nuclear Information System (INIS)

    Xu Tao; Binder, Kyle W; Albanna, Mohammad Z; Dice, Dennis; Zhao Weixin; Yoo, James J; Atala, Anthony

    2013-01-01

    Bioprinting is an emerging technique used to fabricate viable, 3D tissue constructs through the precise deposition of cells and hydrogels in a layer-by-layer fashion. Despite the ability to mimic the native properties of tissue, printed 3D constructs that are composed of naturally-derived biomaterials still lack structural integrity and adequate mechanical properties for use in vivo, thus limiting their development for use in load-bearing tissue engineering applications, such as cartilage. Fabrication of viable constructs using a novel multi-head deposition system provides the ability to combine synthetic polymers, which have higher mechanical strength than natural materials, with the favorable environment for cell growth provided by traditional naturally-derived hydrogels. However, the complexity and high cost associated with constructing the required robotic system hamper the widespread application of this approach. Moreover, the scaffolds fabricated by these robotic systems often lack flexibility, which further restrict their applications. To address these limitations, advanced fabrication techniques are necessary to generate complex constructs with controlled architectures and adequate mechanical properties. In this study, we describe the construction of a hybrid inkjet printing/electrospinning system that can be used to fabricate viable tissues for cartilage tissue engineering applications. Electrospinning of polycaprolactone fibers was alternated with inkjet printing of rabbit elastic chondrocytes suspended in a fibrin–collagen hydrogel in order to fabricate a five-layer tissue construct of 1 mm thickness. The chondrocytes survived within the printed hybrid construct with more than 80% viability one week after printing. In addition, the cells proliferated and maintained their basic biological properties within the printed layered constructs. Furthermore, the fabricated constructs formed cartilage-like tissues both in vitro and in vivo as evidenced by the

  12. Dominance as adaptive stressing and ranking of males, serving to allocate reproduction by differential self-suppressed fertility: towards a fully biological understanding of social systems.

    Science.gov (United States)

    Moxon, Steve

    2009-07-01

    mutually exclusive of the consensus model, that dominance/DH is: same-sex only; present whenever, within one or both sexes, there is potential conflict over reproduction, and there is no mechanism to preclude this, but otherwise is absent; always associated with some degree of differential physiological reproductive suppression. This new conceptualization of dominance has major implications for the social as well as biological sciences, in that resource-competition models of the basis of sociality will have to give way to a thoroughgoing biological understanding that places centre-stage not resources but reproduction; with consequent radical revision of notions of 'power'.

  13. Engineering the mechanical and biological properties of nanofibrous vascular grafts for in situ vascular tissue engineering.

    Science.gov (United States)

    Henry, Jeffrey J D; Yu, Jian; Wang, Aijun; Lee, Randall; Fang, Jun; Li, Song

    2017-08-17

    Synthetic small diameter vascular grafts have a high failure rate, and endothelialization is critical for preventing thrombosis and graft occlusion. A promising approach is in situ tissue engineering, whereby an acellular scaffold is implanted and provides stimulatory cues to guide the in situ remodeling into a functional blood vessel. An ideal scaffold should have sufficient binding sites for biomolecule immobilization and a mechanical property similar to native tissue. Here we developed a novel method to blend low molecular weight (LMW) elastic polymer during electrospinning process to increase conjugation sites and to improve the mechanical property of vascular grafts. LMW elastic polymer improved the elasticity of the scaffolds, and significantly increased the amount of heparin conjugated to the micro/nanofibrous scaffolds, which in turn increased the loading capacity of vascular endothelial growth factor (VEGF) and prolonged the release of VEGF. Vascular grafts were implanted into the carotid artery of rats to evaluate the in vivo performance. VEGF treatment significantly enhanced endothelium formation and the overall patency of vascular grafts. Heparin coating also increased cell infiltration into the electrospun grafts, thus increasing the production of collagen and elastin within the graft wall. This work demonstrates that LMW elastic polymer blending is an approach to engineer the mechanical and biological property of micro/nanofibrous vascular grafts for in situ vascular tissue engineering.

  14. Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries

    Science.gov (United States)

    Li, Qi; Tan, Shen; Li, Linlin; Lu, Yingying; He, Yi

    2017-01-01

    High energy and safe electrochemical storage are critical components in multiple emerging fields of technologies. Rechargeable lithium-metal batteries are considered to be promising alternatives for current lithium-ion batteries, leading to as much as a 10-fold improvement in anode storage capacity (from 372 to 3860 mAh g−1). One of the major challenges for commercializing lithium-metal batteries is the reliability and safety issue, which is often associated with uneven lithium electrodeposition (lithium dendrites) during the charging stage of the battery cycling process. We report that stable lithium-metal batteries can be achieved by simply charging cells with square-wave pulse current. We investigated the effects of charging period and frequency as well as the mechanisms that govern this process at the molecular level. Molecular simulations were performed to study the diffusion and the solvation structure of lithium cations (Li+) in bulk electrolyte. The model predicts that loose association between cations and anions can enhance the transport of Li+ and eventually stabilize the lithium electrodeposition. We also performed galvanostatic measurements to evaluate the cycling behavior and cell lifetime under pulsed electric field and found that the cell lifetime can be more than doubled using certain pulse current waveforms. Both experimental and simulation results demonstrate that the effectiveness of pulse current charging on dendrite suppression can be optimized by choosing proper time- and frequency-dependent pulses. This work provides a molecular basis for understanding the mechanisms of pulse current charging to mitigating lithium dendrites and designing pulse current waveforms for stable lithium-metal batteries. PMID:28776039

  15. The AAA+ proteins Pontin and Reptin enter adult age: from understanding their basic biology to the identification of selective inhibitors.

    Science.gov (United States)

    Matias, Pedro M; Baek, Sung Hee; Bandeiras, Tiago M; Dutta, Anindya; Houry, Walid A; Llorca, Oscar; Rosenbaum, Jean

    2015-01-01

    Pontin and Reptin are related partner proteins belonging to the AAA+ (ATPases Associated with various cellular Activities) family. They are implicated in multiple and seemingly unrelated processes encompassing the regulation of gene transcription, the remodeling of chromatin, DNA damage sensing and repair, and the assembly of protein and ribonucleoprotein complexes, among others. The 2nd International Workshop on Pontin and Reptin took place at the Instituto de Tecnologia Química e Biológica António Xavier in Oeiras, Portugal on October 10-12, 2014, and reported significant new advances on the mechanisms of action of these two AAA+ ATPases. The major points under discussion were related to the mechanisms through which these proteins regulate gene transcription, their roles as co-chaperones, and their involvement in pathophysiology, especially in cancer and ciliary biology and disease. Finally, they may become anticancer drug targets since small chemical inhibitors were shown to produce anti-tumor effects in animal models.

  16. The AAA+ proteins Pontin and Reptin enter adult age: from understanding their basic biology to the identification of selective inhibitors

    Science.gov (United States)

    Matias, Pedro M.; Baek, Sung Hee; Bandeiras, Tiago M.; Dutta, Anindya; Houry, Walid A.; Llorca, Oscar; Rosenbaum, Jean

    2015-01-01

    Pontin and Reptin are related partner proteins belonging to the AAA+ (ATPases Associated with various cellular Activities) family. They are implicated in multiple and seemingly unrelated processes encompassing the regulation of gene transcription, the remodeling of chromatin, DNA damage sensing and repair, and the assembly of protein and ribonucleoprotein complexes, among others. The 2nd International Workshop on Pontin and Reptin took place at the Instituto de Tecnologia Química e Biológica António Xavier in Oeiras, Portugal on October 10–12, 2014, and reported significant new advances on the mechanisms of action of these two AAA+ ATPases. The major points under discussion were related to the mechanisms through which these proteins regulate gene transcription, their roles as co-chaperones, and their involvement in pathophysiology, especially in cancer and ciliary biology and disease. Finally, they may become anticancer drug targets since small chemical inhibitors were shown to produce anti-tumor effects in animal models. PMID:25988184

  17. Genetic diversity in the oral pathogen Porphyromonas gingivalis: molecular mechanisms and biological consequences

    Science.gov (United States)

    Tribble, Gena D; Kerr, Jennifer E; Wang, Bing-Yan

    2013-01-01

    Porphyromonas gingivalis is a Gram-negative anaerobic bacterium that colonizes the human oral cavity. It is implicated in the development of periodontitis, a chronic periodontal disease affecting half of the adult population in the USA. To survive in the oral cavity, these bacteria must colonize dental plaque biofilms in competition with other bacterial species. Long-term survival requires P. gingivalis to evade host immune responses, while simultaneously adapting to the changing physiology of the host and to alterations in the plaque biofilm. In reflection of this highly variable niche, P. gingivalis is a genetically diverse species and in this review the authors summarize genetic diversity as it relates to pathogenicity in P. gingivalis. Recent studies revealing a variety of mechanisms by which adaptive changes in genetic content can occur are also reviewed. Understanding the genetic plasticity of P. gingivalis will provide a better framework for understanding the host–microbe interactions associated with periodontal disease. PMID:23642116

  18. Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways.

    Science.gov (United States)

    Azad, Gajendra Kumar; Tomar, Raghuvir S

    2014-08-01

    Ebselen, an organoselenium compound, mimics glutathione peroxidase activity. It is a multifunctional compound, which catalyzes several essential reactions for the protection of cellular components from oxidative and free radical damage. Based on a number of in vitro and in vivo studies, various mechanisms are proposed to understand the biomedical actions of ebselen in health and diseases. It modulates metallo-proteins, enzymatic cofactors, gene expression, epigenetics, antioxidant defenses and immune systems. Owing to these properties, ebselen is currently under clinical trials for the prevention and treatment of various disorders such as cardiovascular diseases, arthritis, stroke, atherosclerosis, and cancer. A few ebselen-based pharmaceutical agents are under extensive investigation. As ebselen has been shown to have significant cellular toxicity, appropriate studies are needed to redesign the ebselen-based therapy for clinical trials. This review summarizes current understanding of the biochemical and molecular properties, and pharmacological applications of ebselen and future directions in this area of research.

  19. A literature survey of the biological effects and mechanics of electromagnetic radiation

    International Nuclear Information System (INIS)

    Zeh, K.A.

    1985-01-01

    The following report discusses the very controversial subject of electromagnetic interaction with the human body. The project was undertaken in the form of a literature survey to investigate the biological mechanisms responsible for the interaction, the theoretical models and associated mathematical techniques required to model the human body, the resulting energy deposition in the human and the factors which effect this. It was established that at present the most realistic model of man can be obtained using a block model and moment method technique with improved methods such as conjugate gradients or band approximation for the necessary matrix inversion. The impedance method of modelling could be very promising for future research. From the literature studied on biological effects no scientific evidence was found which definitely proves or disproves hazardous effects exist at low field intensities ( -2 ). The testes and the lens of the eye can be harmed, however, if the intensity is sufficient to cause a temperature rise of 1 degree Celsius in these organs

  20. Dysfunctional Hematopoietic Stem Cell Biology: Underlying Mechanisms and Potential Therapeutic Strategies

    Directory of Open Access Journals (Sweden)

    Anja Geiselhart

    2012-01-01

    Full Text Available Fanconi anemia (FA is the most common inherited bone marrow failure syndrome. FA patients suffer to varying degrees from a heterogeneous range of developmental defects and, in addition, have an increased likelihood of developing cancer. Almost all FA patients develop a severe, progressive bone marrow failure syndrome, which impacts upon the production of all hematopoietic lineages and, hence, is thought to be driven by a defect at the level of the hematopoietic stem cell (HSC. This hypothesis would also correlate with the very high incidence of MDS and AML that is observed in FA patients. In this paper, we discuss the evidence that supports the role of dysfunctional HSC biology in driving the etiology of the disease. Furthermore, we consider the different model systems currently available to study the biology of cells defective in the FA signaling pathway and how they are informative in terms of identifying the physiologic mediators of HSC depletion and dissecting their putative mechanism of action. Finally, we ask whether the insights gained using such disease models can be translated into potential novel therapeutic strategies for the treatment of the hematologic disorders in FA patients.

  1. Screening of biologically important Zn2 + by a chemosensor with fluorescent turn on-off mechanism

    Science.gov (United States)

    Khan, Tanveer A.; Sheoran, Monika; Nikhil Raj M., Venkata; Jain, Surbhi; Gupta, Diksha; Naik, Sunil G.

    2018-01-01

    Reported herein the synthesis, characterization and biologically important zinc ion binding propensity of a weakly fluorescent chemosensor, 4-methyl-2,6-bis((E)-(2-(4-phenylthiazol-2-yl)hydrazono)methyl)phenol (1). 1H NMR spectroscopic titration experiment reveals the binding knack of 1 to the essential Zn2 +. The photo-physical studies of 1 exhibit an enhancement in the fluorescence by several folds upon binding with the zinc ions attributed to PET-off process, with a binding constant value of 5.22 × 103 M- 1. 1 exhibits an excellent detection range for Zn2 + with lower detection limit value of 2.31 × 10- 8 M. The selectivity of 1 was studied with various mono and divalent metal cations and it was observed that most cations either quenches the fluorescence or remains unchanged except for Cd2 +, which shows a slight enhancement in fluorescence intensity of 1. The ratiometric displacement of Cd2 + ions by Zn2 + ions shows an excellent selectivity towards in-situ detection of Zn2 + ions. Photo-physical studies also support the reversible binding of 1 to Zn2 + ions having on and off mechanism in presence of EDTA. Such recognition of the biologically important zinc ions finds potential application in live cell imaging.

  2. Beyond COX-1: the effects of aspirin on platelet biology and potential mechanisms of chemoprevention.

    Science.gov (United States)

    Ornelas, Argentina; Zacharias-Millward, Niki; Menter, David G; Davis, Jennifer S; Lichtenberger, Lenard; Hawke, David; Hawk, Ernest; Vilar, Eduardo; Bhattacharya, Pratip; Millward, Steven

    2017-06-01

    After more than a century, aspirin remains one of the most commonly used drugs in western medicine. Although mainly used for its anti-thrombotic, anti-pyretic, and analgesic properties, a multitude of clinical studies have provided convincing evidence that regular, low-dose aspirin use dramatically lowers the risk of cancer. These observations coincide with recent studies showing a functional relationship between platelets and tumors, suggesting that aspirin's chemopreventive properties may result, in part, from direct modulation of platelet biology and biochemistry. Here, we present a review of the biochemistry and pharmacology of aspirin with particular emphasis on its cyclooxygenase-dependent and cyclooxygenase-independent effects in platelets. We also correlate the results of proteomic-based studies of aspirin acetylation in eukaryotic cells with recent developments in platelet proteomics to identify non-cyclooxygenase targets of aspirin-mediated acetylation in platelets that may play a role in its chemopreventive mechanism.

