WorldWideScience

Sample records for understand species interactions

  1. Genes, communities & invasive species: understanding the ecological and evolutionary dynamics of host-pathogen interactions.

    Science.gov (United States)

    Burdon, J J; Thrall, P H; Ericson, L

    2013-08-01

    Reciprocal interactions between hosts and pathogens drive ecological, epidemiological and co-evolutionary trajectories, resulting in complex patterns of diversity at population, species and community levels. Recent results confirm the importance of negative frequency-dependent rather than 'arms-race' processes in the evolution of individual host-pathogen associations. At the community level, complex relationships between species abundance and diversity dampen or alter pathogen impacts. Invasive pathogens challenge these controls reflecting the earliest stages of evolutionary associations (akin to arms-race) where disease effects may be so great that they overwhelm the host's and community's ability to respond. Viewing these different stabilization/destabilization phases as a continuum provides a valuable perspective to assessment of the role of genetics and ecology in the dynamics of both natural and invasive host-pathogen associations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Celebrity Climate Contrarians: Understanding a keystone species in contemporary climate science-policy-public interactions

    Science.gov (United States)

    Boykoff, M. T.

    2012-12-01

    Since the 1980s, a keystone species called 'climate contrarians' has emerged and thrived. Through resistance to dominant interpretations of scientific evidence, and often outlier views on optimal responses to climate threats, contrarians have raised many meta-level questions: for instance, questions involve to what extent have their varied interventions been effective in terms of sparking a new and wise Copernican revolution; or do their amplified voices instead service entrenched carbon-based industry interests while they blend debates over 'climate change' with other culture wars? While the value of their influence has generated numerous debates, there is no doubt that climate contrarians have had significant influence on climate science, policy and public communities in ways that are larger than would be expected from their relative abundance in society. As such, a number of these actors have achieved 'celebrity status' in science-policy circles, and, at times, larger public spaces. This presentation focuses on how - particularly through amplified mass media attention to their movements - various outlier interventions have demonstrated themselves to be (often deliberately) detrimental to efforts that seek to enlarge rather than constrict the spectrum of possibility for mobilizing appropriate responses to ongoing climate challenges. Also, this work analyses the growth pathways of these charismatic megafauna through interview data and participant observations completed by the author at the 2011 Heartland Institute's Sixth International Conference on Climate Change. This provides detail on how outlier perspectives characterized as climate contrarians do work in these spaces under the guise of public intellectualism to achieve intended goals and objectives. The research undertaken and related in the presentation here seeks to better understand motivations that prop up these contrarian stances, such as possible ideological or evidentiary disagreement to the orthodox

  3. Species interactions and plant polyploidy.

    Science.gov (United States)

    Segraves, Kari A; Anneberg, Thomas J

    2016-07-01

    Polyploidy is a common mode of speciation that can have far-reaching consequences for plant ecology and evolution. Because polyploidy can induce an array of phenotypic changes, there can be cascading effects on interactions with other species. These interactions, in turn, can have reciprocal effects on polyploid plants, potentially impacting their establishment and persistence. Although there is a wealth of information on the genetic and phenotypic effects of polyploidy, the study of species interactions in polyploid plants remains a comparatively young field. Here we reviewed the available evidence for how polyploidy may impact many types of species interactions that range from mutualism to antagonism. Specifically, we focused on three main questions: (1) Does polyploidy directly cause the formation of novel interactions not experienced by diploids, or does it create an opportunity for natural selection to then form novel interactions? (2) Does polyploidy cause consistent, predictable changes in species interactions vs. the evolution of idiosyncratic differences? (3) Does polyploidy lead to greater evolvability in species interactions? From the scarce evidence available, we found that novel interactions are rare but that polyploidy can induce changes in pollinator, herbivore, and pathogen interactions. Although further tests are needed, it is likely that selection following whole-genome duplication is important in all types of species interaction and that there are circumstances in which polyploidy can enhance the evolvability of interactions with other species. © 2016 Botanical Society of America.

  4. Understanding Speaker-Listener Interaction

    NARCIS (Netherlands)

    Heylen, Dirk K.J.

    2009-01-01

    We provide an eclectic generic framework to understand the back and forth interactions between participants in a conversation highlighting the complexity of the actions that listeners are engaged in. Communicative actions of one participant implicate the “other��? in many ways. In this paper, we try

  5. Incorporating Context Dependency of Species Interactions in Species Distribution Models.

    Science.gov (United States)

    Lany, Nina K; Zarnetske, Phoebe L; Gouhier, Tarik C; Menge, Bruce A

    2017-07-01

    Species distribution models typically use correlative approaches that characterize the species-environment relationship using occurrence or abundance data for a single species. However, species distributions are determined by both abiotic conditions and biotic interactions with other species in the community. Therefore, climate change is expected to impact species through direct effects on their physiology and indirect effects propagated through their resources, predators, competitors, or mutualists. Furthermore, the sign and strength of species interactions can change according to abiotic conditions, resulting in context-dependent species interactions that may change across space or with climate change. Here, we incorporated the context dependency of species interactions into a dynamic species distribution model. We developed a multi-species model that uses a time-series of observational survey data to evaluate how abiotic conditions and species interactions affect the dynamics of three rocky intertidal species. The model further distinguishes between the direct effects of abiotic conditions on abundance and the indirect effects propagated through interactions with other species. We apply the model to keystone predation by the sea star Pisaster ochraceus on the mussel Mytilus californianus and the barnacle Balanus glandula in the rocky intertidal zone of the Pacific coast, USA. Our method indicated that biotic interactions between P. ochraceus and B. glandula affected B. glandula dynamics across >1000 km of coastline. Consistent with patterns from keystone predation, the growth rate of B. glandula varied according to the abundance of P. ochraceus in the previous year. The data and the model did not indicate that the strength of keystone predation by P. ochraceus varied with a mean annual upwelling index. Balanus glandula cover increased following years with high phytoplankton abundance measured as mean annual chlorophyll-a. M. californianus exhibited the same

  6. Current understanding of multi-species biofilms

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Wu, Hong

    2011-01-01

    every year worldwide to deal with damage to equipment, contaminations of products, energy losses, and infections in human beings resulted from microbial biofilms. Microorganisms compete, cooperate, and communicate with each other in multi-species biofilms. Understanding the mechanisms of multi......Direct observation of a wide range of natural microorganisms has revealed the fact that the majority of microbes persist as surface-attached communities surrounded by matrix materials, called biofilms. Biofilms can be formed by a single bacterial strain. However, most natural biofilms are actually......-species biofilm formation will facilitate the development of methods for combating bacterial biofilms in clinical, environmental, industrial, and agricultural areas. The most recent advances in the understanding of multi-species biofilms are summarized and discussed in the review....

  7. Climate change and species interactions: ways forward.

    Science.gov (United States)

    Angert, Amy L; LaDeau, Shannon L; Ostfeld, Richard S

    2013-09-01

    With ongoing and rapid climate change, ecologists are being challenged to predict how individual species will change in abundance and distribution, how biotic communities will change in structure and function, and the consequences of these climate-induced changes for ecosystem functioning. It is now well documented that indirect effects of climate change on species abundances and distributions, via climatic effects on interspecific interactions, can outweigh and even reverse the direct effects of climate. However, a clear framework for incorporating species interactions into projections of biological change remains elusive. To move forward, we suggest three priorities for the research community: (1) utilize tractable study systems as case studies to illustrate possible outcomes, test processes highlighted by theory, and feed back into modeling efforts; (2) develop a robust analytical framework that allows for better cross-scale linkages; and (3) determine over what time scales and for which systems prediction of biological responses to climate change is a useful and feasible goal. We end with a list of research questions that can guide future research to help understand, and hopefully mitigate, the negative effects of climate change on biota and the ecosystem services they provide. © 2013 New York Academy of Sciences.

  8. Estimating Effects of Species Interactions on Populations of Endangered Species.

    Science.gov (United States)

    Roth, Tobias; Bühler, Christoph; Amrhein, Valentin

    2016-04-01

    Global change causes community composition to change considerably through time, with ever-new combinations of interacting species. To study the consequences of newly established species interactions, one available source of data could be observational surveys from biodiversity monitoring. However, approaches using observational data would need to account for niche differences between species and for imperfect detection of individuals. To estimate population sizes of interacting species, we extended N-mixture models that were developed to estimate true population sizes in single species. Simulations revealed that our model is able to disentangle direct effects of dominant on subordinate species from indirect effects of dominant species on detection probability of subordinate species. For illustration, we applied our model to data from a Swiss amphibian monitoring program and showed that sizes of expanding water frog populations were negatively related to population sizes of endangered yellow-bellied toads and common midwife toads and partly of natterjack toads. Unlike other studies that analyzed presence and absence of species, our model suggests that the spread of water frogs in Central Europe is one of the reasons for the decline of endangered toad species. Thus, studying population impacts of dominant species on population sizes of endangered species using data from biodiversity monitoring programs should help to inform conservation policy and to decide whether competing species should be subject to population management.

  9. Adapt or disperse: understanding species persistence in a changing world.

    NARCIS (Netherlands)

    Berg, M.P.; Kiers, E.T.; Driessen, G.J.J.; van der Heijden, M.G.A.; Kooi, B.W.; Kuenen, F.J.A.; Liefting, M.; Verhoef, H.A.; Ellers, J.

    2010-01-01

    The majority of studies on environmental change focus on the response of single species and neglect fundamental biotic interactions, such as mutualism, competition, predation, and parasitism, which complicate patterns of species persistence. Under global warming, disruption of community interactions

  10. Understanding Adolescents’ Categorisation of Animal Species

    Science.gov (United States)

    Connor, Melanie; Lawrence, Alistair B.

    2017-01-01

    Simple Summary When people try to make sense of the world they often use categorisations, which are seen as a basic function of human cognition. People use specific attributes to categorise animals with young children using mostly visual cues like number of legs, whereas adults use more comprehensive attributes such as the habitat that the animal lives in. The aim of the present study was to investigate how adolescents categorise different types of animals. A card sorting exercise in combination with a survey questionnaire was implemented. Adolescents were asked to group images of a variety of common British farm, pet, and wild animals that were printed on cards. Furthermore, adolescents were asked to rate a number of animals regarding their utility, likability, and fear, which served as affective responses. Results show that adolescents primarily use an animal’s perceived utility as a means for their categorisation along with their affective feelings towards those animals. In other words, adolescents group animals into farm, pet, and wild animals with one exception, birds. Birds, regardless of their role in society (pet, farm, or wild animal), were mostly grouped together. The results are important to understand adolescents’ perception of animals, which may explain the different attitudes and behaviours towards animals. Abstract Categorisations are a means of investigating cognitive maps. The present study, for the first time, investigates adolescents’ spontaneous categorisation of 34 animal species. Furthermore, explicit evaluations of 16 selected animals in terms of their perceived utility and likeability were analysed. 105 British adolescents, 54% female, mean age 14.5 (SD = 1.6) participated in the study. Results of multidimensional scaling (MDS) techniques indicate 3-dimensional data representation regardless of gender or age. Property fittings show that affect and perceived utility of animals explain two of the MDS dimensions, and hence partly explain

  11. Advances in understanding river-groundwater interactions

    Science.gov (United States)

    Brunner, Philip; Therrien, René; Renard, Philippe; Simmons, Craig T.; Franssen, Harrie-Jan Hendricks

    2017-09-01

    River-groundwater interactions are at the core of a wide range of major contemporary challenges, including the provision of high-quality drinking water in sufficient quantities, the loss of biodiversity in river ecosystems, or the management of environmental flow regimes. This paper reviews state of the art approaches in characterizing and modeling river and groundwater interactions. Our review covers a wide range of approaches, including remote sensing to characterize the streambed, emerging methods to measure exchange fluxes between rivers and groundwater, and developments in several disciplines relevant to the river-groundwater interface. We discuss approaches for automated calibration, and real-time modeling, which improve the simulation and understanding of river-groundwater interactions. Although the integration of these various approaches and disciplines is advancing, major research gaps remain to be filled to allow more complete and quantitative integration across disciplines. New possibilities for generating realistic distributions of streambed properties, in combination with more data and novel data types, have great potential to improve our understanding and predictive capabilities for river-groundwater systems, especially in combination with the integrated simulation of the river and groundwater flow as well as calibration methods. Understanding the implications of different data types and resolution, the development of highly instrumented field sites, ongoing model development, and the ultimate integration of models and data are important future research areas. These developments are required to expand our current understanding to do justice to the complexity of natural systems.

  12. Review Essay: Understanding in Professional Interactions

    Directory of Open Access Journals (Sweden)

    Rainer Schützeichel

    2012-07-01

    Full Text Available "Professions" are work collaborations in which representatives of certain vocations address the life problems of "laypersons." In such relationships, adequate communication between representatives of the profession and laypersons is crucial in addressing their individual problems. Accordingly, "understanding," as well as interactional documentation of this understanding, is of considerable importance. The authors of the present volume, "Understanding in Professional Spheres of Activity,"  address the documentation of this understanding in certain professional spheres. They examine the requirements for the documentation of such understanding and the forms of documentation used in the fields of doctor-patient communication, counseling communication, and organizational collaboration on a movie set. Conversation analytic as well as ethnographically complemented studies draw further attention to an examination of the interactional level in its socio-structural context, and to that end the study employs a combination of conversational linguistics and sociological research. This contribution is therefore important not only in terms of linguistics but also sociologically. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs1203142

  13. Understanding and modelling Man-Machine Interaction

    International Nuclear Information System (INIS)

    Cacciabue, P.C.

    1991-01-01

    This paper gives an overview of the current state of the art in man machine systems interaction studies, focusing on the problems derived from highly automated working environments and the role of humans in the control loop. In particular, it is argued that there is a need for sound approaches to design and analysis of Man-Machine Interaction (MMI), which stem from the contribution of three expertises in interfacing domains, namely engineering, computer science and psychology: engineering for understanding and modelling plants and their material and energy conservation principles; psychology for understanding and modelling humans and their cognitive behaviours; computer science for converting models in sound simulations running in appropriate computer architectures. (author)

  14. Understanding and modelling man-machine interaction

    International Nuclear Information System (INIS)

    Cacciabue, P.C.

    1996-01-01

    This paper gives an overview of the current state of the art in man-machine system interaction studies, focusing on the problems derived from highly automated working environments and the role of humans in the control loop. In particular, it is argued that there is a need for sound approaches to the design and analysis of man-machine interaction (MMI), which stem from the contribution of three expertises in interfacing domains, namely engineering, computer science and psychology: engineering for understanding and modelling plants and their material and energy conservation principles; psychology for understanding and modelling humans an their cognitive behaviours; computer science for converting models in sound simulations running in appropriate computer architectures. (orig.)

  15. Understanding Microbial Multi-Species Symbioses

    Science.gov (United States)

    Aschenbrenner, Ines A.; Cernava, Tomislav; Berg, Gabriele; Grube, Martin

    2016-01-01

    Lichens are commonly recognized as a symbiotic association of a fungus and a chlorophyll containing partner, either green algae or cyanobacteria, or both. The fungus provides a suitable habitat for the partner, which provides photosynthetically fixed carbon as energy source for the system. The evolutionary result of the self-sustaining partnership is a unique joint structure, the lichen thallus, which is indispensable for fungal sexual reproduction. The classical view of a dual symbiosis has been challenged by recent microbiome research, which revealed host-specific bacterial microbiomes. The recent results about bacterial associations with lichens symbioses corroborate their notion as a multi-species symbiosis. Multi-omics approaches have provided evidence for functional contribution by the bacterial microbiome to the entire lichen meta-organism while various abiotic and biotic factors can additionally influence the bacterial community structure. Results of current research also suggest that neighboring ecological niches influence the composition of the lichen bacterial microbiome. Specificity and functions are here reviewed based on these recent findings, converging to a holistic view of bacterial roles in lichens. Finally we propose that the lichen thallus has also evolved to function as a smart harvester of bacterial symbionts. We suggest that lichens represent an ideal model to study multi-species symbiosis, using the recently available omics tools and other cutting edge methods. PMID:26925047

  16. Understanding Adolescents' Categorisation of Animal Species.

    Science.gov (United States)

    Connor, Melanie; Lawrence, Alistair B

    2017-08-30

    Categorisations are a means of investigating cognitive maps. The present study, for the first time, investigates adolescents' spontaneous categorisation of 34 animal species. Furthermore, explicit evaluations of 16 selected animals in terms of their perceived utility and likeability were analysed. 105 British adolescents, 54% female, mean age 14.5 (SD = 1.6) participated in the study. Results of multidimensional scaling (MDS) techniques indicate 3-dimensional data representation regardless of gender or age. Property fittings show that affect and perceived utility of animals explain two of the MDS dimensions, and hence partly explain adolescents' categorisation. Additionally, hierarchical cluster analyses show a differentiation between farm animals, birds, pet animals, and wild animals possibly explaining MDS dimension 3. The results suggest that utility perceptions predominantly underlie adolescents' categorisations and become even more dominant in older adolescents, which potentially has an influence on attitudes to animals with implications for animal welfare, conservation, and education.

  17. Generalist Bee Species on Brazilian Bee-Plant Interaction Networks

    Directory of Open Access Journals (Sweden)

    Astrid de Matos Peixoto Kleinert

    2012-01-01

    Full Text Available Determining bee and plant interactions has an important role on understanding general biology of bee species as well as the potential pollinating relationship between them. Bee surveys have been conducted in Brazil since the end of the 1960s. Most of them applied standardized methods and had identified the plant species where the bees were collected. To analyze the most generalist bees on Brazilian surveys, we built a matrix of bee-plant interactions. We estimated the most generalist bees determining the three bee species of each surveyed locality that presented the highest number of interactions. We found 47 localities and 39 species of bees. Most of them belong to Apidae (31 species and Halictidae (6 families and to Meliponini (14 and Xylocopini (6 tribes. However, most of the surveys presented Apis mellifera and/or Trigona spinipes as the most generalist species. Apis mellifera is an exotic bee species and Trigona spinipes, a native species, is also widespread and presents broad diet breath and high number of individuals per colony.

  18. Understanding Radionuclide Interactions with Layered Materials

    Science.gov (United States)

    Wang, Y.

    2015-12-01

    Layered materials play an important role in nuclear waste management and environmental cleanup. Better understanding of radionuclide interactions with those materials is critical for engineering high-performance materials for various applications. This presentation will provide an overview on radionuclide interactions with two general categories of layered materials - cationic clays and anionic clays - from a perspective of nanopore confinement. Nanopores are widely present in layered materials, either as the interlayers or as inter-particle space. Nanopore confinement can significantly modify chemical reactions in those materials. This effect may cause the preferential enrichment of radionuclides in nanopores and therefore directly impact the mobility of the radionuclides. This effect also implies that conventional sorption measurements using disaggregated samples may not represent chemical conditions in actual systems. The control of material structures on ion exchange, surface complexation, and diffusion in layered materials will be systematically examined, and the related modeling approaches will be discussed. This work was performed at Sandia National Laboratories, which is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the DOE under contract DE-AC04-94AL8500.

  19. Pseudomonas predators: understanding and exploiting phage-host interactions.

    Science.gov (United States)

    De Smet, Jeroen; Hendrix, Hanne; Blasdel, Bob G; Danis-Wlodarczyk, Katarzyna; Lavigne, Rob

    2017-09-01

    Species in the genus Pseudomonas thrive in a diverse set of ecological niches and include crucial pathogens, such as the human pathogen Pseudomonas aeruginosa and the plant pathogen Pseudomonas syringae. The bacteriophages that infect Pseudomonas spp. mirror the widespread and diverse nature of their hosts. Therefore, Pseudomonas spp. and their phages are an ideal system to study the molecular mechanisms that govern virus-host interactions. Furthermore, phages are principal catalysts of host evolution and diversity, which directly affects the ecological roles of environmental and pathogenic Pseudomonas spp. Understanding these interactions not only provides novel insights into phage biology but also advances the development of phage therapy, phage-derived antimicrobial strategies and innovative biotechnological tools that may be derived from phage-bacteria interactions.

  20. Understanding the Properties of Interactive Televised Characters

    Science.gov (United States)

    Claxton, Laura J.; Ponto, Katelyn C.

    2013-01-01

    Children's television programming frequently uses interactive characters that appear to directly engage the viewers. These characters encourage children to answer questions and perform actions to help the characters solve problems in the televised world. Children readily engage in these interactions; however, it is unclear why they do so. To…

  1. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling.

    Science.gov (United States)

    Wisz, Mary Susanne; Pottier, Julien; Kissling, W Daniel; Pellissier, Loïc; Lenoir, Jonathan; Damgaard, Christian F; Dormann, Carsten F; Forchhammer, Mads C; Grytnes, John-Arvid; Guisan, Antoine; Heikkinen, Risto K; Høye, Toke T; Kühn, Ingolf; Luoto, Miska; Maiorano, Luigi; Nilsson, Marie-Charlotte; Normand, Signe; Öckinger, Erik; Schmidt, Niels M; Termansen, Mette; Timmermann, Allan; Wardle, David A; Aastrup, Peter; Svenning, Jens-Christian

    2013-02-01

    Predicting which species will occur together in the future, and where, remains one of the greatest challenges in ecology, and requires a sound understanding of how the abiotic and biotic environments interact with dispersal processes and history across scales. Biotic interactions and their dynamics influence species' relationships to climate, and this also has important implications for predicting future distributions of species. It is already well accepted that biotic interactions shape species' spatial distributions at local spatial extents, but the role of these interactions beyond local extents (e.g. 10 km(2) to global extents) are usually dismissed as unimportant. In this review we consolidate evidence for how biotic interactions shape species distributions beyond local extents and review methods for integrating biotic interactions into species distribution modelling tools. Drawing upon evidence from contemporary and palaeoecological studies of individual species ranges, functional groups, and species richness patterns, we show that biotic interactions have clearly left their mark on species distributions and realised assemblages of species across all spatial extents. We demonstrate this with examples from within and across trophic groups. A range of species distribution modelling tools is available to quantify species environmental relationships and predict species occurrence, such as: (i) integrating pairwise dependencies, (ii) using integrative predictors, and (iii) hybridising species distribution models (SDMs) with dynamic models. These methods have typically only been applied to interacting pairs of species at a single time, require a priori ecological knowledge about which species interact, and due to data paucity must assume that biotic interactions are constant in space and time. To better inform the future development of these models across spatial scales, we call for accelerated collection of spatially and temporally explicit species data. Ideally

  2. Understanding children's science identity through classroom interactions

    Science.gov (United States)

    Kim, Mijung

    2018-01-01

    Research shows that various stereotypes about science and science learning, such as science being filled with hard and dry content, laboratory experiments, and male-dominated work environments, have resulted in feelings of distance from science in students' minds. This study explores children's experiences of science learning and science identity. It asks how children conceive of doing science like scientists and how they develop views of science beyond the stereotypes. This study employs positioning theory to examine how children and their teacher position themselves in science learning contexts and develop science identity through classroom interactions. Fifteen students in grades 4-6 science classrooms in Western Canada participated in this study. Classroom activities and interactions were videotaped, transcribed, and analysed to examine how the teacher and students position each other as scientists in the classroom. A descriptive explanatory case analysis showed how the teacher's positioning acted to develop students' science identity with responsibilities of knowledge seeking, perseverance, and excitement about science.

  3. Simulated tri-trophic networks reveal complex relationships between species diversity and interaction diversity.

    Science.gov (United States)

    Pardikes, Nicholas A; Lumpkin, Will; Hurtado, Paul J; Dyer, Lee A

    2018-01-01

    Most of earth's biodiversity is comprised of interactions among species, yet it is unclear what causes variation in interaction diversity across space and time. We define interaction diversity as the richness and relative abundance of interactions linking species together at scales from localized, measurable webs to entire ecosystems. Large-scale patterns suggest that two basic components of interaction diversity differ substantially and predictably between different ecosystems: overall taxonomic diversity and host specificity of consumers. Understanding how these factors influence interaction diversity, and quantifying the causes and effects of variation in interaction diversity are important goals for community ecology. While previous studies have examined the effects of sampling bias and consumer specialization on determining patterns of ecological networks, these studies were restricted to two trophic levels and did not incorporate realistic variation in species diversity and consumer diet breadth. Here, we developed a food web model to generate tri-trophic ecological networks, and evaluated specific hypotheses about how the diversity of trophic interactions and species diversity are related under different scenarios of species richness, taxonomic abundance, and consumer diet breadth. We investigated the accumulation of species and interactions and found that interactions accumulate more quickly; thus, the accumulation of novel interactions may require less sampling effort than sampling species in order to get reliable estimates of either type of diversity. Mean consumer diet breadth influenced the correlation between species and interaction diversity significantly more than variation in both species richness and taxonomic abundance. However, this effect of diet breadth on interaction diversity is conditional on the number of observed interactions included in the models. The results presented here will help develop realistic predictions of the relationships

  4. Understanding cyanobacteria-zooplankton interactions in a more eutrophic world

    NARCIS (Netherlands)

    Ger, K.A.; Hansson, L.; Lurling, M.F.L.L.W.

    2014-01-01

    1.We review and update recent observations of cyanobacteria–zooplankton interactions, identify theoretical and methodological limitations and evaluate approaches necessary for understanding the effects of increasing cyanobacterial blooms on plankton dynamics. 2.The emphasis on oversimplified studies

  5. The parakeet protectors: Understanding opposition to introduced species management.

    Science.gov (United States)

    Crowley, Sarah L; Hinchliffe, Steve; McDonald, Robbie A

    2018-01-02

    The surveillance and control of introduced and invasive species has become an increasingly important component of environmental management. However, initiatives targeting 'charismatic' wildlife can be controversial. Opposition to management, and the subsequent emergence of social conflict, present significant challenges for would-be managers. Understanding the substance and development of these disputes is therefore vital for improving the legitimacy and effectiveness of wildlife management. It also provides important insights into human-wildlife relations and the 'social dimensions' of wildlife management. Here, we examine how the attempted eradication of small populations of introduced monk parakeets (Myiopsitta monachus) from England has been challenged and delayed by opposition from interested and affected communities. We consider how and why the UK Government's eradication initiative was opposed, focusing on three key themes: disagreements about justifying management, the development of affective attachments between people and parakeets, and the influence of distrustful and antagonistic relationships between proponents and opponents of management. We draw connections between our UK case and previous management disputes, primarily in the USA, and suggest that the resistance encountered in the UK might readily have been foreseen. We conclude by considering how management of this and other introduced species could be made less conflict-prone, and potentially more effective, by reconfiguring management approaches to be more anticipatory, flexible, sensitive, and inclusive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Increasing process understanding by analyzing complex interactions in experimental data

    DEFF Research Database (Denmark)

    Naelapaa, Kaisa; Allesø, Morten; Kristensen, Henning Gjelstrup

    2009-01-01

    understanding of a coating process. It was possible to model the response, that is, the amount of drug released, using both mentioned techniques. However, the ANOVAmodel was difficult to interpret as several interactions between process parameters existed. In contrast to ANOVA, GEMANOVA is especially suited...... for modeling complex interactions and making easily understandable models of these. GEMANOVA modeling allowed a simple visualization of the entire experimental space. Furthermore, information was obtained on how relative changes in the settings of process parameters influence the film quality and thereby drug......There is a recognized need for new approaches to understand unit operations with pharmaceutical relevance. A method for analyzing complex interactions in experimental data is introduced. Higher-order interactions do exist between process parameters, which complicate the interpretation...

  7. Effects of biotic interactions and dispersal on the presence-absence of multiple species

    International Nuclear Information System (INIS)

    Mohd, Mohd Hafiz; Murray, Rua; Plank, Michael J.; Godsoe, William

    2017-01-01

    One of the important issues in ecology is to predict which species will be present (or absent) across a geographical region. Dispersal is thought to have an important influence on the range limits of species, and understanding this problem in a multi-species community with priority effects (i.e. initial abundances determine species presence-absence) is a challenging task because dispersal also interacts with biotic and abiotic factors. Here, we propose a simple multi-species model to investigate the joint effects of biotic interactions and dispersal on species presence-absence. Our results show that dispersal can substantially expand species ranges when biotic and abiotic forces are present; consequently, coexistence of multiple species is possible. The model also exhibits ecologically interesting priority effects, mediated by intense biotic interactions. In the absence of dispersal, competitive exclusion of all but one species occurs. We find that dispersal reduces competitive exclusion effects that occur in no-dispersal case and promotes coexistence of multiple species. These results also show that priority effects are still prevalent in multi-species communities in the presence of dispersal process. We also illustrate the existence of threshold values of competitive strength (i.e. transcritical bifurcations), which results in different species presence-absence in multi-species communities with and without dispersal.

  8. Are trade-offs among species' ecological interactions scale dependent? A test using pitcher-plant inquiline species.

    Science.gov (United States)

    Kneitel, Jamie M

    2012-01-01

    Trade-offs among species' ecological interactions is a pervasive explanation for species coexistence. The traits associated with trade-offs are typically measured to mechanistically explain species coexistence at a single spatial scale. However, species potentially interact at multiple scales and this may be reflected in the traits among coexisting species. I quantified species' ecological traits associated with the trade-offs expected at both local (competitive ability and predator tolerance) and regional (competitive ability and colonization rate) community scales. The most common species (four protozoa and a rotifer) from the middle trophic level of a pitcher plant (Sarracenia purpurea) inquiline community were used to link species traits to previously observed patterns of species diversity and abundance. Traits associated with trade-offs (competitive ability, predator tolerance, and colonization rate) and other ecological traits (size, growth rate, and carrying capacity) were measured for each of the focal species. Traits were correlated with one another with a negative relationship indicative of a trade-off. Protozoan and rotifer species exhibited a negative relationship between competitive ability and predator tolerance, indicative of coexistence at the local community scale. There was no relationship between competitive ability and colonization rate. Size, growth rate, and carrying capacity were correlated with each other and the trade-off traits: Size was related to both competitive ability and predator tolerance, but growth rate and carrying capacity were correlated with predator tolerance. When partial correlations were conducted controlling for size, growth rate and carrying capacity, the trade-offs largely disappeared. These results imply that body size is the trait that provides the basis for ecological interactions and trade-offs. Altogether, this study showed that the examination of species' traits in the context of coexistence at different scales

  9. Seasonal species interactions minimize the impact of species turnover on the likelihood of community persistence.

    Science.gov (United States)

    Saavedra, Serguei; Rohr, Rudolf P; Fortuna, Miguel A; Selva, Nuria; Bascompte, Jordi

    2016-04-01

    Many of the observed species interactions embedded in ecological communities are not permanent, but are characterized by temporal changes that are observed along with abiotic and biotic variations. While work has been done describing and quantifying these changes, little is known about their consequences for species coexistence. Here, we investigate the extent to which changes of species composition impact the likelihood of persistence of the predator-prey community in the highly seasonal Białowieza Primeval Forest (northeast Poland), and the extent to which seasonal changes of species interactions (predator diet) modulate the expected impact. This likelihood is estimated extending recent developments on the study of structural stability in ecological communities. We find that the observed species turnover strongly varies the likelihood of community persistence between summer and winter. Importantly, we demonstrate that the observed seasonal interaction changes minimize the variation in the likelihood of persistence associated with species turnover across the year. We find that these community dynamics can be explained as the coupling of individual species to their environment by minimizing both the variation in persistence conditions and the interaction changes between seasons. Our results provide a homeostatic explanation for seasonal species interactions and suggest that monitoring the association of interactions changes with the level of variation in community dynamics can provide a good indicator of the response of species to environmental pressures.

  10. Species interactions reverse grassland responses to changing climate.

    Science.gov (United States)

    Suttle, K B; Thomsen, Meredith A; Power, Mary E

    2007-02-02

    Predictions of ecological response to climate change are based largely on direct climatic effects on species. We show that, in a California grassland, species interactions strongly influence responses to changing climate, overturning direct climatic effects within 5 years. We manipulated the seasonality and intensity of rainfall over large, replicate plots in accordance with projections of leading climate models and examined responses across several trophic levels. Changes in seasonal water availability had pronounced effects on individual species, but as precipitation regimes were sustained across years, feedbacks and species interactions overrode autecological responses to water and reversed community trajectories. Conditions that sharply increased production and diversity through 2 years caused simplification of the food web and deep reductions in consumer abundance after 5 years. Changes in these natural grassland communities suggest a prominent role for species interactions in ecosystem response to climate change.

  11. Interactions between arsenic species and marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, J.G.

    1978-01-01

    The arsenic concentration and speciation of marine algae varies widely, from 0.4 to 23 ng.mg/sup -1/, with significant differences in both total arsenic content and arsenic speciation occurring between algal classes. The Phaeophyceae contain more arsenic than other algal classes, and a greater proportion of the arsenic is organic. The concentration of inorganic arsenic is fairly constant in macro-algae, and may indicate a maximum level, with the excess being reduced and methylated. Phytoplankton take up As(V) readily, and incorporate a small percentage of it into the cell. The majority of the As(V) is reduced, methylated, and released to the surrounding media. The arsenic speciation in phytoplankton and Valonia also changes when As(V) is added to cultures. Arsenate and phosphate compete for uptake by algal cells. Arsenate inhibits primary production at concentrations as low as 5 ..mu..g.1/sup -1/ when the phosphate concentration is low. The inhibition is competitive. A phosphate enrichment of > 0.3 ..mu..M alleviates this inhibition; however, the As(V) stress causes an increase in the cell's phosphorus requirement. Arsenite is also toxic to phytoplankton at similar concentrations. Methylated arsenic species did not affect cell productivity, even at concentrations of 25 ..mu..g.1/sup -1/. Thus, the methylation of As(V) by the cell produces a stable, non-reactive compound which is nontoxic. The uptake and subsequent reduction and methylation of As(V) is a significant factor in determining the arsenic biogeochemistry of productive systems, and also the effect that the arsenic may have on algal productivity. Therefore, the role of marine algae in determining the arsenic speciation of marine systems cannot be ignored. (ERB)

  12. Context Matters: Increasing Understanding with Interactive Clicker Case Studies

    Science.gov (United States)

    Lundeberg, Mary A.; Kang, Hosun; Wolter, Bjorn; delMas, Robert; Armstrong, Norris; Borsari, Bruno; Boury, Nancy; Brickman, Peggy; Hannam, Kristi; Heinz, Cheryl; Horvath, Thomas; Knabb, Maureen; Platt, Terry; Rice, Nancy; Rogers, Bill; Sharp, Joan; Ribbens, Eric; Maier, Kimberly S.; Deschryver, Mike; Hagley, Rodney; Goulet, Tamar; Herreid, Clyde F.

    2011-01-01

    Although interactive technology is presumed to increase student understanding in large classes, no previous research studies have empirically explored the effects of Clicker Cases on students' performance. A Clicker Case is a story (e.g., a problem someone is facing) that uses clickers (student response systems) to engage students in understanding…

  13. Understanding Protein Synthesis: An Interactive Card Game Discussion

    Science.gov (United States)

    Lewis, Alison; Peat, Mary; Franklin, Sue

    2005-01-01

    Protein synthesis is a complex process and students find it difficult to understand. This article describes an interactive discussion "game" used by first year biology students at the University of Sydney. The students, in small groups, use the game in which the processes of protein synthesis are actioned by the students during a…

  14. Learning Emotional Understanding and Emotion Regulation through Sibling Interaction

    Science.gov (United States)

    Kramer, Laurie

    2014-01-01

    Research Findings: Young children's relationships with their sisters and brothers offer unique and important opportunities for learning about emotions and developing emotional understanding. Through a critical analysis, this article examines sibling interaction in 3 different but normative contexts (conflict/conflict management, play, and…

  15. FireDetective : Understanding Ajax Client/Server Interactions

    NARCIS (Netherlands)

    Matthijssen, N.; Zaidman, A.

    2011-01-01

    Ajax-enabled web applications are a new breed of highly interactive, highly dynamic web applications. Although Ajax allows developers to create rich web applications, Ajax applications can be difficult to comprehend and thus to maintain. FireDetective aims to facilitate the understanding of Ajax

  16. Understanding and Managing Process Interaction in IS Development Projects

    DEFF Research Database (Denmark)

    Bygstad, Bendik; Nielsen, Peter Axel

    2005-01-01

    Increasingly, information systems must be developed and implemented as a part of business change. This is a challenge for the IS project manager, since business change and information systems development usually are performed as separate processes. Thus, there is a need to understand and manage......-technical innovation in a situation where the organisational change process and the IS development process are parallel but incongruent. We also argue that iterative software engineering frameworks are well structured to support process interaction. Finally, we advocate that the IS project manager needs to manage...... the relationship between these two kinds of processes. To understand the interaction between information systems development and planned organisational change we introduce the concept of process interaction. We draw on a longitudinal case study of an IS development project that used an iterative and incremental...

  17. [Novel Hyphenated Techniques of Atomic Spectrometry for Metal Species Interaction with Biomolecules].

