WorldWideScience

Sample records for understand student reasons

  1. Secondary School Students' Understanding of Science and Their Socioscientific Reasoning

    Science.gov (United States)

    Karahan, Engin; Roehrig, Gillian

    2017-08-01

    Research in socioscientific issue (SSI)-based interventions is relatively new (Sadler in Journal of Research in Science Teaching 41:513-536, 2004; Zeidler et al. in Journal of Research in Science Teaching 46:74-101, 2009), and there is a need for understanding more about the effects of SSI-based learning environments (Sadler in Journal of Research in Science Teaching 41:513-536, 2004). Lee and Witz (International Journal of Science Education 31:931-960, 2009) highlighted the need for detailed case studies that would focus on how students respond to teachers' practices of teaching SSI. This study presents case studies that investigated the development of secondary school students' science understanding and their socioscientific reasoning within SSI-based learning environments. A multiple case study with embedded units of analysis was implemented for this research because of the contextual differences for each case. The findings of the study revealed that students' understanding of science, including scientific method, social and cultural influences on science, and scientific bias, was strongly influenced by their experiences in SSI-based learning environments. Furthermore, multidimensional SSI-based science classes resulted in students having multiple reasoning modes, such as ethical and economic reasoning, compared to data-driven SSI-based science classes. In addition to portraying how participants presented complexity, perspectives, inquiry, and skepticism as aspects of socioscientific reasoning (Sadler et al. in Research in Science Education 37:371-391, 2007), this study proposes the inclusion of three additional aspects for the socioscientific reasoning theoretical construct: (1) identification of social domains affecting the SSI, (2) using cost and benefit analysis for evaluation of claims, and (3) understanding that SSIs and scientific studies around them are context-bound.

  2. Measurements of student understanding on complex scientific reasoning problems

    Science.gov (United States)

    Izumi, Alisa Sau-Lin

    While there has been much discussion of cognitive processes underlying effective scientific teaching, less is known about the response nature of assessments targeting processes of scientific reasoning specific to biology content. This study used multiple-choice (m-c) and short-answer essay student responses to evaluate progress in high-order reasoning skills. In a pilot investigation of student responses on a non-content-based test of scientific thinking, it was found that some students showed a pre-post gain on the m-c test version while showing no gain on a short-answer essay version of the same questions. This result led to a subsequent research project focused on differences between alternate versions of tests of scientific reasoning. Using m-c and written responses from biology tests targeted toward the skills of (1) reasoning with a model and (2) designing controlled experiments, test score frequencies, factor analysis, and regression models were analyzed to explore test format differences. Understanding the format differences in tests is important for the development of practical ways to identify student gains in scientific reasoning. The overall results suggested test format differences. Factor analysis revealed three interpretable factors---m-c format, genetics content, and model-based reasoning. Frequency distributions on the m-c and open explanation portions of the hybrid items revealed that many students answered the m-c portion of an item correctly but gave inadequate explanations. In other instances students answered the m-c portion incorrectly yet demonstrated sufficient explanation or answered the m-c correctly and also provided poor explanations. When trying to fit test score predictors for non-associated student measures---VSAT, MSAT, high school grade point average, or final course grade---the test scores accounted for close to zero percent of the variance. Overall, these results point to the importance of using multiple methods of testing and of

  3. Understanding and Affecting Student Reasoning about Sound Waves.

    Science.gov (United States)

    Wittmann, Michael C.; Steinberg, Richard N.; Redish, Edward F.

    2003-01-01

    Explains the design and development of curriculum materials that ask students to think about physics from a different view. These group-learning classroom materials specifically aim to bring about improvement of student understanding of sound waves. (Contains 29 references.) (Author/SOE)

  4. Students' Understanding of Genetics Concepts: The Effect of Reasoning Ability and Learning Approaches

    Science.gov (United States)

    Kiliç, Didem; Saglam, Necdet

    2014-01-01

    Students tend to learn genetics by rote and may not realise the interrelationships in daily life. Because reasoning abilities are necessary to construct relationships between concepts and rote learning impedes the students' sound understanding, it was predicted that having high level of formal reasoning and adopting meaningful learning orientation…

  5. Understanding neurophobia: Reasons behind impaired understanding and learning of neuroanatomy in cross-disciplinary healthcare students.

    Science.gov (United States)

    Javaid, Muhammad Asim; Chakraborty, Shelly; Cryan, John F; Schellekens, Harriët; Toulouse, André

    2018-01-01

    Recent studies have highlighted a fear or difficulty with the study and understanding of neuroanatomy among medical and healthcare students. This has been linked with a diminished confidence of clinical practitioners and students to manage patients with neurological conditions. The underlying reasons for this difficulty have been queried among a broad cohort of medical, dental, occupational therapy, and speech and language sciences students. Direct evidence of the students' perception regarding specific difficulties associated with learning neuroanatomy has been provided and some of the measures required to address these issues have been identified. Neuroanatomy is perceived as a more difficult subject compared to other anatomy topics (e.g., reproductive/pelvic anatomy) and not all components of the neuroanatomy curriculum are viewed as equally challenging. The difficulty in understanding neuroanatomical concepts is linked to intrinsic factors such as the inherent complex nature of the topic rather than outside influences (e.g., lecture duration). Participants reporting high levels of interest in the subject reported higher levels of knowledge, suggesting that teaching tools aimed at increasing interest, such as case-based scenarios, could facilitate acquisition of knowledge. Newer pedagogies, including web-resources and computer assisted learning (CAL) are considered important tools to improve neuroanatomy learning, whereas traditional tools such as lecture slides and notes were considered less important. In conclusion, it is suggested that understanding of neuroanatomy could be enhanced and neurophobia be decreased by purposefully designed CAL resources. This data could help curricular designers to refocus attention and guide educators to develop improved neuroanatomy web-resources in future. Anat Sci Educ 11: 81-93. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  6. Secondary School Students' Understanding of Science and Their Socioscientific Reasoning

    Science.gov (United States)

    Karahan, Engin; Roehrig, Gillian

    2017-01-01

    Research in socioscientific issue (SSI)-based interventions is relatively new (Sadler in "Journal of Research in Science Teaching" 41:513-536, 2004; Zeidler et al. in "Journal of Research in Science Teaching" 46:74-101, 2009), and there is a need for understanding more about the effects of SSI-based learning environments…

  7. Of Pigs and Men: Understanding Students' Reasoning About the Use of Pigs as Donors for Xenotransplantation

    Science.gov (United States)

    Lindahl, Mats Gunnar

    2010-09-01

    Two important roles of education are to provide students with knowledge for their democratic participation in society and to provide knowledge for a future profession. In science education, students encounter values that may be in conflict with their worldview. Such conflicts may, for example, lead to constructive reflections as well as rejection of scientific knowledge and technology. Students’ ways of reasoning are important starting points for discussing problematic issues and may be crucial for constructive dialogues in the classroom. This study investigates students’ reasoning about conflicting values concerning the human-animal relationship exemplified by the use of genetically modified pigs as organ donors for xenotransplantation. Students’ reasoning is analyzed using Giddens’ concepts of disembedded and embedded practices in parallel with moral philosophical theories in a framework based on human-animal relationships. Thirteen students were interviewed and their stances categorized. Kantian deontological and classical utilitarian ethics were found within the patronage and the partnership models. These students appreciated expert knowledge but those using the partnership model could not accept xenotransplantation if pigs were to be killed. Students using care ethics did not appreciate expert knowledge since it threatened naturalness. The results suggest that stances against the use of scientific knowledge are more problematic than knowledge per se, and that conflicting stances have similarities that present opportunities for understanding and development of students’ argumentation skills for future participation in societal discourse on utilizing expert knowledge. Furthermore it is argued that science education could benefit from a higher awareness of the presence of different morals.

  8. Dual processing and discourse space: Exploring fifth grade students' language, reasoning, and understanding through writing

    Science.gov (United States)

    Yoon, Sae Yeol

    analysis of writing and talking. The results showed (1) students' low level of engagement in evaluation impacted their reasoning and use of sources for making meanings, as well as their understanding of the topic. Compared to the results of a previous study, students' complexity of reasoning was relatively less developed, and similarly students' use of reflective sources was generally observed relatively less often. (2) The teacher and students in this study engaged in limited public negotiation, which focused more on articulating than on evaluating ideas. The limited public negotiation that was represented by the dialogical patterns in this study cannot support the development of understanding through writing or the practice of the roles of constructor and critiquer, which play a core function in the comprehension of scientific practice. This study has several implications for teacher education and research. Teacher education needs to be centered more on how to encourage students' engagement in the process of evaluation, since this plays an important function not only in the development of understanding, but also in providing opportunities to perform the roles of both constructor and critiquer. Teachers can use writing as an argumentative activity to encourage or foster students' engagement in the process of evaluation or critique. Additionally, this study provides insight into the importance of the learning environment in which the teacher and students create and develop; this learning environment needs to provide not only opportunities but also demands for students to engage in both constructing and critiquing ideas.

  9. Explaining Newton's Laws of Motion: Using Student Reasoning through Representations to Develop Conceptual Understanding

    Science.gov (United States)

    Waldrip, Bruce; Prain, Vaughan; Sellings, Peter

    2013-01-01

    The development of students' reasoning and argumentation skills in school science is currently attracting strong research interest. In this paper we report on a study where we aimed to investigate student learning on the topic of motion when students, guided by their teacher, responded to a sequence of representational challenges in which their…

  10. Reasoning about Evolution's Grand Patterns: College Students' Understanding of the Tree of Life

    Science.gov (United States)

    Novick, Laura R.; Catley, Kefyn M.

    2013-01-01

    Tree thinking involves using cladograms, hierarchical diagrams depicting the evolutionary history of a set of taxa, to reason about evolutionary relationships and support inferences. Tree thinking is indispensable in modern science. College students' tree-thinking skills were investigated using tree (much more common in professional biology) and…

  11. College Students' Understanding of the Carbon Cycle: Contrasting Principle-Based and Informal Reasoning

    Science.gov (United States)

    Hartley, Laurel M.; Wilke, Brook J.; Schramm, Jonathon W.; D'Avanzo, Charlene; Anderson, Charles W.

    2011-01-01

    Processes that transform carbon (e.g., photosynthesis) play a prominent role in college biology courses. Our goals were to learn about student reasoning related to these processes and provide faculty with tools for instruction and assessment. We created a framework illustrating how carbon-transforming processes can be related to one another during…

  12. From everyday problem to a mathematical solution - understanding student reasoning by identifying their chain of reference

    DEFF Research Database (Denmark)

    Dreyøe, Jonas; Larsen, Dorte Moeskær; Misfeldt, Morten

    2018-01-01

    students. In this analysis, we apply the idea of the chain of reference from the studies of Bruno Latour (1999) to the exploration, generation, and formalization of scientific knowledge. This framework allows us to combine knowledge from mathematics education about language and representations......This paper investigates a group of students’ reasoning in an inquiry-oriented and open mathematical investigation developed as a part of a large-scale intervention. We focus on the role of manipulatives, articulations, and representations in collaborative mathematical reasoning among grade 5......, manipulatives, and reasoning in a way that allows us to follow the material traces of students’ mathematical reasoning and hence discuss the possibilities, limitations, and pedagogical consequences of the application of Latour’s (1999) framework....

  13. The Precalculus Concept Assessment: A Tool for Assessing Students' Reasoning Abilities and Understandings

    Science.gov (United States)

    Carlson, Marilyn; Oehrtman, Michael; Engelke, Nicole

    2010-01-01

    This article describes the development of the Precalculus Concept Assessment (PCA) instrument, a 25-item multiple-choice exam. The reasoning abilities and understandings central to precalculus and foundational for beginning calculus were identified and characterized in a series of research studies and are articulated in the PCA Taxonomy. These…

  14. The effects of students' reasoning abilities on conceptual understandings and problem-solving skills in introductory mechanics

    International Nuclear Information System (INIS)

    Ates, S; Cataloglu, E

    2007-01-01

    The purpose of this study was to determine if there are relationships among freshmen/first year students' reasoning abilities, conceptual understandings and problem-solving skills in introductory mechanics. The sample consisted of 165 freshmen science education prospective teachers (female = 86, male = 79; age range 17-21) who were enrolled in an introductory physics course. Data collection was done during the fall semesters in two successive years. At the beginning of each semester, the force concept inventory (FCI) and the classroom test of scientific reasoning (CTSR) were administered to assess students' initial understanding of basic concepts in mechanics and reasoning levels. After completing the course, the FCI and the mechanics baseline test (MBT) were administered. The results indicated that there was a significant difference in problem-solving skill test mean scores, as measured by the MBT, among concrete, formal and postformal reasoners. There were no significant differences in conceptual understanding levels of pre- and post-test mean scores, as measured by FCI, among the groups. The Benferroni post hoc comparison test revealed which set of reasoning levels showed significant difference for the MBT scores. No statistical difference between formal and postformal reasoners' mean scores was observed, while the mean scores between concrete and formal reasoners and concrete and postformal reasoners were statistically significantly different

  15. Finnish Pre-Service Teachers' and Upper Secondary Students' Understanding of Division and Reasoning Strategies Used

    Science.gov (United States)

    Kaasila, Raimo; Pehkonen, Erkki; Hellinen, Anu

    2010-01-01

    In this paper, we focus on Finnish pre-service elementary teachers' (N = 269) and upper secondary students' (N = 1,434) understanding of division. In the questionnaire, we used the following non-standard division problem: "We know that 498:6 = 83. How could you conclude from this relationship (without using long-division algorithm) what 491:6…

  16. Assessing student understanding of sound waves and trigonometric reasoning in a technology-rich, project-enhanced environment

    Science.gov (United States)

    Wilhelm, Jennifer Anne

    This case study examined what student content understanding could occur in an inner city Industrial Electronics classroom located at Tree High School where project-based instruction, enhanced with technology, was implemented for the first time. Students participated in a project implementation unit involving sound waves and trigonometric reasoning. The unit was designed to foster common content learning (via benchmark lessons) by all students in the class, and to help students gain a deeper conceptual understanding of a sub-set of the larger content unit (via group project research). The objective goal of the implementation design unit was to have students gain conceptual understanding of sound waves, such as what actually waves in a wave, how waves interfere with one another, and what affects the speed of a wave. This design unit also intended for students to develop trigonometric reasoning associated with sinusoidal curves and superposition of sinusoidal waves. Project criteria within this design included implementation features, such as the need for the student to have a driving research question and focus, the need for benchmark lessons to help foster and scaffold content knowledge and understanding, and the need for project milestones to complete throughout the implementation unit to allow students the time for feedback and revision. The Industrial Electronics class at Tree High School consisted of nine students who met daily during double class periods giving 100 minutes of class time per day. The class teacher had been teaching for 18 years (mathematics, physics, and computer science). He had a background in engineering and experience teaching at the college level. Benchmark activities during implementation were used to scaffold fundamental ideas and terminology needed to investigate characteristics of sound and waves. Students participating in benchmark activities analyzed motion and musical waveforms using probeware, and explored wave phenomena using waves

  17. Naive Architecting - Understanding the Reasoning Process of Students A Descriptive Survey

    NARCIS (Netherlands)

    Heesch, Uwe van; Avgeriou, Paris; Babar, MA; Gorton,

    2010-01-01

    Software architecting entails making architecture decisions, which requires a lot of experience and expertise. Current literature contains several methods and processes to support architects with architecture design, documentation and evaluation but not with the design reasoning involved in

  18. The Effect of Cooperative Learning with DSLM on Conceptual Understanding and Scientific Reasoning among Form Four Physics Students with Different Motivation Levels

    Directory of Open Access Journals (Sweden)

    M.S. Hamzah

    2010-11-01

    Full Text Available The purpose of this study was to investigate the effect of Cooperative Learning with a Dual Situated Learning Model (CLDSLM and a Dual Situated Learning Model (DSLM on (a conceptual understanding (CU and (b scientific reasoning (SR among Form Four students. The study further investigated the effect of the CLDSLM and DSLM methods on performance in conceptual understanding and scientific reasoning among students with different motivation levels. A quasi-experimental method with the 3 x 2 Factorial Design was applied in the study. The sample consisted of 240 stu¬dents in six (form four classes selected from three different schools, i.e. two classes from each school, with students randomly selected and assigned to the treatment groups. The results showed that students in the CLDSLM group outperformed their counterparts in the DSLM group—who, in turn, significantly outperformed other students in the traditional instructional method (T group in scientific reasoning and conceptual understanding. Also, high-motivation (HM students in the CLDSLM group significantly outperformed their counterparts in the T groups in conceptual understanding and scientific reasoning. Furthermore, HM students in the CLDSLM group significantly outperformed their counterparts in the DSLM group in scientific reasoning but did not significantly outperform their counterparts on conceptual understanding. Also, the DSLM instructional method has significant positive effects on highly motivated students’ (a conceptual understanding and (b scientific reason¬ing. The results also showed that LM students in the CLDSLM group significantly outperformed their counterparts in the DSLM group and (T method group in scientific reasoning and conceptual understanding. However, the low-motivation students taught via the DSLM instructional method significantly performed higher than the low-motivation students taught via the T method in scientific reasoning. Nevertheless, they did not

  19. Of Pigs and Men: Understanding Students' Reasoning about the Use of Pigs as Donors for Xenotransplantation

    Science.gov (United States)

    Lindahl, Mats Gunnar

    2010-01-01

    Two important roles of education are to provide students with knowledge for their democratic participation in society and to provide knowledge for a future profession. In science education, students encounter values that may be in conflict with their worldview. Such conflicts may, for example, lead to constructive reflections as well as rejection…

  20. "Why Do I Study and What Do I Want to Achieve by Studying?" Understanding the Reasons and the Aims of Student Engagement

    Science.gov (United States)

    Cai, Elaine Yu Ling; Liem, Gregory Arief D.

    2017-01-01

    This study seeks to understand the "what" and the "why" of student engagement by investigating the "aims" that students pursue through engagement (i.e., their achievement goals) and the "reasons" driving such engagement (i.e., their motivation). Self-report instruments measuring students' motivational…

  1. Improving Student Success by Understanding Reasons for, Types of, and Appropriate Responses to Stressors Affecting Asian Graduate Students in Canada

    Science.gov (United States)

    Kim, Andrew

    2015-01-01

    An increasing number of university students in Canada are from East Asian countries and enrolled in graduate programs. For these students, unique factors may contribute to a stressful study environment, which in turn can impact academic performance. This article draws on literature to identify five such factors and appropriate coping strategies:…

  2. Francis Bacon On Understanding, Reason and Rhetoric

    Science.gov (United States)

    Wallace, Karl R.

    1971-01-01

    Bacon's views of the faculties of understanding and reason are presented and explained in reference to Baconian rhetoric. Understanding, Rhetoric, Insinuative and Imaginative Reason are defined. (Author/MS)

  3. Teaching clinical reasoning to medical students.

    Science.gov (United States)

    Amey, Lisa; Donald, Kenneth J; Teodorczuk, Andrew

    2017-07-02

    Clinical reasoning is often not explicitly addressed in the early medical school curriculum. As a result, students observe the process while on clinical placements with little or no understanding of the complex processes underlying it. Clinical reasoning has significant implications for patient safety. Medical errors as a consequence of faulty reasoning contribute to patient morbidity and mortality. Educating medical students at an early stage about the processes of clinical reasoning and strategies to avoid associated errors can have positive impacts upon patient safety. The authors propose that clinical reasoning should be taught as early as the first year of medical school, using frameworks, anatomical knowledge and mnemonics. Using this approach with simulated cases during the pre-clinical years, students will be equipped with an understanding of the clinical reasoning process as it unfolds before them while on clinical placements, enhancing their overall learning experience.

  4. Predicting and understanding Korean high school students' science-track choice: Testing the theory of reasoned action by structural equation modeling

    Science.gov (United States)

    Myeong, Jeon-Ok; Crawley, Frank E.

    The theory of reasoned action (Ajzen & Fishbein, 1980; Fishbein & Ajzen, 1975) was used to predict and understand Korean high school students' track choice for college entrance. First-year high school students (N = 665) from four representative regions of Korea participated in the study. The survey instruments were questionnaires developed according to the guidelines of the TRA. The target behavior of interest in this study was Korean students' choice of the science track when they completed the track application forms during the first year of high school. Predictors included TRA model and external variables. Multiple regression and the structural equation modeling with LISREL (Jöreskog & Sörbom, 1986) were used to analyze the data. The TRA was found to be applicable for understanding and predicting track choice, with minor modifications. Subjective norm was found to exert a direct influence on personal beliefs and the target behavior.

  5. Moral Reasoning, Academic Dishonesty, and Business Students

    Science.gov (United States)

    Bélanger, Charles H.; Leonard, Valorie M.; LeBrasseur, Rolland

    2012-01-01

    This study links moral reasoning, academic dishonesty, and business students. Undergraduate business students (N = 1357) from eight Ontario (Canada) universities responded to a survey to express their perceptions and expectations of their academic environment and the variables that can help them to understand what is morally right and what is…

  6. A Follow-Up Study of Medical Students' Biomedical Understanding and Clinical Reasoning Concerning the Cardiovascular System

    Science.gov (United States)

    Ahopelto, Ilona; Mikkila-Erdmann, Mirjamaija; Olkinuora, Erkki; Kaapa, Pekka

    2011-01-01

    Novice medical students usually hold initial conceptions concerning medical domains, such as the cardiovascular system, which may contradict scientific explanations and thus hinder learning. The purpose of this study was to investigate which kinds of biomedical representations medical students constructed of the central cardiovascular system in…

  7. Predicting and understanding undergraduate students' intentions to gamble in a casino using an extended model of the theory of reasoned action and the theory of planned behavior.

    Science.gov (United States)

    Lee, Hyung-Seok

    2013-06-01

    Given that current television programming contains numerous gambling portrayals, it is imperative to understand whether and to what extent these gambling behaviors in media influence individuals' beliefs, attitudes, and intentions. This study explores an extended model of the theory of reasoned action (TRA) by including gambling media exposure as a distal, mediating and mediated factor in predicting undergraduate students' intentions to gamble in a casino. Findings show that the extended model of TRA clearly indicates that the constructs of gambling media exposure, prior gambling experience, and level of gambling addiction contribute to the prediction of undergraduate students' casino gambling intentions. Theoretical implications of gambling media effects and practical implications for public policy are discussed, and future research directions are outlined.

  8. Investigating Students' Reasoning about Acid-Base Reactions

    Science.gov (United States)

    Cooper, Melanie M.; Kouyoumdjian, Hovig; Underwood, Sonia M.

    2016-01-01

    Acid-base chemistry is central to a wide range of reactions. If students are able to understand how and why acid-base reactions occur, it should provide a basis for reasoning about a host of other reactions. Here, we report the development of a method to characterize student reasoning about acid-base reactions based on their description of…

  9. The Pursuit of Understanding in Clinical Reasoning.

    Science.gov (United States)

    Feltovich, Paul J.; Patel, Vimla L.

    Trends in emphases in the study of clinical reasoning are examined, with attention to three major branches of research: problem-solving, knowledge engineering, and propositional analysis. There has been a general progression from a focus on the generic form of clinical reasoning to an emphasis on medical content that supports the reasoning…

  10. Students' Reasoning about p-Values

    Science.gov (United States)

    Aquilonius, Birgit C.; Brenner, Mary E.

    2015-01-01

    Results from a study of 16 community college students are presented. The research question concerned how students reasoned about p-values. Students' approach to p-values in hypothesis testing was procedural. Students viewed p-values as something that one compares to alpha values in order to arrive at an answer and did not attach much meaning to…

  11. Using Student Reasoning in Mathematics Instruction

    Science.gov (United States)

    Marrongelle, Karen

    2010-03-01

    Using student thinking and understanding as a basis for the development of mathematical ideas in the classroom is a challenging and often overwhelming task. In this session, I will report on two instructional tools, generative alternatives and record-of/tool-for mathematics and physics teachers can use to build on students' thinking and reasoning to develop mathematical concepts and processes. The instructional tools are rooted in the theory of Realistic Mathematics Education. Examples are drawn from a first course in undergraduate differential equations. The examples will illustrate ways in which a teacher can navigate the all-telling -- all-discovery continuum through the use of the generative alternative and record-of/tool-for tools.

  12. Student reasoning while investigating plant material

    Directory of Open Access Journals (Sweden)

    Helena Näs

    2008-11-01

    Full Text Available In this project, 10-12 year old students in three classes, investigated plant material to learn more about plants and photosynthesis. The research study was conducted to reveal the students’ scientific reasoning during their work. The eleven different tasks helped students investigate plant anatomy, plant physiology, and the gases involved in photosynthesis and respiration. The study was carried out in three ordinary classrooms. The collected data consisted of audio-taped discussions, students’ notebooks, and field notes. Students’ discussions and written work, during the different plant tasks, were analysed to see how the students’ learning and understanding processes developed. The analysis is descriptive and uses categories from a modified general typology of student’s epistemological reasoning. The study shows students’ level of interest in doing the tasks, their struggle with new words and concepts, and how they develop their knowledge about plant physiology. The study confirms thatstudents, in this age group, develop understanding and show an interest in complicated processes in natural science, e.g. photosynthesis.

  13. College Students' Reasons for Concealing Suicidal Ideation

    Science.gov (United States)

    Burton Denmark, Adryon; Hess, Elaine; Becker, Martin Swanbrow

    2012-01-01

    Self-reported reasons for concealing suicidal ideation were explored using data from a national survey of undergraduate and graduate students: 558 students indicated that they seriously considered attempting suicide during the previous year and did not tell anyone about their suicidal thoughts. Content analysis of students' qualitative responses…

  14. Prospective Teachers Proportional Reasoning and Presumption of Student Work

    Directory of Open Access Journals (Sweden)

    Mujiyem Sapti

    2015-08-01

    Full Text Available This study aimed to describe the proportional reasoning of prospective teachers and their predictions about students' answers. Subjects were 4 prospective teacher  7th semester Department of Mathematics Education, Muhammadiyah University of Purworejo. Proportional reasoning task used to obtain research data. Subjects were asked to explain their reasoning and write predictions of student completion. Data was taken on October 15th, 2014. Interviews were conducted after the subjects completed the task and recorded with audio media. The research data were subject written work and interview transcripts. Data were analyzed using qualitative analysis techniques. In solving the proportional reasoning task, subjects using the cross product. However, they understand the meaning of the cross product. Subject also could predict students' reasoning on the matter.

  15. Understanding the barriers to and reasons for physical exercise ...

    African Journals Online (AJOL)

    in the motivation for students to exercise. The most important reasons to exercise were improving physical health, having confidence with their appearance and improving mental health. Significant gender differences were found between, racial groups and between students who exercise and those who don't. As most South ...

  16. Possibilities: A framework for modeling students' deductive reasoning in physics

    Science.gov (United States)

    Gaffney, Jonathan David Housley

    Students often make errors when trying to solve qualitative or conceptual physics problems, and while many successful instructional interventions have been generated to prevent such errors, the process of deduction that students use when solving physics problems has not been thoroughly studied. In an effort to better understand that reasoning process, I have developed a new framework, which is based on the mental models framework in psychology championed by P. N. Johnson-Laird. My new framework models how students search possibility space when thinking about conceptual physics problems and suggests that errors arise from failing to flesh out all possibilities. It further suggests that instructional interventions should focus on making apparent those possibilities, as well as all physical consequences those possibilities would incur. The possibilities framework emerged from the analysis of data from a unique research project specifically invented for the purpose of understanding how students use deductive reasoning. In the selection task, participants were given a physics problem along with three written possible solutions with the goal of identifying which one of the three possible solutions was correct. Each participant was also asked to identify the errors in the incorrect solutions. For the study presented in this dissertation, participants not only performed the selection task individually on four problems, but they were also placed into groups of two or three and asked to discuss with each other the reasoning they used in making their choices and attempt to reach a consensus about which solution was correct. Finally, those groups were asked to work together to perform the selection task on three new problems. The possibilities framework appropriately models the reasoning that students use, and it makes useful predictions about potentially helpful instructional interventions. The study reported in this dissertation emphasizes the useful insight the

  17. A String Number-Line Lesson Sequence to Promote Students' Relative Thinking and Understanding of Scale, Key Elements of Proportional Reasoning

    Science.gov (United States)

    Hilton, Annette; Hilton, Geoff

    2018-01-01

    This article describes part of a study in which researchers designed lesson sequences based around using a string number line to help teachers support children's development of relative thinking and understanding of linear scale. In the first year of the study, eight teachers of Years 3-5 participated in four one-day professional development…

  18. Spatial Reasoning and Understanding the Particulate Nature of Matter: A Middle School Perspective

    Science.gov (United States)

    Cole, Merryn L.

    This dissertation employed a mixed-methods approach to examine the relationship between spatial reasoning ability and understanding of chemistry content for both middle school students and their science teachers. Spatial reasoning has been linked to success in learning STEM subjects (Wai, Lubinski, & Benbow, 2009). Previous studies have shown a correlation between understanding of chemistry content and spatial reasoning ability (e.g., Pribyl & Bodner, 1987; Wu & Shah, 2003: Stieff, 2013), raising the importance of developing the spatial reasoning ability of both teachers and students. Few studies examine middle school students' or in-service middle school teachers' understanding of chemistry concepts or its relation to spatial reasoning ability. The first paper in this dissertation addresses the quantitative relationship between mental rotation, a type of spatial reasoning ability, and understanding a fundamental concept in chemistry, the particulate nature of matter. The data showed a significant, positive correlation between scores on the Purdue Spatial Visualization Test of Rotations (PSVT; Bodner & Guay, 1997) and the Particulate Nature of Matter Assessment (ParNoMA; Yezierski, 2003) for middle school students prior to and after chemistry instruction. A significant difference in spatial ability among students choosing different answer choices on ParNoMA questions was also found. The second paper examined the ways in which students of different spatial abilities talked about matter and chemicals differently. Students with higher spatial ability tended to provide more of an explanation, though not necessarily in an articulate matter. In contrast, lower spatial ability students tended to use any keywords that seemed relevant, but provided little or no explanation. The third paper examined the relationship between mental reasoning and understanding chemistry for middle school science teachers. Similar to their students, a significant, positive correlation between

  19. Preadolescents' Understanding and Reasoning about Asylum Seeker Peers and Friendships

    Science.gov (United States)

    Verkuyten, Maykel; Steenhuis, Aafke

    2005-01-01

    The present study examined ethnically Dutch preadolescents' understanding and reasoning about asylum seeker peers and friendships. The description of an asylum seeker was compared with that of a Moroccan and a Dutch peer. The findings suggest that asylum seekers were described more negatively than peers from the other two groups. Additionally, we…

  20. Understanding the reasons for delay to definitive surgical care of ...

    African Journals Online (AJOL)

    Understanding the reasons for delay to definitive surgical care of patients with acute appendicitis in rural South Africa. V Y Kong,1 MB ChB; C Aldous,2 PhD; D L Clarke,1 FCS ... Acute appendicitis in rural South Africa is associated with significant morbidity due to prolonged delays before definitive .... telemedicine support.

  1. A Functional Neuroimaging Study of the Clinical Reasoning of Medical Students

    Science.gov (United States)

    Chang, Hyung-Joo; Kang, June; Ham, Byung-Joo; Lee, Young-Mee

    2016-01-01

    As clinical reasoning is a fundamental competence of physicians for good clinical practices, medical academics have endeavored to teach reasoning skills to undergraduate students. However, our current understanding of student-level clinical reasoning is limited, mainly because of the lack of evaluation tools for this internal cognitive process.…

  2. Non-Mathematics Students' Reasoning in Calculus Tasks

    Science.gov (United States)

    Jukic Matic, Ljerka

    2015-01-01

    This paper investigates the reasoning of first year non-mathematics students in non-routine calculus tasks. The students in this study were accustomed to imitative reasoning from their primary and secondary education. In order to move from imitative reasoning toward more creative reasoning, non-routine tasks were implemented as an explicit part of…

  3. Understanding the Hispanic Student.

    Science.gov (United States)

    Dodd, John M.; And Others

    1989-01-01

    Describes cultural differences of Hispanic students in family structure, language, motivation, mysticism, machismo, touching, and time concepts which may lead to problems in the classroom. Suggests strategies teachers may employ to increase opportunities for positive school experiences for Hispanic students through recognition and acknowledgement…

  4. Code switching in student-student interaction; functions and reasons

    Directory of Open Access Journals (Sweden)

    Rita Amorim

    2012-01-01

    Full Text Available : Today’s students of English will communicate mostly with non-native speakers, in predominantly non-native speaking environments. English teachers know that if they are to realistically prepare students for international communication, they must focus on speaking activities that promote communicative competence and fluency. Presence of mother tongue in communicative exchanges is frequently detected by teachers in EFL classrooms. This study analyses student-student interaction during a group-work speaking activity, to uncover some of the reasons for code switching (CS. It also presents participants’ perspectives revealing mixed feelings towards this linguistic behaviour, which is sometimes intentional and sometimes unconscious. The aim of this paper is to illustrate how EFL students alternate between foreign language and native language to perform certain pragmatic functions and counter-balance for language deficiencies. It also considers the relationship between students’ language level and the functional character of their switches.

  5. Students' Understanding of Quadratic Equations

    Science.gov (United States)

    López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael

    2016-01-01

    Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help…

  6. Teaching Photosynthesis in a Compulsory School Context. Students’ Reasoning, Understanding and Interactions.

    Directory of Open Access Journals (Sweden)

    Helena Näs

    2011-02-01

    Full Text Available According to previous research, students show difficulties in understanding photosynthesis and respiration, and basic ecological concepts like energy flow in ecosystems. There are successful teaching units accomplished in this area and many of them can be described as inquiry-based teaching. One definition of inquiry-based teaching is that it involves everything from finding problems, investigating them, debating with peers and trying to explain and give solutions. Accordingly students need to be confronted with challenging questions and empirical data to reason about and teachers need to implement student-generated inquiry discussion since students often stay silent and do not express their thoughts during science lessons. This thesis will focus on young peoples’ understanding of the functioning of plants, students’ participation during biology lessons, and how biology teaching is accomplished in primary and secondary school.Two school classroom projects focusing on teaching about plants and ecology are described. Four teachers and their 4th, 5th and 6th grade classes plus two science teachers and their three 8th grade classes collaborated. Photosynthesis and respiration were made concrete by using tasks where plants, plant cells, germs, seeds and the gas exchange were used. The aim was to listen to students’ reasoning in both teaching and interview situations. Learning outcome, as described by students’ reasoning in the classrooms and in individual interviews but also by their test results, is especially focused. Student-student and student-teacher interactions have been analysed with an ethnographic approach in the classroom context.The plant tasks encouraged the students’ in primary school to develop scientific reasoning and the interviews confirmed that the students had learned about photosynthesis. The ecology teaching in secondary school showed a substantial understanding confirmed both by students’ oral and written

  7. Understanding Student Motivation

    Science.gov (United States)

    Seifert, Timothy

    2004-01-01

    Contemporary theories of academic motivation seek to explain students' behaviours in academic settings. While each theory seems to possess its own constructs and unique explanations, these theories are actually closely tied together. In this theoretical study of motivation, several theories of motivation were described and an underlying theme of…

  8. The Effect of Naive Ideas on Students' Reasoning about Electricity and Magnetism

    Science.gov (United States)

    Leppavirta, Johanna

    2012-01-01

    Traditional multiple-choice concept inventories measure students' critical conceptual understanding and are designed to reveal students' naive or alternate ideas. The overall scores, however, give little information about the state of students' knowledge and the consistency of reasoning. This study investigates whether students have consistent…

  9. Influences of OSCE design on students' diagnostic reasoning.

    Science.gov (United States)

    Lafleur, Alexandre; Côté, Luc; Leppink, Jimmie

    2015-02-01

    Some characteristics of assessments exert a strong influence on how students study. Understanding these pre-assessment learning effects is of key importance to the designing of medical assessments that foster students' reasoning abilities. Perceptions of the task demands of an assessment significantly influence students' cognitive processes. However, why and how certain tasks positively 'drive' learning remain unknown. Medical tasks can be assessed as coherent meaningful whole tasks (e.g. examining a patient based on his complaint to find the diagnosis) or can be divided into simpler part tasks (e.g. demonstrating the physical examination of a pre-specified disease). Comparing the benefits of whole-task and part-task assessments in a randomised controlled experiment could guide the design of 'assessments for learning'. The purpose of this study was to determine whether the knowledge that an objective structured clinical examination (OSCE) will contain whole tasks, as opposed to part tasks, increases the use of diagnostic reasoning by medical students when they study for this assessment. In this randomised, controlled, mixed-methods experiment, 40 medical students were randomly paired and filmed while studying together for two imminent physical examination OSCE stations. Each 25-minute study period began with video cues and ended with a questionnaire on cognitive loads. Cues disclosed either a part-task OSCE station (examination of a healthy patient) or a whole-task OSCE station (hypothesis-driven physical examination [HDPE]). In a crossover design, sequences were randomised for both task and content (shoulder or spine). Two blinded and independent authors scored all 40 videos in distinct randomised orders, listening to participants studying freely. Mentioning a diagnosis in association with a sign was scored as a backward association, and the opposite was scored as a forward association; both revealed the use of diagnostic reasoning. Qualitative data were obtained

  10. Students' understanding of quadratic equations

    Science.gov (United States)

    López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael

    2016-05-01

    Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help students achieve an understanding of quadratic equations with improved interrelation of ideas and more flexible application of solution methods. Semi-structured interviews with eight beginning undergraduate students explored which of the mental constructions conjectured in the genetic decomposition students could do, and which they had difficulty doing. Two of the mental constructions that form part of the genetic decomposition are highlighted and corresponding further data were obtained from the written work of 121 undergraduate science and engineering students taking a multivariable calculus course. The results suggest the importance of explicitly considering these two highlighted mental constructions.

  11. Enhancing scientific reasoning by refining students' models of multivariable causality

    Science.gov (United States)

    Keselman, Alla

    Inquiry learning as an educational method is gaining increasing support among elementary and middle school educators. In inquiry activities at the middle school level, students are typically asked to conduct investigations and infer causal relationships about multivariable causal systems. In these activities, students usually demonstrate significant strategic weaknesses and insufficient metastrategic understanding of task demands. Present work suggests that these weaknesses arise from students' deficient mental models of multivariable causality, in which effects of individual features are neither additive, nor constant. This study is an attempt to develop an intervention aimed at enhancing scientific reasoning by refining students' models of multivariable causality. Three groups of students engaged in a scientific investigation activity over seven weekly sessions. By creating unique combinations of five features potentially involved in earthquake mechanism and observing associated risk meter readings, students had to find out which of the features were causal, and to learn to predict earthquake risk. Additionally, students in the instructional and practice groups engaged in self-directed practice in making scientific predictions. The instructional group also participated in weekly instructional sessions on making predictions based on multivariable causality. Students in the practice and instructional conditions showed small to moderate improvement in their attention to the evidence and in their metastrategic ability to recognize effective investigative strategies in the work of other students. They also demonstrated a trend towards making a greater number of valid inferences than the control group students. Additionally, students in the instructional condition showed significant improvement in their ability to draw inferences based on multiple records. They also developed more accurate knowledge about non-causal features of the system. These gains were maintained

  12. Problem based learning to improve proportional reasoning of students in mathematics learning

    Science.gov (United States)

    Misnasanti, Utami, Ratna Widianti; Suwanto, Fevi Rahmawati

    2017-08-01

    This paper reviews about the using of Problem Based Learning (PBL) to improve proportional reasoning of students in mathematics learning. Mathematics is one of the subjects at school which generally has a goal to help students preparing themselves in this growth century. To achieve the goal of mathematics learning, student's good reasoning is needed as the base of mathematics itself. This reasoning is an ability to think through logic ideas about mathematics concept. One of reasoning mathematics ability is the proportional reasoning. Proportional reasoning is knowing the multiplicative relationship between the base ratio and the proportional situation to which it's applied. Proportional reasoning is important to have by students in learning mathematics. Many topics within the school mathematics require knowledge and understanding of ratio and proportion, for examples problem solving and calculation activities in domains involving scale, probability, percent, rate, trigonometry, equivalence, measurement, the geometry of plane shapes, algebra are assisted through ratio and proportion knowledge. But, the mastership of proportional reasoning ability, of course, can't be apart from teacher's role. In learning, a teacher has to choose and apply the right model so that it can improve the proportional reasoning ability of students. One of the alternative ways which could be applied to improve proportional reasoning ability of students is by applying PBL Model. Applying PBL which based on problem indirectly has trained students to solve every problem in front of them. Thus, applying PBL can improve mathematics proportional reasoning of students in mathematics learning.

  13. Thinking in physics the pleasure of reasoning and understanding

    CERN Document Server

    Viennot, Laurence

    2014-01-01

    Read this book if you care about students really understanding physics and getting genuine intellectual satisfaction from doing so. Read it too if you fear that this goal is out of reach ? you may be surprised! Laurence Viennot here shows ways to deal with the awkward fact that common sense thinking is often not the same as scientific thinking. She analyses examples of frequent and widespread errors and confusions, which provide a real eye-opener for the teacher. More than that, she shows ways to avoid and overcome them. The book argues against over-emphasis on "fun" applications, demonstratin

  14. LOGICAL REASONING ABILITY AND STUDENT PERFORMANCE IN GENERAL CHEMISTRY.

    Science.gov (United States)

    Bird, Lillian

    2010-03-01

    Logical reasoning skills of students enrolled in General Chemistry at the University of Puerto Rico in Río Piedras were measured using the Group Assessment of Logical Thinking (GALT) test. The results were used to determine the students' cognitive level (concrete, transitional, formal) as well as their level of performance by logical reasoning mode (mass/volume conservation, proportional reasoning, correlational reasoning, experimental variable control, probabilistic reasoning and combinatorial reasoning). This information was used to identify particular deficiencies and gender effects, and to determine which logical reasoning modes were the best predictors of student performance in the general chemistry course. Statistical tests to analyze the relation between (a) operational level and final grade in both semesters of the course; (b) GALT test results and performance in the ACS General Chemistry Examination; and (c) operational level and student approach (algorithmic or conceptual) towards a test question that may be answered correctly using either strategy, were also performed.

  15. A Framework for Assessing High School Students' Statistical Reasoning.

    Science.gov (United States)

    Chan, Shiau Wei; Ismail, Zaleha; Sumintono, Bambang

    2016-01-01

    Based on a synthesis of literature, earlier studies, analyses and observations on high school students, this study developed an initial framework for assessing students' statistical reasoning about descriptive statistics. Framework descriptors were established across five levels of statistical reasoning and four key constructs. The former consisted of idiosyncratic reasoning, verbal reasoning, transitional reasoning, procedural reasoning, and integrated process reasoning. The latter include describing data, organizing and reducing data, representing data, and analyzing and interpreting data. In contrast to earlier studies, this initial framework formulated a complete and coherent statistical reasoning framework. A statistical reasoning assessment tool was then constructed from this initial framework. The tool was administered to 10 tenth-grade students in a task-based interview. The initial framework was refined, and the statistical reasoning assessment tool was revised. The ten students then participated in the second task-based interview, and the data obtained were used to validate the framework. The findings showed that the students' statistical reasoning levels were consistent across the four constructs, and this result confirmed the framework's cohesion. Developed to contribute to statistics education, this newly developed statistical reasoning framework provides a guide for planning learning goals and designing instruction and assessments.

  16. Reasons for Seasons Assessment Outcomes For Diverse Students

    Science.gov (United States)

    Faubert, R. M.; Pyke, C.; Lynch, S.; Ochsendorf, R.

    2003-12-01

    students, who presumably understand the reasons for Earth's seasons. In this paper, we report on the results of the initial administrations of the instrument for these three groups.

  17. Reasons for Synthetic THC Use among College Students

    Science.gov (United States)

    Vidourek, Rebecca A.; King, Keith A.; Burbage, Michelle L.

    2013-01-01

    Synthetic THC, also known as fake marijuana, is used by college students in the United States. The present study examined reasons for recent synthetic THC use among college students (N = 339). Students completed a 3-page survey during regularly scheduled class times. Results indicated students reported using synthetic THC for curiosity, to get…

  18. Student understanding of first order RC filters

    Science.gov (United States)

    Coppens, Pieter; Van den Bossche, Johan; De Cock, Mieke

    2017-12-01

    A series of interviews with second year electronics engineering students showed several problems with understanding first-order RC filters. To better explore how widespread these problems are, a questionnaire was administered to over 150 students in Belgium. One question asked to rank the output voltage of a low-pass filter with an AC or DC input signal while a second asked to rank the output voltages of a high-pass filter with doubled or halved resistor and capacitor values. In addition to a discussion of the rankings and students' consistency, the results are compared to the most common reasoning patterns students used to explain their rankings. Despite lecture and laboratory instruction, students not only rarely recognize the circuits as filters, but also fail to correctly apply Kirchhoff's laws and Ohm's law to arrive at a correct answer.

  19. The Most Reasonable Answer: Helping Students Build Better Arguments Together

    Science.gov (United States)

    Reznitskaya, Alina; Wilkinson, Ian A. G.

    2017-01-01

    "The Most Reasonable Answer" is an innovative and comprehensive guide to engaging students in inquiry dialogue--a type of talk used in text-based classroom discussions. During inquiry dialogue, students collectively search for the most reasonable answers to big, controversial questions, and, as a result, enhance their argumentation…

  20. Undergraduate Students' Quantitative Reasoning in Economic Contexts

    Science.gov (United States)

    Mkhatshwa, Thembinkosi Peter; Doerr, Helen M.

    2018-01-01

    Contributing to a growing body of research on undergraduate students' quantitative reasoning, the study reported in this article used task-based interviews to investigate business calculus students' quantitative reasoning when solving two optimization tasks situated in the context of revenue and profit maximization. Analysis of verbal responses…

  1. Student Reasoning about Graphs in Different Contexts

    Science.gov (United States)

    Ivanjek, Lana; Susac, Ana; Planinic, Maja; Andrasevic, Aneta; Milin-Sipus, Zeljka

    2016-01-01

    This study investigates university students' graph interpretation strategies and difficulties in mathematics, physics (kinematics), and contexts other than physics. Eight sets of parallel (isomorphic) mathematics, physics, and other context questions about graphs, which were developed by us, were administered to 385 first-year students at the…

  2. How Japanese students reason about agricultural biotechnology.

    Science.gov (United States)

    Maekawa, Fumi; Macer, Darryl

    2004-10-01

    Many have claimed that education of the ethical issues raised by biotechnology is essential in universities, but there is little knowledge of its effectiveness. The focus of this paper is to investigate how university students assess the information given in class to make their own value judgments and decisions relating to issues of agricultural biotechnology, especially over genetically modified organisms (GMOs). Analysis of homework reports related with agricultural biotechnology after identification of key concepts and ideas in each student report is presented. The ideas were sorted into different categories. The ideas were compared with those in the reading materials using the same categories. These categories included: concern about affects on humans, affects on the environment, developing countries and starvation, trust in industry, responsibility of scientists, risk perception, media influence, need for (international) organizations or third parties, and information dissemination. What was consistent through the different years was that more than half of the students took a "neutral" position. A report was scored as "neutral" when the report included both the positive and negative side of an issue, or when the student could not make a definite decision about the use of GMOs and GM food. While it may be more difficult to defend a strong ''for" or "against" position, some students used logical arguments successfully in doing so. Sample comments are presented to depict how Japanese students see agricultural technology, and how they value its application, with comparisons to the general social attitudes towards biotechnology.

  3. Prejudice (Student Book). Value Reasoning Series.

    Science.gov (United States)

    Main, John, Ed.

    This curriculum unit consists of various student readings and activities on the topic of prejudice. The focus is upon prejudice as it relates to various ethnic groups in North America, to anti-Semitism as a national policy in Nazi Germany, and to immigration policy. It is divided into six episodes, each of which focuses upon the teaching of a…

  4. Student Moon Observations and Spatial-Scientific Reasoning

    Science.gov (United States)

    Cole, Merryn; Wilhelm, Jennifer; Yang, Hongwei

    2015-01-01

    Relationships between sixth grade students' moon journaling and students' spatial-scientific reasoning after implementation of an Earth/Space unit were examined. Teachers used the project-based Realistic Explorations in Astronomical Learning curriculum. We used a regression model to analyze the relationship between the students' Lunar Phases…

  5. Clinical reasoning of nursing students on clinical placement: Clinical educators' perceptions.

    Science.gov (United States)

    Hunter, Sharyn; Arthur, Carol

    2016-05-01

    Graduate nurses may have knowledge and adequate clinical psychomotor skills however they have been identified as lacking the clinical reasoning skills to deliver safe, effective care suggesting contemporary educational approaches do not always facilitate the development of nursing students' clinical reasoning. While nursing literature explicates the concept of clinical reasoning and develops models that demonstrate clinical reasoning, there is very little published about nursing students and clinical reasoning during clinical placements. Semi-structured interviews were conducted with ten clinical educators to gain an understanding of how they recognised, developed and appraised nursing students' clinical reasoning while on clinical placement. This study found variability in the clinical educators' conceptualisation, recognition, and facilitation of students' clinical reasoning. Although most of the clinical educators conceptualised clinical reasoning as a process those who did not demonstrated the greatest variability in the recognition and facilitation of students' clinical reasoning. The clinical educators in this study also described being unable to adequately appraise a student's clinical reasoning during clinical placement with the use of the current performance assessment tool. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Students' Pre- and Post-Teaching Analogical Reasoning When They Draw their Analogies

    Science.gov (United States)

    Braga Mozzer, Nilmara; Justi, Rosária

    2012-02-01

    Analogies are parts of human thought. From them, we can acquire new knowledge or change that which already exists in our cognitive structure. In this sense, understanding the analogical reasoning process becomes an essential condition to understand how we learn. Despite the importance of such an understanding, there is no general agreement in cognitive science literature about this issue. In this study, we investigated students' analogical reasoning as a creative process where an environment was set up to foster the students' generating and explaining their own analogies. Data were gathered from pre- and post-teaching interviews, in which the 13-14-year-old students were asked to make comparisons that could explain how atoms are bound. Such data supported the discussion about how students reasoned analogically. Our results made it evident that the task aims and the students' salient knowledge exerted a great influence on the drawing of analogies.

  7. Consequences the extensive use of multiple-choice questions might have on student's reasoning structure

    OpenAIRE

    Raduta, C. M.

    2013-01-01

    Learning physics is a context dependent process. I consider a broader interdisciplinary problem of where differences in understanding and reasoning arise. I suggest the long run effects a multiple choice based learning system as well as society cultural habits and rules might have on student reasoning structure.

  8. Why Do Students Plagiarize? Efl Undergraduates’ Views on the Reasons Behind Plagiarism

    Directory of Open Access Journals (Sweden)

    Doró Katalin

    2014-03-01

    Full Text Available Cheating and plagiarism spread like pandemics in many educational contexts and are difficulty to detect, fight and also to understand. The purpose of this exploratory study is to investigate what first-year students of English at a large Hungarian university believe to be the main reasons for plagiarism. Twenty-five students were asked to express their views in a free opinion essay. Perceived reasons were categorized into twelve main groups based on the literature and the reasons for plagiarism provided by faculty members at the same university. The most often mentioned reasons included saving time and effort and unintentional plagiarism.