  3. Intended process water management concept for the mechanical biological treatment of municipal solid waste

    Institute of Scientific and Technical Information of China (English)

    D. Weichgrebe; S. Maerker; T. Boning; H. Stegemann

    2008-01-01

    Accumulating operational experience in both aerobic and anaerobic mechanical biological waste treatment (MBT) makes it increasingly obvious that controlled water management would substantially reduce the cost of MBT and also enhance resource recovery of the organic and inorganic fraction. The MBT plant at Gescher, Germany, is used as an example in order to determine the quantity and composition of process water and leachates from intensive and subsequent rotting, pressing water from anaerobic digestion and scrubber water from acid exhaust air treatment, and hence prepare an MBT water balance. The potential of, requirements for and limits to internal process water reuse as well as the possibilities of resource recovery from scrubber water are also examined. Finally, an assimilated process water management concept with the purpose of an extensive reduction of wastewater quantity and freshwater demand is presented.

  4. The biology of atherosclerosis: general paradigms and distinct pathogenic mechanisms among HIV-infected patients.

    Science.gov (United States)

    Lo, Janet; Plutzky, Jorge

    2012-06-01

    Complications of atherosclerosis, including myocardial infarction and stroke, are the leading cause of death and disability worldwide. Recent data strongly implicate cardiovascular death as a contributor to mortality among patients with human immunodeficiency virus (HIV) infection, with evidence suggesting increased incidence of atherosclerosis among these patients. Therefore, greater understanding of atherosclerotic mechanisms and how these responses may be similar or distinct in HIV-infected patients is needed. Key concepts in atherosclerosis are reviewed, including the evidence that inflammation and abnormal metabolism are major drivers of atherosclerosis, and connected to the current literature regarding atherosclerosis in the context of HIV.

  5. Understanding creep in sandstone reservoirs - theoretical deformation mechanism maps for pressure solution in granular materials

    Science.gov (United States)

    Hangx, Suzanne; Spiers, Christopher

    2014-05-01

    Subsurface exploitation of the Earth's natural resources removes the natural system from its chemical and physical equilibrium. As such, groundwater extraction and hydrocarbon production from subsurface reservoirs frequently causes surface subsidence and induces (micro)seismicity. These effects are not only a problem in onshore (e.g. Groningen, the Netherlands) and offshore hydrocarbon fields (e.g. Ekofisk, Norway), but also in urban areas with extensive groundwater pumping (e.g. Venice, Italy). It is known that fluid extraction inevitably leads to (poro)elastic compaction of reservoirs, hence subsidence and occasional fault reactivation, and causes significant technical, economic and ecological impact. However, such effects often exceed what is expected from purely elastic reservoir behaviour and may continue long after exploitation has ceased. This is most likely due to time-dependent compaction, or 'creep deformation', of such reservoirs, driven by the reduction in pore fluid pressure compared with the rock overburden. Given the societal and ecological impact of surface subsidence, as well as the current interest in developing geothermal energy and unconventional gas resources in densely populated areas, there is much need for obtaining better quantitative understanding of creep in sediments to improve the predictability of the impact of geo-energy and groundwater production. The key problem in developing a reliable, quantitative description of the creep behaviour of sediments, such as sands and sandstones, is that the operative deformation mechanisms are poorly known and poorly quantified. While grain-scale brittle fracturing plus intergranular sliding play an important role in the early stages of compaction, these time-independent, brittle-frictional processes give way to compaction creep on longer time-scales. Thermally-activated mass transfer processes, like pressure solution, can cause creep via dissolution of material at stressed grain contacts, grain

  6. Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore

    International Nuclear Information System (INIS)

    Sivakumar Babu, G.L.; Lakshmikanthan, P.; Santhosh, L.G.

    2015-01-01

    Highlights: • Shear strength properties of mechanically biologically treated municipal solid waste. • Effect of unit weight and particle size on the shear strength of waste. • Effect of particle size on the strength properties. • Stiffness ratio and the strength ratio of MSW. - Abstract: Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3 kN/m 3 to 10.3 kN/m 3 at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9 kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43

  7. Geomagnetic polarity reversals as a mechanism for the punctuated equilibrium model of biological evolution

    International Nuclear Information System (INIS)

    Welsh, J.S.; Welsh, A.L.; Welsh, W.F.

    2003-01-01

    In contrast to what is predicted by classical Darwinian theory (phyletic gradualism), the fossil record typically displays a pattern of relatively sudden, dramatic changes as detailed by Eldregde and Gould's model of punctuated equilibrium. Evolutionary biologists have been at a loss to explain the ultimate source of the new mutations that drive evolution. One hypothesis holds that the abrupt speciation seen in the punctuated equilibrium model is secondary to an increased mutation rate resulting from periodically increased levels of ionizing radiation on the Earth's surface. Sporadic geomagnetic pole reversals, occurring every few million years on the average, are accompanied by alterations in the strength of the Earth's magnetic field and magnetosphere. This diminution may allow charged cosmic radiation to bombard Earth with less attenuation, thereby resulting in increased mutation rates. This episodic fluctuation in the magnetosphere is an attractive mechanism for the observed fossil record. Selected periods and epochs of geologic history for which data was available were reviewed for both geomagnetic pole reversal history and fossil record. Anomalies in either were scrutinized in greater depth and correlations were made. A 35 million year span (118-83 Ma) was identified during the Early/Middle Cretaceous period that was devoid of geomagnetic polarity reversals(the Cretaceous normal superchron). Examination of the fossil record (including several invertebrate and vertebrate taxons) during the Cretaceous normal superchron does not reveal any significant gap or slowing of speciation. Although increased terrestrial radiation exposure due to a diminution of the Earth's magnetosphere caused by a reversal of geomagnetic polarity is an attractive explanation for the mechanism of punctuated equilibrium, our investigation suggests that such polarity reversals cannot fully provide the driving force behind biological evolution. Further research is required to determine if

  8. Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore

    Energy Technology Data Exchange (ETDEWEB)

    Sivakumar Babu, G.L., E-mail: gls@civil.iisc.ernet.in [Department of Civil Engineering, Indian Institute of Science, Bangalore 560012 (India); Lakshmikanthan, P., E-mail: lakshmikanthancp@gmail.com [Centre for Sustainable Technologies (CST), Indian Institute of Science, Bangalore 560012 (India); Santhosh, L.G., E-mail: lgsanthu2006@gmail.com [Centre for Sustainable Technologies (CST), Indian Institute of Science, Bangalore 560012 (India)

    2015-05-15

    Highlights: • Shear strength properties of mechanically biologically treated municipal solid waste. • Effect of unit weight and particle size on the shear strength of waste. • Effect of particle size on the strength properties. • Stiffness ratio and the strength ratio of MSW. - Abstract: Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3 kN/m{sup 3} to 10.3 kN/m{sup 3} at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9 kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43.

  9. Molecular Targets of Antihypertensive Peptides: Understanding the Mechanisms of Action Based on the Pathophysiology of Hypertension

    Directory of Open Access Journals (Sweden)

    Kaustav Majumder

    2014-12-01

    Full Text Available There is growing interest in using functional foods or nutraceuticals for the prevention and treatment of hypertension or high blood pressure. Although numerous preventive and therapeutic pharmacological interventions are available on the market, unfortunately, many patients still suffer from poorly controlled hypertension. Furthermore, most pharmacological drugs, such as inhibitors of angiotensin-I converting enzyme (ACE, are often associated with significant adverse effects. Many bioactive food compounds have been characterized over the past decades that may contribute to the management of hypertension; for example, bioactive peptides derived from various food proteins with antihypertensive properties have gained a great deal of attention. Some of these peptides have exhibited potent in vivo antihypertensive activity in both animal models and human clinical trials. This review provides an overview about the complex pathophysiology of hypertension and demonstrates the potential roles of food derived bioactive peptides as viable interventions targeting specific pathways involved in this disease process. This review offers a comprehensive guide for understanding and utilizing the molecular mechanisms of antihypertensive actions of food protein derived peptides.

  10. Towards Understanding the Catalytic Mechanism of Human Paraoxonase 1: Experimental and In Silico Mutagenesis Studies.

    Science.gov (United States)

    Tripathy, Rajan K; Aggarwal, Geetika; Bajaj, Priyanka; Kathuria, Deepika; Bharatam, Prasad V; Pande, Abhay H

    2017-08-01

    Human paraoxonase 1 (h-PON1) is a ~45-kDa serum enzyme that can hydrolyze a variety of substrates, including organophosphate (OP) compounds. It is a potential candidate for the development of antidote against OP poisoning in humans. However, insufficient OP-hydrolyzing activity of native enzyme affirms the urgent need to develop improved variant(s) having enhanced OP-hydrolyzing activity. The crystal structure of h-PON1 remains unsolved, and the molecular details of how the enzyme catalyses hydrolysis of different types of substrates are also not clear. Understanding the molecular details of the catalytic mechanism of h-PON1 is essential to engineer better variant(s) of enzyme. In this study, we have used a random mutagenesis approach to increase the OP-hydrolyzing activity of recombinant h-PON1. The mutants not only showed a 10-340-fold increased OP-hydrolyzing activity against different OP substrates but also exhibited differential lactonase and arylesterase activities. In order to investigate the mechanistic details of the effect of observed mutations on the hydrolytic activities of enzyme, molecular docking studies were performed with selected mutants. The results suggested that the observed mutations permit differential binding of substrate/inhibitor into the enzyme's active site. This may explain differential hydrolytic activities of the enzyme towards different substrates.

  11. Understanding gas production mechanism and effectiveness of well stimulation in the Haynesville shale through reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Fan, L.; Thompson, J.W.; Robinson, J.R. [Schlumberger, Houston, TX (United States)

    2010-07-01

    The Haynesville Shale Basin is one of the large and most active shale gas plays in the United States, with 185 horizontal rigs currently in place. The Haynesville Shale is a very tight source rock and resource play. The gas resources are being converted into gas reserves with horizontal wells and hydraulic fracture treatments. A complex fracture network created during well stimulation is the main factor in generating superior early well performance in the area. The key to making better wells in all the gas shale plays is to understand how to create more surface area during hydraulic stimulation jobs and preserve the surface area for as long as possible. This paper presented a unique workflow and methodology that has enabled analysis of production data using reservoir simulation to explain the shale gas production mechanism and the effectiveness of stimulation treatments along laterals. Since 2008, this methodology has been used to analyze production data from more than 30 horizontal wells in the Haynesville Shale. Factors and parameters relating to short and long term well performance were investigated, including pore pressure, rock matrix quality, natural fractures, hydraulic fractures, and complex fracture networks. Operators can use the simulation results to determine where and how to spend resources to produce better wells and to reduce the uncertainties of developing these properties. 19 refs., 1 tab., 17 figs.

  12. Does an Emphasis on the Concept of Quantum States Enhance Students' Understanding of Quantum Mechanics?

    Science.gov (United States)

    Greca, Ileana Maria; Freire, Olival

    Teaching physics implies making choices. In the case of teaching quantum physics, besides an educational choice - the didactic strategy - another choice must be made, an epistemological one, concerning the interpretation of quantum theory itself. These two choices are closely connected. We have chosen a didactic strategy that privileges the phenomenological-conceptual approach, with emphasis upon quantum features of the systems, instead of searching for classical analogies. This choice has led us to present quantum theory associated with an orthodox, yet realistic, interpretation of the concept of quantum state, considered as the key concept of quantum theory, representing the physical reality of a system, independent of measurement processes. The results of the mplementation of this strategy, with three groups of engineering students, showed that more than a half of them attained a reasonable understanding of the basics of quantum mechanics (QM) for this level. In addition, a high degree of satisfaction was attained with the classes as 80% of the students of the experimental groups claimed to have liked it and to be interested in learning more about QM.

  13. Application of microscopy methods to the understanding of mechanisms involved in ilmenite reduction by hydrogen

    International Nuclear Information System (INIS)

    De Vries, M.; Grey, I.; Fitzgerald, J.

    2003-01-01

    Full text: Titania pigment is one of the major drivers of the mineral sands industry with production of over 4 million tpa in 2002 for paints, plastics, paper and ceramics applications. The main feedstock for titania pigment production is ilmenite, FeTiO 3 . It is used either directly or after it has been upgraded to a higher titania content. The major commercial upgrading processes are electro smelting (titania slag) or high temperature char reduction followed by iron removal (synthetic rutile SR). Future ilmenite upgrading processes are likely to use low temperature hydrogen reduction according to reaction, followed by aeration of the metallic iron and acid leaching to produce a high grade SR (Nicholson et al, 2000). The commercial application of such a process requires a detailed knowledge of the kinetics of reaction. FeTiO 3 + H 2 = Fe(m) + TiO 2 + H 2 O. The kinetics of ilmenite reduction has been studied at CSIRO Minerals using a specially designed thermogravimetric apparatus built around a Cahn pressurised symmetrical beam balance. The kinetics have been measured as a function of different operating parameters such as temperature, gas velocity and pressure. The parameters were set so as to minimise mass transport effects and increase chemical reaction control and to ensure the reduction kinetics are outside the gas starvation region. Small samples were used that had been sintered at close to melting point to form large grains with low unconnected porosity. High flow rates of reactant gas were also used. The application of a range of microscopy techniques to the reduced samples at various stages of reaction conversion has been critical to the development of an understanding of the reaction mechanisms. From analysis of TEM, IFESEM and optical microscopy results it appears that initially, chemical reaction is rate controlling at the surface and as the reaction proceeds topochemically inwards then diffusion mechanisms increase their control. Reaction proceeds

  14. Learning biology through connecting mathematics to scientific mechanisms: Student outcomes and teacher supports

    Science.gov (United States)

    Schuchardt, Anita

    Integrating mathematics into science classrooms has been part of the conversation in science education for a long time. However, studies on student learning after incorporating mathematics in to the science classroom have shown mixed results. Understanding the mixed effects of including mathematics in science has been hindered by a historical focus on characteristics of integration tangential to student learning (e.g., shared elements, extent of integration). A new framework is presented emphasizing the epistemic role of mathematics in science. An epistemic role of mathematics missing from the current literature is identified: use of mathematics to represent scientific mechanisms, Mechanism Connected Mathematics (MCM). Building on prior theoretical work, it is proposed that having students develop mathematical equations that represent scientific mechanisms could elevate their conceptual understanding and quantitative problem solving. Following design and implementation of an MCM unit in inheritance, a large-scale quantitative analysis of pre and post implementation test results showed MCM students, compared to traditionally instructed students) had significantly greater gains in conceptual understanding of mathematically modeled scientific mechanisms, and their ability to solve complex quantitative problems. To gain insight into the mechanism behind the gain in quantitative problem solving, a small-scale qualitative study was conducted of two contrasting groups: 1) within-MCM instruction: competent versus struggling problem solvers, and 2) within-competent problem solvers: MCM instructed versus traditionally instructed. Competent MCM students tended to connect their mathematical inscriptions to the scientific phenomenon and to switch between mathematical and scientifically productive approaches during problem solving in potentially productive ways. The other two groups did not. To address concerns about teacher capacity presenting barriers to scalability of MCM

  15. Nutritional sub-fertility in the dairy cow: towards improved reproductive management through a better biological understanding.