    Science.gov (United States)

    Li, Yan; Yan, Xiu-ping

    2015-09-01

    Trace metals may be adopted by biological systems to assist in the syntheses and metabolic functions of genes (DNA and RNA) and proteins in the environment. These metals may be beneficial or may pose a risk to humans and other life forms. Novel hybrid techniques are required for studies on the interaction between different metal species and biomolecules, which is significant for biology, biochemistry, nutrition, agriculture, medicine, pharmacy, and environmental science. In recent years, our group dwells on new hyphenated techniques based on capillary electrophoresis (CE), electrothermal atomic absorption spectrometry (ETAAS), and inductively coupled plasma mass spectroscopy (ICP-MS), and their application for different metal species interaction with biomolecules such as DNA, HSA, and GSH. The CE-ETAAS assay and CE-ICP-MS assay allow sensitively probing the level of biomolecules such as DNA damage by different metal species and extracting the kinetic and thermodynamic information on the interactions of different metal species with biomolecules, provides direct evidences for the formation of different metal species--biomolecule adducts. In addition, the consequent structural information were extracted from circular dichroism (CD) and X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. The present works represent the most complete and extensive study to date on the interactions between different metal species with biomolecules, and also provide new evidences for and insights into the interactions of different metal species with biomolecules for further understanding of the toxicological effects of metal species.

  18. Neutral Community Dynamics and the Evolution of Species Interactions.

    Science.gov (United States)

    Coelho, Marco Túlio P; Rangel, Thiago F

    2018-04-01

    A contemporary goal in ecology is to determine the ecological and evolutionary processes that generate recurring structural patterns in mutualistic networks. One of the great challenges is testing the capacity of neutral processes to replicate observed patterns in ecological networks, since the original formulation of the neutral theory lacks trophic interactions. Here, we develop a stochastic-simulation neutral model adding trophic interactions to the neutral theory of biodiversity. Without invoking ecological differences among individuals of different species, and assuming that ecological interactions emerge randomly, we demonstrate that a spatially explicit multitrophic neutral model is able to capture the recurrent structural patterns of mutualistic networks (i.e., degree distribution, connectance, nestedness, and phylogenetic signal of species interactions). Nonrandom species distribution, caused by probabilistic events of migration and speciation, create nonrandom network patterns. These findings have broad implications for the interpretation of niche-based processes as drivers of ecological networks, as well as for the integration of network structures with demographic stochasticity.

  19. Estimating the effect of the reorganization of interactions on the adaptability of species to changing environments.

    Science.gov (United States)

    Cenci, Simone; Montero-Castaño, Ana; Saavedra, Serguei

    2018-01-21

    A major challenge in community ecology is to understand how species respond to environmental changes. Previous studies have shown that the reorganization of interactions among co-occurring species can modulate their chances to adapt to novel environmental conditions. Moreover, empirical evidence has shown that these ecological dynamics typically facilitate the persistence of groups of species rather than entire communities. However, so far, we have no systematic methodology to identify those groups of species with the highest or lowest chances to adapt to new environments through a reorganization of their interactions. Yet, this could prove extremely valuable for developing new conservation strategies. Here, we introduce a theoretical framework to estimate the effect of the reorganization of interactions on the adaptability of a group of species, within a community, to novel environmental conditions. We introduce the concept of the adaptation space of a group of species based on a feasibility analysis of a population dynamics model. We define the adaptation space of a group as the set of environmental conditions that can be made compatible with its persistence thorough the reorganization of interactions among species within the group. The larger the adaptation space of a group, the larger its likelihood to adapt to a novel environment. We show that the interactions in the community outside a group can act as structural constraints and be used to quantitatively compare the size of the adaptation space among different groups of species within a community. To test our theoretical framework, we perform a data analysis on several pairs of natural and artificially perturbed ecological communities. Overall, we find that the groups of species present in both control and perturbed communities are among the ones with the largest adaptation space. We believe that the results derived from our framework point out towards new directions to understand and estimate the

  20. Immobilized enzymes: understanding enzyme - surface interactions at the molecular level.

    Science.gov (United States)

    Hoarau, Marie; Badieyan, Somayesadat; Marsh, E Neil G

    2017-11-22

    Enzymes immobilized on solid supports have important and industrial and medical applications. However, their uses are limited by the significant reductions in activity and stability that often accompany the immobilization process. Here we review recent advances in our understanding of the molecular level interactions between proteins and supporting surfaces that contribute to changes in stability and activity. This understanding has been facilitated by the application of various surface-sensitive spectroscopic techniques that allow the structure and orientation of enzymes at the solid/liquid interface to be probed, often with monolayer sensitivity. An appreciation of the molecular interactions between enzyme and surface support has allowed the surface chemistry and method of enzyme attachement to be fine-tuned such that activity and stability can be greatly enhanced. These advances suggest that a much wider variety of enzymes may eventually be amenable to immobilization as green catalysts.

  1. Towards a systems understanding of plant-microbe interactions

    Directory of Open Access Journals (Sweden)

    Akira eMine

    2014-08-01

    Full Text Available Plants are closely associated with microorganisms including pathogens and mutualists that influence plant fitness. Molecular genetic approaches have uncovered a number of signaling components from both plants and microbes and their mode of actions. However, signaling pathways are highly interconnected and influenced by diverse sets of environmental factors. Therefore, it is important to have systems views in order to understand the true nature of plant-microbe interactions. Indeed, systems biology approaches have revealed previously overlooked or misinterpreted properties of the plant immune signaling network. Experimental reconstruction of biological networks using exhaustive combinatorial mutants is particularly powerful to elucidate network structure and properties and relationships among network components. Recent advances in metagenomics of microbial communities associated with plants further point to the importance of systems approaches and open a research area of microbial community reconstruction. In this review, we highlight the importance of a systems understanding of plant-microbe interactions, with a special emphasis on reconstruction strategies.

  2. Effects of plant diversity on primary production and species interactions in brackish water angiosperm communities

    DEFF Research Database (Denmark)

    Salo, Tiina; Gustafsson, Camilla; Boström, Christoffer

    2009-01-01

    Research on plant biodiversity and ecosystem functioning has mainly focused on terrestrial ecosystems, and our understanding of how plant species diversity and interactions affect processes in marine ecosystems is still limited. To investigate if plant species richness and composition influence...... plant productivity in brackish water angiosperm communities, a 14 wk field experiment was conducted. Using a replacement design with a standardized initial aboveground biomass, shoots of Zostera marina, Potamogeton filiformis and P. perfoliatus were planted on a shallow, sandy bottom in replicated...

  3. Proteomics Advances in the Understanding of Pollen–Pistil Interactions

    Directory of Open Access Journals (Sweden)

    Ziyang Fu

    2014-09-01

    Full Text Available The first key point to the successful pollination and fertilization in plants is the pollen-pistil interaction, referring to the cellular and molecular levels, which mainly involve the haploid pollen and the diploid pistil. The process is defined as “siphonogamy”, which starts from the capture of pollen by the epidermis of stigma and ends up with the fusion of sperm with egg. So far, the studies of the pollen-pistil interaction have been explicated around the self-compatibility and self-incompatibility (SI process in different species from the molecular genetics and biochemistry to cellular and signal levels, especially the mechanism of SI system. Among them, numerous proteomics studies based on the advanced technologies from gel-system to gel-free system were conducted, focusing on the interaction, in order to uncover the mechanism of the process. The current review mainly focuses on the recent developments in proteomics of pollen-pistil interaction from two aspects: self-incompatible and compatible pollination. It might provide a comprehensive insight on the proteins that were involved in the regulation of pollen-pistil interaction.

  4. Metabolomics Reveals Cryptic Interactive Effects of Species Interactions and Environmental Stress on Nitrogen and Sulfur Metabolism in Seagrass

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Castorani, Max C. N.; Glud, Ronnie N.

    2016-01-01

    Eutrophication of estuaries and coastal seas is accelerating, increasing light stress on subtidal marine plants and changing their interactions with other species. To date, we have limited understanding of how such variations in environmental and biological stress modify the impact of interactions...... among foundational species and eventually affect ecosystem health. Here, we used metabolomics to assess the impact of light reductions on interactions between the seagrass Zostera marina, an important habitat-forming marine plant, and the abundant and commercially important blue mussel Mytilus edulis....... Plant performance varied with light availability but was unaffected by the presence of mussels. Metabolomic analysis, on the other hand, revealed an interaction between light availability and presence of M. edulis on seagrass metabolism. Under high light, mussels stimulated seagrass nitrogen and energy...

  5. Biotic Interactions Shape the Ecological Distributions of Staphylococcus Species.

    Science.gov (United States)

    Kastman, Erik K; Kamelamela, Noelani; Norville, Josh W; Cosetta, Casey M; Dutton, Rachel J; Wolfe, Benjamin E

    2016-10-18

    Many metagenomic sequencing studies have observed the presence of closely related bacterial species or genotypes in the same microbiome. Previous attempts to explain these patterns of microdiversity have focused on the abiotic environment, but few have considered how biotic interactions could drive patterns of microbiome diversity. We dissected the patterns, processes, and mechanisms shaping the ecological distributions of three closely related Staphylococcus species in cheese rind biofilms. Paradoxically, the most abundant species (S. equorum) is the slowest colonizer and weakest competitor based on growth and competition assays in the laboratory. Through in vitro community reconstructions, we determined that biotic interactions with neighboring fungi help resolve this paradox. Species-specific stimulation of the poor competitor by fungi of the genus Scopulariopsis allows S. equorum to dominate communities in vitro as it does in situ Results of comparative genomic and transcriptomic experiments indicate that iron utilization pathways, including a homolog of the S. aureus staphyloferrin B siderophore operon pathway, are potential molecular mechanisms underlying Staphylococcus-Scopulariopsis interactions. Our integrated approach demonstrates that fungi can structure the ecological distributions of closely related bacterial species, and the data highlight the importance of bacterium-fungus interactions in attempts to design and manipulate microbiomes. Decades of culture-based studies and more recent metagenomic studies have demonstrated that bacterial species in agriculture, medicine, industry, and nature are unevenly distributed across time and space. The ecological processes and molecular mechanisms that shape these distributions are not well understood because it is challenging to connect in situ patterns of diversity with mechanistic in vitro studies in the laboratory. Using tractable cheese rind biofilms and a focus on coagulase-negative staphylococcus (CNS

  6. Macroecological signals of species interactions in the Danish avifauna

    DEFF Research Database (Denmark)

    Gotelli, N.J.; Graves, Christopher R.; Rahbek, C.

    2010-01-01

    that community-wide patterns of spatial segregation could not be attributed to the patchy distribution of habitat or to gross differences in habitat utilization among ecologically similar species. We hypothesize that, when habitat patch size is limited, conspecific attraction in concert with interspecific...... territoriality may result in spatially segregated distributions of ecologically similar species at larger spatial scales. In the Danish avifauna, the effects of species interactions on community assembly appear pervasive and can be discerned at grain sizes up to four orders of magnitude larger than those...

  7. Species coexistence: macroevolutionary relationships and the contingency of historical interactions.

    Science.gov (United States)

    Germain, Rachel M; Weir, Jason T; Gilbert, Benjamin

    2016-03-30

    Evolutionary biologists since Darwin have hypothesized that closely related species compete more intensely and are therefore less likely to coexist. However, recent theory posits that species diverge in two ways: either through the evolution of 'stabilizing differences' that promote coexistence by causing individuals to compete more strongly with conspecifics than individuals of other species, or through the evolution of 'fitness differences' that cause species to differ in competitive ability and lead to exclusion of the weaker competitor. We tested macroevolutionary patterns of divergence by competing pairs of annual plant species that differ in their phylogenetic relationships, and in whether they have historically occurred in the same region or different regions (sympatric versus allopatric occurrence). For sympatrically occurring species pairs, stabilizing differences rapidly increased with phylogenetic distance. However, fitness differences also increased with phylogenetic distance, resulting in coexistence outcomes that were unpredictable based on phylogenetic relationships. For allopatric species, stabilizing differences showed no trend with phylogenetic distance, whereas fitness differences increased, causing coexistence to become less likely among distant relatives. Our results illustrate the role of species' historical interactions in shaping how phylogenetic relationships structure competitive dynamics, and offer an explanation for the evolution of invasion potential of non-native species. © 2016 The Author(s).

  8. Inferring species interactions through joint mark–recapture analysis

    Science.gov (United States)

    Yackulic, Charles B.; Korman, Josh; Yard, Michael D.; Dzul, Maria C.

    2018-01-01

    Introduced species are frequently implicated in declines of native species. In many cases, however, evidence linking introduced species to native declines is weak. Failure to make strong inferences regarding the role of introduced species can hamper attempts to predict population viability and delay effective management responses. For many species, mark–recapture analysis is the more rigorous form of demographic analysis. However, to our knowledge, there are no mark–recapture models that allow for joint modeling of interacting species. Here, we introduce a two‐species mark–recapture population model in which the vital rates (and capture probabilities) of one species are allowed to vary in response to the abundance of the other species. We use a simulation study to explore bias and choose an approach to model selection. We then use the model to investigate species interactions between endangered humpback chub (Gila cypha) and introduced rainbow trout (Oncorhynchus mykiss) in the Colorado River between 2009 and 2016. In particular, we test hypotheses about how two environmental factors (turbidity and temperature), intraspecific density dependence, and rainbow trout abundance are related to survival, growth, and capture of juvenile humpback chub. We also project the long‐term effects of different rainbow trout abundances on adult humpback chub abundances. Our simulation study suggests this approach has minimal bias under potentially challenging circumstances (i.e., low capture probabilities) that characterized our application and that model selection using indicator variables could reliably identify the true generating model even when process error was high. When the model was applied to rainbow trout and humpback chub, we identified negative relationships between rainbow trout abundance and the survival, growth, and capture probability of juvenile humpback chub. Effects on interspecific interactions on survival and capture probability were strongly

  9. Nuclear Fusion Research Understanding Plasma-Surface Interactions

    CERN Document Server

    Clark, Robert E.H

    2005-01-01

    It became clear in the early days of fusion research that the effects of the containment vessel (erosion of "impurities") degrade the overall fusion plasma performance. Progress in controlled nuclear fusion research over the last decade has led to magnetically confined plasmas that, in turn, are sufficiently powerful to damage the vessel structures over its lifetime. This book reviews current understanding and concepts to deal with this remaining critical design issue for fusion reactors. It reviews both progress and open questions, largely in terms of available and sought-after plasma-surface interaction data and atomic/molecular data related to these "plasma edge" issues.

  10. Pollution prevention and energy conservation: Understanding the interactions

    International Nuclear Information System (INIS)

    Purcell, A.H.

    1992-01-01

    The traditional view holds that pollution prevention is good for energy conservation and vice versa. Analysis of pollution prevention and energy conservation activities indicates, however, that interactions and synergies between environmental and energy factors can mean that pollution prevention can be energy intensive and, conversely, that energy conservation can lead to increased pollution. Full cost accounting, taking into account all media, must be performed before precise pollution prevention-energy conservation interrelationships can be characterized and quantified. Use of a pollution prevention-energy conservation matrix can further this understanding

  11. Species as Stressors: Heterospecific Interactions and the Cellular Stress Response under Global Change.

    Science.gov (United States)

    Gunderson, Alex R; King, Emily E; Boyer, Kirsten; Tsukimura, Brian; Stillman, Jonathon H

    2017-07-01

    Anthropogenic global change is predicted to increase the physiological stress of organisms through changes in abiotic conditions such as temperature, pH, and pollution. However, organisms can also experience physiological stress through interactions with other species, especially parasites, predators, and competitors. The stress of species interactions could be an important driver of species' responses to global change as the composition of biological communities change through factors such as distributional and phenological shifts. Interactions between biotic and abiotic stressors could also induce non-linear physiological stress responses under global change. One of the primary means by which organisms deal with physiological stress is through the cellular stress response (CSR), which is broadly the upregulation of a conserved set of genes that facilitate the removal and repair of damaged macromolecules. Here, we present data on behavioral interactions and CSR gene expression for two competing species of intertidal zone porcelain crab (Petrolisthes cinctipes and Petrolisthes manimaculis). We found that P. cinctipes and P. manimaculis engage in more agonistic behaviors when interacting with heterospecifics than conspecifics; however, we found no evidence that heterospecific interactions induced a CSR in these species. In addition to our new data, we review the literature with respect to CSR induction via species interactions, focusing on predator-prey systems and heterospecific competition. We find extensive evidence for predators to induce cellular stress and aspects of the CSR in prey, even in the absence of direct physical contact between species. Effects of heterospecific competition on the CSR have been studied far less, but we do find evidence that agonistic interactions with heterospecifics can induce components of the CSR. Across all published studies, there is clear evidence that species interactions can lead to cellular stress and induction of the CSR

  12. Mechanisms of Disease: Host-Pathogen Interactions between Burkholderia Species and Lung Epithelial Cells

    Science.gov (United States)

    David, Jonathan; Bell, Rachel E.; Clark, Graeme C.

    2015-01-01

    Members of the Burkholderia species can cause a range of severe, often fatal, respiratory diseases. A variety of in vitro models of infection have been developed in an attempt to elucidate the mechanism by which Burkholderia spp. gain entry to and interact with the body. The majority of studies have tended to focus on the interaction of bacteria with phagocytic cells with a paucity of information available with regard to the lung epithelium. However, the lung epithelium is becoming more widely recognized as an important player in innate immunity and the early response to infections. Here we review the complex relationship between Burkholderia species and epithelial cells with an emphasis on the most pathogenic species, Burkholderia pseudomallei and Burkholderia mallei. The current gaps in knowledge in our understanding are highlighted along with the epithelial host-pathogen interactions that offer potential opportunities for therapeutic intervention. PMID:26636042

  13. Yakima River species interactions studies annual report, 2000; ANNUAL

    International Nuclear Information System (INIS)

    Pearsons, Todd N.

    2001-01-01

    Species interactions research and monitoring was initiated in 1989 to investigate ecological interactions among fish in response to proposed supplementation of salmon and steelhead in the upper Yakima River basin. This is the ninth of a series of progress reports that address species interactions research and supplementation monitoring of fishes in the Yakima River basin. Data have been collected prior to supplementation to characterize the ecology and demographics of non-target taxa (NTT) and target taxon, and develop methods to monitor interactions and supplementation success. Major topics of this report are associated with the chronology of ecological interactions that occur throughout a supplementation program, implementing NTT monitoring prescriptions for detecting potential impacts of hatchery supplementation, hatchery fish interactions, and monitoring fish predation indices. This report is organized into four chapters, with a general introduction preceding the first chapter. This annual report summarizes data collected primarily by the Washington Department of Fish and Wildlife (WDFW) between January 1, 2000 and December 31, 2000 in the Yakima basin, however these data were compared to data from previous years to identify preliminary trends and patterns. Summaries of each of the chapters included in this report are described

  14. The seaweed holobiont: understanding seaweed-bacteria interactions.

    Science.gov (United States)

    Egan, Suhelen; Harder, Tilmann; Burke, Catherine; Steinberg, Peter; Kjelleberg, Staffan; Thomas, Torsten

    2013-05-01

    Seaweeds (macroalgae) form a diverse and ubiquitous group of photosynthetic organisms that play an essential role in aquatic ecosystems. These ecosystem engineers contribute significantly to global primary production and are the major habitat formers on rocky shores in temperate waters, providing food and shelter for aquatic life. Like other eukaryotic organisms, macroalgae harbor a rich diversity of associated microorganisms with functions related to host health and defense. In particular, epiphytic bacterial communities have been reported as essential for normal morphological development of the algal host, and bacteria with antifouling properties are thought to protect chemically undefended macroalgae from detrimental, secondary colonization by other microscopic and macroscopic epibiota. This tight relationship suggests that macroalgae and epiphytic bacteria interact as a unified functional entity or holobiont, analogous to the previously suggested relationship in corals. Moreover, given that the impact of diseases in marine ecosystems is apparently increasing, understanding the role of bacteria as saprophytes and pathogens in seaweed communities may have important implications for marine management strategies. This review reports on the recent advances in the understanding of macroalgal-bacterial interactions with reference to the diversity and functional role of epiphytic bacteria in maintaining algal health, highlighting the holobiont concept. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. Species Coexistence in Nitrifying Chemostats: A Model of Microbial Interactions

    Directory of Open Access Journals (Sweden)

    Maxime Dumont

    2016-12-01

    Full Text Available In a previous study, the two nitrifying functions (ammonia oxidizing bacteria (AOB or nitrite-oxidizing bacteria (NOB of a nitrification reactor—operated continuously over 525 days with varying inputs—were assigned using a mathematical modeling approach together with the monitoring of bacterial phylotypes. Based on these theoretical identifications, we develop here a chemostat model that does not explicitly include only the resources’ dynamics (different forms of soluble nitrogen but also explicitly takes into account microbial inter- and intra-species interactions for the four dominant phylotypes detected in the chemostat. A comparison of the models obtained with and without interactions has shown that such interactions permit the coexistence of two competing ammonium-oxidizing bacteria and two competing nitrite-oxidizing bacteria in competition for ammonium and nitrite, respectively. These interactions are analyzed and discussed.

  16. Construction of analytically solvable models for interacting species. [biological species competition

    Science.gov (United States)

    Rosen, G.

    1976-01-01

    The basic form of a model representation for systems of n interacting biological species is a set of essentially nonlinear autonomous ordinary differential equations. A generic canonical expression for the rate functions in the equations is reported which permits the analytical general solution to be obtained by elementary computation. It is shown that a general analytical solution is directly obtainable for models where the rate functions are prescribed by the generic canonical expression from the outset. Some illustrative examples are given which demonstrate that the generic canonical expression can be used to construct analytically solvable models for two interacting species with limit-cycle dynamics as well as for a three-species interdependence.

  17. Charge-transfer interactions of Cr species with DNA.

    Science.gov (United States)

    Nowicka, Anna M; Matysiak-Brynda, Edyta; Hepel, Maria

    2017-10-01

    Interactions of Cr species with nucleic acids in living organisms depend strongly on Cr oxidation state and the environmental conditions. As the effects of these interactions range from benign to pre-mutagenic to carcinogenic, careful assessment of the hazard they pose to human health is necessary. We have investigated methods that would enable quantifying the DNA damage caused by Cr species under varying environmental conditions, including UV, O 2 , and redox potential, using simple instrumental techniques which could be in future combined into a field-deployable instrumentation. We have employed electrochemical quartz crystal nanogravimetry (EQCN), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) to evaluate the extent of DNA damage expressed in terms of guanine oxidation yield (η) and changes in specific characteristics provided by these techniques. The effects of the interactions of Cr species with DNA were analyzed using a model calf thymus DNA (ctDNA) film on a gold electrode (Au@ctDNA) in different media, including: (i) Cr(VI), (ii) Cr(VI) reduced at -0.2V, (iii) Cr(III)+UV radiation+O 2 , and Cr(III), obtaining the η values: 7.4±1.4, 1.5±0.4, 1.1±0.31%, and 0%, respectively, thus quantifying the hazard posed. The EIS measurements have enabled utilizing the decrease in charge-transfer resistance (R ct ) for ferri/ferrocyanide redox probe at an Au@ctDNA electrode to assess the oxidative ctDNA damage by Cr(VI) species. In this case, circular dichroism indicates an extensive damage to the ctDNA hydrogen bonding. On the other hand, Cr(III) species have not induced any damage to ctDNA, although the EQCN measurements show an electrostatic binding to DNA. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Ecological interactions in Aedes species on Reunion Island.

    Science.gov (United States)

    Bagny Beilhe, L; Delatte, H; Juliano, S A; Fontenille, D; Quilici, S

    2013-12-01

    Two invasive, container-breeding mosquito species, Aedes aegypti (Stegomyia aegypti) and Aedes albopictus (Stegomyia albopicta) (Diptera: Culicidae), have different distribution patterns on Reunion Island. Aedes albopictus occurs in all areas and Ae. aegypti colonizes only some restricted areas already occupied by Ae. albopictus. This study investigates the abiotic and biotic ecological mechanisms that determine the distribution of Aedes species on Reunion Island. Life history traits (duration of immature stages, survivorship, fecundity, estimated finite rate of increase) in Ae. aegypti and Ae. albopictus were compared at different temperatures. These fitness measures were characterized in both species in response to competitive interactions among larvae. Aedes aegypti was drastically affected by temperature, performing well only at around 25 °C, at which it achieved its highest survivorship and greatest estimated rate of increase. The narrow distribution of this species in the field on Reunion Island may thus relate to its poor ability to cope with unfavourable temperatures. Aedes aegypti was also more negatively affected by high population densities and to some extent by interactions with Ae. albopictus, particularly in the context of limited food supplies. Aedes albopictus exhibited better population performance across a range of environmental conditions. Its ecological plasticity and its superior competitive ability relative to its congener may further enhance its invasion success on Reunion Island. © 2012 The Royal Entomological Society.

  19. Current understanding of interactions between nanoparticles and the immune system.

    Science.gov (United States)

    Dobrovolskaia, Marina A; Shurin, Michael; Shvedova, Anna A

    2016-05-15

    The delivery of drugs, antigens, and imaging agents benefits from using nanotechnology-based carriers. The successful translation of nanoformulations to the clinic involves thorough assessment of their safety profiles, which, among other end-points, includes evaluation of immunotoxicity. The past decade of research focusing on nanoparticle interaction with the immune system has been fruitful in terms of understanding the basics of nanoparticle immunocompatibility, developing a bioanalytical infrastructure to screen for nanoparticle-mediated immune reactions, beginning to uncover the mechanisms of nanoparticle immunotoxicity, and utilizing current knowledge about the structure-activity relationship between nanoparticles' physicochemical properties and their effects on the immune system to guide safe drug delivery. In the present review, we focus on the most prominent pieces of the nanoparticle-immune system puzzle and discuss the achievements, disappointments, and lessons learned over the past 15years of research on the immunotoxicity of engineered nanomaterials. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change

    Science.gov (United States)

    McCluney, Kevin E.; Belnap, Jayne; Collins, Scott L.; González, Angélica L.; Hagen, Elizabeth M.; Holland, J. Nathaniel; Kotler, Burt P.; Maestre, Fernando T.; Smith, Stanley D.; Wolf, Blair O.

    2012-01-01

    Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts

  1. Understanding the Interaction between a Steel Microstructure and Hydrogen

    Science.gov (United States)

    Depover, Tom; Laureys, Aurélie; Wallaert, Elien

    2018-01-01

    The present work provides an overview of the work on the interaction between hydrogen (H) and the steel’s microstructure. Different techniques are used to evaluate the H-induced damage phenomena. The impact of H charging on multiphase high-strength steels, i.e., high-strength low-alloy (HSLA), transformation-induced plasticity (TRIP) and dual phase (DP) is first studied. The highest hydrogen embrittlement resistance is obtained for HSLA steel due to the presence of Ti- and Nb-based precipitates. Generic Fe-C lab-cast alloys consisting of a single phase, i.e., ferrite, bainite, pearlite or martensite, and with carbon contents of approximately 0, 0.2 and 0.4 wt %, are further considered to simplify the microstructure. Finally, the addition of carbides is investigated in lab-cast Fe-C-X alloys by adding a ternary carbide forming element to the Fe-C alloys. To understand the H/material interaction, a comparison of the available H trapping sites, the H pick-up level and the H diffusivity with the H-induced mechanical degradation or H-induced cracking is correlated with a thorough microstructural analysis. PMID:29710803

  2. Towards a better understanding of Lactobacillus rhamnosus GG - host interactions

    Science.gov (United States)

    2014-01-01

    Lactobacillus rhamnosus GG (LGG) is one of the most widely used probiotic strains. Various health effects are well documented including the prevention and treatment of gastro-intestinal infections and diarrhea, and stimulation of immune responses that promote vaccination or even prevent certain allergic symptoms. However, not all intervention studies could show a clinical benefit and even for the same conditions, the results are not univocal. Clearly, the host phenotype governed by age, genetics and environmental factors such as the endogenous microbiota, plays a role in whether individuals are responders or non-responders. However, we believe that a detailed knowledge of the bacterial physiology and the LGG molecules that play a key role in its host-interaction capacity is crucial for a better understanding of its potential health benefits. Molecules that were yet identified as important factors governing host interactions include its adhesive pili or fimbriae, its lipoteichoic acid molecules, its major secreted proteins and its galactose-rich exopolysaccharides, as well as specific DNA motifs. Nevertheless, future studies are needed to correlate specific health effects to these molecular effectors in LGG, and also in other probiotic strains. PMID:25186587

  3. Yakima River Species Interactions Studies, Annual Report 1998

    International Nuclear Information System (INIS)

    Pearsons, Todd N.; Ham, Kenneth D.; McMichael, Geoffrey A.

    1999-01-01

    Species interactions research and monitoring was initiated in 1989 to investigate ecological interactions among fish in response to proposed supplementation of salmon and steelhead in the upper Yakima River basin. This is the seventh of a series of progress reports that address species interactions research and pre-supplementation monitoring of fishes in the Yakima River basin. Data have been collected prior to supplementation to characterize the ecology and demographics of non-target taxa (NTT) and target taxon, and develop methods to monitor interactions and supplementation success. Major topics of this report are associated with monitoring potential impacts to support adaptive management of NTT and baseline monitoring of fish predation indices on spring chinook salmon smolts. This report is organized into three chapters, with a general introduction preceding the first chapter. This annual report summarizes data collected primarily by the Washington Department of Fish and Wildlife (WDFW) between January 1, 1998 and December 31, 1998 in the Yakima basin, however these data were compared to data from previous years to identify preliminary trends and patterns

  4. Hydrological Conditions Affect the Interspecific Interaction between Two Emergent Wetland Species

    Directory of Open Access Journals (Sweden)

    Jian Zhou

    2018-01-01

    Full Text Available Hydrological conditions determine the distribution of plant species in wetlands, where conditions such as water depth and hydrological fluctuations are expected to affect the interspecific interactions among emergent wetland species. To test such effects, we conducted a greenhouse experiment with three treatment categories, interspecific interaction (mixed culture or monoculture, water depth (10 or 30 cm depth, and hydrological fluctuation (static or fluctuating water level, and two common emergent wetland plant species, Scirpus planiculumis Fr. (Cyperaceae and Phragmites australis var. baiyangdiansis (Gramineae. An increase in the water depth significantly restrained the growth of both S. planiculumis and P. australis, while hydrological fluctuations did not obviously alter the growth of either species. In addition, both water depth and hydrological fluctuations significantly affected the interspecific interaction between these two wetland species. P. australis benefited from interspecific interaction under increasing water depth and hydrological fluctuations, and the RII values were clearly positive for plants grown at a water depth that fluctuated around 30 cm. The results may have some implications for understanding how S. planiculumis and P. australis, as well as wetland communities, respond to the natural variation or human modification of hydrological conditions.

  5. Interaction of species traits and environmental disturbance predicts invasion success of aquatic microorganisms.

    Directory of Open Access Journals (Sweden)

    Elvira Mächler

    Full Text Available Factors such as increased mobility of humans, global trade and climate change are affecting the range of many species, and cause large-scale translocations of species beyond their native range. Many introduced species have a strong negative influence on the new local environment and lead to high economic costs. There is a strong interest to understand why some species are successful in invading new environments and others not. Most of our understanding and generalizations thereof, however, are based on studies of plants and animals, and little is known on invasion processes of microorganisms. We conducted a microcosm experiment to understand factors promoting the success of biological invasions of aquatic microorganisms. In a controlled lab experiment, protist and rotifer species originally isolated in North America invaded into a natural, field-collected community of microorganisms of European origin. To identify the importance of environmental disturbances on invasion success, we either repeatedly disturbed the local patches, or kept them as undisturbed controls. We measured both short-term establishment and long-term invasion success, and correlated it with species-specific life-history traits. We found that environmental disturbances significantly affected invasion success. Depending on the invading species' identity, disturbances were either promoting or decreasing invasion success. The interaction between habitat disturbance and species identity was especially pronounced for long-term invasion success. Growth rate was the most important trait promoting invasion success, especially when the species invaded into a disturbed local community. We conclude that neither species traits nor environmental factors alone conclusively predict invasion success, but an integration of both of them is necessary.

  6. Hydraulic lift and tolerance to salinity of semiarid species: consequences for species interactions.

    Science.gov (United States)

    Armas, Cristina; Padilla, Francisco M; Pugnaire, Francisco I; Jackson, Robert B

    2010-01-01

    The different abilities of plant species to use ephemeral or permanent water sources strongly affect physiological performance and species coexistence in water-limited ecosystems. In addition to withstanding drought, plants in coastal habitats often have to withstand highly saline soils, an additional ecological stress. Here we tested whether observed competitive abilities and C-water relations of two interacting shrub species from an arid coastal system were more related to differences in root architecture or salinity tolerance. We explored water sources of interacting Juniperus phoenicea Guss. and Pistacia lentiscus L. plants by conducting physiology measurements, including water relations, CO2 exchange, photochemical efficiency, sap osmolality, and water and C isotopes. We also conducted parallel soil analyses that included electrical conductivity, humidity, and water isotopes. During drought, Pistacia shrubs relied primarily on permanent salty groundwater, while isolated Juniperus plants took up the scarce and relatively fresh water stored in upper soil layers. As drought progressed further, the physiological activity of Juniperus plants nearly stopped while Pistacia plants were only slightly affected. Juniperus plants growing with Pistacia had stem-water isotopes that matched Pistacia, unlike values for isolated Juniperus plants. This result suggests that Pistacia shrubs supplied water to nearby Juniperus plants through hydraulic lift. This lifted water, however, did not appear to benefit Juniperus plants, as their physiological performance with co-occurring Pistacia plants was poor, including lower water potentials and rates of photosynthesis than isolated plants. Juniperus was more salt sensitive than Pistacia, which withstood salinity levels similar to that of groundwater. Overall, the different abilities of the two species to use salty water appear to drive the outcome of their interaction, resulting in asymmetric competition where Juniperus is negatively

  7. Understanding Noncompliance with Protected Species Regulations in the Northeast USA Gillnet Fishery

    Directory of Open Access Journals (Sweden)

    Kathryn D Bisack

    2015-11-01

    Full Text Available Marine mammals and sea turtles in the United States are protected from commercial fishery interactions under the Marine Mammal Protection Act and the Endangered Species Act. To reduce harbor porpoise bycatch in the northeast sink gillnet fishery, fishermen are mandated to attach pingers to their nets in regulated areas. Although, pinger regulations have been in place for over a decade, in practice, enforcement is weak and the penalty for a violation is almost non-existent. In this scenario, the presence of normative factors may motivate a fisherman to comply with the pinger regulation. This study considers both economic and normative factors within a probit framework to explain a fisherman’s compliance decision. Model results indicate fishermen who previously violated pinger regulations, who are not completely dependent on gillnet gear and face a lower chance of being detected by an observer, are more likely to violate. Understanding the influence of normative factors on compliance decisions is a key component for higher compliance. That is, incorporation of these factors in the design of policy instruments may achieve higher compliance rates and thus more success in protecting these species. Our model findings were ground-truthed by conducting focus group research with fishermen using pingers; some preliminary findings are shared in the discussion in support of our model results. Finally, these results also suggest observer data can be used to support compliance and enforcement mechanisms in this fishery and possibly other fisheries as well.

  8. Current understanding of interactions between nanoparticles and the immune system

    International Nuclear Information System (INIS)

    Dobrovolskaia, Marina A.; Shurin, Michael; Shvedova, Anna A.

    2016-01-01

    The delivery of drugs, antigens, and imaging agents benefits from using nanotechnology-based carriers. The successful translation of nanoformulations to the clinic involves thorough assessment of their safety profiles, which, among other end-points, includes evaluation of immunotoxicity. The past decade of research focusing on nanoparticle interaction with the immune system has been fruitful in terms of understanding the basics of nanoparticle immunocompatibility, developing a bioanalytical infrastructure to screen for nanoparticle-mediated immune reactions, beginning to uncover the mechanisms of nanoparticle immunotoxicity, and utilizing current knowledge about the structure–activity relationship between nanoparticles' physicochemical properties and their effects on the immune system to guide safe drug delivery. In the present review, we focus on the most prominent pieces of the nanoparticle–immune system puzzle and discuss the achievements, disappointments, and lessons learned over the past 15 years of research on the immunotoxicity of engineered nanomaterials. - Graphical abstract: API — active pharmaceutical ingredient; NP — nanoparticles; PCP — physicochemical properties, CARPA — complement activation-related pseudoallergy, ICH — International Conference on Harmonization. Display Omitted - Highlights: • Achievements, disappointments and lessons learned over past decade are reviewed. • Areas in focus include characterization, immunotoxicity and utility in drug delivery. • Future direction focusing on mechanistic immunotoxicity studies is proposed.

  9. Current understanding of interactions between nanoparticles and the immune system

    Energy Technology Data Exchange (ETDEWEB)

    Dobrovolskaia, Marina A., E-mail: marina@mail.nih.gov [Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI at Frederick, Frederick, MD 21702 (United States); Shurin, Michael [Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Shvedova, Anna A., E-mail: ats1@cdc.gov [Health Effects Laboratory Division, National Institute of Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505 (United States); Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506 (United States)

    2016-05-15

    The delivery of drugs, antigens, and imaging agents benefits from using nanotechnology-based carriers. The successful translation of nanoformulations to the clinic involves thorough assessment of their safety profiles, which, among other end-points, includes evaluation of immunotoxicity. The past decade of research focusing on nanoparticle interaction with the immune system has been fruitful in terms of understanding the basics of nanoparticle immunocompatibility, developing a bioanalytical infrastructure to screen for nanoparticle-mediated immune reactions, beginning to uncover the mechanisms of nanoparticle immunotoxicity, and utilizing current knowledge about the structure–activity relationship between nanoparticles' physicochemical properties and their effects on the immune system to guide safe drug delivery. In the present review, we focus on the most prominent pieces of the nanoparticle–immune system puzzle and discuss the achievements, disappointments, and lessons learned over the past 15 years of research on the immunotoxicity of engineered nanomaterials. - Graphical abstract: API — active pharmaceutical ingredient; NP — nanoparticles; PCP — physicochemical properties, CARPA — complement activation-related pseudoallergy, ICH — International Conference on Harmonization. Display Omitted - Highlights: • Achievements, disappointments and lessons learned over past decade are reviewed. • Areas in focus include characterization, immunotoxicity and utility in drug delivery. • Future direction focusing on mechanistic immunotoxicity studies is proposed.