  9. Reasons for Living and Alcohol Use among College Students

    Science.gov (United States)

    Lamis, Dorian A.; Ellis, Jon B.; Chumney, Frances L.; Dula, Chris S.

    2009-01-01

    Heavy alcohol consumption is prevalent on many college campuses and alcohol use has been linked to suicidal behavior. The present study examined reasons for living in 287 college students with varying levels of risk for alcohol-related problems. With the exception of the moral objections subscale of the Reasons for Living Inventory, significant…

  10. Contextual object understanding through geospatial analysis and reasoning (COUGAR)

    Science.gov (United States)

    Douglas, Joel; Antone, Matthew; Coggins, James; Rhodes, Bradley J.; Sobel, Erik; Stolle, Frank; Vinciguerra, Lori; Zandipour, Majid; Zhong, Yu

    2009-05-01

    Military operations in urban areas often require detailed knowledge of the location and identity of commonly occurring objects and spatial features. The ability to rapidly acquire and reason over urban scenes is critically important to such tasks as mission and route planning, visibility prediction, communications simulation, target recognition, and inference of higher-level form and function. Under DARPA's Urban Reasoning and Geospatial ExploitatioN Technology (URGENT) Program, the BAE Systems team has developed a system that combines a suite of complementary feature extraction and matching algorithms with higher-level inference and contextual reasoning to detect, segment, and classify urban entities of interest in a fully automated fashion. Our system operates solely on colored 3D point clouds, and considers object categories with a wide range of specificity (fire hydrants, windows, parking lots), scale (street lights, roads, buildings, forests), and shape (compact shapes, extended regions, terrain). As no single method can recognize the diverse set of categories under consideration, we have integrated multiple state-of-the-art technologies that couple hierarchical associative reasoning with robust computer vision and machine learning techniques. Our solution leverages contextual cues and evidence propagation from features to objects to scenes in order to exploit the combined descriptive power of 3D shape, appearance, and learned inter-object spatial relationships. The result is a set of tools designed to significantly enhance the productivity of analysts in exploiting emerging 3D data sources.

  11. Logical Reasoning Ability and Student Performance in General Chemistry

    Science.gov (United States)

    Bird, Lillian

    2010-01-01

    Logical reasoning skills of students enrolled in a general chemistry course at the University of Puerto Rico in Rio Piedras were measured using the Group Assessment of Logical Thinking (GALT) test. The results were used to determine the students' cognitive level (concrete, transitional, formal) as well as their level of performance by logical…

  12. Inquiry pedagogy to promote emerging proportional reasoning in primary students

    Science.gov (United States)

    Fielding-Wells, Jill; Dole, Shelley; Makar, Katie

    2014-03-01

    Proportional reasoning as the capacity to compare situations in relative (multiplicative) rather than absolute (additive) terms is an important outcome of primary school mathematics. Research suggests that students tend to see comparative situations in additive rather than multiplicative terms and this thinking can influence their capacity for proportional reasoning in later years. In this paper, excerpts from a classroom case study of a fourth-grade classroom (students aged 9) are presented as they address an inquiry problem that required proportional reasoning. As the inquiry unfolded, students' additive strategies were progressively seen to shift to proportional thinking to enable them to answer the question that guided their inquiry. In wrestling with the challenges they encountered, their emerging proportional reasoning was supported by the inquiry model used to provide a structure, a classroom culture of inquiry and argumentation, and the proportionality embedded in the problem context.

  13. Impacts of Socratic questioning on moral reasoning of nursing students.

    Science.gov (United States)

    Torabizadeh, Camellia; Homayuni, Leyla; Moattari, Marzieh

    2018-03-01

    Nurses are often faced with complex situations that made them to make ethical decisions; and to make such decisions, they need to possess the power of moral reasoning. Studies in Iran show that the majority of nursing students lack proper ethical development. Socratic teaching is a student-centered method which is strongly opposed to the lecturing method. This study was conducted to evaluate the impacts of Socratic questioning on the moral reasoning of the nursing students. In a quasi-experimental study, Crisham's Nursing Dilemma Test was used to evaluate the results of three groups before, immediately after, and 2 months after intervention. The data were analyzed using the SPSS statistical software (v 15). Participants and research context: Through random allocation, 103 nursing students were divided into three groups. In experiment group 1 (37 students), intervention consisted of Socratic questioning-based sessions on ethics and how to deal with moral dilemmas; experiment group 2 (33 students) attended a 4-h workshop; and the control group (33 students) was not subject to any interventions. Signed informed consent forms: This research was approved by the Ethics Committee of the University. All the participants signed written informed consents. There were significant differences between experiment group 1 and experiment group 2's pre-test and post-test scores on moral reasoning (p ≤ 0.001, p ≤ 0.001), nursing principled thinking (p ≤ 0.001, p ≤ 0.001), and practical considerations (p ≤ 0.001, p ≤ 0.031). Both the teaching approaches improved the subjects' moral reasoning; however, Socratic questioning proved more effective than lecturing. Compared to other similar studies in Iran and other countries, the students had inadequate moral reasoning competence. This study confirms the need for the development of an efficient course on ethics in the nursing curriculum. Also, it appears that Socratic questioning is an effective method to teach nursing ethics

  14. Feedback on students' clinical reasoning skills during fieldwork education.

    Science.gov (United States)

    de Beer, Marianne; Mårtensson, Lena

    2015-08-01

    Feedback on clinical reasoning skills during fieldwork education is regarded as vital in occupational therapy students' professional development. The nature of supervisors' feedback however, could be confirmative and/or corrective and corrective feedback could be with or without suggestions on how to improve. The aim of the study was to evaluate the impact of supervisors' feedback on final-year occupational therapy students' clinical reasoning skills through comparing the nature of feedback with the students' subsequent clinical reasoning ability. A mixed-method approach with a convergent parallel design was used combining the collection and analysis of qualitative and quantitative data. From focus groups and interviews with students, data were collected and analysed qualitatively to determine how the students experienced the feedback they received from their supervisors. By quantitatively comparing the final practical exam grades with the nature of the feedback, their fieldwork End-of-Term grades and average academic performance it became possible to merge the results for comparison and interpretation. Students' clinical reasoning skills seem to be improved through corrective feedback if accompanied by suggestions on how to improve, irrespective of their average academic performance. Supervisors were inclined to underrate high performing students and overrate lower performing students. Students who obtained higher grades in the final practical examinations received more corrective feedback with suggestions on how to improve from their supervisors. Confirmative feedback alone may not be sufficient for improving the clinical reasoning skills of students. © 2015 The Authors. Australian Occupational Therapy Journal published by Wiley Publishing Asia Pty Ltd on behalf of Occupational Therapy Australia.

  15. The effect of problem posing and problem solving with realistic mathematics education approach to the conceptual understanding and adaptive reasoning

    Science.gov (United States)

    Mahendra, Rengga; Slamet, Isnandar; Budiyono

    2017-12-01

    One of the difficulties of students in learning mathematics is on the subject of geometry that requires students to understand abstract things. The aim of this research is to determine the effect of learning model Problem Posing and Problem Solving with Realistic Mathematics Education Approach to conceptual understanding and students' adaptive reasoning in learning mathematics. This research uses a kind of quasi experimental research. The population of this research is all seventh grade students of Junior High School 1 Jaten, Indonesia. The sample was taken using stratified cluster random sampling technique. The test of the research hypothesis was analyzed by using t-test. The results of this study indicate that the model of Problem Posing learning with Realistic Mathematics Education Approach can improve students' conceptual understanding significantly in mathematics learning. In addition tu, the results also showed that the model of Problem Solving learning with Realistic Mathematics Education Approach can improve students' adaptive reasoning significantly in learning mathematics. Therefore, the model of Problem Posing and Problem Solving learning with Realistic Mathematics Education Approach is appropriately applied in mathematics learning especially on the subject of geometry so as to improve conceptual understanding and students' adaptive reasoning. Furthermore, the impact can improve student achievement.

  16. Analyzing high school students' reasoning about electromagnetic induction

    Science.gov (United States)

    Jelicic, Katarina; Planinic, Maja; Planinsic, Gorazd

    2017-06-01

    Electromagnetic induction is an important, yet complex, physics topic that is a part of Croatian high school curriculum. Nine Croatian high school students of different abilities in physics were interviewed using six demonstration experiments from electromagnetism (three of them concerned the topic of electromagnetic induction). Students were asked to observe, describe, and explain the experiments. The analysis of students' explanations indicated the existence of many conceptual and reasoning difficulties with the basic concepts of electromagnetism, and especially with recognizing and explaining the phenomenon of electromagnetic induction. Three student mental models of electromagnetic induction, formed during the interviews, which reoccurred among students, are described and analyzed within the knowledge-in-pieces framework.

  17. A Tri-part Model for Genetics Literacy: Exploring Undergraduate Student Reasoning About Authentic Genetics Dilemmas

    Science.gov (United States)

    Shea, Nicole A.; Duncan, Ravit Golan; Stephenson, Celeste

    2015-08-01

    Genetics literacy is becoming increasingly important as advancements in our application of genetic technologies such as stem cell research, cloning, and genetic screening become more prevalent. Very few studies examine how genetics literacy is applied when reasoning about authentic genetic dilemmas. However, there is evidence that situational features of a reasoning task may influence how students apply content knowledge as they generate and support arguments. Understanding how students apply content knowledge to reason about authentic and complex issues is important for considering instructional practices that best support student thinking and reasoning. In this conceptual report, we present a tri-part model for genetics literacy that embodies the relationships between content knowledge use, argumentation quality, and the role of situational features in reasoning to support genetics literacy. Using illustrative examples from an interview study with early career undergraduate students majoring in the biological sciences and late career undergraduate students majoring in genetics, we provide insights into undergraduate student reasoning about complex genetics issues and discuss implications for teaching and learning. We further discuss the need for research about how the tri-part model of genetics literacy can be used to explore students' thinking and reasoning abilities in genetics.

  18. "Can You Tell Me More?" Student Journaling and Reasoning

    Science.gov (United States)

    Yow, Jan A.

    2015-01-01

    Journals provide a history of each student's thinking over time and allow this history to be easy to review. Journaling in mathematics has been found to be a valuable tool both for students and for teachers. Students benefit from journaling because it advances their mathematical understanding and ability to communicate in mathematics; teachers…

  19. Understanding Student Travel Behaviour in Semarang City

    Science.gov (United States)

    Manullang, O. R.; Tyas, W. P.; Anas, N.; Aji, F. N.

    2018-02-01

    The highest movement in Semarang City is dominated by motorcycles, which reached 79% of the number of vehicles. Highest percentage movement use motorcycle caused the highest percentage accident by motorcycle users, which reached 66% and 9% involving high school students. This happens because of the dependence of motorcycles usage in fulfilling the needs of movement in the city of Semarang. Understanding student travel behavior based on their activities is used to know travel needs and the cause of dependence on motorcycle usage. Analysis method in this study use network analysis to compare the potential accessibility and actual accessibility to known why motorcycle chosen by students as the main mode. In addition, phenomenology analysis is used to explain the intent and reasons the data produced by network analysis. The analysis result indicates that the high use of motorcycles by high school students in the Semarang city due to the absence of other effective and efficient modes in fulfilling the movement needs. Even, the student which can potentially use public transport preferred to use a motorcycle. This mode is more effective and efficient because of its flexibility and lower costs.

  20. Promoting student case creation to enhance instruction of clinical reasoning skills: a pilot feasibility study.

    Science.gov (United States)

    Chandrasekar, Hamsika; Gesundheit, Neil; Nevins, Andrew B; Pompei, Peter; Bruce, Janine; Merrell, Sylvia Bereknyei

    2018-01-01

    It is a common educational practice for medical students to engage in case-based learning (CBL) exercises by working through clinical cases that have been developed by faculty. While such faculty-developed exercises have educational strengths, there are at least two major drawbacks to learning by this method: the number and diversity of cases is often limited; and students decrease their engagement with CBL cases as they grow accustomed to the teaching method. We sought to explore whether student case creation can address both of these limitations. We also compared student case creation to traditional clinical reasoning sessions in regard to tutorial group effectiveness, perceived gains in clinical reasoning, and quality of student-faculty interaction. Ten first-year medical students participated in a feasibility study wherein they worked in small groups to develop their own patient case around a preassigned diagnosis. Faculty provided feedback on case quality afterwards. Students completed pre- and post-self-assessment surveys. Students and faculty also participated in separate focus groups to compare their case creation experience to traditional CBL sessions. Students reported high levels of team engagement and peer learning, as well as increased ownership over case content and understanding of clinical reasoning nuances. However, students also reported decreases in student-faculty interaction and the use of visual aids ( P study suggest that student-generated cases can be a valuable adjunct to traditional clinical reasoning instruction by increasing content ownership, encouraging student-directed learning, and providing opportunities to explore clinical nuances. However, these gains may reduce student-faculty interaction. Future studies may be able to identify an improved model of faculty participation, the ideal timing for incorporation of this method in a medical curriculum, and a more rigorous assessment of the impact of student case creation on the

  1. The Perceptions of Elementary Students about the Reasons for Bullying

    Directory of Open Access Journals (Sweden)

    Hülya Kartal

    2012-06-01

    Full Text Available A person is being bullied when he or she is exposed repeatedly and over time to negative actions on the part of one or more persons. Incidents of bullying are frequent occurrences for many children at school. This study was intended to investigate the perceptions of the elementary students about the reasons for bullying in the school. For this purpose 688 students from 4-8th. Grades of an elementary school were given a questionnaire “Colorado School Climate Survey”. The data was analyzed in terms of frequencies and percentiles. The results revealed that the most frequently reported reason was being physically weak (for bullies 56.5%, bullyvictims 52.9%, victims 48.6%, being fat (for victims bully-victims 45.1%, victims 42.6% and being poor (for bully-victims 43.2%, victims 41.5%, neither bully nor victims 39.4%. Almost half of the girls reported that the reasons of bullying are being short, being poor and being fat. Boys reported these reasons physical weakness, being fat and being skinny. According to neither bullies nor victims the reasons of bullying are physical weakness, poorness, and bad wearing. Victims also reported that first reason is physical weakness. Bullies reported that children without friends, short and poor children mostly bullied. Bully/victims again talked about physical weakness

  2. College Students' Reasons for Depression Nondisclosure in Primary Care

    Science.gov (United States)

    Meyer, William J.; Morrison, Patrick; Lombardero, Anayansi; Swingle, Kelsey; Campbell, Duncan G.

    2016-01-01

    Unwillingness to share depression experiences with primary care physicians contributes to the undertreatment of depression. This project examined college students' reasons for depression nondisclosure to primary care providers (PCPs). Undergraduate participants read a vignette describing someone with depression and completed measures of disclosure…

  3. Explicitly Targeting Pre-Service Teacher Scientific Reasoning Abilities and Understanding of Nature of Science through an Introductory Science Course

    Science.gov (United States)

    Koenig, Kathleen; Schen, Melissa; Bao, Lei

    2012-01-01

    Development of a scientifically literate citizenry has become a national focus and highlights the need for K-12 students to develop a solid foundation of scientific reasoning abilities and an understanding of nature of science, along with appropriate content knowledge. This implies that teachers must also be competent in these areas; but…

  4. Student reasoning about electrostatic and gravitational potential energy: An exploratory study with interdisciplinary consequences

    Directory of Open Access Journals (Sweden)

    Beth A. Lindsey

    2014-01-01

    Full Text Available This paper describes an investigation into student reasoning about potential energy in the context of introductory electrostatics. Similar incorrect reasoning patterns emerged both in written questions administered after relevant instruction and in one-on-one interviews. These reasoning patterns are also prevalent in responses to questions posed about gravitational potential energy in the context of universal gravitation in introductory mechanics. This finding is relevant for interdisciplinary research, because many courses in multiple disciplines first introduce the concept of electric potential energy in analogy to gravitational potential energy. The results suggest that in introductory courses students do not gain an understanding of potential energy that is sufficiently robust to apply in more advanced physics courses or in disciplines other than physics, in which students must frequently reason with energy in the context of interactions between atoms and molecules.

  5. Epistemologies and scientific reasoning skills among undergraduate science students

    Science.gov (United States)

    Mollohan, Katherine N.

    Non-cognitive factors such as students' attitudes and beliefs toward a subject and their proficiency in scientific reasoning are important aspects of learning within science disciplines. Both factors have been studied in relation to science education in various discplines. This dissertation presents three studies that investigate student epistemologies and scientific reasoning in the domain of biology education. The first study investigated students' epistemic viewpoints in two introductory biology courses, one for science majors and one for non-science majors. This quantitative investigation revealed that the majors exhibited a negative shift in their attitudes and beliefs about biology and learning biology during a semester of introductory instruction. However, the non-science majors did not exhibit a similar shift. If fact, the non-science majors improved in their attitudes and beliefs during a semester of instruction, though not significantly so. The second study expands epistemological research to a population that has often been left out of this work, that is, intermediate-level biology majors. Quantitative and qualitative data was collected to reveal that junior and senior ranked students for the most part were able to characterize their views about biology and learning biology, and were able to associate factors with their epistemic improvement. Finally, the third study expands epistemology research further to determine if scientific reasoning and student attitudes and beliefs about learning science (specifically biology) are related. After a description of how various science and engineering majors compare in their scientific reasoning skills, this study indicated that among intermediate level biology majors there is no relationship between scientific reasoning skills and epistemologies, nor is there a relationship with other educational factors, including the number of courses taken during an undergraduate career, cumulative GPA, and standardized test

  6. Development and application of a two-tier diagnostic instrument to assess middle-years students' proportional reasoning

    Science.gov (United States)

    Hilton, Annette; Hilton, Geoff; Dole, Shelley; Goos, Merrilyn

    2013-12-01

    Proportional reasoning involves the use of ratios in the comparison of quantities. While it is a key aspect of numeracy, particularly in the middle years of schooling, students do not always develop proportional reasoning naturally. Research suggests that many students do not apply proportional methods appropriately and that they often erroneously apply both multiplicative and additive thinking. Further, students cannot always distinguish non-proportional situations from those that are proportional. Understanding the situations in which students mistakenly use additive or multiplicative thinking and the nature of the proportional reasoning that students apply to different problem types is important for teachers seeking to support their students to develop proportional reasoning in the classroom. This paper describes the development and use of a two-tier diagnostic instrument to identify situations in which students could and could not apply proportional reasoning and the types of reasoning they used. It presents data from an Australian study involving over 2000 middle-years students (Years 5 to 9) as a means of illustrating the use of the instrument for diagnosing students' reasoning in different situations. The findings showed that the instrument was useful for identifying problem types in which students of different ages were able to apply correct reasoning. It also allowed identification of the types of incorrect reasoning used by students. The paper also describes useful applications of the instrument, including its use as a diagnostic instrument by classroom teachers and its use in the design of classroom activities included in teacher professional learning workshops.

  7. Five reasons for the lack of nursing students' motivation to learn public health.

    Science.gov (United States)

    Kudo, Yasushi; Hayashi, Sachiko; Yoshimura, Emiko; Tsunoda, Masashi; Tsutsumi, Akizumi; Shibuya, Akitaka; Aizawa, Yoshiharu

    2013-11-01

    Prevention is better than cure. Public health plays an important role in promoting prevent medicine. To obtain the abilities to provide appropriate nursing services, learning public health is necessary for students who want to become registered nurses. When teachers teach public health to nursing students, it is important to motivate them to learn it. Therefore, we investigated the reasons for the lack of motivation to learn public health by conducting a questionnaire survey. The subjects were female nursing students in 29 vocational schools in Kanagawa and Chiba prefectures of Japan that allow graduation after a 3-year study period. We asked the students whether or not they had completed the subject of public health and analyzed those students who answered affirmatively. We analyzed 1,553 respondents whose average age was 22.6 ± 5.2 years (range, 18 to 45). Using factor analysis, we discovered the 5 reasons that lead to the lack of nursing students' motivation to learn public health: "Difficulties acquiring knowledge of public health," "Inappropriate attitudes of public health teachers," "Thinking lightly about the national examination in the field of public health," "Lack of understanding the importance of learning public health," and "Future plans that do not specialize in public health." Using multiple linear regression analysis, these 5 reasons were significant predictors for the lack of students' motivation. Older students also had significantly less motivation to learn public health than did younger students. When teachers instruct their students, they should teach public health better with the present knowledge.

  8. Changing students' moral reasoning ability – is it at all possible ...

    African Journals Online (AJOL)

    Background. Ethics training at tertiary level is important to facilitate an understanding of patient dignity and respect. Traditionally, ethics has been taught in the form of didactic lectures; however, the authors are of the opinion that practical applications are more useful. Objective. To measure students' moral reasoning ...

  9. Socio-Demographic Differences in Energy Drink Consumption and Reasons for Consumption among US College Students

    Science.gov (United States)

    Poulos, Natalie S.; Pasch, Keryn E.

    2016-01-01

    Background: Energy drink consumption has become increasingly prevalent among US college students, yet little is known about current rates of consumption and reasons for consumption among current energy drink users, particularly differences related to gender and race/ethnicity. Objectives: To better understand energy drink consumption alone and…

  10. Students' Cognitive Reasoning of Graphs: Characteristics and Progression

    Science.gov (United States)

    Wang, Zu Hao; Wei, Silin; Ding, Wei; Chen, Xiuyun; Wang, Xiaonan; Hu, Kaiyan

    2012-01-01

    Graphs are widely used to present scientific information. Information presented in graphs can be classified into three kinds: explicit information, tacit information, and conclusive information. Reading information from graphs requires not only science content knowledge and understanding but also general logical reasoning. This study examined the…

  11. Assessing Student Peer Dialogue in Collaborative Settings: A Window into Student Reasoning

    Science.gov (United States)

    Stone, Antoinette

    The use of science classroom discourse analysis as a way to gain a better understanding of various student cognitive outcomes has a rich history in Science Education in general and Physics Education Research (PER) in particular. When students talk to each other in a collaborative peer instruction environment, such as in the CLASP classes (Collaborative Learning and Sense-making in Physics) at UC Davis, they get to practice and enhance their reasoning and sense-making skills, develop collaborative approaches to problem solving, and participate in co-construction of knowledge and shared thinking. To better understand these important cognitive processes, an analysis tool for monitoring, assessing and categorizing the peer talk arising in this environment is needed as a first step in teasing out evidence for these processes inherent in such talk. In order to meaningfully contribute to the extensive body of knowledge that currently exists, deeper, more insightful answers to the question of what happens linguistically when students struggle to "make sense" and how students use language to mediate these important cognitive outcomes is needed. To this end, a new tool for interpreting particularly qualitative linguistic data is needed, and the first part of the dissertation expounds on the development of a discourse analysis tool that has as its underpinnings a framework for coding borrowed extensively from Systemic Functional Linguistics Theory (SFL). The second part of this dissertation illustrates multiple ways in which the tool is used and how it can be utilized to address many current research questions.

  12. Belief Reasoning and Emotion Understanding in Balanced Bilingual and Language-Dominant Mexican American Young Children.

    Science.gov (United States)

    Weimer, Amy A; Gasquoine, Philip G

    2016-01-01

    Belief reasoning and emotion understanding were measured among 102 Mexican American bilingual children ranging from 4 to 7 years old. All children were tested in English and Spanish after ensuring minimum comprehension in each language. Belief reasoning was assessed using 2 false and 1 true belief tasks. Emotion understanding was measured using subtests from the Test for Emotion Comprehension. The influence of family background variables of yearly income, parental education level, and number of siblings on combined Spanish and English vocabulary, belief reasoning, and emotion understanding was assessed by regression analyses. Age and emotion understanding predicted belief reasoning. Vocabulary and belief reasoning predicted emotion understanding. When the sample was divided into language-dominant and balanced bilingual groups on the basis of language proficiency difference scores, there were no significant differences on belief reasoning or emotion understanding. Language groups were demographically similar with regard to child age, parental educational level, and family income. Results suggest Mexican American language-dominant and balanced bilinguals develop belief reasoning and emotion understanding similarly.

  13. Understanding Disabilities & Online Student Success

    Science.gov (United States)

    Betts, Kristen; Welsh, Bill; Pruitt, Cheryl; Hermann, Kelly; Dietrich, Gaeir; Trevino, Jorge G.; Watson, Terry L.; Brooks, Michael L.; Cohen, Alex H.; Coombs, Norman

    2013-01-01

    Online learning has been growing at an exponential rate over the past decade, providing new opportunities for students seeking quality courses and programs offered through flexible formats. However, as higher education continues to expand online offerings, services must be expanded simultaneously to support all students. This article focuses on…

  14. Conjecturing via analogical reasoning constructs ordinary students into like gifted student

    Science.gov (United States)

    Supratman; Ratnaningsih, N.; Ryane, S.

    2017-12-01

    The purpose of this study is to reveal the development of knowledge of ordinary students to be like gifted students in the classroom based on Piaget's theory. In exposing it, students are given an open problem of classical analogy. Researchers explore students who conjecture via analogical reasoning in problem solving. Of the 32 students, through the method of think out loud and the interview was completed: 25 students conjecture via analogical reasoning. Of the 25 students, all of them have almost the same character in problem solving/knowledge construction. For that, a student is taken to analyze the thinking process while solving the problem/construction of knowledge based on Piaget's theory. Based on Piaget's theory in the development of the same knowledge, gifted students and ordinary students have similar structures in final equilibrium. They begin processing: assimilation and accommodation of problem, strategies, and relationships.

  15. Student Understanding of Liquid-Vapor Phase Equilibrium

    Science.gov (United States)

    Boudreaux, Andrew; Campbell, Craig

    2012-01-01

    Student understanding of the equilibrium coexistence of a liquid and its vapor was the subject of an extended investigation. Written assessment questions were administered to undergraduates enrolled in introductory physics and chemistry courses. Responses have been analyzed to document conceptual and reasoning difficulties in sufficient detail to…

  16. Arts, literature and reflective writing as educational strategies to promote narrative reasoning capabilities among physiotherapy students.

    Science.gov (United States)

    Caeiro, Carmen; Cruz, Eduardo Brazete; Pereira, Carla Mendes

    2014-11-01

    The use of arts, literature and reflective writing has becoming increasingly popular in health professionals education. However, research examining its contribution as an educational strategy to promote narrative reasoning capabilities is limited, particularly from the students' perspective. This study aimed to explore the final year physiotherapy students' perspectives about the contribution of arts, literature and reflective writing in facilitating narrative reasoning capabilities. Three focus group meetings using a semi-structured interview schedule were carried out to collect data. Focus group sessions were audiotaped and transcribed verbatim. Interpretative phenomenological analysis was used to conduct the study and analyze the transcripts. Three themes emerged: (1) developmental understanding of the patients' experiences; (2) developmental understanding about the self; and (3) embedding reflection in clinical practice. Students emphasized an increasing capability to be sensitive and vicariously experience the patient's experience. Through reflective writing, students reported they became more capable of thinking critically about their practice and learning needs for continuous professional development. Finally, students highlighted the contribution of these strategies in making reflection part of their practice. Final year physiotherapy students reported enhanced skills of narrative reasoning. The findings support the inclusion of these strategies within the undergraduate physiotherapy curricula.

  17. How Syntactic Reasoners Can Develop Understanding, Evaluate Conjectures, and Generate Counterexamples in Advanced Mathematics

    Science.gov (United States)

    Weber, Keith

    2009-01-01

    This paper presents a case study of a highly successful student whose exploration of an advanced mathematical concept relies predominantly on syntactic reasoning, such as developing formal representations of mathematical ideas and making logical deductions. This student is observed as he learns a new mathematical concept and then completes…

  18. Student Moon Observations and Spatial-Scientific Reasoning

    Science.gov (United States)

    Cole, Merryn; Wilhelm, Jennifer; Yang, Hongwei

    2015-07-01

    Relationships between sixth grade students' moon journaling and students' spatial-scientific reasoning after implementation of an Earth/Space unit were examined. Teachers used the project-based Realistic Explorations in Astronomical Learning curriculum. We used a regression model to analyze the relationship between the students' Lunar Phases Concept Inventory (LPCI) post-test score variables and several predictors, including moon journal score, number of moon journal entries, student gender, teacher experience, and pre-test score. The model shows that students who performed better on moon journals, both in terms of overall score and number of entries, tended to score higher on the LPCI. For every 1 point increase in the overall moon journal score, participants scored 0.18 points (out of 20) or nearly 1% point higher on the LPCI post-test when holding constant the effects of the other two predictors. Similarly, students who increased their scores by 1 point in the overall moon journal score scored approximately 1% higher in the Periodic Patterns (PP) and Geometric Spatial Visualization (GSV) domains of the LPCI. Also, student gender and teacher experience were shown to be significant predictors of post-GSV scores on the LPCI in addition to the pre-test scores, overall moon journal score, and number of entries that were also significant predictors on the LPCI overall score and the PP domain. This study is unique in the purposeful link created between student moon observations and spatial skills. The use of moon journals distinguishes this study further by fostering scientific observation along with skills from across science, technology, engineering, and mathematics disciplines.

  19. Assessing Student Understanding of Physical Hydrology

    Science.gov (United States)

    Castillo, A. J.; Marshall, J.; Cardenas, M. B.

    2012-12-01

    Our objective is to characterize and assess upper division and graduate student thinking by developing and testing an assessment tool for a physical hydrology class. The class' learning goals are: (1) Quantitative process-based understanding of hydrologic processes, (2) Experience with different methods in hydrology, (3) Learning, problem solving, communication skills. These goals were translated into two measurable tasks asked of students in a questionnaire: (1) Describe the significant processes in the hydrological cycle and (2) Describe laws governing these processes. A third question below assessed the students' ability to apply their knowledge: You have been hired as a consultant by __ to (1) assess how urbanization and the current drought have affected a local spring and (2) predict what the effects will be in the future if the drought continues. What information would you need to gather? What measurements would you make? What analyses would you perform? Student and expert responses to the questions were then used to develop a rubric to score responses. Using the rubric, 3 researchers independently blind-coded the full set of pre and post artifacts, resulting in 89% inter-rater agreement on the pre-tests and 83% agreement on the post-tests. We present student scores to illustrate the use of the rubric and to characterize student thinking prior to and following a traditional course. Most students interpreted Q1 in terms of physical processes affecting the water cycle, the primary organizing framework for hydrology, as intended. On the pre-test, one student scored 0, indicating no response, on this question. Twenty students scored 1, indicating rudimentary understanding, 2 students scored a 2, indicating a basic understanding, and no student scored a 3. Student scores on this question improved on the post-test. On the 22 post-tests that were blind scored, 11 students demonstrated some recognition of concepts, 9 students showed a basic understanding, and 2

  20. Understanding Nature-Related Behaviors among Children through a Theory of Reasoned Action Approach

    Science.gov (United States)

    Gotch, Chad; Hall, Troy

    2004-01-01

    The Theory of Reasoned Action has proven to be a valuable tool for predicting and understanding behavior and, as such, provides a potentially important basis for environmental education program design. This study used a Theory of Reasoned Action approach to examine a unique type of behavior (nature-related activities) and a unique population…

  1. Assessing clinical reasoning abilities of medical students using clinical performance examination

    Directory of Open Access Journals (Sweden)

    Sunju Im

    2016-03-01

    Full Text Available Purpose: The purpose of this study is to investigate the reliability and validity of new clinical performance examination (CPX for assessing clinical reasoning skills and evaluating clinical reasoning ability of the students. Methods: Third-year medical school students (n=313 in Busan-Gyeongnam consortium in 2014 were included in the study. One of 12 stations was developed to assess clinical reasoning abilities. The scenario and checklists of the station were revised by six experts. Chief complaint of the case was rhinorrhea, accompanied by fever, headache, and vomiting. Checklists focused on identifying of the main problem and systematic approach to the problem. Students interviewed the patient and recorded subjective and objective findings, assessments, plans (SOAP note for 15 minutes. Two professors assessed students simultaneously. We performed statistical analysis on their scores and survey. Results: The Cronbach α of subject station was 0.878 and Cohen κ coefficient between graders was 0.785. Students agreed on CPX as an adequate tool to evaluate students’ performance, but some graders argued that the CPX failed to secure its validity due to their lack of understanding the case. One hundred eight students (34.5% identified essential problem early and only 58 (18.5% performed systematic history taking and physical examination. One hundred seventy-three of them (55.3% communicated correct diagnosis with the patient. Most of them had trouble in writing SOAP notes. Conclusion: To gain reliability and validity, interrater agreement should be secured. Students' clinical reasoning skills were not enough. Students need to be trained on problem identification, reasoning skills and accurate record-keeping.

  2. College Students' Understanding of Atmospheric Ozone Formation

    Science.gov (United States)

    Howard, Kristen E.; Brown, Shane A.; Chung, Serena H.; Jobson, B. Thomas; VanReken, Timothy M.

    2013-01-01

    Research has shown that high school and college students have a lack of conceptual understanding of global warming, ozone, and the greenhouse effect. Most research in this area used survey methodologies and did not include concepts of atmospheric chemistry and ozone formation. This study investigates college students' understandings of atmospheric…

  3. Improving Junior High School Students' Spatial Reasoning Ability through Model Eliciting Activities with Cabri 3D

    Science.gov (United States)

    Hartatiana; Darhim; Nurlaelah, Elah

    2018-01-01

    One of students' abilities which can facilitate them to understand geometric concepts is spatial reasoning ability. Spatial reasoning ability can be defined as an ability involving someone's cognitive processing to present and manipulate spatial figures, relationship, and figure formations. This research aims to find out significant difference on…

  4. Logical Reasoning Abilities of Junior High School Students in the Province of Cotabato, Philippines

    Directory of Open Access Journals (Sweden)

    Paul John B. Ongcoy

    2016-11-01

    Full Text Available Reasoning abilities of the learners and its development was well-discussed in the world of education. The higher the ability of the person to reason abstractly, the higher the probability that a person will effectively function in the society. Thus, it is the main goal of the K-12 Curriculum of the Department of Education to improve the reasoning abilities and formal reasoning among students in the country. The higher the reasoning ability of a person, the more productive he is. The ability of logical reasoning has an essential function in the academic performance of students and their construction of the concepts. This study aimed to determine the logical reasoning abilities of 150 randomly selected junior high school students. Specifically, this study aimed to determine the logical reasoning abilities namely combinatorial reasoning, controlling variables, correlation reasoning, probabilistic reasoning and proportional reasoning among the grade 10 junior high school students and determine whether there is a significant difference in students’ logical reasoning abilities according to their gender. The respondents answered the Test of Logical Thinking (TOLT. Thirty respondents were interviewed to verify their answers. The findings of the study led to the following conclusions: most students correctly answered problems in probabilistic reasoning and least number of students correctly answered problems in proportional reasoning and combinatorial reasoning and, male and female respondents have equal performances in problems pertaining to combinatorial reasoning, controlling variables, correlational reasoning and probabilistic reasoning but female respondents are better in proportional reasoning than the male respondents.

  5. Does Early Algebraic Reasoning Differ as a Function of Students' Difficulty with Calculations versus Word Problems?

    Science.gov (United States)

    Powell, Sarah R; Fuchs, Lynn S

    2014-08-01

    According to national mathematics standards, algebra instruction should begin at kindergarten and continue through elementary school. Most often, teachers address algebra in the elementary grades with problems related to solving equations or understanding functions. With 789 2 nd - grade students, we administered (a) measures of calculations and word problems in the fall and (b) an assessment of pre-algebraic reasoning, with items that assessed solving equations and functions, in the spring. Based on the calculation and word-problem measures, we placed 148 students into 1 of 4 difficulty status categories: typically performing, calculation difficulty, word-problem difficulty, or difficulty with calculations and word problems. Analyses of variance were conducted on the 148 students; path analytic mediation analyses were conducted on the larger sample of 789 students. Across analyses, results corroborated the finding that word-problem difficulty is more strongly associated with difficulty with pre-algebraic reasoning. As an indicator of later algebra difficulty, word-problem difficulty may be a more useful predictor than calculation difficulty, and students with word-problem difficulty may require a different level of algebraic reasoning intervention than students with calculation difficulty.

  6. Promoting student case creation to enhance instruction of clinical reasoning skills: a pilot feasibility study

    Directory of Open Access Journals (Sweden)

    Chandrasekar H

    2018-04-01

    and peer learning, as well as increased ownership over case content and understanding of clinical reasoning nuances. However, students also reported decreases in student–faculty interaction and the use of visual aids (P < 0.05. Conclusion: The results of our feasibility study suggest that student-generated cases can be a valuable adjunct to traditional clinical reasoning instruction by increasing content ownership, encouraging student-directed learning, and providing opportunities to explore clinical nuances. However, these gains may reduce student–faculty interaction. Future studies may be able to identify an improved model of faculty participation, the ideal timing for incorporation of this method in a medical curriculum, and a more rigorous assessment of the impact of student case creation on the development of clinical reasoning skills. Keywords: case-based learning, undergraduate medical education, student case creation

  7. How the First Year of College Influences Moral Reasoning Development for Students in Moral Consolidation and Moral Transition

    Science.gov (United States)

    Mayhew, Matthew J.; Seifert, Tricia A.; Pascarella, Ernest T.

    2012-01-01

    Understanding the developmental issues first-time college students face is critical for scholars and educators interested in learning and development. This purpose of this study was to investigate the differential impact of first-year college experiences on the moral reasoning development of 1,469 students in moral transition versus those in moral…

  8. Examining Eighth Grade Kuwaiti Students' Recognition and Interpretation of Reasonable Answers

    Science.gov (United States)

    Alajmi, Amal Hussain; Reys, Robert

    2010-01-01

    This research documents Kuwaiti eighth grade students' performance in recognizing reasonable answers and the strategies they used to determine reasonableness. The results from over 200 eighth grade students show they were generally unable to recognize reasonable answers. Students' performance was consistently low across all three number domains…

  9. Academic dishonesty and ethical reasoning: pharmacy and medical school students in New Zealand.

    Science.gov (United States)

    Henning, Marcus A; Ram, Sanya; Malpas, Phillipa; Shulruf, Boaz; Kelly, Fiona; Hawken, Susan J

    2013-06-01

    There is ample evidence to suggest that academic dishonesty remains an area of concern and interest for academic and professional bodies. There is also burgeoning research in the area of moral reasoning and its relevance to the teaching of pharmacy and medicine. To explore the associations between self-reported incidence of academic dishonesty and ethical reasoning in a professional student body. Responses were elicited from 433 pharmacy and medicine students. A questionnaire eliciting responses about academic dishonesty (copying, cheating, and collusion) and their decisions regarding an ethical dilemma was distributed. Multivariate analysis procedures were conducted. The findings suggested that copying and collusion may be linked to the way students make ethical decisions. Students more likely to suggest unlawful solutions to the ethical dilemma were more likely to disclose engagement in copying information and colluding with other students. These findings imply that students engaging in academic dishonesty may be using different ethical frameworks. Therefore, employing ethical dilemmas would likely create a useful learning framework for identifying students employing dishonest strategies when coping with their studies. Increasing understanding through dialog about engagement in academic honesty will likely construct positive learning outcomes in the university with implications for future practice.

  10. Understanding the Complex Relationship between Critical Thinking and Science Reasoning among Undergraduate Thesis Writers

    Science.gov (United States)

    Dowd, Jason E.; Thompson, Robert J., Jr.; Schif, Leslie A.; Reynolds, Julie A.

    2018-01-01

    Developing critical-thinking and scientific reasoning skills are core learning objectives of science education, but little empirical evidence exists regarding the interrelationships between these constructs. Writing effectively fosters students' development of these constructs, and it offers a unique window into studying how they relate. In this…

  11. Investigating Student Understanding of Avogadro's Law

    Science.gov (United States)

    Kautz, Christian H.

    1999-05-01

    The Physics Education Group at the University of Washington has been examining student understanding of thermal physics. Analysis of responses to test questions indicates that many students fail to recognize that the ideal gas law does not depend on the type of gas. Students' ideas about the particles at the microscopic level seem to contribute to their difficulties. The presentation will illustrate how research has guided the design of instructional materials.

  12. Difficulty in Understanding Statistics: Medical Students' Perspectives ...

    African Journals Online (AJOL)

    PURPOSE: The study was conducted to examine the characteristics of medical students vis-à-vis difficulty in understanding statistics and to explore the perceived causes of this difficulty among those affected. METHODS: In a descriptive cross-sectional questionnairebased survey, 293 consenting final year medical students ...

  13. Understanding Student Identity from a Socialization Perspective

    Science.gov (United States)

    Weidman, John C.; DeAngelo, Linda; Bethea, Kathryn A.

    2014-01-01

    This chapter describes the contribution of current research using the Weidman model of undergraduate socialization to understanding student identity development in college. It illustrates ways in which the framework can be used flexibly and adapted for studying impacts of multiple aspects of the college experience on diverse groups of students.

  14. Evaluation of Students' Conceptual Understanding of Malaria

    Science.gov (United States)

    Cheong, Irene Poh-Ai; Treagust, David; Kyeleve, Iorhemen J.; Oh, Peck-Yoke

    2010-01-01

    In this study, a two-tier diagnostic test for understanding malaria was developed and administered to 314 Bruneian students in Year 12 and in a nursing diploma course. The validity, reliability, difficulty level, discriminant indices, and reading ability of the test were examined and found to be acceptable in terms of measuring students'…

  15. Students' Energy Understanding Across Biology, Chemistry, and Physics Contexts

    Science.gov (United States)

    Opitz, S. T.; Neumann, K.; Bernholt, S.; Harms, U.

    2017-07-01

    Energy is considered both as a disciplinary core idea and as a concept cutting across science disciplines. Most previous approaches studied progressing energy understanding in specific disciplinary contexts, while disregarding the relation of understanding across them. Hence, this study provides a systematic analysis of cross-disciplinary energy learning. On the basis of a cross-sectional study with n = 742 students from grades 6, 8, and 10, we analyze students' progression in understanding energy across biology, chemistry, and physics contexts. The study is guided by three hypothetical scenarios that describe how the connection between energy understanding in the three disciplinary contexts changes across grade levels. These scenarios are compared using confirmatory factor analysis (CFA). The results suggest that, from grade 6 to grade 10, energy understanding in the three disciplinary contexts is highly interrelated, thus indicating a parallel progression of energy understanding in the three disciplinary contexts. In our study, students from grade 6 onwards appeared to have few problems to apply one energy understanding across the three disciplinary contexts. These findings were unexpected, as previous research concluded that students likely face difficulties in connecting energy learning across disciplinary boundaries. Potential reasons for these results and the characteristics of the observed cross-disciplinary energy understanding are discussed in the light of earlier findings and implications for future research, and the teaching of energy as a core idea and a crosscutting concept are addressed.

  16. Self-Explanation, An Instructional Strategy to Foster Clinical Reasoning in Medical Students

    Directory of Open Access Journals (Sweden)

    Martine Chamberland

    2015-12-01

    positive effect of self-explanation gets stronger when students׳ diagnostic performance is tested on far-transfer clinical cases, suggesting that deeper understanding and meaningful learning do occur. Self-explanation is a practical and inexpensive technique which could be incorporated into learning activities using clinical problems to promote diagnostic reasoning of medical students. Even though self-explanation is a promising learning technique, further studies are needed to explore other conditions that could maximise its benefit on learning clinical reasoning.

  17. Determining Students' Conceptual Understanding Level of Thermodynamics

    Science.gov (United States)

    Saricayir, Hakan; Ay, Selahattin; Comek, Arif; Cansiz, Gokhan; Uce, Musa

    2016-01-01

    Science students find heat, temperature, enthalpy and energy in chemical reactions to be some of the most difficult subjects. It is crucial to define their conceptual understanding level in these subjects so that educators can build upon this knowledge and introduce new thermodynamics concepts. This paper reports conceptual understanding levels of…

  18. Upper High School Students' Understanding of Electromagnetism

    Science.gov (United States)

    Saglam, Murat; Millar, Robin

    2006-01-01

    Although electromagnetism is an important component of upper secondary school physics syllabuses in many countries, there has been relatively little research on students' understanding of the topic. A written test consisting of 16 diagnostic questions was developed and used to survey the understanding of electromagnetism of upper secondary school…

  19. Student Understandings of Numeracy Problems: Semantic Alignment and Analogical Reasoning

    Science.gov (United States)

    Davis, James

    2013-01-01

    Despite compulsory mathematics throughout primary and junior secondary schooling, many schools across Australia continue in their struggle to achieve satisfactory numeracy levels. Numeracy is not a distinct subject in school curriculum, and in fact appears as a general capability in the Australian Curriculum, wherein all teachers across all…

  20. Understanding the Complex Relationship between Critical Thinking and Science Reasoning among Undergraduate Thesis Writers.

    Science.gov (United States)

    Dowd, Jason E; Thompson, Robert J; Schiff, Leslie A; Reynolds, Julie A

    2018-01-01

    Developing critical-thinking and scientific reasoning skills are core learning objectives of science education, but little empirical evidence exists regarding the interrelationships between these constructs. Writing effectively fosters students' development of these constructs, and it offers a unique window into studying how they relate. In this study of undergraduate thesis writing in biology at two universities, we examine how scientific reasoning exhibited in writing (assessed using the Biology Thesis Assessment Protocol) relates to general and specific critical-thinking skills (assessed using the California Critical Thinking Skills Test), and we consider implications for instruction. We find that scientific reasoning in writing is strongly related to inference , while other aspects of science reasoning that emerge in writing (epistemological considerations, writing conventions, etc.) are not significantly related to critical-thinking skills. Science reasoning in writing is not merely a proxy for critical thinking. In linking features of students' writing to their critical-thinking skills, this study 1) provides a bridge to prior work suggesting that engagement in science writing enhances critical thinking and 2) serves as a foundational step for subsequently determining whether instruction focused explicitly on developing critical-thinking skills (particularly inference ) can actually improve students' scientific reasoning in their writing. © 2018 J. E. Dowd et al. CBE—Life Sciences Education © 2018 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Investigating Student Understanding of the Universe: Structure

    Science.gov (United States)

    Hayes, Virginia; Coble, K.; Nickerson, M.; Cochran, G.; Camarillo, C. T.; Bailey, J. M.; McLin, K. M.; Cominsky, L. R.

    2011-05-01

    Chicago State University (CSU) offers an introductory astronomy course that services students from a variety of majors including pre-service teachers. At CSU, we have been investigating methods and tools that will improve student conceptual understanding in astronomy for this diverse group of students. We have analyzed pre-course surveys, pre-course essays, exams, and interviews in an effort to better understand the ideas and difficulties in understanding that students have in regards to the structure of the universe. Analysis of written essays has revealed that our students do have some knowledge of the objects in the universe, but interviews inform us that their understanding of the structure of the universe is superficial. This project is a part of a larger study; also see our posters on student ideas about dark matter, the age and expansion of the universe, and perceptions of astronomical sizes and distances. This work was supported by NASA ROSES E/PO Grant #NNXlOAC89G, as well as by the Illinois Space Grant Consortium and National Science Foundation CCLI Grant #0632563 at Chicago State University and the Fermi E/PO program at Sonoma State University.

  2. Integrating quantitative thinking into an introductory biology course improves students' mathematical reasoning in biological contexts.

    Science.gov (United States)

    Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

    2014-01-01

    Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students' apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course in which we integrated application of prerequisite mathematical skills with biology content and reasoning throughout all aspects of the course. In this paper, we describe the principles of our course design and present illustrative examples of course materials integrating mathematics and biology. We also designed an outcome assessment made up of items testing students' understanding of biology concepts and their ability to apply mathematical skills in biological contexts and administered it as a pre/postcourse test to students in the experimental section and other sections of the same course. Precourse results confirmed students' inability to spontaneously transfer their prerequisite mathematics skills to biological problems. Pre/postcourse outcome assessment comparisons showed that, compared with students in other sections, students in the experimental section made greater gains on integrated math/biology items. They also made comparable gains on biology items, indicating that integrating quantitative skills into an introductory biology course does not have a deleterious effect on students' biology learning.

  3. Industrial Student Apprenticeship: Understanding Health and Safety

    Science.gov (United States)

    Simanjuntak, M. V.; Abdullah, A. G.; Puspita, R. H.; Mahdan, D.; Kamaludin, M.

    2018-02-01

    The level of accident in industry is very high caused by lack of knowledge and awareness of workers toward the health and safety. Health and Safety are efforts to create a comfortable and productive atmosphere to accomplish a purpose or goal as maximum risk in the workplace. Vocational Education students must conduct training on business and industry, prior to that they should have a clear understanding on occupational health and safety. The purpose of this research is to analyze the understanding, preparation, and implementation of work health and safety of the students. Method used is descriptive method and data are collected using instrument, observation and interview. The result of study is conclusion of understanding occupational health and safety of vocational education students.

  4. Applications of Out-of-Domain Knowledge in Students' Reasoning about Computer Program State

    Science.gov (United States)

    Lewis, Colleen Marie

    To meet a growing demand and a projected deficit in the supply of computer professionals (NCWIT, 2009), it is of vital importance to expand students' access to computer science. However, many researchers in the computer science education community unproductively assume that some students lack an innate ability for computer science and therefore cannot be successful learning to program. In contrast, I hypothesize that the degree to which computer science students make productive use of their out-of-domain knowledge can better explain the range of success of novices learning to program. To investigate what non-programming knowledge supports students' success, I conducted and videotaped approximately 40 hours of clinical interviews with 30 undergraduate students enrolled in introductory programming courses. During each interview, a participant talked as they solved programming problems, many of which were multiple-choice problems that were highly correlated with success on an Advanced Placement Computer Science exam. In the analysis of the interviews I focused on students' strengths rather than the typical decision to focus on students' weaknesses. I documented specific competencies of the participants and applied analytic tools from the Knowledge in Pieces theoretical framework (diSessa, 1993) to attempt to understand the source and nature of these competencies. I found that participants appeared to build upon several kinds of out-of-domain knowledge. For example, many students used algebraic substitution techniques when tracing the state of recursive functions. Students appeared to use metaphors and their intuitive knowledge of both iteration and physics to understand infinite loops and base cases. On the level of an individual students' reasoning, a case study analysis illustrated the ways in which a participant integrated her linguistic knowledge of "and" into her reasoning about the computer science command "and." In addition to identifying these specific

  5. Students' reasoning when tackling electric field and potential in explanation of dc resistive circuits

    Science.gov (United States)

    Leniz, Ane; Zuza, Kristina; Guisasola, Jenaro

    2017-06-01

    This study examines the causal reasoning that university students use to explain how dc circuits work. We analyze how students use the concepts of electric field and potential difference in their explanatory models of dc circuits, and what kinds of reasoning they use at the macroscopic and microscopic levels in their explanations. This knowledge is essential to help instructors design and implement new teaching approaches that encourage students to articulate the macroscopic and microscopic levels of description. A questionnaire with an emphasis on explanations was used to analyze students' reasoning. In this analysis of students' reasoning in the microscopic and macroscopic modeling processes in a dc circuit, we refer to epistemological studies of scientific explanations. We conclude that the student explanations fall into three main categories of reasoning. The vast majority of students employ an explanatory model based on simple or linear causality and on relational reasoning. Moreover, around a third of students use a relational reasoning that relates two magnitudes current and resistance or conductivity of the material, which is included in a macroscopic explanatory model based on Ohm's law and the conservation of the current. In addition, few students situate the explanations at the microscopic level (charges or electrons) with unidirectional cause-effect reasoning. This study looks at a number of aspects that have been little mentioned in previous research at the university level, about the reasoning types students use when establishing macro-micro relationships and some possible difficulties with complex reasoning.