    Science.gov (United States)

    Friggens, N C; Disenhaus, C; Petit, H V

    2010-07-01

    There has been a significant decline in the reproductive performance of dairy cattle in recent decades. Cows, take longer time to return to the oestrus after calving, have poorer conception rates, and show fewer signs of oestrus. Achieving good reproductive performance is an increasing challenge for the dairy producer. In this study we focus on understanding the overall biological phenomena associated with nutritional sub-fertility rather than the underlying multiplicity of physiological interactions (already described in a number of recent studies). These phenomena are important because they represent the natural adaptations of the animal for dealing with variations in the nutritional environment. They can also be used to monitor and modulate reproductive performance on-farm. There is an underlying trade-off between two aspects of reproduction: investment in the viability of the current calf and investment in future offspring. As the investment in, and viability of, the current calf is related to maternal milk production, we can expect that level of milk production per se has effects on subsequent reproductive performance (investment in future offspring). Lactating cows have a lower proportion of viable embryos, which are of poorer quality, than do non-lactating cows. The same applies to high- compared to medium-genetic merit cows. Another important biological property is the adaptive use of body reserves in support of reproduction. Orchestrated endocrine changes in pregnancy and lactation facilitate the deposition of body lipid during pregnancy and mobilisation in early lactation. When the cow fails to accumulate the reserves she needs to safeguard reproduction she delays committing to further reproductive investment. But how does the cow 'know' that she is failing in energy terms? We argue that the cow does this by 'monitoring' both the body fat mobilisation and body fatness. Excessive body fat mobilisation indicates that current conditions are worse than

  16. Thinking processes of Filipino teachers representation of schema of some biology topics: Its effects to the students conceptual understanding

    Science.gov (United States)

    Barquilla, Manuel B.

    2018-01-01

    This study is a qualitative-quantitative research, where the main concern is to investigate Content knowledge representation of Filipino Teachers in their schema (proposition, linear ordering and imagery) of some biology topics. The five biology topics includes: Photosynthesis, Cellular Respiration, human reproductive system, Mendelian genetics and NonMendelian genetics. The study focuses on the six (6) biology teachers and a total of 222 students in their respective classes. Of the Six (6) teachers, three (3) are under the Science curriculum and three (3) under regular curriculum in both public and private schools in Iligan city and Lanao del Norte, Philippines. The study utilizes interpretative case-study method, bracketing method, and concept analysis for qualitative part. For quantitative, it uses a nonparametric statistical tool, Kendall's Tau to determine congruence of students and teachers' concept maps and paired t-test for testing the significant differences of pre-and post-instruction concept maps to determine the effects of students' conceptual understanding before and after the teacher's representation of their schema that requires the teachers' thinking processes. The data were cross-validated with two or more techniques used in the study. The data collection entailed seven (7) months immersion: one (1) month for preliminary phase for the researcher to gain teachers' and students' confidence and the succeeding six (6) months for main observation and data collection. Results indicate that the teacher utilize six methods to construct meaning of concepts, three methods of representing classification, four methods to represent relationships, seven methods to represent transformation and three methods to represent causation in planning and implementing the lessons. They often modify definitions in the textbook and express these in lingua franca to be better understood by the students. Furthermore, the teachers' analogs given to student are sometimes far

  17. Biologically important conformational features of DNA as interpreted by quantum mechanics and molecular mechanics computations of its simple fragments.

    Science.gov (United States)

    Poltev, V; Anisimov, V M; Dominguez, V; Gonzalez, E; Deriabina, A; Garcia, D; Rivas, F; Polteva, N A

    2018-02-01

    Deciphering the mechanism of functioning of DNA as the carrier of genetic information requires identifying inherent factors determining its structure and function. Following this path, our previous DFT studies attributed the origin of unique conformational characteristics of right-handed Watson-Crick duplexes (WCDs) to the conformational profile of deoxydinucleoside monophosphates (dDMPs) serving as the minimal repeating units of DNA strand. According to those findings, the directionality of the sugar-phosphate chain and the characteristic ranges of dihedral angles of energy minima combined with the geometric differences between purines and pyrimidines determine the dependence on base sequence of the three-dimensional (3D) structure of WCDs. This work extends our computational study to complementary deoxydinucleotide-monophosphates (cdDMPs) of non-standard conformation, including those of Z-family, Hoogsteen duplexes, parallel-stranded structures, and duplexes with mispaired bases. For most of these systems, except Z-conformation, computations closely reproduce experimental data within the tolerance of characteristic limits of dihedral parameters for each conformation family. Computation of cdDMPs with Z-conformation reveals that their experimental structures do not correspond to the internal energy minimum. This finding establishes the leading role of external factors in formation of the Z-conformation. Energy minima of cdDMPs of non-Watson-Crick duplexes demonstrate different sequence-dependence features than those known for WCDs. The obtained results provide evidence that the biologically important regularities of 3D structure distinguish WCDs from duplexes having non-Watson-Crick nucleotide pairing.

  18. Mechanical, Corrosion and Biological Properties of Room-Temperature Sputtered Aluminum Nitride Films with Dissimilar Nanostructure

    Directory of Open Access Journals (Sweden)

    Cristina Besleaga

    2017-11-01

    Full Text Available Aluminum Nitride (AlN has been long time being regarded as highly interesting material for developing sensing applications (including biosensors and implantable sensors. AlN, due to its appealing electronic properties, is envisaged lately to serve as a multi-functional biosensing platform. Although generally exploited for its intrinsic piezoelectricity, its surface morphology and mechanical performance (elastic modulus, hardness, wear, scratch and tensile resistance to delamination, adherence to the substrate, corrosion resistance and cytocompatibility are also essential features for high performance sustainable biosensor devices. However, information about AlN suitability for such applications is rather scarce or at best scattered and incomplete. Here, we aim to deliver a comprehensive evaluation of the morpho-structural, compositional, mechanical, electrochemical and biological properties of reactive radio-frequency magnetron sputtered AlN nanostructured thin films with various degrees of c-axis texturing, deposited at a low temperature (~50 °C on Si (100 substrates. The inter-conditionality elicited between the base pressure level attained in the reactor chamber and crystalline quality of AlN films is highlighted. The potential suitability of nanostructured AlN (in form of thin films for the realization of various type of sensors (with emphasis on bio-sensors is thoroughly probed, thus unveiling its advantages and limitations, as well as suggesting paths to safely exploit the remarkable prospects of this type of materials.

  19. Mechanical sludge disintegration for the production of carbon source for biological nutrient removal.

    Science.gov (United States)

    Kampas, P; Parsons, S A; Pearce, P; Ledoux, S; Vale, P; Churchley, J; Cartmell, E

    2007-04-01

    The primary driver for a successful biological nutrient removal is the availability of suitable carbon source, mainly in the form of volatile fatty acids (VFA). Several methods have been examined to increase the amount of VFAs in wastewater. This study investigates the mechanism of mechanical disintegration of thickened surplus activated sludge by a deflaker technology for the production of organic matter. This equipment was able to increase the soluble carbon in terms of VFA and soluble chemical oxygen demand (SCOD) with the maximum concentration to be around 850 and 6530 mgl(-1), for VFA and SCOD, respectively. The particle size was reduced from 65.5 to 9.3 microm after 15 min of disintegration with the simultaneous release of proteins (1550 mgl(-1)) and carbohydrates (307 mgl(-1)) indicating floc disruption and breakage. High performance size exclusion chromatography investigated the disintegrated sludge and confirmed that the deflaker was able to destroy the flocs releasing polymeric substances that are typically found outside of cells. When long disintegration times were applied (>or=10 min or >or=9000 kJkg(-1)TS of specific energy) smaller molecular size materials were released to the liquid phase, which are considered to be found inside the cells indicating cell lysis.

  20. The Role of Biologically Active Ingredients from Natural Drug Treatments for Arrhythmias in Different Mechanisms.

    Science.gov (United States)

    Li, Jie; Hu, Dan; Song, Xiaoli; Han, Tao; Gao, Yonghong; Xing, Yanwei

    2017-01-01

    Arrhythmia is a disease that is caused by abnormal electrical activity in the heart rate or rhythm. It is the major cause of cardiovascular morbidity and mortality. Although several antiarrhythmic drugs have been used in clinic for decades, their application is often limited by their adverse effects. As a result, natural drugs, which have fewer side effects, are now being used to treat arrhythmias. We searched for all articles on the role of biologically active ingredients from natural drug treatments for arrhythmias in different mechanisms in PubMed. This study reviews 19 natural drug therapies, with 18 active ingredient therapies, such as alkaloids, flavonoids, saponins, quinones, and terpenes, and two kinds of traditional Chinese medicine compound (Wenxin-Keli and Shensongyangxin), all of which have been studied and reported as having antiarrhythmic effects. The primary focus is the proposed antiarrhythmic mechanism of each natural drug agent. Conclusion . We stress persistent vigilance on the part of the provider in discussing the use of natural drug agents to provide a solid theoretical foundation for further research on antiarrhythmia drugs.

  1. Mechanical, Corrosion and Biological Properties of Room-Temperature Sputtered Aluminum Nitride Films with Dissimilar Nanostructure.

    Science.gov (United States)

    Besleaga, Cristina; Dumitru, Viorel; Trinca, Liliana Marinela; Popa, Adrian-Claudiu; Negrila, Constantin-Catalin; Kołodziejczyk, Łukasz; Luculescu, Catalin-Romeo; Ionescu, Gabriela-Cristina; Ripeanu, Razvan-George; Vladescu, Alina; Stan, George E

    2017-11-17

    Aluminum Nitride (AlN) has been long time being regarded as highly interesting material for developing sensing applications (including biosensors and implantable sensors). AlN, due to its appealing electronic properties, is envisaged lately to serve as a multi-functional biosensing platform. Although generally exploited for its intrinsic piezoelectricity, its surface morphology and mechanical performance (elastic modulus, hardness, wear, scratch and tensile resistance to delamination, adherence to the substrate), corrosion resistance and cytocompatibility are also essential features for high performance sustainable biosensor devices. However, information about AlN suitability for such applications is rather scarce or at best scattered and incomplete. Here, we aim to deliver a comprehensive evaluation of the morpho-structural, compositional, mechanical, electrochemical and biological properties of reactive radio-frequency magnetron sputtered AlN nanostructured thin films with various degrees of c -axis texturing, deposited at a low temperature (~50 °C) on Si (100) substrates. The inter-conditionality elicited between the base pressure level attained in the reactor chamber and crystalline quality of AlN films is highlighted. The potential suitability of nanostructured AlN (in form of thin films) for the realization of various type of sensors (with emphasis on bio-sensors) is thoroughly probed, thus unveiling its advantages and limitations, as well as suggesting paths to safely exploit the remarkable prospects of this type of materials.

  2. Radon as a medicine. Therapeutic effectiveness, biological mechanism and comparative risk assessment

    International Nuclear Information System (INIS)

    Deetjen, Peter; Falkenbach, Albrecht; Harder, Dietrich; Joeckel, Hans; Kaul, Alexander; Philipsborn, Henning von

    2014-01-01

    Proofs of the therapeutic efficiency of balneological radon applications administered to patients suffering from rheumatic diseases, investigations into the biological action mechanism associated with the alpha particles emitted by radon and its radioactive daughter products, and the comparative risk assessment of radon treatment and medicinal pain therapy have been the research projects whose results are summarized in this book. Controlled clinical studies, if possible performed as prospective, randomized and placebo-controlled double blind studies, have given evidence that the therapeutic effects of balneological radon applications - long-lasting pain reduction and reduced consumption of medicines compared with controls - are significantly persisting over many post-treatment months. The molecular and cellular mechanism of action underlying these long-lasting therapeutic effects has been identified as the down-regulation of cellular immune responses, initiated by cellular apoptosis sequential to low alpha particle doses and by the subsequent release of anti-inflammatory cytokines. The unwanted side-effects of non-steroidal anti-rheumatic drug treatments have to be compared with the absence of side effects from the balneological radon applications which merely involve radiation doses well below the mean value and the fluctuation width of the annual doses attributable to everybody's natural radiation exposure.

  3. Performance of mechanical biological treatment of residual municipal waste in Poland

    Science.gov (United States)

    den Boer, Emilia; Jędrczak, Andrzej

    2017-11-01

    The number and capacity of mechanical-biological treatment (MBT) plants in Europe increased significantly in the past two decades as a response to the legal obligation to limit the landfilling of biodegradable waste in landfills and to increase recycling and energy recovery from waste. The aim of these plants is to prepare residual municipal waste for recovery and disposal operations, including especially separation and stabilization of the easily biodegradable fraction (the biofraction). The final products of MBP technology are recyclables, stabilate, high calorific fraction which is used for the production of refuse derived fuel (RDF) and the remaining residual fraction. The shares of the output fractions, especially of the recyclables and RDF determine the overall efficiency of MBT technology in diverting waste from landfills. In this paper results of an assessment of one exemplary MBT plant are provided. The analysis was performed within a comparative study in which 20 selected MBT plants in Poland were subject to a detailed analysis, focusing, both at the design parameters as well as operational ones. The selected plant showed relatively higher overall materials recovery efficiency. With the view to circular economy targets, increased automation of the mechanical waste treatment will be required to support achieving high level diversion from landfills. The study reviled that stabilisation of biofraction should be improved by a better control of process conditions, especially moisture content.

  4. Radon as a medicine. Therapeutic effectiveness, biological mechanism and comparative risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Deetjen, Peter; Falkenbach, Albrecht; Harder, Dietrich; Joeckel, Hans; Kaul, Alexander; Philipsborn, Henning von

    2014-07-01

    Proofs of the therapeutic efficiency of balneological radon applications administered to patients suffering from rheumatic diseases, investigations into the biological action mechanism associated with the alpha particles emitted by radon and its radioactive daughter products, and the comparative risk assessment of radon treatment and medicinal pain therapy have been the research projects whose results are summarized in this book. Controlled clinical studies, if possible performed as prospective, randomized and placebo-controlled double blind studies, have given evidence that the therapeutic effects of balneological radon applications - long-lasting pain reduction and reduced consumption of medicines compared with controls - are significantly persisting over many post-treatment months. The molecular and cellular mechanism of action underlying these long-lasting therapeutic effects has been identified as the down-regulation of cellular immune responses, initiated by cellular apoptosis sequential to low alpha particle doses and by the subsequent release of anti-inflammatory cytokines. The unwanted side-effects of non-steroidal anti-rheumatic drug treatments have to be compared with the absence of side effects from the balneological radon applications which merely involve radiation doses well below the mean value and the fluctuation width of the annual doses attributable to everybody's natural radiation exposure.