  10. Interactions between terrestrial mammals and the fruits of two neotropical rainforest tree species

    Science.gov (United States)

    Camargo-Sanabria, Angela A.; Mendoza, Eduardo

    2016-05-01

    Mammalian frugivory is a distinctive biotic interaction of tropical forests; however, most efforts in the Neotropics have focused on cases of animals foraging in the forest canopy, in particular primates and bats. In contrast much less is known about this interaction when it involves fruits deposited on the forest floor and terrestrial mammals. We conducted a camera-trapping survey to analyze the characteristics of the mammalian ensembles visiting fruits of Licania platypus and Pouteria sapota deposited on the forest floor in a well preserved tropical rainforest of Mexico. Both tree species produce large fruits but contrast in their population densities and fruit chemical composition. In particular, we expected that more species of terrestrial mammals would consume P. sapota fruits due to its higher pulp:seed ratio, lower availability and greater carbohydrate content. We monitored fruits at the base of 13 trees (P. sapota, n = 4 and L. platypus, n = 9) using camera-traps. We recorded 13 mammal species from which we had evidence of 8 consuming or removing fruits. These eight species accounted for 70% of the species of mammalian frugivores active in the forest floor of our study area. The ensemble of frugivores associated with L. platypus (6 spp.) was a subset of that associated with P. sapota (8 spp). Large body-sized species such as Tapirus bairdii, Pecari tajacu and Cuniculus paca were the mammals more frequently interacting with fruits of the focal species. Our results further our understanding of the characteristics of the interaction between terrestrial mammalian frugivores and large-sized fruits, helping to gain a more balanced view of its importance across different tropical forests and providing a baseline to compare against defaunated forests.

  11. Understanding Protein-Protein Interactions Using Local Structural Features

    DEFF Research Database (Denmark)

    Planas-Iglesias, Joan; Bonet, Jaume; García-García, Javier

    2013-01-01

    Protein-protein interactions (PPIs) play a relevant role among the different functions of a cell. Identifying the PPI network of a given organism (interactome) is useful to shed light on the key molecular mechanisms within a biological system. In this work, we show the role of structural features...... interacting and non-interacting protein pairs to classify the structural features that sustain the binding (or non-binding) behavior. Our study indicates that not only the interacting region but also the rest of the protein surface are important for the interaction fate. The interpretation...... to score the likelihood of the interaction between two proteins and to develop a method for the prediction of PPIs. We have tested our method on several sets with unbalanced ratios of interactions and non-interactions to simulate real conditions, obtaining accuracies higher than 25% in the most unfavorable...

  12. Biological interactions and cooperative management of multiple species.

    Science.gov (United States)

    Jiang, Jinwei; Min, Yong; Chang, Jie; Ge, Ying

    2017-01-01

    Coordinated decision making and actions have become the primary solution for the overexploitation of interacting resources within ecosystems. However, the success of coordinated management is highly sensitive to biological, economic, and social conditions. Here, using a game theoretic framework and a 2-species model that considers various biological relationships (competition, predation, and mutualism), we compute cooperative (or joint) and non-cooperative (or separate) management equilibrium outcomes of the model and investigate the effects of the type and strength of the relationships. We find that cooperation does not always show superiority to non-cooperation in all biological interactions: (1) if and only if resources are involved in high-intensity predation relationships, cooperation can achieve a win-win scenario for ecosystem services and resource diversity; (2) for competitive resources, cooperation realizes higher ecosystem services by sacrificing resource diversity; and (3) for mutual resources, cooperation has no obvious advantage for either ecosystem services or resource evenness but can slightly improve resource abundance. Furthermore, by using a fishery model of the North California Current Marine Ecosystem with 63 species and seven fleets, we demonstrate that the theoretical results can be reproduced in real ecosystems. Therefore, effective ecosystem management should consider the interconnection between stakeholders' social relationship and resources' biological relationships.

  13. Understanding Molecular Interactions within Chemically Selective Layered Polymer Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Gary J. Blanchard

    2009-06-30

    This work focuses on two broad issues. These are (1) the molecular origin of the chemical selectivity achieved with ultrathin polymer multilayers, and (2) how the viscoelastic properties of the polymer layers are affected by exposure to solvent and analytes. These issues are inter-related, and to understand them we need to design experiments that probe both the energetic and kinetic aspects of interfacial adsorption processes. This project focuses on controling the chemical structure, thickness, morphology and sequential ordering of polymer layers bound to interfaces using maleimide-vinyl ether and closely related alternating copolymerization chemistry and efficient covalent cross-linking reactions that allow for layer-by-layer polymer deposition. This chemistry has been developed during the funding cycle of this Grant. We have measure the equilibrium constants for interactions between specific layers within the polymer interfaces and size-controlled, surface-functionalized gold nanoparticles. The ability to control both size and functionality of gold nanoparticle model analytes allows us to evaluate the average “pore size” that characterizes our polymer films. We have measured the “bulk” viscosity and shear modulus of the ultrathin polymer films as a function of solvent overlayer identity using quartz crystal microbalance complex impedance measurements. We have measured microscopic viscosity at specific locations within the layered polymer interfaces with time-resolved fluorescence lifetime and depolarization techniques. We combine polymer, cross-linking and nanoparticle synthetic expertise with a host of characterization techniques, including QCM gravimetry and complex impedance analysis, steady state and time-resolved spectroscopies.

  14. The essential interactions between understanding climate variability and climate change

    Science.gov (United States)

    Neelin, J. D.

    2017-12-01

    Global change is sometimes perceived as a field separate from other aspects of atmospheric and oceanic sciences. Despite the long history of communication between the scientific communities studying global change and those studying interannual variability and weather, increasing specialization and conflicting societal demands on the fields can put these interactions at risk. At the same time, current trajectories for greenhouse gas emissions imply substantial adaptation to climate change will be necessary. Instead of simply projecting effects to be avoided, the field is increasingly being asked to provide regional-level information for specific adaptation strategies—with associated requirements for increased precision on projections. For extreme events, challenges include validating models for rare events, especially for events that are unprecedented in the historical record. These factors will be illustrated with examples of information transfer to climate change from work on fundamental climate processes aimed originally at timescales from hours to interannual. Work to understand the effects that control probability distributions of moisture, temperature and precipitation in historical weather can yield new factors to examine for the changes in the extremes of these distributions under climate change. Surprisingly simple process models can give insights into the behavior of vastly more complex climate models. Observation systems and model ensembles aimed at weather and interannual variations prove valuable for global change and vice versa. Work on teleconnections in the climate system, such as the remote impacts of El Niño, is informing analysis of projected regional rainfall change over California. Young scientists need to prepare to work across the full spectrum of climate variability and change, and to communicate their findings, as they and our society head for future that is more interesting than optimal.

  15. Predator-prey interactions as macro-scale drivers of species diversity in mammals

    DEFF Research Database (Denmark)

    Sandom, Christopher James; Sandel, Brody Steven; Dalby, Lars

    Background/Question/Methods Understanding the importance of predator-prey interactions for species diversity is a central theme in ecology, with fundamental consequences for predicting the responses of ecosystems to land use and climate change. We assessed the relative support for different...... mechanistic drivers of mammal species richness at macro-scales for two trophic levels: predators and prey. To disentangle biotic (i.e. functional predator-prey interactions) from abiotic (i.e. environmental) and bottom-up from top-down determinants we considered three hypotheses: 1) environmental factors...... that determine ecosystem productivity drive prey and predator richness (the productivity hypothesis, abiotic, bottom-up), 2) consumer richness is driven by resource diversity (the resource diversity hypothesis, biotic, bottom-up) and 3) consumers drive richness of their prey (the top-down hypothesis, biotic, top...

  16. Protein-protein interaction network-based detection of functionally similar proteins within species.

    Science.gov (United States)

    Song, Baoxing; Wang, Fen; Guo, Yang; Sang, Qing; Liu, Min; Li, Dengyun; Fang, Wei; Zhang, Deli

    2012-07-01

    Although functionally similar proteins across species have been widely studied, functionally similar proteins within species showing low sequence similarity have not been examined in detail. Identification of these proteins is of significant importance for understanding biological functions, evolution of protein families, progression of co-evolution, and convergent evolution and others which cannot be obtained by detection of functionally similar proteins across species. Here, we explored a method of detecting functionally similar proteins within species based on graph theory. After denoting protein-protein interaction networks using graphs, we split the graphs into subgraphs using the 1-hop method. Proteins with functional similarities in a species were detected using a method of modified shortest path to compare these subgraphs and to find the eligible optimal results. Using seven protein-protein interaction networks and this method, some functionally similar proteins with low sequence similarity that cannot detected by sequence alignment were identified. By analyzing the results, we found that, sometimes, it is difficult to separate homologous from convergent evolution. Evaluation of the performance of our method by gene ontology term overlap showed that the precision of our method was excellent. Copyright © 2012 Wiley Periodicals, Inc.

  17. Understanding protein–protein interactions by genetic suppression

    Indian Academy of Sciences (India)

    Unknown

    Protein–protein interactions influence many cellular processes and it is increasingly being felt that even a weak and ... In a bacterial system where the complete genome sequence is available, it is an arduous ... teins (primary mutations) are useful in these studies. ... of interaction of this antibiotic with the central enzyme.

  18. Ecological multiplex interactions determine the role of species for parasite spread amplification.

    Science.gov (United States)

    Stella, Massimo; Selakovic, Sanja; Antonioni, Alberto; Andreazzi, Cecilia

    2018-04-23

    Despite their potential interplay, multiple routes of many disease transmissions are often investigated separately. As an unifying framework for understanding parasite spread through interdependent transmission paths, we present the 'ecomultiplex' model, where the multiple transmission paths among a diverse community of interacting hosts are represented as a spatially explicit multiplex network. We adopt this framework for designing and testing potential control strategies for T. cruzi spread in two empirical host communities. We show that the ecomultiplex model is an efficient and low data-demanding method to identify which species enhances parasite spread and should thus be a target for control strategies. We also find that the interplay between predator-prey and host-parasite interactions leads to a phenomenon of parasite amplification, in which top predators facilitate T. cruzi spread, offering a mechanistic interpretation of previous empirical findings. Our approach can provide novel insights in understanding and controlling parasite spreading in real-world complex systems. © 2018, Stella et al.

  19. Diversity-interaction modeling: estimating contributions of species identities and interactions to ecosystem function

    DEFF Research Database (Denmark)

    Kirwan, L; Connolly, J; Finn, J A

    2009-01-01

    to the roles of evenness, functional groups, and functional redundancy. These more parsimonious descriptions can be especially useful in identifying general diversity-function relationships in communities with large numbers of species. We provide an example of the application of the modeling framework......We develop a modeling framework that estimates the effects of species identity and diversity on ecosystem function and permits prediction of the diversity-function relationship across different types of community composition. Rather than just measure an overall effect of diversity, we separately....... These models describe community-level performance and thus do not require separate measurement of the performance of individual species. This flexible modeling approach can be tailored to test many hypotheses in biodiversity research and can suggest the interaction mechanisms that may be acting....

  20. Understanding the physical dynamics and ecological interactions in tidal stream energy environments

    Science.gov (United States)

    Fraser, Shaun; Williamson, Benjamin J.; Nikora, Vladimir; Scott, Beth E.

    2017-04-01

    Tidal stream energy devices are intended to operate in energetic physical environments characterised by high flows and extreme turbulence. These environments are often of ecological importance to a range of marine species. Understanding the physical dynamics and ecological interactions at fine scales in such sites is essential for device/array design and to understand environmental impacts. However, investigating fine scale characteristics requires high resolution field measurements which are difficult to attain and interpret, with data often confounded by interference related to turbulence. Consequently, field observations in tidal stream energy environments are limited and require the development of specialised analysis methods and so significant knowledge gaps are still present. The seabed mounted FLOWBEC platform is addressing these knowledge gaps using upward facing instruments to collect information from around marine energy infrastructure. Multifrequency and multibeam echosounder data provide detailed information on the distribution and interactions of biological targets, such as fish and diving seabirds, while simultaneously recording the scales and intensity of turbulence. Novel processing methodologies and instrument integration techniques have been developed which combine different data types and successfully separates signal from noise to reveal new evidence about the behaviour of mobile species and the structure of turbulence at all speeds of the tide and throughout the water column. Multiple platform deployments in the presence and absence of marine energy infrastructure reveal the natural characteristics of high energy sites, and enable the interpretation of the physical and biological impacts of tidal stream devices. These methods and results are relevant to the design and consenting of marine renewable energy technologies, and provide novel information on the use of turbulence for foraging opportunities in high energy sites by mobile species.

  1. Reactive oxygen species, essential molecules, during plant-pathogen interactions.

    Science.gov (United States)

    Camejo, Daymi; Guzmán-Cedeño, Ángel; Moreno, Alexander

    2016-06-01

    Reactive oxygen species (ROS) are continually generated as a consequence of the normal metabolism in aerobic organisms. Accumulation and release of ROS into cell take place in response to a wide variety of adverse environmental conditions including salt, temperature, cold stresses and pathogen attack, among others. In plants, peroxidases class III, NADPH oxidase (NOX) locates in cell wall and plasma membrane, respectively, may be mainly enzymatic systems involving ROS generation. It is well documented that ROS play a dual role into cells, acting as important signal transduction molecules and as toxic molecules with strong oxidant power, however some aspects related to its function during plant-pathogen interactions remain unclear. This review focuses on the principal enzymatic systems involving ROS generation addressing the role of ROS as signal molecules during plant-pathogen interactions. We described how the chloroplasts, mitochondria and peroxisomes perceive the external stimuli as pathogen invasion, and trigger resistance response using ROS as signal molecule. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Trophic interactions between native and introduced fish species in a littoral fish community.

    Science.gov (United States)

    Monroy, M; Maceda-Veiga, A; Caiola, N; De Sostoa, A

    2014-11-01

    The trophic interactions between 15 native and two introduced fish species, silverside Odontesthes bonariensis and rainbow trout Oncorhynchus mykiss, collected in a major fishery area at Lake Titicaca were explored by integrating traditional ecological knowledge and stable-isotope analyses (SIA). SIA suggested the existence of six trophic groups in this fish community based on δ(13)C and δ(15)N signatures. This was supported by ecological evidence illustrating marked spatial segregation between groups, but a similar trophic level for most of the native groups. Based on Bayesian ellipse analyses, niche overlap appeared to occur between small O. bonariensis (<90 mm) and benthopelagic native species (31.6%), and between the native pelagic killifish Orestias ispi and large O. bonariensis (39%) or O. mykiss (19.7%). In addition, Bayesian mixing models suggested that O. ispi and epipelagic species are likely to be the main prey items for the two introduced fish species. This study reveals a trophic link between native and introduced fish species, and demonstrates the utility of combining both SIA and traditional ecological knowledge to understand trophic relationships between fish species with similar feeding habits. © 2014 The Fisheries Society of the British Isles.

  3. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change.

    Science.gov (United States)

    McCluney, Kevin E; Belnap, Jayne; Collins, Scott L; González, Angélica L; Hagen, Elizabeth M; Nathaniel Holland, J; Kotler, Burt P; Maestre, Fernando T; Smith, Stanley D; Wolf, Blair O

    2012-08-01

    Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts

  4. Optically polarized atoms understanding light-atom interactions

    CERN Document Server

    Auzinsh, Marcis; Rochester, Simon M

    2010-01-01

    This book is addressed at upper-level undergraduate and graduate students involved in research in atomic, molecular, and optical Physics. It will also be useful to researchers practising in this field. It gives an intuitive, yet sufficiently detailed and rigorous introduction to light-atom interactions with a particular emphasis on the symmetry aspects of the interaction, especially those associated with the angular momentum of atoms and light. The book will enable readers to carryout practical calculations on their own, and is richly illustrated with examples drawn from current research topic

  5. Understanding Peptide Dendrimer Interactions with Model Cell Membrane Mimics

    DEFF Research Database (Denmark)

    Lind, Tania Kjellerup

    few new drugs have been marketed over the last decades, making it impossible to keep pace with the disturbing levels of multi-drug resistant bacteria. Research in the area of novel drugs, which are less prone to induce resistance, and in-depth knowledge on their uptake mechanisms is thus of paramount...... fusion method, which presents improved means for studying drug-membrane interactions in the future. The interaction mechanism of a family of dendrimers was examined and in particular one dendrimer (BALY) was extensively studied by the combined use of quartz crystal microbalance, atomic force microscopy...

  6. Rare & Endangered Species: Understanding Our Disappearing Plants and Animals. Activities Guide.

    Science.gov (United States)

    American Gas Association, Arlington, VA. Educational Services.

    About 464 plants and animals found in the United States and its territories are listed by the U.S. Fish and Wildlife Service as threatened or endangered. Another 3900 are candidates for protection. The activities in this guide are designed to help teachers and students understand the issue of endangered species. It includes ideas for several…

  7. Understanding and Creating Accessible Touch Screen Interactions for Blind People

    Science.gov (United States)

    Kane, Shaun K.

    2011-01-01

    Using touch screens presents a number of usability and accessibility challenges for blind people. Most touch screen-based user interfaces are optimized for visual interaction, and are therefore difficult or impossible to use without vision. This dissertation presents an approach to redesigning gesture-based user interfaces to enable blind people…

  8. Connecting traces : Understanding client-server interactions in Ajax applications

    NARCIS (Netherlands)

    Matthijssen, N.; Zaidman, A.; Storey, M.; Bull, I.; Van Deursen, A.

    2010-01-01

    Ajax-enabled web applications are a new breed of highly interactive, highly dynamic web applications. Although Ajax allows developers to create rich web applications, Ajax applications can be difficult to comprehend and thus to maintain. For this reason, we have created FireDetective, a tool that

  9. Gnotobiotic mouse model's contribution to understanding host-pathogen interactions

    Czech Academy of Sciences Publication Activity Database

    Kubelková, K.; Benuchová, M.; Kozáková, Hana; Šinkora, Marek; Kročová, Z.; Pejchal, J.; Macela, A.

    2016-01-01

    Roč. 73, č. 20 (2016), s. 3961-3969 ISSN 1420-682X R&D Projects: GA ČR GA15-02274S Institutional support: RVO:61388971 Keywords : Germ- free model * Gnotobiology * Host-pathogen interaction Subject RIV: EC - Immunology Impact factor: 5.788, year: 2016

  10. Understanding the Dynamic System of Terrorist-Government Interaction

    Science.gov (United States)

    2003-03-01

    Figure 62. Model 5D Equation Level Screen Shot 3 167 Bibliography Bajaracharya, Arun, Stephen Olu Ogunlana, and Nguyen Luong Bach...Understanding the New Security Environment Readings and Interpretations. Guilford, Connecticut: Mc- Graw -Hill/Dushkin 2002 Laqueur, Walter. “Postmodern

  11. Post-genomic approaches to understanding interactions between fungi and their environment.

    Science.gov (United States)

    de Vries, Ronald P; Benoit, Isabelle; Doehlemann, Gunther; Kobayashi, Tetsuo; Magnuson, Jon K; Panisko, Ellen A; Baker, Scott E; Lebrun, Marc-Henri

    2011-06-01

    Fungi inhabit every natural and anthropogenic environment on Earth. They have highly varied life-styles including saprobes (using only dead biomass as a nutrient source), pathogens (feeding on living biomass), and symbionts (co-existing with other organisms). These distinctions are not absolute as many species employ several life styles (e.g. saprobe and opportunistic pathogen, saprobe and mycorrhiza). To efficiently survive in these different and often changing environments, fungi need to be able to modify their physiology and in some cases will even modify their local environment. Understanding the interaction between fungi and their environments has been a topic of study for many decades. However, recently these studies have reached a new dimension. The availability of fungal genomes and development of post-genomic technologies for fungi, such as transcriptomics, proteomics and metabolomics, have enabled more detailed studies into this topic resulting in new insights. Based on a Special Interest Group session held during IMC9, this paper provides examples of the recent advances in using (post-)genomic approaches to better understand fungal interactions with their environments.

  12. Understanding and Managing Process Interaction in IS Development Projects

    DEFF Research Database (Denmark)

    Bygstad, Bendik; Nielsen, Peter Axel

    2012-01-01

    Software-based information systems must be developed and implemented as a part of business change. This is a major challenge, since business change and the development of software-based information systems usually are performed in separate processes. Thus, there is a need to understand and manage...... critical events in the case, what led to the events, and what the consequences are. We discuss the implications for information systems research and in particular we discuss the contribution to project management of iterative and incremental software development.......Software-based information systems must be developed and implemented as a part of business change. This is a major challenge, since business change and the development of software-based information systems usually are performed in separate processes. Thus, there is a need to understand and manage...

  13. Genetic interactions underlying hybrid male sterility in the Drosophila bipectinata species complex.

    Science.gov (United States)

    Mishra, Paras Kumar; Singh, Bashisth Narayan

    2006-06-01

    Understanding genetic mechanisms underlying hybrid male sterility is one of the most challenging problems in evolutionary biology especially speciation. By using the interspecific hybridization method roles of Y chromosome, Major Hybrid Sterility (MHS) genes and cytoplasm in sterility of hybrid males have been investigated in a promising group, the Drosophila bipectinata species complex that consists of four closely related species: D. pseudoananassae, D. bipectinata, D. parabipectinata and D. malerkotliana. The interspecific introgression analyses show that neither cytoplasm nor MHS genes are involved but X-Y interactions may be playing major role in hybrid male sterility between D. pseudoananassae and the other three species. The results of interspecific introgression analyses also show considerable decrease in the number of males in the backcross offspring and all males have atrophied testes. There is a significant positive correlation between sex - ratio distortion and severity of sterility in backcross males. These findings provide evidence that D. pseudoananassae is remotely related with other three species of the D. bipectinata species complex.

  14. Understanding WIMP-baryon interactions with direct detection: a roadmap

    International Nuclear Information System (INIS)

    Gluscevic, Vera; Peter, Annika H.G.

    2014-01-01

    We study prospects of dark-matter direct-detection searches for probing non-relativistic effective theory for WIMP-baryon scattering. We simulate a large set of noisy recoil-energy spectra for different scattering scenarios (beyond the standard momentum-independent contact interaction), for Generation 2 and futuristic experiments. We analyze these simulations and quantify the probability of successfully identifying the operator governing the scattering, if a WIMP signal is observed. We find that the success rate depends on a combination of factors: the WIMP mass, the mediator mass, the type of interaction, and the experimental energy window. For example, for a 20 GeV WIMP, Generation 2 is only likely to identify the right operator if the interaction is Coulomb-like, and is unlikely to do so in any other case. For a WIMP with a mass of 200 GeV or higher, success is almost guaranteed. We also find that, regardless of the scattering model and the WIMP parameters, a single Generation 2 experiment is unlikely to successfully discern the momentum dependence of the underlying operator on its own, but prospects improve drastically when experiments with different target materials and energy windows are analyzed jointly. Furthermore, we examine the quality of parameter estimation and degeneracies in the multi-dimensional parameter space of the effective theory. We find in particular that the resulting WIMP mass estimates can be severely biased if data are analyzed assuming the standard (momentum-independent) operator while the actual operator has momentum-dependence. Finally, we evaluate the ultimate reach of direct detection, finding that the prospects for successful operator selection prior to reaching the irreducible backgrounds are excellent, if the signal is just below the current limits, but slim if Generation 2 does not report WIMP detection

  15. Experiments on growth interactions between two invasive macrophyte species

    NARCIS (Netherlands)

    Barrat-Segretain, M-H.; Elger, A.F.

    2004-01-01

    The success of invasive species has been attributed to the ability to displace other species by direct competition. We studied growth and possible competition between the two macrophyte species Elodea nuttallii and E. canadensis, because the former has been observed to replace the latter in the

  16. Spatiotemporal dynamics in understanding hand—object interactions

    Science.gov (United States)

    Avanzini, Pietro; Fabbri-Destro, Maddalena; Campi, Cristina; Pascarella, Annalisa; Barchiesi, Guido; Cattaneo, Luigi; Rizzolatti, Giacomo

    2013-01-01

    It is generally accepted that visual perception results from the activation of a feed-forward hierarchy of areas, leading to increasingly complex representations. Here we present evidence for a fundamental role of backward projections to the occipito-temporal region for understanding conceptual object properties. The evidence is based on two studies. In the first study, using high-density EEG, we showed that during the observation of how objects are used there is an early activation of occipital and temporal areas, subsequently reaching the pole of the temporal lobe, and a late reactivation of the visual areas. In the second study, using transcranial magnetic stimulation over the occipital lobe, we showed a clear impairment in the accuracy of recognition of how objects are used during both early activation and, most importantly, late occipital reactivation. These findings represent strong neurophysiological evidence that a top-down mechanism is fundamental for understanding conceptual object properties, and suggest that a similar mechanism might be also present for other higher-order cognitive functions. PMID:24043805

  17. Understanding social complexity within the wildland urban interface: A new species of human habitation? Environmental Management

    Science.gov (United States)

    Travis B. Paveglio; Pamela J. Jakes; Matthew S. Carroll; Daniel R. Williams

    2009-01-01

    The lack of knowledge regarding social diversity in the Wildland Urban Interface (WUI) or an in-depth understanding of the ways people living there interact to address common problems is concerning, perhaps even dangerous, given that community action is necessary for successful wildland fire preparedness and natural resource management activities. In this article, we...

  18. Role of the noise on the transient dynamics of an ecosystem of interacting species

    Science.gov (United States)

    Spagnolo, B.; La Barbera, A.

    2002-11-01

    We analyze the transient dynamics of an ecosystem described by generalized Lotka-Volterra equations in the presence of a multiplicative noise and a random interaction parameter between the species. We consider specifically three cases: (i) two competing species, (ii) three interacting species (one predator-two preys), (iii) n-interacting species. The interaction parameter in case (i) is a stochastic process which obeys a stochastic differential equation. We find noise delayed extinction of one of two species, which is akin to the noise-enhanced stability phenomenon. Other two noise-induced effects found are temporal oscillations and spatial patterns of the two competing species. In case (ii) the noise induces correlated spatial patterns of the predator and of the two preys concentrations. Finally, in case (iii) we find the asymptotic behavior of the time average of the ith population when the ecosystem is composed of a great number of interacting species.

  19. Competitive interactions between co-occurring invaders: identifying asymmetries between two invasive crayfish species

    NARCIS (Netherlands)

    Hudina, S.; Galic, N.G.; Roessink, I.; Hock, K.

    2011-01-01

    Ecosystems today increasingly suffer invasions by multiple invasive species. Complex interactions between invasive species can have different fitness implications for each invader, which can in turn determine the future progression of their invasions and result in differential impacts on native

  20. Empathy and Prosocial Behaviours. Insights from Intra- and Inter-species Interactions

    Directory of Open Access Journals (Sweden)

    Maria elide Vanutelli

    2015-04-01

    Full Text Available It has been suggested that “sharing the same body” between the observer and the observed subject allows for a direct form of understanding and emotional attuning by a process of simulation. Then, what happens when we don’t share the same body? The aim of the present paper is to review available evidence of intra- and inter-species empathic and prosocial behaviours, with respect to within-human, within-animals and cross-specifies interactions. Similarities and differences will be evaluated using a comparative perspective, and some possible moral and ethical implications for human-animal interactions will be discussed. According to Charles Darwin’s work, the perceived differences between human and animal empathy could be more quantitative than qualitative, suggesting a common affective core which allows both categories to mirror and tune to conspecifics’ feelings, where in the case of humans it can be integrated with more complex cognitive processes.

  1. Extrapolation of plasma clearance to understand species differences in toxicokinetics of bisphenol A.

    Science.gov (United States)

    Poet, Torka; Hays, Sean

    2017-10-13

    1. Understanding species differences in the toxicokinetics of bisphenol A (BPA) is central to setting acceptable exposure limits for human exposures to BPA. BPA toxicokinetics have been well studied, with controlled oral dosing studies in several species and across a wide dose range. 2. We analyzed the available toxicokinetic data for BPA following oral dosing to assess potential species differences and dose dependencies. BPA is rapidly conjugated and detoxified in all species. The toxicokinetics of BPA can be well described using non-compartmental analyses. 3. Several studies measured free (unconjugated) BPA in blood and reported area under the curve (AUC) of free BPA in blood of mice, rats, monkeys, chimpanzees and humans following controlled oral doses. Extrinsic clearance was calculated and analyzed across species and dose using allometric scaling. 4. The results indicate free BPA clearance is well described using allometric scaling with high correlation coefficients across all species and doses up to 10 mg/kg. The results indicate a human equivalent dose factor (HEDf) of 0.9 is appropriate for extrapolating a point of departure from mice and rats to a human equivalent dose (HED), thereby replacing default uncertainty factors for animal to human toxicokinetics.

  2. Understanding Mesoscale Land-Atmosphere Interactions in Arctic Region

    Science.gov (United States)

    Hong, X.; Wang, S.; Nachamkin, J. E.

    2017-12-01

    Land-atmosphere interactions in Arctic region are examined using the U.S. Navy Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS©*) with the Noah Land Surface Model (LSM). Initial land surface variables in COAMPS are interpolated from the real-time NASA Land Information System (LIS). The model simulations are configured for three nest grids with 27-9-3 km horizontal resolutions. The simulation period is set for October 2015 with 12-h data assimilation update cycle and 24-h integration length. The results are compared with those simulated without using LSM and evaluated with observations from ONR Sea State R/V Sikuliaq cruise and the North Slope of Alaska (NSA). There are complex soil and vegetation types over the surface for simulation with LSM, compared to without LSM simulation. The results show substantial differences in surface heat fluxes between bulk surface scheme and LSM, which may have an important impact on the sea ice evolution over the Arctic region. Evaluations from station data show surface air temperature and relative humidity have smaller biases for simulation using LSM. Diurnal variation of land surface temperature, which is necessary for physical processes of land-atmosphere, is also better captured than without LSM.

  3. Antagonistic interactions between an invasive alien and a native coccinellid species may promote coexistence.

    Science.gov (United States)

    Hentley, William T; Vanbergen, Adam J; Beckerman, Andrew P; Brien, Melanie N; Hails, Rosemary S; Jones, T Hefin; Johnson, Scott N

    2016-07-01

    Despite the capacity of invasive alien species to alter ecosystems, the mechanisms underlying their impact remain only partly understood. Invasive alien predators, for example, can significantly disrupt recipient communities by consuming prey species or acting as an intraguild predator (IGP). Behavioural interactions are key components of interspecific competition between predators, yet these are often overlooked invasion processes. Here, we show how behavioural, non-lethal IGP interactions might facilitate the establishment success of an invading alien species. We experimentally assessed changes in feeding behaviour (prey preference and consumption rate) of native UK coccinellid species (Adalia bipunctata and Coccinella septempunctata), whose populations are, respectively, declining and stable, when exposed to the invasive intraguild predator, Harmonia axyridis. Using a population dynamics model parameterized with these experimental data, we predicted how intraguild predation, accommodating interspecific behavioural interactions, might impact the abundance of the native and invasive alien species over time. When competing for the same aphid resource, the feeding rate of A. bipunctata significantly increased compared to the feeding in isolation, while the feeding rate of H. axyridis significantly decreased. This suggests that despite significant declines in the UK, A. bipunctata is a superior competitor to the intraguild predator H. axyridis. In contrast, the behaviour of non-declining C. septempunctata was unaltered by the presence of H. axyridis. Our experimental data show the differential behavioural plasticity of competing native and invasive alien predators, but do not explain A. bipunctata declines observed in the UK. Using behavioural plasticity as a parameter in a population dynamic model for A. bipunctata and H. axyridis, coexistence is predicted between the native and invasive alien following an initial period of decline in the native species. We

  4. Understanding Plant-Microbe Interactions for Phytoremediation of Petroleum-Polluted Soil

    Science.gov (United States)

    Nie, Ming; Wang, Yijing; Yu, Jiayi; Xiao, Ming; Jiang, Lifen; Yang, Ji; Fang, Changming; Chen, Jiakuan; Li, Bo

    2011-01-01

    Plant-microbe interactions are considered to be important processes determining the efficiency of phytoremediation of petroleum pollution, however relatively little is known about how these interactions are influenced by petroleum pollution. In this experimental study using a microcosm approach, we examined how plant ecophysiological traits, soil nutrients and microbial activities were influenced by petroleum pollution in Phragmites australis, a phytoremediating species. Generally, petroleum pollution reduced plant performance, especially at early stages of plant growth. Petroleum had negative effects on the net accumulation of inorganic nitrogen from its organic forms (net nitrogen mineralization (NNM)) most likely by decreasing the inorganic nitrogen available to the plants in petroleum-polluted soils. However, abundant dissolved organic nitrogen (DON) was found in petroleum-polluted soil. In order to overcome initial deficiency of inorganic nitrogen, plants by dint of high colonization of arbuscular mycorrhizal fungi might absorb some DON for their growth in petroleum-polluted soils. In addition, through using a real-time polymerase chain reaction method, we quantified hydrocarbon-degrading bacterial traits based on their catabolic genes (i.e. alkB (alkane monooxygenase), nah (naphthalene dioxygenase) and tol (xylene monooxygenase) genes). This enumeration of target genes suggests that different hydrocarbon-degrading bacteria experienced different dynamic changes during phytoremediation and a greater abundance of alkB was detected during vegetative growth stages. Because phytoremediation of different components of petroleum is performed by different hydrocarbon-degrading bacteria, plants’ ability of phytoremediating different components might therefore vary during the plant life cycle. Phytoremediation might be most effective during the vegetative growth stages as greater abundances of hydrocarbon-degrading bacteria containing alkB and tol genes were observed

  5. Balance of Interactions Determines Optimal Survival in Multi-Species Communities.

    Directory of Open Access Journals (Sweden)

    Anshul Choudhary

    Full Text Available We consider a multi-species community modelled as a complex network of populations, where the links are given by a random asymmetric connectivity matrix J, with fraction 1 - C of zero entries, where C reflects the over-all connectivity of the system. The non-zero elements of J are drawn from a Gaussian distribution with mean μ and standard deviation σ. The signs of the elements Jij reflect the nature of density-dependent interactions, such as predatory-prey, mutualism or competition, and their magnitudes reflect the strength of the interaction. In this study we try to uncover the broad features of the inter-species interactions that determine the global robustness of this network, as indicated by the average number of active nodes (i.e. non-extinct species in the network, and the total population, reflecting the biomass yield. We find that the network transitions from a completely extinct system to one where all nodes are active, as the mean interaction strength goes from negative to positive, with the transition getting sharper for increasing C and decreasing σ. We also find that the total population, displays distinct non-monotonic scaling behaviour with respect to the product μC, implying that survival is dependent not merely on the number of links, but rather on the combination of the sparseness of the connectivity matrix and the net interaction strength. Interestingly, in an intermediate window of positive μC, the total population is maximal, indicating that too little or too much positive interactions is detrimental to survival. Rather, the total population levels are optimal when the network has intermediate net positive connection strengths. At the local level we observe marked qualitative changes in dynamical patterns, ranging from anti-phase clusters of period 2 cycles and chaotic bands, to fixed points, under the variation of mean μ of the interaction strengths. We also study the correlation between synchronization and survival

  6. SPECIES INTERACTIONS BETWEEN ESTUARINE DETRITIVORES: INHIBITION OR FACILITATION?

    Science.gov (United States)

    Native Hawaiian estuarine detritivores; the prawn Macrobrachium grandimanus, and the neritid gastropod Neritina vespertina, were maintained in flow-through microcosms with conditioned leaves from two riparian tree species, Hau (Hibiscus tiliaceus) and guava (Psidium guajava). Th...

  7. The Effects of Species Interaction and Pond Stocking Density on ...

    African Journals Online (AJOL)

    Burchell) and Heterobranchus bidorsalis (Geoffrey Saint-Hilaire) and pond stocking density on the culture of tilapia species which display different parental care strategies. In the presence of catfishes, the maternal mouth-brooder O. niloticus ...

  8. ROUNDTABLE SESSION 2B: NATIONAL INTERACTIONS BETWEEN NON-INDIGENOUS AND INDIGENOUS CRAYFISH SPECIES

    Directory of Open Access Journals (Sweden)

    GHERARDI F.