  6. How does questioning influence nursing students' clinical reasoning in problem-based learning? A scoping review.

    Science.gov (United States)

    Merisier, Sophia; Larue, Caroline; Boyer, Louise

    2018-03-10

    Problem-based learning is an educational method promoting clinical reasoning that has been implemented in many fields of health education. Questioning is a learning strategy often employed in problem-based learning sessions. To explore what is known about the influence of questioning on the promotion of clinical reasoning of students in health care education, specifically in the field of nursing and using the educational method of problem-based learning. A scoping review following Arksey and O'Malley's five stages was conducted. The CINAHL, EMBASE, ERIC, Medline, and PubMed databases were searched for articles published between the years of 2000 and 2017. Each article was summarized and analyzed using a data extraction sheet in relation to its purpose, population group, setting, methods, and results. A descriptive explication of the studies based on an inductive analysis of their findings to address the aim of the review was made. Nineteen studies were included in the analysis. The studies explored the influence of questioning on critical thinking rather than on clinical reasoning. The nature of the questions asked and the effect of higher-order questions on critical thinking were the most commonly occurring themes. Few studies addressed the use of questioning in problem-based learning. More empirical evidence is needed to gain a better understanding of the benefit of questioning in problem-based learning to promote students' clinical reasoning. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Validation of Reasons for Living and Their Relationship with Suicidal Ideation in Korean College Students

    Science.gov (United States)

    Lee, Yuri; Oh, Kyung Ja

    2012-01-01

    This study aimed to examine the validity of reasons for living (RFL) and the protective role they may play against suicidal ideation in college students in South Korea. A total of 277 undergraduate students participated by completing the College Student Reasons for Living Inventory (CS-RFL), along with measures of suicide risk including…

  8. Tracking Students' Understanding of the Particle Nature of Matter

    Science.gov (United States)

    Merritt, Joi Deshawn

    One reason students find it difficult to learn the particle model of matter is that traditional curriculum materials present concepts to students without helping them to develop these ideas. The How can I smell things from a distance? sixth grade chemistry unit takes the approach of building students' ideas through their construction and revision of models. Progress variables have been proposed as a means to address the need for curriculum and assessments that can help teachers' improve their practice as well as to inform both students and teachers about students' performance. Progress variables depict students' increasingly sophisticated conceptions of a specific construct during instruction. This study provides evidence that curriculum and assessment based on modern learning theories, can lead to the development of progress variables that are able to track middle school students' understanding of the particle nature of matter over time. This study used a progress variable to track student understanding of the particle nature of matter during the sixth grade chemistry unit. I describe the assessment system used to develop the progress variable for tracking students' development of particle model of matter during the sixth grade chemistry unit. A calibration study determined that the chemistry unit's assessments were reliable and valid measures of the particle model of matter progress variable. Further analysis revealed that the progress variable had to be modified such that the levels were more distinct. The modified progress variable was empirically validated so that it could be used to track students' understanding during instruction. Results indicate that a validated progress variable, linked to coherent curriculum and assessments can provide valid interpretations of students' knowledge of particular domain during instruction and that this progress variable is valid for students from varying populations and backgrounds. In addition, well-aligned curriculum and

  9. "Everything Is in Parables": An Exploration of Students' Difficulties in Understanding Christian Beliefs Concerning Jesus

    Science.gov (United States)

    Freathy, Rob; Aylward, Karen

    2010-01-01

    This article reports the findings of interviews conducted with students (aged 11-13) in four English secondary schools, examining reasons why young people find it difficult to understand Christian beliefs regarding Jesus' miracles, resurrection, and status as the Son of God. For the students in this sample, understanding and belief are closely…

  10. Manipulating 3D-Printed and Paper Models Enhances Student Understanding of Viral Replication

    Science.gov (United States)

    Couper, Lisa; Johannes, Kristen; Powers, Jackie; Silberglitt, Matt; Davenport, Jodi

    2016-01-01

    Understanding key concepts in molecular biology requires reasoning about molecular processes that are not directly observable and, as such, presents a challenge to students and teachers. We ask whether novel interactive physical models and activities can help students understand key processes in viral replication. Our 3D tangible models are…

  11. Improving students' understanding of quantum mechanics

    Science.gov (United States)

    Singh, Chandralekha

    2011-03-01

    Learning quantum mechanics is especially challenging, in part due to the abstract nature of the subject. We have been conducting investigations of the difficulties that students have in learning quantum mechanics. To help improve student understanding of quantum concepts, we are developing quantum interactive learning tutorials (QuILTs) as well as tools for peer-instruction. The goal of QuILTs and peer-instruction tools is to actively engage students in the learning process and to help them build links between the formalism and the conceptual aspects of quantum physics without compromising the technical content. They focus on helping students integrate qualitative and quantitative understanding, confront and resolve their misconceptions and difficulties, and discriminate between concepts that are often confused. In this talk, I will give examples from my research in physics education of how students' prior knowledge relevant for quantum mechanics can be assessed, and how learning tools can be designed to help students develop a robust knowledge structure and critical thinking skills. Supported by the National Science Foundation.

  12. Investigating student understanding of simple harmonic motion

    Science.gov (United States)

    Somroob, S.; Wattanakasiwich, P.

    2017-09-01

    This study aimed to investigate students’ understanding and develop instructional material on a topic of simple harmonic motion. Participants were 60 students taking a course on vibrations and wave and 46 students taking a course on Physics 2 and 28 students taking a course on Fundamental Physics 2 on the 2nd semester of an academic year 2016. A 16-question conceptual test and tutorial activities had been developed from previous research findings and evaluated by three physics experts in teaching mechanics before using in a real classroom. Data collection included both qualitative and quantitative methods. Item analysis and whole-test analysis were determined from student responses in the conceptual test. As results, most students had misconceptions about restoring force and they had problems connecting mathematical solutions to real motions, especially phase angle. Moreover, they had problems with interpreting mechanical energy from graphs and diagrams of the motion. These results were used to develop effective instructional materials to enhance student abilities in understanding simple harmonic motion in term of multiple representations.

  13. Student Understanding of Time in Special Relativity: Simultaneity and Reference Frames.

    Science.gov (United States)

    Scherr, Rachel E.; Shaffer, Peter S.; Vokos, Stamatis

    2001-01-01

    Reports on an investigation of students' understanding of the concept of time in special relativity. Discusses a series of research tasks to illustrate how student reasoning of fundamental concepts of relativity was probed. Indicates that after standard instruction, students have serious difficulties with the relativity of simultaneity and the…

  14. Understanding intercultural transitions of medical students.

    Science.gov (United States)

    Hayes, Aneta L; Mansour, Nasser; Fisher, Ros

    2015-02-28

    The aim of this research was to explore the transition of medical students to an international branch campus of a medical university established in Bahrain. In order to gain insights into this transition, we explored two culturally diverse systems of learning of the university and the local schools in Bahrain, using Communities of Practice as a lens for understanding transitions. Focus groups were conducted with secondary school teachers and first year medical students. Additionally, semi-structured interviews were conducted with university lecturers. The findings suggest that, while Communities of Practice have been influential in contextualising transitions to university, this model does not seem to help us to fully understand intercultural transitions to the case-study university. The research emphasises that more attention should be given to learner individual agency within this theory as a framework for understanding transitions. It also challenges approaches within medical education that attempt to standardise systems of learning through acquisition of established practices.

  15. Empowering the crowd: faculty discourse strategies for facilitating student reasoning in large lecture

    Science.gov (United States)

    Demaree, Dedra

    2012-02-01

    Oregon State University (OSU) has restructured its introductory calculus-based sequence including reformed curriculum modeled after the Interactive Science Learning Environment (ISLE). ISLE is driven by an experimental cycle roughly summarized as: observe phenomena, find patterns and devise explanations, test explanations, develop a model, apply the model to new observations. In implementing ISLE at OSU we have chosen to focus on student scientific reasoning, specifically student ability to develop and test models, make explicit judgments on how to approach open-ended tasks, and take an authoritative role in knowledge development. In order to achieve these goals, the lecture course heavily utilizes social engagement. During large-lecture group work, emphasis is placed on facilitating student discourse about issues such as what systems to choose or how to define an open-ended problem. Instructional strategies are aimed at building off the group discourse to create a full-class community where knowledge is developed through collaboration with peers. We are achieving these goals along with an increase in measured student conceptual knowledge and traditional problem solving abilities, and no loss of content coverage. It is an ongoing effort to understand ``best'' instructional strategies and to facilitate new faculty when they teach the curriculum. Our research has focused on understanding how to facilitate activities that promote this form of discourse. We have quantitative analysis of engagement based on video data, qualitative analysis of dialogue from audio data, classroom observations by an external researcher, and survey data. In this session we share a subset of what we have learned about how to engage students in scientific reasoning discourse during large lecture, both at the group-work and full-class level.

  16. Recognizing Mechanistic Reasoning in Student Scientific Inquiry: A Framework for Discourse Analysis Developed from Philosophy of Science

    Science.gov (United States)

    Russ, Rosemary S.; Scherr, Rachel E.; Hammer, David; Mikeska, Jamie

    2008-01-01

    Science education reform has long focused on assessing student inquiry, and there has been progress in developing tools specifically with respect to experimentation and argumentation. We suggest the need for attention to another aspect of inquiry, namely "mechanistic reasoning." Scientific inquiry focuses largely on understanding causal…

  17. The use of assisted performance within an online social network to develop reflective reasoning in undergraduate physiotherapy students.

    Science.gov (United States)

    Rowe, Michael

    2012-01-01

    The development of practice knowledge is an important component of clinical education and reflective reasoning is known to play a role in its development. Online social networks may have some potential for developing practice knowledge by providing tools for clinical educators to guide students' reasoning practices. To determine if an online social network could be used to facilitate reflective reasoning in clinical contexts, as it relates to developing practice knowledge. The study was conducted within a South African university, physiotherapy department, using an online social network to facilitate engagement. Tharp and Gallimore's theory of assisted performance was used as a framework to conduct qualitative analysis of students' reflective blog posts within the network. The lecturer was able to use strategies within the assisted performance framework to facilitate reflection among students. These included modelling, contingency management, feedback, instruction, questioning and cognitive structuring. The features of the social network enabled enhanced communication between teacher and student, as well as promoted engagement around clinical scenarios. Online social networks can be used to facilitate reflective reasoning as part of the development of practice knowledge by exposing students' understanding of clinical practice. However, careful facilitation using sound pedagogy is still necessary to guide students to deeper understanding.

  18. High school students' understanding and problem solving in population genetics

    Science.gov (United States)

    Soderberg, Patti D.

    This study is an investigation of student understanding of population genetics and how students developed, used and revised conceptual models to solve problems. The students in this study participated in three rounds of problem solving. The first round involved the use of a population genetics model to predict the number of carriers in a population. The second round required them to revise their model of simple dominance population genetics to make inferences about populations containing three phenotype variations. The third round of problem solving required the students to revise their model of population genetics to explain anomalous data where the proportions of males and females with a trait varied significantly. As the students solved problems, they were involved in basic scientific processes as they observed population phenomena, constructed explanatory models to explain the data they observed, and attempted to persuade their peers as to the adequacy of their models. In this study, the students produced new knowledge about the genetics of a trait in a population through the revision and use of explanatory population genetics models using reasoning that was similar to what scientists do. The students learned, used and revised a model of Hardy-Weinberg equilibrium to generate and test hypotheses about the genetics of phenotypes given only population data. Students were also interviewed prior to and following instruction. This study suggests that a commonly held intuitive belief about the predominance of a dominant variation in populations is resistant to change, despite instruction and interferes with a student's ability to understand Hardy-Weinberg equilibrium and microevolution.

  19. The Reasons for the Decline of the Results of Jordanian Students in "TIMSS 2015"

    Science.gov (United States)

    Abu Tayeh, Khaled; Al-Rsa'i, Mohammad S.; Al-Shugairat, Mohammad F.

    2018-01-01

    The study aimed at identifying the reasons behind the Jordanian students' drop of performance in the TIMSS 2015 from the point of view of their teachers. Survey method was used because teachers are the most able to decide upon the reasons of this fall and so a questionnaire was designed to recognize their point of view concerning the reasons of…

  20. Spatial Reasoning: Improvement of Imagery and Abilities in Sophomore Organic Chemistry. Perspective to Enhance Student Learning

    Science.gov (United States)

    Hornbuckle, Susan F.; Gobin, Latanya; Thurman, Stephanie N.

    2014-01-01

    Spatial reasoning has become a demanded skill for students pursuing a science emphasis to compete with the dynamic growth of our professional society. The ability to reason spatially includes explorations in memory recollection and problem solving capabilities as well as critical thinking and reasoning skills. With these advancements, educational…

  1. Student Reasoning about Electrostatic and Gravitational Potential Energy: An Exploratory Study with Interdisciplinary Consequences

    Science.gov (United States)

    Lindsey, Beth A.

    2014-01-01

    This paper describes an investigation into student reasoning about potential energy in the context of introductory electrostatics. Similar incorrect reasoning patterns emerged both in written questions administered after relevant instruction and in one-on-one interviews. These reasoning patterns are also prevalent in responses to questions posed…

  2. The Enhancement of Mathematical Reasoning Ability of Junior High School Students by Applying Mind Mapping Strategy

    Science.gov (United States)

    Ayal, Carolina S.; Kusuma, Yaya S.; Sabandar, Jozua; Dahlan, Jarnawi Afgan

    2016-01-01

    Mathematical reasoning ability, are component that must be governable by the student. Mathematical reasoning plays an important role, both in solving problems and in conveying ideas when learning mathematics. In fact there ability are not still developed well, even in middle school. The importance of mathematical reasoning ability (KPM are…

  3. Moral Reasoning in College Students: Effects of Two General Education Curricula.

    Science.gov (United States)

    Mustapha, Sherry L.; Seybert, Jeffrey A.

    1991-01-01

    Two different approaches to the undergraduate general education and liberal arts curricula were studied in terms of moral reasoning for 188 college students. Results reveal more advanced levels of moral reasoning for students in the integrated curriculum organized around decision making than for those in the traditional curriculum. (SLD)

  4. Students' Reasoning When Tackling Electric Field and Potential in Explanation of DC Resistive Circuits

    Science.gov (United States)

    Leniz, Ane; Zuza, Kristina; Guiasola, Jenaro

    2017-01-01

    This study examines the causal reasoning that university students use to explain how dc circuits work. We analyze how students use the concepts of electric field and potential difference in their explanatory models of dc circuits, and what kinds of reasoning they use at the macroscopic and microscopic levels in their explanations. This knowledge…

  5. Facilitating Students' Conceptual Change and Scientific Reasoning Involving the Unit of Combustion

    Science.gov (United States)

    Lee, Chin-Quen; She, Hsiao-Ching

    2010-01-01

    This article reports research from a 3 year digital learning project to unite conceptual change and scientific reasoning in the learning unit of combustion. One group of students had completed the course combining conceptual change and scientific reasoning. The other group of students received conventional instruction. In addition to the…

  6. Identifying Student Resources in Reasoning about Entropy and the Approach to Thermal Equilibrium

    Science.gov (United States)

    Loverude, Michael

    2015-01-01

    As part of an ongoing project to examine student learning in upper-division courses in thermal and statistical physics, we have examined student reasoning about entropy and the second law of thermodynamics. We have examined reasoning in terms of heat transfer, entropy maximization, and statistical treatments of multiplicity and probability. In…

  7. In Their Own Words: A Qualitative Study of the Reasons Australian University Students Plagiarize

    Science.gov (United States)

    Devlin, Marcia; Gray, Kathleen

    2007-01-01

    The ways in which universities and individual academics attempt to deter and respond to student plagiarism may be based on untested assumptions about particular or primary reasons for this behaviour. Using a series of group interviews, this qualitative study gathered the views of 56 Australian university students on the possible reasons for…

  8. Reinterpretation of Students' Ideas When Reasoning about Particle Model Illustrations

    Science.gov (United States)

    Langbeheim, Elon

    2015-01-01

    The article, "Using Animations in Identifying General Chemistry Students' Misconceptions and Evaluating Their Knowledge Transfer Relating to Particle Position in Physical Changes" (Smith and Villarreal, 2015), reports that a substantial proportion of undergraduate students expressed misconceived ideas regarding the motion of particles in…

  9. Analyzing High School Students' Reasoning about Electromagnetic Induction

    Science.gov (United States)

    Jelicic, Katarina; Planinic, Maja; Planinsic, Gorazd

    2017-01-01

    Electromagnetic induction is an important, yet complex, physics topic that is a part of Croatian high school curriculum. Nine Croatian high school students of different abilities in physics were interviewed using six demonstration experiments from electromagnetism (three of them concerned the topic of electromagnetic induction). Students were…

  10. Didactical Handling of Students' Reasoning Processes in Problem Solving Situations

    Science.gov (United States)

    Brousseau, Guy; Gibel, Patrick

    2005-01-01

    In this paper, we analyze an investigative situation proposed to a class of 5th graders in a primary school. The situation is based on the following task: In a sale with group rates on a sliding scale, the students must find the lowest possible purchase price for a given number of tickets. A study of students' arguments made it possible to…

  11. Student learning and understanding of sequence stratigraphic principles

    Science.gov (United States)

    Herrera, Juan Sebastian

    schemas as a source of concept representation. A hermeneutical approach enabled us to access student meaning-making from students' verbal reports and gestures, to explore the mental imagery that lies in student explanations of basic principles in sequence stratigraphy. From the analysis of video-recorded interviews four main mental models were interpreted in gestures and verbal reports. The cognitive model known as container schema appeared to represent both spatially and temporally extended concepts differentiated into three separate sub-types. The source-path-goal schema was also common in student reasoning about sedimentary processes; specially dealing with deposition of sediment, the up-and-down schema, and the link schema were associated with responses about sea level fluctuations and unconformities. Results suggested that students tended to make more iconic and metaphoric gestures when dealing with abstract concepts such as relative sea level, base level, and unconformities. Based on the analysis of gestures that recreated certain patterns as time, strata, and sea-level fluctuations, we reasoned that proper representational gestures may indicate completeness in conceptual understanding. We concluded that students rely on image schemas to develop ideas about complex sedimentary processes. This research also supported the hypothesis that gestures provide an independent and non-linguistic indicator of image-schemas as mental models that shape conceptual development. Finally, we assessed the impact of using computer simulation to probe deeper understanding of specialized concepts in stratigraphy. Results suggested that when students are unfamiliar with concepts; students tend to convey meaning via gestures. Cognitive models were also identified in student interaction with the computer simulation and these mental models were interpreted from pointing gestures. We concluded that the impact of computers strive on fostering a sense of dynamism to their static and abstract

  12. Choosing Teaching Profession as a Career: Students' Reasons

    Science.gov (United States)

    Balyer, Aydin; Özcan, Kenan

    2014-01-01

    The success of educational change inevitably depends on the quality and performance of teachers. Therefore, the importance of employing high quality teachers is crucial for educational systems. Choosing talented and committed brains to teaching career depends on making it an attractive profession. It is considered that there are some reasons why…

  13. Dialectical Reason and Necessary Conflict—Understanding and the Nature of Terror

    Directory of Open Access Journals (Sweden)

    Angelica Nuzzo

    2007-12-01

    Full Text Available Taking as point of departure Hegelrsquo;s early reflections on his historical present, this essay examines the relationship between dialectical reason and the activity of the understanding in generating contradiction. Dialecticmdash;as logic and methodmdash;is Hegelrsquo;s attempt at a philosophical comprehension of the conflicts and the deep changes of his contemporary world. This idea of dialectic as logic of historical transformation guides the development of consciousness in the emPhenomenology of Spirit/em. Since my claim is that the dialectic of consciousness and its capacity of overcoming contradiction are rooted in the historical situation of 1807, the question is raised of what would be the specific problems encountered by consciousness in our contemporary worldmdash;in 2007. What are the challenges posed by our globalized world to a phenomenology of contemporary spirit; and what is the role that contradiction and dialectic play in the understanding of our own historical present?

  14. The relationship of ethics education to moral sensitivity and moral reasoning skills of nursing students.

    Science.gov (United States)

    Park, Mihyun; Kjervik, Diane; Crandell, Jamie; Oermann, Marilyn H

    2012-07-01

    This study described the relationships between academic class and student moral sensitivity and reasoning and between curriculum design components for ethics education and student moral sensitivity and reasoning. The data were collected from freshman (n = 506) and senior students (n = 440) in eight baccalaureate nursing programs in South Korea by survey; the survey consisted of the Korean Moral Sensitivity Questionnaire and the Korean Defining Issues Test. The results showed that moral sensitivity scores in patient-oriented care and conflict were higher in senior students than in freshman students. Furthermore, more hours of ethics content were associated with higher principled thinking scores of senior students. Nursing education in South Korea may have an impact on developing student moral sensitivity. Planned ethics content in nursing curricula is necessary to improve moral sensitivity and moral reasoning of students.

  15. Developing students' statistical reasoning connecting research and teaching practice

    CERN Document Server

    Garfield, Joan; Chance, Beth

    2008-01-01

    This book summarizes the research and highlights the important concepts for teachers to emphasize, showing the interrelationships among concepts. It makes specific suggestions on building classroom activities, and assessing students' learning.

  16. It's not all about moral reasoning: Understanding the content of Moral Case Deliberation.

    Science.gov (United States)

    Svantesson, Mia; Silén, Marit; James, Inger

    2018-03-01

    Moral Case Deliberation is one form of clinical ethics support described as a facilitator-led collective moral reasoning by healthcare professionals on a concrete moral question connected to their practice. Evaluation research is needed, but, as human interaction is difficult to standardise, there is a need to capture the content beyond moral reasoning. This allows for a better understanding of Moral Case Deliberation, which may contribute to further development of valid outcome criteria and stimulate the normative discussion of what Moral Case Deliberation should contain. To explore and compare the content beyond moral reasoning in the dialogue in Moral Case Deliberation at Swedish workplaces. A mixed-methods approach was applied for analysing audio-recordings of 70 periodic Moral Case Deliberation meetings at 10 Swedish workplaces. Moral Case Deliberation facilitators and various healthcare professions participated, with registered nurses comprising the majority. Ethical considerations: No objection to the study was made by an Ethical Review Board. After oral and written information was provided, consent to be recorded was assumed by virtue of participation. Other than 'moral reasoning' (median (md): 45% of the spoken time), the Moral Case Deliberations consisted of 'reflections on the psychosocial work environment' to a varying extent (md: 29%). Additional content comprised 'assumptions about the patient's psychosocial situation' (md: 6%), 'facts about the patient's situation' (md: 5%), 'concrete problem-solving' (md: 6%) and 'process' (md: 3%). The findings suggest that a restorative function of staff's wellbeing in Moral Case Deliberation is needed, as this might contribute to good patient care. This supports outcome criteria of improved emotional support, which may include relief of moral distress. However, facilitators need a strategy for how to proceed from the participants' own emotional needs and to develop the use of their emotional knowing to focus on

  17. Sexual Orientation and College Students' Reasons for Nonmedical Use of Prescription Drugs.

    Science.gov (United States)

    Dagirmanjian, Faedra R; McDaniel, Anne E; Shadick, Richard

    2017-07-03

    Nonmedical use of prescription pain medications, sedatives, and stimulants is a well-documented problem among college students. Research has indicated that students who identify as lesbian, gay, or bisexual are at elevated risk. However, little is known about students' reasons for use. (1) To replicate findings that sexual minority students report higher nonmedical use than heterosexual students, moving from a campus-specific to a multicampus sample and (2) to test for an association between sexual orientation and reasons for use. The 2015 College Prescription Drug Study surveyed 3389 students from nine 4-year public and private colleges and universities across the United States using an anonymous online survey. Measures assessed demographic information, prevalence of nonmedical use, frequency of use, where the drugs were obtained, reasons for use, and consequences of use. Stepwise logistic regression models were used to determine if sexual orientation predicted use. Chi-square tests of independence were also used to analyze prevalence of use by demographics as well as to assess differences in reasons for use by sexual orientation. Sexual minority students were significantly more likely than heterosexual students to nonmedically use any prescription drug, pain medications, and sedatives. Sexual minority students were also more likely to select that they used pain medications to relieve anxiety, enhance social interactions, and to feel better. Conclusions/Importance: Although sexual minority students are more likely to report nonmedical use, students overall use prescription medications for similar reasons, with the exception of painkillers. Implications and areas for future research are discussed.

  18. QR-STEM: Energy and Environment as a Context for Improving QR and STEM Understandings of 6-12 Grade Teachers II. The Quantitative Reasoning

    Science.gov (United States)

    Mayes, R.; Lyford, M. E.; Myers, J. D.

    2009-12-01

    The Quantitative Reasoning in STEM (QR STEM) project is a state level Mathematics and Science Partnership Project (MSP) with a focus on the mathematics and statistics that underlies the understanding of complex global scientific issues. This session is a companion session to the QR STEM: The Science presentation. The focus of this session is the quantitative reasoning aspects of the project. As students move from understandings that range from local to global in perspective on issues of energy and environment, there is a significant increase in the need for mathematical and statistical conceptual understanding. These understandings must be accessible to the students within the scientific context, requiring the special understandings that are endemic within quantitative reasoning. The QR STEM project brings together interdisciplinary teams of higher education faculty and middle/high school teachers to explore complex problems in energy and environment. The disciplines include life sciences, physics, chemistry, earth science, statistics, and mathematics. These interdisciplinary teams develop open ended performance tasks to implement in the classroom, based on scientific concepts that underpin energy and environment. Quantitative reasoning is broken down into three components: Quantitative Literacy, Quantitative Interpretation, and Quantitative Modeling. Quantitative Literacy is composed of arithmetic concepts such as proportional reasoning, numeracy, and descriptive statistics. Quantitative Interpretation includes algebraic and geometric concepts that underlie the ability to interpret a model of natural phenomena which is provided for the student. This model may be a table, graph, or equation from which the student is to make predictions or identify trends, or from which they would use statistics to explore correlations or patterns in data. Quantitative modeling is the ability to develop the model from data, including the ability to test hypothesis using statistical

  19. Examining Teacher Framing, Student Reasoning, and Student Agency in School-Based Citizen Science

    Science.gov (United States)

    Harris, Emily Mae

    This dissertation presents three interrelated studies examining opportunities for student learning through contributory citizen science (CS), where students collect and contribute data to help generate new scientific knowledge. I draw on sociocultural perspectives of learning to analyze three cases where teachers integrated CS into school science, one third grade, one fourth grade, and one high school Marine Biology classroom. Chapter 2 is a conceptual investigation of the opportunities for students to engage in scientific reasoning practices during CS data collection activities. Drawing on science education literature and vignettes from case studies, I argue that the teacher plays an important role in mediating opportunities for students to engage in investigative, explanatory, and argumentative practices of science through CS. Chapter 3 focuses on teacher framing of CS, how teachers perceive what is going on (Goffman, 1974) and how they communicate that to students as they launch CS tasks. Through analysis of videos and interviews of two upper elementary school teachers, I found that teachers frame CS for different purposes. These framings were influenced by teachers' goals, orientations towards science and CS, planning for instruction, and prior knowledge and experience. Chapter 4 examines how students demonstrate agency with environmental science as they explore their personal interests across their third grade classroom, school garden, and science lab contexts, through the lens of social practice theory (Holland, Lachicotte, Skinner, & Cain, 1998). Through analysis of classroom observations, student interviews, teacher interviews and important moments for three focal students, I found that student agency was enabled and constrained by the different cultures of the classroom, garden, and science lab. Despite affordances of the garden and science lab, the teachers' epistemic authority in the classroom permeated all three contexts, constraining student agency. In

  20. Conjecturing via Analogical Reasoning in Developing Scientific Approach in Junior High School Students

    Science.gov (United States)

    Supratman; Ryane, S.; Rustina, R.

    2016-02-01

    This study aims to explore the extent to which the use of analogy reasoning when students conduct conjecture in developing the scientific approach, so that the knowledge of the students can be used to build new knowledge. Analysis was conducted on student learning outcomes in Ciamis district. Based on these results, it was found the teacher not give an opportunity to the students to make conjecture on the students in problem solving as well as the construction of new knowledge. Moreover, teachers do not take advantage of analogical reasoning and scientific approach in constructing new knowledge.

  1. Context Dependence of Students' Views about the Role of Equations in Understanding Biology

    Science.gov (United States)

    Watkins, Jessica; Elby, Andrew

    2013-01-01

    Students' epistemological views about biology--their ideas about what "counts" as learning and understanding biology--play a role in how they approach their courses and respond to reforms. As introductory biology courses incorporate more physics and quantitative reasoning, student attitudes about the role of equations in biology become…

  2. Framework for Understanding the Patterns of Student Difficulties in Quantum Mechanics

    Science.gov (United States)

    Marshman, Emily; Singh, Chandralekha

    2015-01-01

    Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. Here, we describe a framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that…

  3. 7 Reasons for Accommodating Transgender Students at School

    Science.gov (United States)

    Arenas, Alberto; Gunckel, Kristin L.; Smith, William L.

    2016-01-01

    Schools have become ground zero for clashes over transgender rights, and critics are denouncing academic institutions--and more recently, the Obama administration--for supporting transgender students in their right to use restrooms and locker rooms that match their gender identity. This article responds to the seven most common claims made by…

  4. The Reasons for the Reluctance of Princess Alia University College Students' from Practicing Sports Activities

    Science.gov (United States)

    Odat, Jebril

    2015-01-01

    This study aimed at investigating the reasons lying behind the reluctance of participation in sport activities among Alia Princess College female students, using descriptive approach. The population of the study consisted of (2000) female students, whereas the sample was of (200) students. They were randomly selected and a questionnaire of 31…

  5. A Reason to Live: The Protective Influence of Close Friendships on College Students

    Science.gov (United States)

    Hope, Keely J.

    2009-01-01

    The purpose of this study was to examine the relationships among college age student's experiences in close friendship, emotional autonomy and reasons to live. This study was grounded in Attachment Theory and College Student Development. A sample of undergraduate students was drawn from one Southeastern U.S. university. A total of 441 participants…

  6. Mapping Students' Modes of Reasoning When Thinking about Chemical Reactions Used to Make a Desired Product

    Science.gov (United States)

    Weinrich, M. L.; Talanquer, V.

    2016-01-01

    The central goal of this study was to analyze the complexity of students' explanations about how and why chemical reactions happen in terms of the types of causal connections students built between expressed concepts and ideas. We were particularly interested in characterizing differences in the types of reasoning applied by students with…

  7. Applying the Theory of Reasoned Action to Understanding Teen Pregnancy with American Indian Communities.

    Science.gov (United States)

    Dippel, Elizabeth A; Hanson, Jessica D; McMahon, Tracey R; Griese, Emily R; Kenyon, DenYelle B

    2017-07-01

    Objectives American Indian girls have higher teen pregnancy rates than the national rate. Intervention studies that utilize the Theory of Reasoned Action have found that changing attitudes and subjective norms often leads to subsequent change in a variety of health behaviors in young adults. The current study goal is to better understand sexual decision-making among American Indian youth using the Theory of Reasoned Action model and to introduce ways to utilize attitudes and subjective norms to modify risky behaviors. Methods The project collected qualitative data at a reservation site and an urban site through 16 focus groups with American Indian young people aged 16-24. Results Attitudes towards, perceived impact of, and perception of how others felt about teen pregnancy vary between American Indian parents and non-parents. Particularly, young American Indian parents felt more negatively about teen pregnancy. Participants also perceived a larger impact on female than male teen parents. Conclusions There are differences between American Indian parents and non-parents regarding attitudes towards, the perceived impact of, and how they perceived others felt about teen pregnancy. Teen pregnancy prevention programs for American Indian youth should include youth parents in curriculum creation and curriculum that addresses normative beliefs about teen pregnancy and provides education on the ramifications of teen pregnancy to change attitudes.

  8. Applying the reasoned action approach to understanding health protection and health risk behaviors.

    Science.gov (United States)

    Conner, Mark; McEachan, Rosemary; Lawton, Rebecca; Gardner, Peter

    2017-12-01

    The Reasoned Action Approach (RAA) developed out of the Theory of Reasoned Action and Theory of Planned Behavior but has not yet been widely applied to understanding health behaviors. The present research employed the RAA in a prospective design to test predictions of intention and action for groups of protection and risk behaviors separately in the same sample. To test the RAA for health protection and risk behaviors. Measures of RAA components plus past behavior were taken in relation to eight protection and six risk behaviors in 385 adults. Self-reported behavior was assessed one month later. Multi-level modelling showed instrumental attitude, experiential attitude, descriptive norms, capacity and past behavior were significant positive predictors of intentions to engage in protection or risk behaviors. Injunctive norms were only significant predictors of intention in protection behaviors. Autonomy was a significant positive predictor of intentions in protection behaviors and a negative predictor in risk behaviors (the latter relationship became non-significant when controlling for past behavior). Multi-level modelling showed that intention, capacity, and past behavior were significant positive predictors of action for both protection and risk behaviors. Experiential attitude and descriptive norm were additional significant positive predictors of risk behaviors. The RAA has utility in predicting both protection and risk health behaviors although the power of predictors may vary across these types of health behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Perfectly Reasonable in a Practical World: Understanding Chemistry Teacher Responses to a Change Proposal

    Science.gov (United States)

    Westbroek, Hanna; Janssen, Fred; Doyle, Walter

    2017-12-01

    Curriculum ideals often get compromised as a curriculum moves through its various levels of representation. Across the different science reforms, this process of slippage is clearly present. Research shows that teacher subject matter knowledge, PCK, beliefs and context factors all influence implementation. Professional development arrangements focus on fixing deficiencies in teachers' knowledge, beliefs or work context. This approach has not solved the problem of slippage, as we still do not understand what mechanisms operate when teachers make decisions about change proposals. In this study, we unpacked the decision mechanisms of three highly qualified chemistry teachers who subsequently adapted an innovative context-based chemistry unit. In spite of a state of the art professional development arrangement and the teachers being highly qualified, slippage occurred. The teachers' goal systems were used to interpret their reasoning. A goal system is a context-dependent, within-person mental construct that consists of a hierarchy of a person's goals and means in pursuit of a task. We showed that all three teachers adopted or redesigned elements of the change proposals to meet their core goals, i.e., goals that had multiple connections with other goals. This indicated that the adaptations teachers made were perfectly reasonable ways to serve their professional goals. For change to happen, we contend that one should begin with ways to connect teachers' core goals with the lesson or unit goal demands of a proposed innovation. Change emerges from the adaptions teachers make in the service of their core goals.

  10. Exploring the reasons why school students eat or skip breakfast.

    Science.gov (United States)

    ALBashtawy, Mohammed

    2015-07-01

    Breakfast is considered to be the most important meal of the day. It provides the essential nutrients needed for the day's activities. To determine the prevalence of breakfast consumption and to assess the nutritional status of students aged 12-18 years. A school-based study carried out between September and October 2014 involved 1,303 school students from grades 7 to 12, aged 12 to 18 years, who completed a questionnaire on breakfast consumption. The chi-square test was used. An odds ratio and 95% confidence interval determined the predictive factors for skipping breakfast. The prevalence of breakfast consumption was 52.3%, statistically decreasing with age. Adjusted logistic regression analysis reflected a statistically high consumption among 12-15 year olds, those with highly educated mothers and those with low family income. For the target groups at risk, a community and school-based health education programme, conducted by school nurses and other healthcare providers, would be beneficial.

  11. Macro-reasoning and cognitive gaps: understanding post-Soviet Russians’ communication styles

    Directory of Open Access Journals (Sweden)

    Elena FELL

    2017-07-01

    Full Text Available Russians and Westerners access, process and communicate information in different ways. Whilst Westerners favour detailed analysis of subject matter, Russians tend to focus on certain components that are, in their view, significant. This disparity makes it difficult to achieve constructive dialogues between Western and Russian stakeholders contributing to cross-cultural communication problems. The author claims that the difference in the ways Russians and Westerners negotiate information is a significant cultural difference between Russia and West rather than an irritating (and in principle amenable lack of analytical skills on the Russian partners’ part. Understanding the reasons behind the Russian-specific approaches to dealing with information would be a positive step towards a more effective cross-cultural communication, important in business situations and essential in diplomacy.

  12. [Exploratory study of clinical reasoning in nursing students with concept mapping].

    Science.gov (United States)

    Paucard-Dupont, Sylvie; Marchand, Claire

    2014-06-01

    The training reference leading to the state nursing diploma places the learning of clinical reasoning at the center of the training. We have been wondering about the possibilities of making visible the student nurse's mental processes when they provide nursing care in order to identify their strategies and reasoning difficulties. It turns out that concept mapping is a research tool capable of showing these two aspects. The aim of this study is to verify a concept mapping made during an interview and built from the speech of a nursing student when analyzing a simulated clinical situation, is able to make visible its strategies clinical reasoning and reasoning difficulties. In a second phase of it, is to explore how the concept map once elaborated allows students to identify their own intellectual reasoning. 12 nursing second year students have participated in the study. Concept maps were constructed by the trainer/researcher as the students analyzed aloud a simulated clinical situation written. Concept maps were analyzed from a reference grid. Interviews were conducted following the elaboration of concept maps and student's comments were analyzed. Students reasoning strategies were either mixed inductive dominant (5/12) or hypothetical-deductive dominant (5/12). Reasoning difficulties identified are related to the lack of identification of important information, the lack of analysis of data, lack of connection or the existence of faulty links. Analysis of the comments highlights that concept mapping contributed to the development of metacognitive skills. The concept mapping has shown benefits in contributing to a diagnostic assessment of clinical reasoning learning. It is an additional resource tool to facilitate the development of metacognitive skills for students. This tool can be useful to implement support learning strategies in clinical reasoning.

  13. Student Analogy Reasons When Solving Area Concepts in Pyramids and Prisms

    Science.gov (United States)

    Mashuri, A.; Sudjadi, I.; Pramudya, I.; Gembong, S.

    2017-09-01

    The purpose of this study is to describe the reasoning of students’ analogies in solving the broad concept problem in pyramids and prisms. This research method using descriptive qualitative. Data collection uses analogous reasoning tests and interviews. After that tested to 32 students of Junior High School. Based on the results of the analysis can be concluded that (1) 16% of students solve the problem of source and target problem correctly. (2) 29% of students correctly solve source problems and target problems incorrectly. (3) 55% solve source problems and target problems wrong. This is because students tend to memorize formulas not using analogy reasoning to solve new problems. Finally, the students have difficulties in solving new problems, because students are not accustomed to using the experience they have gained to solve new problems.

  14. Using Self-Efficacy Beliefs to Understand How Students in a General Chemistry Course Approach the Exam Process

    Science.gov (United States)

    Willson-Conrad, Angela; Kowalske, Megan Grunert

    2018-01-01

    Retention of students who major in STEM continues to be a major concern for universities. Many students cite poor teaching and disappointing grades as reasons for dropping out of STEM courses. Current college chemistry courses often assess what a student has learned through summative exams. To understand students' experiences of the exam process,…

  15. University Students' Knowledge Structures and Informal Reasoning on the Use of Genetically Modified Foods: Multidimensional Analyses

    Science.gov (United States)

    Wu, Ying-Tien

    2012-12-01

    This study aims to provide insights into the role of learners' knowledge structures about a socio-scientific issue (SSI) in their informal reasoning on the issue. A total of 42 non-science major university students' knowledge structures and informal reasoning were assessed with multidimensional analyses. With both qualitative and quantitative analyses, this study revealed that those students with more extended and better-organized knowledge structures, as well as those who more frequently used higher-order information processing modes, were more oriented towards achieving a higher-level informal reasoning quality. The regression analyses further showed that the "richness" of the students' knowledge structures explained 25 % of the variation in their rebuttal construction, an important indicator of reasoning quality, indicating the significance of the role of students' sophisticated knowledge structure in SSI reasoning. Besides, this study also provides some initial evidence for the significant role of the "core" concept within one's knowledge structure in one's SSI reasoning. The findings in this study suggest that, in SSI-based instruction, science instructors should try to identify students' core concepts within their prior knowledge regarding the SSI, and then they should try to guide students to construct and structure relevant concepts or ideas regarding the SSI based on their core concepts. Thus, students could obtain extended and well-organized knowledge structures, which would then help them achieve better learning transfer in dealing with SSIs.

  16. The Effects of an Interdisciplinary Undergraduate Human Biology Program on Socioscientific Reasoning, Content Learning, and Understanding of Inquiry

    Science.gov (United States)

    Eastwood, Jennifer L.

    2010-01-01

    Preparing students to take informed positions on complex problems through critical evaluation is a primary goal of university education. Socioscientific issues (SSI) have been established as effective contexts for students to develop this competency, as well as reasoning skills and content knowledge. This mixed-methods study investigates the…

  17. Improving critical thinking : Effects of dispositions and instructions oneconomics students' reasoning skills

    NARCIS (Netherlands)

    Heijltjes, Anita; van Gog, Tamara|info:eu-repo/dai/nl/294304975; Leppink, Jimmie; Paas, Fred

    2014-01-01

    This experiment investigated the impact of critical thinking dispositions and instructions on economics students' performance on reasoning skills. Participants (. N=. 183) were exposed to one of four conditions: critical thinking instruction, critical thinking instruction with self-explanation

  18. Effects of mathematics computer games on special education students' multiplicative reasoning ability

    NARCIS (Netherlands)

    Bakker, M.; Heuvel-Panhuizen, M.H.A.M. van den; Robitzsch, A.

    2016-01-01

    This study examined the effects of a teacher-delivered intervention with online mathematics mini-games on special education students' multiplicative reasoning ability (multiplication and division). The games involved declarative, procedural, as well as conceptual knowledge of multiplicative

  19. School Students' Conceptions about Biodiversity Loss: Definitions, Reasons, Results and Solutions

    Science.gov (United States)

    Kilinc, Ahmet; Yeşiltaş, Namik Kemal; Kartal, Tezcan; Demiral, Ümit; Eroğlu, Baris

    2013-12-01

    Environmental degradation stemming from anthropocentric causes threatens the biodiversity more than ever before, leading scholars to warn governments about the impending consequences of biodiversity loss (BL). At this point, it is of great importance to study the public's conceptions of BL in order to identify significant educational implications. However, a review of the literature reveals a relatively small body of research about the public understanding of BL. In this qualitative study, we thus strived to elicit Turkish school students' conceptions about BL using a written questionnaire including open-ended questions with respect to the definition of biodiversity as well as reasons for, results of and solutions to BL. The sample consisted of 245 school students in a relatively small city. A two-staged content analysis was run on the responses. The results showed that school students most commonly preferred species-focused definitions of biodiversity and understood BL through such various conceptual patterns as, `balance of nature', `forest', `global warming', `hunting' and `indirect conservation'. At the end of the paper, the possible educational implications and future perspectives were discussed.

  20. The Effect of Problem-Solving Video Games on the Science Reasoning Skills of College Students

    Science.gov (United States)

    Fanetti, Tina M.

    As the world continues to rapidly change, students are faced with the need to develop flexible skills, such as science reasoning that will help them thrive in the new knowledge economy. Prensky (2001), Gee (2003), and Van Eck (2007) have all suggested that the way to engage learners and teach them the necessary skills is through digital games, but empirical studies focusing on popular games are scant. One way digital games, especially video games, could potentially be useful if there were a flexible and inexpensive method a student could use at their convenience to improve selected science reasoning skills. Problem-solving video games, which require the use of reasoning and problem solving to answer a variety of cognitive challenges could be a promising method to improve selected science reasoning skills. Using think-aloud protocols and interviews, a qualitative study was carried out with a small sample of college students to examine what impact two popular video games, Professor Layton and the Curious Village and Professor Layton and the Diabolical Box, had on specific science reasoning skills. The subject classified as an expert in both gaming and reasoning tended to use more higher order thinking and reasoning skills than the novice reasoners. Based on the assessments, the science reasoning of college students did not improve during the course of game play. Similar to earlier studies, students tended to use trial and error as their primary method of solving the various puzzles in the game and additionally did not recognize when to use the appropriate reasoning skill to solve a puzzle, such as proportional reasoning.

  1. Analysis of Reasons for Stress on College Students using Combined Disjoint Block Fuzzy Cognitive Maps (CDBFCM)

    OpenAIRE

    G Anusha; P Venkata Ramana

    2015-01-01

    College students experience stress because of various reasons. Caused by many reasons, the stress is present whether one is in their first year of college or their last. However, most seniors have an easier time dealing with stress because they have experience handling it. Most of the reasons for so much stress fall into one of three categories: academic stress, that is, anything to do with studying for classes, financial stress, which has to do with paying for college, and personal stress, w...

  2. The Moral Reasoning of Sports Management Students in the United States and Italy

    Science.gov (United States)

    Forte, Almerinda

    2013-01-01

    The researcher analyzed the moral reasoning ability of Sports Management students in the United States and Italy. The researcher statistically analyzed data collected through a survey questionnaire designed to measure moral reasoning. The Defining Issues Test (DIT) developed by James Rest using Kohlberg's six stages of moral judgment was used in…

  3. Students who developed logical reasoning skills reported improved confidence in drug dose calculation: Feedback from remedial maths classes.

    Science.gov (United States)

    Shelton, Chris

    2016-06-01

    The safe administration of drugs is a focus of attention in healthcare. It is regarded as acceptable that a formula card or mnemonic can be used to find the correct dose and fill a prescription even though this removes any requirement for performing the underlying computation. Feedback and discussion in class reveal that confidence in arithmetic skills can be low even when students are able to pass the end of semester drug calculation exam. To see if confidence in the understanding and performance of arithmetic for drug calculations can be increased by emphasising student's innate powers of logical reasoning after reflection. Remedial classes offered for students who have declared a dislike or lack of confidence in arithmetic have been developed from student feedback adopting a reasoning by logical step methodology. Students who gave up two hours of their free learning time were observed to engage seriously with the learning methods, focussing on the innate ability to perform logical reasoning necessary for drug calculation problems. Working in small groups allowed some discussion of the route to the answer and this was followed by class discussion and reflection. The results were recorded as weekly self-assessment scores for confidence in calculation. A self-selecting group who successfully completed the end of semester drug calculation exam reported low to moderate confidence in arithmetic. After four weeks focussing on logical skills a significant increase in self-belief was measured. This continued to rise in students who remained in the classes. Many students hold a negative belief regarding their own mathematical abilities. This restricts the learning of arithmetic skills making alternate routes using mnemonics and memorised steps an attractive alternative. Practising stepwise logical reasoning skills consolidated by personal reflection has been effective in developing student's confidence and awareness of their innate powers of deduction supporting an

  4. Observable phenomena that reveal medical students' clinical reasoning ability during expert assessment of their history taking: a qualitative study

    NARCIS (Netherlands)

    Haring, C.M.; Cools, B.M.; Gurp, P.J.M. van; Meer, J.W.M. van der; Postma, C.T.

    2017-01-01

    BACKGROUND: During their clerkships, medical students are meant to expand their clinical reasoning skills during their patient encounters. Observation of these encounters could reveal important information on the students' clinical reasoning abilities, especially during history taking. METHODS: A

  5. The Analysis of Students Scientific Reasoning Ability in Solving the Modified Lawson Classroom Test of Scientific Reasoning (MLCTSR Problems by Applying the Levels of Inquiry

    Directory of Open Access Journals (Sweden)

    N. Novia

    2017-04-01

    Full Text Available This study aims to determine the students’ achievement in answering modified lawson classroom test of scientific reasoning (MLCTSR questions in overall science teaching and by every aspect of scientific reasoning abilities. There are six aspects related to the scientific reasoning abilities that were measured; they are conservatorial reasoning, proportional reasoning, controlling variables, combinatorial reasoning, probabilistic reasoning, correlational reasoning. The research is also conducted to see the development of scientific reasoning by using levels of inquiry models. The students reasoning ability was measured using the Modified Lawson Classroom Test of Scientific Reasoning (MLCTSR. MLCTSR is a test developed based on the test of scientific reasoning of Lawson’s Classroom Test of Scientific Reasoning (LCTSR in 2000 which amounted to 12 multiple-choice questions. The research method chosen in this study is descriptive quantitative research methods. The research design used is One Group Pretest-Posttest Design. The population of this study is the entire junior high students class VII the academic year 2014/2015 in one junior high school in Bandung. The samples in this study are one of class VII, which is class VII C. The sampling method used in this research is purposive sampling. The results showed that there is an increase in quantitative scientific reasoning although its value is not big.

  6. Linear Algebra Revisited: An Attempt to Understand Students' Conceptual Difficulties

    Science.gov (United States)

    Britton, Sandra; Henderson, Jenny

    2009-01-01

    This article looks at some of the conceptual difficulties that students have in a linear algebra course. An overview of previous research in this area is given, and the various theories that have been espoused regarding the reasons that students find linear algebra so difficult are discussed. Student responses to two questions testing the ability…

  7. Exploring academic procrastination among Turkish students: possible gender differences in prevalence and reasons.

    Science.gov (United States)

    Ozer, Bilge Uzun; Demir, Ayhan; Ferrari, Joseph R

    2009-04-01

    The authors examined the prevalence of and reasons, or excuses, for academic procrastination as a function of gender and academic grade level. In Study 1, a factor analysis of responses by 203 Turkish undergraduate students to an academic procrastination measure provided evidence of reliability and validity for the revised scale. In Study 2,784 students (363 women, 421 men; M age = 20.6 years, SD age = 1.74 years) completed the validated Turkish Procrastination Assessment Scale-Students. The results were that 52% of students self-reported frequent academic procrastination, with male students reporting more frequent procrastination on academic tasks than female students. Significantly more female students than male students reported greater academic procrastination because of fear of failure and laziness; male students reported more academic procrastination as a result of risk taking and rebellion against control than did female students.

  8. Truth Matters: Teaching Young Students to Search for the Most Reasonable Answer

    Science.gov (United States)

    Reznitskaya, Alina; Wilkinson, Ian A. G.

    2018-01-01

    Learning how to formulate, comprehend, and evaluate arguments is an essential part of helping students develop the ability to make better, more reasonable judgments. The Common Core identified argumentation as a fundamental life skill that is broadly important for the literate person. According to the authors, having students engage in an inquiry…

  9. Doctoral Students' Reasons for Reading Empirical Research Articles: A Mixed Analysis

    Science.gov (United States)

    Burgess, Melissa L.; Benge, Cindy; Onwuegbuzie, Anthony J.; Mallette, Marla H.