  5. Radiation-induced secretory protein, clusterin. Its inductive mechanism and biological significance

    International Nuclear Information System (INIS)

    Suzuki, Masatoshi; Boothman, D.A.

    2007-01-01

    This paper describes biochemistry of secretory clusterin (C), its radiation-inductive mechanism and biological significance. C is a glycoprotein found to be secreted from cells given various stresses like radiation and ultraviolet (UV)-ray, and participates to red cell clustering. Human C gene locates on the chromosome 8p21-p12, C has MW of 60 kDa, its precursor undergoes the degrading processing to α- and β-chains to form their heterodimer before glycosylation, and the C is finally secreted. So many other names have been given to C due to its numerous functions which have been discovered in other fields, such as apolipoprotein J. C is abundant in plasma, milk, urine, cerebrospinal fluid, semen, etc. Within 24 hr after X-ray irradiation, extracellular insulin-like growth factor-1 (IGF-1) level is elevated, and through its binding to the receptor, Src/MAPK signaling participates to C expression. Nuclear C, also induced by radiation, is a splicing variant of C and not secreted from cells. C is induced by radiation with as low dose as 2 cGy, which is different from induction of nuclear C. Secreted C is incorporated in cells by endocytosis and promotes the intracellular survival reaction through IGF-1 receptor/MAPK/Egr-1 pathway, whereas nuclear C induces cell apoptosis via unknown mechanism. Further studies are required for elucidation of the roles of secretory and nuclear C in cellular radiation responses. (R.T.)

  6. Current understanding of the driving mechanisms for spatiotemporal variations of atmospheric speciated mercury: a review

    Directory of Open Access Journals (Sweden)

    H. Mao

    2016-10-01

    Full Text Available Atmospheric mercury (Hg is a global pollutant and thought to be the main source of mercury in oceanic and remote terrestrial systems, where it becomes methylated and bioavailable; hence, atmospheric mercury pollution has global consequences for both human and ecosystem health. Understanding of spatial and temporal variations of atmospheric speciated mercury can advance our knowledge of mercury cycling in various environments. This review summarized spatiotemporal variations of total gaseous mercury or gaseous elemental mercury (TGM/GEM, gaseous oxidized mercury (GOM, and particulate-bound mercury (PBM in various environments including oceans, continents, high elevation, the free troposphere, and low to high latitudes. In the marine boundary layer (MBL, the oxidation of GEM was generally thought to drive the diurnal and seasonal variations of TGM/GEM and GOM in most oceanic regions, leading to lower GEM and higher GOM from noon to afternoon and higher GEM during winter and higher GOM during spring–summer. At continental sites, the driving mechanisms of TGM/GEM diurnal patterns included surface and local emissions, boundary layer dynamics, GEM oxidation, and for high-elevation sites mountain–valley winds, while oxidation of GEM and entrainment of free tropospheric air appeared to control the diurnal patterns of GOM. No pronounced diurnal variation was found for Tekran measured PBM at MBL and continental sites. Seasonal variations in TGM/GEM at continental sites were attributed to increased winter combustion and summertime surface emissions, and monsoons in Asia, while those in GOM were controlled by GEM oxidation, free tropospheric transport, anthropogenic emissions, and wet deposition. Increased PBM at continental sites during winter was primarily due to local/regional coal and wood combustion emissions. Long-term TGM measurements from the MBL and continental sites indicated an overall declining trend. Limited measurements suggested TGM

  7. Current understanding of the driving mechanisms for spatiotemporal variations of atmospheric speciated mercury: a review

    Science.gov (United States)

    Mao, Huiting; Cheng, Irene; Zhang, Leiming

    2016-10-01

    Atmospheric mercury (Hg) is a global pollutant and thought to be the main source of mercury in oceanic and remote terrestrial systems, where it becomes methylated and bioavailable; hence, atmospheric mercury pollution has global consequences for both human and ecosystem health. Understanding of spatial and temporal variations of atmospheric speciated mercury can advance our knowledge of mercury cycling in various environments. This review summarized spatiotemporal variations of total gaseous mercury or gaseous elemental mercury (TGM/GEM), gaseous oxidized mercury (GOM), and particulate-bound mercury (PBM) in various environments including oceans, continents, high elevation, the free troposphere, and low to high latitudes. In the marine boundary layer (MBL), the oxidation of GEM was generally thought to drive the diurnal and seasonal variations of TGM/GEM and GOM in most oceanic regions, leading to lower GEM and higher GOM from noon to afternoon and higher GEM during winter and higher GOM during spring-summer. At continental sites, the driving mechanisms of TGM/GEM diurnal patterns included surface and local emissions, boundary layer dynamics, GEM oxidation, and for high-elevation sites mountain-valley winds, while oxidation of GEM and entrainment of free tropospheric air appeared to control the diurnal patterns of GOM. No pronounced diurnal variation was found for Tekran measured PBM at MBL and continental sites. Seasonal variations in TGM/GEM at continental sites were attributed to increased winter combustion and summertime surface emissions, and monsoons in Asia, while those in GOM were controlled by GEM oxidation, free tropospheric transport, anthropogenic emissions, and wet deposition. Increased PBM at continental sites during winter was primarily due to local/regional coal and wood combustion emissions. Long-term TGM measurements from the MBL and continental sites indicated an overall declining trend. Limited measurements suggested TGM/GEM increasing from the

  8. Understanding the mechanisms that change the conductivity of damaged ITO-coated polymeric films: A micro-mechanical investigation

    KAUST Repository

    Nasr Saleh, Mohamed; Lubineau, Gilles

    2014-01-01

    Degradation from mechanical loading of transparent electrodes made of indium tin oxide (ITO) endangers the integrity of any material based on these electrodes, including flexible organic solar cells. However, how different schemes of degradation

  9. Current Understanding of Physicochemical Mechanisms for Cell Membrane Penetration of Arginine-rich Cell Penetrating Peptides: Role of Glycosaminoglycan Interactions.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Saito, Hiroyuki

    2018-01-01

    Arginine-rich cell penetrating peptides (CPPs) are very promising drug carriers to deliver membrane-impermeable pharmaceuticals, such as siRNA, bioactive peptides and proteins. CPPs directly penetrate into cells across cell membranes via a spontaneous energy-independent process, in which CPPs appear to interact with acidic lipids in the outer leaflet of the cell membrane. However, acidic lipids represent only 10 to 20% of the total membrane lipid content and in mammalian cell membranes they are predominantly located in the inner leaflet. Alternatively, CPPs favorably bind in a charge density- dependent manner to negatively charged, sulfated glycosaminoglycans (GAGs), such as heparan sulfate and chondroitin sulfate, which are abundant on the cell surface and are involved in many biological functions. We have recently demonstrated that the interaction of CPPs with sulfated GAGs plays a critical role in their direct cell membrane penetration: the favorable enthalpy contribution drives the high-affinity binding of arginine-rich CPPs to sulfated GAGs, initiating an efficient cell membrane penetration. The favorable enthalpy gain is presumably mainly derived from a unique property of the guanidino group of arginine residues forming multidentate hydrogen bonding with sulfate and carboxylate groups in GAGs. Such interactions can be accompanied with charge neutralization of arginine-rich CPPs, promoting their partition into cell membranes. This review summarizes the current understanding of the physicochemical mechanism for lipid membrane penetration of CPPs, and discusses the role of the GAG interactions on the cell membrane penetration of CPPs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. RI: Rheology as a Tool for Understanding the Mechanics of Live Ant Aggregations, Part 1

    Science.gov (United States)

    2016-11-04

    Hu, “ The hydrodynamics of defecation” Annual Society for Integrative and Comparative Biology Conference, West Palm Beach, FL, Jan 3-7, 2015...We film the motion of the ear canal in humans and measure the rheological properties of earwax of pigs, dogs , cows, and humans. We find that...To catch a fly: The role of saliva adhesivity during prey capture in frog tongue projection.” Society for Integrative and Comparative Biology

  11. Understanding the Mechanisms Through Which Matrix Metalloproteinases (MMPs) Contribute to Breast Cancer-Associated Osteolytic Lesions

    Science.gov (United States)

    2009-03-01

    Acuff, H. B., Martin, M. D., Kawai, N., Singh , R. K., Vargo-Gogola, T. C., Begtrup, J. L., Peterson, T. E., Fingleton, B., et al. (2005). MMP-7...factor alpha convertase. Journal Biological Chemistry 276, 14665-14674. Wilson, T. J., Nannuru, K. C., Futakuchi, M., Sadanandam, A., and Singh , R. K...tumor cell line (16) was kindly provided by Dr. Swati Biswas of the Vanderbilt Center for Bone Biology. All reagents were obtained from Sigma-Aldrich

  12. Patient Understanding of the Risks and Benefits of Biologic Therapies in Inflammatory Bowel Disease: Insights from a Large-scale Analysis of Social Media Platforms.

    Science.gov (United States)

    Martinez, Bibiana; Dailey, Francis; Almario, Christopher V; Keller, Michelle S; Desai, Mansee; Dupuy, Taylor; Mosadeghi, Sasan; Whitman, Cynthia; Lasch, Karen; Ursos, Lyann; Spiegel, Brennan M R

    2017-07-01

    Few studies have examined inflammatory bowel disease (IBD) patients' knowledge and understanding of biologic therapies outside traditional surveys. Here, we used social media data to examine IBD patients' understanding of the risks and benefits associated with biologic therapies and how this affects decision-making. We collected posts from Twitter and e-forum discussions from >3000 social media sites posted between June 27, 2012 and June 27, 2015. Guided by natural language processing, we identified posts with specific IBD keywords that discussed the risks and/or benefits of biologics. We then manually coded the resulting posts and performed qualitative analysis using ATLAS.ti software. A hierarchical coding structure was developed based on the keyword list and relevant themes were identified through manual coding. We examined 1598 IBD-related posts, of which 452 (28.3%) centered on the risks and/or benefits of biologics. There were 5 main themes: negative experiences and concerns with biologics (n = 247; 54.6%), decision-making surrounding biologic use (n = 169; 37.4%), positive experiences with biologics (n = 168; 37.2%), information seeking from peers (n = 125; 27.7%), and cost (n = 38; 8.4%). Posts describing negative experiences primarily commented on side effects from biologics, concerns about potential side effects and increased cancer risk, and pregnancy safety concerns. Posts on decision-making focused on nonbiologic treatment options, hesitation to initiate biologics, and concerns about changing or discontinuing regimens. Social media reveals a wide range of themes governing patients' experience and choice with IBD biologics. The complexity of navigating their risk-benefit profiles suggests merit in creating online tailored decision tools to support IBD patients' decision-making with biologic therapies.

  13. Recent introduction of an allodapine bee into Fiji: A new model system for understanding biological invasions by pollinators.

    Science.gov (United States)

    Groom, Scott V C; Tuiwawa, Marika V; Stevens, Mark I; Schwarz, Michael P

    2015-08-01

    Morphology-based studies have suggested a very depauperate bee fauna for islands in the South West Pacific, and recent genetic studies since have indicated an even smaller endemic fauna with many bee species in this region resulting from human-aided dispersal. These introduced species have the potential to both disrupt native pollinator suites as well as augment crop pollination, but for most species the timings of introduction are unknown. We examined the distribution and nesting biology of the long-tongued bee Braunsapis puangensis that was first recorded from Fiji in 2007. This bee has now become widespread in Fiji and both its local abundance and geographical range are likely to increase dramatically. The impacts of this invasion are potentially enormous for agriculture and native ecosystems, but they also provide opportunities for understanding how social insect species adapt to new environments. We outline the major issues associated with this recent invasion and argue that a long-term monitoring study is needed. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  14. RNA-seq in kinetoplastids: A powerful tool for the understanding of the biology and host-pathogen interactions.

    Science.gov (United States)

    Patino, Luz Helena; Ramírez, Juan David

    2017-04-01

    The kinetoplastids include a large number of parasites responsible for serious diseases in humans and animals (Leishmania and Trypanosoma brucei) considered endemic in several regions of the world. These parasites are characterized by digenetic life cycles that undergo morphological and genetic changes that allow them to adapt to different microenvironments on their vertebrates and invertebrates hosts. Recent advances in ´omics´ technology, specifically transcriptomics have allowed to reveal aspects associated with such molecular changes. So far, different techniques have been used to evaluate the gene expression profile during the various stages of the life cycle of these parasites and during the host-parasite interactions. However, some of them have serious drawbacks that limit the precise study and full understanding of their transcriptomes. Therefore, recently has been implemented the latest technology (RNA-seq), which overcomes the drawbacks of traditional methods. In this review, studies that so far have used RNA-seq are presented and allowed to expand our knowledge regarding the biology of these parasites and their interactions with their hosts. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The low FODMAP diet: recent advances in understanding its mechanisms and efficacy in IBS.