    2002-07-01

    Full Text Available The main object of the present essay is to summarise some aspects underlying the interactions between non-indigenous (NICS and indigenous (ICS crayfish species. The discussion has been also extended to the effects exercised by NICS on the natural habitats they occupy. While doing research on the dyads NICS/ICS, one starting point is to extrapolate common traits that make NICS good invaders from the analysis of their biology, ecology and ethology and the comparison with indigenous species. A subsequent step is to switch attention to the understanding of the characteristics that make ecosystems less vulnerable to invasions and then to analyse both the complex interactions of invaders and target communities and the negative and positive impacts exerted by NICS on the occupied habitats. Examples from Sweden, Britain, and Italy have shown that NICS can replace the native species by a combination of several interacting mechanisms. Besides the transmission of the crayfish plague fungus, mechanisms into action include mostly competitive interference, but also diverse life history traits, recruitment failure, differential susceptibility to predation, and reproductive interference. It has been claimed that invasion theory is full of rules of thumb that, having no precise predictive powers, are thus useless to guide reliable public policy. The solution of the prediction problem requires an in-depth study of every potential invader and target community, trespassing the boundaries among disciplines and having a look at crayfish as a whole and not a single entity. The expectation is thus the return to precise and clear empirical generalisations that can be most useful to develop management strategies.

  9. Context-dependent interactions and the regulation of species richness in freshwater fish

    Science.gov (United States)

    MacDougall, Andrew S.; Harvey, Eric; McCune, Jenny L.; Nilsson, Karin A.; Bennett, Joseph; Firn, Jennifer; Bartley, Timothy; Grace, James B.; Kelly, Jocelyn; Tunney, Tyler D.; McMeans, Bailey; Matsuzaki, Shin-Ichiro S.; Kadoya, Taku; Esch, Ellen; Cazelles, Kevin; Lester, Nigel; McCann, Kevin S.

    2018-01-01

    Species richness is regulated by a complex network of scale-dependent processes. This complexity can obscure the influence of limiting species interactions, making it difficult to determine if abiotic or biotic drivers are more predominant regulators of richness. Using integrative modeling of freshwater fish richness from 721 lakes along an 11olatitudinal gradient, we find negative interactions to be a relatively minor independent predictor of species richness in lakes despite the widespread presence of predators. Instead, interaction effects, when detectable among major functional groups and 231 species pairs, were strong, often positive, but contextually dependent on environment. These results are consistent with the idea that negative interactions internally structure lake communities but do not consistently ‘scale-up’ to regulate richness independently of the environment. The importance of environment for interaction outcomes and its role in the regulation of species richness highlights the potential sensitivity of fish communities to the environmental changes affecting lakes globally.

  10. Is AIBO Real? Understanding Children's Beliefs about and Behavioral Interactions with Anthropomorphic Toys

    Science.gov (United States)

    Francis, Andrea; Mishra, Punya

    2009-01-01

    Interactive toys for children are becoming more popular for both play and educational purposes, yet an understanding of the dependent measures used to study such interactions has not yet been explored. This study takes advantage of the idea that robotic animals exhibit both living and pretend qualities, and are therefore ideal for studying…

  11. Gear-based species selectivity and potential interactions between ...

    African Journals Online (AJOL)

    ... and competition between different co-occurring fisheries is therefore important for the implementation of ecosystem based fisheries management interventions. In this study, we used multivariate and ecological approaches to evaluate gear competition and interactions between artisanal and aquarium fishers using a case ...

  12. Asymmetric biotic interactions and abiotic niche differences revealed by a dynamic joint species distribution model.

    Science.gov (United States)

    Lany, Nina K; Zarnetske, Phoebe L; Schliep, Erin M; Schaeffer, Robert N; Orians, Colin M; Orwig, David A; Preisser, Evan L

    2018-05-01

    A species' distribution and abundance are determined by abiotic conditions and biotic interactions with other species in the community. Most species distribution models correlate the occurrence of a single species with environmental variables only, and leave out biotic interactions. To test the importance of biotic interactions on occurrence and abundance, we compared a multivariate spatiotemporal model of the joint abundance of two invasive insects that share a host plant, hemlock woolly adelgid (HWA; Adelges tsugae) and elongate hemlock scale (EHS; Fiorina externa), to independent models that do not account for dependence among co-occurring species. The joint model revealed that HWA responded more strongly to abiotic conditions than EHS. Additionally, HWA appeared to predispose stands to subsequent increase of EHS, but HWA abundance was not strongly dependent on EHS abundance. This study demonstrates how incorporating spatial and temporal dependence into a species distribution model can reveal the dependence of a species' abundance on other species in the community. Accounting for dependence among co-occurring species with a joint distribution model can also improve estimation of the abiotic niche for species affected by interspecific interactions. © 2018 by the Ecological Society of America.

  13. General two-species interacting Lotka-Volterra system: Population dynamics and wave propagation

    Science.gov (United States)

    Zhu, Haoqi; Wang, Mao-Xiang; Lai, Pik-Yin

    2018-05-01

    The population dynamics of two interacting species modeled by the Lotka-Volterra (LV) model with general parameters that can promote or suppress the other species is studied. It is found that the properties of the two species' isoclines determine the interaction of species, leading to six regimes in the phase diagram of interspecies interaction; i.e., there are six different interspecific relationships described by the LV model. Four regimes allow for nontrivial species coexistence, among which it is found that three of them are stable, namely, weak competition, mutualism, and predator-prey scenarios can lead to win-win coexistence situations. The Lyapunov function for general nontrivial two-species coexistence is also constructed. Furthermore, in the presence of spatial diffusion of the species, the dynamics can lead to steady wavefront propagation and can alter the population map. Propagating wavefront solutions in one dimension are investigated analytically and by numerical solutions. The steady wavefront speeds are obtained analytically via nonlinear dynamics analysis and verified by numerical solutions. In addition to the inter- and intraspecific interaction parameters, the intrinsic speed parameters of each species play a decisive role in species populations and wave properties. In some regimes, both species can copropagate with the same wave speeds in a finite range of parameters. Our results are further discussed in the light of possible biological relevance and ecological implications.

  14. Environmental variability uncovers disruptive effects of species' interactions on population dynamics.

    Science.gov (United States)

    Gudmundson, Sara; Eklöf, Anna; Wennergren, Uno

    2015-08-07

    How species respond to changes in environmental variability has been shown for single species, but the question remains whether these results are transferable to species when incorporated in ecological communities. Here, we address this issue by analysing the same species exposed to a range of environmental variabilities when (i) isolated or (ii) embedded in a food web. We find that all species in food webs exposed to temporally uncorrelated environments (white noise) show the same type of dynamics as isolated species, whereas species in food webs exposed to positively autocorrelated environments (red noise) can respond completely differently compared with isolated species. This is owing to species following their equilibrium densities in a positively autocorrelated environment that in turn enables species-species interactions to come into play. Our results give new insights into species' response to environmental variation. They especially highlight the importance of considering both species' interactions and environmental autocorrelation when studying population dynamics in a fluctuating environment. © 2015 The Author(s).

  15. Understanding tourists' preference for mammal species in private protected areas: is there a case for extralimital species for ecotourism?

    Directory of Open Access Journals (Sweden)

    Kristine Maciejewski

    Full Text Available Private Protected Areas (PPAs often use wildlife-based ecotourism as their primary means of generating business. Achieving tourist satisfaction has become a strong driving goal in the management of many PPAs, often at the expense of biodiversity. Many extralimitral species, those which historically did not occur in an area, are stocked in PPAs with the intention of increasing ecotourism attractions. Even though the ecological and economic costs of stocking these species are high, the social benefits are not understood and little information exists globally on the ecotourism role of extralimital species. This study assessed the value of stocking extralimital species using questionnaire-based surveys and observing tourists in Shamwari Private Game Reserve in the Eastern Cape Province of South Africa. No difference was found between indigenous and extralimital species with regards to the tourists' weighted scoring system, average amount tourists were willing to pay, total viewing time, average viewing time or the likelihood of stopping to view species when encountered on game drives. During game drives a strong preference was found for the elephant (Loxodonta africana, lion (Panthera leo, leopard (Panthera pardus and cheetah (Acynonix jubatus. With the exception of the cheetah, these species are all members of the "big five" and are indigenous. Species availability and visibility, however, may influence the amount of time tourists spend at an animal sighting. Our analysis suggests that certain extralimital species (typically larger and charismatic species contribute to tourist satisfaction, while particularly the smaller extralimital species add little to the game viewing experience, but add to the costs and risks of the PPAs. We recommend that extralimital species introductions for ecotourism purposes should be approached with caution with regards to the risks to the sustainability of PPAs.

  16. Understanding Tourists’ Preference for Mammal Species in Private Protected Areas: Is There a Case for Extralimital Species for Ecotourism?

    Science.gov (United States)

    Maciejewski, Kristine; Kerley, Graham I. H.

    2014-01-01

    Private Protected Areas (PPAs) often use wildlife-based ecotourism as their primary means of generating business. Achieving tourist satisfaction has become a strong driving goal in the management of many PPAs, often at the expense of biodiversity. Many extralimitral species, those which historically did not occur in an area, are stocked in PPAs with the intention of increasing ecotourism attractions. Even though the ecological and economic costs of stocking these species are high, the social benefits are not understood and little information exists globally on the ecotourism role of extralimital species. This study assessed the value of stocking extralimital species using questionnaire-based surveys and observing tourists in Shamwari Private Game Reserve in the Eastern Cape Province of South Africa. No difference was found between indigenous and extralimital species with regards to the tourists’ weighted scoring system, average amount tourists were willing to pay, total viewing time, average viewing time or the likelihood of stopping to view species when encountered on game drives. During game drives a strong preference was found for the elephant (Loxodonta africana), lion (Panthera leo), leopard (Panthera pardus) and cheetah (Acynonix jubatus). With the exception of the cheetah, these species are all members of the “big five” and are indigenous. Species availability and visibility, however, may influence the amount of time tourists spend at an animal sighting. Our analysis suggests that certain extralimital species (typically larger and charismatic species) contribute to tourist satisfaction, while particularly the smaller extralimital species add little to the game viewing experience, but add to the costs and risks of the PPAs. We recommend that extralimital species introductions for ecotourism purposes should be approached with caution with regards to the risks to the sustainability of PPAs. PMID:24505426

  17. Understanding tourists' preference for mammal species in private protected areas: is there a case for extralimital species for ecotourism?

    Science.gov (United States)

    Maciejewski, Kristine; Kerley, Graham I H

    2014-01-01

    Private Protected Areas (PPAs) often use wildlife-based ecotourism as their primary means of generating business. Achieving tourist satisfaction has become a strong driving goal in the management of many PPAs, often at the expense of biodiversity. Many extralimitral species, those which historically did not occur in an area, are stocked in PPAs with the intention of increasing ecotourism attractions. Even though the ecological and economic costs of stocking these species are high, the social benefits are not understood and little information exists globally on the ecotourism role of extralimital species. This study assessed the value of stocking extralimital species using questionnaire-based surveys and observing tourists in Shamwari Private Game Reserve in the Eastern Cape Province of South Africa. No difference was found between indigenous and extralimital species with regards to the tourists' weighted scoring system, average amount tourists were willing to pay, total viewing time, average viewing time or the likelihood of stopping to view species when encountered on game drives. During game drives a strong preference was found for the elephant (Loxodonta africana), lion (Panthera leo), leopard (Panthera pardus) and cheetah (Acynonix jubatus). With the exception of the cheetah, these species are all members of the "big five" and are indigenous. Species availability and visibility, however, may influence the amount of time tourists spend at an animal sighting. Our analysis suggests that certain extralimital species (typically larger and charismatic species) contribute to tourist satisfaction, while particularly the smaller extralimital species add little to the game viewing experience, but add to the costs and risks of the PPAs. We recommend that extralimital species introductions for ecotourism purposes should be approached with caution with regards to the risks to the sustainability of PPAs.

  18. Linking macroecology and community ecology: refining predictions of species distributions using biotic interaction networks.

    Science.gov (United States)

    Staniczenko, Phillip P A; Sivasubramaniam, Prabu; Suttle, K Blake; Pearson, Richard G

    2017-06-01

    Macroecological models for predicting species distributions usually only include abiotic environmental conditions as explanatory variables, despite knowledge from community ecology that all species are linked to other species through biotic interactions. This disconnect is largely due to the different spatial scales considered by the two sub-disciplines: macroecologists study patterns at large extents and coarse resolutions, while community ecologists focus on small extents and fine resolutions. A general framework for including biotic interactions in macroecological models would help bridge this divide, as it would allow for rigorous testing of the role that biotic interactions play in determining species ranges. Here, we present an approach that combines species distribution models with Bayesian networks, which enables the direct and indirect effects of biotic interactions to be modelled as propagating conditional dependencies among species' presences. We show that including biotic interactions in distribution models for species from a California grassland community results in better range predictions across the western USA. This new approach will be important for improving estimates of species distributions and their dynamics under environmental change. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  19. Species co-occurrence affects the trophic interactions of two juvenile reef shark species in tropical lagoon nurseries in Moorea (French Polynesia).

    Science.gov (United States)

    Matich, Philip; Kiszka, Jeremy J; Mourier, Johann; Planes, Serge; Heithaus, Michael R

    2017-06-01

    Food web structure is shaped by interactions within and across trophic levels. As such, understanding how the presence and absence of predators, prey, and competitors affect species foraging patterns is important for predicting the consequences of changes in species abundances, distributions, and behaviors. Here, we used plasma δ 13 C and δ 15 N values from juvenile blacktip reef sharks (Carcharhinus melanopterus) and juvenile sicklefin lemon sharks (Negaprion acutidens) to investigate how species co-occurrence affects their trophic interactions in littoral waters of Moorea, French Polynesia. Co-occurrence led to isotopic niche partitioning among sharks within nurseries, with significant increases in δ 15 N values among sicklefin lemon sharks, and significant decreases in δ 15 N among blacktip reef sharks. Niche segregation likely promotes coexistence of these two predators during early years of growth and development, but data do not suggest coexistence affects life history traits, such as body size, body condition, and ontogenetic niche shifts. Plasticity in trophic niches among juvenile blacktip reef sharks and sicklefin lemon sharks also suggests these predators are able to account for changes in community structure, resource availability, and intra-guild competition, and may fill similar functional roles in the absence of the other species, which is important as environmental change and human impacts persist in coral reef ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Long-term experiments to better understand soil-human interactions

    Science.gov (United States)

    Bormann, B. T.; Homann, P. S.

    2011-12-01

    Interactions between soils and people may be transforming global conditions, but the interactions are poorly understood. Changes in soils have proven difficult to quantify, especially in complex ecosystems manifesting large spatiotemporal variability. Long-term ecosystem experiments that evaluate soil change and demonstrate alternative choices are important to understanding changes, discovering new controls and drivers, and influencing decisions. Inspired by agriculture studies, like Rothamsted, the US Forest Service established in 1990 a network of operational-scale experiments across the Pacific Northwest to evaluate long-term effects of different forest management and disturbance regimes. With a strong experimental design, these experiments are now helping to better understand the long-term effects of managing tree harvesting (clearcutting and thinning), woody debris, and tree and understory species composition, and-serendipitously-the effects of fire. Initial results from the Southern Oregon experimental site indicate surprisingly rapid soil changes in some regimes but not others. We've also learned that rapid change presents challenges to repeat sampling. We present our sample-archive and comparable-layer approaches that seek to accommodate changes in surface elevation, aggregation and disaggregation, and mineral-soil exports. Thinning mature forest stands (80-100 yrs old) did not significantly change soil C in 11-yrs. A small upper-layer C increase was observed after thinning, but it was similar to the control. Significant increases in upper-layer soil N were observed with most treatments, but all increases were similar to the control. Leaving woody debris had little effect. The most remarkable change occurred when mature stands were clearcut and Douglas-firs were planted and tended. Associated with rapid growth of Douglas-fir, an average of 8 Mg C ha-1 was lost from weathered soil 4-18 cm deep. This contrasts with clearcuts where early-seral hardwoods and

  1. Integrating DNA-based data into bioassessments improves our understanding of species distributions and species habitat relationships

    Science.gov (United States)

    The integration of DNA-based identification methods into bioassessments could result in more accurate representations of species distributions and species-habitat relationships. DNA-based approaches may be particularly informative for tracking the distributions of rare and/or inv...

  2. Interfacial Interaction of Titania Nanoparticles and Ligated Uranyl Species: A Relativistic DFT Investigation.

    Science.gov (United States)

    Zhao, Hong-Bo; Zheng, Ming; Schreckenbach, Georg; Pan, Qing-Jiang

    2017-03-06

    To understand interfacial behavior of actinides adsorbed onto mineral surfaces and unravel their structure-property relationship, the structures, electronic properties, and energetics of various ligated uranyl species adsorbed onto TiO 2 surface nanoparticle clusters (SNCs) were examined using relativistic density functional theory. Rutile (110) and anatase (101) titania surfaces, experimentally known to be stable, were fully optimized. For the former, models studied include clean and water-free Ti 27 O 64 H 20 (dry), partially hydrated (Ti 27 O 64 H 20 )(H 2 O) 8 (sol) and proton-saturated [(Ti 27 O 64 H 20 )(H 2 O) 8 (H) 2 ] 2+ (sat), while defect-free and defected anatase SNCs involving more than 38 TiO 2 units were considered. The aquouranyl sorption onto rutile SNCs is energetically preferred, with interaction energies of -8.54, -10.36, and -2.39 eV, respectively. Energy decomposition demonstrates that the sorption is dominated by orbital attractive interactions and modified by steric effects. Greater hydrogen-bonding involvement leads to increased orbital interactions (i.e., more negative energy) from dry to sol/sat complexes, while much larger steric interaction in the sat complex significantly reduces the sorption interaction (i.e., more positive energy). For dry SNC, adsorbates were varied from aquo to aquo-carbonato, to carbonato, to hydroxo uranyl species. Longer U-O surf /U-Ti distances and more positive sorption energies were calculated upon introducing carbonato and hydroxo ligands, indicative of weaker uranyl sorption onto the substrate. This is consistent with experimental observations that the uranyl sorption rate decreases upon raising solution pH value or adding carbon dioxide. Anatase SNCs adsorbing aquouranyl are even more exothermic, because more bonds are formed than in the case of rutile. Moreover, the anatase sorption can be tuned by surface defects as well as its Ti and O stoichiometry. All the aquouranyl-SNC complexes show similar

  3. Leapfrogging of tree species provenances? Interaction of microclimate and genetics on upward shifts in tree species' range limits

    Science.gov (United States)

    Reinhardt, K.; Castanha, C.; Germino, M. J.; Kueppers, L. M.

    2011-12-01

    potentials went below -4 MPa. Our preliminary results suggest that for high-elevation conifer seedlings such as P. flexilis: 1) individuals can survive and even have enhanced physiological performance at and above treeline when/where clouds or other conditions minimize factors like cold-induced photoinhibition; 2) in the field, provenances selected for aboveground growth may out-perform those selected for stress-resistance in the absence of harsh climatic conditions, even well above the species' range limits in the alpine; 3) water, and not thermal, limitations might explain treeline altitude in this particular mountain range; 4) forest genetics may be important to understanding and managing species' range adjustments due to climate change.

  4. Geographical patterns of adaptation within a species' range : Interactions between drift and gene flow

    NARCIS (Netherlands)

    Alleaume-Benharira, M; Pen, IR; Ronce, O

    We use individual-based stochastic simulations and analytical deterministic predictions to investigate the interaction between drift, natural selection and gene flow on the patterns of local adaptation across a fragmented species' range under clinally varying selection. Migration between populations

  5. Interactions among species in a tri-trophic system: the influence of ...

    African Journals Online (AJOL)

    BioMAP

    persistence/abundance are affected by more than two interacting species (Begon ... importance of methodology in revealing why an endangered population is ..... closely related butterfly which also oviposits on thyme buds) failed because the ...

  6. Species interactions within a fouling diatom community: Roles of nutrients, initial inoculum and competitive strategies

    Digital Repository Service at National Institute of Oceanography (India)

    Mitbavkar, S.; Anil, A

    Diatoms constitute an important component of the fouling community. Although a lot of work has dealt with the fouling diatom community structure, work on the species interactions within the community is still meager. In this regard, a study...

  7. Understanding soaring bird migration through interactions and decisions at the individual level

    NARCIS (Netherlands)

    van Loon, E.E.; Shamoun-Baranes, J.; Bouten, W.; Davis, S.L.

    2011-01-01

    Many soaring bird species migrate southwards in autumn from their breeding grounds in Europe and Central Asia towards their wintering grounds. Our knowledge about interactions between migrating birds, thermal selection during migration and mechanisms that lead to flocking or convergent travel

  8. Perception and understanding of invasive alien species issues by nature conservation and horticulture professionals in Belgium.

    Science.gov (United States)

    Vanderhoeven, Sonia; Piqueray, Julien; Halford, Mathieu; Nulens, Greet; Vincke, Jan; Mahy, Grégory

    2011-03-01

    We conducted a survey to determine how two professional sectors in Belgium, horticulture professionals and nature reserve managers (those directly involved in conservation), view the issues associated with invasive plant species. We developed and utilized a questionnaire that addressed the themes of awareness, concept and use of language, availability of information, impacts and, finally, control and available solutions. Using co-inertia analyses, we tested to what extent the perception of invasive alien species (IAS) was dependent upon the perception of Nature in general. Only forty-two percent of respondent horticulture professionals and eighty-two percent of nature reserve managers had a general knowledge of IAS. Many individuals in both target groups nonetheless had an accurate understanding of the scientific issues. Our results therefore suggest that the manner in which individuals within the two groups view, or perceive, the IAS issue was more the result of lack of information than simply biased perceptions of target groups. Though IAS perceptions by the two groups diverged, they were on par with how they viewed Nature in general. The descriptions of IAS by participants converged with the ideas and concepts frequently found in the scientific literature. Both managers and horticulture professionals expressed a strong willingness to participate in programs designed to prevent the spread of, and damage caused by, IAS. Despite this, the continued commercial availability of many invasive species highlighted the necessity to use both mandatory and voluntary approaches to reduce their re-introduction and spread. The results of this study provide stakeholders and conservation managers with practical information on which communication and management strategies can be based.

  9. Making species checklists understandable to machines - a shift from relational databases to ontologies.

    Science.gov (United States)

    Laurenne, Nina; Tuominen, Jouni; Saarenmaa, Hannu; Hyvönen, Eero

    2014-01-01

    The scientific names of plants and animals play a major role in Life Sciences as information is indexed, integrated, and searched using scientific names. The main problem with names is their ambiguous nature, because more than one name may point to the same taxon and multiple taxa may share the same name. In addition, scientific names change over time, which makes them open to various interpretations. Applying machine-understandable semantics to these names enables efficient processing of biological content in information systems. The first step is to use unique persistent identifiers instead of name strings when referring to taxa. The most commonly used identifiers are Life Science Identifiers (LSID), which are traditionally used in relational databases, and more recently HTTP URIs, which are applied on the Semantic Web by Linked Data applications. We introduce two models for expressing taxonomic information in the form of species checklists. First, we show how species checklists are presented in a relational database system using LSIDs. Then, in order to gain a more detailed representation of taxonomic information, we introduce meta-ontology TaxMeOn to model the same content as Semantic Web ontologies where taxa are identified using HTTP URIs. We also explore how changes in scientific names can be managed over time. The use of HTTP URIs is preferable for presenting the taxonomic information of species checklists. An HTTP URI identifies a taxon and operates as a web address from which additional information about the taxon can be located, unlike LSID. This enables the integration of biological data from different sources on the web using Linked Data principles and prevents the formation of information silos. The Linked Data approach allows a user to assemble information and evaluate the complexity of taxonomical data based on conflicting views of taxonomic classifications. Using HTTP URIs and Semantic Web technologies also facilitate the representation of the

  10. Understanding defect distributions in polythiophenes via comparison of regioregular and regiorandom species

    Energy Technology Data Exchange (ETDEWEB)

    Muntasir, Tanvir, E-mail: tanvir@iastate.edu, E-mail: sumitc@iastate.edu [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Chaudhary, Sumit, E-mail: tanvir@iastate.edu, E-mail: sumitc@iastate.edu [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2015-11-28

    Organic photovoltaics (OPVs) are regarded as promising for solar-electric conversion with steadily improving power conversion efficiencies. For further progress, it is crucial to understand and mitigate defect states (traps) residing in the band-gap of OPV materials. In this work, using capacitance measurements, we analyzed two major bands in the density of states (DOS) energy spectra of defects in poly(3-hexylthiophene) (P3HT); regio-regular and regio-random species of P3HT were compared to elucidate the role of morphological disorder. To accurately interpret the obtained DOS profile, trap emission prefactors and activation energy were extracted from temperature dependent capacitance-frequency measurements, while doping, Fermi energy, built-in voltage, and energy levels of the defects were extracted from capacitance-voltage measurements. We identified that the lower energy band—misinterpreted in literature as a defect distribution—stems from free carrier response. The higher energy defect distribution band for regio-random P3HT was an order of magnitude higher than region-regular P3HT, thus stemming from morphological disorder. Impedance spectroscopy was also employed for further comparison of the two P3HT species.

  11. Understanding defect distributions in polythiophenes via comparison of regioregular and regiorandom species

    International Nuclear Information System (INIS)

    Muntasir, Tanvir; Chaudhary, Sumit

    2015-01-01

    Organic photovoltaics (OPVs) are regarded as promising for solar-electric conversion with steadily improving power conversion efficiencies. For further progress, it is crucial to understand and mitigate defect states (traps) residing in the band-gap of OPV materials. In this work, using capacitance measurements, we analyzed two major bands in the density of states (DOS) energy spectra of defects in poly(3-hexylthiophene) (P3HT); regio-regular and regio-random species of P3HT were compared to elucidate the role of morphological disorder. To accurately interpret the obtained DOS profile, trap emission prefactors and activation energy were extracted from temperature dependent capacitance-frequency measurements, while doping, Fermi energy, built-in voltage, and energy levels of the defects were extracted from capacitance-voltage measurements. We identified that the lower energy band—misinterpreted in literature as a defect distribution—stems from free carrier response. The higher energy defect distribution band for regio-random P3HT was an order of magnitude higher than region-regular P3HT, thus stemming from morphological disorder. Impedance spectroscopy was also employed for further comparison of the two P3HT species

  12. Setting realistic recovery targets for two interacting endangered species, sea otter and northern abalone.

    Science.gov (United States)

    Chadès, Iadine; Curtis, Janelle M R; Martin, Tara G

    2012-12-01

    Failure to account for interactions between endangered species may lead to unexpected population dynamics, inefficient management strategies, waste of scarce resources, and, at worst, increased extinction risk. The importance of species interactions is undisputed, yet recovery targets generally do not account for such interactions. This shortcoming is a consequence of species-centered legislation, but also of uncertainty surrounding the dynamics of species interactions and the complexity of modeling such interactions. The northern sea otter (Enhydra lutris kenyoni) and one of its preferred prey, northern abalone (Haliotis kamtschatkana), are endangered species for which recovery strategies have been developed without consideration of their strong predator-prey interactions. Using simulation-based optimization procedures from artificial intelligence, namely reinforcement learning and stochastic dynamic programming, we combined sea otter and northern abalone population models with functional-response models and examined how different management actions affect population dynamics and the likelihood of achieving recovery targets for each species through time. Recovery targets for these interacting species were difficult to achieve simultaneously in the absence of management. Although sea otters were predicted to recover, achieving abalone recovery targets failed even when threats to abalone such as predation and poaching were reduced. A management strategy entailing a 50% reduction in the poaching of northern abalone was a minimum requirement to reach short-term recovery goals for northern abalone when sea otters were present. Removing sea otters had a marginally positive effect on the abalone population but only when we assumed a functional response with strong predation pressure. Our optimization method could be applied more generally to any interacting threatened or invasive species for which there are multiple conservation objectives. © 2012 Society for

  13. Adaptive interaction a utility maximization approach to understanding human interaction with technology

    CERN Document Server

    Payne, Stephen J

    2013-01-01

    This lecture describes a theoretical framework for the behavioural sciences that holds high promise for theory-driven research and design in Human-Computer Interaction. The framework is designed to tackle the adaptive, ecological, and bounded nature of human behaviour. It is designed to help scientists and practitioners reason about why people choose to behave as they do and to explain which strategies people choose in response to utility, ecology, and cognitive information processing mechanisms. A key idea is that people choose strategies so as to maximise utility given constraints. The frame

  14. Species traits and their non-additive interactions control the water economy of bryophyte cushions.

    NARCIS (Netherlands)

    Michel, P.; Lee, W.G.; During, H.J.; Cornelissen, J.H.C.; van der Putten, W.H.

    2012-01-01

    1. Ecological processes in mixed-species assemblages are not always an additive function of those in monocultures. In areas with high ground cover of bryophytes, renowned for their considerable water retention capacity, non-additive interactions in mixed-species cushions could play a key role in the

  15. Historical and projected interactions between climate change and insect voltinism in a multivoltine species

    Science.gov (United States)

    Patrick C. Tobin; Sudha Nagarkatti; Greg Loeb; Michael C. Saunders

    2008-01-01

    Climate change can cause major changes to the dynamics of individual species and to those communities in which they interact. One effect of increasing temperatures is on insect voltinism, with the logical assumption that increases in surface temperatures would permit multivoltine species to increase the number of generations per year. Though insect development is...

  16. Interactive influences of wildfire and nonnative species on plant community succession in Hawaii Volcanoes National Park.

    Science.gov (United States)

    Alison Ainsworth

    2007-01-01

    The role of fire as a natural disturbance, its interactions with nonnative species and effects of repeated fires in the Hawaiian Islands have received little investigation. We are unsure of the role fire played in shaping forest structure and composition as well as affecting evolutionary processes of the native biota. Yet, many species do have adaptations that...

  17. Interactions between polystyrene microplastics and marine phytoplankton lead to species-specific hetero-aggregation.

    Science.gov (United States)

    Long, Marc; Paul-Pont, Ika; Hégaret, Hélène; Moriceau, Brivaela; Lambert, Christophe; Huvet, Arnaud; Soudant, Philippe

    2017-09-01

    To understand the fate and impacts of microplastics (MP) in the marine ecosystems, it is essential to investigate their interactions with phytoplankton as these may affect MP bioavailability to marine organisms as well as their fate in the water column. However, the behaviour of MP with marine phytoplanktonic cells remains little studied and thus unpredictable. The present study assessed the potential for phytoplankton cells to form hetero-aggregates with small micro-polystyrene (micro-PS) particles depending on microalgal species and physiological status. A prymnesiophycea, Tisochrysis lutea, a dinoflagellate, Heterocapsa triquetra, and a diatom, Chaetoceros neogracile, were exposed to micro-PS (2 μm diameter; 3.96 μg L -1 ) during their growth culture cycles. Micro-PS were quantified using an innovative flow-cytometry approach, which allowed the monitoring of the micro-PS repartition in microalgal cultures and the distinction between free suspended micro-PS and hetero-aggregates of micro-PS and microalgae. Hetero-aggregation was observed for C. neogracile during the stationary growth phase. The highest levels of micro-PS were "lost" from solution, sticking to flasks, with T. lutea and H. triquetra cultures. This loss of micro-PS sticking to the flask walls increased with the age of the culture for both species. No effects of micro-PS were observed on microalgal physiology in terms of growth and chlorophyll fluorescence. Overall, these results highlight the potential for single phytoplankton cells and residual organic matter to interact with microplastics, and thus potentially influence their distribution and bioavailability in experimental systems and the water column. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Species-Specific Effects on Ecosystem Functioning Can Be Altered by Interspecific Interactions.

    Science.gov (United States)

    Clare, David S; Spencer, Matthew; Robinson, Leonie A; Frid, Christopher L J

    2016-01-01

    Biological assemblages are constantly undergoing change, with species being introduced, extirpated and experiencing shifts in their densities. Theory and experimentation suggest that the impacts of such change on ecosystem functioning should be predictable based on the biological traits of the species involved. However, interspecific interactions could alter how species affect functioning, with the strength and sign of interactions potentially depending on environmental context (e.g. homogenous vs. heterogeneous conditions) and the function considered. Here, we assessed how concurrent changes to the densities of two common marine benthic invertebrates, Corophium volutator and Hediste diversicolor, affected the ecological functions of organic matter consumption and benthic-pelagic nutrient flux. Complementary experiments were conducted within homogenous laboratory microcosms and naturally heterogeneous field plots. When the densities of the species were increased within microcosms, interspecific interactions enhanced effects on organic matter consumption and reduced effects on nutrient flux. Trait-based predictions of how each species would affect functioning were only consistently supported when the density of the other species was low. In field plots, increasing the density of either species had a positive effect on organic matter consumption (with no significant interspecific interactions) but no effect on nutrient flux. Our results indicate that species-specific effects on ecosystem functioning can be altered by interspecific interactions, which can be either facilitative (positive) or antagonistic (negative) depending on the function considered. The impacts of biodiversity change may therefore not be predictable based solely on the biological traits of the species involved. Possible explanations for why interactions were detected in microcosms but not in the field are discussed.

  19. Species-Specific Effects on Ecosystem Functioning Can Be Altered by Interspecific Interactions.

    Directory of Open Access Journals (Sweden)

    David S Clare

    Full Text Available Biological assemblages are constantly undergoing change, with species being introduced, extirpated and experiencing shifts in their densities. Theory and experimentation suggest that the impacts of such change on ecosystem functioning should be predictable based on the biological traits of the species involved. However, interspecific interactions could alter how species affect functioning, with the strength and sign of interactions potentially depending on environmental context (e.g. homogenous vs. heterogeneous conditions and the function considered. Here, we assessed how concurrent changes to the densities of two common marine benthic invertebrates, Corophium volutator and Hediste diversicolor, affected the ecological functions of organic matter consumption and benthic-pelagic nutrient flux. Complementary experiments were conducted within homogenous laboratory microcosms and naturally heterogeneous field plots. When the densities of the species were increased within microcosms, interspecific interactions enhanced effects on organic matter consumption and reduced effects on nutrient flux. Trait-based predictions of how each species would affect functioning were only consistently supported when the density of the other species was low. In field plots, increasing the density of either species had a positive effect on organic matter consumption (with no significant interspecific interactions but no effect on nutrient flux. Our results indicate that species-specific effects on ecosystem functioning can be altered by interspecific interactions, which can be either facilitative (positive or antagonistic (negative depending on the function considered. The impacts of biodiversity change may therefore not be predictable based solely on the biological traits of the species involved. Possible explanations for why interactions were detected in microcosms but not in the field are discussed.

  20. Biomechanical warfare in ecology; negative interactions between species by habitat modification

    NARCIS (Netherlands)

    van Wesenbeeck, B. K.; van de Koppel, J.; Herman, P. M. J.; Bakker, J. P.; Bouma, T. J.

    Since the introduction of the term ecosystem engineering by Jones et al. many studies have focused on positive, facilitative interactions caused by ecosystem engineering. Much less emphasis has been placed on the role of ecosystem engineering in causing negative interactions between species. Here,

  1. Biomechanical warfare in ecology; negative interactions between species by habitat modification

    NARCIS (Netherlands)

    Van Wesenbeeck, B.K.; Van de Koppel, J.; Herman, P.M.J.; Bakker, J.P.; Bouma, T.J.

    2007-01-01

    Since the introduction of the term ecosystem engineering by Jones et al. many studies have focused on positive, facilitative interactions caused by ecosystem engineering. Much less emphasis has been placed on the role of ecosystem engineering in causing negative interactions between species. Here,

  2. Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function.

    Science.gov (United States)

    Burkle, Laura A; Marlin, John C; Knight, Tiffany M

    2013-03-29

    Using historic data sets, we quantified the degree to which global change over 120 years disrupted plant-pollinator interactions in a temperate forest understory community in Illinois, USA. We found degradation of interaction network structure and function and extirpation of 50% of bee species. Network changes can be attributed to shifts in forb and bee phenologies resulting in temporal mismatches, nonrandom species extinctions, and loss of spatial co-occurrences between extant species in modified landscapes. Quantity and quality of pollination services have declined through time. The historic network showed flexibility in response to disturbance; however, our data suggest that networks will be less resilient to future changes.

  3. Understanding human - bat interactions in NSW, Australia: improving risk communication for prevention of Australian bat lyssavirus.

    Science.gov (United States)

    Quinn, Emma K; Massey, Peter D; Cox-Witton, Keren; Paterson, Beverley J; Eastwood, Keith; Durrheim, David N

    2014-07-02

    Australian bat lyssavirus (ABLV) infects a number of flying fox and insectivorous bats species in Australia. Human infection with ABLV is inevitably fatal unless prior vaccination and/or post-exposure treatment (PET) is given. Despite ongoing public health messaging about the risks associated with bat contact, surveillance data have revealed a four-fold increase in the number of people receiving PET for bat exposure in NSW between 2007 and 2011. Our study aimed to better understand these human - bat interactions in order to identify additional risk communication messages that could lower the risk of potential ABLV exposure. All people aged 18 years or over whom received PET for non-occupation related potential ABLV exposure in the Hunter New England Local Health District of Australia between July 2011 and July 2013 were considered eligible for the study. Eligible participants were invited to a telephone interview to explore the circumstances of their bat contact. Interviews were then transcribed and thematically analysed by two independent investigators. Of 21 eligible participants that were able to be contacted, 16 consented and participated in a telephone interview. Participants reported bats as being widespread in their environment but reported a general lack of awareness about ABLV, particularly the risk of disease from bat scratches. Participants who attempted to 'rescue' bats did so because of a deep concern for the bat's welfare. Participants reported a change in risk perception after the exposure event and provided suggestions for public health messages that could be used to raise awareness about ABLV. Reframing the current risk messages to account for the genuine concern of people for bat welfare may enhance the communication. The potential risk to the person and possible harm to the bat from an attempted 'rescue' should be promoted, along with contact details for animal rescue groups. The potential risk of ABLV from bat scratches merits greater emphasis.