    2012-01-01

    Little is known about reading ability among doctoral students. Thus, we used a fully mixed concurrent equal status design (Leech & Onwuegbuzie, 2009) to examine 205 doctoral students in the College of Education and their reasons for reading research articles. A thematic analysis revealed 5 themes (subsumed by 2 meta-themes) explaining reasons…

  10. Promoting Modeling and Covariational Reasoning among Secondary School Students in the Context of Big Data

    Science.gov (United States)

    Gil, Einat; Gibbs, Alison L.

    2017-01-01

    In this study, we follow students' modeling and covariational reasoning in the context of learning about big data. A three-week unit was designed to allow 12th grade students in a mathematics course to explore big and mid-size data using concepts such as trend and scatter to describe the relationships between variables in multivariate settings.…

  11. Guiding Reinvention of Conventional Tools of Mathematical Logic: Students' Reasoning about Mathematical Disjunctions

    Science.gov (United States)

    Dawkins, Paul Christian; Cook, John Paul

    2017-01-01

    Motivated by the observation that formal logic answers questions students have not yet asked, we conducted exploratory teaching experiments with undergraduate students intended to guide their reinvention of truth-functional definitions for basic logical connectives. We intend to reframe the relationship between reasoning and logic by showing how…

  12. Using STEM Approach to Develop Visual Reasoning and Learning Independence for Preparatory Stage Students

    Science.gov (United States)

    Abbas, Rasha Al-Sayed Sabry

    2017-01-01

    This research aimed at investigating the effectiveness of STEM approach in developing visual reasoning and learning independence for preparatory stage students. To achieve this aim, the researcher designed a program based on STEM approach in light of the principles of nanotechnology. Twenty one preparatory stage students participated in the…

  13. Documenting the use of expert scientific reasoning processes by high school physics students

    Directory of Open Access Journals (Sweden)

    A. Lynn Stephens

    2010-11-01

    Full Text Available We describe a methodology for identifying evidence for the use of three types of scientific reasoning. In two case studies of high school physics classes, we used this methodology to identify multiple instances of students using analogies, extreme cases, and Gedanken experiments. Previous case studies of expert scientists have indicated that these processes can be central during scientific model construction; here we code for their spontaneous use by students. We document evidence for numerous instances of these forms of reasoning in these classes. Most of these instances were associated with motion- and force-indicating depictive gestures, which we take as one kind of evidence for the use of animated mental imagery. Altogether, this methodology shows promise for use in highlighting the role of nonformal reasoning in student learning and for investigating the possible association of animated mental imagery with scientific reasoning processes.

  14. Understanding gender differences in m-health adoption: a modified theory of reasoned action model.

    Science.gov (United States)

    Zhang, Xiaofei; Guo, Xitong; Lai, Kee-Hung; Guo, Feng; Li, Chenlei

    2014-01-01

    Mobile health (m-health) services are becoming increasingly popular in healthcare, but research on m-health adoption is rare. This study was designed to obtain a better understanding of m-health adoption intention. We conducted an empirical research of a 481-respondent sample consisting of 44.7% women and 55.3% men and developed a modified theory of reasoned action (TRA) model by incorporating the nonlinearities between attitude and subjective norms and the moderating effect of gender. The results indicate that, based on the study population in China: (1) facilitating conditions, attitude, and subjective norms are significant predictors of m-health adoption intention; (2) the model including the nonlinearities enhances its explanatory ability; (3) males enjoy a higher level of m-health adoption intention compared with females; (4) the modified TRA model can predict men's behavior intention better than that of women; and (5) males have an Edgeworth-Pareto substitutability between attitude and subjective norms in predicting m-health adoption intention. Thus, we found gender differences in m-health adoption from the perspective of social psychology.

  15. Meta-Analysis of the Reasoned Action Approach (RAA) to Understanding Health Behaviors.

    Science.gov (United States)

    McEachan, Rosemary; Taylor, Natalie; Harrison, Reema; Lawton, Rebecca; Gardner, Peter; Conner, Mark

    2016-08-01

    Reasoned action approach (RAA) includes subcomponents of attitude (experiential/instrumental), perceived norm (injunctive/descriptive), and perceived behavioral control (capacity/autonomy) to predict intention and behavior. To provide a meta-analysis of the RAA for health behaviors focusing on comparing the pairs of RAA subcomponents and differences between health protection and health-risk behaviors. The present research reports a meta-analysis of correlational tests of RAA subcomponents, examination of moderators, and combined effects of subcomponents on intention and behavior. Regressions were used to predict intention and behavior based on data from studies measuring all variables. Capacity and experiential attitude had large, and other constructs had small-medium-sized correlations with intention; all constructs except autonomy were significant independent predictors of intention in regressions. Intention, capacity, and experiential attitude had medium-large, and other constructs had small-medium-sized correlations with behavior; intention, capacity, experiential attitude, and descriptive norm were significant independent predictors of behavior in regressions. The RAA subcomponents have utility in predicting and understanding health behaviors.

  16. Endorsed reasons for not drinking alcohol: a comparison of college student drinkers and abstainers.

    Science.gov (United States)

    Huang, Jiun-Hau; DeJong, William; Schneider, Shari K; Towvim, Laura G

    2011-02-01

    Little is known about how the reasons that college student drinkers and abstainers have for choosing not to drink might differ. The present study examined this issue among a sample of 2,500 U.S. college students from 18 colleges and universities. Abstainers endorsed significantly more reasons for not drinking than drinkers, and among drinkers, light drinkers endorsed more reasons than heavy drinkers. Abstainers' decision not to drink appeared to be a lifestyle choice that was supported by multiple reasons, including personal values, religious beliefs, not wanting the image of a drinker, and beliefs about alcohol's effect on behavior. Heavy drinkers were more likely to endorse situational reasons such as having to drive home later or being concerned about school work or weight gain from drinking. Implications of these findings for alcohol prevention work on college and university campuses are discussed.

  17. Development of Reasoning Test Instruments Based on TIMSS Framework for Measuring Reasoning Ability of Senior High School Student on the Physics Concept

    Science.gov (United States)

    Muslim; Suhandi, A.; Nugraha, M. G.

    2017-02-01

    The purposes of this study are to determine the quality of reasoning test instruments that follow the framework of Trends in International Mathematics and Science Study (TIMSS) as a development results and to analyse the profile of reasoning skill of senior high school students on physics materials. This research used research and development method (R&D), furthermore the subject were 104 students at three senior high schools in Bandung selected by random sampling technique. Reasoning test instruments are constructed following the TIMSS framework in multiple choice forms in 30 questions that cover five subject matters i.e. parabolic motion and circular motion, Newton’s law of gravity, work and energy, harmonic oscillation, as well as the momentum and impulse. The quality of reasoning tests were analysed using the Content Validity Ratio (CVR) and classic test analysis include the validity of item, level of difficulty, discriminating power, reliability and Ferguson’s delta. As for the students’ reasoning skills profiles were analysed by the average score of achievements on eight aspects of the reasoning TIMSS framework. The results showed that reasoning test have a good quality as instruments to measure reasoning skills of senior high school students on five matters physics which developed and able to explore the reasoning of students on all aspects of reasoning based on TIMSS framework.

  18. Students' Pre- and Post-Teaching Analogical Reasoning when They Draw Their Analogies

    Science.gov (United States)

    Mozzer, Nilmara Braga; Justi, Rosaria

    2012-01-01

    Analogies are parts of human thought. From them, we can acquire new knowledge or change that which already exists in our cognitive structure. In this sense, understanding the analogical reasoning process becomes an essential condition to understand how we learn. Despite the importance of such an understanding, there is no general agreement in…

  19. Enhancing the Clinical Reasoning Skills of Postgraduate Students in Internal Medicine Through Medical Nonfiction and Nonmedical Fiction Extracurricular Books.

    Science.gov (United States)

    Kiran, H S; Chacko, Thomas V; Murthy, K A Sudharshana; Gowdappa, H Basavana

    2016-12-01

    To improve the clinical reasoning skills of postgraduate students in internal medicine through 2 kinds of extracurricular books: medical nonfiction and nonmedical fiction. Clinical reasoning is difficult to define, understand, observe, teach, and measure. This is an educational innovation under an experimental framework based on a cognitive intervention grounded in constructivist and cognitivist theories. This study was conducted from June 1, 2014, through May 31, 2015. It was a pre-post, randomized, controlled, prospective, mixed-methods, small-group study. The intervention was through medical nonfiction and nonmedical fiction books. The process was structured to ensure that the students would read the material in phases and reflect on them. Clinical reasoning (pretests and posttests) was quantitatively assessed using the Diagnostic Thinking Inventory (DTI) and clinical reasoning exercises (CREs) and their assessment using a rubric. A qualitative design was used, and face-to-face semistructured interviews were conducted. Posttest total scores (DTI=188.92; CREs=53.92) were higher for the study group after the intervention compared with its own pretest scores (DTI=165.25; CREs=41.17) and with the pretest (DTI=159.27; CRE=40.73) and posttest (DTI=166.91; CREs=41.18) scores of the control group. Interviews with the study group confirmed that the intervention was acceptable and useful in daily practice. We introduced, evaluated, and proved an approach to teaching-learning clinical reasoning based on the assumption that the clinical reasoning skills of postgraduate students in internal medicine can be enhanced through 2 kinds of extracurricular books and that fun as well as interest will enhance learning. This study is not only about teaching-learning clinical reasoning but also about the humanities in medical education. Copyright © 2016 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  20. The Roles of Implicit Understanding of Engineering Ethics in Student Teams' Discussion.

    Science.gov (United States)

    Lee, Eun Ah; Grohman, Magdalena; Gans, Nicholas R; Tacca, Marco; Brown, Matthew J

    2017-12-01

    Following previous work that shows engineering students possess different levels of understanding of ethics-implicit and explicit-this study focuses on how students' implicit understanding of engineering ethics influences their team discussion process, in cases where there is significant divergence between their explicit and implicit understanding. We observed student teams during group discussions of the ethical issues involved in their engineering design projects. Through the micro-scale discourse analysis based on cognitive ethnography, we found two possible ways in which implicit understanding influenced the discussion. In one case, implicit understanding played the role of intuitive ethics-an intuitive judgment followed by reasoning. In the other case, implicit understanding played the role of ethical insight, emotionally guiding the direction of the discussion. In either case, however, implicit understanding did not have a strong influence, and the conclusion of the discussion reflected students' explicit understanding. Because students' implicit understanding represented broader social implication of engineering design in both cases, we suggest to take account of students' relevant implicit understanding in engineering education, to help students become more socially responsible engineers.

  1. The Language of Information Literacy: Do Students Understand?

    Science.gov (United States)

    Schaub, Gayle; Cadena, Cara; Bravender, Patricia; Kierkus, Christopher

    2017-01-01

    To effectively access and use the resources of the academic library and to become information-literate, students must understand the language of information literacy. This study analyzes undergraduate students' understanding of fourteen commonly used information-literacy terms. It was found that some of the terms least understood by students are…

  2. Australian Secondary School Students' Understanding of Climate Change

    Science.gov (United States)

    Dawson, Vaille; Carson, Katherine

    2013-01-01

    This study investigated 438 Year 10 students (15 and 16 years old) from Western Australian schools, on their understanding of the greenhouse effect and climate change, and the sources of their information. Results showed that most students have an understanding of how the greenhouse effect works, however, many students merge the processes of the…

  3. Students' Understanding of Advanced Properties of Java Exceptions

    Science.gov (United States)

    Rashkovits, Rami; Lavy, Ilana

    2012-01-01

    This study examines how Information Systems Engineering School students on the verge of their graduation understand the mechanism of exception handling. The main contributions of this paper are as follows: we construct a questionnaire aimed at examining students' level of understanding concerning exceptions; we classify and analyse the students'…

  4. Primary Student-Teachers' Conceptual Understanding of the Greenhouse Effect: A mixed method study

    Science.gov (United States)

    Ratinen, Ilkka Johannes

    2013-04-01

    The greenhouse effect is a reasonably complex scientific phenomenon which can be used as a model to examine students' conceptual understanding in science. Primary student-teachers' understanding of global environmental problems, such as climate change and ozone depletion, indicates that they have many misconceptions. The present mixed method study examines Finnish primary student-teachers' understanding of the greenhouse effect based on the results obtained via open-ended and closed-form questionnaires. The open-ended questionnaire considers primary student-teachers' spontaneous ideas about the greenhouse effect depicted by concept maps. The present study also uses statistical analysis to reveal respondents' conceptualization of the greenhouse effect. The concept maps and statistical analysis reveal that the primary student-teachers' factual knowledge and their conceptual understanding of the greenhouse effect are incomplete and even misleading. In the light of the results of the present study, proposals for modifying the instruction of climate change in science, especially in geography, are presented.

  5. Does Marketing Attract Less Ethical Students? An Assessment of the Moral Reasoning Ability of Undergraduate Marketing Students

    Science.gov (United States)

    Herington, Carmel; Weaven, Scott

    2007-01-01

    This article assesses the level of moral reasoning ability (MRA) of undergraduate marketing students and compares the results with the MRA of students in a range of other business disciplines. The aim was to determine if marketing attracts individuals who have a greater predisposition to unethical behaviors given that marketing is often reported…

  6. Calculating and Understanding: Formal Models and Causal Explanations in Science, Common Reasoning and Physics Teaching

    Science.gov (United States)

    Besson, Ugo

    2010-01-01

    This paper presents an analysis of the different types of reasoning and physical explanation used in science, common thought, and physics teaching. It then reflects on the learning difficulties connected with these various approaches, and suggests some possible didactic strategies. Although causal reasoning occurs very frequently in common thought…

  7. Using Two-Tier Test to Identify Primary Students' Conceptual Understanding and Alternative Conceptions in Acid Base

    Science.gov (United States)

    Bayrak, Beyza Karadeniz

    2013-01-01

    The purpose of this study was to identify primary students' conceptual understanding and alternative conceptions in acid-base. For this reason, a 15 items two-tier multiple choice test administered 56 eighth grade students in spring semester 2009-2010. Data for this study were collected using a conceptual understanding scale prepared to include…

  8. Secondary School Students' Conceptual Understanding of Physical and Chemical Changes

    Science.gov (United States)

    Hanson, R.; Twumasi, A. K.; Aryeetey, C.; Sam, A.; Adukpo, G.

    2016-01-01

    In recent years, researchers have shown an interest in understanding students' own ideas about basic chemical principles and guiding them through innovative ways to gain conceptual understanding where necessary. This research was a case study designed to assess 50 first year high school students' conceptual understanding about changes in matter,…

  9. Peeling the Onion: Student Teacher's Conceptions of Literary Understanding.

    Science.gov (United States)

    Carlsson, Maj Asplund; Fulop, Marta; Marton, Ference

    2001-01-01

    Studied the theories student teachers held about literary understanding through interviews with 25 Hungarian and 8 Swedish student teachers. Categories of theories captured a substantial portion of the variation in how literary understanding can be seen. Three central aspects of human understanding, variation, discernment, and simultaneity, could…

  10. A Study of Geometric Understanding via Logical Reasoning in Hong Kong

    Science.gov (United States)

    Poon, Kin-Keung; Leung, Chi-Keung

    2016-01-01

    The purposes of the study reported herein were to identify the common mistakes in geometry made by junior secondary school students in Hong Kong, and to compare the students' performance in geometry with their results in a logic test. A geometry test and a logic test were developed and administered to a sample of 554 students aged between 13 and…

  11. Does the Reason Matter? How Student-Reported Reasons for School Absence Contribute to Differences in Achievement Outcomes among 14-15 Year Olds

    Science.gov (United States)

    Hancock, Kirsten J.; Gottfried, Michael A.; Zubrick, Stephen R.

    2018-01-01

    While an emerging body of research has examined the effects of school absences on student outcomes, there is comparatively little research examining the different reasons contributing to school absence, how common these reasons are, and the extent to which different types of absences are differentially associated with achievement. To address these…

  12. Assessing Freshman Engineering Students' Understanding of Ethical Behavior.

    Science.gov (United States)

    Henslee, Amber M; Murray, Susan L; Olbricht, Gayla R; Ludlow, Douglas K; Hays, Malcolm E; Nelson, Hannah M

    2017-02-01

    Academic dishonesty, including cheating and plagiarism, is on the rise in colleges, particularly among engineering students. While students decide to engage in these behaviors for many different reasons, academic integrity training can help improve their understanding of ethical decision making. The two studies outlined in this paper assess the effectiveness of an online module in increasing academic integrity among first semester engineering students. Study 1 tested the effectiveness of an academic honesty tutorial by using a between groups design with a Time 1- and Time 2-test. An academic honesty quiz assessed participants' knowledge at both time points. Study 2, which incorporated an improved version of the module and quiz, utilized a between groups design with three assessment time points. The additional Time 3-test allowed researchers to test for retention of information. Results were analyzed using ANCOVA and t tests. In Study 1, the experimental group exhibited significant improvement on the plagiarism items, but not the total score. However, at Time 2 there was no significant difference between groups after controlling for Time 1 scores. In Study 2, between- and within-group analyses suggest there was a significant improvement in total scores, but not plagiarism scores, after exposure to the tutorial. Overall, the academic integrity module impacted participants as evidenced by changes in total score and on specific plagiarism items. Although future implementation of the tutorial and quiz would benefit from modifications to reduce ceiling effects and improve assessment of knowledge, the results suggest such tutorial may be one valuable element in a systems approach to improving the academic integrity of engineering students.

  13. Why Volunteer? Understanding Motivations for Student Volunteering

    Science.gov (United States)

    Holdsworth, Clare

    2010-01-01

    The profile of volunteering in English Higher Education (HE) has been enhanced in recent years through various initiatives that have not only funded activities, but have sought to expand the range of volunteering opportunities available to students and recognise the contribution that volunteering can make to students' employability. This expansion…

  14. Understanding Management Students' Reflective Practice through Blogging

    Science.gov (United States)

    Osman, Gihan; Koh, Joyce Hwee Ling

    2013-01-01

    The paper discusses the results of a study on the use of blogging to encourage students to engage in the making of theory-practice linkages and critical thinking within the context of a graduate management course. Sixty-five students participated in collaborative blogging for a period of five weeks. The transcripts of these blogs were analyzed…

  15. [Dentistry students' reasons for choosing dentistry as a career in Damascus University].

    Science.gov (United States)

    Mashlah, A M

    2012-05-01

    This cross-sectional questionnaire survey assessed the motives for choosing dentist as a profession among dentistry students at Damascus University, Syrian Arab Republic. A total of 408 undergraduate students (233 males and 175 females) aged 18-23 years were selected randomly from students in the second, third and fourth years of dentistry study. They completed a questionnaire that enquired about their reasons for studying dentistry as well as their sociodemographic characteristics. The number of admissions in females had increased over the 3 years. Most parents of the students were university-educated. The main motivation for choosing dentistry was as a means to achieve personal goals, including getting a good job abroad, having financial independence, and attaining a good reputation. There were significant differences between the sexes with regard to the reasons for choosing dentistry.

  16. Constructing scientific explanations through premise-reasoning-outcome (PRO): an exploratory study to scaffold students in structuring written explanations

    Science.gov (United States)

    Tang, Kok-Sing

    2016-06-01

    This paper reports on the design and enactment of an instructional strategy aimed to support students in constructing scientific explanations. Informed by the philosophy of science and linguistic studies of science, a new instructional framework called premise-reasoning-outcome (PRO) was conceptualized, developed, and tested over two years in four upper secondary (9th-10th grade) physics and chemistry classrooms. This strategy was conceptualized based on the understanding of the structure of a scientific explanation, which comprises three primary components: (a) premise - accepted knowledge that provides the basis of the explanation, (b) reasoning - logical sequences that follow from the premise, and (c) outcome - the phenomenon to be explained. A study was carried out to examine how the PRO strategy influenced students' written explanations using multiple data sources (e.g. students' writing, lesson observations, focus group discussions). Analysis of students' writing indicates that explanations with a PRO structure were graded better by the teachers. In addition, students reported that the PRO strategy provided a useful organizational structure for writing scientific explanations, although they had some difficulties in identifying and using the structure. With the PRO as a new instructional tool, comparison with other explanation frameworks as well as implications for educational research and practice are discussed.

  17. The nature of middle school students' knowledge construction and scientific reasoning during inquiry in genetics

    Science.gov (United States)

    Echevarria, Marissa

    1999-11-01

    The purpose of this study was to examine the nature of middle school students' scientific reasoning and knowledge construction during a three-week inquiry unit in genetics. During the unit, students used genetics simulation software to investigate how traits were transmitted in fruit flies and plants in order to develop mental models of trait transmission for simple dominance single trait inheritance patterns. Using a participant/observer design, data were collected consisting of a pretest/posttest assessment, audiotaped/videotaped discourse, computer logs, student recorded logs, homework, final reports, and researcher field notes. Qualitative analyses were used to determine categories of student content knowledge and scientific reasoning. For content knowledge, categories of student explanations were formed for both standard and anomalous inheritance patterns. Standard inheritance patterns were those that could be predicted based on the appearance of the parents. Anomalous inheritance patterns were those that could not. For scientific reasoning, categories of student hypotheses, tests, and conclusions were formed. Quantitative analyses were used to determine patterns of significance in the qualitative data. Based on pre-post analyses, students made a significant shift from less sophisticated to more sophisticated explanations of anomalous inheritance patterns. Changes in scientific reasoning were more subtle. Some students shifted from less complex to more complex hypotheses, and from descriptive to evaluative conclusions. Some students also shifted from less comprehensive to more comprehensive testing. Student ability to explain two different anomalous patterns seemed to be linked to the extent to which they encountered each anomalous outcome during their investigations; greater exposure was associated with an increased number of students being able to explain that pattern. Novice tendencies found in the extant literature on students' lack of systematicity during

  18. Developing Students' Critical Reasoning About Online Health Information: A Capabilities Approach

    Science.gov (United States)

    Wiblom, Jonna; Rundgren, Carl-Johan; Andrée, Maria

    2017-11-01

    The internet has become a main source for health-related information retrieval. In addition to information published by medical experts, individuals share their personal experiences and narratives on blogs and social media platforms. Our increasing need to confront and make meaning of various sources and conflicting health information has challenged the way critical reasoning has become relevant in science education. This study addresses how the opportunities for students to develop and practice their capabilities to critically approach online health information can be created in science education. Together with two upper secondary biology teachers, we carried out a design-based study. The participating students were given an online retrieval task that included a search and evaluation of health-related online sources. After a few lessons, the students were introduced to an evaluation tool designed to support critical evaluation of health information online. Using qualitative content analysis, four themes could be discerned in the audio and video recordings of student interactions when engaging with the task. Each theme illustrates the different ways in which critical reasoning became practiced in the student groups. Without using the evaluation tool, the students struggled to overview the vast amount of information and negotiate trustworthiness. Guided by the evaluation tool, critical reasoning was practiced to handle source subjectivity and to sift out scientific information only. Rather than a generic skill and transferable across contexts, students' critical reasoning became conditioned by the multi-dimensional nature of health issues, the blend of various contexts and the shift of purpose constituted by the students.

  19. Case Studies of Secondary School Teachers Designing Socioscientific Issues-Based Instruction and Their Students' Socioscientific Reasoning

    Science.gov (United States)

    Karahan, Engin

    Addressing socioscientific issues (SSI) has been one of the main focuses in science education since the Science, Technology, and Society (STS) movement in the 1970s (Levinson, 2006); however, teaching controversial socioscientific issues has always been challenging for teachers (Dillon, 1994; Osborne, Duschl, & Fairbrother, 2002). Although teachers exhibit positive attitudes for using controversial socioscientific issues in their science classrooms, only a small percentage of them actually incorporate SSI content into their science curricula on a regular basis (Sadler, Amirshokoohi, Kazempour, & Allspaw, 2006; Lee & Witz, 2009). The literature in science education has highlighted the signi?cant relationships among teacher beliefs, teaching practices, and student learning (Bryan & Atwater, 2002; King, Shumow, & Lietz, 2001; Lederman, 1992). Despite the fact that the case studies present a relatively detailed picture of teachers' values and motivations for teaching SSI (e.g. Lee, 2006; Lee & Witz, 2009; Reis & Galvao, 2004), these studies still miss the practices of these teachers and potential outcomes for their students. Therefore, there is a great need for in-depth case studies that would focus on teachers' practices of designing and teaching SSI-based learning environments, their deeper beliefs and motivations for teaching SSI, and their students' response to these practices (Lee, 2006). This dissertation is structured as three separate, but related, studies about secondary school teachers' experiences of designing and teaching SSI-based classes and their students' understanding of science and SSI reasoning. The case studies in this dissertation seek answers for (1) teachers' practices of designing and teaching SSI-based instruction, as well as its relation to their deeper personal beliefs and motivations to teach SSI, and (2) how their students respond to their approaches of teaching SSI in terms of their science understanding and SSI reasoning. The first paper

  20. Characterizing Students' Understandings of Mathematical Proof.

    Science.gov (United States)

    Knuth, Eric J.; Elliott, Rebekah L.

    1998-01-01

    Discusses the characteristics of students' responses in terms of mathematical sophistication demonstrated that might be expected as they engage in a rich mathematical task that requires them to justify their solutions. (ASK)

  1. Undergraduate mathematics students' reasons for attending live lectures when recordings are available

    Science.gov (United States)

    Yoon, Caroline; Oates, Greg; Sneddon, Jamie

    2014-02-01

    With the proliferation of new affordable recording technologies, many universities have begun offering students recordings of live lectures as a part of the course resources. We conducted a survey to investigate why some students choose to attend lectures in person rather than simply watching the recordings online, and how students view the two types of lectures. Students attending live lectures in five large undergraduate mathematics lecture streams were invited to respond to the survey. A significant number of respondents viewed recorded lecture as superfluous to their needs which were met upon attending live lecture. Surprisingly, however, an equally large number of students described compelling reasons for watching both live and recorded lectures. A number of factors were identified as determining students' perceptions of live and recorded lectures as competing or complementary: personal learning styles, study habits, esteem for the lecturer, and the possibility of interaction in the lecture.

  2. Understanding and Affecting Science Teacher Candidates' Scientific Reasoning in Introductory Astrophysics

    Science.gov (United States)

    Steinberg, Richard; Cormier, Sebastien

    2013-01-01

    This study reports on a content course for science immersion teacher candidates that emphasized authentic practice of science and thinking scientifically in the context of introductory astrophysics. We explore how 122 science teacher candidates spanning three cohorts did and did not reason scientifically and how this evolved in our program. Our…

  3. Understanding Adolescent Caffeine Use: Connecting Use Patterns with Expectancies, Reasons, and Sleep

    Science.gov (United States)

    Ludden, Alison Bryant; Wolfson, Amy R.

    2010-01-01

    Little is known about adolescents' caffeine use, yet caffeinated soda, and more recently coffee and energy drinks, are part of youth culture. This study examines adolescents' caffeine use and, using cluster analysis, identifies three groups of caffeine users who differed in their reasons for use, expectancies, and sleep behaviors. In this high…

  4. What Is a Reasonable Answer? Ways for Students to Investigate and Develop Their Number Sense

    Science.gov (United States)

    Muir, Tracey

    2012-01-01

    Although number sense is difficult to define, it involves having a good intuition about numbers and their relationships, including the ability to have a "feel" for the relative size of numbers and to make reasonable estimations. Students with good number sense typically recognise the relative magnitude of numbers, appreciate the effect…

  5. Functioning and Participation Problems of Students with ADHD in Higher Education: Which Reasonable Accommodations Are Effective?

    Science.gov (United States)

    Jansen, Dorien; Petry, Katja; Ceulemans, Eva; van der Oord, Saskia; Noens, Ilse; Baeyens, Dieter

    2017-01-01

    Students with ADHD struggle in higher education as a result of various functioning and participation problems. However, there are remaining gaps in the literature. First, it remains unclear how often and during which teaching and evaluation methods problems arise. Second, we do not yet know which reasonable accommodations are most effective to…

  6. The Enhancement of Students' Teacher Mathematical Reasoning Ability through Reflective Learning

    Science.gov (United States)

    Rohana

    2015-01-01

    This study aims to examine the enhancement of mathematical reasoning ability through reflective learning. This study used quasi-experimental method with nonequivalent pretest and posttest control group design. The subject of this study were students of Mathematics Education Program in one of private universities in Palembang, South Sumatera,…

  7. Measurement of Spatial Ability: Construction and Validation of the Spatial Reasoning Instrument for Middle School Students

    Science.gov (United States)

    Ramful, Ajay; Lowrie, Thomas; Logan, Tracy

    2017-01-01

    This article describes the development and validation of a newly designed instrument for measuring the spatial ability of middle school students (11-13 years old). The design of the Spatial Reasoning Instrument (SRI) is based on three constructs (mental rotation, spatial orientation, and spatial visualization) and is aligned to the type of spatial…

  8. University Students' Reasons for NOT Drinking: Relationship to Alcohol Consumption Level.

    Science.gov (United States)

    Slicker, Ellen K.

    1997-01-01

    Examines patterns of alcohol use at a mid-South state university so as to discover the reasons students (N=403) endorse for not drinking on those occasions when they chose not to drink. Results indicate that safety needs, the risk of underage drinking, the affordability of alcohol, and religiosity all contributed to decisions not to drink. (RJM)

  9. Senior High School Students' Preference and Reasoning Modes about Nuclear Energy Use.

    Science.gov (United States)

    Yang, Fang-Ying; Anderson, O. Roger

    2003-01-01

    Examines senior high school students' cognitive orientation toward scientific or social information, designated as information preference, and associated preferential reasoning modes when presented with an environmental issue concerning nuclear energy usage. Investigates the association of information preference variable with academic and personal…

  10. How Do High School Students Solve Probability Problems? A Mixed Methods Study on Probabilistic Reasoning

    Science.gov (United States)

    Heyvaert, Mieke; Deleye, Maarten; Saenen, Lore; Van Dooren, Wim; Onghena, Patrick

    2018-01-01

    When studying a complex research phenomenon, a mixed methods design allows to answer a broader set of research questions and to tap into different aspects of this phenomenon, compared to a monomethod design. This paper reports on how a sequential equal status design (QUAN ? QUAL) was used to examine students' reasoning processes when solving…

  11. Effects of Mathematics Computer Games on Special Education Students' Multiplicative Reasoning Ability

    Science.gov (United States)

    Bakker, Marjoke; van den Heuvel-Panhuizen, Marja; Robitzsch, Alexander

    2016-01-01

    This study examined the effects of a teacher-delivered intervention with online mathematics mini-games on special education students' multiplicative reasoning ability (multiplication and division). The games involved declarative, procedural, as well as conceptual knowledge of multiplicative relations, and were accompanied with teacher-led lessons…

  12. Influence of Three Different Methods of Teaching Physics on the Gain in Students' Development of Reasoning

    Science.gov (United States)

    Marusic, Mirko; Slisko, Josip

    2012-01-01

    The Lawson Classroom Test of Scientific Reasoning (LCTSR) was used to gauge the relative effectiveness of three different methods of pedagogy, "Reading, Presenting, and Questioning" (RPQ), "Experimenting and Discussion" (ED), and "Traditional Methods" (TM), on increasing students' level of scientific thinking. The…

  13. Application of the Theory of Reason Action for Preventing of Ecstasy Abuse among College Students

    Directory of Open Access Journals (Sweden)

    Majid Barati

    2009-08-01

    Full Text Available Introduction: The aim of the present study was assessed the effect of educational program for preventing of ecstasy abuse among college students in Hamadan based on Theory of Reason Action (TRA. Method: A quasi-experimental study carried out in college students. A total number of 140 students were selected through randomized cluster sampling and randomly assigned to the intervention (n=70 and the control (n=70 groups. Data-gathering tools consisted of a two-part questionnaire: Knowledge of ecstasy abuse consequences and one scale for measuring TRA variables. Respondents in the control and experimental groups completed questionnaires at before and two months after intervention. Results: The results showed that among constructs of the theory of reason action, subjective norms were better predictor of ecstasy abuse. There were significant differences between the scores of reason action constructs namely: attitude against drug abuse, subjective norms and intention of ecstasy abuse with consideration of group (witness and experimental. Conclusion: With regard to the results of the current study, special education based on Theory of Reasoned Action is effective in improving of attitude, subjective norm and behavioral intention of students. Therefore it is highly recommended that TRA education can be use for preventing of drug abuse education programs.

  14. Effects of playing mathematics computer games on primary school students' multiplicative reasoning ability

    NARCIS (Netherlands)

    Bakker, Marjoke; Van den Heuvel-Panhuizen, M.; Robitzsch, Alexander

    2015-01-01

    This study used a large-scale cluster randomized longitudinal experiment (N=719; 35schools) to investigate the effects of online mathematics mini-games on primary school students' multiplicative reasoning ability. The experiment included four conditions: playing at school, integrated in a lesson

  15. Understanding adolescent student perceptions of science education

    Science.gov (United States)

    Ebert, Ellen Kress

    This study used the Relevance of Science Education (ROSE) survey (Sjoberg & Schreiner, 2004) to examine topics of interest and perspectives of secondary science students in a large school district in the southwestern U.S. A situated learning perspective was used to frame the project. The research questions of this study focused on (a) perceptions students have about themselves and their science classroom and how these beliefs may influence their participation in the community of practice of science; (b) consideration of how a future science classroom where the curriculum is framed by the Next Generation Science Standards might foster students' beliefs and perceptions about science education and their legitimate peripheral participation in the community of practice of science; and (c) reflecting on their school science interests and perspectives, what can be inferred about students' identities as future scientists or STEM field professionals? Data were collected from 515 second year science students during a 4-week period in May of 2012 using a Web-based survey. Data were disaggregated by gender and ethnicity and analyzed descriptively and by statistical comparison between groups. Findings for Research Question 1 indicated that boys and girls showed statistically significant differences in scientific topics of interest. There were no statistical differences between ethnic groups although. For Research Question 2, it was determined that participants reported an increase in their interest when they deemed the context of the content to be personally relevant. Results for Research Question 3 showed that participants do not see themselves as youthful scientists or as becoming scientists. While participants value the importance of science in their lives and think all students should take science, they do not aspire to careers in science. Based on this study, a need for potential future work has been identified in three areas: (a) exploration of the perspectives and

  16. Student Teachers' Levels of Understanding and Model of Understanding about Newton's Laws of Motion

    Science.gov (United States)

    Saglam-Arslan, Aysegul; Devecioglu, Yasemin

    2010-01-01

    This study was conducted to determine the level of student teachers' understandings of Newton's laws of motion and relating these levels to identify student teachers' models of understanding. An achievement test composed of two parts comprising 12 open ended questions was constructed and given to 45 pre-service classroom teachers. The first part…

  17. Exploring Elementary Students' Understanding of Energy and Climate Change

    Science.gov (United States)

    Boylan, Colin

    2008-01-01

    As environmental changes become a significant societal issue, elementary science curricula need to develop students' understanding about the key concepts of energy and climate change. For teachers, developing quality learning experiences involves establishing what their students' prior understanding about energy and climate change are. A survey…

  18. Helping the International Student Understand the American University

    Science.gov (United States)

    Chang, Mary

    2011-01-01

    To be successful in navigating the waters of American higher education, international students need to demonstrate proficiency in the English language and an understanding of the educational expectations of American academia. Unlike Americans who apply to a US university, international students must demonstrate that they understand enough English…

  19. Improving Students' Understanding of Electricity and Magnetism

    Science.gov (United States)

    Li, Jing

    2012-01-01

    Electricity and magnetism are important topics in physics. Research shows that students have many common difficulties in understanding concepts related to electricity and magnetism. However, research to improve students' understanding of electricity and magnetism is limited compared to introductory mechanics. This thesis explores issues…

  20. Use of personal digital assistants to support clinical reasoning in undergraduate baccalaureate nursing students.

    Science.gov (United States)

    Kuiper, Ruthanne

    2008-01-01

    The utility of personal digital assistant resources in healthcare practice and education presents new challenges for faculty due to changing device capabilities and software availability. Although there is a plethora of personal digital assistant resources available for use by healthcare providers, little is known about the effect on clinical reasoning in nursing students. The complexity of the healthcare arena precludes reliance on memory as a sole resource for problem solving because it can be unreliable. A personal digital assistant provides instant access to information on medical treatment options so reliance on memory alone is avoided. The aims of this study are to assess clinical reasoning when personal digital assistants are used as an information resource for nursing students. These findings have implications for the future nursing work force, including accurate differential diagnosis and diagnostic reasoning, reduction of medication errors, reduction of healthcare costs, and development of effective treatment protocols.

  1. High School Students' Representations and Understandings of Electric Fields

    Science.gov (United States)

    Cao, Ying; Brizuela, Bárbara M.

    2016-01-01

    This study investigates the representations and understandings of electric fields expressed by Chinese high school students 15 to 16 years old who have not received high school level physics instruction. The physics education research literature has reported students' conceptions of electric fields post-instruction as indicated by students'…

  2. Understanding the Coping Strategies of International Students: A Qualitative Approach

    Science.gov (United States)

    Khawaja, Nigar G.; Stallman, Helen M.

    2011-01-01

    International students encounter a range of additional challenges as a part of their tertiary study experience. A qualitative approach was used to understand the challenges faced by international students, coping strategies that promoted their personal resilience and advice they have for future international students. Twenty-two international…

  3. Chemical Reactions: What Understanding Do Students with Blindness Develop?

    Science.gov (United States)

    Lewis, Amy L. Micklos; Bodner, George M.

    2013-01-01

    This study examined the understanding of chemical equations developed by three students with blindness who were enrolled in the same secondary-school chemistry class. The students were interviewed while interpreting and balancing chemical equations. During the course of these interviews, the students produced diagrams using Braille symbols that…

  4. Standing in the Hallway Improves Students' Understanding of Conformity

    Science.gov (United States)

    Lawson, Timothy J.; Haubner, Richard R.; Bodle, James H.

    2013-01-01

    To help beginning psychology students understand how they are influenced by social pressures to conform, we developed a demonstration designed to elicit their conformity to a small group of students standing in the hallway before class. Results showed the demonstration increased students' recognition of their own tendency to conform, knowledge of…

  5. Understanding Physical Education Doctoral Students' Perspectives of Socialization

    Science.gov (United States)

    Richards, K. Andrew R.; McLoughlin, Gabriella M.; Ivy, Victoria Nicole; Gaudreault, Karen Lux

    2017-01-01

    Purpose: Despite an abundance of research on doctoral student socialization in higher education, little attention has been paid to physical education doctoral students. This study sought to understand physical education doctoral students' perceptions of their socialization as preparation for faculty roles. Method: Participants included 32 physical…

  6. HELPING STUDENTS UNDERSTAND THE TEXT THROUGH SCAFFOLDING

    Directory of Open Access Journals (Sweden)

    Deni Sapta Nugraha

    2015-12-01

    Full Text Available This study reported the practice of helping adult students to comprehend the texts in Indonesian Civil Aviation Institute majoring at Air traffic controller programme, Curug - Tangerang. The article demonstrated of how teacher helped them to comprehend the text during 100 minutes reading class in three meetings. It was employed as their input session to acquire context, knowledge and specific vocabulary in aviation or what so called as phraseology. Students were asked to construct some questions dealing with the text both literal and inferential comprehension suggested by Barrett (in Eanes 1997. The result showed that students attained three main bonuses; they get used to build questions that impact to their grammatical awareness, they get used to communicate orally, and they are successful to comprehend the text thoroughly by acquiring new knowledge, vocabulary as well as context. Keywords: reading comprehension, text, scaffolding

  7. The scientific role of hypotheses and the reasoning of college students in physics problem solving

    Directory of Open Access Journals (Sweden)

    Jenaro Guisasola

    2003-08-01

    Full Text Available This paper attempts to explore how freshmen college students in engineering state hypoteses to build their own problem solving structure when dealing with physics problems. From the constructivist perspective of the teaching and learning process hypotheses stating plays a fundamental role to check the coherence of students' ideas against the theoretical framework. The main instruments to accede to students' reasoning were their written solutions to four problematic situations in which they were asked to state hypotheses. The protocols were analysed according to a standard methodology. In this paper two of such problematic situations and the corresponding cathegorization schemes are presented in addition to reseach findings and conclusions.

  8. Evidence of students' content reasoning in relation to measure of reform

    Science.gov (United States)

    Haghanikar, Mojgan Matloob; Murphy, Sytil; Zollman, Dean

    2012-02-01

    As part of a study of the science preparation of elementary school teachers, we investigated the quality of students' reasoning and explored the relationship between sophistication of reasoning and the degree to which the courses are considered inquiry oriented. First, we devised written content questions, which were open ended with the distinguishing feature of applying recently learned concepts in a new context. All the questions developed were based on a common template that required students to recognize and generalize the relevant facts or concepts and their interrelationships to suggest an applicable or plausible theory. To evaluate students' answers, we developed a rubric based on Bloom's taxonomy as revised and expanded by Anderson. Along with analyzing students' reasoning, we visited 20 universities and observed the courses in which the students were enrolled. We ranked the courses with respect to characteristics that are valued for the inquiry courses. With the large amount of collected data, we found that the likelihood of the higher cognitive processes are in favor of classes with higher measures of inquiry.

  9. COLLEGE RETENTION OF THE ADMINISTRATION STUDENTS OF UFS: REASONS AND ACADEMIC MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Rodrigo Teles Dantas de Oliveira

    2016-08-01

    Full Text Available This article discusses the subject of students retention from the Management Program of the Federal University of Sergipe (UFS, regarding the maintenance of the student beyond the regular time. The objectives of this article are to outline the characteristics of UFS’s Management students, to identify the retention reasons, to measure the quality of the course, and to learn the actions to avoid students’ retention, which were developed by the Management Program. Data were collected through documental research and bibliographic references. Google Forms® were used for the retention of the students, as well as interviews were performed with the teachers from the Program who had previously occupied the cargo of Head of the Program/Department. Quantitative data were analyzed using nonparametric statistics through the SPSS® statistical program, using the adapted Likert scale. Qualitative information was analyzed through content analysis. It was concluded that most of the retained students were female, single, aged between 18-30 years old, with 1-3 minimum income wages, within work shifts and/or under internships of 40 or more hours/week, and having more than 75% of the course completed. The reasons identified for the retention were the lack of time of the students, conflict between their professional/academic schedules; strikes; dissatisfaction with faculty members, and reprobation/locking disciplines. Students rated the course as regular. Retention management has been done partially by the Department.

  10. Minority Students: Understanding a New Clientele.

    Science.gov (United States)

    Tarmy Rudnick, Diane

    1985-01-01

    Provides data on recruitment, family, academic background, attitudes, and extracurricular/cultural interests of 1288 minority engineering technology students. Indicates that although their high school achievement was superior to average freshmen, their limited finances and low self-esteem remain as problems. Recommendations for addressing the…

  11. Understanding Academics' Resistance towards (Online) Student Evaluation

    Science.gov (United States)

    Rienties, Bart

    2014-01-01

    Many higher educational institutions and academic staff are still sceptical about the validity and reliability of student evaluation questionnaires, in particular when these evaluations are completed online. One month after a university-wide implementation from paper to online evaluation across 629 modules, (perceived) resistance and ambivalence…

  12. Assessing Students' Understanding of Fraction Multiplication

    Science.gov (United States)

    Rumsey, Chepina; Guarino, Jody; Beltramini, Jennie; Cole, Shelbi; Farmer, Alicia; Gray, Kristin; Saxby, Morgan

    2016-01-01

    In this article the authors describe a project during which they unpacked fraction standards, created rigorous tasks and lesson plans, and developed formative and summative assessments to analyze students' thinking about fraction multiplication. The purpose of this article is to (1) illustrate a process that can be replicated by educators…

  13. Dreams and disappointments regarding nursing: Student nurses' reasons for attrition and retention. A qualitative study design.

    Science.gov (United States)

    Ten Hoeve, Yvonne; Castelein, Stynke; Jansen, Gerard; Roodbol, Petrie

    2017-07-01

    In the Netherlands, hundreds of students register annually for a nursing programme, but not all of these students manage to complete their training. The main aim of this study was to examine which factors affect student nurses' decision to leave or complete their programme. The study used an exploratory descriptive design, employing a qualitative phenomenological approach. Student nurses (n=17) at the beginning of their third year of the four-year Bachelor's programme. Data were collected at four Universities of Applied Sciences in the Netherlands, from December 2013 to January 2014. Semi-structured interviews were used to collect the data, using an interview guide. The main reasons for students to become nurses were the caring aspect, personal experiences with healthcare, role models in their immediate environment, and job opportunities. They had both altruistic and professional perceptions of their profession. Reasons for attrition were strongly related to the training programme and to their clinical placements, in particular the perceived lack of support from mentors and team. Feelings of being welcomed and working in a nice team proved to be more important reasons for completing the programme than the specific clinical field. Student nurses started their studies with many dreams, such as caring for people and having the opportunity to deliver excellent nursing care. When their expectations were not met, their dreams became disappointments which caused them to consider stopping and even to leave (attrition). The role of lecturers and mentors seems invaluable in protecting and guiding students through their programme and placements. Optimal cooperation between lecturers and mentors is of paramount importance to retain student nurses in their training programmes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Analogical Matrices in Young Children and Students with Intellectual Disability: Reasoning by Analogy or Reasoning by Association?

    Science.gov (United States)

    Denaes, Caroline

    2012-01-01

    Background: Analogical reasoning (AR) is renowned for being a complex activity. Young children tend to reason by association, rather by analogy, and people with intellectual disability present problems of memorization. Both these populations usually show low performances in AR. The present author investigated whether familiar material and external…

  15. The role of genetics in students' understandings of biological evolution

    Science.gov (United States)

    Rowe, Mary Frances

    2001-10-01

    An important element of an education is an understanding of biology. Science education researchers have shown that both high school and college biology students finish their biology instruction with a poor understanding of evolution, an important unifying concept of the discipline. The goal of this study is to examine the role of genetics in students understanding of evolution. Eight introductory college biology students' understandings of evolutionary biology and their use of genetics concepts as they addressed problems in evolution were examined. Data collected included students' classwork and individual student interviews. Data analysis began with an examination of each students understanding of evolution concepts. The framework for this analysis was based on Mayr's (1982) description of Darwin's five theories: evolution as such, common descent, natural selection, gradualism, and multiplication of species. The descriptions of students' understandings of evolution are followed by an account of how students used genetics concepts to support their explanations of evolutionary processes. The data from this study illustrate how students used transmission genetics, molecular biology and population genetics to support their understandings of evolution. The students in this study constructed syntheses of genetics and evolution concepts that they employed to solve problems. These syntheses fell into three categories: productive, semi-productive and obstructive. Students who achieved a productive synthesis of genetics and evolution concepts also held appropriate understandings of common descent, natural selection, gradualism, and speciation. Students who constructed either a semi-productive or obstructive synthesis of genetics and evolution did not benefit in the same way. Productive synthesis students benefited from their syntheses of genetics and evolution concepts in three ways. They were able to construct complete problem solutions for evolutionary problems, to

  16. Supporting Students' Learning and Socioscientific Reasoning About Climate Change—the Effect of Computer-Based Concept Mapping Scaffolds

    Science.gov (United States)

    Eggert, Sabina; Nitsch, Anne; Boone, William J.; Nückles, Matthias; Bögeholz, Susanne

    2017-02-01

    Climate change is one of the most challenging problems facing today's global society (e.g., IPCC 2013). While climate change is a widely covered topic in the media, and abundant information is made available through the internet, the causes and consequences of climate change in its full complexity are difficult for individuals, especially non-scientists, to grasp. Science education is a field which can play a crucial role in fostering meaningful education of students to become climate literate citizens (e.g., NOAA 2009; Schreiner et al., 41, 3-50, 2005). If students are, at some point, to participate in societal discussions about the sustainable development of our planet, their learning with respect to such issues needs to be supported. This includes the ability to think critically, to cope with complex scientific evidence, which is often subject to ongoing inquiry, and to reach informed decisions on the basis of factual information as well as values-based considerations. The study presented in this paper focused on efforts to advance students in (1) their conceptual understanding about climate change and (2) their socioscientific reasoning and decision making regarding socioscientific issues in general. Although there is evidence that "knowledge" does not guarantee pro-environmental behavior (e.g. Schreiner et al., 41, 3-50, 2005; Skamp et al., 97(2), 191-217, 2013), conceptual, interdisciplinary understanding of climate change is an important prerequisite to change individuals' attitudes towards climate change and thus to eventually foster climate literate citizens (e.g., Clark et al. 2013). In order to foster conceptual understanding and socioscientific reasoning, a computer-based learning environment with an embedded concept mapping tool was utilized to support senior high school students' learning about climate change and possible solution strategies. The evaluation of the effect of different concept mapping scaffolds focused on the quality of student

  17. Middle School Students' Use of Epistemological Resources while Reasoning about Science Performance Tasks and Media Reports of Socioscientific Issues

    Science.gov (United States)

    Buckingham, Brandy L. E.

    The goal of science education is to prepare students to make decisions about the complicated socioscientific issues that are an inescapable part of modern life, from personal medical decisions to evaluating a political candidate's environmental platform. We cannot expect adults to maintain a deep conceptual understanding of the current state of every branch of science that might prove relevant to their lives, so we must prepare them to rely on other knowledge to make these decisions. Epistemological beliefs about scientific knowledge--what it is, its purpose, how it is constructed--are one type of knowledge that could be brought to bear when evaluating scientific claims. Complicating this situation is the fact that most adults will get most of their information about these socioscientific issues from the news media. Journalists do not have the same goals or norms as scientists, and this media lens can distort scientific issues. This dissertation addresses the question of whether we can assess epistemological change in a way that gives us meaningful information about how people will apply their epistemological understanding of science when they make decisions in the real world. First, I designed a written assessment made up of performance tasks to assess middle school students' implicit epistemological beliefs, and looked at whether we can use such an assessment to see epistemological change over two years. I then gave the same students news articles about whether there is a link between vaccines and autism and looked at their reasoning about this issue and how the journalistic features of two different articles impacted their reasoning. Finally, I examined the external validity of the epistemology assessment by looking at whether it predicted anything about students' responses to the news articles. While I was able to find evidence of differences between eighth graders' and sixth graders' use of epistemological resources within the performance tasks, I found that

  18. Improving students’ creative mathematical reasoning ability students through adversity quotient and argument driven inquiry learning

    Science.gov (United States)

    Hidayat, W.; Wahyudin; Prabawanto, S.