    Science.gov (United States)

    Staudacher, Heidi M; Whelan, Kevin

    2017-08-01

    There is an intensifying interest in the interaction between diet and the functional GI symptoms experienced in IBS. Recent studies have used MRI to demonstrate that short-chain fermentable carbohydrates increase small intestinal water volume and colonic gas production that, in those with visceral hypersensitivity, induces functional GI symptoms. Dietary restriction of short-chain fermentable carbohydrates (the low fermentable oligosaccharide, disaccharide, monosaccharide and polyol (FODMAP) diet) is now increasingly used in the clinical setting. Initial research evaluating the efficacy of the low FODMAP diet was limited by retrospective study design and lack of comparator groups, but more recently well-designed clinical trials have been published. There are currently at least 10 randomised controlled trials or randomised comparative trials showing the low FODMAP diet leads to clinical response in 50%-80% of patients with IBS, in particular with improvements in bloating, flatulence, diarrhoea and global symptoms. However, in conjunction with the beneficial clinical impact, recent studies have also demonstrated that the low FODMAP diet leads to profound changes in the microbiota and metabolome, the duration and clinical relevance of which are as yet unknown. This review aims to present recent advances in the understanding of the mechanisms by which the low FODMAP diet impacts on symptoms in IBS, recent evidence for its efficacy, current findings regarding the consequences of the diet on the microbiome and recommendations for areas for future research. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Neutron reflectivity study of critical adsorption. Application to the understanding of environmental mechanisms

    International Nuclear Information System (INIS)

    Jestin, Jacques

    2001-01-01

    This study is within the scope of fundamental knowledge transfer to a field case-study, i.e. the understanding of the adsorption properties of binary mixtures against a wall in the case of soil pollution by liquid hydrocarbons. From the theoretical study of critical adsorption, which has been well described in the literature, we carried out experiments on model systems by using neutron techniques. Neutron reflectivity was then applied to the liquid-vapor interface of three different binary mixtures: perfluorohexane-hexane, deuterated methanol-cyclohexane and methanol-deuterated cyclohexane. The experimental data were analysed according to the theoretical prediction of Fisher and De Gennes, along with Liu and Fisher that suggested a power law decrease of the concentration profile (with an exponent equal to 0.52) followed by an exponential function. The characteristic exponent and the amplitude ratios for the methanol-cyclohexane mixtures were found fitted well with theoretical values for the three systems. Only the perfluorohexane-hexane mixture exhibited a particular behavior in the adsorption process that affected the power law amplitude value. This step allowed us to study non critical adsorption and to apply neutrons techniques, e.g. reflectivity and small angles neutrons scattering, to a water-2,5 dimethylpyridine mixture against silica, which is a model system for soils polluted by water/hydrocarbon mixtures. These experiments highlighted new experimental difficulties, which were not fully solved over this study, together with some problems in the analysis that would require specific modelling. Nevertheless, this study shows the capabilities of neutrons techniques to investigate some environmental mechanisms. Moreover, some of the results reported here can be used as a basis for future experiments. (author)

  17. Biological Reclaiming of Recycled Rubber and Its Effect on Mechanical Properties of New Rubber Vulcanizates

    Directory of Open Access Journals (Sweden)

    Maryam Mansourirad

    2014-12-01

    Full Text Available Nowadays, due to environmental concerns, there has been great attention to recycling and reclaiming of tires. Different methods have been used for reclaiming or desulfurization of rubber. One of these methods, in which desulfurization of rubber happens with no damage to the polymer structure, is desulfurization by biological microorganisms. In this research the application and performance of thermophilic and sulfur oxidizing bacteria, Acidianus brierleyi for this purpose was investigated. Ground tire rubber was detoxified with organic solvents, and the optimum conditions for growing microorganisms in the existence of rubber powder in the shaker flasks were determined. In order to accelerate the process, the suitable conditions for growth of bacteria and desulfurization in the bioreactor were adopted. Fourier transfer infrared spectroscopy and scanning electron microscopy were employed to characterize desulfurization of bio-treated powder from bioreactor. The results indicated that morphological changes on powder surface and reduction of sulfur bonds have occurred. Samples from bioreactors, with and without bacteria and also untreated rubber powder were compounded with virgin styrene butadiene rubber. Tensile and dynamic properties were investigated using uni-direction tensile test and dynamic-mechanical-thermal analysis, respectively. Although some differences in dynamic-mechanical-thermal properties of samples pointed to stronger interaction between rubber matrix and treated rubber powder, no significant improvements in the mechanical properties of vulcanizates containing A.brierleyi-treated powder were observed. Low concentration of sulfur in rubber vulcanizates, chemical bonds of sulfur, and low efficiency of A. brierleyi in breaking sulfur bonds and reclaiming rubber were considered as the reasons for low efficiency of this treatment process.

  18. Understanding facial expressivity in autism spectrum disorder: An inside out review of the biological basis and clinical implications.

    Science.gov (United States)

    Deutsch, Stephen I; Raffaele, C Teal

    2018-05-16

    Deficits in decoding and understanding facially expressed emotions occur commonly in persons with autism spectrum disorder (ASD), which contribute to the impairment of social communication that serves as one of its core diagnostic criteria. Research suggests that abnormalities of visual scanning of the face, activation of key nodes within the "social brain" by facially expressed emotions, functional connectivity within and between nodes of the "social brain", and transduction of specific neurotransmitter/neuromodulatory signals contribute to the pathogenesis of these deficits in at least some persons with ASD. Importantly, the etiologies of these deficits are heterogeneous and include genetic, immunologic, and inflammatory mechanisms, as well as in utero exposures to drugs and toxins. The manifestation and severity of these deficits can also be influenced by developmental age, IQ and genetic background. Consistent with the goals of the Special Issue, the current Review is intended to familiarize the readership with several of the leading neurobiological mechanisms proposed to underlie these deficits in decoding facially expressed emotions and stimulate interest in translational preclinical and clinical investigations, whose ultimate purpose is to attenuate their severity and, thereby, improve functional outcomes of persons with ASD. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Understanding the mechanisms that change the conductivity of damaged ITO-coated polymeric films: A micro-mechanical investigation

    KAUST Repository

    Nasr Saleh, Mohamed

    2014-11-01

    Degradation from mechanical loading of transparent electrodes made of indium tin oxide (ITO) endangers the integrity of any material based on these electrodes, including flexible organic solar cells. However, how different schemes of degradation change the conductivity of ITO devices remains unclear. We propose a systematic micro-mechanics-based approach to clarify the relationship between degradation and changes in electrical resistance. By comparing experimentally measured channel crack densities to changes in electrical resistance returned by the different micro-mechanical schemes, we highlight the key role played by the residual conductivity in the interface between the ITO electrode and its substrate after delamination. We demonstrate that channel cracking alone does not explain the experimental observations. Our results indicate that delamination has to take place between the ITO electrode and the substrate layers and that the residual conductivity of this delaminated interface plays a major role in changes in electrical resistance of the degraded device. © 2014 Elsevier B.V.

  20. Lead levels in some biological samples of auto-mechanics in Abeokuta, Nigeria.

    Science.gov (United States)

    Babalola, O O; Ojo, L O; Aderemi, M O

    2005-12-01

    Lead levels were determined in the blood, scalp hair and fingernails of 38, all male auto-mechanics (aged 18-45 years) from Abeokuta, South-western Nigeria. The subjects were classified into four sub-groups based on the period of exposure namely: 1-5, 6-10, 11-15, and >16 years. Thirty-two occupationally unexposed subjects (mainly office workers) served as the control. The weight, height and body mass indexes of all subjects were noted, in addition to other information obtained through structured questionnaire. The mean values of blood lead (BPb), hair lead (HPb) and fingernail lead (NPb) of the occupationally exposed subjects (n=38) were 48.50 +/- 9.08 microg/dL, 17.75 +/- 5.16 microg/g, and 5.92 +/- 3.30 microg/g respectively, while the corresponding mean values for these parameters in the control subjects (n = 32) were 33.(,5 +/- 10.09 microg/dL, 14.30 +/- 5.90 microg/g and 5.31 +/- 2.77 microg/g respectively. The differences in BPb and HPb levels of the two groups were statistically significant (P <0.05 and P <0.01 respectively), while that of NPb was not significant. The levels of lead in the biological samples appeared to have no relationship with the number of years on the job. From these results, it was obvious that the higher levels of lead in the biological samples of test subjects, compared with those of the controls were from environmental sources.

  1. Virtual Agonist-antagonist Mechanisms Produce Biological Muscle-like Functions: An Application for Robot Joint Control

    DEFF Research Database (Denmark)

    Xiong, Xiaofeng; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Purpose – Biological muscles of animals have a surprising variety of functions, i.e., struts, springs, and brakes. According to this, the purpose of this paper is to apply virtual agonist-antagonist mechanisms to robot joint control allowing for muscle-like functions and variably compliant joint......, variably compliant joint motions can be produced without mechanically bulky and complex mechanisms or complex force/toque sensing at each joint. Moreover, through tuning the damping coefficient of the VAAM, the functions of the VAAM are comparable to biological muscles. Originality/value – The model (i.......e., VAAM) provides a way forward to emulate muscle-like functions that are comparable to those found in physiological experiments of biological muscles. Based on these muscle-like functions, the robotic joints can easily achieve variable compliance that does not require complex physical components...

  2. Unravel lipid accumulation mechanism in oleaginous yeast through single cell systems biology study

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shiyou; Xiaoliang, Xie

    2017-12-18

    Replacement of petroleum with advanced biofuels is critical for environmental protection needs, sustainable and secure energy demands, and economic development. Bacteria, yeasts, and fungi can naturally synthesize fatty acids, isoprenoids, or polyalkanoates for energy storage, and therefore are currently explored for hydrocarbon fuel production. Oleaginous yeasts can accumulate high levels of lipids in the form of triacylglycerols (TAGs) when encountering stress conditions or imbalanced growth (e.g., growing under excess carbon sources and limited nitrogen conditions). Advantages of using oleaginous yeast as cell factories include short duplication time (< 1 hour), high yield of intracellular droplets, and easy scale-up for industrial production. Currently, various oleaginous yeasts (e.g., Yarrowia, Candida, Rhodotorulla, Rhodosporidium, Cryptococcus, Trichosporon, and Lipomyces) have been developed as potential advanced biofuel producers. Oleaginous yeast lipid production has two phases: 1) growth phase, where cells utilize the carbon and nitrogen source to build up biomass. And 2) lipid accumulation phase, where they convert carbon source in media into the storage lipid body. (i.e. a high carbon to nitrogen ratio leads to high lipid production). The lipid production varies dramatically when different sugar, e.g. glucose, xylose is used as carbon source. The efficient utilization of all monomeric sugars of hexoses and pentoses from various lignocellulosic biomass processing approaches is the key for economic lignocellulosic biofuel production. In this project, we explored lipid production in oleaginous yeast under different nitrogen and sugar conditions at the single-cell level. To understand the lipid production mechanism and identify genetic features responsive to lipid accumulation in the presence of pentose and nitrogen, we developed an automated chemical imaging and single-cell transcriptomics method to correlate the lipid accumulation with the

  3. Systems biology modeling reveals a possible mechanism of the tumor cell death upon oncogene inactivation in EGFR addicted cancers.

    Directory of Open Access Journals (Sweden)

    Jian-Ping Zhou

    Full Text Available Despite many evidences supporting the concept of "oncogene addiction" and many hypotheses rationalizing it, there is still a lack of detailed understanding to the precise molecular mechanism underlying oncogene addiction. In this account, we developed a mathematic model of epidermal growth factor receptor (EGFR associated signaling network, which involves EGFR-driving proliferation/pro-survival signaling pathways Ras/extracellular-signal-regulated kinase (ERK and phosphoinositol-3 kinase (PI3K/AKT, and pro-apoptotic signaling pathway apoptosis signal-regulating kinase 1 (ASK1/p38. In the setting of sustained EGFR activation, the simulation results show a persistent high level of proliferation/pro-survival effectors phospho-ERK and phospho-AKT, and a basal level of pro-apoptotic effector phospho-p38. The potential of p38 activation (apoptotic potential due to the elevated level of reactive oxygen species (ROS is largely suppressed by the negative crosstalk between PI3K/AKT and ASK1/p38 pathways. Upon acute EGFR inactivation, the survival signals decay rapidly, followed by a fast increase of the apoptotic signal due to the release of apoptotic potential. Overall, our systems biology modeling together with experimental validations reveals that inhibition of survival signals and concomitant release of apoptotic potential jointly contribute to the tumor cell death following the inhibition of addicted oncogene in EGFR addicted cancers.

  4. Mechanism of the biological response to winter cooling in the northeastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Madhupratap, M.; PrasannaKumar, S.; Bhattathiri, P.M.A.; DileepKumar, M.; Raghukumar, S.; Nair, K.K.C.; Ramaiah, N.

    The Arabian Sea is one of the most biologically productive ocean regions, mainly due to the upwelling of nutrients during the summer (southwest) monsoon. But the northern Arabian Sea continues to sustain fairly high biological production after...

  5. Activation of chemical biological defense mechanisms and remission of vital oxidative injury by low dose radiation

    International Nuclear Information System (INIS)

    Yamaoka, K.; Nomura, T.; Kojima, S.

    2000-01-01

    Excessive active oxygen produced in vivo by various causes is toxic. Accumulation of oxidation injuries due to excessive active causes cell and tissue injuries, inducing various pathologic conditions such as aging and carcinogenesis. On the other hand, there are chemical defense mechanisms in the body that eliminate active oxygen or repair damaged molecules, defending against resultant injury. It is interesting reports that appropriate oxidation stress activate the chemical biological defense mechanisms. In this study, to elucidate these phenomena and its mechanism by low dose radiation, we studied on the below subjects. Activation of chemical biological defense mechanisms by low dose radiation: (1) The effects radiation on lipid peroxide (LPO) levels in the organs, membrane fluidity and the superoxide dismutase (SOD) activity were examined in rats and rabbits. Rats were irradiated with low dose X-ray over their entire bodies, and rabbits inhaled vaporized radon spring water, which primarily emitted α-ray. The following results were obtained. Unlike high dose X-ray, low dose X-ray and radon inhalation both reduced LPO levels and made the state of the SH-group on membrane-bound proteins closer to that of juvenile animals, although the sensitivity to radioactivity varied depending on the age of the animals and among different organs and tissues. The SOD activity was elevated, suggesting that low dose X-ray and radon both activate the host defensive function. Those changes were particularly marked in the organs related to immune functions of the animals which received low dose X-ray, while they were particularly marked in the brain after radon inhalation. It was also found that those changes continued for longer periods after low dose X-irradiation. (2) Since SOD is an enzyme that mediates the dismutation of O 2 - to H 2 O 2 , the question as to whether the resultant H 2 O 2 is further detoxicated into H 2 O and O 2 or not must still be evaluated. Hence, we studied

  6. Omega-3 Fatty Acids and Depression: Scientific Evidence and Biological Mechanisms

    Directory of Open Access Journals (Sweden)

    Giuseppe Grosso

    2014-01-01

    Full Text Available The changing of omega-6/omega-3 polyunsaturated fatty acids (PUFA in the food supply of Western societies occurred over the last 150 years is thought to promote the pathogenesis of many inflammatory-related diseases, including depressive disorders. Several epidemiological studies reported a significant inverse correlation between intake of oily fish and depression or bipolar disorders. Studies conducted specifically on the association between omega-3 intake and depression reported contrasting results, suggesting that the preventive role of omega-3 PUFA may depend also on other factors, such as overall diet quality and the social environment. Accordingly, tertiary prevention with omega-3 PUFA supplement in depressed patients has reached greater effectiveness during the last recent years, although definitive statements on their use in depression therapy cannot be yet freely asserted. Among the biological properties of omega-3 PUFA, their anti-inflammatory effects and their important role on the structural changing of the brain should be taken into account to better understand the possible pathway through which they can be effective both in preventing or treating depression. However, the problem of how to correct the inadequate supply of omega-3 PUFA in the Westernized countries’ diet is a priority in order to set food and health policies and also dietary recommendations for individuals and population groups.