  4. Positive indirect interactions between neighboring plant species via a lizard pollinator.

    OpenAIRE

    Hansen, D M; Kiesbüy, H C; Jones, C G; Müller, C B

    2007-01-01

    In natural communities, species are embedded in networks of direct and indirect interactions. Most studies on indirect interactions have focused on how they affect predator-prey or competitive relationships. However, it is equally likely that indirect interactions play an important structuring role in mutualistic relationships in a natural community. We demonstrate experimentally that on a small spatial scale, dense thickets of endemic Pandanus plants have a strong positive trait-mediated ind...

  5. Land-use change interacts with climate to determine elevational species redistribution.

    Science.gov (United States)

    Guo, Fengyi; Lenoir, Jonathan; Bonebrake, Timothy C

    2018-04-03

    Climate change is driving global species redistribution with profound social and economic impacts. However, species movement is largely constrained by habitat availability and connectivity, of which the interaction effects with climate change remain largely unknown. Here we examine published data on 2798 elevational range shifts from 43 study sites to assess the confounding effect of land-use change on climate-driven species redistribution. We show that baseline forest cover and recent forest cover change are critical predictors in determining the magnitude of elevational range shifts. Forest loss positively interacts with baseline temperature conditions, such that forest loss in warmer regions tends to accelerate species' upslope movement. Consequently, not only climate but also habitat loss stressors and, importantly, their synergistic effects matter in forecasting species elevational redistribution, especially in the tropics where both stressors will increase the risk of net lowland biotic attrition.

  6. Molecular Understanding of Fullerene - Electron Donor Interactions in Organic Solar Cells

    KAUST Repository

    Ryno, Sean

    2016-09-13

    Organic solar cells hold promise of providing low-cost, renewable power generation, with current devices providing up to 13% power conversion efficiency. The rational design of more performant systems requires an in-depth understanding of the interactions between the electron donating and electron accepting materials within the active layers of these devices. Here, we explore works that give insight into the intermolecular interactions between electron donors and electron acceptors, and the impact of molecular orientations and environment on these interactions. We highlight, from a theoretical standpoint, the effects of intermolecular interactions on the stability of charge carriers at the donor/acceptor interface and in the bulk and how these interactions influence the nature of the charge transfer states as wells as the charge separation and charge transport processes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Understanding plant-to-plant interactions for soil resources in multilayered Iberian dehesas

    Science.gov (United States)

    Moreno, G.; Rolo, V.; Cubera, E.; López-Díaz, L.

    2009-04-01

    Iberian dehesa is usually defined as two-layered silvopastoral system, where native grasses cohabit with a scattered widely-space tree layer. In the last two decades, an intense debate has been developed on the sustainability of this simplified type of dehesa. While some authors argue that that the forest cycle has been disrupted in most dehesas, where the lack of regeneration is an inherent problem to their exploitation, other authors have showed that dehesa degradation is easily reversible if certain abandonment is periodically exerted. The coexistence of two-layered plots with multilayered plots (encroached open woodlands) and mono-layered plots (either closed forest or mono-pasture/monocrops) has been a common feature of dehesas, as result of a systematic combination of agricultural, pastoral, and forestry uses. Different structures of vegetation depend on land use, giving a mosaic at both estate and landscape scales. These mosaic-type systems allow finding several scenarios of plant-to-plant interactions, mostly at belowground level. A key issue for sustainable management of oak woodland is to understand the complexity of the plant-to-plant relationships and their consequences in the ecosystem functioning in terms of productivity and stability. The competitive abilities of component systems are modified by the environment conditions. Dehesas, as most savanna systems, exhibit a low rainfall with high variability within and between years as well as a high evaporative demand during the summer. Indeed, water availability is one of the major ecological factors influencing either natural savannas or man-made open woodlands. Although most of the available studies have focused different aspects of the mature tree-grass interactions, we also present here some recent results on tree-tree, tree-shrub, shrub-seedling and seedling-grass interactions, explained mostly in terms of competition for soil water and nutrients. Trees can modify the soil and microclimate

  8. ShapeShop: Towards Understanding Deep Learning Representations via Interactive Experimentation

    Energy Technology Data Exchange (ETDEWEB)

    Hohman, Frederick M.; Hodas, Nathan O.; Chau, Duen Horng

    2017-05-30

    Deep learning is the driving force behind many recent technologies; however, deep neural networks are often viewed as “black-boxes” due to their internal complexity that is hard to understand. Little research focuses on helping people explore and understand the relationship between a user’s data and the learned representations in deep learning models. We present our ongoing work, ShapeShop, an interactive system for visualizing and understanding what semantics a neural network model has learned. Built using standard web technologies, ShapeShop allows users to experiment with and compare deep learning models to help explore the robustness of image classifiers.

  9. ShapeShop: Towards Understanding Deep Learning Representations via Interactive Experimentation.

    Science.gov (United States)

    Hohman, Fred; Hodas, Nathan; Chau, Duen Horng

    2017-05-01

    Deep learning is the driving force behind many recent technologies; however, deep neural networks are often viewed as "black-boxes" due to their internal complexity that is hard to understand. Little research focuses on helping people explore and understand the relationship between a user's data and the learned representations in deep learning models. We present our ongoing work, ShapeShop, an interactive system for visualizing and understanding what semantics a neural network model has learned. Built using standard web technologies, ShapeShop allows users to experiment with and compare deep learning models to help explore the robustness of image classifiers.

  10. Developing Social Interaction and Understanding in Individuals with Autism Spectrum Disorder: A Groupwork Intervention

    Science.gov (United States)

    MacKay, Tommy; Knott, Fiona; Dunlop, Aline-Wendy

    2007-01-01

    Background: Difficulties with social interaction and understanding lie at the heart of the communication disorder that characterises the autism spectrum. This study sought to improve social communication for individuals with autism spectrum disorder (ASD) by means of a groupwork intervention focusing on social and emotional perspective-taking,…

  11. An Understanding Information Management System for a Real-Time Interactive Distance Education Environment

    Science.gov (United States)

    He, Aiguo

    2009-01-01

    A real-time interactive distance lecture is a joint work that should be accomplished by the effort of the lecturer and his students in remote sites. It is important for the lecturer to get understanding information from the students which cannot be efficiently collected by only using video/audio channels between the lecturer and the students. This…

  12. Understanding Motivations and User Interests as Antecedents for Different Interaction Forms in Online Communities

    DEFF Research Database (Denmark)

    Jacobsen, Lina; Sørensen, Bjarne Taulo; Tudoran, Ana Alina

    This study contributes to the understanding of online user communities as a potential source of innovation. That would require an interest from users in interacting in such communities. In order to establish interaction, users must provide as well as consume information. However, depending...... on the innovation task, one may be more important than the other. It is therefore important to understand, how companies can increase user willingness to engage in these different interaction forms. This study investigates the influence of various motivation factors and user interests on intention to provide...... or consume information in online food communities. A survey was conducted among 1009 respondents followed by analysis based on Structural Equation Modelling. Results revealed the effect of motivation factors to be stronger than basic consumer interests indicating that companies can influence the intended...

  13. Understanding consumer motivations for interacting in online food communities – potential for innovation

    DEFF Research Database (Denmark)

    Jacobsen, Lina; Sørensen, Bjarne Taulo; Tudoran, Ana Alina

    This study contributes to the understanding of online user communities as a potential source of innovation. That would require an interest from users in interacting in such communities. In order to establish interaction, users must provide as well as consume information. However, depending...... on the innovation task, one may be more important than the other. It is therefore important to understand, how companies can increase user willingness to engage in these different interaction forms. This study investigates the influence of various motivation factors and user interests on intention to provide...... or consume information in online food communities. A survey was conducted among 1009 respondents followed by analysis based on Structural Equation Modelling. Results revealed the effect of motivation factors to be stronger than basic consumer interests indicating that companies can influence the intended...

  14. Understanding Situated Social Interactions: A Case Study of Public Places in the City

    DEFF Research Database (Denmark)

    Paay, Jeni; Kjeldskov, Jesper

    2008-01-01

    these and their situated interactions. In response, this paper addresses the challenge of informing design of mobile services for fostering social connections by using the concept of place for studying and understanding peoples’ social activities in a public built environment. We present a case study of social experience...... of a physical place providing an understanding of peoples’ situated social interactions in public places of the city derived through a grounded analysis of small groups of friends socialising out on the town. Informed by this, we describe the design and evaluation of a mobile prototype system facilitating......Ubiquitous and mobile computer technologies are increasingly being appropriated to facilitate people’s social life outside the work domain. Designing such social and collaborative technologies requires an understanding of peoples’ physical and social context, and the interplay between...

  15. Natural enemy-mediated indirect interactions among prey species: potential for enhancing biocontrol services in agroecosystems

    NARCIS (Netherlands)

    Chailleux, A.; Mohl, E.K.; Teixeira Alves, M.; Messelink, G.J.; Desneux, N.

    2014-01-01

    Understanding how arthropod pests and their natural enemies interact in complex agroecosystems is essential for pest management programmes. Theory predicts that prey sharing a predator, such as a biological control agent, can indirectly reduce each other's density at equilibrium (apparent

  16. Towards a molecular level understanding of the sulfanilamide-soil organic matter-interaction

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Ashour A., E-mail: ashour.ahmed@uni-rostock.de [University of Rostock, Institute of Physics, Albert-Einstein-Str. 23-24, D-18059 Rostock (Germany); Steinbeis GmbH & Co. KG für Technologietransfer, 70174 Stuttgart (Germany); University of Cairo, Faculty of Science, Department of Chemistry, 12613 Giza (Egypt); Thiele-Bruhn, Sören, E-mail: thiele@uni-trier.de [University of Trier, Soil Science, D-54286 Trier (Germany); Leinweber, Peter, E-mail: peter.leinweber@uni-rostock.de [Steinbeis GmbH & Co. KG für Technologietransfer, 70174 Stuttgart (Germany); University of Rostock, Soil Science, D-18051 Rostock (Germany); Kühn, Oliver, E-mail: oliver.kuehn@uni-rostock.de [University of Rostock, Institute of Physics, Albert-Einstein-Str. 23-24, D-18059 Rostock (Germany)

    2016-07-15

    Sorption experiments of sulfanilamide (SAA) on well-characterized samples of soil size-fractions were combined with the modeling of SAA-soil-interaction via quantum chemical calculations. Freundlich unit capacities were determined in batch experiments and it was found that they increase with the soil organic matter (SOM) content according to the order fine silt > medium silt > clay > whole soil > coarse silt > sand. The calculated binding energies for mass-spectrometrically quantified sorption sites followed the order ionic species > peptides > carbohydrates > phenols and lignin monomers > lignin dimers > heterocyclic compounds > fatty acids > sterols > aromatic compounds > lipids, alkanes, and alkenes. SAA forms H-bonds through its polar centers with the polar SOM sorption sites. In contrast dispersion and π-π-interactions predominate the interaction of the SAA aromatic ring with the non-polar moieties of SOM. Moreover, the dipole moment, partial atomic charges, and molecular volume of the SOM sorption sites are the main physical properties controlling the SAA-SOM-interaction. Further, reasonable estimates of the Freundlich unit capacities from the calculated binding energies have been established. Consequently, we suggest using this approach in forthcoming studies to disclose the interactions of a wide range of organic pollutants with SOM. - Highlights: • Experiment and theory showed that SAA obeys a site-specific sorption on soil surfaces. • SAA-SOM-interaction increases by increasing polarity of SOM sorption site. • H-bonds, dispersion, and π-π-interactions were observed for SAA-SOM-interaction. • Dipole moment and atomic charges of SOM sorption sites control SAA-SOM-interaction. • The Freundlich unit capacities were estimated from the calculated binding energies. • The current SOM model is flexible to describe interactions of SOM with other pollutants.

  17. Modeling invasive alien plant species in river systems: Interaction with native ecosystem engineers and effects on hydro-morphodynamic processes

    Science.gov (United States)

    van Oorschot, M.; Kleinhans, M. G.; Geerling, G. W.; Egger, G.; Leuven, R. S. E. W.; Middelkoop, H.

    2017-08-01

    Invasive alien plant species negatively impact native plant communities by out-competing species or changing abiotic and biotic conditions in their introduced range. River systems are especially vulnerable to biological invasions, because waterways can function as invasion corridors. Understanding interactions of invasive and native species and their combined effects on river dynamics is essential for developing cost-effective management strategies. However, numerical models for simulating long-term effects of these processes are lacking. This paper investigates how an invasive alien plant species affects native riparian vegetation and hydro-morphodynamics. A morphodynamic model has been coupled to a dynamic vegetation model that predicts establishment, growth and mortality of riparian trees. We introduced an invasive alien species with life-history traits based on Japanese Knotweed (Fallopia japonica), and investigated effects of low- and high propagule pressure on invasion speed, native vegetation and hydro-morphodynamic processes. Results show that high propagule pressure leads to a decline in native species cover due to competition and the creation of unfavorable native colonization sites. With low propagule pressure the invader facilitates native seedling survival by creating favorable hydro-morphodynamic conditions at colonization sites. With high invader abundance, water levels are raised and sediment transport is reduced during the growing season. In winter, when the above-ground invader biomass is gone, results are reversed and the floodplain is more prone to erosion. Invasion effects thus depend on seasonal above- and below ground dynamic vegetation properties and persistence of the invader, on the characteristics of native species it replaces, and the combined interactions with hydro-morphodynamics.

  18. Competitive interactions between native and invasive exotic plant species are altered under elevated carbon dioxide.

    Science.gov (United States)

    Manea, Anthony; Leishman, Michelle R

    2011-03-01

    We hypothesized that the greater competitive ability of invasive exotic plants relative to native plants would increase under elevated CO(2) because they typically have traits that confer the ability for fast growth when resources are not limiting and thus are likely to be more responsive to elevated CO(2). A series of competition experiments under ambient and elevated CO(2) glasshouse conditions were conducted to determine an index of relative competition intensity for 14 native-invasive exotic species-pairs. Traits including specific leaf area, leaf mass ratio, leaf area ratio, relative growth rate, net assimilation rate and root weight ratio were measured. Competitive rankings within species-pairs were not affected by CO(2) concentration: invasive exotic species were more competitive in 9 of the 14 species-pairs and native species were more competitive in the remaining 5 species-pairs, regardless of CO(2) concentration. However, there was a significant interaction between plant type and CO(2) treatment due to reduced competitive response of native species under elevated compared with ambient CO(2) conditions. Native species had significantly lower specific leaf area and leaf area ratio under elevated compared with ambient CO(2). We also compared traits of more-competitive with less-competitive species, regardless of plant type, under both CO(2) treatments. More-competitive species had smaller leaf weight ratio and leaf area ratio, and larger relative growth rate and net assimilation rate under both ambient and elevated CO(2) conditions. These results suggest that growth and allocation traits can be useful predictors of the outcome of competitive interactions under both ambient and elevated CO(2) conditions. Under predicted future atmospheric CO(2) conditions, competitive rankings among species may not change substantially, but the relative success of invasive exotic species may be increased. Thus, under future atmospheric CO(2) conditions, the ecological and

  19. The role of biotic interactions in plant community assembly: What is the community species pool?

    Science.gov (United States)

    Švamberková, Eva; Vítová, Alena; Lepš, Jan

    2017-11-01

    Differences in plant species composition between a community and its species pool are considered to reflect the effect of community filters. If we define the species pool as a set of species able to reach a site and form a viable population in a given abiotic environment (i.e. to pass the dispersal and abiotic filter), the difference in species composition should correspond to the effect of biotic interactions. However, most of the operational definitions of the species pool are based on co-occurrence patterns and thus also reflect the effect of biotic relationships, including definitions based on functional plant traits, Ellenberg indicator values or Beals index. We conducted two seed introduction experiments in an oligotrophic wet meadow with the aim of demonstrating that many species excluded, according to the above definitions, from a species pool are in fact able to establish there successfully if competition is removed. In sowing experiments, we studied the establishment and survival of species after the removal of competition (i.e. in artificial gaps) and in intact vegetation. We also investigated inter-annual variability of seed germination and seedling establishment and competitive exclusion of sown species. The investigated species also included those from very different habitats (i.e. species with very low corresponding Beals index or Ellenberg indicator values that were different from the target community weighted mean). Many of these species were able to grow in the focal wet meadow if competition was removed, but they did not establish and survive in the intact community. These species are thus not limited by abiotic conditions, but by the biotic filter. We also recorded a great inter-annual variability in seed germination and seedling establishment. Competitive exclusion of species with different ecological requirements could be quite fast (one and half seasons) in some species, but some non-resident species were able to survive several seasons; the

  20. Above and belowground connections and species interactions: Controls over ecosystem fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Trowbridge, Amy Marie [Montana State Univ., Bozeman, MT (United States); Phillips, Richard [Indiana Univ., Bloomington, IN (United States); Stoy, Paul Christopher [Montana State Univ., Bozeman, MT (United States)

    2016-11-01

    The ultimate goal of this work was to quantify soil and volatile organic compound fluxes as a function of tree species and associated mycorrhizal associations in an intact forest, but also to describe the physical and biological factors that control these emissions. The results of this research lay the foundation toward an improved mechanistic understanding of carbon pathways, fluxes, and ecosystem function, ultimately improving the representation of forest ecosystems in Earth System models. To this end, a multidisciplinary approach was necessary to fill a critical gap in our understanding of how soil and root processes may influence whole-ecosystem carbon-based volatile fluxes in the face of a rapidly changing climate. We developed a series of novel sampling protocols and coupled a variety of advanced analytical techniques, resulting in findings relevant across disciplines. Furthermore, we leveraged existing infrastructure, research sites, and datasets to design a low-cost exploratory project that links belowground processes, soil volatile emissions, and total ecosystem carbon budgets. Measurements from soil collars installed across a species/mycorrhizal gradient at the DOE-supported Moran Monroe State Forest Ameriflux tower site suggest that leaf litter is the primary source of belowground and forest floor volatile emissions, but the strength of this source is significantly affected not only by leaf litter type, but the strength of the soil as a sink. Results suggest that the strength of the sink is influenced by tree species-specific associated microbial communities that change throughout the season as a function of temperature, soil moisture, leaf litter inputs, and phenology. The magnitude of the observed volatile fluxes from the forest floor is small relative to total aboveground ecosystem flux, but the contribution of these emissions to volatile-mediated ecological interactions and soil processes (e.g. nitrification) varies substantially across the growing

  1. Exposure to early adversity: Points of cross-species translation that can lead to improved understanding of depression.

    Science.gov (United States)

    Andersen, Susan L

    2015-05-01

    The relationship between developmental exposure to adversity and affective disorders is reviewed. Adversity discussed herein includes physical and sexual abuse, neglect, or loss of a caregiver in humans. While these stressors can occur at any point during development, the unique temporal relationship to specific depressive symptoms was the focus of discussion. Further influences of stress exposure during sensitive periods can vary by gender and duration of abuse as well. Data from animal studies are presented to provide greater translational and causal understanding of how sensitive periods, different types of psychosocial stressors, and sex interact to produce depressive-like behaviors. Findings from maternal separation, isolation rearing, chronic variable stress, and peer-peer rearing paradigms clarify interpretation about how various depressive behaviors are influenced by age of exposure. Depressive behaviors are broken down into the following categories: mood and affect, anhedonia, energy, working memory, sleep-wake, appetite changes, suicide, and general malaise. Cross-species evidence from humans, nonhuman primates, rats, and mice within each of these categories is discussed. In conclusion, sensitive periods for affective-related behaviors (anxiety, mood, and controllability) occur earlier in life, while other aspects of depression are associated with adversity later during adolescence.

  2. Sensitivity of Seven Diverse Species to Blue and Green Light: Interactions with Photon Flux.

    Directory of Open Access Journals (Sweden)

    M Chase Snowden

    Full Text Available Despite decades of research, the effects of spectral quality on plant growth, and development are not well understood. Much of our current understanding comes from studies with daily integrated light levels that are less than 10% of summer sunlight thus making it difficult to characterize interactions between light quality and quantity. Several studies have reported that growth is increased under fluorescent lamps compared to mixtures of wavelengths from LEDs. Conclusions regarding the effect of green light fraction range from detrimental to beneficial. Here we report the effects of eight blue and green light fractions at two photosynthetic photon fluxes (PPF; 200 and 500 μmol m-2 s-1; with a daily light integral of 11.5 and 29 mol m-2 d-1 on growth (dry mass, leaf expansion, stem and petiole elongation, and whole-plant net assimilation of seven diverse plant species. The treatments included cool, neutral, and warm white LEDs, and combinations of blue, green and/or red LEDs. At the higher PPF (500, increasing blue light in increments from 11 to 28% reduced growth in tomato, cucumber, and pepper by 22, 26, and 14% respectively, but there was no statistically significant effect on radish, soybean, lettuce or wheat. At the lower PPF (200, increasing blue light reduced growth only in tomato (41%. The effects of blue light on growth were mediated by changes in leaf area and radiation capture, with minimal effects on whole-plant net-assimilation. In contrast to the significant effects of blue light, increasing green light in increments from 0 to 30% had a relatively small effect on growth, leaf area and net assimilation at either low or high PPF. Surprisingly, growth of three of the seven species was not reduced by a treatment with 93% green light compared to the broad spectrum treatments. Collectively, these results are consistent with a shade avoidance response associated with either low blue or high green light fractions.

  3. The interactions between CdTe quantum dots and proteins: understanding nano-bio interface

    Directory of Open Access Journals (Sweden)

    Shreeram S. Joglekar

    2017-01-01

    Full Text Available Despite remarkable developments in the nanoscience, relatively little is known about the physical (electrostatic interactions of nanoparticles with bio macromolecules. These interactions can influence the properties of both nanoparticles and the bio-macromolecules. Understanding this bio-interface is a prerequisite to utilize both nanoparticles and biomolecules for bioengineering. In this study, luminescent, water soluble CdTe quantum dots (QDs capped with mercaptopropionic acid (MPA were synthesized by organometallic method and then interaction between nanoparticles (QDs and three different types of proteins (BSA, Lysozyme and Hemoglobin were investigated by fluorescence spectroscopy at pH= 7.4. Based on fluorescence quenching results, Stern-Volmer quenching constant (Ksv, binding constant (Kq and binding sites (n for proteins were calculated. The results show that protein structure (e.g.,globular, metalloprotein, etc. has a significant role in Protein-Quantum dots interactions and each type of protein influence physicochemical properties of Quantum dots differently.

  4. Evolution of opercle shape in cichlid fishes from Lake Tanganyika - adaptive trait interactions in extant and extinct species flocks.

    Science.gov (United States)

    Wilson, Laura A B; Colombo, Marco; Sánchez-Villagra, Marcelo R; Salzburger, Walter

    2015-11-20

    Phenotype-environment correlations and the evolution of trait interactions in adaptive radiations have been widely studied to gain insight into the dynamics underpinning rapid species diversification. In this study we explore the phenotype-environment correlation and evolution of operculum shape in cichlid fishes using an outline-based geometric morphometric approach combined with stable isotope indicators of macrohabitat and trophic niche. We then apply our method to a sample of extinct saurichthyid fishes, a highly diverse and near globally distributed group of actinopterygians occurring throughout the Triassic, to assess the utility of extant data to inform our understanding of ecomorphological evolution in extinct species flocks. A series of comparative methods were used to analyze shape data for 54 extant species of cichlids (N = 416), and 6 extinct species of saurichthyids (N = 44). Results provide evidence for a relationship between operculum shape and feeding ecology, a concentration in shape evolution towards present along with evidence for convergence in form, and significant correlation between the major axes of shape change and measures of gut length and body elongation. The operculum is one of few features that can be compared in extant and extinct groups, enabling reconstruction of phenotype-environment interactions and modes of evolutionary diversification in deep time.

  5. Separation of methyltin species from inorganic tin, and their interactions with humates in natural waters

    International Nuclear Information System (INIS)

    Omar, M.; Bowen, H.J.M.

    1982-01-01

    Tin(II) and tin(IV) are absorbed from aqueous solutions by Sephadex G-25 gel, from which they can be eluted by humates or fulvates, with which they interact more strongly. Methyltin species are not absorbed by Sephadex G-25, and so can be separated from inorganic tin. Both inorganic tin and methyltin species in natural waters at pH 7.4 can be quantitatively retained by passing through small columns of Chelex-100 resin: the methyltin species can then be washed off the resin with 4M nitric acid. Trimethyltin chloride 113 Sn in water scarcely interacts with fulvates, humates, kaolinite or montmorillonite but is absorbed by Sphagnum peat. Dimethyltin dichloride- 113 Sn reacts significantly with all the above materials after 2 hours equilibration. Methyltin trichloride- 113 Sn interacts weakly in alkaline solutions. (author)

  6. Different Endosymbiotic Interactions in Two Hydra Species Reflect the Evolutionary History of Endosymbiosis

    KAUST Repository

    Ishikawa, Masakazu; Yuyama, Ikuko; Shimizu, Hiroshi; Nozawa, Masafumi; Ikeo, Kazuho; Gojobori, Takashi

    2016-01-01

    Endosymbiosis is an important evolutionary event for organisms, and there is widespread interest in understanding the evolution of endosymbiosis establishment. Hydra is one of the most suitable organisms for studying the evolution of endosymbiosis. Within the genus Hydra, H. viridissima and H. vulgaris show endosymbiosis with green algae. Previous studies suggested that the endosymbiosis in H. vulgaris took place much more recently than that in H. viridissima, noting that the establishment of the interaction between H. vulgaris and its algae is not as stable as in H. viridissima. To investigate the on-going process of endosymbiosis, we first compared growth and tolerance to starvation in symbiotic and aposymbiotic polyps of both species. The results revealed that symbiotic H. viridissima had a higher growth rate and greater tolerance to starvation than aposymbiotic polyps. By contrast, growth of symbiotic H. vulgaris was identical to that of aposymbiotic polyps, and symbiotic H. vulgaris was less tolerant to starvation. Moreover, our gene expression analysis showed a pattern of differential gene expression in H. viridissima similar to that in other endosymbiotically established organisms, and contrary to that observed in H. vulgaris. We also showed that H. viridissima could cope with oxidative stress that caused damage, such as cell death, in H. vulgaris. These observations support the idea that oxidative stress related genes play an important role in the on-going process of endosymbiosis evolution. The different evolutionary stages of endosymbiosis studied here provide a deeper insight into the evolutionary processes occurring toward a stable endosymbiosis.

  7. Different Endosymbiotic Interactions in Two Hydra Species Reflect the Evolutionary History of Endosymbiosis

    KAUST Repository

    Ishikawa, Masakazu

    2016-06-19

    Endosymbiosis is an important evolutionary event for organisms, and there is widespread interest in understanding the evolution of endosymbiosis establishment. Hydra is one of the most suitable organisms for studying the evolution of endosymbiosis. Within the genus Hydra, H. viridissima and H. vulgaris show endosymbiosis with green algae. Previous studies suggested that the endosymbiosis in H. vulgaris took place much more recently than that in H. viridissima, noting that the establishment of the interaction between H. vulgaris and its algae is not as stable as in H. viridissima. To investigate the on-going process of endosymbiosis, we first compared growth and tolerance to starvation in symbiotic and aposymbiotic polyps of both species. The results revealed that symbiotic H. viridissima had a higher growth rate and greater tolerance to starvation than aposymbiotic polyps. By contrast, growth of symbiotic H. vulgaris was identical to that of aposymbiotic polyps, and symbiotic H. vulgaris was less tolerant to starvation. Moreover, our gene expression analysis showed a pattern of differential gene expression in H. viridissima similar to that in other endosymbiotically established organisms, and contrary to that observed in H. vulgaris. We also showed that H. viridissima could cope with oxidative stress that caused damage, such as cell death, in H. vulgaris. These observations support the idea that oxidative stress related genes play an important role in the on-going process of endosymbiosis evolution. The different evolutionary stages of endosymbiosis studied here provide a deeper insight into the evolutionary processes occurring toward a stable endosymbiosis.

  8. Antagonistic interactions between an invasive alien and a native coccinellid species may promote coexistence.

    OpenAIRE

    Hentley, W.T.; Vanbergen, A.J.; Beckerman, A.P.; Brien, M.N.; Hails, R.S.; Jones, T.H.; Johnson, S.N.

    2016-01-01

    1. Despite the capacity of invasive alien species to alter ecosystems, the mechanisms underlying their impact remain only partly understood. Invasive alien predators, for example, can significantly disrupt recipient communities by consuming prey species or acting as an intraguild predator (IGP). 2. Behavioural interactions are key components of interspecific competition between predators,yet these are often overlooked invasion processes. Here, we show how behavioural, nonlethal IGP intera...

  9. Do competitive interactions in dry heathlands explain plant abundance patterns and species coexistence?

    DEFF Research Database (Denmark)

    Ransijn, Johannes; Damgaard, Christian; Schmidt, Inger K

    2015-01-01

    Plant community patterns in space and time may be explained by the interactions between competing plant species. The presented study investigates this in a nutrient and species poor ecosystem. The study presents a methodology for inferring competitive interactions from yearly vegetation inventories...... to predict the community dynamics of C. vulgaris and D. flexuosa. This was compared with the observed plant community structure at 198 Danish dry heathland sites. Interspecific competition will most likely lead to competitive exclusion of D. flexuosa at the observed temporal and spatial scale...... and uses this to assess the outcome of competitive interactions and to predict community patterns and dynamics in a Northwest-European dry heathland. Inferred competitive interactions from five consecutive years of measurements in permanent vegetation frames at a single dry heathland site were used...

  10. Fuel-coolant interaction (FCI) phenomena in reactor safety. Current understanding and future research needs

    Energy Technology Data Exchange (ETDEWEB)

    Speis, T.P. [Maryland Univ., College Park, MD (United States); Basu, S.

    1998-01-01

    This paper gives an account of the current understanding of fuel-coolant interaction (FCI) phenomena in the context of reactor safety. With increased emphasis on accident management and with emerging in-vessel core melt retention strategies for advanced light water reactor (ALWR) designs, recent interest in FCI has broadened to include an evaluation of potential threats to the integrity of reactor vessel lower head and ex-vessel structural support, as well as the role of FCI in debris quenching and coolability. The current understanding of FCI with regard to these issues is discussed, and future research needs to address the issues from a risk perspective are identified. (author)

  11. Inter and intra-guild interactions in egg parasitoid species of the soybean stink bug complex

    Directory of Open Access Journals (Sweden)

    Sujii Edison Ryoiti

    2002-01-01

    Full Text Available The objective of this research was to evaluate the parasitism behavior of Telenomus podisi Ashmead, Trissolcus basalis (Wollaston e Trissolcus urichi Crawford (Hymenoptera: Scelionidae on eggs of Nezara viridula L., Euschistus heros F., Piezodorus guildinii Westwood and Acrosternum aseadum Rolston (Heteroptera: Pentatomidae, in no choice and multiple choice experiments. For all parasitoid species, the results demonstrated the existence of a main host species that maximizes the reproductive success. The competitive interactions among the parasitoid species were investigated in experiments of sequential and simultaneous release of different combinations of parasitoid pairs on the hosts N. viridula, E. heros and A. aseadum. Exploitative competition was observed for egg batches at the genus level (Telenomus vs. Trissolcus and interference competition at the species level (T. basalis vs. T. urichi. Trissolcus urichi was the most aggressive species, interfering with the parasitism of T. basalis. Generally, T. basalis showed an opportunistic behavior trying to parasitise eggs after T. urichi had abandoned the egg batch. The selection of parasitoid species for use in augmentative biological control programs should take into account the diversity of pentatomids present in soybean in addition to the interactions among the different species of parasitoids.

  12. Synergistic Interactions within a Multispecies Biofilm Enhance Individual Species Protection against Grazing by a Pelagic Protozoan

    Directory of Open Access Journals (Sweden)

    Prem K. Raghupathi

    2018-01-01

    Full Text Available Biofilm formation has been shown to confer protection against grazing, but little information is available on the effect of grazing on biofilm formation and protection in multispecies consortia. With most biofilms in nature being composed of multiple bacterial species, the interactions and dynamics of a multispecies bacterial biofilm subject to grazing by a pelagic protozoan predator were investigated. To this end, a mono and multispecies biofilms of four bacterial soil isolates, namely Xanthomonas retroflexus, Stenotrophomonas rhizophila, Microbacterium oxydans and Paenibacillus amylolyticus, were constructed and subjected to grazing by the ciliate Tetrahymena pyriformis. In monocultures, grazing strongly reduced planktonic cell numbers in P. amylolyticus and S. rhizophila and also X. retroflexus. At the same time, cell numbers in the underlying biofilms increased in S. rhizophila and X. retroflexus, but not in P. amylolyticus. This may be due to the fact that while grazing enhanced biofilm formation in the former two species, no biofilm was formed by P. amylolyticus in monoculture, either with or without grazing. In four-species biofilms, biofilm formation was higher than in the best monoculture, a strong biodiversity effect that was even more pronounced in the presence of grazing. While cell numbers of X. retroflexus, S. rhizophila, and P. amylolyticus in the planktonic fraction were greatly reduced in the presence of grazers, cell numbers of all three species strongly increased in the biofilm. Our results show that synergistic interactions between the four-species were important to induce biofilm formation, and suggest that bacterial members that produce more biofilm when exposed to the grazer not only protect themselves but also supported other members which are sensitive to grazing, thereby providing a “shared grazing protection” within the four-species biofilm model. Hence, complex interactions shape the dynamics of the biofilm and

  13. Biotic interactions overrule plant responses to climate, depending on the species' biogeography.

    Directory of Open Access Journals (Sweden)

    Astrid Welk

    Full Text Available This study presents an experimental approach to assess the relative importance of climatic and biotic factors as determinants of species' geographical distributions. We asked to what extent responses of grassland plant species to biotic interactions vary with climate, and to what degree this variation depends on the species' biogeography. Using a gradient from oceanic to continental climate represented by nine common garden transplant sites in Germany, we experimentally tested whether congeneric grassland species of different geographic distribution (oceanic vs. continental plant range type responded differently to combinations of climate, competition and mollusc herbivory. We found the relative importance of biotic interactions and climate to vary between the different components of plant performance. While survival and plant height increased with precipitation, temperature had no effect on plant performance. Additionally, species with continental plant range type increased their growth in more benign climatic conditions, while those with oceanic range type were largely unable to take a similar advantage of better climatic conditions. Competition generally caused strong reductions of aboveground biomass and growth. In contrast, herbivory had minor effects on survival and growth. Against expectation, these negative effects of competition and herbivory were not mitigated under more stressful continental climate conditions. In conclusion we suggest variation in relative importance of climate and biotic interactions on broader scales, mediated via species-specific sensitivities and factor-specific response patterns. Our results have important implications for species distribution models, as they emphasize the large-scale impact of biotic interactions on plant distribution patterns and the necessity to take plant range types into account.

  14. Mapping the Biosphere: exploring species to understand the origin, organization, and sustainability of biodiversity

    Science.gov (United States)

    The time is ripe for a comprehensive mission to explore and document Earth’s species. We conclude that a goal to describe 10 million new species in less than 50 years is attainable based on the strength of 250 years of progress, worldwide collections, existing experts, technological innovation, and...

  15. DP 71 AND BETA DYSTROGLYCAN INTERACTION: A MOLECULAR MODELING APPROACH TO UNDERSTAND DUCHENNE MUSCULAR DYSTROPHY

    Directory of Open Access Journals (Sweden)

    Simanti Bhattacharya,

    2013-12-01

    Full Text Available Dp 71 is the most prevalent and widely expressed non muscle isoform of dystrophin (Dp and its mutations are associated with Duchenne muscular dystrophy, a severe form of muscular disorder. Dp 71 deviates from the canonical Dp by means of its truncated N terminal which also has abolished certain amino acids that comprise WW domain in the canonical form. This WW domain is very crucial for Dp’s interaction with partner proteins to establish a bridge between extra cellular matrices and cellular cytoskeleton. In our current study we have employed molecular modeling technique to understand the structural architecture of the N terminal region of Dp 71 and its deviation from the canonical form. We have further extended our studies to analyze the interaction probabilities between Dp 71 and β-DG applying molecular docking. Our studies for the first time have revealed that in spite of the underlying differences in terms of amino acids and structural organization, Dp 71 can interact with β-DG with its N terminal region which shares the similar molecular surface with the canonical form of Dp. These findings have opened up a platform to investigate the molecular interactions, spatio temporal orientations of the amino acids of Dp 71 and β-DG to understand the onset of DMD in much more greater detail

  16. Effect of science magic applied in interactive lecture demonstrations on conceptual understanding

    Science.gov (United States)

    Taufiq, Muhammad; Suhandi, Andi; Liliawati, Winny

    2017-08-01

    Research about the application of science magic-assisting Interactive Lecture Demonstrations (ILD) has been conducted. This research is aimed at providing description about the comparison of the improvement of the conceptual understanding of lesson on pressure between students who receive physics lesson through science magic-assisting ILD and students who receive physics lesson through ILD without science magic. This research used a quasi-experiment methods with Control Group Pretest-Posttest Design. The subject of the research is all students of class VIII in one of MTs (Islamic junior high school) in Pekalongan. Research samples were selected using random sampling technique. Data about students' conceptual understanding was collected using test instrument of conceptual understanding in the form of multiple choices. N-gain average calculation was performed in order to determine the improvement of students' conceptual understanding. The result of the research shows that conceptual understanding of students on lesson about pressure who received lesson with ILD using science magic is higher than students who received lesson with ILD without science magic . Therefore, the conclusion is that the application of science magic ILD is more effective to improve the conceptual understanding of lesson on pressure.