    2018-01-01

    This study aimed to investigate the role factors of Adversity Quotient (AQ) and Argument-Driven Inquiry (ADI) instruction in improving mathematical creative reasoning ability from students’ who is a candidate for a math teacher. The study was designed in the form of experiments with a pretest-posttest control group design that aims to examine the role of Adversity Quotient (AQ) and Argument-Driven Inquiry (ADI) learning on improving students’ mathematical creative reasoning abilities. The population in this research was the student of mathematics teacher candidate in Cimahi City, while the sample of this research was 90 students of the candidate of the teacher of mathematics specified purposively then determined randomly which belong to experiment class and control class. Based on the results and discussion, it was concluded that: (1) Improvement the ability of mathematical creative reasoning of students’ who was a candidate for a math teacher who received Argument-Driven Inquiry (ADI) instruction is better than those who received direct instruction is reviewed based on the whole; (2) There was no different improvement the ability of mathematical creative reasoning of students’ who is a candidate for a math teacher who received Argument-Driven Inquiry (ADI) instruction and direct instruction was reviewed based on the type of Adversity Quotient (Quitter / AQ Low, Champer / AQ Medium, and the Climber / AQ High); (3) Learning factors and type of Adversity Quotient (AQ) affected the improvement of students’ mathematical creative reasoning ability. In addition, there was no interaction effect between learning and AQ together in developing of students’ mathematical creative reasoning ability; (4) mathematical creative reasoning ability of students’ who is a candidate for math teacher had not been achieved optimally on the indicators novelty.

  19. A study about the relation between religiousness and the moral reasoning of accounting undergraduate students

    Directory of Open Access Journals (Sweden)

    Leandro da Costa Santos

    2016-09-01

    Full Text Available This study aimed to verify the relation between religiousness and the moral reasoning of Accounting undergraduate students. To achieve that, the religiousness and moral reasoning of the subjects were first described and, subsequently, correlated. In order to measure religiousness, the Faith Maturity Scale developed by Benson, Donahue, Erickson (1993 was used. The measuring of moral reasoning, on the other hand, was carried out using the Defining Issues Test -2 created by Rest and Narvaez (1988. The sample was drawn from 67 Accounting undergraduate students, in their last semester of College, from two universities in Paraíba, and the internal consistency reliability test of the research instruments was carried out using the model defined by Cronbach (1951. To verify whether there is a relation between religiousness and moral reasoning, the Spearman (rs non-parametric correlation coefficient was used. The main results revealed that the majority of the subjects have their faith classified as integrated. As for moral reasoning, most of the subjects were classified in the level of maintaining the norms, which indicates that, for the bulk of subjects, the conformity to the laws and norms is the most important thing. Still on moral reasoning, it has been shown that, when analysed by type, most individuals fall into type 2 (personal interest, but in transition, with the important observation that individuals of this type, when involved in moral dilemmas, tend to prioritise their own interests. With regards to the analysis of the relation between religiousness and moral reasoning, it’s been demonstrated that there is no relevant evidence that confirms it, since the relation between both variables was not significant.

  20. REASONS FOR STUDENT DISCONTINUATION IN ENGINEERING DEGREE COURSES OFFERED AT A DISTANCE

    Directory of Open Access Journals (Sweden)

    S. Anbahan ARIADURAI

    2009-01-01

    Full Text Available Faculty of Engineering Technology of the Open University of Sri Lanka has been offering engineering programmes at a distance for the last two decades or so. However, completion rates in Faculty of Engineering Technology are lower compared to the other faculties of the University. This paper investigates the reasons for low completion rates in the faculty and suggests ways and means to overcome this problem. The study concludes that increasing student numbers will not necessarily increase percentage of students completing the programme though the number of students completing is increased. It is found that students offering courses for the first time in the system of distance education in their academic career perform poorer because they are not conversant with distance education techniques. It is recommended that the Faculty must offer an orientation programme on distance education to all the students enrolling for the first time, before they commence their regular programmes. Further, it has been found that considerable percentage of students who obtain eligibility to sit the final examination by completing the continuous assessments do not sit the final examination. This has been found to contribute towards non-completion of programmes as students sitting the final examination in the subsequent years perform poorly in their exams. To overcome this problem, it is recommended that current practise of allowing the student to carry forward their eligibility to unlimited period of time must be disbanded.

  1. Understanding the reasons behind the low utilisation of thrombolysis in stroke

    Directory of Open Access Journals (Sweden)

    Ashraf Eissa

    2013-03-01

    Full Text Available BackgroundThrombolysis remains the only approved therapy for acute ischaemic stroke (AIS; however, its utilisation is reported to be low.AimsThis study aimed to determine the reasons for the low utilisation of thrombolysis in clinical practice.MethodFive metropolitan hospitals comprising two tertiary referral centres and three district hospitals conducted a retrospective, cross-sectional study. Researchers identified patients discharged with a principal diagnosis of AIS over a 12-month time period (July 2009–July 2010, and reviewed the medical record of systematically chosen samples.ResultsThe research team reviewed a total of 521 records (48.8% females, mean age 74.4 ± 14 years, age range 5-102 years from the 1261 AIS patients. Sixty-nine per cent of AIS patients failed to meet eligibility criteria to receive thrombolysis because individuals arrived at the hospital later than 4.5 hours after the onset of symptoms. The factors found to be positively associated with late arrival included confusion at onset, absence of a witness at onset and waiting for improvement of symptoms. However, factors negatively associated with late arrival encompassed facial droop, slurred speech and immediately calling an ambulance. Only 14.7% of the patients arriving within 4.5 hours received thrombolysis. The main reasons for exclusion included such factors as rapidly improving symptoms (28.2%, minor symptoms (17.2%, patient receiving therapeutic anticoagulation (6.7% and severe stroke (5.5%.ConclusionA late patient presentation represents the most significant barrier to utilising thrombolysis in the acute stroke setting. Thrombolysis continues to be currently underutilised in potentially eligible patients, and additional research is needed to identify more precise criteria for selecting patients for thrombolysis.

  2. Some Reasons Why Teachers are Easier to Understand than Textbooks. Reading Education Report No. 9.

    Science.gov (United States)

    Schallert, Diane L.; Kleiman, Glenn M.

    To determine why some children find textbooks to be much more difficult to understand than teachers' presentations, four reading selections for middle grade readers were analyzed, as were tape recorded lessons prepared by ten teachers on the basis of the same selections. Excerpts from one of the written passages and excerpts and analysis of one…

  3. Directly Comparing Computer and Human Performance in Language Understanding and Visual Reasoning.

    Science.gov (United States)

    Baker, Eva L.; And Others

    Evaluation models are being developed for assessing artificial intelligence (AI) systems in terms of similar performance by groups of people. Natural language understanding and vision systems are the areas of concentration. In simplest terms, the goal is to norm a given natural language system's performance on a sample of people. The specific…

  4. Understanding the relationship between student attitudes and student learning

    Science.gov (United States)

    Cahill, Michael J.; McDaniel, Mark A.; Frey, Regina F.; Hynes, K. Mairin; Repice, Michelle; Zhao, Jiuqing; Trousil, Rebecca

    2018-02-01

    Student attitudes, defined as the extent to which one holds expertlike beliefs about and approaches to physics, are a major research topic in physics education research. An implicit but rarely tested assumption underlying much of this research is that student attitudes play a significant part in student learning and performance. The current study directly tested this attitude-learning link by measuring the association between incoming attitudes (Colorado Learning Attitudes about Science Survey) and student learning during the semester after statistically controlling for the effects of prior knowledge [early-semester Force Concept Inventory (FCI) or Brief Electricity and Magnetism Assessment (BEMA)]. This study spanned four different courses and included two complementary measures of student knowledge: late-semester concept inventory scores (FCI or BEMA) and exam averages. In three of the four courses, after controlling for prior knowledge, attitudes significantly predicted both late-semester concept inventory scores and exam averages, but in all cases these attitudes explained only a small amount of variance in concept-inventory and exam scores. Results indicate that after accounting for students' incoming knowledge, attitudes may uniquely but modestly relate to how much students learn and how well they perform in the course.

  5. Anticipating students' reasoning and planning prompts in structured problem-solving lessons

    Science.gov (United States)

    Vale, Colleen; Widjaja, Wanty; Doig, Brian; Groves, Susie

    2018-02-01

    Structured problem-solving lessons are used to explore mathematical concepts such as pattern and relationships in early algebra, and regularly used in Japanese Lesson Study research lessons. However, enactment of structured problem-solving lessons which involves detailed planning, anticipation of student solutions and orchestration of whole-class discussion of solutions is an ongoing challenge for many teachers. Moreover, primary teachers have limited experience in teaching early algebra or mathematical reasoning actions such as generalising. In this study, the critical factors of enacting the structured problem-solving lessons used in Japanese Lesson Study to elicit and develop primary students' capacity to generalise are explored. Teachers from three primary schools participated in two Japanese Lesson Study teams for this study. The lesson plans and video recordings of teaching and post-lesson discussion of the two research lessons along with students' responses and learning are compared to identify critical factors. The anticipation of students' reasoning together with preparation of supporting and challenging prompts was critical for scaffolding students' capacity to grasp and communicate generality.

  6. Development of the Quantitative Reasoning Items on the National Survey of Student Engagement

    Directory of Open Access Journals (Sweden)

    Amber D. Dumford

    2015-01-01

    Full Text Available As society’s needs for quantitative skills become more prevalent, college graduates require quantitative skills regardless of their career choices. Therefore, it is important that institutions assess students’ engagement in quantitative activities during college. This study chronicles the process taken by the National Survey of Student Engagement (NSSE to develop items that measure students’ participation in quantitative reasoning (QR activities. On the whole, findings across the quantitative and qualitative analyses suggest good overall properties for the developed QR items. The items show great promise to explore and evaluate the frequency with which college students participate in QR-related activities. Each year, hundreds of institutions across the United States and Canada participate in NSSE, and, with the addition of these new items on the core survey, every participating institution will have information on this topic. Our hope is that these items will spur conversations on campuses about students’ use of quantitative reasoning activities.

  7. Semantic, executive, and visuospatial abilities in mathematical reasoning of referred college students.

    Science.gov (United States)

    Cirino, Paul T; Morris, Mary K; Morris, Robin D

    2007-03-01

    Semantic retrieval (SR) and executive-procedural (EP), but not visuospatial (VS) skills, have been found to be uniquely predictive of mathematical calculation skills in a sample of clinically referred college students. This study set out to cross-validate these results in an independent sample of clinically referred college students (N = 337) as well as extend them by examination of the contributions of these cognitive domains to math reasoning skills. Results indicate that these cognitive domains were able to predict 30% of the variance in calculation skills and 50% of the variance in math reasoning; however, in both cases, only the domains of semantic retrieval and visuospatial skill contributed uniquely. Differences between studies, and the lack of unique contribution of the EP domain to either type of math skill, may be due to measurement and sampling differences, the degree of shared relations among domains, and the choice of measures that represent the EP domain. Implications and future directions are explored.

  8. Fostering 21st-Century Evolutionary Reasoning: Teaching Tree Thinking to Introductory Biology Students.

    Science.gov (United States)

    Novick, Laura R; Catley, Kefyn M

    2016-01-01

    The ability to interpret and reason from Tree of Life (ToL) diagrams has become a vital component of science literacy in the 21st century. This article reports on the effectiveness of a research-based curriculum, including an instructional booklet, laboratory, and lectures, to teach the fundamentals of such tree thinking in an introductory biology class for science majors. We present the results of a study involving 117 undergraduates who received either our new research-based tree-thinking curriculum or business-as-usual instruction. We found greater gains in tree-thinking abilities for the experimental instruction group than for the business-as-usual group, as measured by performance on our novel assessment instrument. This was a medium size effect. These gains were observed on an unannounced test that was administered ∼5-6 weeks after the primary instruction in tree thinking. The nature of students' postinstruction difficulties with tree thinking suggests that the critical underlying concept for acquiring expert-level competence in this area is understanding that any specific phylogenetic tree is a subset of the complete, unimaginably large ToL. © 2016 L. R. Novick and K. M. Catley. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. An Exploratory Study on University Students' Perceptions of Posthumous Organ Donation Base on the Theory of Reasoned Action.

    Science.gov (United States)

    Wong, Shui Hung; Chow, Amy Yin Man

    2017-08-01

    In view of the general support for organ donation but low registration rate in Hong Kong, the present research attempted to understand the attitude-behavior inconsistency by identifying the underlying beliefs for organ donation through employing the theory of reasoned action. A qualitative approach using semi-structured focus groups was adopted and 19 students from three universities in Hong Kong participated; 10 constructs were identified: attitude, subjective norm, helping, continuation, contribution, body intact, distrust to the medical system, indifference to organ donation, negative affect, and family burden. Findings suggested that their attitudes toward organ donation were of both the cognitive and affective nature; subjective norm of family, friends, and people they respect were identified as influential to students' views on organ donation. The study provided insight in promoting organ donation, that the cognitive concerns about keeping the body intact, and the negative affects introduced should also be addressed.

  10. Scaffolding Student Learning in the Discipline-Specific Knowledge through Contemporary Science Practices: Developing High-School Students' Epidemiologic Reasoning through Data Analysis

    Science.gov (United States)

    Oura, Hiroki

    development in epidemiologic reasoning. The first chapter reviews literature on epistemological instruction and explores theoretical frameworks for epistemically-guided instruction. The second chapter explores methodological strategies to elicit students' disciplinary understanding and demonstrates an approach with a case study in which students engaged in a curriculum unit for an epidemiologic investigation. The last chapter directs the focus into scientific reasoning and demonstrates how the curriculum unit and its scaffolds helped students develop epidemiologic reasoning with a focus on population-based reasoning.

  11. Thai students and their reasons for choosing to study in United Kingdom universities

    OpenAIRE

    Tarry, Estelle F

    2008-01-01

    This thesis seeks to consider Thai students and their reasons for choosing to study in United Kingdom universities. Through the literature review it has been identified that higher education is globally expanding. Competing knowledgebased economies with higher education institutions have led education to be considered a market commodity and consequently the marketization of higher education in competitive world markets. This is exemplified by discussion of the United Kingdom higher education ...

  12. Digital video, learning styles, and student understanding of kinematics graphs

    Science.gov (United States)

    Hein, Teresa Lee

    1997-12-01

    Student ability to analyze and interpret motion graphs following laboratory instruction that utilized interactive digital video as well as traditional instructional techniques was investigated. Research presented suggested that digital video tools serve to motivate students and may be an effective mechanism to enhance student understanding of motion concepts. Two laboratory exercises involving motion concepts were developed for this study. Students were divided into two instructional groups. The treatment group used digital video techniques and the control group used traditional techniques to perform the laboratory exercises. Student understanding of motion concepts were assessed, in part, using the Test of Understanding Graphs-Kinematics. Other assessment measures included student responses to a set of written graphical analysis questions and two post-lab activities. Possible relationships between individual learning style preferences and student understanding of motion concepts were also addressed. Learning style preferences were assessed using the Productivity Environmental Preference Survey prior to the instructional treatments. Students were asked to comment in writing about their learning styles before and after they were given the learning style assessment. Student comments revealed that the results they received from Productivity Environmental Preference Survey accurately reflected their learning styles. Results presented in this study showed that no significant relationship exists between students' learning style preferences and their ability to interpret motion graphs as measured by scores on the Test of Understanding Graphs-Kinematics. In addition, the results showed no significant difference between instructional treatment and mean scores on the Test of Understanding Graphs-Kinematics. Analysis of writing activities revealed that students in the treatment group responded more effectively than students in the control group to graphical interpretation

  13. An APOS analysis of natural science students' understanding of ...

    African Journals Online (AJOL)

    schema) theoretical framework to investigate university students' understanding of derivatives and their applica-tions. Research was done at the Westville Campus of the University of KwaZulu-Natal in South Africa. The relevant rules for finding ...

  14. The Assessment of Students and Teachers' Understanding of Gas Laws.

    Science.gov (United States)

    Lin, Huann-shyang; Cheng, Hsiu-ju; Lawrenz, Frances

    2000-01-01

    Describes a study of high school students' and chemistry teachers' understanding of the gas laws which focused on the application of scientific concepts in practical situations instead of mathematical calculations in theoretical situations. (Contains 13 references.) (WRM)

  15. Enhancing Dental Students' Understanding of Poverty Through Simulation.

    Science.gov (United States)

    Lampiris, Lewis N; White, Alex; Sams, Lattice D; White, Tiffany; Weintraub, Jane A

    2017-09-01

    Dental students should develop an understanding of the barriers to and frustrations with accessing dental care and maintaining optimal oral health experienced by persons with limited resources rather than blaming the patient or caregiver. Developing this understanding may be aided by helping students learn about the lives of underserved and vulnerable patients they will encounter not only in extramural rotations, but throughout their careers. The aim of this study was to determine if dental students' understanding of daily challenges faced by families with low income changed as a result of a poverty simulation. In 2015 and 2016, an experiential poverty simulation was used to prepare third-year dental students at one U.S. dental school for their upcoming required community-based rotations. In 2015, United Way staff conducted the simulation using the Missouri Community Action Poverty Simulation (CAPS); in 2016, faculty members trained in CAPS conducted the simulation using a modified version of the tool. In the simulation, students were assigned to family units experiencing various types of hardship and were given specific identities for role-playing. A retrospective pretest and a posttest were used to assess change in levels of student understanding after the simulation. Students assessed their level of understanding in five domains: financial pressures, difficult choices, difficulties in improving one's situation, emotional stressors, and impact of community resources for those living in poverty. The survey response rates in 2015 and 2016 were 86% and 74%, respectively. For each of the five domains, students' understanding increased from 58% to 74% per domain. The majority reported that the exercise was very valuable or somewhat valuable (74% in 2015, 88% in 2016). This study found that a poverty simulation was effective in raising dental students' understanding of the challenges faced by low-income families. It also discovered that framing the issues in the

  16. Development and application of a two-tier diagnostic instrument to assess middle years students' proportional reasoning

    DEFF Research Database (Denmark)

    Hilton, Annette; Hilton, Geoff; Dole, Shelley

    2013-01-01

    Proportional reasoning involves the use of ratios in the comparison of quantities. While it is a key aspect of numeracy, particularly in the middle years of schooling, students do not always develop proportional reasoning naturally. Research suggests that many students do not apply proportional m...

  17. A Descriptive Study Examining the Impact of Digital Writing Environments on Communication and Mathematical Reasoning for Students with Learning Disabilities

    Science.gov (United States)

    Huscroft-D'Angelo, Jacqueline; Higgins, Kristina N.; Crawford, Lindy L.

    2014-01-01

    Proficiency in mathematics, including mathematical reasoning skills, requires students to communicate their mathematical thinking. Mathematical reasoning involves making sense of mathematical concepts in a logical way to form conclusions or judgments, and is often underdeveloped in students with learning disabilities. Technology-based environments…

  18. Sixth-grade students' reasoning on the order relation of integers as influenced by prior experience: an inferentialist analysis

    Science.gov (United States)

    Schindler, Maike; Hußmann, Stephan; Nilsson, Per; Bakker, Arthur

    2017-12-01

    Negative numbers are among the first formalizations students encounter in their mathematics learning that clearly differ from out-of-school experiences. What has not sufficiently been addressed in previous research is the question of how students draw on their prior experiences when reasoning on negative numbers and how they infer from these experiences. This article presents results from an empirical study investigating sixth-grade students' reasoning and inferring from school-based and out-of-school experiences. In particular, it addresses the order relation, which deals with students' very first encounters with negative numbers. Here, students can reason in different ways, depending on the experiences they draw on. We study how students reason before a lesson series and how their reasoning is influenced through this lesson series where the number line and the context debts-and-assets are predominant. For grasping the reasoning's inferential and social nature and conducting in-depth analyses of two students' reasoning, we use an epistemological framework that is based on the philosophical theory of inferentialism. The results illustrate how the students infer their reasoning from out-of-school and from school-based experiences both before and after the lesson series. They reveal interesting phenomena not previously analyzed in the research on the order relation for integers.

  19. Examining the Effect of Enactment of a Geospatial Curriculum on Students' Geospatial Thinking and Reasoning

    Science.gov (United States)

    Bodzin, Alec M.; Fu, Qiong; Kulo, Violet; Peffer, Tamara

    2014-08-01

    A potential method for teaching geospatial thinking and reasoning (GTR) is through geospatially enabled learning technologies. We developed an energy resources geospatial curriculum that included learning activities with geographic information systems and virtual globes. This study investigated how 13 urban middle school teachers implemented and varied the enactment of the curriculum with their students and investigated which teacher- and student-level factors accounted for students' GTR posttest achievement. Data included biweekly implementation surveys from teachers and energy resources content and GTR pre- and posttest achievement measures from 1,049 students. Students significantly increased both their energy resources content knowledge and their GTR skills related to energy resources at the end of the curriculum enactment. Both multiple regression and hierarchical linear modeling found that students' initial GTR abilities and gain in energy content knowledge were significantly explanatory variables for their geospatial achievement at the end of curriculum enactment, p < .001. Teacher enactment factors, including adherence to implementing the critical components of the curriculum or the number of years the teachers had taught the curriculum, did not have significant effects on students' geospatial posttest achievement. The findings from this study provide support that learning with geospatially enabled learning technologies can support GTR with urban middle-level learners.

  20. Understanding Sleep Disorders in a College Student Population.

    Science.gov (United States)

    Jensen, Dallas R.

    2003-01-01

    College students' sleep habits are changing dramatically, and related sleep problems are increasing. Reviews the current literature on sleep problems, focusing on the college student population. The unique challenges of college settings are discussed as they apply to understanding sleep problems, and suggestions are made for professionals who work…

  1. Characterizing Student Mathematics Teachers' Levels of Understanding in Spherical Geometry

    Science.gov (United States)

    Guven, Bulent; Baki, Adnan

    2010-01-01

    This article presents an exploratory study aimed at the identification of students' levels of understanding in spherical geometry as van Hiele did for Euclidean geometry. To do this, we developed and implemented a spherical geometry course for student mathematics teachers. Six structured, "task-based interviews" were held with eight student…

  2. Understanding, Advising, and Teaching International Students: A Handbook for Faculty.

    Science.gov (United States)

    Moore, James W.

    A handbook is presented to assist Western Oregon State College faculty in identifying and understanding the problems and needs of international students and to help them welcome international students as positive influences in classes, on the campus, and in the community. Included is information on culture shock, transition problems of…

  3. Secondary Students' Understanding of Basic Ideas of Special Relativity

    Science.gov (United States)

    Dimitriadi, Kyriaki; Halkia, Krystallia

    2012-01-01

    A major topic that has marked "modern physics" is the theory of special relativity (TSR). The present work focuses on the possibility of teaching the basic ideas of the TSR to students at the upper secondary level in such a way that they are able to understand and learn the ideas. Its aim is to investigate students' learning processes towards the…

  4. Understanding gaps between student and staff perceptions of ...

    African Journals Online (AJOL)

    factors (Scott, Yeld & Hendry, 2007), as well as students struggling to access the discourse of the institution .... students on ECP and three lecturers who have extensive teaching experience in the programme. ... There were significant mismatches in the attitudes to learning, understanding of the field and the literacy skills that ...

  5. Student teachers' understanding and acceptance of evolution and ...

    African Journals Online (AJOL)

    The focus of this study was student teachers at a South African university enrolled in a Bachelor of Education (B.Ed.) programme and a Postgraduate Certificate in Education (PGCE), respectively. The purpose of this study was to explore students' understanding and acceptance of evolution and beliefs about the nature of ...

  6. Student Approaches to Achieving Understanding--Approaches to Learning Revisited

    Science.gov (United States)

    Fyrenius, Anna; Wirell, Staffan; Silen, Charlotte

    2007-01-01

    This article presents a phenomenographic study that investigates students' approaches to achieving understanding. The results are based on interviews, addressing physiological phenomena, with 16 medical students in a problem-based curriculum. Four approaches--sifting, building, holding and moving--are outlined. The holding and moving approaches…

  7. Facilitating Conceptual Change in Students' Understanding of Electrochemistry.

    Science.gov (United States)

    Niaz, Mansoor

    2002-01-01

    Constructs a teaching strategy to facilitate conceptual change in freshman students' understanding of electrochemistry. Provides students with the correct response along with alternative responses (teaching experiments), producing a conflicting situation that is conducive to an equilibration of their cognitive structures. Concludes that the…

  8. Understanding How Domestic Violence Affects Behavior in High School Students

    Science.gov (United States)

    Frank, Malika

    2011-01-01

    This paper will provide the reader with an understanding of how domestic violence affects the behavior of high school students. The presentation is designed to provide the reader with a working definition of domestic violence, the rate of occurrence and its effects on high school students. Additionally the paper will summarize the negative effects…

  9. Contrasting Cases of Calculus Students' Understanding of Derivative Graphs

    Science.gov (United States)

    Haciomeroglu, Erhan Selcuk; Aspinwall, Leslie; Presmeg, Norma C.

    2010-01-01

    This study adds momentum to the ongoing discussion clarifying the merits of visualization and analysis in mathematical thinking. Our goal was to gain understanding of three calculus students' mental processes and images used to create meaning for derivative graphs. We contrast the thinking processes of these three students as they attempted to…

  10. Using Narrative Inquiry to Understand Persistently Disciplined Middle School Students

    Science.gov (United States)

    Kennedy-Lewis, Brianna L.; Murphy, Amy S.; Grosland, Tanetha J.

    2016-01-01

    Educators' persistent disciplining of a small group of students positions them as "frequent flyers." This identity prevents educators from developing an understanding that could enable them to reengage these students. Using the methodology of interpretive biography positioned within narrative inquiry and using a Gestalt-based analysis,…

  11. Student Understanding of Time Dependence in Quantum Mechanics

    Science.gov (United States)

    Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.

    2015-01-01

    The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing…

  12. Promoting Conceptual Change in First Year Students' Understanding of Evaporation

    Science.gov (United States)

    Costu, Bayram; Ayas, Alipasa; Niaz, Mansoor

    2010-01-01

    We constructed the PDEODE (Predict-Discuss-Explain-Observe-Discuss-Explain) teaching strategy, a variant of the classical POE (Predict-Observe-Explain) activity, to promote conceptual change, and investigated its effectiveness on student understanding of the evaporation concept. The sample consisted of 52 first year students in a primary science…

  13. Gender-related differences in reasoning skills and learning interests of junior high school students

    Science.gov (United States)

    Shemesh, Michal

    The purpose of this study was to investigate gender-related differences in the relationship between the development of formal reasoning skills and learning interests during the early adolescent stage. For this purpose, 249 students, from seventh to ninth grade, were assessed for their level of mastery of formal reasoning skills by a test based on videotaped simple experiments. Learning interests were assessed by a written response to an open question. Results showed that adolescent boys develop patterns of formal reasoning before their girl classmates. In addition, boys tend to prefer science and technology subjects, while girls tend to prefer language, social studies, and humanities. Analysis of interactions showed that boys' tendency toward science and technology is positively correlated to their age and development of formal reasoning, while girls' tendency to the above subjects is positively related to their development of formal reasoning capacity, but inversely related to their age. Possible explanations to the above-described findings and suggestions for instructional modes that may increase girls' interest in science and technology are discussed.

  14. Diagnostic reasoning and underlying knowledge of students with preclinical patient contacts in PBL.

    Science.gov (United States)

    Diemers, Agnes D; van de Wiel, Margje W J; Scherpbier, Albert J J A; Baarveld, Frank; Dolmans, Diana H J M

    2015-12-01

    Medical experts have access to elaborate and integrated knowledge networks consisting of biomedical and clinical knowledge. These coherent knowledge networks enable them to generate more accurate diagnoses in a shorter time. However, students' knowledge networks are less organised and students have difficulties linking theory and practice and transferring acquired knowledge. Therefore we wanted to explore the development and transfer of knowledge of third-year preclinical students on a problem-based learning (PBL) course with real patient contacts. Before and after a 10-week PBL course with real patients, third-year medical students were asked to think out loud while diagnosing four types of paper patient problems (two course cases and two transfer cases), and explain the underlying pathophysiological mechanisms of the patient features. Diagnostic accuracy and time needed to think through the cases were measured. The think-aloud protocols were transcribed verbatim and different types of knowledge were coded and quantitatively analysed. The written pathophysiological explanations were translated into networks of concepts. Both the concepts and the links between concepts in students' networks were compared to model networks. Over the course diagnostic accuracy increased, case-processing time decreased, and students used less biomedical and clinical knowledge during diagnostic reasoning. The quality of the pathophysiological explanations increased: the students used more concepts, especially more model concepts, and they used fewer wrong concepts and links. The findings differed across course and transfer cases. The effects were generally less strong for transfer cases. Students' improved diagnostic accuracy and the improved quality of their knowledge networks suggest that integration of biomedical and clinical knowledge took place during a 10-week course. The differences between course and transfer cases demonstrate that transfer is complex and time-consuming. We

  15. Understanding complex clinical reasoning in infectious diseases for improving clinical decision support design.

    Science.gov (United States)

    Islam, Roosan; Weir, Charlene R; Jones, Makoto; Del Fiol, Guilherme; Samore, Matthew H

    2015-11-30

    Clinical experts' cognitive mechanisms for managing complexity have implications for the design of future innovative healthcare systems. The purpose of the study is to examine the constituents of decision complexity and explore the cognitive strategies clinicians use to control and adapt to their information environment. We used Cognitive Task Analysis (CTA) methods to interview 10 Infectious Disease (ID) experts at the University of Utah and Salt Lake City Veterans Administration Medical Center. Participants were asked to recall a complex, critical and vivid antibiotic-prescribing incident using the Critical Decision Method (CDM), a type of Cognitive Task Analysis (CTA). Using the four iterations of the Critical Decision Method, questions were posed to fully explore the incident, focusing in depth on the clinical components underlying the complexity. Probes were included to assess cognitive and decision strategies used by participants. The following three themes emerged as the constituents of decision complexity experienced by the Infectious Diseases experts: 1) the overall clinical picture does not match the pattern, 2) a lack of comprehension of the situation and 3) dealing with social and emotional pressures such as fear and anxiety. All these factors contribute to decision complexity. These factors almost always occurred together, creating unexpected events and uncertainty in clinical reasoning. Five themes emerged in the analyses of how experts deal with the complexity. Expert clinicians frequently used 1) watchful waiting instead of over- prescribing antibiotics, engaged in 2) theory of mind to project and simulate other practitioners' perspectives, reduced very complex cases into simple 3) heuristics, employed 4) anticipatory thinking to plan and re-plan events and consulted with peers to share knowledge, solicit opinions and 5) seek help on patient cases. The cognitive strategies to deal with decision complexity found in this study have important

  16. Understanding the reasons why tourists visit the Kruger National Park during a recession

    Directory of Open Access Journals (Sweden)

    Marco Scholtz

    2013-02-01

    Full Text Available The 2008 and 2009 recession increased pressure on travellers to cut costs on luxury items, such as going on holiday, and this has led to a global tourism decline of 8%. This, however, was not the case in the Kruger National Park (KNP in South Africa where a sustained 1.6% accommodation unit occupancy growth was experienced. In order to sustain this growth, it is of the utmost importance to determine why people still visited the Park during this period. Thus the aim of the study was to determine why people still visited the KNP amidst the 2008 and 2009 economic recession. A total of 355 completed questionnaires were obtained at the Park during 15 December 2009 – 20 December 2009 (high season after which various analyses (including factor analysis were conducted. Six motives were identified and ‘escape’, ‘wildlife experience’ and ‘family benefits’ were rated most important. Push factors were more dominant to the extent that visitors regard taking a holiday to the Park as a necessity. It furthermore seems that visitors adapt their spending behaviour at the Park to still be able to afford the visit. This was the first time that research was conducted at a national park during a recession period and this information is important for South African National Parks, seeing as it provides a better understanding of visitors’ behaviour as well as feeling towards the Park (especially during recession, and leads to improved niche marketing and a competitive advantage. This research also provides a better understanding of visitors’ behaviour during economic downturns.

  17. Towards Understanding Classroom Culture: Students' Perceptions of Tutorials

    Science.gov (United States)

    Turpen, Chandra; Finkelstein, Noah D.; Pollock, Steven J.

    2009-11-01

    Following the documentation of significant and reproducible student content learning gains through the use of the Tutorials at the University of Colorado (CU), we seek to understand the meaning that students are making of this reform. Spanning five years of Tutorials use at CU, we investigate if students' perceptions of the Tutorials shift (become more or less favorable) after the Tutorials have become fully institutionalized. We find that they do not. We observe some semesters where the majority of students perceive the Tutorials to be highly useful for their learning, but this is rarely the case. We determine that students at CU generally do not like the Tutorials. Students' perceptions of the utility and enjoyment of Tutorials do vary significantly on a semester-by-semester basis suggesting that both the lead and secondary faculty members involved in a Tutorial course may influence the students' experience in Tutorials.

  18. Reasons and features of occurrence of excess body weight at students taking into account gender differences

    Directory of Open Access Journals (Sweden)

    Olga Iushkovska

    2017-02-01

    Full Text Available Purpose: the definition of reasons and features of occurrence of excess body weight at students taking into account the gender differences, which are connected with irrational lifestyle, violation of food behavior, insufficient physical activity. Material & Methods: students of 1–4 courses of Odessa national medical university, 26 girls and 22 boys, with the excess body weight and obesity aged from 18 to 24 years for the research were selected. Results: reliable differences in adipopexis type, percent of visceral and subcutaneous fat, and also indexes “waist-hip” at the respondents, connected with the article, are found. Conclusions: modification of lifestyle, wrong food behavior, selection of physical activity, has to be carried out taking into account the type of adipopexis and sex of students.

  19. The Effectiveness of MURDER Cooperative Model towards Students' Mathematics Reasoning Ability and Self Concept of Ten Grade

    Directory of Open Access Journals (Sweden)

    Sofan Tri Prasetiyo

    2017-08-01

    Full Text Available The purpose of this research was to know the effectiveness of MURDER cooperative model towards students’ mathematics reasoning ability and self concept of ten grade. Population of this research were students of MIA ten grade Senior High School 1 Kebumen in the academic year 2016/1017. Sampling technique using simple random sampling technique. The data collected by the method of documentation, test methods, observation methods, and questionnaire methods. The analyzed of data are used completeness test and average different test. The results showed that: (1 mathematics reasoning ability of students that following MURDER cooperative model have completed individual and classical study completeness; (2 mathematics reasoning ability of students that following MURDER cooperative model better than mathematics reasoning ability of students that following ekspository learning; (3 self concept of students that following MURDER cooperative model better than self concept of students that following ekspository learning.

  20. How Do Students Acquire an Understanding of Logarithmic Concepts?

    Science.gov (United States)

    Mulqueeny, Ellen

    2012-01-01

    The use of logarithms, an important tool for calculus and beyond, has been reduced to symbol manipulation without understanding in most entry-level college algebra courses. The primary aim of this research, therefore, was to investigate college students' understanding of logarithmic concepts through the use of a series of instructional tasks…

  1. Students' Understanding of Conditional Probability on Entering University

    Science.gov (United States)

    Reaburn, Robyn

    2013-01-01

    An understanding of conditional probability is essential for students of inferential statistics as it is used in Null Hypothesis Tests. Conditional probability is also used in Bayes' theorem, in the interpretation of medical screening tests and in quality control procedures. This study examines the understanding of conditional probability of…

  2. Assessing Elementary Science Methods Students' Understanding about Global Climate Change

    Science.gov (United States)

    Lambert, Julie L.; Lindgren, Joan; Bleicher, Robert

    2012-01-01

    Global climate change, referred to as climate change in this paper, has become an important planetary issue, and given that K-12 students have numerous alternative conceptions or lack of prior knowledge, it is critical that teachers have an understanding of the fundamental science underlying climate change. Teachers need to understand the natural…

  3. Diagnosing Students' Understanding of the Nature of Models

    Science.gov (United States)

    Gogolin, Sarah; Krüger, Dirk

    2017-10-01

    Students' understanding of models in science has been subject to a number of investigations. The instruments the researchers used are suitable for educational research but, due to their complexity, cannot be employed directly by teachers. This article presents forced choice (FC) tasks, which, assembled as a diagnostic instrument, are supposed to measure students' understanding of the nature of models efficiently, while being sensitive enough to detect differences between individuals. In order to evaluate if the diagnostic instrument is suitable for its intended use, we propose an approach that complies with the demand to integrate students' responses to the tasks into the validation process. Evidence for validity was gathered based on relations to other variables and on students' response processes. Students' understanding of the nature of models was assessed using three methods: FC tasks, open-ended tasks and interviews ( N = 448). Furthermore, concurrent think-aloud protocols ( N = 30) were performed. The results suggest that the method and the age of the students have an effect on their understanding of the nature of models. A good understanding of the FC tasks as well as a convergence in the findings across the three methods was documented for grades eleven and twelve. This indicates that teachers can use the diagnostic instrument for an efficient and, at the same time, valid diagnosis for this group. Finally, the findings of this article may provide a possible explanation for alternative findings from previous studies as a result of specific methods that were used.

  4. Developing and Testing of a Software Prototype to Support Diagnostic Reasoning of Nursing Students.

    Science.gov (United States)

    de Sousa, Vanessa Emille Carvalho; de Oliveira Lopes, Marcos Venícios; Keenan, Gail M; Lopez, Karen Dunn

    2018-04-01

    To design and test educational software to improve nursing students' diagnostic reasoning through NANDA-I-based clinical scenarios. A mixed method approach was used and included content validation by a panel of 13 experts and prototype testing by a sample of 56 students. Experts' suggestions included writing adjustments, new response options, and replacement of clinical information on the scenarios. Percentages of students' correct answers were 65.7%, 62.2%, and 60.5% for related factors, defining characteristics, and nursing diagnoses, respectively. Full development of this software shows strong potential for enhancing students' diagnostic reasoning. New graduates may be able to apply diagnostic reasoning more rapidly by exercising their diagnostic skills within this software. Desenvolver e testar um protótipo de software educativo para melhorar o raciocínio diagnóstico de estudantes de enfermagem. MÉTODOS: Uma abordagem mista foi utilizada e incluiu validação de conteúdo por 13 experts e testagem do protótipo por 56 estudantes. Sugestões dos experts incluíram ajustes na escrita, inclusão de novas opções de resposta e substituição de dados clínicos nos cenários. Os percentuais de respostas corretas dos estudantes foram 65,7%, 62,2% e 60,5% para fatores relacionados, características definidoras e diagnósticos de enfermagem respectivamente. CONCLUSÃO: O desenvolvimento deste software tem um forte potencial para melhorar o raciocínio diagnóstico de estudantes. IMPLICAÇÕES PARA A PRÁTICA EM ENFERMAGEM: Através deste software, enfermeiros poderão ser capazes de exercitar o raciocínio diagnóstico e aplicá-lo mais rapidamente. © 2016 NANDA International, Inc.

  5. Scaffolding students' understanding of force in pulley systems

    Science.gov (United States)

    Rouinfar, Amy; Madsen, Adrian M.; Hoang, Tram Do Ngoc; Puntambekar, Sadhana; Rebello, N. Sanjay

    2013-01-01

    Recent research results have found that students using virtual manipulatives perform as well or better on measures of conceptual understanding than their peers who used physical equipment. We report on a study with students in a conceptual physics laboratory using either physical or virtual manipulatives to investigate forces in pulley systems. Written materials guided students through a sequence of activities designed to scaffold their understanding of force in pulley systems. The activity sequences facilitated students' sense making by requiring them to make and test predictions about various pulley systems by building and comparing different systems. We investigate the ways in which students discuss force while navigating the scaffolding activities and how these discussions compare between the physical and virtual treatments.

  6. University students' understanding level about words related to nuclear power

    International Nuclear Information System (INIS)

    Oiso, Shinichi; Watabe, Motoki

    2012-01-01

    The authors conducted a survey of university students' understanding level about words related to nuclear power before and after Fukushima Daiichi Power Plant accident, and analyzed the difference between before and after the accident. The results show that university students' understanding level improved after the accident, especially in the case of reported words by mass media. Understanding level of some nuclear power security words which were not reported so much by mass media also improved. That may be caused by rising of people's concern about nuclear power generation after the accident, and there is a possibility that the accident motivated people to access such words via internet, journals, etc. (author)

  7. Comparing Greek-Affiliated Students and Student Athletes: An Examination of the Behavior-Intention Link, Reasons for Drinking, and Alcohol-Related Consequences.

    Science.gov (United States)

    Huchting, Karie K; Lac, Andrew; Hummer, Justin F; LaBrie, Joseph W

    2011-12-01

    While affiliation with Greek fraternities/sororities and intercollegiate athletic teams is associated with heavier drinking (Meilman et al., 1999), few studies have compared reasons for drinking among these groups. A sample of 1,541 students, identifying as either Greeks or athletes, completed an online survey. Athletes were significantly higher than Greeks on conformity reason for drinking. Tests of independent correlations indicated the magnitude of the past behavior to intention link was considerably stronger for Greeks. Greeks experienced significantly more social problems from drinking. Several group by gender ANOVA models found significant main effects with highest drinking rates, usually among Greek males, and lowest among female athletes. Understanding these specific group differences informs recommendations for group-specific and tailored educational interventions, which are discussed.

  8. Applying Ecodevelopmental Theory and the Theory of Reasoned Action to Understand HIV Risk Behaviors Among Hispanic Adolescents.

    Science.gov (United States)

    Ortega, Johis; Huang, Shi; Prado, Guillermo

    2012-01-03

    HIV/AIDS is listed as one of the top 10 reasons for the death of Hispanics between the ages of 15 and 54 in the United States. This cross sectional, descriptive secondary study proposed that using both the systemic (ecodevelopmental) and the individually focused (theory of reasoned action) theories together would lead to an increased understanding of the risk and protective factors that influence HIV risk behaviors in this population. The sample consisted of 493 Hispanic adolescent 7th and 8th graders and their immigrant parents living in Miami, Florida. Structural Equation Modeling (SEM) was used for the data analysis. Family functioning emerged as the heart of the model, embedded within a web of direct and mediated relationships. The data support the idea that family can play a central role in the prevention of Hispanic adolescents' risk behaviors.

  9. Team-based learning, a learning strategy for clinical reasoning, in students with problem-based learning tutorial experiences.

    Science.gov (United States)

    Okubo, Yumiko; Ishiguro, Naoko; Suganuma, Taiyo; Nishikawa, Toshio; Takubo, Toshio; Kojimahara, Noriko; Yago, Rie; Nunoda, Shinichi; Sugihara, Shigetaka; Yoshioka, Toshimasa

    2012-05-01

    Acquiring clinical reasoning skills in lectures may be difficult, but it can be learnt through problem-solving in the context of clinical practice. Problem finding and solving are skills required for clinical reasoning; however, students who underwent problem-based learning (PBL) still have difficulty in acquiring clinical reasoning skills. We hypothesized that team-based learning (TBL), a learning strategy that provides the opportunity to solve problems by repeatedly taking tests, can enhance the clinical reasoning ability in medical students with PBL experiences during the pre-clinical years. TBL courses were designed for 4(th) year students in a 6-year program in 2008, 2009, and 2010. TBL individual scores, consisting of a combination of individual and group tests, were compared with scores of several examinations including computer-based testing (CBT), an original examination assessing clinical reasoning ability (problem-solving ability test; P-SAT), term examinations, and Objective Structured Clinical Examination (OSCE). CBT, OSCE and P-SAT scores were compared with those of students who learned clinical reasoning only through PBL tutorials in 2005, 2006, and 2007 (non-TBL students). Individual TBL scores of students did not correlate with scores of any other examination. Assessments on clinical reasoning ability, such as CBT, OSCE, and P-SAT scores, were significantly higher in TBL students compared with non-TBL students. Students found TBL to be effective, particularly in areas of problem solving by both individuals and teams, and feedback from specialists. In conclusion, TBL for clinical reasoning is useful in improving clinical reasoning ability in students with PBL experiences with limited clinical exposure.

  10. Understanding reasons for treatment interruption amongst patients on antiretroviral therapy – A qualitative study at the Lighthouse Clinic, Lilongwe, Malawi

    Directory of Open Access Journals (Sweden)

    Julia Tabatabai

    2014-09-01

    Full Text Available Background: In recent years, scaling up of antiretroviral therapy (ART in resource-limited settings moved impressively towards universal access. Along with these achievements, public health HIV programs are facing a number of challenges including the support of patients on lifelong therapy and the prevention of temporary/permanent loss of patients in care. Understanding reasons for treatment interruption (TI can inform strategies for improving drug adherence and retention in care. Objective: To evaluate key characteristics of patients resuming ART after TI at the Lighthouse Clinic in Lilongwe, Malawi, and to identify their reasons for interrupting ART. Design: This study uses a mixed methods design to evaluate patients resuming ART after TI. We analysed an assessment form for patients with TI using pre-defined categories and a comments field to identify frequently stated reasons for TI. Additionally, we conducted 26 in-depth interviews to deepen our understanding of common reasons for TI. In-depth interviews also included the patients’ knowledge about ART and presence of social support systems. Qualitative data analysis was based on a thematic framework approach. Results: A total of 347 patients (58.2% female, average age 35.1±11.3 years with TI were identified. Despite the presence of social support and sufficient knowledge of possible consequences of TI, all patients experienced situations that resulted in TI. Analysis of in-depth interviews led to new and distinct categories for TI. The most common reason for TI was travel (54.5%, n=80/147, which further differentiated into work- or family-related travel. Patients also stated transport costs and health-care-provider-related reasons, which included perceived/enacted discrimination by health care workers. Other drivers of TI were treatment fatigue/forgetfulness, the patients’ health status, adverse drug effects, pregnancy/delivery, religious belief or perceived/enacted stigma. Conclusions

  11. Understanding reasons for treatment interruption amongst patients on antiretroviral therapy--a qualitative study at the Lighthouse Clinic, Lilongwe, Malawi.

    Science.gov (United States)

    Tabatabai, Julia; Namakhoma, Ireen; Tweya, Hannock; Phiri, Sam; Schnitzler, Paul; Neuhann, Florian

    2014-01-01

    In recent years, scaling up of antiretroviral therapy (ART) in resource-limited settings moved impressively towards universal access. Along with these achievements, public health HIV programs are facing a number of challenges including the support of patients on lifelong therapy and the prevention of temporary/permanent loss of patients in care. Understanding reasons for treatment interruption (TI) can inform strategies for improving drug adherence and retention in care. To evaluate key characteristics of patients resuming ART after TI at the Lighthouse Clinic in Lilongwe, Malawi, and to identify their reasons for interrupting ART. This study uses a mixed methods design to evaluate patients resuming ART after TI. We analysed an assessment form for patients with TI using pre-defined categories and a comments field to identify frequently stated reasons for TI. Additionally, we conducted 26 in-depth interviews to deepen our understanding of common reasons for TI. In-depth interviews also included the patients' knowledge about ART and presence of social support systems. Qualitative data analysis was based on a thematic framework approach. A total of 347 patients (58.2% female, average age 35.1±11.3 years) with TI were identified. Despite the presence of social support and sufficient knowledge of possible consequences of TI, all patients experienced situations that resulted in TI. Analysis of in-depth interviews led to new and distinct categories for TI. The most common reason for TI was travel (54.5%, n=80/147), which further differentiated into work- or family-related travel. Patients also stated transport costs and health-care-provider-related reasons, which included perceived/enacted discrimination by health care workers. Other drivers of TI were treatment fatigue/forgetfulness, the patients' health status, adverse drug effects, pregnancy/delivery, religious belief or perceived/enacted stigma. To adequately address patients' needs on a lifelong therapy, adherence

  12. Climate Change and Costs: Investigating Students' Reasoning on Nature and Economic Development

    Science.gov (United States)

    Sternang, Li; Lundholm, Cecilia

    2012-01-01

    The tensions between environmental protection and economic growth are critical to future well-being, and it is therefore important to understand how young people conceptualize these tensions. The aim of the present study is to explore students' solutions to the dilemma of economic development and mitigating climate change, with regard to societal…

  13. Teacher’s Stimulus Helps Students Achieve Mathematics Reasoning and Problem Solving Competences

    Science.gov (United States)

    Hidayah, Isti; Pujiastuti, Emi; Chrisna, Jeanet Eva

    2017-04-01

    The students’ problem-solving ability in mathematics learning still becomes a challenge for teachers, especially in primary education. The scientific approach, with its activities including observing, asking, collecting information/experimenting/trying, associating/analysing information/reasoning, communicating/presenting/ networking is expected to be able to help students to achieve their competence of reasoning and problem-solving. The Missouri Mathematics Project learning by using student worksheet and manipulative (classical and group) have helped students achieved problem-solving competence. The implementation of scientific approach in the activities of observing, experimenting, and communicating are good. However, the questioning and associating activities are still less promoted. The result of observation towards four meetings of learning by using teaching aids shows that the expected activity which did not emerge during the learning is “students ask questions from the factual thing to hypothetical thing, starting with guidance from teacher until they can do by themselves”. The result of analysis towards theoretical background and research result conclude that the students’ asking and thinking abilities can be developed gradually by delivering stimuli in the form of tasks which have been designed by the teacher. The task could be a problem or a clue; then the students determine things such as: “what the question?”, “facts from pictures/text/graphs/tables”, “find the hidden question”, what’s extra?”, “what’s missing?”, “what’s wrong?”, alternatively, “make up the problem.

  14. Native American Students' Understanding of Geologic Time Scale: 4th-8th Grade Ojibwe Students' Understanding of Earth's Geologic History

    Science.gov (United States)

    Nam, Younkyeong; Karahan, Engin; Roehrig, Gillian

    2016-01-01

    Geologic time scale is a very important concept for understanding long-term earth system events such as climate change. This study examines forty-three 4th-8th grade Native American--particularly Ojibwe tribe--students' understanding of relative ordering and absolute time of Earth's significant geological and biological events. This study also…

  15. Understanding students' readiness for interprofessional learning in an Asian context: a mixed-methods study.

    Science.gov (United States)

    Lestari, Endang; Stalmeijer, Renée E; Widyandana, Doni; Scherpbier, Albert

    2016-07-15

    Healthcare is generally provided by various health professionals acting together. Unfortunately, poor communication and collaboration within such healthcare teams often prevent its members from actively engaging in collaborative decision-making. Interprofessional education (IPE) which prepares health professionals for their collaborative role in the healthcare system may partially address this problem. This study aimed to investigate: 1) students' readiness for IPE in an Asian context, 2) the most important factors influencing students' perceptions of IPE, 3) the reasons underlying such perceptions, and 4) the factors mitigating or promoting their sense of readiness. To identify students' perceptions of IPE, we administered the Readiness for Interprofessional Learning Scale (RIPLS) to 398 in approximately 470 students from a range of health professions (medicine, nursing, midwifery and dentistry). The questionnaire included factors that could potentially influence readiness for IPE as found in the literature (GPA, etc.). To enhance our understanding of the responses to the RIPLS and to explore the reasons underlying them, we conducted 4 mono-professional focus group discussions (FGDs). We ran a statistical analysis on the quantitative data, while performing a thematic content analysis of the qualitative data using ATLAS.ti (version 7). Medical students seemed to be the most prepared for IPE. Students' perceptions of IPE were conditioned by the study programme they took, their GPA, intrinsic motivation and engagement in the student council connoting experience of working with students from different programmes. Focus groups further revealed that: 1) early exposure to clinical practice triggered both positive and negative perceptions of IPE and of its importance to learning communication and leadership skills, 2) medical students caused insecurity and disengagement in other students, 3) medical students felt pressured to be leaders, and 4) there was a need to clarify

  16. Mathematical Understanding of the Underprivileged Students through GeoGebra

    Science.gov (United States)

    Amam, A.; Fatimah, A. T.; Hartono, W.; Effendi, A.