  7. Laboratory experiments for understanding mechanical properties of fractured granite under supercritical conditions

    Science.gov (United States)

    Kitamura, M.; Takahashi, M.; Takagi, K.; Hirano, N.; Tsuchiya, N.

    2017-12-01

    To extract geothermal energy effectively and safely from magma and/or adjacent hot rock, we need to tackle many issues which require new technology development, such as a technique to control a risk from induced-earthquakes. On a development of induced-earthquake mitigation technology, it is required to understand roles of factors on occurrences of the induced-earthquake (e.g., strength, crack density, and fluid-rock reaction) and their intercorrelations (e.g., Asanuma et al., 2012). Our purpose of this series of experiments is to clarify a relationship between the rock strength and the crack density under supercritical conditions. We conducted triaxial deformation test on intact granite rock strength under high-temperature (250 - 750°C), high-pressure (104 MPa) condition at a constant load velocity (0.1 μm/sec) using a gas-rig at AIST. We used Oshima granite, which has initially Young's modulus increased with decreasing the temperature from 32.3 GPa at 750°C to 57.4 GPa at 250°C. At 400 °C, the stress drop accelerated the deformation with 98 times faster velocity than that at load-point. In contrast, at 650°C and 750°C, the velocity during stress drop kept the same order of the load-point velocity. Therefore, the deformation mechanism may start to be changed from brittle to ductile when the temperature exceeds 650°C. Highly dense cracked granite specimens were formed by a rapid decompression test (RDT) using an autoclave settled at Tohoku University (Hirano et al., 2016JpGU), caused by a reduction of fluid pressure within 1-2 sec from vapor/supercritical state (10 - 48 MPa, 550 °C) to ambient pressure. The specimens after RDT show numerous microcracks on X-ray CT images. The RDT imposed the porosity increasing towards 3.75 % and Vp and Vs decreasing towards 1.37±0.52 km/s and 0.97±0.25 km/s. The Poisson's ratio shows the negative values in dry and 0.5 in wet. In the meeting, we will present results of triaxial deformation test on such cracked granites

  8. Toward Understanding Mechanisms Controlling Urea Delivery in a Coastal Plain Watershed

    Science.gov (United States)

    Tzilkowski, S. S.; Buda, A. R.; Boyer, E. W.; Bryant, R. B.; May, E. B.

    2012-12-01

    Improved understanding of nutrient mobilization and delivery to surface waters is critical to protecting water quality in agricultural watersheds. Urea, a form of organic nitrogen, is a common nutrient found in fertilizers, manures, and human waste, and is gaining recognition as an important driver of coastal eutrophication, particularly through the development of harmful algal blooms. While several studies have documented elevated urea concentrations in tributaries draining to the Chesapeake Bay, little is known about the potential sources and flow pathways responsible for urea delivery from the landscape to surface waters, as well as how these sources and pathways might vary with changing seasons, antecedent conditions, and storm types. In this study, we investigated hydrologic controls on urea delivery in the Manokin River watershed through the analysis of urea concentration dynamics and hysteresis patterns during seven storm events that occurred in 2010 and 2011. The Manokin River is a Coastal Plain watershed (11.1 km2) on the Delmarva Peninsula that drains directly to the Chesapeake Bay and is characterized by extensive rural development coupled with intensive agriculture, particularly poultry production. Sampling was conducted through monthly grab sampling at baseflow conditions and by time-weighted, automated (Sigma) samplers during stormflow events. Monitored storms were chosen to represent a spectrum of antecedent conditions based on precipitation and groundwater levels in the area. Flushing from the landscape during events was found to be the predominant urea delivery mechanism, as urea concentrations increased 3-9 times above baseflow concentrations during storms. The timing and number of flushes, as well as the degree of increased concentrations were dependent on antecedent conditions and the characteristics of the storm event. For instance, during an intense (13.7 mm hr-1), short-duration (4 hrs) storm in August of 2010 when antecedent conditions were

  9. Gaps in college biology students' understanding of photosynthesis: Implications for human constructivist learning theory and college classroom practice

    Science.gov (United States)

    Griffard, Phyllis Baudoin

    1999-11-01

    The main research question of this study was: What gaps in biochemical understanding are revealed by a range of university introductory biology students as they work through a critically acclaimed multimedia program on photosynthesis, and what are the corresponding implications for elaboration of the Ausubel-Novak-Gowin Learning Theory (ANG, now Human Constructivism)? Twelve students, mixed for ability, gender and ethnicity, were recruited from two sections of "Bio 101." Before and after instruction in photosynthesis, in-depth clinical interviews were conducted during which participants completed a range of cognitive tasks such as sorting, concept mapping, explaining and predicting. Some tasks involved interacting with a computer simulation of photosynthesis. This study primarily employed qualitative case study and verbal analysis methods. Verbal analysis of the clinical interviews revealed numerous gaps that were categorized into typologies. The two major categories were propositional gaps and processing gaps. Propositional gaps were evident in development of participants' concepts, links and constructs. Significant among these were conceptual distance gaps and continuity of matter gaps. Gaps such as convention gaps and relative significance gaps seem to be due to naivete in the discipline. Processing gaps included gaps in graphic decoding skills and relevant cognitive habits such as self-monitoring and consulting prior knowledge. Although the gaps were easier to detect and isolate with the above-average participants, all participants showed evidence of at least some of these gaps. Since some gaps are not unexpected at all but the highest literacy levels, not all the gaps identified are to be considered deficiencies. The gaps identified support the attention given by ANG theorists to the role of prior knowledge and metacognition as well as the value of graphic organizers in knowledge construction. In addition, this study revealed numerous gaps in graphic decoding

  10. Mechanical-biological waste treatment and the associated occupational hygiene in Finland

    International Nuclear Information System (INIS)

    Tolvanen, Outi K.; Haenninen, Kari I.

    2006-01-01

    A special feature of waste management in Finland has been the emphasis on the source separation of kitchen biowaste (catering waste); more than two-thirds of the Finnish population participates in this separation. Source-separated biowaste is usually treated by composting. The biowaste of about 5% of the population is handled by mechanical-biological treatment. A waste treatment plant at Mustasaari is the only plant in Finland using digestion for kitchen biowaste. For the protection of their employees, the plant owners commissioned a study on environmental factors and occupational hygiene in the plant area. During 1998-2000 the concentrations of dust, microbes and endotoxins and noise levels were investigated to identify possible problems at the plant. Three different work areas were investigated: the pre-processing and crushing hall, the bioreactor hall and the drying hall. Employees were asked about work-related health problems. Some problems with occupational hygiene were identified: concentrations of microbes and endotoxins may increase to levels harmful to health during waste crushing and in the bioreactor hall. Because employees complained of symptoms such as dry cough and rash or itching appearing once or twice a month, it is advisable to use respirator masks (class P3) during dusty working phases. The noise level in the drying hall exceeded the Finnish threshold value of 85 dBA. Qualitatively harmful factors for the health of employees are similar in all closed waste treatment plants in Finland. Quantitatively, however, the situation at the Mustasaari treatment plant is better than at some Finnish dry waste treatment plants. Therefore is reasonable to conclude that mechanical sorting, which produces a dry waste fraction for combustion and a biowaste fraction for anaerobic treatment, is in terms of occupational hygiene better for employees than combined aerobic treatment and dry waste treatment

  11. Formation of organizational and economic mechanism of rational use of aquatic biological resources

    Directory of Open Access Journals (Sweden)

    Stolbov A. G.

    2017-09-01

    Full Text Available The state of fisheries has been researched based on a systematic approach and comprehensive analysis of statistical data, the following issues have been characterized: the catch of aquatic biological resources (ABR, consumption of fish products, problems in the development of the fishing industry (fleet aging, lack of innovative technologies, the proliferation of IUU fishing4 , the high level of retail prices for fish, low degree of processing export products, overshoot "improper objects" of fishing, the gap in aquaculture development, low economic efficiency. To improve the quality of fishery management it has been proposed to form the organizational and economic mechanism of ABR rational use, which should include effective tools for the implementation of management decisions. Instead of the so-called "historical" principle it has been suggested to use the investment principle of quota allocation and rental payments. The basis for management of fishing industry should be scientifically based on the bioeconomic concept of ABR rational use, the essence of which is to preserve the ABR and at the same time to obtain the maximum output of finished products with high added value. To form the organizational and economic mechanism it is necessary to develop a programme of innovative development of the fisheries sector, a calendar programme of upgrading of fishing fleet, wellreasoned differential rates of rent payments for the ABR use, scenarios and graphic organization of work of fishing vessels in specific fishing areas, to form regional financial and industrial clusters, to expand the authority of the Fisheries Agency, to improve corporate social responsibility of the fishing business communities. Modernization of management system for ABR rational use can significantly reduce environmental pollution, ensure the effective delivery of catch to shore, their high-quality processing and the needs of the population in fish products.

  12. Understanding the addiction cycle: a complex biology with distinct contributions of genotype vs. sex at each stage.

    Science.gov (United States)

    Wilhelm, C J; Hashimoto, J G; Roberts, M L; Sonmez, M K; Wiren, K M

    2014-10-24

    Ethanol abuse can lead to addiction, brain damage and premature death. The cycle of alcohol addiction has been described as a composite consisting of three stages: intoxication, withdrawal and craving/abstinence. There is evidence for contributions of both genotype and sex to alcoholism, but an understanding of the biological underpinnings is limited. Utilizing both sexes of genetic animal models with highly divergent alcohol withdrawal severity, Withdrawal Seizure-Resistant (WSR) and Withdrawal Seizure-Prone (WSP) mice, the distinct contributions of genotype/phenotype and of sex during addiction stages on neuroadaptation were characterized. Transcriptional profiling was performed to identify expression changes as a consequence of chronic intoxication in the medial prefrontal cortex. Significant expression differences were identified on a single platform and tracked over a behaviorally relevant time course that covered each stage of alcohol addiction; i.e., after chronic intoxication, during peak withdrawal, and after a defined period of abstinence. Females were more sensitive to ethanol with higher fold expression differences. Bioinformatics showed a strong effect of sex on the data structure of expression profiles during chronic intoxication and at peak withdrawal irrespective of genetic background. However, during abstinence, differences were observed instead between the lines/phenotypes irrespective of sex. Confirmation of identified pathways showed distinct inflammatory signaling following intoxication at peak withdrawal, with a pro-inflammatory phenotype in females but overall suppression of immune signaling in males. Combined, these results suggest that each stage of the addiction cycle is influenced differentially by sex vs. genetic background and support the development of stage- and sex-specific therapies for alcohol withdrawal and the maintenance of sobriety. Published by Elsevier Ltd.

  13. Microgravity Fluids for Biology, Workshop

    Science.gov (United States)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  14. Using interviews to understand the assignment mechanism in a nonexperimental study: the case of eighth grade algebra.

    Science.gov (United States)

    Rickles, Jordan H

    2011-10-01

    Many inquiries regarding the causal effects of policies or programs are based on research designs where the treatment assignment process is unknown, and thus valid inferences depend on tenuous assumptions about the assignment mechanism. This article draws attention to the importance of understanding the assignment mechanism in policy and program evaluation studies, and illustrates how information collected through interviews can develop a richer understanding of the assignment mechanism. Focusing on the issue of student assignment to algebra in 8th grade, I show how a preliminary data collection effort aimed at understanding the assignment mechanism is particularly beneficial in multisite observational studies in education. The findings, based on ten interviews and administrative data from a large school district, draw attention to the often ignored heterogeneity in the assignment mechanism across schools. These findings likely extend beyond the current research project in question to related educational policy issues such as ability grouping, tracking, differential course taking, and curricular intensity, as well as other social programs in which the assignment mechanism can differ across sites.

  15. Chemically induced aneuploidy in mammalian cells: mechanisms and biological significance in cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oshimura, M.; Barrett, J.C.

    1986-01-01

    A literature review with over 200 references examines the growing body of evidence from human and animal cancer cytogenetics that aneuploidy is an important chromosome change in carcinogenesis. Evidence from in vitro cell transformation studies supports the idea that aneuploidy has a direct effect on the conversion of a normal cell to a preneoplastic or malignant cell. Induction of an aneuploid state in a preneoplastic or neoplastic cell could have any of the following four biological effects: a change in gene dosage, a change in gene balance, expression of a recessive mutation, or a change in genetic instability (which could secondarily lead to neoplasia). There are a number of possible mechanisms by which chemicals might induce aneuploidy, including effects on microtubules, damage to essential elements for chromosome function reduction in chromosome condensation or pairing, induction of chromosome interchanges, unresolved recombination structures, increased chromosome stickiness, damage to centrioles, impairment of chromosome alignment ionic alterations during mitosis, damage to the nuclear membrane, and a physical disruption of chromosome segregation. Therefore, a number of different targets exist for chemically induced aneuploidy.

  16. Carbon source recovery from excess sludge by mechanical disintegration for biological denitrification.

    Science.gov (United States)

    Zubrowska-Sudol, M

    2018-04-01

    The goal of the study was to evaluate the possibility of carbon source recovery from excess sludge by mechanical disintegration for biological denitrification. The total efficiency of denitrification, unit demand for organic compounds for denitrification, unit volume of disintegrated sludge and unit cost of nitrogen removal as a function of energy density used for excess sludge disintegration (70, 140 and 210 kJ/L) were analyzed. In the study a full-scale disc disintegrator was used (motor power: 30 kWh, motor speed: 2,950 rpm). It was shown that the amounts of organic compounds released from the activated sludge flocs at all tested levels of energy density are high enough to be used to intensify the removal of nitrogen compounds from wastewater. It was also documented that the energy density provided during process of disintegration was an important factor determining the characteristics of organic compounds obtained under the disintegration for their use in order to intensify the process of denitrification. The highest value of total efficiency of denitrification (50.5 ± 3.1 mg N/L) was obtained for carbon source recovery from excess sludge at 70 kJ/L, but the lowest unit cost of nitrogen removal occurred for 140 kJ/L (0.0019 ± 0.0011 EUR/g N).

  17. Water regime of mechanical-biological pretreated waste materials under fast-growing trees.

    Science.gov (United States)

    Rüth, Björn; Lennartz, Bernd; Kahle, Petra

    2007-10-01

    In this study mechanical-biological pre-treated waste material (MBP) was tested for suitability to serve as an alternative surface layer in combination with fast-growing and water-consumptive trees for final covers at landfill sites. The aim was to quantify evapotranspiration and seepage losses by numerical model simulations for two sites in Germany. In addition, the leaf area index (LAI) of six tree species over the growing season as the driving parameter for transpiration calculations was determined experimentally. The maximum LAI varied between 3.8 and 6.1 m2 m(-2) for poplar and willow clones, respectively. The evapotranspiration calculations revealed that the use of MBP waste material for re-cultivation enhanced evapotranspiration by 40 mm year(-1) (10%) over an 11 year calculation period compared to a standard mineral soil. Between 82% (for LAI(max) = 3.8) and 87% (for LAI(max) = 6.1) of the average annual precipitation (506 mm) could be retained from the surface layer assuming eastern German climate conditions, compared with a retention efficiency between 79 and 82% for a mineral soil. Although a MBP layer in conjunction with water-consumptive trees can reduce vertical water losses as compared to mineral substrates, the effect is not sufficient to meet legal regulations.