  17. Species interactions and the effects of climate variability on a wetland amphibian metacommunity

    Science.gov (United States)

    Davis, Courtney L.; Miller, David A.W.; Walls, Susan C.; Barichivich, William J.; Riley, Jeffrey W.; Brown, Mary E.

    2017-01-01

    Disentangling the role that multiple interacting factors have on species responses to shifting climate poses a significant challenge. However, our ability to do so is of utmost importance to predict the effects of climate change on species distributions. We examined how populations of three species of wetland-breeding amphibians, which varied in life history requirements, responded to a six-year period of extremely variable precipitation. This interval was punctuated by both extensive drought and heavy precipitation and flooding, providing a natural experiment to measure community responses to environmental perturbations. We estimated occurrence dynamics using a discrete hidden Markov modeling approach that incorporated information regarding habitat state and predator–prey interactions. This approach allowed us to measure how metapopulation dynamics of each amphibian species was affected by interactions among weather, wetland hydroperiod, and co-occurrence with fish predators. The pig frog, a generalist, proved most resistant to perturbations, with both colonization and persistence being unaffected by seasonal variation in precipitation or co-occurrence with fishes. The ornate chorus frog, an ephemeral wetland specialist, responded positively to periods of drought owing to increased persistence and colonization rates during periods of low-rainfall. Low probabilities of occurrence of the ornate chorus frog in long-duration wetlands were driven by interactions with predators due to low colonization rates when fishes were present. The mole salamander was most sensitive to shifts in water availability. In our study area, this species never occurred in short-duration wetlands and persistence probabilities decreased during periods of drought. At the same time, negative effects occurred with extreme precipitation because flooding facilitated colonization of fishes to isolated wetlands and mole salamanders did not colonize wetlands once fishes were present. We

  18. Aggregation Behaviors of a Two-Species System with Lose-Lose Interactions

    International Nuclear Information System (INIS)

    Song Meixia; Lin Zhenquan; Li Xiaodong; Ke Jianhong

    2010-01-01

    We propose an aggregation evolution model of two-species (A- and B-species) aggregates to study the prevalent aggregation phenomena in social and economic systems. In this model, A- and B-species aggregates perform self-exchange-driven growths with the exchange rate kernels K (k,l) = Kkl and L(k,l) = Lkl, respectively, and the two species aggregates perform self-birth processes with the rate kernels J 1 (k) = J 1 k and J 2 (k) = J 2 k, and meanwhile the interaction between the aggregates of different species A and B causes a lose-lose scheme with the rate kernel H(k,l) = Hkl. Based on the mean-field theory, we investigated the evolution behaviors of the two species aggregates to study the competitions among above three aggregate evolution schemes on the distinct initial monomer concentrations A 0 and B 0 of the two species. The results show that the evolution behaviors of A- and B-species are crucially dominated by the competition between the two self-birth processes, and the initial monomer concentrations A 0 and B 0 play important roles, while the lose-lose scheme play important roles in some special cases. (interdisciplinary physics and related areas of science and technology)

  19. Boolean analysis reveals systematic interactions among low-abundance species in the human gut microbiome.

    Directory of Open Access Journals (Sweden)

    Jens Christian Claussen

    2017-06-01

    Full Text Available The analysis of microbiome compositions in the human gut has gained increasing interest due to the broader availability of data and functional databases and substantial progress in data analysis methods, but also due to the high relevance of the microbiome in human health and disease. While most analyses infer interactions among highly abundant species, the large number of low-abundance species has received less attention. Here we present a novel analysis method based on Boolean operations applied to microbial co-occurrence patterns. We calibrate our approach with simulated data based on a dynamical Boolean network model from which we interpret the statistics of attractor states as a theoretical proxy for microbiome composition. We show that for given fractions of synergistic and competitive interactions in the model our Boolean abundance analysis can reliably detect these interactions. Analyzing a novel data set of 822 microbiome compositions of the human gut, we find a large number of highly significant synergistic interactions among these low-abundance species, forming a connected network, and a few isolated competitive interactions.

  20. Deciphering microbial interactions and detecting keystone species with co-occurrence networks

    Directory of Open Access Journals (Sweden)

    David eBerry

    2014-05-01

    Full Text Available Co-occurrence networks produced from microbial survey sequencing data are frequently used to identify interactions between community members. While this approach has potential to reveal ecological processes, it has been insufficiently validated due to the technical limitations inherent in studying complex microbial ecosystems. Here, we simulate multi-species microbial communities with known interaction patterns using generalized Lotka-Volterra dynamics, construct co-occurrence networks, and evaluate how well networks reveal the underlying interactions, and how experimental and ecological parameters can affect network inference and interpretation. We find that co-occurrence networks can recapitulate interaction networks under certain conditions, but that they lose interpretability when the effects of habitat filtering become significant. We demonstrate that networks suffer from local hot spots of spurious correlation in the neighborhood of hub species that engage in many interactions. We also identify topological features associated with keystone species in co-occurrence networks. This study provides a substantiated framework to guide environmental microbiologists in the construction and interpretation of co-occurrence networks from microbial survey datasets.

  1. Deciphering microbial interactions and detecting keystone species with co-occurrence networks.

    Science.gov (United States)

    Berry, David; Widder, Stefanie

    2014-01-01

    Co-occurrence networks produced from microbial survey sequencing data are frequently used to identify interactions between community members. While this approach has potential to reveal ecological processes, it has been insufficiently validated due to the technical limitations inherent in studying complex microbial ecosystems. Here, we simulate multi-species microbial communities with known interaction patterns using generalized Lotka-Volterra dynamics. We then construct co-occurrence networks and evaluate how well networks reveal the underlying interactions and how experimental and ecological parameters can affect network inference and interpretation. We find that co-occurrence networks can recapitulate interaction networks under certain conditions, but that they lose interpretability when the effects of habitat filtering become significant. We demonstrate that networks suffer from local hot spots of spurious correlation in the neighborhood of hub species that engage in many interactions. We also identify topological features associated with keystone species in co-occurrence networks. This study provides a substantiated framework to guide environmental microbiologists in the construction and interpretation of co-occurrence networks from microbial survey datasets.

  2. Spontaneous cross-species imitation in interactions between chimpanzees and zoo visitors.

    Science.gov (United States)

    Persson, Tomas; Sauciuc, Gabriela-Alina; Madsen, Elainie Alenkær

    2018-01-01

    Imitation is a cornerstone of human development, serving both a cognitive function (e.g. in the acquisition and transmission of skills and knowledge) and a social-communicative function, whereby the imitation of familiar actions serves to maintain social interaction and promote prosociality. In nonhuman primates, this latter function is poorly understood, or even claimed to be absent. In this observational study, we documented interactions between chimpanzees and zoo visitors and found that the two species imitated each other at a similar rate, corresponding to almost 10% of all produced actions. Imitation appeared to accomplish a social-communicative function, as cross-species interactions that contained imitative actions lasted significantly longer than interactions without imitation. In both species, physical proximity promoted cross-species imitation. Overall, imitative precision was higher among visitors than among chimpanzees, but this difference vanished in proximity contexts, i.e. in the indoor environment. Four of five chimpanzees produced imitations; three of them exhibited comparable imitation rates, despite large individual differences in level of cross-species interactivity. We also found that chimpanzees evidenced imitation recognition, yet only when visitors imitated their actions (as opposed to postures). Imitation recognition was expressed by returned imitation in 36% of the cases, and all four imitating chimpanzees engaged in so-called imitative games. Previously regarded as unique to early human socialization, such games serve to maintain social engagement. The results presented here indicate that nonhuman apes exhibit spontaneous imitation that can accomplish a communicative function. The study raises a number of novel questions for imitation research and highlights the imitation of familiar behaviours as a relevant-yet thus far understudied-research topic.

  3. Conditions Promoting Mycorrhizal Parasitism Are of Minor Importance for Competitive Interactions in Two Differentially Mycotrophic Species

    Science.gov (United States)

    Friede, Martina; Unger, Stephan; Hellmann, Christine; Beyschlag, Wolfram

    2016-01-01

    Interactions of plants with arbuscular mycorrhizal fungi (AMF) may range along a broad continuum from strong mutualism to parasitism, with mycorrhizal benefits received by the plant being determined by climatic and edaphic conditions affecting the balance between carbon costs vs. nutritional benefits. Thus, environmental conditions promoting either parasitism or mutualism can influence the mycorrhizal growth dependency (MGD) of a plant and in consequence may play an important role in plant-plant interactions. In a multifactorial field experiment we aimed at disentangling the effects of environmental and edaphic conditions, namely the availability of light, phosphorus and nitrogen, and the implications for competitive interactions between Hieracium pilosella and Corynephorus canescens for the outcome of the AMF symbiosis. Both species were planted in single, intraspecific and interspecific combinations using a target-neighbor approach with six treatments distributed along a gradient simulating conditions for the interaction between plants and AMF ranking from mutualistic to parasitic. Across all treatments we found mycorrhizal association of H. pilosella being consistently mutualistic, while pronounced parasitism was observed in C. canescens, indicating that environmental and edaphic conditions did not markedly affect the cost:benefit ratio of the mycorrhizal symbiosis in both species. Competitive interactions between both species were strongly affected by AMF, with the impact of AMF on competition being modulated by colonization. Biomass in both species was lowest when grown in interspecific competition, with colonization being increased in the less mycotrophic C. canescens, while decreased in the obligate mycotrophic H. pilosella. Although parasitism-promoting conditions negatively affected MGD in C. canescens, these effects were small as compared to growth decreases related to increased colonization levels in this species. Thus, the lack of plant control over

  4. Conditions Promoting Mycorrhizal Parasitism are of Minor Importance for Competitive Interactions in Two Differentially Mycotrophic Species

    Directory of Open Access Journals (Sweden)

    Martina Friede

    2016-09-01

    Full Text Available Interactions of plants with arbuscular mycorrhizal fungi (AMF may range along a broad continuum from strong mutualism to parasitism, with mycorrhizal benefits received by the plant being determined by climatic and edaphic conditions affecting the balance between carbon costs vs. nutritional benefits. Thus, environmental conditions promoting either parasitism or mutualism can influence the mycorrhizal growth dependency (MGD of a plant and in consequence may play an important role in plant-plant interactions.In a multifactorial field experiment we aimed at disentangling the effects of environmental and edaphic conditions, namely the availability of light, phosphorus and nitrogen, and the implications for competitive interactions between Hieracium pilosella and Corynephorus canescens for the outcome of the AMF symbiosis. Both species were planted in single, intraspecific and interspecific combinations using a target-neighbor approach with six treatments distributed along a gradient simulating conditions for the interaction between plants and AMF ranking from mutualistic to parasitic.Across all treatments we found mycorrhizal association of H. pilosella being consistently mutualistic, while pronounced parasitism was observed in C. canescens, indicating that environmental and edaphic conditions did not markedly affect the cost:benefit ratio of the mycorrhizal symbiosis in both species. Competitive interactions between both species were strongly affected by AMF, with the impact of AMF on competition being modulated by colonization. Biomass in both species was lowest when grown in interspecific competition, with colonization being increased in the less mycotrophic C. canescens, while decreased in the obligate mycotrophic H. pilosella. Although parasitism-promoting conditions negatively affected MGD in C. canescens, these effects were small as compared to growth decreases related to increased colonization levels in this species. Thus, the lack of plant

  5. Within-species patterns challenge our understanding of the leaf economics spectrum.

    Science.gov (United States)

    Anderegg, Leander D L; Berner, Logan T; Badgley, Grayson; Sethi, Meera L; Law, Beverly E; HilleRisLambers, Janneke

    2018-05-01

    The utility of plant functional traits for predictive ecology relies on our ability to interpret trait variation across multiple taxonomic and ecological scales. Using extensive data sets of trait variation within species, across species and across communities, we analysed whether and at what scales leaf economics spectrum (LES) traits show predicted trait-trait covariation. We found that most variation in LES traits is often, but not universally, at high taxonomic levels (between families or genera in a family). However, we found that trait covariation shows distinct taxonomic scale dependence, with some trait correlations showing opposite signs within vs. across species. LES traits responded independently to environmental gradients within species, with few shared environmental responses across traits or across scales. We conclude that, at small taxonomic scales, plasticity may obscure or reverse the broad evolutionary linkages between leaf traits, meaning that variation in LES traits cannot always be interpreted as differences in resource use strategy. © 2018 John Wiley & Sons Ltd/CNRS.

  6. Understanding the threats posed by non-native species: public vs. conservation managers.

    Directory of Open Access Journals (Sweden)

    Rodolphe E Gozlan

    Full Text Available Public perception is a key factor influencing current conservation policy. Therefore, it is important to determine the influence of the public, end-users and scientists on the prioritisation of conservation issues and the direct implications for policy makers. Here, we assessed public attitudes and the perception of conservation managers to five non-native species in the UK, with these supplemented by those of an ecosystem user, freshwater anglers. We found that threat perception was not influenced by the volume of scientific research or by the actual threats posed by the specific non-native species. Media interest also reflected public perception and vice versa. Anglers were most concerned with perceived threats to their recreational activities but their concerns did not correspond to the greatest demonstrated ecological threat. The perception of conservation managers was an amalgamation of public and angler opinions but was mismatched to quantified ecological risks of the species. As this suggests that invasive species management in the UK is vulnerable to a knowledge gap, researchers must consider the intrinsic characteristics of their study species to determine whether raising public perception will be effective. The case study of the topmouth gudgeon Pseudorasbora parva reveals that media pressure and political debate has greater capacity to ignite policy changes and impact studies on non-native species than scientific evidence alone.

  7. High-throughput biodiversity analysis: Rapid assessment of species richness and ecological interactions of Chrysomelidae (Coleoptera) in the tropics

    Science.gov (United States)

    Gómez-Zurita, Jesús; Cardoso, Anabela; Coronado, Indiana; De la Cadena, Gissela; Jurado-Rivera, José A.; Maes, Jean-Michel; Montelongo, Tinguaro; Nguyen, Dinh Thi; Papadopoulou, Anna

    2016-01-01

    Abstract Biodiversity assessment has been the focus of intense debate and conceptual and methodological advances in recent years. The cultural, academic and aesthetic impulses to recognise and catalogue the diversity in our surroundings, in this case of living objects, is furthermore propelled by the urgency of understanding that we may be responsible for a dramatic reduction of biodiversity, comparable in magnitude to geological mass extinctions. One of the most important advances in this attempt to characterise biodiversity has been incorporating DNA-based characters and molecular taxonomy tools to achieve faster and more efficient species delimitation and identification, even in hyperdiverse tropical biomes. In this assay we advocate for a broad understanding of Biodiversity as the inventory of species in a given environment, but also the diversity of their interactions, with both aspects being attainable using molecular markers and phylogenetic approaches. We exemplify the suitability and utility of this framework for large-scale biodiversity assessment with the results of our ongoing projects trying to characterise the communities of leaf beetles and their host plants in several tropical setups. Moreover, we propose that approaches similar to ours, establishing the inventories of two ecologically inter-related and species-rich groups of organisms, such as insect herbivores and their angiosperm host-plants, can serve as the foundational stone to anchor a comprehensive assessment of diversity, also in tropical environments, by subsequent addition of trophic levels. PMID:27408583

  8. High-throughput biodiversity analysis: Rapid assessment of species richness and ecological interactions of Chrysomelidae (Coleoptera) in the tropics.

    Science.gov (United States)

    Gómez-Zurita, Jesús; Cardoso, Anabela; Coronado, Indiana; De la Cadena, Gissela; Jurado-Rivera, José A; Maes, Jean-Michel; Montelongo, Tinguaro; Nguyen, Dinh Thi; Papadopoulou, Anna

    2016-01-01

    Biodiversity assessment has been the focus of intense debate and conceptual and methodological advances in recent years. The cultural, academic and aesthetic impulses to recognise and catalogue the diversity in our surroundings, in this case of living objects, is furthermore propelled by the urgency of understanding that we may be responsible for a dramatic reduction of biodiversity, comparable in magnitude to geological mass extinctions. One of the most important advances in this attempt to characterise biodiversity has been incorporating DNA-based characters and molecular taxonomy tools to achieve faster and more efficient species delimitation and identification, even in hyperdiverse tropical biomes. In this assay we advocate for a broad understanding of Biodiversity as the inventory of species in a given environment, but also the diversity of their interactions, with both aspects being attainable using molecular markers and phylogenetic approaches. We exemplify the suitability and utility of this framework for large-scale biodiversity assessment with the results of our ongoing projects trying to characterise the communities of leaf beetles and their host plants in several tropical setups. Moreover, we propose that approaches similar to ours, establishing the inventories of two ecologically inter-related and species-rich groups of organisms, such as insect herbivores and their angiosperm host-plants, can serve as the foundational stone to anchor a comprehensive assessment of diversity, also in tropical environments, by subsequent addition of trophic levels.

  9. Exotic species as models to understand biocultural adaptation: Challenges to mainstream views of human-nature relations.

    Directory of Open Access Journals (Sweden)

    Aline Dourado Sena Gama

    Full Text Available A central argument in the research on traditional knowledge, which persists in the scientific literature, is that the entrance of exotic plants in local medical systems is directly associated with acculturation. However, this logic has put an end for a long period to efforts to understand why such species have so successfully entered socio-ecological systems or even their real role in such systems. This study provides evidence that (1 in some socio-environmental contexts, exotic medicinal species usually confer greater adaptive advantages to local populations, and (2 despite their general importance, exotic species only excel in medical systems when cost-benefit ratio is favorable to them. Thus, in order to avoid the loss of knowledge about native plants and to ensure biocultural conservation, it is necessary to create strategies to amplify the advantages of these species.

  10. Modeling invasive alien plant species in river systems : Interaction with native ecosystem engineers and effects on hydro-morphodynamic processes

    NARCIS (Netherlands)

    van Oorschot, M.; Kleinhans, M. G.; Geerling, G.W.; Egger, G.; Leuven, R.S.E.W.; Middelkoop, H.

    2017-01-01

    Invasive alien plant species negatively impact native plant communities by out-competing species or changing abiotic and biotic conditions in their introduced range. River systems are especially vulnerable to biological invasions, because waterways can function as invasion corridors. Understanding

  11. Biodiversity and the Lotka-Volterra theory of species interactions: open systems and the distribution of logarithmic densities.

    Science.gov (United States)

    Wilson, William G; Lundberg, Per

    2004-09-22

    Theoretical interest in the distributions of species abundances observed in ecological communities has focused recently on the results of models that assume all species are identical in their interactions with one another, and rely upon immigration and speciation to promote coexistence. Here we examine a one-trophic level system with generalized species interactions, including species-specific intraspecific and interspecific interaction strengths, and density-independent immigration from a regional species pool. Comparisons between results from numerical integrations and an approximate analytic calculation for random communities demonstrate good agreement, and both approaches yield abundance distributions of nearly arbitrary shape, including bimodality for intermediate immigration rates.

  12. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels.

    Science.gov (United States)

    Van der Putten, Wim H; Macel, Mirka; Visser, Marcel E

    2010-07-12

    Current predictions on species responses to climate change strongly rely on projecting altered environmental conditions on species distributions. However, it is increasingly acknowledged that climate change also influences species interactions. We review and synthesize literature information on biotic interactions and use it to argue that the abundance of species and the direction of selection during climate change vary depending on how their trophic interactions become disrupted. Plant abundance can be controlled by aboveground and belowground multitrophic level interactions with herbivores, pathogens, symbionts and their enemies. We discuss how these interactions may alter during climate change and the resulting species range shifts. We suggest conceptual analogies between species responses to climate warming and exotic species introduced in new ranges. There are also important differences: the herbivores, pathogens and mutualistic symbionts of range-expanding species and their enemies may co-migrate, and the continuous gene flow under climate warming can make adaptation in the expansion zone of range expanders different from that of cross-continental exotic species. We conclude that under climate change, results of altered species interactions may vary, ranging from species becoming rare to disproportionately abundant. Taking these possibilities into account will provide a new perspective on predicting species distribution under climate change.

  13. Network Understanding of Herb Medicine via Rapid Identification of Ingredient-Target Interactions

    Science.gov (United States)

    Zhang, Hai-Ping; Pan, Jian-Bo; Zhang, Chi; Ji, Nan; Wang, Hao; Ji, Zhi-Liang

    2014-01-01

    Today, herb medicines have become the major source for discovery of novel agents in countermining diseases. However, many of them are largely under-explored in pharmacology due to the limitation of current experimental approaches. Therefore, we proposed a computational framework in this study for network understanding of herb pharmacology via rapid identification of putative ingredient-target interactions in human structural proteome level. A marketing anti-cancer herb medicine in China, Yadanzi (Brucea javanica), was chosen for mechanistic study. Total 7,119 ingredient-target interactions were identified for thirteen Yadanzi active ingredients. Among them, about 29.5% were estimated to have better binding affinity than their corresponding marketing drug-target interactions. Further Bioinformatics analyses suggest that simultaneous manipulation of multiple proteins in the MAPK signaling pathway and the phosphorylation process of anti-apoptosis may largely answer for Yadanzi against non-small cell lung cancers. In summary, our strategy provides an efficient however economic solution for systematic understanding of herbs' power.

  14. Children's Aesthetic Understanding of Photographic Art and the Quality of Art-Related Parent-Child Interactions

    Science.gov (United States)

    Szechter, Lisa E.; Liben, Lynn S.

    2007-01-01

    This research was designed to examine the quality of children's aesthetic understanding of photographs, observe social interactions between parents and children in this aesthetic domain, and study whether qualitatively different dyadic interactions were associated with children's own aesthetic understanding. Parents and children (7-13 years; 40…

  15. Arabidopsis thaliana polyamine content is modified by the interaction with different Trichoderma species.

    Science.gov (United States)

    Salazar-Badillo, Fatima Berenice; Sánchez-Rangel, Diana; Becerra-Flora, Alicia; López-Gómez, Miguel; Nieto-Jacobo, Fernanda; Mendoza-Mendoza, Artemio; Jiménez-Bremont, Juan Francisco

    2015-10-01

    Plants are associated with a wide range of microorganisms throughout their life cycle, and some interactions result on plant benefits. Trichoderma species are plant beneficial fungi that enhance plant growth and development, contribute to plant nutrition and induce defense responses. Nevertheless, the molecules involved in these beneficial effects still need to be identify. Polyamines are ubiquitous molecules implicated in plant growth and development, and in the establishment of plant microbe interactions. In this study, we assessed the polyamine profile in Arabidopsis plants during the interaction with Trichoderma virens and Trichoderma atroviride, using a system that allows direct plant-fungal contact or avoids their physical interaction (split system). The plantlets that grew in the split system exhibited higher biomass than the ones in direct contact with Trichoderma species. After 3 days of interaction, a significant decrease in Arabidopsis polyamine levels was observed in both systems (direct contact and split). After 5 days of interaction polyamine levels were increased. The highest levels were observed with T. atroviride (split system), and with T. virens (direct contact). The expression levels of Arabidopsis ADC1 and ADC2 genes during the interaction with the fungi were also assessed. We observed a time dependent regulation of ADC1 and ADC2 genes, which correlates with polyamine levels. Our data show an evident change in polyamine profile during Arabidopsis - Trichoderma interaction, accompanied by evident alterations in plant root architecture. Polyamines could be involved in the changes undergone by plant during the interaction with this beneficial fungus. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. Multifunctionality is affected by interactions between green roof plant species, substrate depth, and substrate type.

    Science.gov (United States)

    Dusza, Yann; Barot, Sébastien; Kraepiel, Yvan; Lata, Jean-Christophe; Abbadie, Luc; Raynaud, Xavier

    2017-04-01

    Green roofs provide ecosystem services through evapotranspiration and nutrient cycling that depend, among others, on plant species, substrate type, and substrate depth. However, no study has assessed thoroughly how interactions between these factors alter ecosystem functions and multifunctionality of green roofs. We simulated some green roof conditions in a pot experiment. We planted 20 plant species from 10 genera and five families (Asteraceae, Caryophyllaceae, Crassulaceae, Fabaceae, and Poaceae) on two substrate types (natural vs. artificial) and two substrate depths (10 cm vs. 30 cm). As indicators of major ecosystem functions, we measured aboveground and belowground biomasses, foliar nitrogen and carbon content, foliar transpiration, substrate water retention, and dissolved organic carbon and nitrates in leachates. Interactions between substrate type and depth strongly affected ecosystem functions. Biomass production was increased in the artificial substrate and deeper substrates, as was water retention in most cases. In contrast, dissolved organic carbon leaching was higher in the artificial substrates. Except for the Fabaceae species, nitrate leaching was reduced in deep, natural soils. The highest transpiration rates were associated with natural soils. All functions were modulated by plant families or species. Plant effects differed according to the observed function and the type and depth of the substrate. Fabaceae species grown on natural soils had the most noticeable patterns, allowing high biomass production and high water retention but also high nitrate leaching from deep pots. No single combination of factors enhanced simultaneously all studied ecosystem functions, highlighting that soil-plant interactions induce trade-offs between ecosystem functions. Substrate type and depth interactions are major drivers for green roof multifunctionality.

  17. The multidimensional behavioural hypervolumes of two interacting species predict their space use and survival.

    Science.gov (United States)

    Lichtenstein, James L L; Wright, Colin M; McEwen, Brendan; Pinter-Wollman, Noa; Pruitt, Jonathan N

    2017-10-01

    Individual animals differ consistently in their behaviour, thus impacting a wide variety of ecological outcomes. Recent advances in animal personality research have established the ecological importance of the multidimensional behavioural volume occupied by individuals and by multispecies communities. Here, we examine the degree to which the multidimensional behavioural volume of a group predicts the outcome of both intra- and interspecific interactions. In particular, we test the hypothesis that a population of conspecifics will experience low intraspecific competition when the population occupies a large volume in behavioural space. We further hypothesize that populations of interacting species will exhibit greater interspecific competition when one or both species occupy large volumes in behavioural space. We evaluate these hypotheses by studying groups of katydids ( Scudderia nymphs) and froghoppers ( Philaenus spumarius ), which compete for food and space on their shared host plant, Solidago canadensis . We found that individuals in single-species groups of katydids positioned themselves closer to one another, suggesting reduced competition, when groups occupied a large behavioural volume. When both species were placed together, we found that the survival of froghoppers was greatest when both froghoppers and katydids occupied a small volume in behavioural space, particularly at high froghopper densities. These results suggest that groups that occupy large behavioural volumes can have low intraspecific competition but high interspecific competition. Thus, behavioural hypervolumes appear to have ecological consequences at both the level of the population and the community and may help to predict the intensity of competition both within and across species.

  18. Understanding small biomolecule-biomaterial interactions: a review of fundamental theoretical and experimental approaches for biomolecule interactions with inorganic surfaces.

    Science.gov (United States)

    Costa, Dominique; Garrain, Pierre-Alain; Baaden, Marc

    2013-04-01

    Interactions between biomolecules and inorganic surfaces play an important role in natural environments and in industry, including a wide variety of conditions: marine environment, ship hulls (fouling), water treatment, heat exchange, membrane separation, soils, mineral particles at the earth's surface, hospitals (hygiene), art and buildings (degradation and biocorrosion), paper industry (fouling) and more. To better control the first steps leading to adsorption of a biomolecule on an inorganic surface, it is mandatory to understand the adsorption mechanisms of biomolecules of several sizes at the atomic scale, that is, the nature of the chemical interaction between the biomolecule and the surface and the resulting biomolecule conformations once adsorbed at the surface. This remains a challenging and unsolved problem. Here, we review the state of art in experimental and theoretical approaches. We focus on metallic biomaterial surfaces such as TiO(2) and stainless steel, mentioning some remarkable results on hydroxyapatite. Experimental techniques include atomic force microscopy, surface plasmon resonance, quartz crystal microbalance, X-ray photoelectron spectroscopy, fluorescence microscopy, polarization modulation infrared reflection absorption spectroscopy, sum frequency generation and time of flight secondary ion mass spectroscopy. Theoretical models range from detailed quantum mechanical representations to classical forcefield-based approaches. Copyright © 2012 Wiley Periodicals, Inc.

  19. Species Interactions Drive Fish Biodiversity Loss in a High-CO2 World.

    Science.gov (United States)

    Nagelkerken, Ivan; Goldenberg, Silvan U; Ferreira, Camilo M; Russell, Bayden D; Connell, Sean D

    2017-07-24

    Accelerating climate change is eroding the functioning and stability of ecosystems by weakening the interactions among species that stabilize biological communities against change [1]. A key challenge to forecasting the future of ecosystems centers on how to extrapolate results from short-term, single-species studies to community-level responses that are mediated by key mechanisms such as competition, resource availability (bottom-up control), and predation (top-down control) [2]. We used CO 2 vents as potential analogs of ocean acidification combined with in situ experiments to test current predictions of fish biodiversity loss and community change due to elevated CO 2 [3] and to elucidate the potential mechanisms that drive such change. We show that high risk-taking behavior and competitive strength, combined with resource enrichment and collapse of predator populations, fostered already common species, enabling them to double their populations under acidified conditions. However, the release of these competitive dominants from predator control led to suppression of less common and subordinate competitors that did not benefit from resource enrichment and reduced predation. As a result, local biodiversity was lost and novel fish community compositions were created under elevated CO 2 . Our study identifies the species interactions most affected by ocean acidification, revealing potential sources of natural selection. We also reveal how diminished predator abundances can have cascading effects on local species diversity, mediated by complex species interactions. Reduced overfishing of predators could therefore act as a key action to stall diversity loss and ecosystem change in a high-CO 2 world. VIDEO ABSTRACT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Understanding Consumer Interaction on Instagram: The Role of Satisfaction, Hedonism, and Content Characteristics.

    Science.gov (United States)

    Casaló, Luis V; Flavián, Carlos; Ibáñez-Sánchez, Sergio

    2017-06-01

    The increasing relevance of Instagram and its growing adoption among top brands suggest an effort to better understand consumers' behaviors within this context. The purpose of this study is to examine the role of perceived hedonism and satisfaction in determining consumers' intentions to interact and their actual interaction behaviors (the number of likes, by tapping a heart icon, and comments) in a brand's official Instagram account. Also, we investigate the effect of consumer perceptions about the characteristics of the content generated in the account (perceived originality, quantity, and quality) on their perceived hedonism and satisfaction. Data were collected in two stages from 808 members of a fashion brand's official Instagram account. First, participants answered an online questionnaire to evaluate their perceptions, satisfaction, and interaction intentions. Second, 1 month later, we measure the number of likes and comments done by each participant in the brand's official Instagram account during that month. Using partial least squares to analyze the data, perceived hedonism is found to affect both satisfaction and the intention to interact in Instagram, which in turn influences actual behavior. Besides, perceived originality is the most relevant content characteristic to develop perceived hedonism. These findings offer managers a general vision of consumers' behaviors on Instagram, highlighting the importance of hedonism to create a satisfactory experience.

  1. A Century of Plant Pathology: A Retrospective View on Understanding Host-Parasite Interactions.

    Science.gov (United States)

    Keen, N T

    2000-09-01

    ▪ Abstract  The twentieth century has been productive for the science of plant pathology and the field of host-parasite interactions-both in understanding how pathogens and plant defense work and in developing more effective means of disease control. Early in the twentieth century, plant pathology adopted a philosophy that encouraged basic scientific investigation of pathogens and disease defense. That philosophy led to the strategy of developing disease-resistant plants as a prima facie disease-control measure-and in the process saved billions of dollars and avoided the use of tons of pesticides. Plant pathology rapidly adopted molecular cloning and its spin-off technologies, and these have fueled major advances in our basic understanding of plant diseases. This knowledge and the development of efficient technologies for producing transgenic plants convey optimism that plant diseases will be more efficiently controlled in the twenty-first century.

  2. A Diagrammatic Approach to Understanding Complex Eco-Social Interactions in Kathmandu, Nepal

    Directory of Open Access Journals (Sweden)

    R. Cynthia. Neudoerffer

    2005-12-01

    Full Text Available As part of developing an international network of community-based ecosystem approaches to health, a project was undertaken in a densely populated and socio-economically diverse area of Kathmandu, Nepal. Drawing on hundreds of pages of narrative reports based on surveys, interviews, secondary data, and focus groups by trained Nepalese facilitators, the authors created systemic depictions of relationships between multiple stakeholder groups, ecosystem health, and human health. These were then combined to examine interactions among stakeholders, activities, concerns, perceived needs, and resource states (ecosystem health indicators. These qualitative models have provided useful heuristics for both community members and research scholars to understand the eco-social systems in which they live; many of the strategies developed by the communities and researchers to improve health intuitively drew on this systemic understanding. The diagrams enabled researchers and community participants to explicitly examine relationships and conflicts related to health and environmental issues in their community.

  3. Video as a Tool to Increase Understanding and Support for the Endangered Species Act

    Science.gov (United States)

    Kleinhenz, Peter N.; Parker, Michael S.

    2017-01-01

    Research into the effectiveness of video as a tool to educate students about environmental issues and cause a change in their attitudes toward them in a classroom setting is limited. We sought to add to this sparse body of research. We created three videos that showcased a species in a different stage of protection under the Endangered Species…

  4. A contribution to the understanding of phylogenetic relationships among species of the genus Octopus (Octopodidae: Cephalopoda

    Directory of Open Access Journals (Sweden)

    María Soledad Acosta-Jofré

    2011-11-01

    Full Text Available Many species of the genus Octopus are important resources for fisheries worldwide. Its approximately 200 species show a strong similarity in structural morphology and a wide diversity in skin coloration and patterning, behaviour and life strategies that have hampered the study of phylogenetic relationships. We used a Bayesian approach to estimate as yet unknown phylogenetic relationships among O. tehuelchus from the southwestern Atlantic, new specimens of O. mimus (Chile and Peru and other Octopus species, and used Bayes factors to test phylogenetic hypotheses. O. tehuelchus was more closely related to the genera Callistoctopus, Grimpella and Macroctopus than to Octopus, and therefore its generic placement may need a revision. O. vulgaris specimens from Costa Rica (Pacific Ocean and O. oculifer grouped with O. mimus. Bayes factors showed positive evidence in favor of this grouping and therefore these individuals could have been misidentified, being in fact O. mimus. O. vulgaris specimens from the Costa Rican Caribbean were more related to O. mimus than to other O. vulgaris and could represent a cryptic species. The remaining O. vulgaris clustered with O. tetricus. Bayes factors found strong evidence against the monophyly of O. vulgaris as currently defined, giving statistical support to the monophyly of an O. vulgaris s. str. + O. tetricus group proposed previously by other authors.

  5. Understanding recruitment failure in tropical tree species: Insights from a tree ring study

    NARCIS (Netherlands)

    Vlam, M.; Baker, P.J.; Bunyavejchewin, S.; Mohren, G.M.J.; Zuidema, P.A.

    2014-01-01

    Many tropical tree species have population structures that exhibit strong recruitment failure. While the presence of adult trees indicates that appropriate regeneration conditions occurred in the past, it is often unclear why small individuals are absent. Knowing how, when and where these tree

  6. The Interaction of Procedural Skill, Conceptual Understanding and Working Memory in Early Mathematics Achievement

    Directory of Open Access Journals (Sweden)

    Camilla Gilmore

    2017-12-01

    Full Text Available Large individual differences in children’s mathematics achievement are observed from the start of schooling. Previous research has identified three cognitive skills that are independent predictors of mathematics achievement: procedural skill, conceptual understanding and working memory. However, most studies have only tested independent effects of these factors and failed to consider moderating effects. We explored the procedural skill, conceptual understanding and working memory capacity of 75 children aged 5 to 6 years as well as their overall mathematical achievement. We found that, not only were all three skills independently associated with mathematics achievement, but there was also a significant interaction between them. We found that levels of conceptual understanding and working memory moderated the relationship between procedural skill and mathematics achievement such that there was a greater benefit of good procedural skill when associated with good conceptual understanding and working memory. Cluster analysis also revealed that children with equivalent levels of overall mathematical achievement had differing strengths and weaknesses across these skills. This highlights the importance of considering children’s skill profile, rather than simply their overall achievement.