    2017-09-01

    A student’s mathematical understanding in high school from poor families in the district of Ciamis is still low. After reviews the various literature and earlier research, consequently, researchers convince that learning mathematics with GeoGebra can help students improve for the better understanding. Our long-term goal of this research is to support the implementation of new curriculum, namely ICT-based learning mathematics. Another goal is to give a basic mastery skill regarding mathematics software to students from underprivileged families. Moreover, the specific objective of this study is to examine the students’ mathematical understanding from underprivileged families after the implementation of learning with GeoGebra. We use a quantitative comparative research method to determine differences in the mathematical understanding of students’ from underprivileged families before and after mathematics learning with GeoGebra. Accordingly, the students of senior high school from underprivileged family in Baregbeg, Ciamis district, are the population of this study. This research is using purposive sampling. The instrument is in the form of a test question, which is the test of mathematical understanding. Research results show that the mathematical understanding students’ from underprivileged families after the mathematics learning with GeoGebra becomes better than before. The novelty of this research is that students understand the material of trigonometry through the use of modules, aided by GeoGebra in learning activities. Thus, the understanding has an impact on improving students’ mathematical understanding. Students also master the use of GeoGebra Software. Implementing these two things will be very useful for the next lesson.

  17. Strengthening Communication and Scientific Reasoning Skills of Graduate Students Through the INSPIRE Program

    Science.gov (United States)

    Pierce, Donna M.; McNeal, K. S.; Radencic, S. P.; Schmitz, D. W.; Cartwright, J.; Hare, D.; Bruce, L. M.

    2012-10-01

    Initiating New Science Partnerships in Rural Education (INSPIRE) is a five-year partnership between Mississippi State University and three nearby school districts. The primary goal of the program is to strengthen the communication and scientific reasoning skills of graduate students in geosciences, physics, chemistry, and engineering by placing them in area middle school and high school science and mathematics classrooms for ten hours a week for an entire academic year as they continue to conduct their thesis or dissertation research. Additional impacts include increased content knowledge for our partner teachers and improvement in the quality of classroom instruction using hands-on inquiry-based activities that incorporate ideas used in the research conducted by the graduate students. Current technologies, such as Google Earth, GIS, Celestia, benchtop SEM and GCMS, are incorporated into many of the lessons. Now in the third year of our program, we will present the results of our program to date, including an overview of documented graduate student, teacher, and secondary student achievements, the kinds of activities the graduate students and participating teachers have developed for classroom instruction, and the accomplishments resulting from our four international partnerships. INSPIRE is funded by the Graduate K-12 (GK-12) STEM Fellowship Program (Award No. DGE-0947419), which is part of the Division for Graduate Education of the National Science Foundation.

  18. Bad Luck or Bad Decisions: College Students' Perceptions of the Reasons for and Consequences of Their Alcohol Overdose

    Science.gov (United States)

    Reis, Janet

    2007-01-01

    Reasons for and immediate consequences of an alcohol overdose were explored for 217 undergraduate students requiring a medical emergency transport because of excessive alcohol consumption. The sample was categorized into 26 students attributing their overdose solely to bad luck and 191 students citing bad decision making as an explanation. A…

  19. An Exploratory Study on the Reasons and Preferences of Six Malaysian Students on the Video Games Played

    Science.gov (United States)

    Leng, Eow Yee; Baki, Roselan

    2008-01-01

    The purpose of this study was to explore the reasons why six Malaysian students from upper secondary school are playing video games, types of games and the features preferred. A qualitative method was being used in the study. Purposive sampling was conducted in selecting the students. The findings indicated that students played video games for a…

  20. Examining and Predicting College Students' Reading Intentions and Behaviors: An Application of the Theory of Reasoned Action

    Science.gov (United States)

    Burak, Lydia

    2004-01-01

    This study examined the recreational reading attitudes, intentions, and behaviors of college students. The theory of reasoned action provided the framework for the investigation and prediction of the students' intentions and behaviors. Two hundred and one students completed questionnaires developed according to the guidelines for the construction…

  1. Factors in the development of proportional reasoning strategies by concrete operational college students

    Science.gov (United States)

    Roth, Wolff-Michael; Milkent, Marlene M.

    This study was designed as a test for two neo-Piagetian theories. More specifically, this research examined the relationships between the development of proportional reasoning strategies and three cognitive variables from Pascual-Leone's and Case's neo-Piagetian theories. A priori hypotheses linked the number of problems students worked until they induced a proportional reasoning strategy to the variables of M-space, degree of field dependence, and short-term storage space. The subjects consisted of students enrolled in Physical Science I, a science course for nonscience majors at the University of Southern Mississippi. Of the 34 subjects in the study, 23 were classified as concrete operational on the basis of eight ratio tasks. Problems corresponding to five developmental levels of proportional reasoning (according to Piagetian and neo-Piagetian theory), were presented by a microcomputer to the 23 subjects who had been classified as concrete operational. After a maximum of 6 hours of treatment, 17 of the 23 subjects had induced ratio schemata at the upper formal level (IIIB), while the remaining subjects used lower formal level (IIIA) schemata. The data analyses showed that neither M-space and degree of field-dependence, either alone or in combination, nor short-term storage predicted the number of problems students need to do until they induce an appropriate problem-solving strategy. However, there were significant differences in the short-term storage space of those subjects who mastered ratio problems at the highest level and those who did not. Also, the subjects' degree of field-dependence was not a predictor of either the ability to transfer problem-solving strategies to a new setting or the reuse of inappropriate strategies. The results of this study also suggest that short-term storage space is a variable with high correlations to a number of aspects of learning such as transfer and choice of strategy after feedback.

  2. READINESS FOR BLENDED LEARNING: UNDERSTANDING ATTITUDE OF UNIVERSITY STUDENTS

    Directory of Open Access Journals (Sweden)

    Chun Meng Tang

    2013-12-01

    Full Text Available Information technology (IT has provided new means for learning delivery outside of conventional classrooms. Leveraging on IT, blended learning is an approach which takes advantage of the best that both the classroom and online learning can provide. To help institutions of higher learning (IHLs improve their understanding of how students view blended learning and formulate a strategy to successfully implement blended learning, the main objective of this paper is to examine how the attitude of students towards different learning aspects could influence their readiness for blended learning. We conceptualized six learning aspects in a research model and then collected responses from 201 full-time undergraduate students to validate the model. Analyses revealed three key findings. First, the use of technology in education was not a hindrance to the students. Second, blended learning adaptability, which was modelled as a second-order formative construct and formed by four first-order reflective constructs—attitude towards online learning, study management, online interaction, and learning flexibility—had a positive relationship with student readiness for blended learning. Third, attitude towards classroom learning had a negative relationship with student readiness for blended learning. An understanding of student attitude towards different learning aspects can be critical in the assessment of student readiness for blended learning, which is a prerequisite for successful implementation of blended learning.

  3. Medical students' understanding of the concept of a soul.

    Science.gov (United States)

    Martyn, Helen; Barrett, Anthony; Nicholson, Helen D

    2013-01-01

    The concept of a soul has been discussed throughout religious, philosophical, and scientific circles, yet no definitive description exists. Recent interviews with medical students during the production of a documentary film identified that many believed in the concept of a soul. This study explores students' understanding of the concept of a soul. The 2011 cohort of second-year medical students at the University of Otago in Dunedin, New Zealand were invited to participate in an online survey with a free text response asking students to describe their understanding of the soul. The descriptions of the soul included the soul as a "spirit" or "life force" and some described the soul as giving a person their "values" and "personality." Students discussed the location of a soul with most stating that the soul was not attached to the body, but others mentioned the heart or the brain as the seat of the soul. A common theme related to the mortality of the soul emerged, with most believing that the soul left the body at death. Some students' concept of a soul was related to their religious beliefs, while others who did not believe in the concept of a soul described it as a "myth" used to bring comfort at the time of death. Medical students have varied opinions on the concept and importance of the soul. It is important to recognize the diversity of views when exploring the process of death and spirituality with medical students. © 2013 American Association of Anatomists.

  4. Understanding the reasons for the refusal of cholecystectomy in patients with cholelithiasis: how to help them in their decision?

    Science.gov (United States)

    Peron, Adilson; Schliemann, Ana Laura; Almeida, Fernando Antonio de

    2014-01-01

    Cholelithiasis is prevalent surgical disease, with approximately 60,000 admissions per year in the Unified Health System in Brazil. Is often asymptomatic or oligosymptomatic and major complications arise from the migration of calculi to low biliary tract. Despite these complications are severe and life threatening, some patients refuse surgical treatment. To understand why individuals with cholelithiasis refuse cholecystectomy before complications inherent to the presence of gallstones in the bile duct and pancreatitis occur. To investigate the universe of the justifications for refusing to submit to surgery it was performed individual interviews according to a predetermined script. In these interviews, was evaluate the knowledge of individuals about cholelithiasis and its complications and the reasons for the refusal of surgical treatment. Were interviewed 20 individuals with cholelithiasis who refused or postponed surgical treatment without a plausible reason. To these interviews, was applied the technique of thematic analysis (Minayo, 2006). The majority of respondents had good knowledge of their disease and its possible complications, were well oriented and had surgical indications by their physicians. The refusal for surgery was justified primarily on negative experiences of themselves or family members with surgery, including anesthesia; fear of pain or losing their autonomy during surgery and postoperative period, preferring to take the risk and wait for complications to then solve them compulsorily. The reasons for the refusal to surgical resolution of cholelithiasis were diverse, but closely related to personal (or related persons) negative surgical experiences or complex psychological problems that must be adequately addressed by the surgeon and other qualified professionals.

  5. Creating meaningful learning experiences: Understanding students' perspectives of engineering design

    Science.gov (United States)

    Aleong, Richard James Chung Mun

    There is a societal need for design education to prepare holistic engineers with the knowledge, skills, and attitudes to innovate and compete globally. Design skills are paramount to the espoused values of higher education, as institutions of higher learning strive to develop in students the cognitive abilities of critical thinking, problem solving, and creativity. To meet these interests from industry and academia, it is important to advance the teaching and learning of engineering design. This research aims to understand how engineering students learn and think about design, as a way for engineering educators to optimize instructional practice and curriculum development. Qualitative research methodology was used to investigate the meaning that engineering students' ascribe to engineering design. The recruitment of participants and corresponding collection of data occurred in two phases using two different data collection techniques. The first phase involved the distribution of a one-time online questionnaire to all first year, third year, and fourth year undergraduate engineering students at three Canadian Universities. After the questionnaire, students were asked if they would be willing to participate in the second phase of data collection consisting of a personal interview. A total of ten students participated in interviews. Qualitative data analysis procedures were conducted on students' responses from the questionnaire and interviews. The data analysis process consisted of two phases: a descriptive phase to code and categorize the data, followed by an interpretative phase to generate further meaning and relationships. The research findings present a conceptual understanding of students' descriptions about engineering design, structured within two educational orientations: a learning studies orientation and a curriculum studies orientation. The learning studies orientation captured three themes of students' understanding of engineering design: awareness

  6. Analysis of attitudes towards disability among university students: a focus on the theory of reasoned action

    Directory of Open Access Journals (Sweden)

    Novo-Corti, Isabel

    2011-12-01

    Full Text Available The present democratic values in most Western societies have fostered social norms promoting inclusion of groups at risk of social exclusion. This research has focused on the inclusion of the disabled collectives at conventional university environment. For that purpose an inquiry was carried out to young university students registered in the University of A Coruña, in several grades and levels of Economics and Business Administration studies. Thereinafter, we performed a descriptive research and a factorial analysis based on the Theory of Reasoned Action. Results obtained indicate that dominant social values are a determining factor for inclusion, however individual attitudes, although favorable for helping and giving support to people with disabilities, are not as significant as it was expected. Furthermore, results concerning the intention to help for people with disabilities inclusion indicate that students would rather prefer public institutions to take care of this issue.

  7. Learning by playing: A cross-sectional descriptive study of nursing students' experiences of learning clinical reasoning.

    Science.gov (United States)

    Koivisto, Jaana-Maija; Multisilta, Jari; Niemi, Hannele; Katajisto, Jouko; Eriksson, Elina

    2016-10-01

    Clinical reasoning is viewed as a problem-solving activity; in games, players solve problems. To provide excellent patient care, nursing students must gain competence in clinical reasoning. Utilising gaming elements and virtual simulations may enhance learning of clinical reasoning. To investigate nursing students' experiences of learning clinical reasoning process by playing a 3D simulation game. Cross-sectional descriptive study. Thirteen gaming sessions at two universities of applied sciences in Finland. The prototype of the simulation game used in this study was single-player in format. The game mechanics were built around the clinical reasoning process. Nursing students from the surgical nursing course of autumn 2014 (N=166). Data were collected by means of an online questionnaire. In terms of the clinical reasoning process, students learned how to take action and collect information but were less successful in learning to establish goals for patient care or to evaluate the effectiveness of interventions. Learning of the different phases of clinical reasoning process was strongly positively correlated. The students described that they learned mainly to apply theoretical knowledge while playing. The results show that those who played digital games daily or occasionally felt that they learned clinical reasoning by playing the game more than those who did not play at all. Nursing students' experiences of learning the clinical reasoning process by playing a 3D simulation game showed that such games can be used successfully for learning. To ensure that students follow a systematic approach, the game mechanics need to be built around the clinical reasoning process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Does Conceptual Understanding of Limit Partially Lead Students to Misconceptions?

    Science.gov (United States)

    Mulyono, B.; Hapizah

    2017-09-01

    This article talks about the result of preliminary research of my dissertation, which will investigate student’s retention of conceptual understanding. In my preliminary research, I surveyed 73 students of mathematics education program by giving some questions to test their retention of conceptual understanding of limits. Based on the results of analyzing of students’ answers I conclude that most of the students have problems with their retention of conceptual understanding and they also have misconception of limits. The first misconception I identified is that students always used the substitution method to determine a limit of a function at a point, but they did not check whether the function is continue or not at the point. It means that they only use the substitution theorem partially, because they do not consider that the substitution theorem \\mathop{{lim}}\\limits\\text{x\\to \\text{c}}f(x)=f(c) works only if f(x) is defined at χ = c. The other misconception identified is that some students always think there must be available of variables χ in a function to determine the limit of the function. I conjecture that conceptual understanding of limit partially leads students to misconceptions.

  9. Perceptions of Harm and Reasons for Misuse of Prescription Opioid Drugs and Reasons for Not Seeking Treatment for Physical or Emotional Pain Among a Sample of College Students.

    Science.gov (United States)

    Kenne, Deric R; Hamilton, Kelsey; Birmingham, Lauren; Oglesby, Willie H; Fischbein, Rebecca L; Delahanty, Douglas L

    2017-01-02

    Since the early 1990s, the United States has seen a significant increase in the prevalence of prescription opioid misuse. Despite benefits prescription opioids provide, misuse can be fatal. The current study was designed to investigate the prevalence of prescription opioid misuse, perceived harm of misuse, and reasons for misuse for physical or emotional pain instead of seeking professional medical or mental health treatment. Survey data were collected in the fall of 2013 via an online survey to a random sample of 668 students from a public Midwestern university. Lifetime prevalence of prescription opioid misuse was 9.5%. Misusers of prescription opioid drugs generally reported lower ratings of perceived harm as compared to individuals not reporting misuse of prescription opioid drugs. Primary reasons for misuse of prescription opioid drugs was to relieve pain (33.9%), "to feel good/get high" (23.2%) and experimentation (21.4%). Lifetime misuse of a prescription opioid drug for physical or emotional pain was reported by 8.1% and 2.2% of respondents, respectively. Primary reasons for misuse for physical pain included because pain was temporary, immediate relief was needed, and no health insurance/financial resources. Primary reasons for misuse for emotional pain included not wanting others to find out, embarrassment and fear. Conclusions/Importance: Reasons for misuse of prescription opioid drugs vary by type of prescription opioid drug. Reasons for not seeking treatment that ultimately lead to misuse, vary by type of pain being treated and may be important considerations in the effort to stem the misuse of prescription opioid drugs among college students.

  10. The First Year of College: Understanding Student Persistence in Engineering

    Science.gov (United States)

    Hayden, Marina Calvet

    This research study aimed to expand our understanding of the factors that influence student persistence in engineering. The unique experiences of engineering students were examined as they transitioned into and navigated their first year of college at a public research university in California. Most students provided similar responses with respect to the way they experienced the transition to college and social life. There was, however, wide student response variation regarding their experience of academic life and academic policies, as well as in their level of pre-college academic preparation and financial circumstances. One key finding was that students' experiences during the first year of college varied widely based on the extent to which they had acquired organizational and learning skills prior to college. The study used a mixed methods approach. Quantitative and qualitative data were collected through an online survey and one-on-one interviews conducted with freshman students near the end of their first year of college. The theoretical foundations of this study included Astin's Theory of Student Involvement and Tinto's Theory of Student Departure. The design of the study was guided by these theories which emphasize the critical importance of student involvement with the academic and social aspects of college during the first year of college.

  11. The efficacy of a modified Theory of Reasoned Action to explain gambling behavior in college students.

    Science.gov (United States)

    Thrasher, Robert G; Andrew, Damon P S; Mahony, Daniel F

    2011-09-01

    Recently, Thrasher et al. (College Student Affairs Journal 27(1): 57-75, 2007) explored the efficacy of the Theory of Reasoned Action (TRA; Ajzen and Fishbein, Attitudes, personality, and behavior, 1980) in explaining gambling behavior of college students. However, their study found the TRA only predicted small amounts of variance in gambling intentions. Heeding their call to enhance the efficacy of the TRA through the addition of explanatory variables to the model, the present study incorporated gambling motivations and locus of control as moderating variables within the TRA to test the potential of a modified TRA in explaining gambling behavior of college students. A total of 345 students at a major metropolitan research university in the Midwest volunteered to participate in the study. A series of hierarchical linear regressions indicated intrinsic motivation to accomplish (p = .002) significantly moderated the relationship between gambling attitudes and gambling intentions. Further, internal locus of control (p < .001), chance locus of control (p < .001), and powerful others locus of control (p < .001) also significantly moderated the relationship between gambling attitudes and gambling intentions. The significant impact of the moderating variables on the relationship between gambling attitudes and intentions suggests intrinsic motivation and locus of control can alter the impact of the relationship between gambling attitudes and gambling intentions.

  12. An APOS analysis of natural science students' understanding of derivatives

    Directory of Open Access Journals (Sweden)

    Aneshkumar Maharaj

    2013-01-01

    Full Text Available This article reports on a study which used the APOS (action-process-object-schema theoretical framework to investigate university students' understanding of derivatives and their applications. Research was done at the Westville Campus of the University of KwaZulu-Natal in South Africa. The relevant rules for finding derivatives and their applications were taught to undergraduate science students. This paper reports on the analysis of students' responses to six types of questions on derivatives and their applications. The findings of this study suggest that those students had difficulty in applying the rules for derivatives and this was possibly the result of many students not having appropriate mental structures at the process, object and schema levels.

  13. Using pedagogical discipline representations (PDRs) to enable Astro 101 students to reason about modern astrophysics

    Science.gov (United States)

    Wallace, Colin Scott; Prather, Edward E.; Chambers, Timothy G.; Kamenetzky, Julia R.; Hornstein, Seth D.

    2017-01-01

    Instructors of introductory, college-level, general education astronomy (Astro 101) often want to include topics from the cutting-edge of modern astrophysics in their course. Unfortunately, the teaching of these cutting-edge topics is typically confined to advanced undergraduate or graduate classes, using representations (graphical, mathematical, etc.) that are inaccessible to the vast majority of Astro 101 students. Consequently, many Astro 101 instructors feel that they have no choice but to cover these modern topics at a superficial level. Pedagogical discipline representations (PDRs) are one solution to this problem. Pedagogical discipline representations are representations that are explicitly designed to enhance the teaching and learning of a topic, even though these representations may not typically be found in traditional textbooks or used by experts in the discipline who are engaged in topic-specific discourse. In some cases, PDRs are significantly simplified or altered versions of typical discipline representations (graphs, data tables, etc.); in others they may be novel and highly contextualized representations with unique features that purposefully engage novice learners’ pre-existing mental models and reasoning difficulties, facilitating critical discourse. In this talk, I will discuss important lessons that my colleagues and I have learned while developing PDRs and describe how PDRs can enable students to reason about complex modern astrophysical topics.

  14. A Framework for Understanding Physics Students' Computational Modeling Practices

    Science.gov (United States)

    Lunk, Brandon Robert

    With the growing push to include computational modeling in the physics classroom, we are faced with the need to better understand students' computational modeling practices. While existing research on programming comprehension explores how novices and experts generate programming algorithms, little of this discusses how domain content knowledge, and physics knowledge in particular, can influence students' programming practices. In an effort to better understand this issue, I have developed a framework for modeling these practices based on a resource stance towards student knowledge. A resource framework models knowledge as the activation of vast networks of elements called "resources." Much like neurons in the brain, resources that become active can trigger cascading events of activation throughout the broader network. This model emphasizes the connectivity between knowledge elements and provides a description of students' knowledge base. Together with resources resources, the concepts of "epistemic games" and "frames" provide a means for addressing the interaction between content knowledge and practices. Although this framework has generally been limited to describing conceptual and mathematical understanding, it also provides a means for addressing students' programming practices. In this dissertation, I will demonstrate this facet of a resource framework as well as fill in an important missing piece: a set of epistemic games that can describe students' computational modeling strategies. The development of this theoretical framework emerged from the analysis of video data of students generating computational models during the laboratory component of a Matter & Interactions: Modern Mechanics course. Student participants across two semesters were recorded as they worked in groups to fix pre-written computational models that were initially missing key lines of code. Analysis of this video data showed that the students' programming practices were highly influenced by

  15. The Role of Moral Reasoning and Order Effects on Ethical Decision Making Ability: Novice vs. Experienced Accounting Students

    DEFF Research Database (Denmark)

    Pillalamarri, Sudarshan Kumar; Holm, Claus

    investigates the order effects of presentation of dilemmas on ethical decision making ability of novice and experienced accounting students. Rest (1979, 1983, 1991) categorizes moral reasoning into prescriptive reasoning i.e. consideration of what should ideally be done to resolve a particular ethical dilemma...... and deliberative reasoning i.e. consideration of what would actually be done in resolving ethical dilemmas. Because of lack of work experience, novice accounting students often do not face scenarios where there is a difference between their prescriptive and deliberative reasoning. This study hypothesizes...... to accounting students. This study calls for a more practical and hands-on approach to ethics training, one, which teaches students not only to deal with dilemmas ideally but also, trains them to handle dilemmas where the ideal may not always translate into the actual....

  16. Analyzing Student Motivation at the Confluence of Achievement Goals and Their Underlying Reasons: An Investigation of Goal Complexes

    Science.gov (United States)

    Hodis, Flaviu A.; Tait, Carolyn; Hodis, Georgeta M.; Hodis, Monica A.; Scornavacca, Eusebio

    2016-01-01

    This research investigated the interrelations among achievement goals and the underlying reasons for pursuing them. To do so, it utilized the framework of goal complexes, which are regulatory constructs defined at the intersection of aims and reasons. Data from two independent large samples of New Zealand university students showed that across…

  17. "Boys Press All the Buttons and Hope It Will Help": Upper Secondary School Teachers' Gendered Conceptions about Students' Mathematical Reasoning

    Science.gov (United States)

    Sumpter, Lovisa

    2016-01-01

    Previous results show that Swedish upper secondary school teachers attribute gender to cases describing different types of mathematical reasoning. The purpose of this study was to investigate how these teachers gender stereotype aspects of students' mathematical reasoning by studying the symbols that were attributed to boys and girls,…

  18. University Students' Knowledge Structures and Informal Reasoning on the Use of Genetically Modified Foods: Multidimensional Analyses

    Science.gov (United States)

    Wu, Ying-Tien

    2013-01-01

    This study aims to provide insights into the role of learners' knowledge structures about a socio-scientific issue (SSI) in their informal reasoning on the issue. A total of 42 non-science major university students' knowledge structures and informal reasoning were assessed with multidimensional analyses. With both qualitative and…

  19. Developing a Construct-Based Assessment to Examine Students' Analogical Reasoning around Physical Models in Earth Science

    Science.gov (United States)

    Rivet, Ann E.; Kastens, Kim A.

    2012-01-01

    In recent years, science education has placed increasing importance on learners' mastery of scientific reasoning. This growing emphasis presents a challenge for both developers and users of assessments. We report on our effort around the conceptualization, development, and testing the validity of an assessment of students' ability to reason around…

  20. Developing students' clinical reasoning skills: correlates of perceived relevance of two teaching and learning approaches.

    Science.gov (United States)

    Postma, T C; White, J G

    2017-02-01

    'Relevance' is a key concept in adult learning. Hence, this study sought to examine students' perceptions of relevance of the teaching and learning in relation to different instructional designs employed in a Comprehensive Patient Care (CPC) course that aims to develop integrated clinical reasoning skills. Third to fifth year students (2009-2011) were asked to anonymously rate the relevance of the instructional design (RELID) they participated in by means of visual analogue scales at the School of Dentistry, University of Pretoria. They were also asked to rate their perceptions of the alignment between teaching and learning and outcomes (ATLO), assessments' contribution to learning (ACL), course organisation (CO) and teacher competence (TC). RELID served as the outcome measure in stepwise linear regression analyses. ATLO, ACL, CO, TC and the instructional design (case-based learning (CBL = 1) and the combination of discipline-based and lecture-based teaching in CPC (DB-LBT = 0)) served as the co-variables for each of the years of study. The analyses showed positive correlations between RELID and ATLO and between RELID and ACL for all the years of study. RELID was associated with TC in year three and four and CO was associated with RELID in year four and five. CBL outperformed DB-LBT in terms of perceived relevance of the teaching and learning. The results suggest that students' perceptions of the relevance of the instructional design may be enhanced when outcomes, teaching, learning and assessment are constructively aligned during the development of clinical reasoning skills. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. A conceptual framework to understand academic student volunteerism

    NARCIS (Netherlands)

    Cunha, Jorge; Mensing, Rainer; Benneworth, Paul Stephen

    2018-01-01

    This paper develops a conceptual framework to understand the value of an increasing number of university study programmes that send students to the global south by learning through volunteering. We ask the research question what determines the benefit that these activities bring to the host

  2. A New Conceptual Model for Understanding International Students' College Needs

    Science.gov (United States)

    Alfattal, Eyad

    2016-01-01

    This study concerns the theory and practice of international marketing in higher education with the purpose of exploring a conceptual model for understanding international students' needs in the context of a four-year college in the United States. A transcendental phenomenological design was employed to investigate the essence of international…

  3. Student Understanding of Gravity in Introductory College Astronomy

    Science.gov (United States)

    Williamson, Kathryn E.; Willoughby, Shannon

    2012-01-01

    Twenty-four free-response questions were developed to explore introductory college astronomy students' understanding of gravity in a variety of contexts, including in and around Earth, throughout the solar system, and in hypothetical situations. Questions were separated into three questionnaires, each of which was given to a section of…

  4. Measuring students' understanding in counting rules and its ...

    African Journals Online (AJOL)

    Probability is a study of the rules that offers the foundational theory for the development of statistics. This sets out the investigation where students' understanding of counting rules and its probability were explored using the Rasch measurement approach. A test instrument with 20 items was developed and administered to ...

  5. Mapping What Young Students Understand and Value Regarding Sustainable Development

    Science.gov (United States)

    Manni, Annika; Sporre, Karin; Ottander, Christina

    2013-01-01

    This paper presents the results of a study carried out to investigate how 10-12 year old Swedish students understand and value the issue of sustainable development. The responses from open-ended questions in a questionnaire have been analyzed through a content analysis based on a phenomenographic approach. The results show that there are…

  6. Understanding Chinese international college and university students' physical activity behavior

    Directory of Open Access Journals (Sweden)

    Zi Yan

    2015-06-01

    Conclusion: Understanding factors that influence PA among Chinese international students is an important step in the process of promoting their long-term health and wellbeing. Designing program that address the identified key factors may help colleges and universities achieve this goal.

  7. Students' Understanding of Boiling Points and Intermolecular Forces

    Science.gov (United States)

    Schmidt, Hans-Jurgen; Kaufmann, Birgit; Treagust, David F.

    2009-01-01

    In introductory chemistry courses students are presented with the model that matter is composed of particles, and that weak forces of attraction exist between them. This model is used to interpret phenomena such as solubility and melting points, and aids in understanding the changes in states of matter as opposed to chemical reactions. We…

  8. A Novel Technology to Investigate Students' Understandings of Enzyme Representations

    Science.gov (United States)

    Linenberger, Kimberly J.; Bretz, Stacey Lowery

    2012-01-01

    Digital pen-and-paper technology, although marketed commercially as a bridge between old and new note-taking capabilities, synchronizes the collection of both written and audio data. This manuscript describes how this technology was used to improve data collection in research regarding students' learning, specifically their understanding of…

  9. White University Students' Racial Affect : Understanding the Antiracist Type

    Science.gov (United States)

    Kordesh, Kathleen S.; Spanierman, Lisa B.; Neville, Helen A.

    2013-01-01

    Prior quantitative research using the Psychosocial Costs of Racism to Whites scale (PCRW; Spanierman & Heppner, 2004) identified five racial affect types among White undergraduate students. To better understand the Antiracist type, the most racially aware and sensitive among the five types, the authors of the present study conducted two focus…

  10. An APOS analysis of natural science students' understanding of ...

    African Journals Online (AJOL)

    User

    2005), (b) students‟ difficulties with the derivative increase and get worse when the function considered is a composite function ... ing students build appropriate mental structures, and [b] guiding them to apply these structures to construct their understanding of ...... In D Hewitt & A Noyes (eds). Proceedings of the sixth Brit-.

  11. E-learning support for student's understanding of electronics

    DEFF Research Database (Denmark)

    May, Michael; Sendrup, Linda; Sparsø, Jens

    2008-01-01

    To enhance active learning and understanding of analogue and digital electronics the use of e-learning techniques will be investigated. In a redesigned course combining introductory analogue and digital electronics, students will be motivated to prepare for lectures and exercises by providing...

  12. Diagnostic Appraisal of Grade 12 Students' Understanding of Reaction Kinetics

    Science.gov (United States)

    Yan, Yaw Kai; Subramaniam, R.

    2016-01-01

    The study explored grade 12 students' understanding of reaction kinetics, a topic which has not been extensively explored in the chemistry education literature at this level. A 3-tier diagnostic instrument with 11 questions was developed--this format is of very recent origin and has been the subject of only a handful of studies. The findings…

  13. Using Critical Discourse Analysis to Understand Student Resistance to Diversity

    Science.gov (United States)

    Tharp, D. Scott

    2015-01-01

    Diversity is a word used by many people with different meanings and interpretations. The differences in the way we understand and use the word "diversity" pose unique challenges for those who do social justice education. Students and educators may not share the same definition, connotation, or beliefs related to the idea of diversity.…

  14. Using Story to Help Student Understanding of Gas Behavior

    Science.gov (United States)

    Wiebe, Rick; Stinner, Arthur

    2010-01-01

    Students tend to have a poor understanding of the concept of gas pressure. Usually, gas pressure is taught in terms of the various formulaic gas laws. The development of the concept of gas pressure according to the early Greeks did not include the concept of a vacuum. It was not for another 2000 years that Torricelli proposed that a vacuum can…

  15. Comparison of University Students' Understanding of Graphs in Different Contexts

    Science.gov (United States)

    Planinic, Maja; Ivanjek, Lana; Susac, Ana; Milin-Sipus, Zeljka

    2013-01-01

    This study investigates university students' understanding of graphs in three different domains: mathematics, physics (kinematics), and contexts other than physics. Eight sets of parallel mathematics, physics, and other context questions about graphs were developed. A test consisting of these eight sets of questions (24 questions in all) was…

  16. Scientific Models Help Students Understand the Water Cycle

    Science.gov (United States)

    Forbes, Cory; Vo, Tina; Zangori, Laura; Schwarz, Christina

    2015-01-01

    The water cycle is a large, complex system that encompasses ideas across the K-12 science curriculum. By the time students leave fifth grade, they should understand "that a system is a group of related parts that make up a whole and can carry out functions its individual parts cannot" and be able to describe both components and processes…

  17. Enhancing Preservice Teachers' Understanding of Students' Misconceptions in Learning Chemistry

    Science.gov (United States)

    Naah, Basil Mugaga

    2015-01-01

    Preservice teachers enrolled in a modified introductory chemistry course used an instructional rubric to improve and evaluate their understanding of students' misconceptions in learning various chemistry concepts. A sample of 79 preservice teachers first explored the state science standards to identify chemistry misconceptions associated with the…

  18. Investigating High School Students' Understanding of Chemical Equilibrium Concepts

    Science.gov (United States)

    Karpudewan, Mageswary; Treagust, David F.; Mocerino, Mauro; Won, Mihye; Chandrasegaran, A. L.

    2015-01-01

    This study investigated the year 12 students' (N = 56) understanding of chemical equilibrium concepts after instruction using two conceptual tests, the "Chemical Equilibrium Conceptual Test 1" ("CECT-1") consisting of nine two-tier multiple-choice items and the "Chemical Equilibrium Conceptual Test 2"…

  19. Assessing and Improving Student Understanding of Tree-Thinking

    Science.gov (United States)

    Kummer, Tyler A.

    Evolution is the unifying theory of biology. The importance of understanding evolution by those who study the origins, diversification and diversity life cannot be overstated. Because of its importance, in addition to a scientific study of evolution, many researchers have spent time studying the acceptance and the teaching of evolution. Phylogenetic Systematics is the field of study developed to understand the evolutionary history of organisms, traits, and genes. Tree-thinking is the term by which we identify concepts related to the evolutionary history of organisms. It is vital that those who undertake a study of biology be able to understand and interpret what information these phylogenies are meant to convey. In this project, we evaluated the current impact a traditional study of biology has on the misconceptions students hold by assessing tree-thinking in freshman biology students to those nearing the end of their studies. We found that the impact of studying biology was varied with some misconceptions changing significantly while others persisted. Despite the importance of tree-thinking no appropriately developed concept inventory exists to measure student understanding of these important concepts. We developed a concept inventory capable of filling this important need and provide evidence to support its use among undergraduate students. Finally, we developed and modified activities as well as courses based on best practices to improve teaching and learning of tree-thinking and organismal diversity. We accomplished this by focusing on two key questions. First, how do we best introduce students to tree-thinking and second does tree-thinking as a course theme enhance student understanding of not only tree-thinking but also organismal diversity. We found important evidence suggesting that introducing students to tree-thinking via building evolutionary trees was less successful than introducing the concept via tree interpretation and may have in fact introduced or

  20. Exploring the Relationships Between Student Moon Observations and Spatial-Science Reasoning

    Science.gov (United States)

    Cole, Merryn; Wilhelm, J.; Jackson, C.; Yang, H.; Wilhelm, R. J.

    2013-06-01

    Relationships between student moon observation journaling and sixth-grade students’ spatial-scientific reasoning after implementation of an Earth/Space unit were examined. Teachers followed the NASA-based REAL (Realistic Explorations in Astronomical Learning) curriculum. As part of this curriculum, students kept daily moon observation journals for 5 weeks, recording position and appearance of the moon as well as noting patterns. An extensive search was conducted in both the multilevel model (Hierarchical Linear Modeling) space and the single level model space. The final model identified for this data set is a single level linear model. The model shows that students performing better on moon observation journals, both in terms of overall score and number of entries, score higher on LPCI (Lunar Phases Concept Inventory) post-tests. For every 1 point increase in the overall moon journal score, participants are expected to score 0.18 points or nearly 1% point higher on the LPCI post-test when holding constant the effects of the other two predictors, LPCI pre-test score and number of moon journal entries. An examination of the quality of moon journal entries demonstrates that students who put more time and effort into their moon journals notice more patterns in the appearance (percentage of illumination) and location of the moon in the sky. These patterns additionally relate to their development of spatial skills as they are describing the apparently changing location of celestial objects in relation to their single position on Earth. This study is unique in the purposeful link created between student moon observations and spatial skills. The use of moon journals distinguishes this study further by fostering scientific observation along with skills from across STEM fields and other disciplines. We believe that future work will show a strong link between these improved spatial skills and performance in mathematics and science.

  1. Influence of Ethics Education on Moral Reasoning among Pre-Service Teacher Preparation and Social Work Students

    Science.gov (United States)

    Salopek, Michelle M.

    2013-01-01

    This comparative case study examines the influence of ethics education on moral reasoning among pre-service teacher preparation and social work students. This study specifically investigates the ethical values of students enrolled in a teacher preparation and social work education program by their fourth year of study; the degree of ethical…

  2. Investigate the "Issues" in Chinese Students' English Writing and Their "Reasons": Revisiting the Recent Evidence in Chinese Academia

    Science.gov (United States)

    Sang, Yuan

    2017-01-01

    This research synthesis collected, compiled, and analyzed 29 academic research articles that were published in China in recent years. It addressed and explored the issues in Chinese undergraduate students' English writing and the possible reasons causing and/or explaining the issues. It was discovered that many Chinese undergraduate students have…

  3. An Investigation of Secondary School Students' Self-Reported Reasons for Participation in Extracurricular Musical and Athletic Activities

    Science.gov (United States)

    Ebie, Brian D.

    2005-01-01

    The purpose of this study was to discover the self-reported reasons for involvement in after-school, extracurricular music and athletic activities of high school students. One hundred-sixty high school students participating in either extracurricular athletic or musical activities served as subjects. Extracurricular activities were defined as…

  4. The association between student characteristics and the development of clinical reasoning in a graduate-entry, PBL medical programme.

    Science.gov (United States)

    Groves, Michele; O'rourke, Peter; Alexander, Heather

    2003-11-01

    This study sought to assess the extent to which the entry characteristics of students in a graduate-entry medical programme predict the subsequent development of clinical reasoning ability. Subjects comprised 290 students voluntarily recruited from three successive cohorts of the University of Queensland's MBBS Programme. Clinical reasoning was measured once a year over a period of three years using two methods, a set of 10 Clinical Reasoning Problems (CRPs) and the Diagnostic Thinking Inventory (DTI). Data on gender, age at entry into the programme, nature of primary degree, scores on selection criteria (written examination plus interview) and academic performance in the first two years of the programme were recorded for each student, and their association with clinical reasoning skill analysed using univariate and multivariate analysis. Univariate analysis indicated significant associations between CRP score, gender and primary degree with a significant but small association between DTI and interview score. Stage of progression through the programme was also an important predictor of performance on both indicators. Subsequent multivariate analysis suggested that female gender is a positive predictor of CRP score independently of the nature of a subject's primary degree and stage of progression through the programme, although these latter two variables are interdependent. Positive predictors of clinical reasoning skill are stage of progression through the MBBS programme, female gender and interview score. Although the nature of a student's primary degree is important in the early years of the programme, evidence suggests that by graduation differences between students' clinical reasoning skill due to this factor have been resolved.

  5. A cognitive framework for analyzing and describing introductory students' use and understanding of mathematics in physics

    Science.gov (United States)

    Tuminaro, Jonathan

    Many introductory, algebra-based physics students perform poorly on mathematical problem solving tasks in physics. There are at least two possible, distinct reasons for this poor performance: (1) students simply lack the mathematical skills needed to solve problems in physics, or (2) students do not know how to apply the mathematical skills they have to particular problem situations in physics. While many students do lack the requisite mathematical skills, a major finding from this work is that the majority of students possess the requisite mathematical skills, yet fail to use or interpret them in the context of physics. In this thesis I propose a theoretical framework to analyze and describe students' mathematical thinking in physics. In particular, I attempt to answer two questions. What are the cognitive tools involved in formal mathematical thinking in physics? And, why do students make the kinds of mistakes they do when using mathematics in physics? According to the proposed theoretical framework there are three major theoretical constructs: mathematical resources, which are the knowledge elements that are activated in mathematical thinking and problem solving; epistemic games, which are patterns of activities that use particular kinds of knowledge to create new knowledge or solve a problem; and frames, which are structures of expectations that determine how individuals interpret situations or events. The empirical basis for this study comes from videotaped sessions of college students solving homework problems. The students are enrolled in an algebra-based introductory physics course. The videotapes were transcribed and analyzed using the aforementioned theoretical framework. Two important results from this work are: (1) the construction of a theoretical framework that offers researchers a vocabulary (ontological classification of cognitive structures) and grammar (relationship between the cognitive structures) for understanding the nature and origin of

  6. General chemistry students' understanding of the chemistry underlying climate science

    Science.gov (United States)

    Versprille, Ashley N.

    The purpose of this study is to investigate first-semester general chemistry students' understanding of the chemistry underlying climate change. The first part of this study involves the collection of qualitative data from twenty-four first-semester general chemistry students from a large Midwestern research institution. The semi-structured interview protocol was developed based on alternative conceptions identified in the research literature and the essential principles of climate change outlined in the U.S. Climate Change Science Program (CCSP) document which pertain to chemistry (CCSP, 2003). The analysis and findings from the interviews indicate conceptual difficulties for students, both with basic climate literacy and underlying chemistry concepts. Students seem to confuse the greenhouse effect, global warming, and the ozone layer, and in terms of chemistry concepts, they lack a particulate level understanding of greenhouse gases and their interaction with electromagnetic radiation, causing them to not fully conceptualize the greenhouse effect and climate change. Based on the findings from these interviews, a Chemistry of Climate Science Diagnostic Instrument (CCSI) was developed for use in courses that teach chemistry with a rich context such as climate science. The CCSI is designed for professors who want to teach general chemistry, while also addressing core climate literacy principles. It will help professors examine their students' prior knowledge and alternative conceptions of the chemistry concepts associated with climate science, which could then inform their teaching and instruction.

  7. Context dependence of students' views about the role of equations in understanding biology.

    Science.gov (United States)

    Watkins, Jessica; Elby, Andrew

    2013-06-01

    Students' epistemological views about biology--their ideas about what "counts" as learning and understanding biology--play a role in how they approach their courses and respond to reforms. As introductory biology courses incorporate more physics and quantitative reasoning, student attitudes about the role of equations in biology become especially relevant. However, as documented in research in physics education, students' epistemologies are not always stable and fixed entities; they can be dynamic and context-dependent. In this paper, we examine an interview with an introductory student in which she discusses the use of equations in her reformed biology course. In one part of the interview, she expresses what sounds like an entrenched negative stance toward the role equations can play in understanding biology. However, later in the interview, when discussing a different biology topic, she takes a more positive stance toward the value of equations. These results highlight how a given student can have diverse ways of thinking about the value of bringing physics and math into biology. By highlighting how attitudes can shift in response to different tasks, instructional environments, and contextual cues, we emphasize the need to attend to these factors, rather than treating students' beliefs as fixed and stable.

  8. Evolving social responsibility understandings, motivations, and career goals of undergraduate students initially pursuing engineering degrees

    Science.gov (United States)

    Rulifson, Gregory A.

    Engineers impact the lives of every person every day, and need to have a strong sense of social responsibility. Understanding what students think about social responsibility in engineering and their futures is very important. Further, by identifying influences that change these ideas and shape their conceptualizations, we can intervene to help prepare students for their responsibilities as part of the profession in the future. This thesis presents the experiences, in their own words, of 34 students who started in engineering. The study is composed of three parts: (i) engineering students' ideas about socially responsible engineering and what influenced these ideas, (ii) how students see themselves as future socially responsible engineers and how this idea changes over their first three years of college, and (iii) what social responsibility-related reasons students who leave engineering have for choosing a new major. Results show that students are complicated and have varied paths through and out of engineering studies. Students came up with their own ideas about socially responsible engineering that converged over the years on legal and safety related aspects of the profession. Relatedly, students identified with the engineering profession through internships and engineering courses, and rarely described socially responsible aspirations that could be accomplished with engineering. More often, those students who desired to help the disadvantaged through their engineering work left engineering. Their choice to leave was a combination of an unsupportive climate, disinterest in their classes, and a desire to combine their personal and professional social responsibility ambitions. If we want engineering students to push the engineering profession forward to be more socially responsible, we can identify the effective influences and develop a curriculum that encourages critical thinking about the social context and impacts of engineering. Additionally, a social

  9. Toward understanding writing to learn in physics: Investigating student writing

    Science.gov (United States)

    Demaree, Dedra

    It is received wisdom that writing in a discipline helps students learn the discipline, and millions of dollars have been committed at many universities to supporting such writing. We show that evidence for effectiveness is anecdotal, and that little data-based material informs these prejudices. This thesis begins the process of scientific study of writing in the discipline, in specific, in physics, and creates means to judge whether such writing is effective. The studies culminating in this thesis are an aggressive start to addressing these complex questions. Writing is often promoted as an activity that, when put into classrooms in specific disciplines, not only helps students learn to write in the methods of that discipline but also helps students learn content knowledge. Students at the Ohio State University are being asked to write more in introductory courses, and the Engineering schools want their students to have more writing skills for the job market. Combined with the desire of many educators to have students be able to explain the course content knowledge clearly, it would seem that writing activities would be important and useful in physics courses. However, the question of whether writing helps learning or whether students learn writing within a non-English classroom helps learning in the discipline are open to debate, and data are needed before such claims can be made. This thesis presents several studies aimed at understanding the correlation of writing and content, and tracking and characterizing student writing behaviors to see how they are impacted by writing in physics courses. It consists of four parts: summer and autumn 2005 focus on writing in introductory physics labs with and without explicit instruction, while winter and spring 2006 focus on tracking and analyzing student writing and revising behavior in Physics by Inquiry (PbI). With these related projects, we establish three main results. First, there is a need for quantitative studies of

  10. On supporting students' understanding of solving linear equation by using flowchart

    Science.gov (United States)

    Toyib, Muhamad; Kusmayadi, Tri Atmojo; Riyadi

    2017-05-01

    The aim of this study was to support 7th graders to gradually understand the concepts and procedures of solving linear equation. Thirty-two 7th graders of a Junior High School in Surakarta, Indonesia were involved in this study. Design research was used as the research approach to achieve the aim. A set of learning activities in solving linear equation with one unknown were designed based on Realistic Mathematics Education (RME) approach. The activities were started by playing LEGO to find a linear equation then solve the equation by using flowchart. The results indicate that using the realistic problems, playing LEGO could stimulate students to construct linear equation. Furthermore, Flowchart used to encourage students' reasoning and understanding on the concepts and procedures of solving linear equation with one unknown.

  11. Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change

    Science.gov (United States)

    Visintainer, Tammie; Linn, Marcia

    2015-04-01

    Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in the Web-based Inquiry Science Environment (WISE), engages sixth-grade students in conducting virtual investigations using NetLogo models to foster an understanding of core mechanisms including the greenhouse effect. Students then test how the greenhouse effect is enhanced by everyday energy use. This study draws on three data sources: (1) pre- and post-unit interviews, (2) analysis of embedded assessments following virtual investigations, and (3) contrasting cases of two students (normative vs. non-normative understanding of the greenhouse effect). Results show the value of using virtual investigations for teaching the mechanisms associated with global climate change. Interviews document that students hold a wide range of ideas about the mechanisms driving global climate change. Investigations with models help students use evidence-based reasoning to distinguish their ideas. Results show that understanding the greenhouse effect offers a foundation for building connections between everyday energy use and increases in global temperature. An impediment to establishing coherent understanding was the persistence of an alternative conception about ozone as an explanation for climate change. These findings illustrate the need for regular revision of curriculum based on classroom trials. We discuss key design features of models and instructional revisions that can transform the teaching and learning of global climate change.

  12. High School Students' Understanding of Change over Time and System Complexity: A Focus on the Cryosphere

    Science.gov (United States)

    McNeal, K. S.; Libarkin, J.; Ledley, T. S.; Guthrie, C.

    2010-12-01

    Most students have difficulty articulating processes that are key for Earth’s changes and may have limited ability to understand Earth system science and think across spatial and temporal dimensions. The cryosphere, a complex and dynamic Earth system that exhibits change over time (e.g., seasonal, yearly, decadal, and millennial), can be difficult for students to reason about. The presented research assesses the effectiveness of the project developed on-line modules on high school students’ cryosphere content knowledge and skill development, including their: (1) conceptual understanding of ice, thermodynamics, climate, changes in ice cover over time, Earth system interactions, and complexity, and (2) use and interpretation of data and graphs about the cryosphere. Pre- and post- student assessments, classroom observations, and teacher interviews were collected from four high school classrooms in Texas to determine the effectiveness of the Earthlabs cryosphere modules in reaching the specified learning goals. Preliminary analysis of pre-and post-test data revealed a number of interesting changes where students displayed an increase in their awareness of the cryosphere, increase in confidence about cryosphere knowledge, and an increase in their ability to read and interpret graphs. Furthermore, classroom observations made for 25 minutes during a class period illustrated that for over 84% of the class period the students were engaged with the Earthlabs materials and spent the majority (>50%) of their time either discussing (31%) or working on the on-line Earthlabs cryosphere materials (29%). Finally, forty-five minute individual telephone interviews conducted with the four implementing cryosphere teachers revealed that teachers overwhelmingly reflected that the materials supported students’ ability to learn about the (i) nature and importance of the cryosphere, (ii) manipulation, analysis, interpretation of data, (iii) physical changes over multiple time scales

  13. Model-Based Knowing: How Do Students Ground Their Understanding About Climate Systems in Agent-Based Computer Models?

    Science.gov (United States)

    Markauskaite, Lina; Kelly, Nick; Jacobson, Michael J.

    2017-12-01

    This paper gives a grounded cognition account of model-based learning of complex scientific knowledge related to socio-scientific issues, such as climate change. It draws on the results from a study of high school students learning about the carbon cycle through computational agent-based models and investigates two questions: First, how do students ground their understanding about the phenomenon when they learn and solve problems with computer models? Second, what are common sources of mistakes in students' reasoning with computer models? Results show that students ground their understanding in computer models in five ways: direct observation, straight abstraction, generalisation, conceptualisation, and extension. Students also incorporate into their reasoning their knowledge and experiences that extend beyond phenomena represented in the models, such as attitudes about unsustainable carbon emission rates, human agency, external events, and the nature of computational models. The most common difficulties of the students relate to seeing the modelled scientific phenomenon and connecting results from the observations with other experiences and understandings about the phenomenon in the outside world. An important contribution of this study is the constructed coding scheme for establishing different ways of grounding, which helps to understand some challenges that students encounter when they learn about complex phenomena with agent-based computer models.

  14. Students' understanding of density: A cognitive linguistics perspective

    Science.gov (United States)

    Southey, Philip; Allie, Saalih; Demaree, Dedra

    2013-01-01

    Density is an important, multifaceted concept that occurs at many levels of physics education. Previous research has shown that a primary instantiation of the concept, mass density, is not well understood by high school or university students. This study seeks to determine how students understand the broad concept of density, and whether particular aspects of their understanding are helpful in structuring the concept of charge density. Qualitative data were gathered in the form of questionnaires distributed to 172 freshmen comprising three different academic groups. Broad, open ended questions prompted for responses involving free writing and drawn diagrams. The data were analysed by an approach suggested by Grounded Theory. Using the theoretical lens of Conceptual Metaphor Theory, six underlying (foothold) concepts were identified in terms of which density was conceptualised: `filled container'; `packing'; `weight/heaviness'; `intensive property'; `floating/sinking'; `impenetrability/solidity'. The foothold concept of `packing' proved to be the most productive for conceptualising `charge density'.