  18. Constraints on Biological Mechanism from Disease Comorbidity Using Electronic Medical Records and Database of Genetic Variants.

    Directory of Open Access Journals (Sweden)

    Steven C Bagley

    2016-04-01

    Full Text Available Patterns of disease co-occurrence that deviate from statistical independence may represent important constraints on biological mechanism, which sometimes can be explained by shared genetics. In this work we study the relationship between disease co-occurrence and commonly shared genetic architecture of disease. Records of pairs of diseases were combined from two different electronic medical systems (Columbia, Stanford, and compared to a large database of published disease-associated genetic variants (VARIMED; data on 35 disorders were available across all three sources, which include medical records for over 1.2 million patients and variants from over 17,000 publications. Based on the sources in which they appeared, disease pairs were categorized as having predominant clinical, genetic, or both kinds of manifestations. Confounding effects of age on disease incidence were controlled for by only comparing diseases when they fall in the same cluster of similarly shaped incidence patterns. We find that disease pairs that are overrepresented in both electronic medical record systems and in VARIMED come from two main disease classes, autoimmune and neuropsychiatric. We furthermore identify specific genes that are shared within these disease groups.

  19. Epigenetic Mechanisms Shape the Biological Response to Trauma and Risk for PTSD: A Critical Review

    Directory of Open Access Journals (Sweden)

    Morgan Heinzelmann

    2013-01-01

    Full Text Available Posttraumatic stress disorder (PTSD develops in approximately one-quarter of trauma-exposed individuals, leading us and others to question the mechanisms underlying this heterogeneous response to trauma. We suggest that the reasons for the heterogeneity relate to a complex interaction between genes and the environment, shaping each individual’s recovery trajectory based on both historical and trauma-specific variables. Epigenetic modifications provide a unique opportunity to elucidate how preexisting risk factors may contribute to PTSD risk through changes in the methylation of DNA. Preexisting risks for PTSD, including depression, stress, and trauma, result in differential DNA methylation of endocrine genes, which may then result in a different biological responses to trauma and subsequently a greater risk for PTSD onset. Although these relationships are complex and currently inadequately described, we provide a critical review of recent studies to examine how differences in genetic and proteomic biomarkers shape an individual’s vulnerability to PTSD development, thereby contributing to a heterogeneous response to trauma.

  20. Quinoxaline 1, 4-di-N-oxides: Biological activities and mechanisms of actions

    Directory of Open Access Journals (Sweden)

    Guyue eCheng

    2016-03-01

    Full Text Available Quinoxaline 1, 4-di-N-oxides (QdNOs have manifold biological properties, including antimicrobial, antitumoral, antitrypanosomal and antiinflammatory/antioxidant activities. These diverse activities endow them broad applications and prospects in human and veterinary medicines. As QdNOs arouse widespread interest, the evaluation of their medicinal chemistry is still in progress. In the meantime, adverse effects have been reported in some of the QdNO derivatives. For example, genotoxicity and bacterial resistance have been found in QdNO antibacterial growth promoters, conferring urgent need for discovery of new QdNO drugs. However, the modes of actions of QdNOs are not fully understood, hindering the development and innovation of these promising compounds. Here, QdNOs are categorized based on the activities and usages, among which the antimicrobial activities are consist of antibacterial, antimycobacterial and anticandida activities, and the antiprotozoal activities include antitrypanosomal, antimalarial, antitrichomonas and antiamoebic activities. The structure-activity relationship and the mode of actions of each type of activity of QdNOs are summarized, and the toxicity and the underlying mechanisms are also discussed, providing insight for the future research and development of these fascinating compounds.

  1. Physical Activity and Gastrointestinal Cancers: Primary and Tertiary Preventive Effects and Possible Biological Mechanisms

    Directory of Open Access Journals (Sweden)

    Karen Steindorf

    2015-07-01

    Full Text Available Gastrointestinal cancers account for 37% of all cancer deaths worldwide, underlining the need to further investigate modifiable factors for gastrointestinal cancer risk and prognosis. This review summarizes the corresponding evidence for physical activity (PA, including, briefly, possible biological mechanisms. Despite high public health relevance, there is still a scarcity of studies, especially for tertiary prevention. Besides the convincing evidence of beneficial effects of PA on colon cancer risk, clear risk reduction for gastroesophageal cancer was identified, as well as weak indications for pancreatic cancer. Inverse associations were observed for liver cancer, yet based on few studies. Only for rectal cancer, PA appeared to be not associated with cancer risk. With regard to cancer-specific mortality of the general population, published data were rare but indicated suggestive evidence of protective effects for colon and liver cancer, and to a lesser extent for rectal and gastroesophageal cancer. Studies in cancer patients on cancer-specific and total mortality were published for colorectal cancer only, providing good evidence of inverse associations with post-diagnosis PA. Overall, evidence of associations of PA with gastrointestinal cancer risk and progression is promising but still limited. However, the already available knowledge further underlines the importance of PA to combat cancer.

  2. Text mining of rheumatoid arthritis and diabetes mellitus to understand the mechanisms of Chinese medicine in different diseases with same treatment.

    Science.gov (United States)

    Zhao, Ning; Zheng, Guang; Li, Jian; Zhao, Hong-Yan; Lu, Cheng; Jiang, Miao; Zhang, Chi; Guo, Hong-Tao; Lu, Ai-Ping

    2018-01-09

    To identify the commonalities between rheumatoid arthritis (RA) and diabetes mellitus (DM) to understand the mechanisms of Chinese medicine (CM) in different diseases with the same treatment. A text mining approach was adopted to analyze the commonalities between RA and DM according to CM and biological elements. The major commonalities were subsequently verifified in RA and DM rat models, in which herbal formula for the treatment of both RA and DM identifified via text mining was used as the intervention. Similarities were identifified between RA and DM regarding the CM approach used for diagnosis and treatment, as well as the networks of biological activities affected by each disease, including the involvement of adhesion molecules, oxidative stress, cytokines, T-lymphocytes, apoptosis, and inflfl ammation. The Ramulus Cinnamomi-Radix Paeoniae Alba-Rhizoma Anemarrhenae is an herbal combination used to treat RA and DM. This formula demonstrated similar effects on oxidative stress and inflfl ammation in rats with collagen-induced arthritis, which supports the text mining results regarding the commonalities between RA and DM. Commonalities between the biological activities involved in RA and DM were identifified through text mining, and both RA and DM might be responsive to the same intervention at a specifific stage.

  3. How Do Students in an Innovative Principle-Based Mechanics Course Understand Energy Concepts?

    Science.gov (United States)

    Ding, Lin; Chabay, Ruth; Sherwood, Bruce

    2013-01-01

    We investigated students' conceptual learning of energy topics in an innovative college-level introductory mechanics course, entitled Matter & Interactions (M&I) Modern Mechanics. This course differs from traditional curricula in that it emphasizes application of a small number of fundamental principles across various scales, involving…

  4. What it takes to understand and cure a living system: computational systems biology and a systems biology-driven pharmacokinetics-pharmacodynamics platform

    NARCIS (Netherlands)

    Swat, Maciej; Kiełbasa, Szymon M.; Polak, Sebastian; Olivier, Brett; Bruggeman, Frank J.; Tulloch, Mark Quinton; Snoep, Jacky L.; Verhoeven, Arthur J.; Westerhoff, Hans V.

    2011-01-01

    The utility of model repositories is discussed in the context of systems biology (SB). It is shown how such repositories, and in particular their live versions, can be used for computational SB: we calculate the robustness of the yeast glycolytic network with respect to perturbations of one of its

  5. Towards a neurobiological understanding of pain in chronic pancreatitis: mechanisms and implications for treatment

    Directory of Open Access Journals (Sweden)

    Søren S. Olesen

    2017-12-01

    Conclusion:. Chronic pancreatitis is associated with abnormal processing of pain at the peripheral and central level of the pain system. This neurobiological understanding of pain has important clinical implications for treatment and prevention of pain chronification.

  6. Teaching Trajectories and Students' Understanding of Difficult Concepts in Biology in Obio/Akpor Local Government Area in Rivers State

    Science.gov (United States)

    Mumuni, Abosede Anthonia Olufemi; Dike, John Worlu; Uzoma-Nwogu, Azibaolanari

    2017-01-01

    This study investigated the effects of teaching trajectories on students' understanding of difficult concepts in Biology. Two research questions and two null hypotheses guided the study which was carried out in Obio/Akpor Local Government Area of Rivers State. Two public coeducational schools out of thirteen drawn through purposive sampling…

  7. Formation of the vertical heterogeneity in the Lake Shira ecosystem: the biological mechanisms and the mathematical model

    NARCIS (Netherlands)

    Degermendzhy, A.G.; Belolipetsky, V.M.; Zotina, T.A.; Gulati, R.D.

    2002-01-01

    Data on the seasonal changes in vertical heterogeneity of the physical-chemical and biological parameters of the thermally stratified Shira Lake ecosystem (Khakasia, Siberia) in 1996–2000 have been analyzed. The interaction mechanisms involving: (1) The plankton populations in aerobic and anaerobic

  8. Earth mechanisms (fluid and solid), life mechanisms and stable isotope tracers. Isotopes and biology, a great project

    International Nuclear Information System (INIS)

    Fromageot, P.

    1997-01-01

    Historical and recent review of the development and use of radioactive isotopes for biological studies in France: study of the intermediate metabolism with 14 C tracers in organic molecules; study and biosynthesis of macromolecules (DNA, RNA and polynucleotides) through the use of marked nucleotides; tracer proteins for use in NMR and protein engineering, use of tritium for the study of hormonal regulation

  9. Space radiation-induced bystander effect: kinetics of biologic responses, mechanisms, and significance of secondary radiations

    International Nuclear Information System (INIS)

    Gonon, Geraldine

    2011-01-01

    Widespread evidence indicates that exposure of cell cultures to a particles results in significant biological changes in both the irradiated and non-irradiated bystander cells in the population. The induction of non-targeted biological responses in cell cultures exposed to low fluences of high charge (Z) and high energy (E) particles is relevant to estimates of the health risks of space radiation and to radiotherapy. Here, we investigated the mechanisms underlying the induction of stressful effects in confluent normal human fibroblast cultures exposed to low fluences of 1000 MeV/u iron ions (linear energy transfer (LET) 151 keV/μm), 600 MeV/u silicon ions (LET 50 keV/μm) or 290 MeV/u carbon ions (LET 13 keV/μm). We compared the results with those obtained in cell cultures exposed, in parallel, to low fluences of 0.92 MeV/u a particles (LET 109 keV/μm). Induction of DNA damage, changes in gene expression, protein carbonylation and lipid peroxidation during 24 h after exposure of confluent cultures to mean doses as low as 0.2 cGy of iron or silicon ions strongly supported the propagation of stressful effects from irradiated to bystander cells. At a mean dose of 0.2 cGy, only 1 and 3 % of the cells would be targeted through the nucleus by an iron or silicon ion, respectively. Within 24 h post-irradiation, immunoblot analyses revealed significant increases in the levels of phospho-TP53 (serine 15), p21Waf1 (also known as CDKN1A), HDM2, phospho-ERK1/2, protein carbonylation and lipid peroxidation. The magnitude of the responses suggested participation of non-targeted cells in the response. Furthermore, when the irradiated cell populations were subcultured in fresh medium shortly after irradiation, greater than expected increases in the levels of these markers were also observed during 24 h. Together, the results imply a rapidly propagated and persistent bystander effect. In situ analyses in confluent cultures showed 53BP1 foci formation, a marker of DNA damage, in

  10. Understanding the mechanism of sweet taste: synthesis of tritium labeled guanidineacetic acids

    Energy Technology Data Exchange (ETDEWEB)

    Nagarajan, S.; Kellogg, M.S.; DuBois, G.E. (NutraSweet Company, Mt. Prospect, IL (United States)); Williams, D.S. (Amersham International plc, Cardiff (United Kingdom). Cardiff Labs.); Gresk, C.J.; Markos, C.S. (Searle Research and Development, Skokie, IL (United States))

    1992-08-01

    Syntheses of tritium labeled guanidineacetic acid sweetener and a tritiated photoaffinity labeling reagent via the catalytic hydrogenation of the dibromo intermediates are described. These labeled compounds were required for the investigation of sweet taste mechanism. (author).

  11. Understanding the mechanism of sweet taste: synthesis of tritium labeled guanidineacetic acids

    International Nuclear Information System (INIS)

    Nagarajan, S.; Kellogg, M.S.; DuBois, G.E.; Williams, D.S.

    1992-01-01

    Syntheses of tritium labeled guanidineacetic acid sweetener and a tritiated photoaffinity labeling reagent via the catalytic hydrogenation of the dibromo intermediates are described. These labeled compounds were required for the investigation of sweet taste mechanism. (author)

  12. Oxide nanoparticle EUV resists: toward understanding the mechanism of positive and negative tone patterning

    KAUST Repository

    Chakrabarty, Souvik; Ouyang, Christine; Krysak, Marie; Trikeriotis, Markos; Cho, Kyoungyoung; Giannelis, Emmanuel P.; Ober, Christopher K.

    2013-01-01

    DUV, EUV and e-beam patterning of hybrid nanoparticle photoresists have been reported previously by Ober and coworkers. The present work explores the underlying mechanism that is responsible for the dual tone patterning capability of these photoresist materials. Spectroscopic results correlated with mass loss and dissolution studies suggest a ligand exchange mechanism responsible for altering the solubility between the exposed and unexposed regions. © 2013 SPIE.

  13. Oxide nanoparticle EUV resists: toward understanding the mechanism of positive and negative tone patterning

    KAUST Repository

    Chakrabarty, Souvik

    2013-04-01

    DUV, EUV and e-beam patterning of hybrid nanoparticle photoresists have been reported previously by Ober and coworkers. The present work explores the underlying mechanism that is responsible for the dual tone patterning capability of these photoresist materials. Spectroscopic results correlated with mass loss and dissolution studies suggest a ligand exchange mechanism responsible for altering the solubility between the exposed and unexposed regions. © 2013 SPIE.