  7. Novel species interactions: American black bears respond to Pacific herring spawn.

    Science.gov (United States)

    Fox, Caroline Hazel; Paquet, Paul Charles; Reimchen, Thomas Edward

    2015-05-26

    In addition to the decline and extinction of the world's species, the decline and eventual loss of species interactions is one of the major consequences of the biodiversity crisis. On the Pacific coast of North America, diminished runs of salmon (Oncorhynchus spp.) drive numerous marine-terrestrial interactions, many of which have been intensively studied, but marine-terrestrial interactions driven by other species remain relatively unknown. Bears (Ursus spp.) are major vectors of salmon into terrestrial ecosystems, but their participation in other cross-ecosystem interactions is similarly poorly described. Pacific herring (Clupea pallasii), a migratory forage fish in coastal marine ecosystems of the North Pacific Ocean and the dominant forage fish in British Columbia (BC), spawn in nearshore subtidal and intertidal zones. Spawn resources (eggs, milt, and spawning adults) at these events are available to coastal predators and scavengers, including terrestrial species. In this study, we investigated the interaction between American black bears (Ursus americanus) and Pacific herring at spawn events in Quatsino Sound, BC, Canada. Using remote cameras to monitor bear activity (1,467 camera days, 29 sites, years 2010-2012) in supratidal and intertidal zones and a machine learning approach, we determined that the quantity of Pacific herring eggs in supratidal and intertidal zones was a leading predictor of black bear activity, with bears positively responding to increasing herring egg masses. Other important predictors included day of the year and Talitrid amphipod (Traskorchestia spp.) mass. A complementary analysis of black bear scats indicated that Pacific herring egg mass was the highest ranked predictor of egg consumption by bears. Pacific herring eggs constituted a substantial yet variable component of the early springtime diet of black bears in Quatsino Sound (frequency of occurrence 0-34%; estimated dietary content 0-63%). Other major dietary items included

  8. Measure solutions for non-local interaction PDEs with two species

    Energy Technology Data Exchange (ETDEWEB)

    Francesco, Marco Di [Department of Mathematical and Statistical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY (United Kingdom); Fagioli, Simone [DISIM—Department of Information Engineering, Computer Science and Mathematics, University of L' Aquila, Via Vetoio 1 (Coppito) 67100 L' Aquila (AQ) (Italy)

    2013-10-01

    This paper presents a systematic existence and uniqueness theory of weak measure solutions for systems of non-local interaction PDEs with two species, which are the PDE counterpart of systems of deterministic interacting particles with two species. The main motivations behind those models arise in cell biology, pedestrian movements, and opinion formation. In case of symmetrizable systems (i.e. with cross-interaction potentials one multiple of the other), we provide a complete existence and uniqueness theory within (a suitable generalization of) the Wasserstein gradient flow theory in Ambrosio et al (2008 Gradient Flows in Metric Spaces and in the Space of Probability Measures (Lectures in Mathematics ETH Zürich) 2nd edn (Basel: Birkhäuser)) and Carrillo et al (2011 Duke Math. J. 156 229–71), which allows the consideration of interaction potentials with a discontinuous gradient at the origin. In the general case of non-symmetrizable systems, we provide an existence result for measure solutions which uses a semi-implicit version of the Jordan–Kinderlehrer–Otto (JKO) scheme (Jordan et al 1998 SIAM J. Math. Anal. 29 1–17), which holds in a reasonable non-smooth setting for the interaction potentials. Uniqueness in the non-symmetrizable case is proven for C{sup 2} potentials using a variant of the method of characteristics. (paper)

  9. Measure solutions for non-local interaction PDEs with two species

    International Nuclear Information System (INIS)

    Francesco, Marco Di; Fagioli, Simone

    2013-01-01

    This paper presents a systematic existence and uniqueness theory of weak measure solutions for systems of non-local interaction PDEs with two species, which are the PDE counterpart of systems of deterministic interacting particles with two species. The main motivations behind those models arise in cell biology, pedestrian movements, and opinion formation. In case of symmetrizable systems (i.e. with cross-interaction potentials one multiple of the other), we provide a complete existence and uniqueness theory within (a suitable generalization of) the Wasserstein gradient flow theory in Ambrosio et al (2008 Gradient Flows in Metric Spaces and in the Space of Probability Measures (Lectures in Mathematics ETH Zürich) 2nd edn (Basel: Birkhäuser)) and Carrillo et al (2011 Duke Math. J. 156 229–71), which allows the consideration of interaction potentials with a discontinuous gradient at the origin. In the general case of non-symmetrizable systems, we provide an existence result for measure solutions which uses a semi-implicit version of the Jordan–Kinderlehrer–Otto (JKO) scheme (Jordan et al 1998 SIAM J. Math. Anal. 29 1–17), which holds in a reasonable non-smooth setting for the interaction potentials. Uniqueness in the non-symmetrizable case is proven for C 2 potentials using a variant of the method of characteristics. (paper)

  10. Genetic variation in foundation species governs the dynamics of trophic interactions

    Science.gov (United States)

    Valencia-Cuevas, Leticia; Mussali-Galante, Patricia; Cano-Santana, Zenón; Pujade-Villar, Juli; Equihua-Martínez, Armando

    2018-01-01

    Abstract Various studies have demonstrated that the foundation species genetic diversity can have direct effects that extend beyond the individual or population level, affecting the dependent communities. Additionally, these effects may be indirectly extended to higher trophic levels throughout the entire community. Quercus castanea is an oak species with characteristics of foundation species beyond presenting a wide geographical distribution and being a dominant element of Mexican temperate forests. In this study, we analyzed the influence of population (He) and individual (HL) genetic diversity of Q. castanea on its canopy endophagous insect community and associated parasitoids. Specifically, we studied the composition, richness (S) and density of leaf-mining moths (Lepidoptera: Tischeridae, Citheraniidae), gall-forming wasps (Hymenoptera: Cynipidae), and canopy parasitoids of Q. castanea. We sampled 120 trees belonging to six populations (20/site) through the previously recognized gradient of genetic diversity. In total, 22 endophagous insect species belonging to three orders (Hymenoptera, Lepidoptera, and Diptera) and 20 parasitoid species belonging to 13 families were identified. In general, we observed that the individual genetic diversity of the host plant (HL) has a significant positive effect on the S and density of the canopy endophagous insect communities. In contrast, He has a significant negative effect on the S of endophagous insects. Additionally, indirect effects of HL were observed, affecting the S and density of parasitoid insects. Our results suggest that genetic variation in foundation species can be one of the most important factors governing the dynamics of tritrophic interactions that involve oaks, herbivores, and parasitoids. PMID:29492034

  11. Plant species distribution along environmental gradient: do belowground interactions with fungi matter?

    Directory of Open Access Journals (Sweden)

    Loïc ePellissier

    2013-12-01

    Full Text Available The distribution of plants along environmental gradients is constrained by abiotic and biotic factors. Cumulative evidence attests of the impact of abiotic factors on plant distributions, but only few studies discuss the role of belowground communities. Soil fungi, in particular, are thought to play an important role in how plant species assemble locally into communities. We first review existing evidence, and then test the effect of the number of soil fungal operational taxonomic units (OTUs on plant species distributions using a recently collected dataset of plant and metagenomic information on soil fungi in the Western Swiss Alps. Using species distribution models, we investigated whether the distribution of individual plant species is correlated to the number of OTUs of two important soil fungal classes known to interact with plants: the Glomeromycetes, that are obligatory symbionts of plants, and the Agaricomycetes, that may be facultative plant symbionts, pathogens, or wood decayers. We show that including the fungal richness information in the models of plant species distributions improves predictive accuracy. Number of fungal OTUs is especially correlated to the distribution of high elevation plant species. We suggest that high elevation soil show greater variation in fungal assemblages that may in turn impact plant turnover among communities. We finally discuss how to move beyond correlative analyses, through the design of field experiments manipulating plant and fungal communities along environmental gradients.

  12. Ulysses - an application for the projection of molecular interactions across species.

    Science.gov (United States)

    Kemmer, Danielle; Huang, Yong; Shah, Sohrab P; Lim, Jonathan; Brumm, Jochen; Yuen, Macaire M S; Ling, John; Xu, Tao; Wasserman, Wyeth W; Ouellette, B F Francis

    2005-01-01

    We developed Ulysses as a user-oriented system that uses a process called Interolog Analysis for the parallel analysis and display of protein interactions detected in various species. Ulysses was designed to perform such Interolog Analysis by the projection of model organism interaction data onto homologous human proteins, and thus serves as an accelerator for the analysis of uncharacterized human proteins. The relevance of projections was assessed and validated against published reference collections. All source code is freely available, and the Ulysses system can be accessed via a web interface http://www.cisreg.ca/ulysses.

  13. Species interactions in the western Baltic Sea: With focus on the ecological role of whiting

    DEFF Research Database (Denmark)

    Ross, Stine Dalmann

    , which potentially prey on and compete for food with whiting. Here, the growth dynamics and feeding ecology of whiting in the western Baltic Sea is investigated and discussed in an ecosystem context. Furthermore, the diet of the harbour porpoise is examined and the interactions between whiting, cod......, implementation of the models in strategic management advice for commercially important fish stocks and protected marine mammals is not common practice. This is due to the lack of sufficient information about species interactions including knowledge about the diet, food intake and growth dynamics. This thesis...

  14. The beta-diversity of species interactions: Untangling the drivers of geographic variation in plant-pollinator diversity and function across scales.

    Science.gov (United States)

    Burkle, Laura A; Myers, Jonathan A; Belote, R Travis

    2016-01-01

    Geographic patterns of biodiversity have long inspired interest in processes that shape the assembly, diversity, and dynamics of communities at different spatial scales. To study mechanisms of community assembly, ecologists often compare spatial variation in community composition (beta-diversity) across environmental and spatial gradients. These same patterns inspired evolutionary biologists to investigate how micro- and macro-evolutionary processes create gradients in biodiversity. Central to these perspectives are species interactions, which contribute to community assembly and geographic variation in evolutionary processes. However, studies of beta-diversity have predominantly focused on single trophic levels, resulting in gaps in our understanding of variation in species-interaction networks (interaction beta-diversity), especially at scales most relevant to evolutionary studies of geographic variation. We outline two challenges and their consequences in scaling-up studies of interaction beta-diversity from local to biogeographic scales using plant-pollinator interactions as a model system in ecology, evolution, and conservation. First, we highlight how variation in regional species pools may contribute to variation in interaction beta-diversity among biogeographic regions with dissimilar evolutionary history. Second, we highlight how pollinator behavior (host-switching) links ecological networks to geographic patterns of plant-pollinator interactions and evolutionary processes. Third, we outline key unanswered questions regarding the role of geographic variation in plant-pollinator interactions for conservation and ecosystem services (pollination) in changing environments. We conclude that the largest advances in the burgeoning field of interaction beta-diversity will come from studies that integrate frameworks in ecology, evolution, and conservation to understand the causes and consequences of interaction beta-diversity across scales. © 2016 Botanical

  15. Feeding behavior and trophic interaction of three shark species in the Galapagos Marine Reserve

    Directory of Open Access Journals (Sweden)

    Diego Páez-Rosas

    2018-05-01

    Full Text Available There is great concern about the future of sharks in Ecuador because of the lack of biological knowledge of most species that inhabit the region. This paper analyzes the feeding behavior of the pelagic thresher shark (Alopias pelagicus, the blue shark (Prionace glauca and the silky shark (Carcharhinus falciformis through the use of stable isotopes of carbon and nitrogen (δ13C and δ15N, with the aim of determining the degree of interaction between these species in the Galapagos Marine Reserve. No interspecific differences were found in use of oceanic vs. inshore feeding areas (δ13C: Kruskal–Wallis test, p = 0.09. The position in the hierarchy of the food web where A. pelagicus feeds differed from that of the other species (δ15N: Kruskal–Wallis test, p = 0.01. There were no significant differences in δ13C and δ15N values between males and females of the three species (Student’s t-test, p > 0.05, which suggests that both sexes have a similar feeding behavior. A specialist strategy was observed in P. glauca (trophic niche breadth TNB = 0.69, while the other species were found to be generalist (A. pelagicus TNB = 1.50 and C. falciformis TNB = 1.09. The estimated trophic level (TL varied between the three species. C. falciformis occupied the highest trophic level (TL = 4.4, making it a quaternary predator in the region. The results of this study coincide with the identified behavior in these predators in other areas of the tropical Pacific (Colombia and Mexico, and suggest a pelagic foraging strategy with differential consumption of prey between the three species. These ecological aspects can provide timely information when implementing in conservation measures for these shark species in the Tropical Pacific and Galapagos Marine Reserve.

  16. Feeding behavior and trophic interaction of three shark species in the Galapagos Marine Reserve.

    Science.gov (United States)

    Páez-Rosas, Diego; Insuasti-Zarate, Paul; Riofrío-Lazo, Marjorie; Galván-Magaña, Felipe

    2018-01-01

    There is great concern about the future of sharks in Ecuador because of the lack of biological knowledge of most species that inhabit the region. This paper analyzes the feeding behavior of the pelagic thresher shark ( Alopias pelagicus ), the blue shark ( Prionace glauca ) and the silky shark ( Carcharhinus falciformis ) through the use of stable isotopes of carbon and nitrogen ( δ 13 C and δ 15 N), with the aim of determining the degree of interaction between these species in the Galapagos Marine Reserve. No interspecific differences were found in use of oceanic vs. inshore feeding areas ( δ 13 C: Kruskal-Wallis test, p = 0.09). The position in the hierarchy of the food web where A. pelagicus feeds differed from that of the other species ( δ 15 N: Kruskal-Wallis test, p = 0.01). There were no significant differences in δ 13 C and δ 15 N values between males and females of the three species (Student's t -test, p  > 0.05), which suggests that both sexes have a similar feeding behavior. A specialist strategy was observed in P. glauca (trophic niche breadth TNB = 0.69), while the other species were found to be generalist ( A. pelagicus TNB = 1.50 and C. falciformis TNB = 1.09). The estimated trophic level (TL) varied between the three species. C. falciformis occupied the highest trophic level (TL = 4.4), making it a quaternary predator in the region. The results of this study coincide with the identified behavior in these predators in other areas of the tropical Pacific (Colombia and Mexico), and suggest a pelagic foraging strategy with differential consumption of prey between the three species. These ecological aspects can provide timely information when implementing in conservation measures for these shark species in the Tropical Pacific and Galapagos Marine Reserve.

  17. Evaluation of P-glycoprotein expression in pain relevant tissues: understanding translation of efflux from preclinical species to human

    Directory of Open Access Journals (Sweden)

    Renu Singh Dhanikula

    2016-10-01

    Full Text Available Various efflux transporters, such as P-glycoprotein (P-gp are now widely accepted to have profound influence on the disposition of substrates. Nevertheless, there is paucity of information about their expression and functionality in the pain relevant tissues (such as brain, spinal cord and dorsal root ganglia (DRG across various species. Therefore, our attempts were directed at evaluating P-gp expression in these tissues to understand its effect on the central nervous system (CNS disposition. As a means of characterizing the normal tissue distribution of P-gp, immunohistochemistry was performed with two antibodies (C219 and H241 directed against different epitopes of MDR1 gene. Notable expression of P-gp was detected in the DRG of Sprague Dawley rat, Beagle Dog, Cynomolgous monkey as well as human. The expression of P-gp was observed in the CNS tissues with evident species differences, the expression of P-gp in human brain and spinal cord was lower than in rats and dogs but relatively comparable to that in monkeys. However, no species related differences were seen in the expression at the DRG level. Double-labelling using an antibody against a marker of endothelial cells confirmed that P-gp was exclusively localized in capillary endothelial cells. This study highlights the cross species similarities and differences in the expression of P-gp and thus serves as a vital step in understanding the translation of exposure of P-gp substrates to human.

  18. From inter-specific behavioural interactions to species distribution patterns along gradients of habitat heterogeneity.

    Science.gov (United States)

    Laiolo, Paola

    2013-01-01

    The strength of the behavioural processes associated with competitor coexistence may vary when different physical environments, and their biotic communities, come into contact, although empirical evidence of how interference varies across gradients of environmental complexity is still scarce in vertebrates. Here, I analyse how behavioural interactions and habitat selection regulate the local distribution of steppeland larks (Alaudidae) in a gradient from simple to heterogeneous agricultural landscapes in Spain, using crested lark Galerida cristata and Thekla lark G. theklae as study models. Galerida larks significantly partitioned by habitat but frequently co-occurred in heterogeneous environments. Irrespective of habitat divergence, however, the local densities of the two larks were negatively correlated, and the mechanisms beyond this pattern were investigated by means of playback experiments. When simulating the intrusion of the congener by broadcasting the species territorial calls, both larks responded with an aggressive response as intense with respect to warning and approach behaviour as when responding to the intrusion of a conspecific. However, birds promptly responded to playbacks only when congener territories were nearby, a phenomenon that points to learning as the mechanisms through which individuals finely tune their aggressive responses to the local competition levels. Heterospecifics occurred in closer proximity in diverse agro-ecosystems, possibly because of more abundant or diverse resources, and here engage in antagonistic interactions. The drop of species diversity associated with agricultural homogenisation is therefore likely to also bring about the disappearance of the behavioural repertoires associated with species interactions.

  19. Large-scale biotic interaction effects - tree cover interacts with shade toler-ance to affect distribution patterns of herb and shrub species across the Alps

    DEFF Research Database (Denmark)

    Nieto-Lugilde, Diego; Lenoir, Jonathan; Abdulhak, Sylvain

    2012-01-01

    on the occurrence on light-demanding species via size-asymmetric competition for light, but a facilitative effect on shade-tolerant species. In order to compare the relative importance of tree cover, four models with different combinations of variables (climate, soil and tree cover) were run for each species. Then...... role. Results indicated that high tree cover causes range contraction, especially at the upper limit, for light-demanding species, whereas it causes shade-tolerant species to extend their range upwards and downwards. Tree cover thus drives plant-plant interactions to shape plant species distribution...

  20. Interactions of fire and nonnative species across an elevation/plant community gradient in Hawaii volcanoes national park

    Science.gov (United States)

    Alison Ainsworth; J. Boone Kauffman

    2010-01-01

    Invasive species interacting with fires pose a relatively unknown, but potentially serious, threat to the tropical forests of Hawaii. Fires may create conditions that facilitate species invasions, but the degree to which this occurs in different tropical plant communities has not been quantified. We documented the survival and establishment of plant species for 2 yr...

  1. Effect of Collaborative Learning in Interactive Lecture Demonstrations (ILD on Student Conceptual Understanding of Motion Graphs

    Directory of Open Access Journals (Sweden)

    Erees Queen B. Macabebe

    2017-04-01

    Full Text Available To assess effectively the influence of peer discussion in understandingconcepts, and to evaluate if the conceptual understanding through Interactive Lecture Demonstrations (ILD and collaborative learning can be translated to actual situations, ten (10 questions on human and carts in motion were presented to 151 university students comprising mostly of science majors but of different year levels. Individual and group predictions were conducted to assess the students’ pre-conceptual understanding of motion graphs. During the ILD, real-time motion graphs were obtained and analysed after each demonstration and an assessment that integrates the ten situations into two scenarios was given to evaluate the conceptual understanding of the students. Collaborative learning produced a positive effect on the prediction scores of the students and the ILD with real-time measurement allowed the students to validate their prediction. However, when the given situations were incorporated to create a scenario, it posted a challenge to the students. The results of this activity identified the area where additional instruction and emphasis is necessary.

  2. A new analytical approach to understanding nanoscale lead-iron interactions in drinking water distribution systems.

    Science.gov (United States)

    Trueman, Benjamin F; Gagnon, Graham A

    2016-07-05

    High levels of iron in distributed drinking water often accompany elevated lead release from lead service lines and other plumbing. Lead-iron interactions in drinking water distribution systems are hypothesized to be the result of adsorption and transport of lead by iron oxide particles. This mechanism was explored using point-of-use drinking water samples characterized by size exclusion chromatography with UV and multi-element (ICP-MS) detection. In separations on two different stationary phases, high apparent molecular weight (>669 kDa) elution profiles for (56)Fe and (208)Pb were strongly correlated (average R(2)=0.96, N=73 samples representing 23 single-unit residences). Moreover, (56)Fe and (208)Pb peak areas exhibited an apparent linear dependence (R(2)=0.82), consistent with mobilization of lead via adsorption to colloidal particles rich in iron. A UV254 absorbance peak, coincident with high molecular weight (56)Fe and (208)Pb, implied that natural organic matter was interacting with the hypothesized colloidal species. High molecular weight UV254 peak areas were correlated with both (56)Fe and (208)Pb peak areas (R(2)=0.87 and 0.58, respectively). On average, 45% (std. dev. 10%) of total lead occurred in the size range 0.05-0.45 μm. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Understanding and Resolving Failures in Human-Robot Interaction: Literature Review and Model Development

    Directory of Open Access Journals (Sweden)

    Shanee Honig

    2018-06-01

    Full Text Available While substantial effort has been invested in making robots more reliable, experience demonstrates that robots operating in unstructured environments are often challenged by frequent failures. Despite this, robots have not yet reached a level of design that allows effective management of faulty or unexpected behavior by untrained users. To understand why this may be the case, an in-depth literature review was done to explore when people perceive and resolve robot failures, how robots communicate failure, how failures influence people's perceptions and feelings toward robots, and how these effects can be mitigated. Fifty-two studies were identified relating to communicating failures and their causes, the influence of failures on human-robot interaction (HRI, and mitigating failures. Since little research has been done on these topics within the HRI community, insights from the fields of human computer interaction (HCI, human factors engineering, cognitive engineering and experimental psychology are presented and discussed. Based on the literature, we developed a model of information processing for robotic failures (Robot Failure Human Information Processing, RF-HIP, that guides the discussion of our findings. The model describes the way people perceive, process, and act on failures in human robot interaction. The model includes three main parts: (1 communicating failures, (2 perception and comprehension of failures, and (3 solving failures. Each part contains several stages, all influenced by contextual considerations and mitigation strategies. Several gaps in the literature have become evident as a result of this evaluation. More focus has been given to technical failures than interaction failures. Few studies focused on human errors, on communicating failures, or the cognitive, psychological, and social determinants that impact the design of mitigation strategies. By providing the stages of human information processing, RF-HIP can be used as a

  4. Using the tools of the trade to understand plasma interactions at Jupiter and Saturn

    Science.gov (United States)

    Kivelson, Margaret G.

    2017-10-01

    For more than half a century, we have been learning how magnetospheres work. Fluid motions and electromagnetic interactions combine to produce the plasma and field environment of a planet. Kinetic responses often control the dynamics. Initial descriptions of the terrestrial magnetosphere were often theoretical (e.g., Chapman and Ferraro, Dungey) before an explosion of spacecraft data provided an atlas of the system and its temporal variations. The basic structure and dynamics of the terrestrial magnetosphere are now largely understood. A different situation exists for the magnetospheres of Jupiter, Saturn, and their moons. Data acquired from spacecraft flybys or from orbit have characterized many aspects of these systems, but measurements are far more limited than at Earth both in space and in time. Even after Cassini’s mission to Saturn and Juno’s prime mission at Jupiter have ended, large regions in the plasma environments of these planets will remain unexplored. No monitors are available to characterize the upstream solar wind. Theory is challenged by the complexity introduced by dynamical effects of the planets’ rapid rotation and the unfamiliar parameter regimes governing interactions with their large moons. Simulation has come to the rescue, providing computational models designed to incorporate the effects of rotation or to describe moon-magnetosphere interactions. Yet simulations must be viewed with appropriate skepticism as they invariably require some compromise with reality. This talk will describe a symbiotic approach to understanding the dynamics of giant planet magnetospheres and the plasma interactions between magnetospheric plasma and large moons. Data acquired along a spacecraft trajectory are compared with values extracted from a virtual spacecraft moving through the same path in the simulation. If results are similar, we use the simulation to identify the processes responsible for puzzling aspects of the signatures. If results differ

  5. Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions.

    Science.gov (United States)

    Khayet, Mohamed; Fernández, Victoria

    2012-11-14

    Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.

  6. Interaction between the genomes of Lactococcus lactis and phages of the P335 species

    Science.gov (United States)

    Kelly, William J.; Altermann, Eric; Lambie, Suzanne C.; Leahy, Sinead C.

    2013-01-01

    Phages of the P335 species infect Lactococcus lactis and have been particularly studied because of their association with strains of L. lactis subsp. cremoris used as dairy starter cultures. Unlike other lactococcal phages, those of the P335 species may have a temperate or lytic lifestyle, and are believed to originate from the starter cultures themselves. We have sequenced the genome of L. lactis subsp. cremoris KW2 isolated from fermented corn and found that it contains an integrated P335 species prophage. This 41 kb prophage (Φ KW2) has a mosaic structure with functional modules that are highly similar to several other phages of the P335 species associated with dairy starter cultures. Comparison of the genomes of 26 phages of the P335 species, with either a lytic or temperate lifestyle, shows that they can be divided into three groups and that the morphogenesis gene region is the most conserved. Analysis of these phage genomes in conjunction with the genomes of several L. lactis strains shows that prophage insertion is site specific and occurs at seven different chromosomal locations. Exactly how induced or lytic phages of the P335 species interact with carbohydrate cell surface receptors in the host cell envelope remains to be determined. Genes for the biosynthesis of a variable cell surface polysaccharide and for lipoteichoic acids (LTAs) are found in L. lactis and are the main candidates for phage receptors, as the genes for other cell surface carbohydrates have been lost from dairy starter strains. Overall, phages of the P335 species appear to have had only a minor role in the adaptation of L. lactis subsp. cremoris strains to the dairy environment, and instead they appear to be an integral part of the L. lactis chromosome. There remains a great deal to be discovered about their role, and their contribution to the evolution of the bacterial genome. PMID:24009606

  7. Understanding Urban Watersheds through Digital Interactive Maps, San Francisco Bay Area, California

    Science.gov (United States)

    Sowers, J. M.; Ticci, M. G.; Mulvey, P.

    2014-12-01

    Dense urbanization has resulted in the "disappearance" of many local creeks in urbanized areas surrounding the San Francisco Bay. Long reaches of creeks now flow in underground pipes. Municipalities and water agencies trying to reduce non-point-source pollution are faced with a public that cannot see and therefore does not understand the interconnected nature of the drainage system or its ultimate discharge to the bay. Since 1993, we have collaborated with the Oakland Museum, the San Francisco Estuary Institute, public agencies, and municipalities to create creek and watershed maps to address the need for public understanding of watershed concepts. Fifteen paper maps are now published (www.museumca.org/creeks), which have become a standard reference for educators and anyone working on local creek-related issues. We now present digital interactive creek and watershed maps in Google Earth. Four maps are completed covering urbanized areas of Santa Clara and Alameda Counties. The maps provide a 3D visualization of the watersheds, with cartography draped over the landscape in transparent colors. Each mapped area includes both Present and Past (circa 1800s) layers which can be clicked on or off by the user. The Present layers include the modern drainage network, watershed boundaries, and reservoirs. The Past layers include the 1800s-era creek systems, tidal marshes, lagoons, and other habitats. All data are developed in ArcGIS software and converted to Google Earth format. To ensure the maps are interesting and engaging, clickable icons pop-up provide information on places to visit, restoration projects, history, plants, and animals. Maps of Santa Clara Valley are available at http://www.valleywater.org/WOW.aspx. Maps of western Alameda County will soon be available at http://acfloodcontrol.org/. Digital interactive maps provide several advantages over paper maps. They are seamless within each map area, and the user can zoom in or out, and tilt, and fly over to explore

  8. Plant Water Stress Affects Interactions Between an Invasive and a Naturalized Aphid Species on Cereal Crops.

    Science.gov (United States)

    Foote, N E; Davis, T S; Crowder, D W; Bosque-Pérez, N A; Eigenbrode, S D

    2017-06-01

    In cereal cropping systems of the Pacific Northwestern United States (PNW), climate change is projected to increase the frequency of drought during summer months, which could increase water stress for crop plants. Yet, it remains uncertain how interactions between herbivore species are affected by drought stress. Here, interactions between two cereal aphids present in PNW cereal systems, Metopolophium festucae (Theobald) subsp. cerealium (a newly invasive species) and Rhopalosiphum padi L. (a naturalized species), were tested relative to wheat water stress. When aphids were confined in leaf cages on wheat, asymmetrical facilitation occurred; per capita fecundity of R. padi was increased by 46% when M. festucae cerealium was also present, compared to when only R. padi was present. Imposed water stress did not influence this interaction. When aphids were confined on whole wheat plants, asymmetrical competition occurred; cocolonization inhibited M. festucae cerealium population growth but did not affect R. padi population growth. Under conditions of plant water stress, however, the inhibitory effect of R. padi on M. festucae cerealium was not observed. We conclude that beneficial effects of cocolonization on R. padi are due to a localized plant response to M. festucae cerealium feeding, and that cocolonization of plants is likely to suppress M. festucae cerealium populations under ample water conditions, but not when plants are water stressed. This suggests that plant responses to water stress alter the outcome of competition between herbivore species, with implications for the structure of pest communities on wheat during periods of drought. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  9. Understanding and estimating effective population size for practical application in marine species management.

    Science.gov (United States)

    Hare, Matthew P; Nunney, Leonard; Schwartz, Michael K; Ruzzante, Daniel E; Burford, Martha; Waples, Robin S; Ruegg, Kristen; Palstra, Friso

    2011-06-01

    Effective population size (N(e)) determines the strength of genetic drift in a population and has long been recognized as an important parameter for evaluating conservation status and threats to genetic health of populations. Specifically, an estimate of N(e) is crucial to management because it integrates genetic effects with the life history of the species, allowing for predictions of a population's current and future viability. Nevertheless, compared with ecological and demographic parameters, N(e) has had limited influence on species management, beyond its application in very small populations. Recent developments have substantially improved N(e) estimation; however, some obstacles remain for the practical application of N(e) estimates. For example, the need to define the spatial and temporal scale of measurement makes the concept complex and sometimes difficult to interpret. We reviewed approaches to estimation of N(e) over both long-term and contemporary time frames, clarifying their interpretations with respect to local populations and the global metapopulation. We describe multiple experimental factors affecting robustness of contemporary N(e) estimates and suggest that different sampling designs can be combined to compare largely independent measures of N(e) for improved confidence in the result. Large populations with moderate gene flow pose the greatest challenges to robust estimation of contemporary N(e) and require careful consideration of sampling and analysis to minimize estimator bias. We emphasize the practical utility of estimating N(e) by highlighting its relevance to the adaptive potential of a population and describing applications in management of marine populations, where the focus is not always on critically endangered populations. Two cases discussed include the mechanisms generating N(e) estimates many orders of magnitude lower than census N in harvested marine fishes and the predicted reduction in N(e) from hatchery-based population

  10. Can understanding the packing of side chains improve the design of protein-protein interactions?

    Science.gov (United States)

    Zhou, Alice; O'Hern, Corey; Regan, Lynne

    2011-03-01

    With the long-term goal to improve the design of protein-protein interactions, we have begun extensive computational studies to understand how side-chains of key residues of binding partners geometrically fit together at protein-peptide interfaces, e.g. the tetratrico-peptide repeat protein and its cognate peptide). We describe simple atomic-scale models of hydrophobic dipeptides, which include hard-core repulsion, bond length and angle constraints, and Van der Waals attraction. By completely enumerating all minimal energy structures in these systems, we are able to reproduce important features of the probability distributions of side chain dihedral angles of hydrophic residues in the protein data bank. These results are the crucial first step in developing computational models that can predict the side chain conformations of residues at protein-peptide interfaces. CSO acknowledges support from NSF grant no. CMMT-1006527.

  11. Inflaming the brain: CRPS a model disease to understand neuroimmune interactions in chronic pain.

    Science.gov (United States)

    Linnman, C; Becerra, L; Borsook, D

    2013-06-01

    We review current concepts in CRPS from a neuroimaging perspective and point out topics and potential mechanisms that are suitable to be investigated in the next step towards understanding the pathophysiology of CRPS. We have outlined functional aspects of the syndrome, from initiating lesion via inflammatory mechanisms to CNS change and associated sickness behavior, with current evidence for up-regulation of immunological factors in CRPS, neuroimaging of systemic inflammation, and neuroimaging findings in CRPS. The initiation, maintenances and CNS targets implicated in CRPS and in the neuro-inflammatory reflex are discussed in terms of CRPS symptoms and recent preclinical studies. Potential avenues for investigating CRPS with PET and fMRI are described, along with roles of inflammation, treatment and behavior in CRPS. It is our hope that this outline will provoke discussion and promote further empirical studies on the interactions between central and peripheral inflammatory pathways manifest in CRPS.

  12. Arabidopsis thaliana - Myzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids

    Directory of Open Access Journals (Sweden)

    Joe eLouis

    2013-07-01

    Full Text Available The phloem provides a unique niche for several organisms. Aphids are a large group of Hemipteran insects that utilize stylets present in their mouthparts to pierce sieve elements and drink large volumes of phloem sap. In addition, many aphids also vector viral diseases. Myzus persicae, commonly known as the green peach aphid (GPA, is an important pest of a large variety of plants that includes Arabidopsis thaliana. This review summarizes recent studies that have exploited the compatible interaction between Arabidopsis and GPA to understand the molecular and physiological mechanisms utilized by plants to control aphid infestation, as well as genes and mechanisms that contribute to susceptibility. In addition, recent efforts to identify aphid-delivered elicitors of plant defenses and novel aphid salivary components that facilitate infestation are also discussed.

  13. Children’s Third-Party Understanding of Communicative Interactions in a Foreign Language

    Directory of Open Access Journals (Sweden)

    Narges Afshordi

    2018-01-01

    Full Text Available Two studies explored young children’s understanding of the role of shared language in communication by investigating how monolingual English-speaking children interact with an English speaker, a Spanish speaker, and a bilingual experimenter who spoke both English and Spanish. When the bilingual experimenter spoke in Spanish or English to request objects, four-year-old children, but not three-year-olds, used her language choice to determine whom she addressed (e.g. requests in Spanish were directed to the Spanish speaker. Importantly, children used this cue – language choice – only in a communicative context. The findings suggest that by four years, monolingual children recognize that speaking the same language enables successful communication, even when that language is unfamiliar to them. Three-year-old children’s failure to make this distinction suggests that this capacity likely undergoes significant development in early childhood, although other capacities might also be at play.

  14. The Paracoccidioides cell wall: past and present layers towards understanding interaction with the host

    Directory of Open Access Journals (Sweden)

    Rosana ePuccia

    2011-12-01

    Full Text Available The cell wall of pathogenic fungi plays import roles in interaction with the host, so that its composition and structure may determine the course of infection. Here we present an overview of the current and past knowledge on the cell wall constituents of Paracoccidioides brasiliensis and P. lutzii. These are temperature-dependent dimorphic fungi that cause paracoccidioidomycosis, a systemic granulomatous and debilitating disease. Focus is given on cell wall carbohydrate and protein contents, their immune-stimulatory features, adhesion properties, drug target characteristics, and morphological phase specificity. We offer a journey towards the future understanding of the dynamic life that takes place in the cell wall and of the changes that it may suffer when living in the human host.

  15. Temperature-Dependent Species Interactions Shape Priority Effects and the Persistence of Unequal Competitors.

    Science.gov (United States)

    Grainger, Tess Nahanni; Rego, Adam Ivan; Gilbert, Benjamin

    2018-02-01

    The order of species arrival at a site can determine the outcome of competitive interactions when early arrivers alter the environment or deplete shared resources. These priority effects are predicted to be stronger at high temperatures, as higher vital rates caused by warming allow early arrivers to more rapidly impact a shared environment. We tested this prediction using a pair of congeneric aphid species that specialize on milkweed plants. We manipulated temperature and arrival order of the two aphid species and measured aphid population dynamics and milkweed survival and defensive traits. We found that warming increased the impact of aphids on the quantity and quality of milkweed, which amplified the importance of priority effects by increasing the competitive exclusion of the inferior competitor when it arrived late. Warming also enhanced interspecific differences in dispersal, which could alter relative arrival times at a regional scale. Our experiment provides a first link between temperature-dependent trophic interactions, priority effects, and dispersal. This study suggests that the indirect and cascading effects of temperature observed here may be important determinants of diversity in the temporally and spatially complex landscapes that characterize ecological communities.

  16. Study on the interaction of U(VI) species with natural organic matters in KURT groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Euo Chang; Baik, Min Hoon; Cho, Hye Ryun; Kim, Hee Kyung; Cha, Wansik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-06-15

    The interaction of U(VI) (hexavalent uranium) species with natural organic matter (NOM) in KURT (KAERI Underground Research Tunnel) groundwater is investigated using a laser spectroscopic technique. The luminescence spectra of the NOM are observed in the ultraviolet and blue wavelength regions by irradiating a laser beam at 266 nm in groundwater. The luminescence spectra of U(VI) species in groundwater containing uranium concentrations of 0.034-0.788 mg·L-1 are measured in the green-colored wavelength region. The luminescence characteristics (peak wavelengths and lifetime) of U(VI) in the groundwater agree well with those of Ca{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) in a standard solution prepared in a laboratory. The luminescence intensities of U(VI) in the groundwater are weaker than those of Ca{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) in the standard solution at the same uranium concentrations. The luminescence intensities of Ca{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) in the standard solution mixed with the groundwater are also weaker than those of Ca{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) in the standard solution at the same uranium concentrations. These results can be ascribed to calcium-U(VI)-carbonate species interacting with NOM and forming non-radiative U(VI) complexes in groundwater.