  15. What is "good reasoning" about global warming? A comparison of high school students and specialists

    Science.gov (United States)

    Adams, Stephen Thomas

    This study compares the knowledge and reasoning about global warming of 10 twelfth grade students and 6 specialists, including scientists and policy analysts. The study uses global warming as a context for addressing the broad objective of formulating goals for scientific literacy. Subjects evaluated a set of articles about global warming and evaluated policies proposed to ameliorate global warming, including a gasoline tax and a "feebate" system of fees and rebates on automobiles. All students and one scientist participated in a full treatment involving interviews and activities with a computer program (discussed below), averaging about 3.75 hours. In addition, five specialists participated in interviews only, averaging one hour. One line of analysis focuses on knowledge content, examining how subjects applied perspectives from both natural and social sciences. This analysis is positioned as an empirical component to the movement to develop content standards for science education, as exemplified by the recommendations of Science for All Americans (SFAA). Some aspects of competent performance in the present study hinged upon knowledge and skills advocated by SFAA (e.g., fluency with themes of science such as scale). Other aspects involved such skills as evaluating economic interests behind a scientific argument in the media or considering hidden costs in a policy area. By characterizing a range of approaches to how students and specialists performed the experimental tasks, the present study affords a view of scientific literacy not possible without this type of information. Another line of analysis investigates a measure of coherent argumentation from a computer program, Convince Me, in relation to policy reasoning. The program is based on a connectionist model, ECHO. Subjects used the program to create arguments about the aforementioned policies. The study compares Convince Me's Model's Fit argumentation measure to other measures, including ratings of 6 human

  16. Understanding and Facilitating Student Bloggers: Towards a Blogging Activity Model

    Science.gov (United States)

    Derntl, Michael

    Since instructors have started recognizing the potential of Web 2.0 integration in web-based courses, blogs have been used to provide students with means of virtual communication, contribution, collaboration and community building. In this paper we aim to take another step forward by presenting and analyzing the integration of student blogs in an undergraduate computer science course on software architecture and web technologies: we implemented an LMS extension that acted as a course blog portal by collecting and displaying feeds of externally hosted blogs and logging usage data. Data analysis reveals that students who perform better academically also tend to participate more actively in the course blogosphere. Subsequently, we propose a blogging activity model, which aims to reveal and explain relationships between blogging activity variables—including peer visits, commenting and posting—to achieve a better understanding of lively blog communities in courses.

  17. Understanding Generation Z Students to Promote a Contemporary Learning Environment

    OpenAIRE

    Mohr, Kathleen A. J.; mohr, Eric S.

    2017-01-01

    University faculty predominantly represent the Baby Boomer and Baby Buster (Gen X) Generations, but, university students are largely iYs Millenials and Generation Z Digital Natives. These groups have been characterized both positively and negatively in the popular press. A fresh understanding of the newer generations can help instructors better meet current students’ educational needs. This article shares brief generational profiles based on recent research and then presents questions and rec...

  18. Independent learning modules enhance student performance and understanding of anatomy.

    Science.gov (United States)

    Serrat, Maria A; Dom, Aaron M; Buchanan, James T; Williams, Alison R; Efaw, Morgan L; Richardson, Laura L

    2014-01-01

    Didactic lessons are only one part of the multimodal teaching strategies used in gross anatomy courses today. Increased emphasis is placed on providing more opportunities for students to develop lifelong learning and critical thinking skills during medical training. In a pilot program designed to promote more engaged and independent learning in anatomy, self-study modules were introduced to supplement human gross anatomy instruction at Joan C. Edwards School of Medicine at Marshall University. Modules use three-dimensional constructs to help students understand complex anatomical regions. Resources are self-contained in portable bins and are accessible at any time. Students use modules individually or in groups in a structured self-study format that augments material presented in lecture and laboratory. Pilot outcome data, measured by feedback surveys and examination performance statistics, suggest that the activity may be improving learning in gross anatomy. Positive feedback on both pre- and post-examination surveys showed that students felt the activity helped to increase their understanding of the topic. In concordance with student perception, average examination scores on module-related laboratory and lecture questions were higher in the two years of the pilot program compared with the year before its initiation. Modules can be fabricated on a modest budget using minimal resources, making implementation practical for smaller institutions. Upper level medical students assist in module design and upkeep, enabling continuous opportunities for vertical integration across the curriculum. This resource offers a feasible mechanism for enhancing independent and lifelong learning competencies, which could be a valuable complement to any gross anatomy curriculum. © 2014 American Association of Anatomists.

  19. Reasons behind the increase in research activities among medical students of Karachi, Pakistan, a low-income country.

    Science.gov (United States)

    Baig, Shoukat Ali; Hasan, Syed Askari; Ahmed, Syed Mustajab; Ejaz, Kiran; Aziz, Sina; Dohadhwala, Nava Asad

    2013-01-01

    Previously, in a low-income country with limited resources like Pakistan, biomedical research was conducted mostly by individuals working in private organizations. Recently, there has been an upsurge in the number of medical students conducting research in both private and public medical colleges of Karachi, Pakistan. We investigated student perceptions of the reasons behind the increase in biomedical research among medical students of private and public medical colleges in Karachi, Pakistan. This cross-sectional study was conducted at four medical universities of Karachi, using structured data collection tool. Participants included medical students who stated that they were interested in medical research. We assessed how many had been involved in research or stated that they intended to be, and tallied students' stated reasons why they were involved in research. Chi-square analyses were used to assess if year of training, institution, and other factors were associated with the likelihood of past or current actual research involvement. Out of the 398 students with research interest who participated in the study, 349 (88%) stated that they intended to do research projects in their undergraduate years. At the time of the study, only 202 (51%) reported that they had actually conducted research. The reasons given for engaging in research for a minority included personal interest (n = 136; 34%), while majority stated that their motivation was to improve their curriculum vitae (75%) and/or to be more competitive for a residency in the United States (43%). The reasons students gave for involvement in research were related to whether their schools were public versus private and to their year of study. According to students' reports, improving one's curriculum vitae to get a strong residency in the USA appeared to be a principal reason for the increase in biomedical research in Karachi. The challenges of research, such as lack of good mentors and increased work-load were

  20. Understanding the Impact of an Apprenticeship-Based Scientific Research Program on High School Students' Understanding of Scientific Inquiry

    Science.gov (United States)

    Aydeniz, Mehmet; Baksa, Kristen; Skinner, Jane

    2011-01-01

    The purpose of this study was to understand the impact of an apprenticeship program on high school students' understanding of the nature of scientific inquiry. Data related to seventeen students' understanding of science and scientific inquiry were collected through open-ended questionnaires. Findings suggest that although engagement in authentic…

  1. The GLOBE Program's Student Climate Research Campaign: Empowering Students to Measure, Investigate, and Understand Climate

    Science.gov (United States)

    Mackaro, J.; Andersen, T.; Malmberg, J.; Randolph, J. G.; Wegner, K.; Tessendorf, S. A.

    2012-12-01

    The GLOBE Program's Student Climate Research Campaign (SCRC) is a two-year campaign focused on empowering students to measure, investigate, and understand the climate system in their local community and around the world. Schools can participate in the campaign via three mechanisms: climate foundations, intensive observing periods (IOPs), and research investigations. Participation in the first year of the SCRC focused on increasing student understanding and awareness of climate. Students in 49 countries participated by joining a quarterly webinar, completing the online climate learning activity, collecting and entering data during IOPs, or completing an online join survey. The year also included a video competition with the theme of Earth Day 2012, as well as a virtual student conference in conjunction with The GLOBE Program's From Learning to Research Project. As the SCRC continues into its second year, the goal is for students to increase their understanding of and ability to conduct scientific research focused on climate. Furthermore, year two of the SCRC seeks to improve students' global awareness by encouraging collaborations among students, teachers and scientists focused on understanding the Earth as a system. In addition to the continuation of activities from year one, year two will have even more webinars offered, two competitions, the introduction of two new IOPs, and a culminating virtual student conference. It is anticipated that this virtual conference will showcase research by students who are enthusiastic and dedicated to understanding climate and mitigating impacts of climate change in their communities. This presentation will highlight examples of how the SCRC is engaging students all over the world in hands-on and locally relevant climate research.

  2. Reasons for academic honesty and dishonesty with solutions: a study of pharmacy and medical students in New Zealand.

    Science.gov (United States)

    Henning, Marcus A; Ram, Sanya; Malpas, Phillipa; Sisley, Richard; Thompson, Andrea; Hawken, Susan J

    2014-10-01

    This paper presents students' views about honest and dishonest actions within the pharmacy and medical learning environments. Students also offered their views on solutions to ameliorating dishonest action. Three research questions were posed in this paper: (1) what reasons would students articulate in reference to engaging in dishonest behaviours? (2) What reasons would students articulate in reference to maintaining high levels of integrity? (3) What strategies would students suggest to decrease engagement in dishonest behaviours and/or promote honest behaviours? The design of the study incorporated an initial descriptive analysis to interpret students' responses to an 18-item questionnaire about justifications for dishonest action. This was followed by a qualitative analysis of students' commentaries in reference to why students would engage in either honest or dishonest action. Finally a qualitative analysis was conducted on students' views regarding solutions to dishonest action. The quantitative results showed that students were more likely to use time management and seriousness justifications for dishonest actions. The qualitative findings found that students' actions (honest or dishonest) were guided by family and friends, the need to do well, issues of morality and institutional guidelines. Students suggested that dishonest action could be ameliorated by external agencies and polarised views between punitive and rewards-based mechanisms were offered. These results suggest that these students engaged in dishonest action for various reasons and solutions addressing dishonest action need to consider diverse mechanisms that likely extend beyond the educational institution. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. Development of a Student-Centered Instrument to Assess Middle School Students' Conceptual Understanding of Sound

    Science.gov (United States)

    Eshach, Haim

    2014-01-01

    This article describes the development and field test of the Sound Concept Inventory Instrument (SCII), designed to measure middle school students' concepts of sound. The instrument was designed based on known students' difficulties in understanding sound and the history of science related to sound and focuses on two main aspects of sound: sound…

  4. The development of a brief and objective method for evaluating moral sensitivity and reasoning in medical students

    Directory of Open Access Journals (Sweden)

    Nishimura Tadashi

    2004-01-01

    Full Text Available Abstract Background Most medical schools in Japan have incorporated mandatory courses on medical ethics. To this date, however, there is no established means of evaluating medical ethics education in Japan. This study looks 1 To develop a brief, objective method of evaluation for moral sensitivity and reasoning; 2 To conduct a test battery for the PIT and the DIT on medical students who are either currently in school or who have recently graduated (residents; 3 To investigate changes in moral sensitivity and reasoning between school years among medical students and residents. Methods Questionnaire survey: Two questionnaires were employed, the Problem Identification Test (PIT for evaluation of moral sensitivity and a portion of the Defining Issues Test (DIT for moral reasoning. Subjects consisted of 559 medical school students and 272 residents who recently graduated from the same medical school located in an urban area of Japan. Results PIT results showed an increase in moral sensitivity in 4th and 5th year students followed by a decrease in 6th year students and in residents. No change in moral development stage was observed. However, DIT results described a gradual rising shift in moral decision-making concerning euthanasia between school years. No valid correlation was observed between PIT and DIT questionnaires. Conclusion This study's questionnaire survey, which incorporates both PIT and DIT, could be used as a brief and objective means of evaluating medical students' moral sensitivity and reasoning in Japan.

  5. A comparison of concrete and formal science instruction upon science achievement and reasoning ability of sixth grade students

    Science.gov (United States)

    Saunders, Walter L.; Shepardson, Daniel

    Several recent studies suggest concrete learners make greater gains in student achievement and in cognitive development when receiving concrete instruction than when receiving formal instruction. This study examined the effect of concrete and formal instruction upon reasoning and science achievement of sixth grade students. Four intact classes of sixth grade students were randomly selected into two treatment groups; concrete and formal. The treatments were patterned after the operational definitions published by Schneider and Renner (1980). Pretest and posttest measures were taken on the two dependent variables; reasoning, measured with Lawson's Classroom Test of Formal Reasoning, and science achievement, measured with seven teacher made tests covering the following units in a sixth grade general science curriculum: Chemistry, Physics, Earth Science, Cells, Plants, Animals, and Ecology. Analysis of covariance indicated significantly higher levels (better than 0.05 and in some cases 0.01) of performance in science achievement and cognitive development favoring the concrete instruction group and a significant gender effect favoring males.

  6. Reasons for Nonresponse in a Web-Based Survey of Alcohol Involvement Among First-Year College Students

    Science.gov (United States)

    Cranford, James A.; McCabe, Sean Esteban; Boyd, Carol J.; Slayden, Janie; Reed, Mark B.; Ketchie, Julie M.; Lange, James E.; Scott, Marcia S.

    2007-01-01

    This study conducted a follow-up telephone survey of a probability sample of college students who did not respond to a Web survey to determine correlates of and reasons for nonresponse. A stratified random sample of 2 502 full-time first-year undergraduate students was invited to participate in a Web-based survey. A random sample of 221 students who did not respond to the original Web survey completed an abbreviated version of the original survey by telephone. Nonresponse did not vary by gender, but nonresponse was higher among Blacks and Hispanics compared to Whites, and Blacks compared to Asians. Nonresponders reported lower frequency of past 28 days drinking, lower levels of past-year and past 28-days heavy episodic drinking, and more time spent preparing for classes than responders. The most common reasons for nonresponse were “too busy” (45.7%), “not interested” (18.1%), and “forgot to complete survey” (18.1%). Reasons for nonresponse to Web surveys among college students are similar to reasons for nonresponse to mail and telephone surveys, and some nonresponse reasons vary as a function of alcohol involvement. PMID:17728069

  7. Understanding the racial perspectives of White student teachers who teach Black students

    Science.gov (United States)

    McKay, Trinna S.

    Statement of the problem. Most student teachers successfully complete their educational programs; however, some continue to express concern about becoming an actual practicing teacher. One of these concerns deals with White teachers interactions with Black students. This study investigated White student teachers' perceptions of teaching Black students. In particular, the study examined the racial perceptions student teachers expressed about being a White person in a racially diverse school and examined the student teachers' perceptions on race. The following questions guided the study: (1) What are the perceptions of White student teachers concerning being White? (2) What are the perceptions of White student teachers on teaching science to Black students in a racially diverse secondary school? (3) What recommendations can White student teachers give to teacher education programs concerning the teaching of Black students? Methods. Semi-structured interviews, personal profiles and reflective journals were used as the means for collecting data. All three sources of data were used to understand the racial perceptions of each student teacher. Analysis of the data began with the identification of codes and categories that later developed into themes. Cross analyses between the data sources, and cross analysis between participants' individual data were conducted. The use of semi-structured interview, personal profiles, and reflective journals provided in-depth descriptions of the participants' racial perceptions. These data sources were used to confirm data and to show how student teaching experiences helped to shape their racial perceptions. Results. Data analysis revealed three themes, various life experiences, variety of opinions related to teaching Black students, and limited recommendations to teacher education programs. Although all teachers remained at the contact stage of the White racial identity model (Helms, 1990), they were open to dialogue about race. The

  8. Reducing cyberbullying: A theory of reasoned action-based video prevention program for college students.

    Science.gov (United States)

    Doane, Ashley N; Kelley, Michelle L; Pearson, Matthew R

    2016-01-01

    Few studies have evaluated the effectiveness of cyberbullying prevention/intervention programs. The goals of the present study were to develop a Theory of Reasoned Action (TRA)-based video program to increase cyberbullying knowledge (1) and empathy toward cyberbullying victims (2), reduce favorable attitudes toward cyberbullying (3), decrease positive injunctive (4) and descriptive norms about cyberbullying (5), and reduce cyberbullying intentions (6) and cyberbullying behavior (7). One hundred sixty-seven college students were randomly assigned to an online video cyberbullying prevention program or an assessment-only control group. Immediately following the program, attitudes and injunctive norms for all four types of cyberbullying behavior (i.e., unwanted contact, malice, deception, and public humiliation), descriptive norms for malice and public humiliation, empathy toward victims of malice and deception, and cyberbullying knowledge significantly improved in the experimental group. At one-month follow-up, malice and public humiliation behavior, favorable attitudes toward unwanted contact, deception, and public humiliation, and injunctive norms for public humiliation were significantly lower in the experimental than the control group. Cyberbullying knowledge was significantly higher in the experimental than the control group. These findings demonstrate a brief cyberbullying video is capable of improving, at one-month follow-up, cyberbullying knowledge, cyberbullying perpetration behavior, and TRA constructs known to predict cyberbullying perpetration. Considering the low cost and ease with which a video-based prevention/intervention program can be delivered, this type of approach should be considered to reduce cyberbullying. © 2015 Wiley Periodicals, Inc.

  9. Reasoning Ability and Academic Achievement among Secondary School Students in Trivandrum

    Science.gov (United States)

    Rani, K. V.

    2017-01-01

    Reasoning ability is the 'problem solving skills' or 'analytical ability' or 'deductive and inductive reasoning'. Academic achievement is the total score one achieved at school, college, or university from class, laboratory, library, or field work. The objectives of the study were to explore the relationship between reasoning ability and academic…

  10. Engaging Students in Historical Reasoning : The Need for Dialogic History Education

    NARCIS (Netherlands)

    van Boxtel, C.; van Drie, J.; Carretero, M.; Berger, S.; Grever, M.

    2017-01-01

    In this chapter, Van Boxtel and Van Drie argue that dialogic teaching is needed to develop students’ historical reasoning ability. First, the authors specify types of historical reasoning and the activities and underlying knowledge, interest and beliefs that constitute a historical reasoning.

  11. Middle School Students' Understandings About Anthropogenic Climate Change

    Science.gov (United States)

    Golden, B. W.

    2013-12-01

    they discussed the validation of their beliefs. That is, we argue that the unit, and the emphases contained within the unit, resulted in the "epistemic scaffolding" of their ideas, to the extent that they shifted from arguing from anecdotes to arguing based on other types of data, especially from line graphs. Additionally, we found that students' understandings of climate change were tied to their ontological constructions of the subject matter, i.e., many perceived climate change as just another environmentally sensitive issue such as littering and pollution, and were therefore limited in their ability to understand anthropogenic climate change in the vast and robust sense meant by current scientific consensus. Given these known difficulties, it is critical to explore further research of this sort in order to better understand what students are actually thinking, and how that thinking is prone to change, modification, or not. Subsequently, K-12 strategies might be better designed, if that is indeed a priority of US/Western society.

  12. On The Conceptual Understanding Of `Work Done' For Secondary One Students In Singapore

    Science.gov (United States)

    Munirah, S. K.; Foong, S. K.; Lee, P.

    2010-07-01

    We report the preliminary findings on students' conceptual understanding of `Work Done' within the Secondary One science syllabus in Singapore. We group our findings into two main categories, `Students' Preconceptions' and `Students' Understanding of Concepts'. This research surfaces key issues in the young students' learning journeys in science. Knowing these students' preconceptions and conceptual understanding of science concepts after instruction should assist science educators in developing pedagogical approaches and the preparation of lesson packages that will help students overcome their learning difficulties.

  13. Understanding Gaps in Research Networks: Using "Spatial Reasoning" as a Window into the Importance of Networked Educational Research

    Science.gov (United States)

    Bruce, Catherine D.; Davis, Brent; Sinclair, Nathalie; McGarvey, Lynn; Hallowell, David; Drefs, Michelle; Francis, Krista; Hawes, Zachary; Moss, Joan; Mulligan, Joanne; Okamoto, Yukari; Whiteley, Walter; Woolcott, Geoff

    2017-01-01

    This paper finds its origins in a multidisciplinary research group's efforts to assemble a review of research in order to better appreciate how "spatial reasoning" is understood and investigated across academic disciplines. We first collaborated to create a historical map of the development of spatial reasoning across key disciplines…

  14. Features of Knowledge Building in Biology: Understanding Undergraduate Students' Ideas about Molecular Mechanisms.

    Science.gov (United States)

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning. © 2016 K. Southard et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Students' Understanding of Cells & Heredity: Patterns of Understanding in the Context of a Curriculum Implementation in Fifth & Seventh Grades

    Science.gov (United States)

    Cisterna, Dante; Williams, Michelle; Merritt, Joi

    2013-01-01

    This study explores upper-elementary and early-middle-school students' ideas about cells and inheritance and describes patterns of understanding for these topics. Data came from students' responses to embedded assessments included in a technology-enhanced curriculum designed to help students learn about cells and heredity. Our findings suggest…

  16. Reasons for Electronic Cigarette Use Among Middle and High School Students - National Youth Tobacco Survey, United States, 2016.

    Science.gov (United States)

    Tsai, James; Walton, Kimp; Coleman, Blair N; Sharapova, Saida R; Johnson, Sarah E; Kennedy, Sara M; Caraballo, Ralph S

    2018-02-16

    Electronic cigarettes (e-cigarettes) were the most commonly used tobacco product among U.S. middle school and high school students in 2016 (1). CDC and the Food and Drug Administration (FDA) analyzed data from the 2016 National Youth Tobacco Survey (NYTS) to assess self-reported reasons for e-cigarette use among U.S. middle school (grades 6-8) and high school (grades 9-12) student e-cigarette users. Among students who reported ever using e-cigarettes in 2016, the most commonly selected reasons for use were 1) use by "friend or family member" (39.0%); 2) availability of "flavors such as mint, candy, fruit, or chocolate" (31.0%); and 3) the belief that "they are less harmful than other forms of tobacco such as cigarettes" (17.1%). The least commonly selected reasons were 1) "they are easier to get than other tobacco products, such as cigarettes" (4.8%); 2) "they cost less than other tobacco products such as cigarettes" (3.2%); and 3) "famous people on TV or in movies use them" (1.5%). Availability of flavors as a reason for use was more commonly selected by high school users (32.3%) than by middle school users (26.8%). Efforts to prevent middle school and high school students from initiating the use of any tobacco product, including e-cigarettes, are important to reduce tobacco product use among U.S. youths (2).

  17. Considerations of Numbers Used in Tasks for Promoting Multiplicative Reasoning in Students with Learning Difficulties in Mathematics

    Science.gov (United States)

    Risley, Rachael Ann

    2016-01-01

    This study explored the impact of numbers used in instructional tasks on the construction and generalization of multiplicative reasoning by fourth grade students designated as having learning difficulties or disabilities in mathematics (SLDs). In particular, this study addressed the following research questions: (1) In what ways do SLDs'…

  18. The Effect of a Case-Based Reasoning Instructional Model on Korean High School Students' Awareness in Climate Change Unit

    Science.gov (United States)

    Jeong, Jinwoo; Kim, Hyoungbum; Chae, Dong-hyun; Kim, Eunjeong

    2014-01-01

    The purpose of this study is to investigate the effects of the case-based reasoning instructional model on learning about climate change unit. Results suggest that students showed interest because it allowed them to find the solution to the problem and solve the problem for themselves by analogy from other cases such as crossword puzzles in an…

  19. Developing Students' Reasoning about Samples and Sampling Variability as a Path to Expert Statistical Thinking

    Science.gov (United States)

    Garfield, Joan; Le, Laura; Zieffler, Andrew; Ben-Zvi, Dani

    2015-01-01

    This paper describes the importance of developing students' reasoning about samples and sampling variability as a foundation for statistical thinking. Research on expert-novice thinking as well as statistical thinking is reviewed and compared. A case is made that statistical thinking is a type of expert thinking, and as such, research…

  20. Associations of students' self-reports of their teachers' verbal aggression, intrinsic motivation, and perceptions of reasons for discipline in Greek physical education classes.

    Science.gov (United States)

    Bekiari, Alexandra; Kokaridas, Dimitrios; Sakellariou, Kimon

    2006-04-01

    In this study were examined associations among physical education teachers' verbal aggressiveness as perceived by students and students' intrinsic motivation and reasons for discipline. The sample consisted of 265 Greek adolescent students who completed four questionnaires, the Verbal Aggressiveness Scale, the Lesson Satisfaction Scale, the Reasons for Discipline Scale, and the Intrinsic Motivation Inventory during physical education classes. Analysis indicated significant positive correlations among students' perceptions of teachers' verbal aggressiveness with pressure/ tension, external reasons, introjected reasons, no reasons, and self-responsibility. Significant negative correlations were noted for students' perceptions of teachers' verbal aggression with lesson satisfaction, enjoyment/interest, competence, effort/importance, intrinsic reasons, and caring. Differences between the two sexes were observed in their perceptions of teachers' verbal aggressiveness, intrinsic motivation, and reasons for discipline. Findings and implications for teachers' type of communication were also discussed and suggestions for research made.

  1. Students' Socioscientific Reasoning and Decision-making on Energy-related Issues—Development of a measurement instrument

    Science.gov (United States)

    Sakschewski, Mark; Eggert, Sabina; Schneider, Susanne; Bögeholz, Susanne

    2014-09-01

    The concept of energy is one key component of science education curricula worldwide. While it is still being taught in many science classrooms from a mainly conceptual knowledge perspective, the need to frame the concept of energy as a socioscientific issue and implement it in the context of citizenship education and education for sustainable development, is getting more and more explicit. As we will be faced with limited fossil fuels and the consequences of global climate change in the future, students have to be supported in becoming literate citizens who are able to reach informed energy-related decisions. In this article, we focus on students' reasoning and decision-making processes about socioscientific energy-related issues. In more detail, we developed a paper-and-pencil measurement instrument to assess secondary school students' competencies in this domain. The functioning of the measurement instrument was analysed with a sample of 850 students from grades 6, 8, 10 and 12 using item response theory. Findings show that the measurement instrument functions in terms of reliability and validity. Concerning student ability, elaborate reasoning and decision-making was characterised by the use of trade-offs and the ability to weigh arguments and to reflect on the structure of reasoning and decision-making processes. The developed measurement instrument provides a complement for existing test instruments on conceptual knowledge about the concept of energy. It aims to contribute to a change in teaching about energy, especially in physics education in the sense of education for sustainable development.

  2. Underrepresented minority students' experiences at Baylor College of Dentistry: perceptions of cultural climate and reasons for choosing to attend.

    Science.gov (United States)

    McCann, Ann L; Lacy, Ernestine S; Miller, Barbara H

    2014-03-01

    A study was conducted at Texas A&M University Baylor College of Dentistry (TAMBCD) in fall 2011 to identify the reasons underrepresented minority (URM) students chose to attend TAMBCD, the factors that supported their success as enrolled students, and their perceptions of the institution's cultural climate. A survey distributed online to all URM students received a 79 percent response rate (129/164). The respondents were primarily Hispanic (62 percent Mexican American and other Hispanic) and African American (33 percent) and had attended a college pipeline program (53 percent). The top reasons these students chose TAMBCD were reputation, location, and automatic acceptance or familiarity from being in a predental program. Alumni had most influenced them to attend. Regarding support services, the largest percentage reported not using any (44 percent); personal advising and tutoring were reported to be the most commonly used. In terms of climate, discrimination was reported by 22 percent (n=29), mostly from classmates and clinical faculty. The majority (87 percent) reported their cultural competence program was "effective" and agreed that faculty (83 percent), staff (85 percent), and students (75 percent) were culturally competent. Overall, the students were "satisfied" with how they were treated (88 percent), their education (91 percent), and the services/resources (92 percent). This information is being used to continue to improve the school's cultural climate and to conduct a broader assessment of all students.

  3. Problematizing a general physics class: Understanding student engagement

    Science.gov (United States)

    Spaid, Mark Randall

    This research paper describes the problems in democratizing a high school physics course and the disparate engagement students during class activities that promote scientific inquiry. Results from the Learning Orientation Questionnaire (Martinez, 2000) guide the participant observations and semi-formal interviews. Approximately 60% of the participants self-report a "resistant" or "conforming" approach to learning science; they expect to receive science knowledge from the teacher, and their engagement is influenced by affective and conative factors. These surface learners exhibit second order thinking (Kegan, 1994), do not understand abstract science concepts, and learn best from structured inquiry. To sustain engagement, conforming learners require motivational and instructional discourse from their teacher and peers. Resisting learners do not value learning and do not engage in most science class activities. The "performing" learners are able to deal with abstractions and can see relationships between lessons and activities, but they do not usually self-reflect or think critically (they are between Kegan's second order and third order thinking). They may select a deeper learning strategy if they value the knowledge for a future goal; however, they are oriented toward assessment and rely on the science teacher as an authority. They are influenced by affective and conative factors during structured and guided inquiry-based teaching, and benefit from motivational discourse and sustain engagement if they are interested in the topic. The transforming learners are more independent, self-assessing and self-directed. These students are third order thinkers (Kegan, 1994) who hold a sophisticated epistemology that includes critical thinking and reflection. These students select deep learning strategies without regard to affective and conative factors. They value instructional discourse from the teacher, but prefer less structured inquiry activities. Although specific

  4. Student Development of Model-Based Reasoning about Carbon Cycling and Climate Change in a Socio-Scientific Issues Unit

    Science.gov (United States)

    Zangori, Laura; Peel, Amanda; Kinslow, Andrew; Friedrichsen, Patricia; Sadler, Troy D.

    2017-01-01

    Carbon cycling is a key natural system that requires robust science literacy to understand how and why climate change is occurring. Studies show that students tend to compartmentalize carbon movement within plants and animals and are challenged to make sense of how carbon cycles on a global scale. Studies also show that students hold faulty models…

  5. Understanding students' concepts through guided inquiry learning and free modified inquiry on static fluid material

    OpenAIRE

    Sularso Sularso; Widha Sunarno; Sarwanto Sarwanto

    2017-01-01

    This study provides information on understanding students' concepts in guided inquiry learning groups and in free modified inquiry learning groups. Understanding of student concept is reviewed on the concept of static fluid case. The number of samples tested were 67 students. The sample is divided into 2 groups of students: the group is given guided inquiry learning and the group given the modified free inquiry learning. Understanding the concept of students is measured through 23 tests of it...

  6. An exploration of the perceptions, developmental reasoning levels, differences in learning processes, and academic achievement levels of students in introductory college microbiology

    Science.gov (United States)

    Poole, Barbara Ann Matherly

    1997-11-01

    This study explored the relationship between the grades students earned in introductory college microbiology and American College Testing scores, sex, race, age, GED or high school diploma, full-time or part-time student status, developmental reasoning levels, memory tactics, and expected achievement. The study also explored student perceptions at the beginning and the end of the microbiology courses for science preparation, expected achievement, relevancy of microbiology, and expectations for the course. Archival records for 121 freshman level and 119 sophomore level microbiology students were accessed to obtain final grades, ACT scores, sex, race, age, GED or high school diploma and full-time or part-time status. The same information was obtained for the 113 freshman level and the 85 sophomore level students who participated in the study. The study groups were given the Group Assessment of Logical Thinking to assess their level of formal reasoning ability, the Inventory of Learning Processes-Revised to assess three memory techniques, an initial perception survey, and an exit perception survey. Academic achievement in microbiology could not be predicted using composites of the predictor variables. There were significant relationships between the GALT scores and the predicted grades with both the freshman and the sophomore final grades. The Self-Efficacy Fact Retention scores and the Literal Memorization scores had significant relationships to the final grades of the freshmen but not the sophomores. There was not a significant relationship between the Deep Semantic scores and the final grades in either group. Students indicated that high school science had given them only a medium to low level of preparation for college microbiology. The sophomores felt that previous college science classes had given them a much better preparation for microbiology than did the freshmen students. Both groups expressed the importance of the laboratory experience to the understanding

  7. Associations between University Students' Reported Reasons for Abstinence from Illicit Substances and Type of Drug

    Science.gov (United States)

    Rosenberg, Harold; Bonar, Erin E.; Pavlick, Michelle; Jones, Lance D.; Hoffmann, Erica; Murray, Shanna; Faigin, Carol Ann; Cabral, Kyle; Baylen, Chelsea

    2012-01-01

    We recruited 211 undergraduates to rate the degree to which each of 34 listed reasons for not taking drugs had influenced their abstinence from MDMA/ecstasy, cocaine, marijuana, and hallucinogens. Participants rated reasons such as personal and family medical histories, religion, and physiological consequences of drug use as having little or no…

  8. Using targeted active-learning exercises and diagnostic question clusters to improve students' understanding of carbon cycling in ecosystems.

    Science.gov (United States)

    Maskiewicz, April Cordero; Griscom, Heather Peckham; Welch, Nicole Turrill

    2012-01-01

    In this study, we used targeted active-learning activities to help students improve their ways of reasoning about carbon flow in ecosystems. The results of a validated ecology conceptual inventory (diagnostic question clusters [DQCs]) provided us with information about students' understanding of and reasoning about transformation of inorganic and organic carbon-containing compounds in biological systems. These results helped us identify specific active-learning exercises that would be responsive to students' existing knowledge. The effects of the active-learning interventions were then examined through analysis of students' pre- and postinstruction responses on the DQCs. The biology and non-biology majors participating in this study attended a range of institutions and the instructors varied in their use of active learning; one lecture-only comparison class was included. Changes in pre- to postinstruction scores on the DQCs showed that an instructor's teaching method had a highly significant effect on student reasoning following course instruction, especially for questions pertaining to cellular-level, carbon-transforming processes. We conclude that using targeted in-class activities had a beneficial effect on student learning regardless of major or class size, and argue that using diagnostic questions to identify effective learning activities is a valuable strategy for promoting learning, as gains from lecture-only classes were minimal.

  9. Reasons for continuing use of Complementary and Alternative Medicine (CAM) in students: a consumer commitment model.

    Science.gov (United States)

    Sirois, Fuschia M; Salamonsen, Anita; Kristoffersen, Agnete E

    2016-02-24

    Research on continued CAM use has been largely atheoretical and has not considered the broader range of psychological and behavioral factors that may be involved. The purpose of this study was to test a new conceptual model of commitment to CAM use that implicates utilitarian (trust in CAM) and symbolic (perceived fit with CAM) in psychological and behavioral dimensions of CAM commitment. A student sample of CAM consumers, (N = 159) completed a survey about their CAM use, CAM-related values, intentions for future CAM use, CAM word-of-mouth behavior, and perceptions of being an ongoing CAM consumer. Analysis revealed that the utilitarian, symbolic, and CAM commitment variables were significantly related, with r's ranging from .54 to .73. A series hierarchical regression analyses controlling for relevant demographic variables found that the utilitarian and symbolic values uniquely accounted for significant and substantial proportion of the variance in each of the three CAM commitment indicators (R(2) from .37 to .57). The findings provide preliminary support for the new model that posits that CAM commitment is a multi-dimensional psychological state with behavioral indicators. Further research with large-scale samples and longitudinal designs is warranted to understand the potential value of the new model.

  10. Generational differences in American students' reasons for going to college, 1971-2014: The rise of extrinsic motives.

    Science.gov (United States)

    Twenge, Jean M; Donnelly, Kristin

    2016-01-01

    We examined generational differences in reasons for attending college among a nationally representative sample of college students (N = 8 million) entering college between 1971-2014. We validated the items on reasons for attending college against an established measure of extrinsic and intrinsic values among college students in 2014 (n = 189). Millennials (in college 2000s-2010s) and Generation X (1980s-1990s) valued extrinsic reasons for going to college ("to make more money") more, and anti-extrinsic reasons ("to gain a general education and appreciation of ideas") less than Boomers when they were the same age in the 1960s-1970s. Extrinsic reasons for going to college were higher in years with more income inequality, college enrollment, and extrinsic values. These results mirror previous research finding generational increases in extrinsic values begun by GenX and continued by Millennials, suggesting that more recent generations are more likely to favor extrinsic values in their decision-making.

  11. Middle School Mathematics Teachers' Knowledge of Students' Understanding of Core Algebraic Concepts: Equal Sign and Variable

    Science.gov (United States)

    Asquith, Pamela; Stephens, Ana C.; Knuth, Eric J.; Alibali, Martha W.

    2007-01-01

    This article reports results from a study focused on teachers' knowledge of students' understanding of core algebraic concepts. In particular, the study examined middle school mathematics teachers' knowledge of students' understanding of the equal sign and variable, and students' success applying their understanding of these concepts. Interview…

  12. Probing Student Understanding of Scientific Thinking in the Context of Introductory Astrophysics

    Science.gov (United States)

    Steinberg, Richard N.; Cormier, Sebastien; Fernandez, Adiel

    2009-01-01

    Common forms of testing of student understanding of science content can be misleading about their understanding of the nature of scientific thinking. Observational astronomy integrated with related ideas of force and motion is a rich context to explore the correlation between student content knowledge and student understanding of the scientific…

  13. EFFECTIVENESS OF PROBLEM BASED LEARNING AS A STRATEGY TO FOSTER PROBLEM SOLVING AND CRITICAL REASONING SKILLS AMONG MEDICAL STUDENTS.

    Science.gov (United States)

    Asad, Munazza; Iqbal, Khadija; Sabir, Mohammad

    2015-01-01

    Problem based learning (PBL) is an instructional approach that utilizes problems or cases as a context for students to acquire problem solving skills. It promotes communication skills, active learning, and critical thinking skills. It encourages peer teaching and active participation in a group. It was a cross-sectional study conducted at Al Nafees Medical College, Isra University, Islamabad, in one month duration. This study was conducted on 193 students of both 1st and 2nd year MBBS. Each PBL consists of three sessions, spaced by 2-3 days. In the first session students were provided a PBL case developed by both basic and clinical science faculty. In Session 2 (group discussion), they share, integrate their knowledge with the group and Wrap up (third session), was concluded at the end. A questionnaire based survey was conducted to find out overall effectiveness of PBL sessions. Teaching through PBLs greatly improved the problem solving and critical reasoning skills with 60% students of first year and 71% of 2nd year agreeing that the acquisition of knowledge and its application in solving multiple choice questions (MCQs) was greatly improved by these sessions. They observed that their self-directed learning, intrinsic motivation and skills to relate basic concepts with clinical reasoning which involves higher order thinking have greatly enhanced. Students found PBLs as an effective strategy to promote teamwork and critical thinking skills. PBL is an effective method to improve critical thinking and problem solving skills among medical students.

  14. Use of the Computer for Research on Instruction and Student Understanding in Physics.

    Science.gov (United States)

    Grayson, Diane Jeanette

    This dissertation describes an investigation of how the computer may be utilized to perform research on instruction and on student understanding in physics. The research was conducted within three content areas: kinematics, waves and dynamics. The main focus of the research on instruction was the determination of factors needed for a computer program to be instructionally effective. The emphasis in the research on student understanding was the identification of specific conceptual and reasoning difficulties students encounter with the subject matter. Most of the research was conducted using the computer -based interview, a technique developed during the early part of the work, conducted within the domain of kinematics. In a computer-based interview, a student makes a prediction about how a particular system will behave under given circumstances, observes a simulation of the event on a computer screen, and then is asked by an interviewer to explain any discrepancy between prediction and observation. In the course of the research, a model was developed for producing educational software. The model has three important components: (i) research on student difficulties in the content area to be addressed, (ii) observations of students using the computer program, and (iii) consequent program modification. This model was used to guide the development of an instructional computer program dealing with graphical representations of transverse pulses. Another facet of the research involved the design of a computer program explicitly for the purposes of research. A computer program was written that simulates a modified Atwood's machine. The program was than used in computer -based interviews and proved to be an effective means of probing student understanding of dynamics concepts. In order to ascertain whether or not the student difficulties identified were peculiar to the computer, laboratory-based interviews with real equipment were also conducted. The laboratory

  15. Understanding the Academic Struggles of Community College Student Athletes

    Science.gov (United States)

    Demas, Jason

    2017-01-01

    When students begin their education at community colleges, they may face more obstacles to obtaining their college education than students starting in four-year institutions. Research has shown the importance of academic and student services in the support of student athletes, that community college student athletes are often at academic risk, and…

  16. Why Don't Our Students Respond? Understanding Declining Participation in Survey Research among College Students

    Science.gov (United States)

    Tschepikow, William K.

    2012-01-01

    Declining response rates among college students threaten the effectiveness of survey research at institutions of higher education. The purpose of this qualitative study was to understand the conditions that promote participation in survey research among this population. The researcher identified three themes through this study. First, participants…

  17. Dreams and disappointments regarding nursing : Student nurses' reasons for attrition and retention. A qualitative study design

    NARCIS (Netherlands)

    ten Hoeve, Yvonne; Castelein, Stynke; Jansen, Gerard; Roodbol, Petrie

    Background: In the Netherlands, hundreds of students register annually for a nursing programme, but not all of these students manage to complete their training. Objective: The main aim of this study was to examine which factors affect student nurses' decision to leave or complete their programme.

  18. Reasons Why University Students Do Not Seek Counselling Services in Kenya

    Science.gov (United States)

    Kamunyu, Ruth Njeri; Ndungo, Catherine; Wango, Geoffrey

    2016-01-01

    Transition to university life can be stressful for all students. In mitigation, most universities in Kenya offer social support to students in form of counselling, financial assistance, health and academic support. Despite this it has been documented that only a minority of university students who experience psychological distress seek…

  19. Student Representation in University Decision Making: Good Reasons, a New Lens?

    Science.gov (United States)

    Luescher-Mamashela, Thierry M.

    2013-01-01

    This article outlines the main cases for and related objections against student representation in university governance found in the relevant literature, and proposes a way in which variations in student representation within institutions may be understood and justified. It contextualises the modern origins of student representation in the…

  20. Reasoning up and down a Food Chain: Using an Assessment Framework to Investigate Students' Middle Knowledge

    Science.gov (United States)

    Gotwals, Amelia Wenk; Songer, Nancy Butler

    2010-01-01

    Being able to make claims about what students know and can do in science involves gathering systematic evidence of students' knowledge and abilities. This paper describes an assessment system designed to elicit information from students at many placements along developmental trajectories and demonstrates how this system was used to gather…

  1. Longitudinal study of student conceptual understanding in electricity and magnetism

    Directory of Open Access Journals (Sweden)

    S. J. Pollock

    2009-12-01

    Full Text Available We have investigated the long-term effect of student-centered instruction at the freshman level on juniors’ performance on a conceptual survey of Electricity and Magnetism (E&M. We measured student performance on a research-based conceptual instrument—the Brief Electricity & Magnetism Assessment (BEMA–over a period of 8 semesters (2004–2007. Concurrently, we introduced the University of Washington's Tutorials in Introductory Physics as part of our standard freshman curriculum. Freshmen took the BEMA before and after this Tutorial-based introductory course, and juniors took it after completion of their traditional junior-level E&M I and E&M II courses. We find that, on average, individual BEMA scores do not change significantly after completion of the introductory course—neither from the freshman to the junior year, nor from upper-division E&M I to E&M II. However, we find that juniors who had completed a non-Tutorial freshman course scored significantly lower on the (post-upper-division BEMA than those who had completed the reformed freshman course—indicating a long-term positive impact of freshman Tutorials on conceptual understanding.

  2. Does the thought count? Gratitude understanding in elementary school students.

    Science.gov (United States)

    Poelker, Katelyn E; Kuebli, Janet E

    2014-01-01

    Gratitude, although studied throughout history by scholars from diverse backgrounds, has been largely understudied in psychology until recently. The psychological literature on gratitude is expanding, but it is still particularly limited with children. The authors compared younger (first- and second-grade students; n = 30) and older (fourth- and fifth-grade students; n = 27) children on gratitude-related ratings surrounding gift giving vignettes that included either a desirable (e.g., a birthday cupcake) or an undesirable (e.g., a melted ice cream cone) gift. Empathy was also measured. Hierarchical regressions revealed different patterns of predictors for desirable and undesirable gifts. For desirable gifts, liking significantly predicted gratitude and liking predicted effort. For undesirable gifts, older children and those who perceived the target as liking the gift more predicted higher gratitude ratings. Finally, higher gratitude rating predicted both higher ratings of giver effort (i.e., intention or how hard did the giver try to give a nice gift) and liking of the undesirable gifts. More research on children's understanding of gratitude is needed but these results suggest that school-aged children take into account givers' intentions and thoughts behind gift giving in determining feelings of gratitude. Limitations and directions for future research are also discussed.

  3. Survey of undergraduate medical students on their understanding and attitude towards the discipline of radiotherapy.

    Science.gov (United States)

    Sharma, Daya Nand; Rath, Goura Kishor; Parashar, Akhil; Singh, Prashant

    2010-01-01

    The discipline of radiotherapy (RT) in India is considered a low priority subject. Postgraduate (PG) students rarely choose RT as a career option. The possible reasons could be: 1) limited availability of PG course training centers, 2) limited job prospects, etc. We decided to conduct a survey of undergraduate (UG) medical students to find out their awareness, understanding, and attitude toward the subject of RT. A simple 12-point questionnaire was designed to assess the level of awareness, understanding, and attitude. It was handed over personally or sent by e-mail or post to UG students of various medical colleges in India. The data provided by respondents was analyzed. During the period from January to June 2008, 400 questionnaires were distributed. A total of 155 respondents sent their responses. Twenty-eight of them (18%) opined that RT is not a part of the bachelor of medicine and bachelor of surgery (MBBS) curriculum at their institute. About 84% replied that not more than 10 theory lectures/practical classes are assigned to RT during the entire UG period. About one-third of the respondents stated that there are no separate clinical postings for RT. According to 54% of the respondents, RT is still a low priority subject in the PG setting and the majority (70%) thought that inadequate exposure at the UG level and lack of awareness about the current prospects of RT are the main reasons for this. The results of our survey indicate that the RT is still a low priority subject in India, mainly due to the poor exposure to the discipline and low awareness of the subject of RT during the UG program. The Medical Council of India (MCI) needs to ensure that adequate importance is given to RT in the MBBS curriculum so as to enhance awareness regarding the subject and increase exposure to this specialty.

  4. Can lessons designed with Gestalt laws of visual perception improve students' understanding of the phases of the moon?

    Science.gov (United States)

    Wistisen, Michele

    There has been limited success teaching elementary students about the phases of the moon using diagrams, personal observations, and manipulatives. One possible reason for this is that instruction has failed to apply Gestalt principles of perceptual organization to the lesson materials. To see if fourth grade students' understanding could be improved, four lessons were designed and taught using the Gestalt laws of Figure-Ground, Symmetry, and Similarity. Students (n = 54) who were taught lessons applying the Gestalt principles scored 12% higher on an assessment than students (n = 51) who only were taught lessons using the traditional methods. Though scores showed significant improvement, it is recommended to follow the American Association for the Advancement of Science guidelines and wait until 9th grade to instruct students about the phases.

  5. Understanding Predisposition in College Choice: Toward an Integrated Model of College Choice and Theory of Reasoned Action

    Science.gov (United States)

    Pitre, Paul E.; Johnson, Todd E.; Pitre, Charisse Cowan

    2006-01-01

    This article seeks to improve traditional models of college choice that draw from recruitment and enrollment management paradigms. In adopting a consumer approach to college choice, this article seeks to build upon consumer-related research, which centers on behavior and reasoning. More specifically, this article seeks to move inquiry beyond the…

  6. Understanding Life Skills Gained from and Reasons for Youth Participation in the Tennessee 4-H Sheep Skillathon

    Science.gov (United States)

    Davis, Terra Kimes; Stripling, Christopher T.; Stephens, Carrie A.; Loveday, H. Dwight

    2016-01-01

    The high number of U.S. youth exhibiting at-risk behavior points to a lack of life skills development. We determined the effects of participating in one state's 4-H sheep skillathon on youths' life skills development and the youths' reasons for participating. The target population was 2014 Tennessee 4-H Sheep Skillathon participants (N = 153), and…

  7. Controversy in the classroom: How eighth-grade and undergraduate students reason about tradeoffs of genetically modified food

    Science.gov (United States)

    Seethaler, Sherry Lynn

    Current issues in science provide a rich context for learning because they can involve complex tradeoffs that cut across traditional disciplinary boundaries. Despite this potential benefit, and the need for citizens to make decisions about such issues, science controversy remains rare in the classroom. Consequently, there is much unknown about how students make sense of complex, multidisciplinary science. This research examined eighth-grade (n = 190) and undergraduate (n = 9) students' reasoning about tradeoffs in the genetically modified food controversy (main study). To extend the findings from the main study, undergraduate students' reasoning was followed as they learned about ten additional science controversies (extension). The studies took place in the context of curricula designed on the basis of the Scaffolded Knowledge Integration Framework, which posits a set of design principles that help students form a rich, integrated network of ideas about a topic. Two new methodologies were developed for this work. The Embedded Perspective of Science Controversy was used to study students' integration of content in their written arguments (main study) and oral and written questions (extension). The Perspective views science controversy as a set of nested levels, where tradeoffs are one of the levels, but connecting to other levels (underlying scientific details, bigger picture context, etc.) is important for the weighing of tradeoffs. A scheme based on Toulmin's (1958) work on argumentation provided a way of comparing the structure of students' arguments. As indicated by pre and post test scores, the curriculum helped both eighth-grade students (t = 11.7, p genetically modified food. In their final papers, both eighth-grade and undergraduate students presented evidence for and against their positions, in contrast with prior literature showing individuals have difficulty coming up with evidence against their positions. The students were also moving across the levels

  8. Student understanding development in chemistry concepts through constructivist-informed laboratory and science camp process in secondary school

    Science.gov (United States)

    Pathommapas, Nookorn

    2018-01-01

    Science Camp for Chemistry Concepts was the project which designed to provide local students with opportunities to apply chemistry concepts and thereby developing their 21st century skills. The three study purposes were 1) to construct and develop chemistry stations for encouraging students' understandings in chemistry concepts based on constructivist-informed laboratory, 2) to compare students' understandings in chemistry concepts before and after using chemistry learning stations, and 3) to study students' satisfactions of using their 21st century skills in science camp activities. The research samples were 67 students who attended the 1-day science camp. They were levels 10 to 11 students in SumsaoPittayakarn School, UdonThani Province, Thailand. Four constructivist-informed laboratory stations of chemistry concepts were designed for each group. Each station consisted of a chemistry scenario, a question, answers in tier 1 and supporting reasons in tier 2, and 4 sets of experimental instruments. Four to five-member subgroups of four student groups parallel participated in laboratory station for an hour in each station. Student activities in each station concluded of individual pretest, group prediction, experimental design, testing out and collection data, interpreting the results, group conclusion, and individual post-test. Data collection was done by station mentors using two-tier multiple choice questions, students' written work and interviews. Data triangulation was used for interpreting and confirming students' understandings of chemistry concepts which divided into five levels, Sound Understanding (SU), Partial Understanding (PU), Specific Misconception (SM), No Understanding (NU) and No Response (NR), before and after collaborating at each station. The study results found the following: 1) four constructivist-laboratory stations were successfully designed and used to investigate student' understandings in chemistry concepts via collaborative workshop of

  9. African American Students' Graphic Understanding of the Derivative: Critical Case Studies

    Science.gov (United States)

    Stringer, Eddy W., III.