  14. Using realist synthesis to understand the mechanisms of interprofessional teamwork in health and social care.

    Science.gov (United States)

    Hewitt, Gillian; Sims, Sarah; Harris, Ruth

    2014-11-01

    Realist synthesis offers a novel and innovative way to interrogate the large literature on interprofessional teamwork in health and social care teams. This article introduces realist synthesis and its approach to identifying and testing the underpinning processes (or "mechanisms") that make an intervention work, the contexts that trigger those mechanisms and their subsequent outcomes. A realist synthesis of the evidence on interprofessional teamwork is described. Thirteen mechanisms were identified in the synthesis and findings for one mechanism, called "Support and value" are presented in this paper. The evidence for the other twelve mechanisms ("collaboration and coordination", "pooling of resources", "individual learning", "role blurring", "efficient, open and equitable communication", "tactical communication", "shared responsibility and influence", "team behavioural norms", "shared responsibility and influence", "critically reviewing performance and decisions", "generating and implementing new ideas" and "leadership") are reported in a further three papers in this series. The "support and value" mechanism referred to the ways in which team members supported one another, respected other's skills and abilities and valued each other's contributions. "Support and value" was present in some, but far from all, teams and a number of contexts that explained this variation were identified. The article concludes with a discussion of the challenges and benefits of undertaking this realist synthesis.

  15. Analysis of multiple instructional techniques on the understanding and retention of select mechanical topics

    Science.gov (United States)

    Fetsco, Sara Elizabeth

    There are several topics that introductory physics students typically have difficulty understanding. The purpose of this thesis is to investigate if multiple instructional techniques will help students to better understand and retain the material. The three units analyzed in this study are graphing motion, projectile motion, and conservation of momentum. For each unit students were taught using new or altered instructional methods including online laboratory simulations, inquiry labs, and interactive demonstrations. Additionally, traditional instructional methods such as lecture and problem sets were retained. Effectiveness was measured through pre- and post-tests and student opinion surveys. Results suggest that incorporating multiple instructional techniques into teaching will improve student understanding and retention. Students stated that they learned well from all of the instructional methods used except the online simulations.

  16. Understanding biological control of greenhouse whitefly with the parasitoid Encarsia formosa : from individual behaviour to population dynamics

    NARCIS (Netherlands)

    Roermund, van H.J.W.

    1995-01-01

    The greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Homoptera, Aleyrodidae), is a very common, highly polyphagous pest insect all over the world. Biological control of whiteflies with the parasitoid Encarsia formosa Gahan (Hymenoptera, Aphelinidae) was already applied in the 1920s in

  17. Radiochemistry - Applications in the study of radical mechanisms of biological interest

    International Nuclear Information System (INIS)

    Foos, Jacques

    1982-01-01

    In biology, oxygen reducing processes give rise to the formation of intermediate radicals. One of the major breakthroughs of radiation chemistry of aqueous solutions is the identification of these compounds. The author describes the techniques used to study the reaction of these radicals (of radiolytic origin) with biological molecules [fr

  18. Understanding Irreversible Degradation of Nb3Sn Wires with Fundamental Fracture Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yuhu [PPPL; Calzolaio, Ciro [Univ of Geneva; Senatore, Carmine [Univ of Geneva

    2014-08-01

    Irreversible performance degradation of advanced Nb3Sn superconducting wires subjected to transverse or axial mechanical loading is a critical issue for the design of large-scale fusion and accelerator magnets such as ITER and LHC. Recent SULTAN tests indicate that most cable-in-conduit conductors for ITER coils made of Nb3Sn wires processed by various fabrication techniques show similar performance degradation under cyclic loading. The irreversible degradation due to filament fracture and local strain accumulation in Nb3Sn wires cannot be described by the existing strand scaling law. Fracture mechanic modeling combined with X-ray diffraction imaging of filament micro-crack formation inside the wires under mechanical loading may reveal exciting insights to the wire degradation mechanisms. We apply fundamental fracture mechanics with a singularity approach to study influence of wire filament microstructure of initial void size and distribution to local stress concentration and potential crack propagation. We report impact of the scale and density of the void structure on stress concentration in the composite wire materials for crack initiation. These initial defects result in an irreversible degradation of the critical current beyond certain applied stress. We also discuss options to minimize stress concentration in the design of the material microstructure for enhanced wire performance for future applications.

  19. The contribution of experimental in vivo models to understanding the mechanisms of adaptation to mechanical loading in bone

    Directory of Open Access Journals (Sweden)

    Lee B Meakin

    2014-10-01

    Full Text Available Changing loading regimens by natural means such as exercise, with or without interference such as osteotomy, has provided useful information on the structure:function relationship in bone tissue. However, the greatest precision in defining those aspects of the overall strain environment that influence modeling and remodeling behavior has been achieved by relating quantified changes in bone architecture to quantified changes in bones’ strain environment produced by direct, controlled artificial bone loading.Jiri Heřt introduced the technique of artificial loading of bones in vivo with external devices in the 1960s using an electromechanical device to load rabbit tibiae through transfixing stainless steel pins. Quantifying natural bone strains during locomotion by attaching electrical resistance strain gauges to bone surfaces was introduced by Lanyon, also in the 1960s. These studies in a variety of bones in a number of species demonstrated remarkable uniformity in the peak strains and maximum strain rates experienced.Experiments combining strain gauge instrumentation with artificial loading in sheep, pigs, roosters, turkeys, rats and mice has yielded significant insight into the control of strain-related adaptive (remodeling. This diversity of approach has been largely superseded by non-invasive transcutaneous loading in rats and mice which is now the model of choice for many studies. Together such studies have demonstrated that; over the physiological strain range, bone’s mechanically-adaptive processes are responsive to dynamic but not static strains; the size and nature of the adaptive response controlling bone mass is linearly related to the peak loads encountered; the strain-related response is preferentially sensitive to high strain rates and unresponsive to static ones; is most responsive to unusual strain distributions; is maximized by remarkably few strain cycles and that these are most effective when interrupted by short periods of

  20. The Contribution of Experimental in vivo Models to Understanding the Mechanisms of Adaptation to Mechanical Loading in Bone

    Science.gov (United States)

    Meakin, Lee B.; Price, Joanna S.; Lanyon, Lance E.

    2014-01-01

    Changing loading regimens by natural means such as exercise, with or without interference such as osteotomy, has provided useful information on the structure:function relationship in bone tissue. However, the greatest precision in defining those aspects of the overall strain environment that influence modeling and remodeling behavior has been achieved by relating quantified changes in bone architecture to quantified changes in bones’ strain environment produced by direct, controlled artificial bone loading. Jiri Hert introduced the technique of artificial loading of bones in vivo with external devices in the 1960s using an electromechanical device to load rabbit tibiae through transfixing stainless steel pins. Quantifying natural bone strains during locomotion by attaching electrical resistance strain gages to bone surfaces was introduced by Lanyon, also in the 1960s. These studies in a variety of bones in a number of species demonstrated remarkable uniformity in the peak strains and maximum strain rates experienced. Experiments combining strain gage instrumentation with artificial loading in sheep, pigs, roosters, turkeys, rats, and mice has yielded significant insight into the control of strain-related adaptive (re)modeling. This diversity of approach has been largely superseded by non-invasive transcutaneous loading in rats and mice, which is now the model of choice for many studies. Together such studies have demonstrated that over the physiological strain range, bone’s mechanically adaptive processes are responsive to dynamic but not static strains; the size and nature of the adaptive response controlling bone mass is linearly related to the peak loads encountered; the strain-related response is preferentially sensitive to high strain rates and unresponsive to static ones; is most responsive to unusual strain distributions; is maximized by remarkably few strain cycles, and that these are most effective when interrupted by short periods of rest between them

  1. Radiation-induced bystander effects. Mechanisms, biological implications, and current investigations at the Leipzig LIPSION facility

    International Nuclear Information System (INIS)

    Oesterreicher, J.; Prise, K.M.; Michael, B.D.; Vogt, J.; Butz, T.; Tanner, J.M.

    2003-01-01

    Background: The bystander effect is a relatively new area of radiobiological research, which is aimed at studying post-radiation changes in neighboring non-hit cells or tissues. The bystander effect of ionizing irradiation is important after low-dose irradiation in the range of up to 0.2 Gy, where a higher incidence of stochastic damage was observed than was expected from a linear-quadratic model. It is also important when the irradiation of a cell population is highly non-uniform. Objective: This review summarizes most of the important results and proposed bystander effect mechanisms as well as their impact on theory and clinical practice. The literature, in parts contradictory, is collected, the main topics are outlined, and some basic papers are described in more detail. In order to illustrate the microbeam technique, which is considered relevant for the bystander effect research, the state of the Leipzig LIPSION nanoprobe facility is described. Results: The existence of a radiation-induced bystander effect is now generally accepted. The current state of knowledge on it is summarized here. Several groups worldwide are working on understanding its different aspects and its impact on radiobiology and radiation protection. Conclusion: The observation of a bystander effect has posed many questions, and answering them is a challenging topic for radiobiology in the future. (orig.)

  2. Radiation-induced bystander effects. Mechanisms, biological implications, and current investigations at the Leipzig LIPSION facility

    Energy Technology Data Exchange (ETDEWEB)

    Oesterreicher, J. [Dept. of Nuclear Solid State Physics, Univ. of Leipzig (Germany); Dept. of Radiobiology and Immunology, Purkyne Military Medical Academy, Hradec Kralove (Czech Republic); Prise, K.M.; Michael, B.D. [Gray Cancer Inst., Mount Vernon Hospital, Northwood, Middlesex (United Kingdom); Vogt, J.; Butz, T. [Dept. of Nuclear Solid State Physics, Univ. of Leipzig (Germany); Tanner, J.M. [Clinic and Polyclinic of Radiation Oncology, Martin Luther Univ. Halle-Wittenberg (Germany)

    2003-02-01

    Background: The bystander effect is a relatively new area of radiobiological research, which is aimed at studying post-radiation changes in neighboring non-hit cells or tissues. The bystander effect of ionizing irradiation is important after low-dose irradiation in the range of up to 0.2 Gy, where a higher incidence of stochastic damage was observed than was expected from a linear-quadratic model. It is also important when the irradiation of a cell population is highly non-uniform. Objective: This review summarizes most of the important results and proposed bystander effect mechanisms as well as their impact on theory and clinical practice. The literature, in parts contradictory, is collected, the main topics are outlined, and some basic papers are described in more detail. In order to illustrate the microbeam technique, which is considered relevant for the bystander effect research, the state of the Leipzig LIPSION nanoprobe facility is described. Results: The existence of a radiation-induced bystander effect is now generally accepted. The current state of knowledge on it is summarized here. Several groups worldwide are working on understanding its different aspects and its impact on radiobiology and radiation protection. Conclusion: The observation of a bystander effect has posed many questions, and answering them is a challenging topic for radiobiology in the future. (orig.)

  3. Molecular Biology and Prevention of Endometrial Cancer. Addendum

    National Research Council Canada - National Science Library

    Maxwell, George L

    2008-01-01

    Objective: To increase our understanding of the molecular aberrations associated with endometrial carcinogenesis and the biologic mechanisms underlying the protective effect of oral contraceptive (OC) therapy. Methods: 1...

  4. Understanding the mechanism of nanotube synthesis for controlled production of specific (n,m) structures

    Energy Technology Data Exchange (ETDEWEB)

    Resasco, Daniel E.

    2010-02-11

    This report shows the extensive research on the mechanism responsible for the formation of single walled carbon nanotubes in order to get control over their structural parameters (diameter and chirality). Catalyst formulations, pre-treatment conditions, and reaction conditions are described in detail as well as mechanisms to produce nanotubes structures of specific arrays (vertical forest, nanotube pillars). Applications of SWNT in different fields are also described in this report. In relation to this project five students have graduated (3 PhD and 2 MS) and 35 papers have been published.

  5. Improving Student Understanding of Addition of Angular Momentum in Quantum Mechanics

    Science.gov (United States)

    Zhu, Guangtian; Singh, Chandralekha

    2013-01-01

    We describe the difficulties advanced undergraduate and graduate students have with concepts related to addition of angular momentum in quantum mechanics. We also describe the development and implementation of a research-based learning tool, Quantum Interactive Learning Tutorial (QuILT), to reduce these difficulties. The preliminary evaluation…

  6. Investigating and Improving Student Understanding of Quantum Mechanics in the Context of Single Photon Interference

    Science.gov (United States)

    Marshman, Emily; Singh, Chandralekha

    2017-01-01

    Single photon experiments involving a Mach-Zehnder interferometer can illustrate the fundamental principles of quantum mechanics, e.g., the wave-particle duality of a single photon, single photon interference, and the probabilistic nature of quantum measurement involving single photons. These experiments explicitly make the connection between the…

  7. Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium

    NARCIS (Netherlands)

    Kubacka, A.; Suarez Diez, M.; Rojo, D.; Bargiela, R.; Ciordia, S.; Zapico, I.; Albar, J.P.; Barbas, C.; Martins Dos Santos, V.A.P.; Fernández-García, M.; Ferrer, M.

    2014-01-01

    Titania (TiO2)-based nanocomposites subjected to light excitation are remarkably effective in eliciting microbial death. However, the mechanism by which these materials induce microbial death and the effects that they have on microbes are poorly understood. Here, we assess the low dose

  8. Massage therapy: understanding the mechanisms of action on blood pressure. A scoping review.

    Science.gov (United States)

    Nelson, Nicole L

    2015-10-01

    Massage therapy (MT) has shown potential in reducing blood pressure (BP); however, the psychophysiological pathways and structures involved in this outcome are unclear. The aims of this scoping review were twofold. (1) To summarize the current knowledge of the mechanisms of action of MT on BP. (2) To highlight the research gaps and challenges that researchers must overcome to further elucidate how MT attenuates BP. A scoping review was conducted to examine the evidence regarding the mechanisms of action of MT on BP. This review included the thematic analysis of 27 publications that considered the influence of MT on BP. Based on this analysis, six potential BP mediating pathways were identified Current theories suggest that MT exerts sympatholytic effects through physiologic and psychological mechanisms, improves hypothalamus-pituitary-adrenocortical axis function, and increases in blood flow, which, in turn, may improve endothelial function. Future study is needed, using more scientifically rigorous methodology, to fully elucidate the mechanism of action of MT. Copyright © 2015 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  9. The Mediated MIMIC Model for Understanding the Underlying Mechanism of DIF

    Science.gov (United States)

    Cheng, Ying; Shao, Can; Lathrop, Quinn N.

    2016-01-01

    Due to its flexibility, the multiple-indicator, multiple-causes (MIMIC) model has become an increasingly popular method for the detection of differential item functioning (DIF). In this article, we propose the mediated MIMIC model method to uncover the underlying mechanism of DIF. This method extends the usual MIMIC model by including one variable…

  10. Recent advances in understanding