    2011-01-01

    Data suggests that a significant loss of African American students from STEM majors occur between their freshmen and sophomore year. This attrition corresponds to the time period when students encounter the calculus sequence. For this reason, calculus persists as a serious barrier preventing African American students from entering STEM fields.…

  10. Naturalistic Model of Causal Reasoning: Developing an Experiential User Guide (EUG) to Understand Fusion Algorithms and Simulation Models

    Science.gov (United States)

    2010-09-01

    coincidence of causes and effects. This covariation contingency is discovered through statistical regularities rather than propensity or reversibility... cigarettes today and then, at a routine health screen tomorrow, you find out you have lung cancer, the delay is too short for us to ascribe your cancer...20). A fourth sample consisted of undergraduate students at Sunway College in Malaysia (N = 42). These were Chinese students and were included in

  11. Investigating the Correlation Between Pharmacy Student Performance on the Health Science Reasoning Test and a Critical Thinking Assignment.

    Science.gov (United States)

    Nornoo, Adwoa O; Jackson, Jonathan; Axtell, Samantha

    2017-03-25

    Objective. To determine whether there is a correlation between pharmacy students' scores on the Health Science Reasoning Test (HSRT) and their grade on a package insert assignment designed to assess critical thinking. Methods. The HSRT was administered to first-year pharmacy students during a critical-thinking course in the spring semester. In the same semester, a required package insert assignment was completed in a pharmacokinetics course. To determine whether there was a relationship between HSRT scores and grades on the assignment, a Spearman's rho correlation test was performed. Results. A very weak but significant positive correlation was found between students' grades on the assignment and their overall HSRT score (r=0.19, p thinking skills in pharmacy students.

  12. Using a Concept Inventory to Assess the Reasoning Component of Citizen-Level Science Literacy: Results from a 17,000-Student Study

    Directory of Open Access Journals (Sweden)

    Edward B. Nuhfer

    2015-12-01

    Full Text Available After articulating 12 concepts for the reasoning component of citizen-level science literacy and restating these as assessable student learning outcomes (SLOs, we developed a valid and reliable assessment instrument for addressing the outcomes with a brief 25-item science literacy concept inventory (SLCI. In this paper, we report the results that we obtained from assessing the citizen-level science literacy of 17,382 undergraduate students, 149 graduate students, and 181 professors. We address only findings at or above the 99.9% confidence level. We found that general education (GE science courses do not significantly advance understanding of science as a way of knowing. However, the understanding of science’s way of knowing does increase through academic ranks, indicating that the extended overall academic experience better accounts for increasing such thinking capacity than do science courses alone. Higher mean institutional SLCI scores correlate closely with increased institutional selectivity, as measured by the institutions’ higher mean SAT and ACT scores. Socioeconomic factors of a first-generation student, b English as a native language, and c interest in commitment to a science major are unequally distributed across ethnic groups. These factors proved powerful in accounting for the variations in SLCI scores across ethnicities and genders.

  13. Using a Concept Inventory to Assess the Reasoning Component of Citizen-Level Science Literacy: Results from a 17,000-Student Study†

    Science.gov (United States)

    Nuhfer, Edward B.; Cogan, Christopher B.; Kloock, Carl; Wood, Gregory G.; Goodman, Anya; Delgado, Natalie Zayas; Wheeler, Christopher W.

    2016-01-01

    After articulating 12 concepts for the reasoning component of citizen-level science literacy and restating these as assessable student learning outcomes (SLOs), we developed a valid and reliable assessment instrument for addressing the outcomes with a brief 25-item science literacy concept inventory (SLCI). In this paper, we report the results that we obtained from assessing the citizen-level science literacy of 17,382 undergraduate students, 149 graduate students, and 181 professors. We address only findings at or above the 99.9% confidence level. We found that general education (GE) science courses do not significantly advance understanding of science as a way of knowing. However, the understanding of science’s way of knowing does increase through academic ranks, indicating that the extended overall academic experience better accounts for increasing such thinking capacity than do science courses alone. Higher mean institutional SLCI scores correlate closely with increased institutional selectivity, as measured by the institutions’ higher mean SAT and ACT scores. Socioeconomic factors of a) first-generation student, b) English as a native language, and c) interest in commitment to a science major are unequally distributed across ethnic groups. These factors proved powerful in accounting for the variations in SLCI scores across ethnicities and genders. PMID:27047612

  14. Using a Concept Inventory to Assess the Reasoning Component of Citizen-Level Science Literacy: Results from a 17,000-Student Study.

    Science.gov (United States)

    Nuhfer, Edward B; Cogan, Christopher B; Kloock, Carl; Wood, Gregory G; Goodman, Anya; Delgado, Natalie Zayas; Wheeler, Christopher W

    2016-03-01

    After articulating 12 concepts for the reasoning component of citizen-level science literacy and restating these as assessable student learning outcomes (SLOs), we developed a valid and reliable assessment instrument for addressing the outcomes with a brief 25-item science literacy concept inventory (SLCI). In this paper, we report the results that we obtained from assessing the citizen-level science literacy of 17,382 undergraduate students, 149 graduate students, and 181 professors. We address only findings at or above the 99.9% confidence level. We found that general education (GE) science courses do not significantly advance understanding of science as a way of knowing. However, the understanding of science's way of knowing does increase through academic ranks, indicating that the extended overall academic experience better accounts for increasing such thinking capacity than do science courses alone. Higher mean institutional SLCI scores correlate closely with increased institutional selectivity, as measured by the institutions' higher mean SAT and ACT scores. Socioeconomic factors of a) first-generation student, b) English as a native language, and c) interest in commitment to a science major are unequally distributed across ethnic groups. These factors proved powerful in accounting for the variations in SLCI scores across ethnicities and genders.

  15. A survey of the effective factors in students' adherence to university dress code policy, using the theory of reasoned action.

    Science.gov (United States)

    Kaveh, Mohammad Hossein; Moradi, Leila; Hesampour, Maryam; Hasan Zadeh, Jafar

    2015-07-01

    Recognizing the determinants of behavior plays a major role in identification and application of effective strategies for encouraging individuals to follow the intended pattern of behavior. The present study aimed to analyze the university students' behaviors regarding the amenability to dress code, using the theory of reasoned action (TRA). In this cross sectional study, 472 students were selected through multi-stage random sampling. The data were collected using a researcher-made questionnaire whose validity was confirmed by specialists. Besides, its reliability was confirmed by conducting a pilot study revealing Cronbach's alpha coefficients of 0.93 for attitude, 0.83 for subjective norms, 0.94 for behavioral intention and 0.77 for behavior. The data were entered into the SPSS statistical software and analyzed using descriptive and inferential statistics (Mann-Whitney, correlation and regression analysis). Based on the students' self-reports, conformity of clothes to the university's dress code was below the expected level in 28.87% of the female students and 28.55% of the male ones. The mean scores of attitude, subjective norms, and behavioral intention to comply with dress code policy were 28.78±10.08, 28.51±8.25 and 11.12±3.84, respectively. The students of different colleges were different from each other concerning TRA constructs. Yet, subjective norms played a more critical role in explaining the variance of dress code behavior among the students. Theory of reasoned action explained the students' dress code behaviors relatively well. The study results suggest paying attention to appropriate approaches in educational, cultural activities, including promotion of student-teacher communication.

  16. Predicting Student Success in a Major's Introductory Biology Course via Logistic Regression Analysis of Scientific Reasoning Ability and Mathematics Scores

    Science.gov (United States)

    Thompson, E. David; Bowling, Bethany V.; Markle, Ross E.

    2018-02-01

    Studies over the last 30 years have considered various factors related to student success in introductory biology courses. While much of the available literature suggests that the best predictors of success in a college course are prior college grade point average (GPA) and class attendance, faculty often require a valuable predictor of success in those courses wherein the majority of students are in the first semester and have no previous record of college GPA or attendance. In this study, we evaluated the efficacy of the ACT Mathematics subject exam and Lawson's Classroom Test of Scientific Reasoning in predicting success in a major's introductory biology course. A logistic regression was utilized to determine the effectiveness of a combination of scientific reasoning (SR) scores and ACT math (ACT-M) scores to predict student success. In summary, we found that the model—with both SR and ACT-M as significant predictors—could be an effective predictor of student success and thus could potentially be useful in practical decision making for the course, such as directing students to support services at an early point in the semester.

  17. Reasons for Students\\' Absenteeism in Classroom: viewpoints of dental students and faculty members of Yazd School of Medicine

    Directory of Open Access Journals (Sweden)

    S Yasayi

    2016-03-01

    Conclusion: According to the findings of this study, it can be concluded that the presence or absence of students in the classroom, were influenced by factors related to both teachers and students groups. Student interests to the subject, teaching methods and the use of new and creative techniques, teacher characters and behavior and the time of the classes determined the rate of attendance and continued presence of students.

  18. Comparing Greek-Affiliated Students and Student Athletes: An Examination of the Behavior-Intention Link, Reasons for Drinking, and Alcohol-Related Consequences

    Science.gov (United States)

    Huchting, Karie K.; Lac, Andrew; Hummer, Justin F.; LaBrie, Joseph W.

    2011-01-01

    While affiliation with Greek fraternities/sororities and intercollegiate athletic teams is associated with heavier drinking (Meilman et al., 1999), few studies have compared reasons for drinking among these groups. A sample of 1,541 students, identifying as either Greeks or athletes, completed an online survey. Athletes were significantly higher…

  19. A Survey of a Study on the Reasons Responsible for Student Dropout from the Bachelor of Science Programme at Indira Gandhi National Open University

    Science.gov (United States)

    Fozdar, Bharat Inder; Kumar, Lalita S.; Kannan, S.

    2006-01-01

    This paper presents a report on students who decided to drop out of the BSc program offered by Indira Gandhi National Open University (IGNOU). This study was designed to determine the reasons leading to students' decisions to withdraw from the program. Identified and reported in this study are nine major reasons leading to drop out. Results of…

  20. Ferris Wheels and Filling Bottles: A Case of a Student's Transfer of Covariational Reasoning across Tasks with Different Backgrounds and Features

    Science.gov (United States)

    Johnson, Heather Lynn; McClintock, Evan; Hornbein, Peter

    2017-01-01

    Using an actor-oriented perspective on transfer, we report a case of a student's transfer of covariational reasoning across tasks involving different backgrounds and features. In this study, we investigated the research question: How might a student's covariational reasoning on Ferris wheel tasks, involving attributes of distance, width, and…

  1. Science Teachers' Analogical Reasoning

    Science.gov (United States)

    Mozzer, Nilmara Braga; Justi, Rosária

    2013-08-01

    Analogies can play a relevant role in students' learning. However, for the effective use of analogies, teachers should not only have a well-prepared repertoire of validated analogies, which could serve as bridges between the students' prior knowledge and the scientific knowledge they desire them to understand, but also know how to introduce analogies in their lessons. Both aspects have been discussed in the literature in the last few decades. However, almost nothing is known about how teachers draw their own analogies for instructional purposes or, in other words, about how they reason analogically when planning and conducting teaching. This is the focus of this paper. Six secondary teachers were individually interviewed; the aim was to characterize how they perform each of the analogical reasoning subprocesses, as well as to identify their views on analogies and their use in science teaching. The results were analyzed by considering elements of both theories about analogical reasoning: the structural mapping proposed by Gentner and the analogical mechanism described by Vosniadou. A comprehensive discussion of our results makes it evident that teachers' content knowledge on scientific topics and on analogies as well as their pedagogical content knowledge on the use of analogies influence all their analogical reasoning subprocesses. Our results also point to the need for improving teachers' knowledge about analogies and their ability to perform analogical reasoning.

  2. Body Modifications in College Students: Considering Gender, Self-Esteem, Body Appreciation, and Reasons for Tattoos

    Science.gov (United States)

    Hill, Brittany M.; Ogletree, S. M.; McCrary, K. M.

    2016-01-01

    Body modifications are becoming mainstream as more individuals are becoming tattooed. Using a convenience sample of college students, participants with and without tattoos were compared on measures of body appreciation, self-esteem, and need for uniqueness. Among these central Texas students 44% had at least one tattoo. Women, compared to men,…

  3. Applications of Out-of-Domain Knowledge in Students' Reasoning about Computer Program State

    Science.gov (United States)

    Lewis, Colleen Marie

    2012-01-01

    To meet a growing demand and a projected deficit in the supply of computer professionals (NCWIT, 2009), it is of vital importance to expand students' access to computer science. However, many researchers in the computer science education community unproductively assume that some students lack an innate ability for computer science and…

  4. Students' Reasoning about One-Object Stochastic Phenomena in an ICT-Environment

    Science.gov (United States)

    Iversen, Kjaerand; Nilsson, Per

    2007-01-01

    This paper focuses on the different ways in which students in lower secondary school (14-16 year olds) experience compound random events, presented to them in the form of combined junctions. A carefully designed ICT environment was developed enabling the students to interact with different representations of such structures. Data for the analysis…

  5. Reasons for Discontinuing Study: The Case of Mature Age Female Students with Children.

    Science.gov (United States)

    Scott, Catherine; And Others

    1996-01-01

    A study of 118 adult women students, with children, in 3 Australian universities found 3 major factors in withdrawal: socioeconomic class (lack of family support for mother's study, lack of money, domestic responsibilities, lack of needed skills); nontraditional major (economics, business, law); and age (younger students because of family or…

  6. Teacher Immediacy and Decreased Student Quantitative Reasoning Anxiety: The Mediating Effect of Perception

    Science.gov (United States)

    Kelly, Stephanie; Rice, Christopher; Wyatt, Bryce; Ducking, Johnny; Denton, Zachary

    2015-01-01

    There is global concern regarding the increased prevalence of math anxiety among college students, which is credited for a decrease in analytical degree completion rates and lower self-confidence among students in their ability to complete analytical tasks in the real world. The present study identified that, as expected, displays of instructional…

  7. Collaborating To Enhance Student Reasoning: Frances' Account of Her Reflections While Teaching Chemical Equilibrium.

    Science.gov (United States)

    Thomas, Gregory P.; McRobbie, Campbell J.

    2002-01-01

    Reports on a teacher's changing perceptions during a collaborative, two-year interpretive research project involving two researchers, herself, and her students. Uses the collaborative approach between teacher and researchers to promote students' theory-evidence coordination and use of word explanations with an emphasis on developing and critiquing…

  8. Integrating Quantitative Thinking into an Introductory Biology Course Improves Students' Mathematical Reasoning in Biological Contexts

    Science.gov (United States)

    Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

    2014-01-01

    Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students' apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course…

  9. Instructional Reasoning about Interpretations of Student Thinking That Supports Responsive Teaching in Secondary Mathematics

    Science.gov (United States)

    Dyer, Elizabeth B.; Sherin, Miriam Gamoran

    2016-01-01

    Basing instruction on the substance of student thinking, or responsive teaching, is a critical strategy for supporting student learning. Previous research has documented responsive teaching by identifying observable teaching practices in a broad range of disciplines and classrooms. However, this research has not provided access to the teacher…

  10. A Globalization Simulation to Teach Corporate Social Responsibility: Design Features and Analysis of Student Reasoning

    Science.gov (United States)

    Bos, Nathan D.; Shami, N. Sadat; Naab, Sara

    2006-01-01

    There is an increasing need for business students to be taught the ability to think through ethical dilemmas faced by corporations conducting business on a global scale. This article describes a multiplayer online simulation game, ISLAND TELECOM, that exposes students to ethical dilemmas in international business. Through role playing and…

  11. The Risk of a Halo Bias as a Reason to Keep Students Anonymous during Grading

    Science.gov (United States)

    Malouff, John M.; Emmerton, Ashley J.; Schutte, Nicola S.

    2013-01-01

    Experts have advocated anonymous grading as a means of eliminating actual or perceived evaluator bias in subjective student assessment. The utility of anonymity in assessment rests on whether information derived from student identity can unduly influence evaluation. The halo effect provides a conceptual background for why a bias might occur. In…

  12. Supporting Students to Reason about the Relative Size of Proper and Improper Fractions

    Science.gov (United States)

    Cortina, Jose Luis; Visnovska, Jana

    2015-01-01

    Fractions are a well-researched area; yet, student learning of fractions remains problematic. We outline a novel path to initial fraction learning and document its promise. Building on Freudenthal's analysis of the fraction concept, we regard "comparing," rather than "fracturing," as the primary activity from which students are…

  13. Evaluating role of interactive visualization tool in improving students' conceptual understanding of chemical equilibrium

    Science.gov (United States)

    Sampath Kumar, Bharath

    The purpose of this study is to examine the role of partnering visualization tool such as simulation towards development of student's concrete conceptual understanding of chemical equilibrium. Students find chemistry concepts abstract, especially at the microscopic level. Chemical equilibrium is one such topic. While research studies have explored effectiveness of low tech instructional strategies such as analogies, jigsaw, cooperative learning, and using modeling blocks, fewer studies have explored the use of visualization tool such as simulations in the context of dynamic chemical equilibrium. Research studies have identified key reasons behind misconceptions such as lack of systematic understanding of foundational chemistry concepts, failure to recognize the system is dynamic, solving numerical problems on chemical equilibrium in an algorithmic fashion, erroneous application Le Chatelier's principle (LCP) etc. Kress et al. (2001) suggested that external representation in the form of visualization is more than a tool for learning, because it enables learners to make meanings or express their ideas which cannot be readily done so through a verbal representation alone. Mixed method study design was used towards data collection. The qualitative portion of the study is aimed towards understanding the change in student's mental model before and after the intervention. A quantitative instrument was developed based on common areas of misconceptions identified by research studies. A pilot study was conducted prior to the actual study to obtain feedback from students on the quantitative instrument and the simulation. Participants for the pilot study were sampled from a single general chemistry class. Following the pilot study, the research study was conducted with a total of 27 students (N=15 in experimental group and N=12 in control group). Prior to participating in the study, students have completed their midterm test on the topic of chemical equilibrium. Qualitative

  14. Freshman College Students' Reasons for Enrolling in and Anticipated Benefits from a Basic College Physical Education Activity Course.

    Science.gov (United States)

    Lackman, Jeremy; Smith, Matthew Lee; McNeill, Elisa Beth

    2015-01-01

    Given the rise in US obesity rates in adulthood, efforts are needed to assess physical activity engagement during the college years as a strategy to promote a lifetime of being physically active. This study identifies the reasons incoming college freshman enrolled in basic physical education activity courses (BPEAC) and the perceived benefits they anticipated receiving as a result of course participation. Data collected from 302 college freshmen in September 2013 were analyzed. A paper-based questionnaire was administered to 78% of BPEAC sections offered at a large Southeastern University. Frequencies were presented for all participants, which were then compared by sex and course type. Kappa statistics were calculated to examine the concordance between participants' reasons for enrolling in the course and the benefits they anticipated from course enrollment. Diverse physical, mental, social, and academic reasons for enrolling in BPEAC were reported by study participants. Varied anticipated benefits from course participation were reported as well. Reported enrollment reasons and anticipated benefits differed by sex and course type. High concordance between matched enrollment reasons and anticipated benefits was observed. Implications highlight the need for universities to provide quality BPEAC, promote high-quality instruction, and offer a wide variety of physical education courses to meet the diverse needs of students.

  15. May student examiners be reasonable substitute examiners for faculty in an undergraduate OSCE on medical emergencies?

    Science.gov (United States)

    Iblher, Peter; Zupanic, Michaela; Karsten, Jan; Brauer, Kirk

    2015-04-01

    To compare the effect of student examiners (SE) to that of faculty examiners (FE) on examinee performance in an OSCE as well as on post-assessment evaluation in the area of emergency medicine management. An OSCE test-format (seven stations: Advanced Cardiac Life Support (ACLS), Basic Life Support (BLS), Trauma-Management (TM), Pediatric-Emergencies (PE), Acute-Coronary-Syndrome (ACS), Airway-Management (AM), and Obstetrical-Emergencies (OE)) was administered to 207 medical students in their third year of training after they had received didactics in emergency medicine management. Participants were randomly assigned to one of the two simultaneously run tracks: either with SE (n = 110) or with FE (n = 98). Students were asked to rate each OSCE station and to provide their overall OSCE perception by means of a standardized questionnaire. The independent samples t-test was used and effect sizes were calculated (Cohens d). Students achieved significantly higher scores for the OSCE stations "TM", "AM", and "OE" as well as "overall OSCE score" in the SE track, whereas the station score for "PE" was significantly higher for students in the FE track. Mostly small effect sizes were reported. In the post-assessment evaluation portion of the study, students gave significant higher ratings for the ACS station and "overall OSCE evaluation" in the FE track; also with small effect sizes. It seems quite admissible and justified to encourage medical students to officiate as examiners in undergraduate emergency medicine OSCE formative testing, but not necessarily in summative assessment evaluations.

  16. Reasonable Adjustments in Learning Programs: Teaching Length, Mass and Capacity to Students with Intellectual Disability

    Science.gov (United States)

    Du Plessis, Jelene; Ewing, Bronwyn

    2017-01-01

    Developed in concert with twelve special schools (Prep to Year 12) in Queensland, this paper regarding reasonable adjustments that promote quality differentiated teaching practice in special education math classrooms represents the knowledge and expertise of fifty teachers in special education. Survey responses and empirical evidence suggest that…

  17. Playing Games in Logic and Reasoning in Liberal Arts Mathematics and Getting Students' Work Published

    Science.gov (United States)

    Garrison, Laura A.

    2005-01-01

    This paper describes two classroom activities and a project that supplement a Liberal Arts Mathematics course's coverage of logic and reasoning. The first classroom activity introduces the writing of inductive and deductive arguments, and the second activity involves analyzing a guest speaker's arguments. The project consists of using logic and…

  18. A Tri-Part Model for Genetics Literacy: Exploring Undergraduate Student Reasoning about Authentic Genetics Dilemmas

    Science.gov (United States)

    Shea, Nicole A.; Duncan, Ravit Golan; Stephenson, Celeste

    2015-01-01

    Genetics literacy is becoming increasingly important as advancements in our application of genetic technologies such as stem cell research, cloning, and genetic screening become more prevalent. Very few studies examine how genetics literacy is applied when reasoning about authentic genetic dilemmas. However, there is evidence that situational…

  19. Variations in students' perceived reasons for, sources of, and forms of in-school discrimination: A latent class analysis.

    Science.gov (United States)

    Byrd, Christy M; Carter Andrews, Dorinda J

    2016-08-01

    Although there exists a healthy body of literature related to discrimination in schools, this research has primarily focused on racial or ethnic discrimination as perceived and experienced by students of color. Few studies examine students' perceptions of discrimination from a variety of sources, such as adults and peers, their descriptions of the discrimination, or the frequency of discrimination in the learning environment. Middle and high school students in a Midwestern school district (N=1468) completed surveys identifying whether they experienced discrimination from seven sources (e.g., peers, teachers, administrators), for seven reasons (e.g., gender, race/ethnicity, religion), and in eight forms (e.g., punished more frequently, called names, excluded from social groups). The sample was 52% White, 15% Black/African American, 14% Multiracial, and 17% Other. Latent class analysis was used to cluster individuals based on reported sources of, reasons for, and forms of discrimination. Four clusters were found, and ANOVAs were used to test for differences between clusters on perceptions of school climate, relationships with teachers, perceptions that the school was a "good school," and engagement. The Low Discrimination cluster experienced the best outcomes, whereas an intersectional cluster experienced the most discrimination and the worst outcomes. The results confirm existing research on the negative effects of discrimination. Additionally, the paper adds to the literature by highlighting the importance of an intersectional approach to examining students' perceptions of in-school discrimination. Copyright © 2016 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  20. "Who will take the blame?": understanding the reasons why Romanian mothers decline HPV vaccination for their daughters.

    Science.gov (United States)

    Craciun, Catrinel; Baban, Adriana

    2012-11-06

    Because Romania has the highest incidence of cervical cancer in Europe, in 2008 a HPV vaccination campaign was introduced targeting 10-11 year old girls. However, only 2.5% of the eligible girls were given parental for vaccination. Campaign failure makes it important to look for possible reasons and investigate mothers' attitudes and perceptions of the HPV vaccine. Three focus groups and 11 interviews were conducted with mothers from urban areas. Data were transcribed verbatim and analysed with thematic analysis. Results show as main reasons for not vaccinating their daughters perceiving the vaccine as risky, the belief that the vaccine represents an experiment that uses their daughters as guinea pigs, the belief that the vaccine embodies a conspiracy theory that aims to reduce the world's population and general mistrust in the ineffective health system. Mothers stated they would need clear, factual information about the HPV vaccine and its link to cervical cancer in order to motivate them to accept it for their daughters. The study offers insight into the beliefs and attitudes towards the vaccine and provides ideas for structuring future health communication campaigns regarding the HPV vaccine. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Understanding African American women's decisions to buy and eat dark green leafy vegetables: an application of the reasoned action approach.

    Science.gov (United States)

    Sheats, Jylana L; Middlestadt, Susan E; Ona, Fernando F; Juarez, Paul D; Kolbe, Lloyd J

    2013-01-01

    Examine intentions to buy and eat dark green leafy vegetables (DGLV). Cross-sectional survey assessing demographics, behavior, intention, and Reasoned Action Approach constructs (attitude, perceived norm, self-efficacy). Marion County, Indiana. African American women responsible for buying and preparing household food. Reasoned Action Approach constructs explaining intentions to buy and eat DGLV. Summary statistics, Pearson correlations, and multiple regression analyses. Among participants (n = 410, mean age = 43 y), 76% and 80%, respectively, reported buying and eating DGLV in the past week. Mean consumption was 1.5 cups in the past 3 days. Intentions to buy (r = 0.20, P eat (r = 0.23, P eat DGLV. Attitude (β = .63) and self-efficacy (β = .24) related to buying and attitude (β = .60) and self-efficacy (β = .23) related to eating DGLV explained significant amounts of variance in intentions to buy and eat more DGLV. Perceived norm was unrelated to either intention to buy or eat DGLV. Interventions designed for this population of women should aim to improve DGLV-related attitudes and self-efficacy. Copyright © 2013 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  2. Examing nursing students' understanding of the cardiovascular system in a BSN program

    Science.gov (United States)

    Stuart, Parker Emerson

    This study investigated the alignment of important cardiovascular system (CVS) concepts identified by expert nurses with nursing student's knowledge. Specifically, it focused on the prevalence of nursing students' alternative conceptions for these important concepts as a potential reason for a theory-practice gap in nursing (Corlett, 2000; Jordan, 1994). This is the first study to target nursing student alternative conceptions exclusively whereas other studies focused on diverse groups of undergraduates' CVS knowledge (Michael et al., 2002). The study was divided into two phases and used a case study approach with each phase of the study representing a single case. The first phase of the study sought to understand what CVS concepts expert nurses deemed relevant to their daily practice and how these experts used these concepts. The second phase identified nursing student alternative conceptions through the use of open-ended scenarios based on the results of phase I. For the first phase of the study involved four CVS expert nurses practicing in emergency rooms and cardiac intensive care units at two local hospitals. Interviews were used to elicit important CVS concepts. The expert nurses identified five broad concepts as important to their practice. These concepts were a) cardiovascular anatomical concepts; b) cardiovascular physiological concepts; c) homeostasis and diseases of the CVS; d) the interdependence and interaction of the CVS with other organ systems and e) the intersection of the CVS and technology in patient diagnosis and treatment. These finding reinforce concepts already being taught to nursing students but also suggest that instruction should focus more on how the CVS interacts with other organ systems and how technology and the CVS interact. The presence of alternative conceptions in the nursing students was examined through the use of open-ended questions. A total of 17 students fully completed the scenario questions. Results indicate that this

  3. Teacher's Understanding, Perceptions, and Experiences of Students in Foster Care: A Forgotten Population

    Science.gov (United States)

    Watson-Davis, Darneika

    2010-01-01

    The purpose of this study is to examine elementary teacher's understanding, perceptions, and experiences of working with students in foster care. The researcher examined whether teachers are informed about students in foster care, determined teacher's understanding of the foster care system, and how their students are affected. The results…

  4. Developing Critical Understanding in HRM Students: Using Innovative Teaching Methods to Encourage Deep Approaches to Study

    Science.gov (United States)

    Butler, Michael J. R.; Reddy, Peter

    2010-01-01

    Purpose: This paper aims to focus on developing critical understanding in human resource management (HRM) students in Aston Business School, UK. The paper reveals that innovative teaching methods encourage deep approaches to study, an indicator of students reaching their own understanding of material and ideas. This improves student employability…

  5. Developing Intercultural Understanding for Study Abroad: Students' and Teachers' Perspectives on Pre-Departure Intercultural Learning

    Science.gov (United States)

    Holmes, P.; Bavieri, L.; Ganassin, S.

    2015-01-01

    This study reports on students' and teachers' perspectives on a programme designed to develop Erasmus students' intercultural understanding prior to going abroad. We aimed to understand how students and their teachers perceived pre-departure materials in promoting their awareness of key concepts related to interculturality (e.g., essentialism,…

  6. Examining Students' Mathematical Understanding of Geometric Transformations Using the Pirie-Kieren Model

    Science.gov (United States)

    Gülkilika, Hilal; Ugurlu, Hasan Hüseyin; Yürük, Nejla

    2015-01-01

    Students should learn mathematics with understanding. This is one of the ideas in the literature on mathematics education that everyone supports, from educational politicians to curriculum developers, from researchers to teachers, and from parents to students. In order to decide whether or not students understand mathematics we should first…

  7. First-Year University Science and Engineering Students' Understanding of Plagiarism

    Science.gov (United States)

    Yeo, Shelley

    2007-01-01

    This paper is a case study of first-year science and engineering students' understandings of plagiarism. Students were surveyed for their views on scenarios illustrating instances of plagiarism in the context of the academic work and assessment of science and engineering students. The aim was to explore their understandings of plagiarism and their…

  8. Deepening Students' Understanding of Multiplication and Division by Exploring Divisibility by Nine

    Science.gov (United States)

    Young-Loveridge, Jenny; Mills, Judith

    2012-01-01

    This article explores how a focus on understanding divisibility rules can be used to help deepen students' understanding of multiplication and division with whole numbers. It is based on research with seven Year 7-8 teachers who were observed teaching a group of students a rule for divisibility by nine. As part of the lesson, students were shown a…

  9. University students' understanding of social anxiety disorder.

    OpenAIRE

    Miyake, Yoshie; Okamoto, Yuri; Jinnin, Ran; Yashiki, Hisako; Uchino, Teiji; Isobe, Noriko; Takata, Jun; Kojima, Nanae; Nihonmatsu, Misato; Yokosaki, Yasuyuki; Hiyama, Toru; Yoshihara, Masaharu

    2014-01-01

    Social anxiety disorder is an important cause of psychosocial morbidity in adolescents and young adults. Problems in adolescents and young adults with social anxiety disorder would be a topic in recent years in campus mental health. We examined the opinion of social anxiety disorder on university students. We found that many students felt anxiety in various social scenes, and some students were worried about their anxiety. Most of the students understood the importance of mental treatment for...

  10. Professional Perceptions and Reasons for Access to Journalism Studies. The Case of Journalism Students at Complutense University of Madrid

    Directory of Open Access Journals (Sweden)

    Miriam RODRÍGUEZ PALLARES

    2015-12-01

    Full Text Available In the academic year 2013-2014, the MediaCom UCM research group conducted a study among students in the first and fourth year of the Degree in Journalism at UCM with the pretention to know the reasons that they decided to pursue these studies, their perceptions of journalism and media influence. From a quantitative analysis model relatively vocational criteria among students are perceived; generally they believe that journalists are not very independent and that political and economic factors influence in the activity of the media sector, whose influence on policy choices and consumption is subject to debate. This article is part of an academic project, whose results are intended to work with universities to improve their teaching and training model of students according to their perception of journalism as a profession.

  11. College Students' Technology Arc: A Model for Understanding Progress

    Science.gov (United States)

    Langer, Arthur; Knefelkamp, L. Lee

    2008-01-01

    This article introduces the Student Technology Arc, a model that evaluates college students 'technology literacy, or how they operate within an education system influenced by new technologies. Student progress is monitored through the Arc's 5 interdependent stages, which reflect growing technological maturity through levels of increasing cognitive…

  12. The van Hiele levels of understanding of students entering senior ...

    African Journals Online (AJOL)

    This study was an attempt to measure the Van Hiele levels of geometric thought attained by SHS 1 students on entering Senior High School in Ghana. In all, 188 SHS Form 1 students from two schools were involved in this study. These students were given the Van Hiele Geometry Test adapted from the 'Cognitive ...

  13. Understanding Atmospheric Carbon Budgets: Teaching Students Conservation of Mass

    Science.gov (United States)

    Reichert, Collin; Cervato, Cinzia; Niederhauser, Dale; Larsen, Michael D.

    2015-01-01

    In this paper we describe student use of a series of connected online problem-solving activities to remediate atmospheric carbon budget misconceptions held by undergraduate university students. In particular, activities were designed to address a common misconception about conservation of mass when students assume a simplistic, direct relationship…

  14. Understanding student early departure from a Master of Public ...

    African Journals Online (AJOL)

    MPH) student registrations in 2013 and 2014. By the end of the first semester in the respective years, a total of 27 students actively deregistered from the programme and 11 students did not sit the first-semester examinations, representing an ...

  15. Understanding Students with Learning Difficulties: How Do They Learn?

    Science.gov (United States)

    Hong, Barbara S. S.; Chick, Kay A.

    2013-01-01

    This article examines: (1) why learning comes so naturally for some students and yet is so onerous for others; (2) why some students need constant reminders while others get on task right away; and (3) why some students "just don't get it" even after countless repetitions and multitudes of practices. This paper describes the…

  16. Understanding and Working with Attention Deficit Disorder Students

    Science.gov (United States)

    Buttery, Thomas J.

    2009-01-01

    From a holistic perspective the term attention refers to a student's capacity to focus, direct and sustain their attention on a particular stimulus within their environment for a significant period of time. The development of students' attention spans develops progressively from the time they enter school. From the beginning some students have…

  17. British Adolescents' and Young Adults' Understanding and Reasoning about the Religious and Nonreligious Rights of Asylum-Seeker Youth

    Science.gov (United States)

    Tenenbaum, Harriet R.; Ruck, Martin D.

    2012-01-01

    This study examined British young people's understanding of the rights of asylum-seeking young people. Two hundred sixty participants (11-24 years) were read vignettes involving asylum-seeking young people's religious and nonreligious self-determination and nurturance rights. Religious rights were more likely to be endorsed than nonreligious…

  18. Using Rasch Measurement to Validate the Instrument of Students' Understanding of Models in Science (SUMS)

    Science.gov (United States)

    Wei, Silin; Liu, Xiufeng; Jia, Yuane

    2014-01-01

    Scientific models and modeling play an important role in science, and students' understanding of scientific models is essential for their understanding of scientific concepts. The measurement instrument of "Students' Understanding of Models in Science" (SUMS), developed by Treagust, Chittleborough & Mamiala ("International…

  19. Assessing Students' Understandings of Biological Models and Their Use in Science to Evaluate a Theoretical Framework

    Science.gov (United States)

    Grünkorn, Juliane; Upmeier zu Belzen, Annette; Krüger, Dirk

    2014-01-01

    Research in the field of students' understandings of models and their use in science describes different frameworks concerning these understandings. Currently, there is no conjoint framework that combines these structures and so far, no investigation has focused on whether it reflects students' understandings sufficiently (empirical evaluation).…

  20. Students' Independent Use of Screencasts and Simulations to Construct Understanding of Solubility Concepts

    Science.gov (United States)

    Herrington, Deborah G.; Sweeder, Ryan D.; VandenPlas, Jessica R.

    2017-01-01

    As students increasingly use online chemistry animations and simulations, it is becoming more important to understand how students independently engage with such materials and to develop a set of best practices for students' use of these resources outside of the classroom. Most of the literature examining students' use of animations and…

  1. Towards a probabilistic definition of entropy: An investigation of the effects of a new curriculum on students' understanding of thermodynamics

    Science.gov (United States)

    Colon-Garcia, Evy B.

    Thermodynamics is a vital tool in understanding why reactions happen; nevertheless, it is often considered a difficult topic. Prior studies have shown that students struggle with fundamental thermodynamic concepts such as entropy, enthalpy and Gibbs energy even in upper level physical chemistry courses. Thermodynamics, as a general chemistry topic, can be more math-intensive than other topics such as bonding or intermolecular forces. As a result, it is possible for students to get lost in the algorithms and overlook the important underlying theoretical concepts. Students' difficulties in understanding thermodynamics may be contributing to their inability to explain phenomena such as phase changes and manipulations of equilibrium systems. Current chemistry curricula split the thermodynamic chapters over a span of two semesters as well as splitting it over different units. This division fails to make explicit the connection between Enthalpy, Entropy and Gibbs Energy and how they affect how and why every reaction or process happens. The reason for this division of topics is not based on any educational research rather than opinions as to what will not overwhelm the students. Additionally, students who take only one semester of General Chemistry will leave without being instructed in what is considered to be one of the most fundamental concepts in Chemistry, Thermodynamics. Chemistry, Life, the Universe and Everything (CLUE) is a general chemistry course developed with the explicit goal of addressing the major obstacles that inhibit students from acquiring an appreciation and mastery of the chemical principles upon which other sciences depend. Using a control and treatment group, the effectiveness of this new curriculum was evaluated for two main aspects: 1. What is students' understanding of entropy?, 2. Can an alternative instructional approach to teaching Thermodynamics (Chemistry, Life, the Universe and Everything - CLUE) improve students' understanding of Entropy

  2. Quantum interactive learning tutorial on the double-slit experiment to improve student understanding of quantum mechanics

    Science.gov (United States)

    Sayer, Ryan; Maries, Alexandru; Singh, Chandralekha

    2017-06-01

    Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students' prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in various situations that appear to be counterintuitive and contradict classical notions of particles and waves. For example, if we send single electrons through the slits, they may behave as a "wave" in part of the experiment and as a "particle" in another part of the same experiment. Here we discuss the development and evaluation of a research-validated Quantum Interactive Learning Tutorial (QuILT) which makes use of an interactive simulation to improve student understanding of the double-slit experiment and strives to help students develop a good grasp of foundational issues in quantum mechanics. We discuss common student difficulties identified during the development and evaluation of the QuILT and analyze the data from the pretest and post test administered to the upper-level undergraduate and first-year physics graduate students before and after they worked on the QuILT to assess its effectiveness. These data suggest that on average, the QuILT was effective in helping students develop a more robust understanding of foundational concepts in quantum mechanics that defy classical intuition using the context of the double-slit experiment. Moreover, upper-level undergraduates outperformed physics graduate students on the post test. One possible reason for this difference in performance may be the level of student engagement with the QuILT due to the grade incentive. In the undergraduate course, the post test was graded for correctness while in the graduate course, it was only graded for completeness.

  3. The effect of Personal Digital Assistants in supporting the development of clinical reasoning in undergraduate nursing students: a systematic review.

    Science.gov (United States)

    Jeffrey, Karen; Bourgeois, Sharon

    2011-01-01

    The objective of this review was to determine whether the use of Personal Digital Assistants (PDAs) would provide greater support in developing undergraduate nursing students' clinical reasoning, in comparison to more traditional resources such as textbooks. The search strategy sought to identify published data from five electronic databases: CINAHL, Medline, Cochrane Library, Meditext and Scopus. Unpublished literature was also sought in digital dissertations, conference proceedings, relevant scholarly websites and reference lists. All undergraduate nursing students were considered eligible for inclusion. Types of interventions considered for this review were inclusive of all forms of PDAs and traditional resources. The research setting of this systematic review reflects the diversity of nursing practice, and includes the classroom, clinical or simulated environment. The process of clinical reasoning was defined by four outcome measures; alterations in theoretical nursing knowledge, clinical skills, problem solving and reflection. Studies of potential significance to the review were assessed for methodological quality independently by two reviewers using the Joanna Briggs Institute Meta Analysis of Statistics Assessment and Review Instrument. Authorship of the studies was not concealed from the two reviewers. From the nine studies assessed for quality, only data from four studies were included in the review. Four published studies were included in the systematic review of literature. The designs of the studies included a nonrandomised quasi-experimental design, case control study, comparative descriptive design and a pre test post test mixed method study. Four outcomes were identified by the four included studies. These outcomes addressed possible effects of PDA usage on undergraduate nursing students' practice of medication administration, self-efficacy, anticipation to exercise professional nursing judgment and clinical reasoning.This systematic review provides

  4. Does Early Algebraic Reasoning Differ as a Function of Students' Difficulty with Calculations versus Word Problems?

    Science.gov (United States)

    Powell, Sarah R.; Fuchs, Lynn S.

    2014-01-01

    According to national mathematics standards, algebra instruction should begin at kindergarten and continue through elementary school. Most often, teachers address algebra in the elementary grades with problems related to solving equations or understanding functions. With 789 second-grade students, we administered: (1) measures of calculations and…

  5. Understanding of genetic information in higher secondary students in northeast India and the implications for genetics education.

    Science.gov (United States)

    Chattopadhyay, Ansuman

    2005-01-01

    Since the work of Watson and Crick in the mid-1950s, the science of genetics has become increasingly molecular. The development of recombinant DNA technologies by the agricultural and pharmaceutical industries led to the introduction of genetically modified organisms (GMOs). By the end of the twentieth century, reports of animal cloning and recent completion of the Human Genome Project (HGP), as well techniques developed for DNA fingerprinting, gene therapy and others, raised important ethical and social issues about the applications of such technologies. For citizens to understand these issues, appropriate genetics education is needed in schools. A good foundation in genetics also requires knowledge and understanding of topics such as structure and function of cells, cell division, and reproduction. Studies at the international level report poor understanding by students of genetics and genetic technologies, with widespread misconceptions at various levels. Similar studies were nearly absent in India. In this study, I examine Indian higher secondary students' understanding of genetic information related to cells and transmission of genetic information during reproduction. Although preliminary in nature, the results provide cause for concern over the status of genetics education in India. The nature of students' conceptual understandings and possible reasons for the observed lack of understanding are discussed.

  6. Rotation placements help students' understanding of intensive care.

    Science.gov (United States)

    Abbott, Lisa

    2011-07-01

    It is vital that children's nursing students are fit for practice when they qualify and are able to meet various essential skills as defined by the Nursing and Midwifery Council (NMC). To gain the knowledge and skills required, students need placements in areas where high dependency and potentially intensive care are delivered. Efforts to maximise the number of students experiencing intensive care as a placement have led to the development of the paediatric intensive care unit (PICU) rotation, increasing placements on the PICU from 5 to 40 per cent of the student cohort per year. The lecturer practitioner organises the rotation, providing credible links between university and practice areas, while supporting students and staff in offering a high-quality placement experience. Students say the rotation offers a positive insight into PICU nursing, helping them develop knowledge and skills in a technical area and creating an interest in this specialty.

  7. UNDERSTANDING STUDENT ENGAGEMENT WITH SCHOOL: A LITERATURE REVIEW

    Directory of Open Access Journals (Sweden)

    Viorel ROBU

    2014-11-01

    Full Text Available In recent years, there has been an increasing amount of literature on student engagement with school. There is a large agreement on the predictive role that individual differences in student engagement with school plays in relation to a wide range of educational outcomes and to general adjustment. Numerous empirical studies have attempted to explain how individual characteristics of students (e.g., gender, academic motivation, school-related self-efficacy etc., family environment (e.g., parent social support, aspirations of parents concerning the adolescents’ school trajectory or quality of adolescent-parents relationship, and the school/classroom climate (e.g., social support from teachers and peers, autonomy granted to students, quality of instructional practices etc. impact student engagement with school and the academic achievement/performance. This paper summarizes the existing literature on antecedents and positive outcomes of student engagement with school. The implications for educational practice and policy makers are discussed.

  8. Like, Comment, Retweet: Understanding Student Social Media Preferences

    OpenAIRE

    Dee Winn; Michael Groenendyk; Melissa Rivosecchi

    2016-01-01

    The majority of academic libraries currently use one or more social media websites in their efforts to communicate and engage with students. Some of the most widely used sites are Facebook, Twitter, YouTube and Instagram. Education students at the University of British Columbia were surveyed and asked to rank whether they preferred receiving Library communications from Facebook, Twitter or WordPress (blogs). The results indicate that students ranked Facebook first, WordPress second and Twitte...

  9. Student understanding of Taylor series expansions in statistical mechanics

    Directory of Open Access Journals (Sweden)

    Trevor I. Smith

    2013-08-01

    Full Text Available One goal of physics instruction is to have students learn to make physical meaning of specific mathematical expressions, concepts, and procedures in different physical settings. As part of research investigating student learning in statistical physics, we are developing curriculum materials that guide students through a derivation of the Boltzmann factor using a Taylor series expansion of entropy. Using results from written surveys, classroom observations, and both individual think-aloud and teaching interviews, we present evidence that many students can recognize and interpret series expansions, but they often lack fluency in creating and using a Taylor series appropriately, despite previous exposures in both calculus and physics courses.

  10. Student understanding of Taylor series expansions in statistical mechanics

    Science.gov (United States)

    Smith, Trevor I.; Thompson, John R.; Mountcastle, Donald B.

    2013-12-01

    One goal of physics instruction is to have students learn to make physical meaning of specific mathematical expressions, concepts, and procedures in different physical settings. As part of research investigating student learning in statistical physics, we are developing curriculum materials that guide students through a derivation of the Boltzmann factor using a Taylor series expansion of entropy. Using results from written surveys, classroom observations, and both individual think-aloud and teaching interviews, we present evidence that many students can recognize and interpret series expansions, but they often lack fluency in creating and using a Taylor series appropriately, despite previous exposures in both calculus and physics courses.

  11. Applying Clustering to Statistical Analysis of Student Reasoning about Two-Dimensional Kinematics

    Science.gov (United States)

    Springuel, R. Padraic; Wittman, Michael C.; Thompson, John R.

    2007-01-01

    We use clustering, an analysis method not presently common to the physics education research community, to group and characterize student responses to written questions about two-dimensional kinematics. Previously, clustering has been used to analyze multiple-choice data; we analyze free-response data that includes both sketches of vectors and…

  12. Functioning and Participation Problems of Students with ASD in Higher Education: Which Reasonable Accommodations Are Effective?

    Science.gov (United States)

    Jansen, Dorien; Petry, Katja; Ceulemans, Eva; Noens, Ilse; Baeyens, Dieter

    2017-01-01

    Students with autism spectrum disorder (ASD) experience various functioning and participation problems in higher education, which may cause difficulties such as drop out or low grade point averages. However, it remains unclear how often and during which teaching and evaluation methods the functioning and participation problems occur and which…

  13. Integrating Ethics across the Curriculum: A Pilot Study to Assess Students' Ethical Reasoning

    Science.gov (United States)

    Willey, Susan L.; Mansfield, Nancy Reeves; Sherman, Margaret B.

    2012-01-01

    At Georgia State University (GSU), undergraduate and graduate business students are introduced to ethical theory and decision making in the required legal environment of business course, but ethics instruction in the functional areas is sporadic and uncoordinated. After a broad overview of the history of ethics in the business curriculum in Part…

  14. Students' Reasoning Processes in Making Decisions about an Authentic, Local Socio-Scientific Issue: Bat Conservation

    Science.gov (United States)

    Lee, Yeung Chung; Grace, Marcus

    2010-01-01

    Education for scientific literacy entails the development of scientific knowledge and the ability to apply this knowledge and value judgments to decisions about real-life issues. This paper reports an attempt to involve secondary level biology students in making decisions about an authentic socio-scientific issue--that of bat conservation--through…

  15. Do Cross-Sectional Student Assessment Data Make a Reasonable Proxy for Longitudinal Data?

    Science.gov (United States)

    Yorke, Mantz; Zaitseva, Elena

    2013-01-01

    Student performance data from a post-92 university in the United Kingdom showed that, for a substantial minority of programmes, there was a general dip in marks between Years 1 and 2. Longitudinal and cross-sectional data were analysed in order to ascertain whether the latter (with its advantage of a more rapid production of results) would make an…

  16. The Efficacy of the Theory of Reasoned Action to Explain Gambling Behavior in College Students

    Science.gov (United States)

    Thrasher, Robert G.; Andrew, Damon P. S.; Mahony, Daniel F.

    2007-01-01

    Shaffer and Hall (1997) have estimated college student gambling to be three times as high as their adult counterparts. Despite a considerable amount of research on gambling, researchers have struggled to develop a universal theory that explains gambling behavior. This study explored the potential of Ajzen and Fishbein's (1980) Theory of Reasoned…

  17. Using Live Tissue Laboratories to Promote Clinical Reasoning in Doctor of Physical Therapy Students

    Science.gov (United States)

    Moore, W. Allen; Noonan, Ann Cassidy

    2010-01-01

    Recently, the use of animal laboratories has decreased in medical and basic science programs due to lack of trained faculty members, student concerns about animal welfare, and the increased availability of inexpensive alternatives such as computer simulations and videos. Animal laboratories, however, have several advantages over alternative forms…

  18. Majoring in Information Systems: Reasons Why Students Select (or Not) Information Systems as a Major

    Science.gov (United States)

    Snyder, Johnny; Slauson, Gayla Jo

    2014-01-01

    Filling the pipeline for information systems workers is critical in the information era. Projected growth rates for jobs requiring information systems expertise are significantly higher than the projected growth rates for other jobs. Why then do relatively few students choose to major in information systems? This paper reviews survey results from…

  19. Measuring the reasons that discourage medical students from working in rural areas

    NARCIS (Netherlands)

    Goel, Sonu; Angeli, F.; Singla, Neetu; Ruwaard, Dirk

    2018-01-01

    The sharply uneven distribution of human resources for health care across urban and rural areas has been a long-standing concern globally. The present study aims to develop and validate an instrument measuring the factors deterring final year students of Bachelor of Medicine and Bachelor of Surgery

  20. The Abandonment of an Active Lifestyle Within University Students: Reasons for Abandonment and Expectations of Re-Engagement

    Directory of Open Access Journals (Sweden)

    Manuel Gómez-López

    2011-08-01

    Full Text Available The objective of this research is to analyse in detail the barriers that make university students abandon the practice of physical activity and adopt a sedentary lifestyle. In order to do so, a questionnaire on the analysis of sports habits and lifestyles was administered to 795 students who stated not having done any physical and/or sports activity for at least one year at the moment of the field-work. A factorial, descriptive and correlation analysis was carried out. The results reveal that university students abandon a healthy lifestyle mainly due to external barriers particularly because of lack of time. On the one hand, women appear to be the ones who, to a great extent, adopt a sedentary lifestyle. On the other hand, men are the ones who refer more to abandoning the practice of physical activity due to internal barriers. The majority of the university students gave up practicing sport before entering university alluding to external barriers as their reason for the abandonment. A greater part of the sedentary university students expressing that they will be active in the future, left the practice of sport due to internal barriers.