  17. Interaction of selenite with reduced Fe and/or S species: An XRD and XAS study.

    Science.gov (United States)

    Finck, Nicolas; Dardenne, Kathy

    2016-05-01

    In this study, we investigated the interaction between selenite and either Fe((II))aq or S((-II))aq in solution, and the results were used to investigate the interaction between Se((IV))aq and FeS in suspension. The reaction products were characterized by a combination of methods (SEM, XRD and XAS) and the reaction mechanisms were identified. In a first experiment, Se((IV))aq was reduced to Se((0)) by interaction with Fe((II))aq which was oxidized to Fe((III)), but the reaction was only partial. Subsequently, some Fe((III)) produced akaganeite (β-FeOOH) and the release of proton during that reaction decreased the pH. The pH decrease changed the Se speciation in solution which hindered further Se((IV)) reduction by Fe((II))aq. In a second experiment, Se((IV))aq was quantitatively reduced to Se((0)) by S((-II))aq and the reaction was fast. Two sulfide species were needed to reduce one Se((IV)), and the observed pH increase was due to a proton consumption. For both experiments, experimental results are consistent with expectations based on the oxidation reduction potential of the various species. Upon interaction with FeS, Se((IV))aq was reduced to Se((0)) and minute amounts of pyrite were detected, a consequence of partial mackinawite oxidation at surface sulfur sites. These results are of prime importance with respect to safe deep disposal of nuclear waste which contains the long-lived radionuclide (79)Se. This study shows that after release of (79)Se((IV)) upon nuclear waste matrix corrosion, selenite can be reduced in the near field to low soluble Se((0)) by interaction with Fe((II))aq and/or S((-II))aq species. Because the solubility of Se((0)) species is significantly lower than that of Se((IV)), selenium will become much less (bio)available and its migration out of deep HLW repositories may be drastically hindered. Copyright © 2016. Published by Elsevier B.V.

  18. Understanding interactions with the food environment: an exploration of supermarket food shopping routines in deprived neighbourhoods.

    Science.gov (United States)

    Thompson, Claire; Cummins, Steven; Brown, Tim; Kyle, Rosemary

    2013-01-01

    Despite a sustained academic interest in the environmental determinants of diet, relatively little is known about the ways in which individuals interact with their neighbourhood food environment and the use of its most important element, the supermarket. This qualitative study explores how residents of deprived neighbourhoods shop for food and how the supermarket environment influences their choices. Go-along interviews were conducted with 26 residents of Sandwell, a uniformly deprived metropolitan borough in the West Midlands, UK. Routine approaches to food shopping are characterised in terms of planning and reliance on the supermarket environment. Four distinct routines are identified: chaotic and reactive; working around the store; item-by-item; and restricted and budgeted. This suggests that residents of deprived neighbourhoods do not have uniform responses to food environments. Responses to supermarket environments appear to be mediated by levels of individual autonomy. A better understanding of how residents of deprived neighbourhoods interact with their food environment may help optimise environmental interventions aimed at improving physical access to food in these places. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Understanding Epistatic Interactions between Genes Targeted by Non-coding Regulatory Elements in Complex Diseases

    Directory of Open Access Journals (Sweden)

    Min Kyung Sung

    2014-12-01

    Full Text Available Genome-wide association studies have proven the highly polygenic architecture of complex diseases or traits; therefore, single-locus-based methods are usually unable to detect all involved loci, especially when individual loci exert small effects. Moreover, the majority of associated single-nucleotide polymorphisms resides in non-coding regions, making it difficult to understand their phenotypic contribution. In this work, we studied epistatic interactions associated with three common diseases using Korea Association Resource (KARE data: type 2 diabetes mellitus (DM, hypertension (HT, and coronary artery disease (CAD. We showed that epistatic single-nucleotide polymorphisms (SNPs were enriched in enhancers, as well as in DNase I footprints (the Encyclopedia of DNA Elements [ENCODE] Project Consortium 2012, which suggested that the disruption of the regulatory regions where transcription factors bind may be involved in the disease mechanism. Accordingly, to identify the genes affected by the SNPs, we employed whole-genome multiple-cell-type enhancer data which discovered using DNase I profiles and Cap Analysis Gene Expression (CAGE. Assigned genes were significantly enriched in known disease associated gene sets, which were explored based on the literature, suggesting that this approach is useful for detecting relevant affected genes. In our knowledge-based epistatic network, the three diseases share many associated genes and are also closely related with each other through many epistatic interactions. These findings elucidate the genetic basis of the close relationship between DM, HT, and CAD.

  20. How does money memorize social interactions? Understanding time-homogeneity in monetary systems

    Science.gov (United States)

    Braun, Dieter; Schmitt, Matthias; Schacker, Andreas

    2013-03-01

    Understanding how money shapes and memorizes our social interactions is central to modern life. There are many schools of thought on as to how monetary systems contribute to crises or boom/bust cycles and how monetary policy can try to avert them. We find that statistical physics gives a refreshing perspective. We analyze how credit mechanisms introduce non-locality and time-heterogeneity to the monetary memory. Motivated by an analogy to particle physics, locality and time-homogeneity can be imposed to monetary systems. As a result, a full reserve banking system is complemented with a bi-currency system of non-bank assets (``money'') and bank assets (``antimoney''). Payment can either be made by passing on money or by receiving antimoney. As a result, a free floating exchange rate between non-bank assets and bank assets is established. Interestingly, this monetary memory allows for credit creation by the simultaneous transfer of money and antimoney at a negotiated exchange rate. We analyze this novel mechanism of liquidity transfer in a model of random social interactions, yielding analytical results for all relevant distributions and the price of liquidity under the conditions of a fully transparent credit market.

  1. Teaching Photosynthesis in a Compulsory School Context. Students’ Reasoning, Understanding and Interactions.

    Directory of Open Access Journals (Sweden)

    Helena Näs

    2011-02-01

    Full Text Available According to previous research, students show difficulties in understanding photosynthesis and respiration, and basic ecological concepts like energy flow in ecosystems. There are successful teaching units accomplished in this area and many of them can be described as inquiry-based teaching. One definition of inquiry-based teaching is that it involves everything from finding problems, investigating them, debating with peers and trying to explain and give solutions. Accordingly students need to be confronted with challenging questions and empirical data to reason about and teachers need to implement student-generated inquiry discussion since students often stay silent and do not express their thoughts during science lessons. This thesis will focus on young peoples’ understanding of the functioning of plants, students’ participation during biology lessons, and how biology teaching is accomplished in primary and secondary school.Two school classroom projects focusing on teaching about plants and ecology are described. Four teachers and their 4th, 5th and 6th grade classes plus two science teachers and their three 8th grade classes collaborated. Photosynthesis and respiration were made concrete by using tasks where plants, plant cells, germs, seeds and the gas exchange were used. The aim was to listen to students’ reasoning in both teaching and interview situations. Learning outcome, as described by students’ reasoning in the classrooms and in individual interviews but also by their test results, is especially focused. Student-student and student-teacher interactions have been analysed with an ethnographic approach in the classroom context.The plant tasks encouraged the students’ in primary school to develop scientific reasoning and the interviews confirmed that the students had learned about photosynthesis. The ecology teaching in secondary school showed a substantial understanding confirmed both by students’ oral and written

  2. A human protein interaction network shows conservation of aging processes between human and invertebrate species.

    Directory of Open Access Journals (Sweden)

    Russell Bell

    2009-03-01

    Full Text Available We have mapped a protein interaction network of human homologs of proteins that modify longevity in invertebrate species. This network is derived from a proteome-scale human protein interaction Core Network generated through unbiased high-throughput yeast two-hybrid searches. The longevity network is composed of 175 human homologs of proteins known to confer increased longevity through loss of function in yeast, nematode, or fly, and 2,163 additional human proteins that interact with these homologs. Overall, the network consists of 3,271 binary interactions among 2,338 unique proteins. A comparison of the average node degree of the human longevity homologs with random sets of proteins in the Core Network indicates that human homologs of longevity proteins are highly connected hubs with a mean node degree of 18.8 partners. Shortest path length analysis shows that proteins in this network are significantly more connected than would be expected by chance. To examine the relationship of this network to human aging phenotypes, we compared the genes encoding longevity network proteins to genes known to be changed transcriptionally during aging in human muscle. In the case of both the longevity protein homologs and their interactors, we observed enrichments for differentially expressed genes in the network. To determine whether homologs of human longevity interacting proteins can modulate life span in invertebrates, homologs of 18 human FRAP1 interacting proteins showing significant changes in human aging muscle were tested for effects on nematode life span using RNAi. Of 18 genes tested, 33% extended life span when knocked-down in Caenorhabditis elegans. These observations indicate that a broad class of longevity genes identified in invertebrate models of aging have relevance to human aging. They also indicate that the longevity protein interaction network presented here is enriched for novel conserved longevity proteins.

  3. Vaporization of chemical species and the production of aerosols during a core debris/concrete interaction

    International Nuclear Information System (INIS)

    Butland, A.T.D.; Mignanelli, M.A.; Potter, P.E.; Smith, P.N.

    1987-01-01

    The equilibrium chemical composition within gas bubbles sparging through isothermal molten corium-concrete mixtures has been evaluated theoretically. A series of sensitivity calculations gives some insight into a number of factors which are of importance in determining the radionuclide and non-radioactive releases during core-concrete interaction. The degree of mixing or layering of the pool has turned out to be of paramount importance in determining the magnitudes of the releases. The presence of unoxidized zirconium in the melt tends to enhance the release of a number of species and the type of concrete used for the base mat can have a significant effect. The predictions can be sensitive to the thermodynamic data used in the calculations. The vaporization of various species into the gas bubbles can require large amounts of heat; the loss of this heat from the melt can have an effect on the extent of the vaporization

  4. Coulombic interactions and multicomponent ionic dispersion during transport of charged species in heterogeneous porous media

    DEFF Research Database (Denmark)

    Muniruzzaman, Muhammad; Rolle, Massimo

    Electrochemical cross-coupling plays a significant role for transport of charged species in porous media [1, 2]. In this study we performed flow-through experiments in a quasi two-dimensional setup using dilute solutions of strong electrolytes to study the influence of charge interactions on mass...... occurred. To quantitatively interpret the outcomes of our laboratory experiments in the spatially variable flow fields we developed a two dimensional numerical model based on a multicomponent formulation, on charge conservation and on the accurate description of transverse dispersion. The results...... of the multicomponent transport simulations were compared with the high-resolution (5 mm spacing) concentration measurements of the ionic species at the outlet of the flow-through domain. The excellent agreement between the measured concentrations and the results of purely forward numerical simulations demonstrates...

  5. An examination of student attitudes and understanding of exponential functions using interactive instructional multimedia

    Science.gov (United States)

    Singleton, Cynthia M.

    The purpose of this study was to examine students' attitudes and understanding of exponential functions using InterAct Math, a mathematics tutorial software. The researcher used a convenience sampling of a total of 78 students from two intact pre-calculus classes; the students in the experimental group totaled 41 and the control group totaled 37. The two groups were exposed to the same curriculum content taught by the same instructor, the researcher. The experimental group used the mathematics tutorial software as an integral part of the instructional delivery. The control group used traditional instruction without integration of the educational technology. Data were collected during a two week span using a mixed-methodology to address the major research questions: (1) Is there a statistically significant difference in the mean achievement test scores between the experimental and the control groups? (2) Is there a statistically significant difference in students' attitudes toward learning mathematics between the experimental group and the control group? The researcher utilized paired t-tests and independent t-tests as statistical methods to evaluate the effectiveness of the intervention and to establish whether there was a significant difference between the experimental and control groups. Based on the analyses of the quantitative data, it was established that the students who received the InterAct Math tutorial (experimental group) did not perform better than the control group on exponential functions, graphs and applications. However, the quantitative part of the study (Aiken-Dreger Mathematics Attitude Scale) revealed that, while students in the experimental and control groups started with similar attitudes about mathematics and the integration of technology, their attitudes were significantly different at the conclusion of the study. The fear of mathematics was reduced for the experimental group at the end of the study, and their enjoyment of the subject matter

  6. Species interactions can maintain resistance of subtidal algal habitats to an increasingly modified world

    Directory of Open Access Journals (Sweden)

    Laura J. Falkenberg

    2015-07-01

    Full Text Available Current trends in habitat loss have been forecast to accelerate under anticipated global change, thereby focusing conservation attention on identifying the circumstances under which key species interactions retard habitat loss. Urbanised coastlines are associated with broad-scale loss of kelp canopies and their replacement by less productive mats of algal turf, a trend predicted to accelerate under ocean acidification and warming (i.e. enhanced CO2 and temperature. Here we use kelp forests as a model system to test whether efforts to maintain key species interactions can maintain habitat integrity under forecasted conditions. First, we assessed whether increasing intensity of local human activity is associated with more extensive turf mats and sparser canopies via structured field observations. Second, we experimentally tested the hypothesis that intact canopies can resist turf expansion under enhanced CO2 and temperature in large mesocosms. In the field, there was a greater proportion of turf patches on urbanised coasts of South Australia than in agricultural and urban catchments in which there was a greater proportion of canopy-forming algae. Mesocosm experiments revealed this expansion of turfs is likely to accelerate under increases in CO2 and temperature, but may be limited by the presence of intact canopies. We note that even in the presence of canopy, increases in CO2 and temperature facilitate greater turf covers than occurs under contemporary conditions. The influence of canopy would likely be due to shading of the understorey turfs which, in turn, can modify their photosynthetic activity. These results suggest that resistance of habitat to change under human-dominated conditions may be managed via the retention of key species and their interactions. Management that directly reduces the disturbance of habitat-forming organisms (e.g. harvesting or reverses loss through restoration may, therefore, reinforce habitat resistance in an

  7. Species-environment interactions changed by introduced herbivores in an oceanic high-mountain ecosystem.

    Science.gov (United States)

    Seguí, Jaume; López-Darias, Marta; Pérez, Antonio J; Nogales, Manuel; Traveset, Anna

    2017-01-05

    Summit areas of oceanic islands constitute some of the most isolated ecosystems on earth, highly vulnerable to climate change and introduced species. Within the unique high-elevation communities of Tenerife (Canary Islands), reproductive success and thus long-term survival of species may depend on environmental suitability as well as threat by introduced herbivores. By experimentally modifying the endemic and vulnerable species Viola cheiranthifolia along its entire altitudinal occurrence range, we studied plant performance, autofertility, pollen limitation and visitation rate and the interactive effect of grazing by non-native rabbits on them. We assessed the grazing effects by recording (1) the proportion of consumed plants and flowers along the gradient, (2) comparing fitness traits of herbivore-excluded plants along the gradient, and (3) comparing fitness traits, autofertility and pollen limitation between plants excluded from herbivores with unexcluded plants at the same locality. Our results showed that V. cheiranthifolia performance is mainly affected by inter-annual and microhabitat variability along the gradient, especially in the lowest edge. Despite the increasingly adverse environmental conditions, the plant showed no pollen limitation with elevation, which is attributed to the increase in autofertility levels (≥ 50% of reproductive output) and decrease in competition for pollinators at higher elevations. Plant fitness is, however, extremely reduced owing to the presence of non-native rabbits in the area (consuming more than 75% of the individuals in some localities), which in turn change plant trait-environment interactions along the gradient. Taken together, these findings indicate that the elevational variation found on plant performance results from the combined action of non-native rabbits with the microhabitat variability, exerting intricate ecological influences that threaten the survival of this violet species. Published by Oxford University

  8. Toward a cross-species neuroscientific understanding of the affective mind: do animals have emotional feelings?

    Science.gov (United States)

    Panksepp, Jaak

    2011-06-01

    Do we need to consider mental processes in our analysis of brain functions in other animals? Obviously we do, if such BrainMind functions exist in the animals we wish to understand. If so, how do we proceed, while still retaining materialistic-mechanistic perspectives? This essay outlines the historical forces that led to emotional feelings in animals being marginalized in behavioristic scientific discussions of why animals behave the way they do, and why mental constructs are generally disregarded in modern neuroscientific analyses. The roots of this problem go back to Cartesian dualism and the attempt of 19th century physician-scientists to ground a new type of medical curriculum on a completely materialistic approach to body functions. Thereby all vitalistic principles were discarded from the lexicon of science, and subjective experience in animals was put in that category and discarded as an invalid approach to animal behavior. This led to forms of rigid operationalism during the era of behaviorism and subsequently ruthless reductionism in brain research, leaving little room for mentalistic concepts such as emotional feelings in animal research. However, modern studies of the brain clearly indicate that artificially induced arousals of emotional networks, as with localized electrical and chemical brain stimulation, can serve as "rewards" and "punishments" in various learning tasks. This strongly indicates that animal brains elaborate various experienced states, with those having affective contents being easiest to study rigorously. However, in approaching emotional feelings empirically we must pay special attention to the difficulties and vagaries of human language and evolutionary levels of control in the brain. We need distinct nomenclatures from primary (unconditioned phenomenal experiences) to tertiary (reflective) levels of mind. The scientific pursuit of affective brain processes in other mammals can now reveal general BrainMind principles that also apply

  9. Belowground Plant–Herbivore Interactions Vary among Climate-Driven Range-Expanding Plant Species with Different Degrees of Novel Chemistry

    Directory of Open Access Journals (Sweden)

    Rutger A. Wilschut

    2017-10-01

    Full Text Available An increasing number of studies report plant range expansions to higher latitudes and altitudes in response to global warming. However, consequences for interactions with other species in the novel ranges are poorly understood. Here, we examine how range-expanding plant species interact with root-feeding nematodes from the new range. Root-feeding nematodes are ubiquitous belowground herbivores that may impact the structure and composition of natural vegetation. Because of their ecological novelty, we hypothesized that range-expanding plant species will be less suitable hosts for root-feeding nematodes than native congeneric plant species. In greenhouse and lab trials we compared nematode preference and performance of two root-feeding nematode species between range-expanding plant species and their congeneric natives. In order to understand differences in nematode preferences, we compared root volatile profiles of all range-expanders and congeneric natives. Nematode preferences and performances differed substantially among the pairs of range-expanders and natives. The range-expander that had the most unique volatile profile compared to its related native was unattractive and a poor host for nematodes. Other range-expanding plant species that differed less in root chemistry from native congeners, also differed less in nematode attraction and performance. We conclude that the three climate-driven range-expanding plant species studied varied considerably in their chemical novelty compared to their congeneric natives, and therefore affected native root-feeding nematodes in species-specific ways. Our data suggest that through variation in chemical novelty, range-expanding plant species may vary in their impacts on belowground herbivores in the new range.

  10. Cross-Species Virus-Host Protein-Protein Interactions Inhibiting Innate Immunity

    Science.gov (United States)

    2016-07-01

    diseases are a regular occurrence globally (Figure 1). The Zika virus is the latest example gaining widespread attention. Many of the (re-)emerging...for establishing infection and/or modulating pathogenesis (Figures 2 and 3). 3 Figure 2. Schematic of several virus -host protein interactions within...8725 John J. Kingman Road, MS 6201 Fort Belvoir, VA 22060-6201 T E C H N IC A L R E P O R T DTRA-TR-16-79 Cross-species virus -host

  11. Interaction of plant growth regulators and reactive oxygen species to regulate petal senescence in wallflowers (Erysimum linifolium).

    Science.gov (United States)

    Salleh, Faezah Mohd; Mariotti, Lorenzo; Spadafora, Natasha D; Price, Anna M; Picciarelli, Piero; Wagstaff, Carol; Lombardi, Lara; Rogers, Hilary

    2016-04-02

    In many species floral senescence is coordinated by ethylene. Endogenous levels rise, and exogenous application accelerates senescence. Furthermore, floral senescence is often associated with increased reactive oxygen species, and is delayed by exogenously applied cytokinin. However, how these processes are linked remains largely unresolved. Erysimum linifolium (wallflower) provides an excellent model for understanding these interactions due to its easily staged flowers and close taxonomic relationship to Arabidopsis. This has facilitated microarray analysis of gene expression during petal senescence and provided gene markers for following the effects of treatments on different regulatory pathways. In detached Erysimum linifolium (wallflower) flowers ethylene production peaks in open flowers. Furthermore senescence is delayed by treatments with the ethylene signalling inhibitor silver thiosulphate, and accelerated with ethylene released by 2-chloroethylphosphonic acid. Both treatments with exogenous cytokinin, or 6-methyl purine (which is an inhibitor of cytokinin oxidase), delay petal senescence. However, treatment with cytokinin also increases ethylene biosynthesis. Despite the similar effects on senescence, transcript abundance of gene markers is affected differentially by the treatments. A significant rise in transcript abundance of WLS73 (a putative aminocyclopropanecarboxylate oxidase) was abolished by cytokinin or 6-methyl purine treatments. In contrast, WFSAG12 transcript (a senescence marker) continued to accumulate significantly, albeit at a reduced rate. Silver thiosulphate suppressed the increase in transcript abundance both of WFSAG12 and WLS73. Activity of reactive oxygen species scavenging enzymes changed during senescence. Treatments that increased cytokinin levels, or inhibited ethylene action, reduced accumulation of hydrogen peroxide. Furthermore, although auxin levels rose with senescence, treatments that delayed early senescence did not affect

  12. Bipartite networks improve understanding of effects of waterbody size and angling method on angler–fish interactions

    Science.gov (United States)

    Chizinski, Christopher J.; Martin, Dustin R.; Shizuka, Daizaburo; Pope, Kevin L.

    2018-01-01

    Networks used to study interactions could provide insights to fisheries. We compiled data from 27 297 interviews of anglers across waterbodies that ranged in size from 1 to 12 113 ha. Catch rates of fish species among anglers grouped by species targeted generally differed between angling methods (bank or boat). We constructed angler–catch bipartite networks (angling method specific) between anglers and fish and measured several network metrics. There was considerable variation in networks among waterbodies, with multiple metrics influenced by waterbody size. Number of species-targeting angler groups and number of fish species caught increased with increasing waterbody size. Mean number of links for species-targeting angler groups and fish species caught also increased with waterbody size. Connectance (realized proportion of possible links) of angler–catch interaction networks decreased slower for boat anglers than for bank anglers with increasing waterbody size. Network specialization (deviation of number of interactions from expected) was not significantly related to waterbody size or angling methods. Application of bipartite networks in fishery science requires careful interpretation of outputs, especially considering the numerous confounding factors prevalent in recreational fisheries.

  13. Experimental simulation: using generative modelling and palaeoecological data to understand human-environment interactions

    Directory of Open Access Journals (Sweden)

    George Perry

    2016-10-01

    Full Text Available The amount of palaeoecological information available continues to grow rapidly, providing improved descriptions of the dynamics of past ecosystems and enabling them to be seen from new perspectives. At the same time, there has been concern over whether palaeoecological enquiry needs to move beyond descriptive inference to a more hypothesis-focussed or experimental approach; however, the extent to which conventional hypothesis-driven scientific frameworks can be applied to historical contexts (i.e., the past is the subject of ongoing debate. In other disciplines concerned with human-environment interactions, including physical geography and archaeology, there has been growing use of generative simulation models, typified by agent-based approaches. Generative modelling encourages counter-factual questioning (what if…?, a mode of argument that is particularly important in systems and time-periods, such as the Holocene and now the Anthropocene, where the effects of humans and other biophysical processes are deeply intertwined. However, palaeoecologically focused simulation of the dynamics of the ecosystems of the past either seems to be conducted to assess the applicability of some model to the future or treats humans simplistically as external forcing factors. In this review we consider how generative simulation-modelling approaches could contribute to our understanding of past human-environment interactions. We consider two key issues: the need for null models for understanding past dynamics and the need to be able learn more from pattern-based analysis. In this light, we argue that there is considerable scope for palaeocology to benefit from developments in generative models and their evaluation. We discuss the view that simulation is a form of experiment and, by using case studies, consider how the many patterns available to palaeoecologists can support model evaluation in a way that moves beyond simplistic pattern-matching and how such models

  14. Multilayered phantoms with tunable optical properties for a better understanding of light/tissue interactions

    Science.gov (United States)

    Roig, Blandine; Koenig, Anne; Perraut, François; Piot, Olivier; Vignoud, Séverine; Lavaud, Jonathan; Manfait, Michel; Dinten, Jean-Marc

    2015-03-01

    Light/tissue interactions, like diffuse reflectance, endogenous fluorescence and Raman scattering, are a powerful means for providing skin diagnosis. Instrument calibration is an important step. We thus developed multilayered phantoms for calibration of optical systems. These phantoms mimic the optical properties of biological tissues such as skin. Our final objective is to better understand light/tissue interactions especially in the case of confocal Raman spectroscopy. The phantom preparation procedure is described, including the employed method to obtain a stratified object. PDMS was chosen as the bulk material. TiO2 was used as light scattering agent. Dye and ink were adopted to mimic, respectively, oxy-hemoglobin and melanin absorption spectra. By varying the amount of the incorporated components, we created a material with tunable optical properties. Monolayer and multilayered phantoms were designed to allow several characterization methods. Among them, we can name: X-ray tomography for structural information; Diffuse Reflectance Spectroscopy (DRS) with a homemade fibered bundle system for optical characterization; and Raman depth profiling with a commercial confocal Raman microscope for structural information and for our final objective. For each technique, the obtained results are presented and correlated when possible. A few words are said on our final objective. Raman depth profiles of the multilayered phantoms are distorted by elastic scattering. The signal attenuation through each single layer is directly dependent on its own scattering property. Therefore, determining the optical properties, obtained here with DRS, is crucial to properly correct Raman depth profiles. Thus, it would be permitted to consider quantitative studies on skin for drug permeation follow-up or hydration assessment, for instance.

  15. How innovative ICT tools can enhance understanding of interactions between societal, hydrological and environmental changes

    Science.gov (United States)

    Foglia, L.; Borsi, I.; Cannata, M.; De Filippis, G.; Criollo, R.; Mehl, S.; Rossetto, R.

    2017-12-01

    The interaction of environmental, physical, and socioeconomic processes alter and are altered by water and by how human can affect water use. For example, a warming climate increases the chance of warm temperatures and lack of precipitation, and when combined with growing population requires understanding of impact on water resources and on all the processes related to the water budget including evapotranspiration. On this foundation, humans add engineered and social systems to control, manage, utilize, and alter our water environment for a variety of uses and through a variety of organizational and individual decisions. Some engineered systems have mixed consequences, for example groundwater helped sustain agriculture during drought periods, but then groundwater levels critically decrease with no chances to recover in some parts of the world. Innovative ICT tools have been demonstrated as a helpful tool for enhancing human understanding of the effect that societal, economical, and policy-based decisions have on the water resources and on the environment in general. Here we apply the new FREEWAT platform to demonstrate the importance of developing ad-hoc database and hydrological models to simulate different scenarios using a participatory approach. Stakeholders have been involved in data collection, database design and model development during the entire project period and discussion between researcher and stakeholders have been fostered during Focus Groups and workshops organized in many countries in Europe and beyond (including case studies in Ukraine and Africa). FREEWAT is an open source and public domain GIS integrated modelling environment for simulation of water quantity and quality in surface water and groundwater with an integrated water management and planning module. FREEWAT aims at promoting water resource management by simplifying the application of the Water Framework Directive and related Directives. Fourteen case studies have been considered and

  16. Magnetic interactions as a stabilizing factor of semiquinone species of lawsone by metal complexation

    International Nuclear Information System (INIS)

    Valle-Bourrouet, Grettel; Ugalde-Saldivar, Victor M.; Gomez, Martin; Ortiz-Frade, Luis A.; Gonzalez, Ignacio; Frontana, Carlos

    2010-01-01

    Changes in electrochemical reactivity for lawsone anions (lawsone, 2-hydroxy-1,4-naphthoquinone, HLw) being coordinated to a series of metallic ions in dimethylsulfoxide solution were evaluated. Upon performing cyclic voltammetry experiments for metal complexes of this quinone with pyridine (Py) - structural formula M(II)(Lw - ) 2 (Py) 2 ; M: Co(II), Ni(II), Zn(II) - it was found that the reduction of coordinated Lw - units occurs during the first and second electron uptake in the analyzed compounds. The stability of the electrogenerated intermediates for each complex depends on the d electron configuration in each metal center and is determined by magnetic interactions with the available spins considering an octahedral conformation for all the compounds. This was evidenced by in situ spectroelectrochemical-ESR measurements in the Zn(II) complex in which due to the lack of magnetic interaction owing to its electron configuration, the structure of the coordinated anion radical species was determined. Successive reduction of the associated Lw - units leads to partial dissociation of the complex, determined by the identification of free radical dianion structures in solution. These results show some insights on how metal-lawsone complexation can modify the solution reactivity and stability of the electrogenerated radical species.

  17. Magnetic interactions as a stabilizing factor of semiquinone species of lawsone by metal complexation

    Energy Technology Data Exchange (ETDEWEB)

    Valle-Bourrouet, Grettel [Universidad de Costa Rica, Escuela de Quimica, San Jose (Costa Rica); Ugalde-Saldivar, Victor M. [Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, C.P. 04510, Mexico, D.F. (Mexico); Gomez, Martin [Departamento de Sistemas Biologicos, Universidad Autonoma Metropolitana-Xochimilco, C.P. 04960, Mexico, D.F. (Mexico); Ortiz-Frade, Luis A. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Parque Tecnologico Queretaro, Sanfandila, 76703, Pedro Escobedo, Queretaro (Mexico); Gonzalez, Ignacio [Universidad Autonoma Metropolitana - Iztapalapa, Departamento de Quimica, Area de Electroquimica, Apartado postal 55-534, 09340, Mexico, D.F. (Mexico); Frontana, Carlos, E-mail: ultrabuho@yahoo.com.m [Departamento de Quimica, Centro de Investigacion y Estudios Avanzados, Av. Instituto Politecnico Nacional No. 2508 Col. San Pedro Zacatenco, C.P. 07360, Mexico, D.F. (Mexico)

    2010-12-01

    Changes in electrochemical reactivity for lawsone anions (lawsone, 2-hydroxy-1,4-naphthoquinone, HLw) being coordinated to a series of metallic ions in dimethylsulfoxide solution were evaluated. Upon performing cyclic voltammetry experiments for metal complexes of this quinone with pyridine (Py) - structural formula M(II)(Lw{sup -}){sub 2}(Py){sub 2}; M: Co(II), Ni(II), Zn(II) - it was found that the reduction of coordinated Lw{sup -} units occurs during the first and second electron uptake in the analyzed compounds. The stability of the electrogenerated intermediates for each complex depends on the d electron configuration in each metal center and is determined by magnetic interactions with the available spins considering an octahedral conformation for all the compounds. This was evidenced by in situ spectroelectrochemical-ESR measurements in the Zn(II) complex in which due to the lack of magnetic interaction owing to its electron configuration, the structure of the coordinated anion radical species was determined. Successive reduction of the associated Lw{sup -} units leads to partial dissociation of the complex, determined by the identification of free radical dianion structures in solution. These results show some insights on how metal-lawsone complexation can modify the solution reactivity and stability of the electrogenerated radical species.

  18. Changes in hyphal morphology and activity of phenoloxidases during interactions between selected ectomycorrhizal fungi and two species of Trichoderma.

    Science.gov (United States)

    Mucha, Joanna

    2011-06-01

    Patterns of phenoloxidase activity can be used to characterize fungi of different life styles, and changes in phenoloxidase synthesis were suspected to play a role in the interaction between ectomycorrhizal and two species of Trichoderma. Confrontation between the ectomycorrhizal fungi Amanita muscaria and Laccaria laccata with species of Trichoderma resulted in induction of laccase synthesis, and the laccase enzyme was bound to mycelia of ectomycorrhizal fungi. Tyrosinase release was noted only during interaction of L. laccata strains with Trichoderma harzianum and T. virens. Ectomycorrhizal fungi, especially strains of Suillus bovinus and S. luteus, inhibited growth of Trichoderma species and caused morphological changes in its colonies in the zone of interaction. In contrast, hyphal changes occurred less often in the ectomycorrhizal fungi tested. Species of Suillus are suggested to present a different mechanism in their interaction with other fungi than A. muscaria and L. laccata.

  19. Studies on interaction of colloidal silver nanoparticles (SNPs) with five different bacterial species.

    Science.gov (United States)

    Khan, S Sudheer; Mukherjee, Amitava; Chandrasekaran, N

    2011-10-01

    Silver nanoparticles (SNPs) are being increasingly used in many consumer products like textile fabrics, cosmetics, washing machines, food and drug products owing to its excellent antimicrobial properties. Here we have studied the adsorption and toxicity of SNPs on bacterial species such as Pseudomonas aeruginosa, Micrococcus luteus, Bacillus subtilis, Bacillus barbaricus and Klebsiella pneumoniae. The influence of zeta potential on the adsorption of SNPs on bacterial cell surface was investigated at acidic, neutral and alkaline pH and with varying salt (NaCl) concentrations (0.05, 0.1, 0.5, 1 and 1.5 M). The survival rate of bacterial species decreased with increase in adsorption of SNPs. Maximum adsorption and toxicity was observed at pH 5, and NaCl concentration of 0.5 M, there by resulting in less toxicity. The zeta potential study suggests that, the adsorption of SNPs on the cell surface was related to electrostatic force of attraction. The equilibrium and kinetics of the adsorption process were also studied. The adsorption equilibrium isotherms fitted well to the Langmuir model. The kinetics of adsorption fitted best to pseudo-first-order. These findings form a basis for interpreting the interaction of nanoparticles with environmental bacterial species. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Periodic and chaotic events in a discrete model of logistic type for the competitive interaction of two species

    International Nuclear Information System (INIS)

    Lopez-Ruiz, Ricardo; Fournier-Prunaret, Daniele

    2009-01-01

    Two symmetrically coupled logistic equations are proposed to mimic the competitive interaction between two species. The phenomena of coexistence, oscillations and chaos are present in this cubic discrete system. This work, together with two other similar ones recently published by the authors, completes a triptych dedicated to the two species relationships present in Nature, namely the symbiosis, the predator-prey and the competition. These models can be used as basic ingredients to build up more complex interactions in the ecological networks.

  1. Using a social-ecological systems perspective to understand tourism and landscape interactions in coastal areas

    Directory of Open Access Journals (Sweden)

    Jasper Hessel Heslinga

    2017-04-01

    Full Text Available Purpose – The purpose of this paper is to look at the potential synergies between tourism and landscapes and examine the potential contribution of tourism to build social-ecological resilience in the Dutch Wadden. Design/methodology/approach – The authors reveal how a social-ecological systems perspective can be used to conceptualize the Wadden as a coupled and dynamic system. This paper is a conceptual analysis that applies this approach to the Dutch Wadden. The data used for the inquiry primarily comes from a literature review. Findings – The authors argue that the social-ecological systems perspective is a useful approach and could be used to improve the governance of multi-functional socio-ecological systems in coastal areas. Opportunities for synergies between tourism and landscapes have been overlooked. The authors consider that tourism and nature protection are potentially compatible and that the synergies should be identified. Research limitations/implications – This paper is only a conceptual application rather than an empirical case study. Further research to actually apply the methodology is needed. Practical implications – Managers of protected areas should consider applying a social-ecological systems approach. Social implications – The views of a wide variety of stakeholders should be considered in landscape planning. Originality/value – The value of this paper lies in the articulation of the social-ecological systems perspective as a way to identify and understand the complex interactions between tourism and landscape, and the potential synergies between them.

  2. Dynamics of gas-surface interactions atomic-level understanding of scattering processes at surfaces

    CERN Document Server

    Díez Muniño, Ricardo

    2013-01-01

    This book gives a representative survey of the state of the art of research on gas-surface interactions. It provides an overview of the current understanding of gas surface dynamics and, in particular, of the reactive and non-reactive processes of atoms and small molecules at surfaces. Leading scientists in the field, both from the theoretical and the experimental sides, write in this book about their most recent advances. Surface science grew as an interdisciplinary research area over the last decades, mostly because of new experimental technologies (ultra-high vacuum, for instance), as well as because of a novel paradigm, the ‘surface science’ approach. The book describes the second transformation which is now taking place pushed by the availability of powerful quantum-mechanical theoretical methods implemented numerically. In the book, experiment and theory progress hand in hand with an unprecedented degree of accuracy and control. The book presents how modern surface science targets the atomic-level u...

  3. How can the study of action kinematics inform our understanding of human social interaction?

    Science.gov (United States)

    Krishnan-Barman, Sujatha; Forbes, Paul A G; Hamilton, Antonia F de C

    2017-10-01

    The kinematics of human actions are influenced by the social context in which they are performed. Motion-capture technology has allowed researchers to build up a detailed and complex picture of how action kinematics vary across different social contexts. Here we review three task domains-point-to-point imitation tasks, motor interference tasks and reach-to-grasp tasks-to critically evaluate how these tasks can inform our understanding of social interactions. First, we consider how actions within these task domains are performed in a non-social context, before highlighting how a plethora of social cues can perturb the baseline kinematics. We show that there is considerable overlap in the findings from these different tasks domains but also highlight the inconsistencies in the literature and the possible reasons for this. Specifically, we draw attention to the pitfalls of dealing with rich, kinematic data. As a way to avoid these pitfalls, we call for greater standardisation and clarity in the reporting of kinematic measures and suggest the field would benefit from a move towards more naturalistic tasks. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Creating the brain and interacting with the brain: an integrated approach to understanding the brain

    Science.gov (United States)

    Morimoto, Jun; Kawato, Mitsuo

    2015-01-01

    In the past two decades, brain science and robotics have made gigantic advances in their own fields, and their interactions have generated several interdisciplinary research fields. First, in the ‘understanding the brain by creating the brain’ approach, computational neuroscience models have been applied to many robotics problems. Second, such brain-motivated fields as cognitive robotics and developmental robotics have emerged as interdisciplinary areas among robotics, neuroscience and cognitive science with special emphasis on humanoid robots. Third, in brain–machine interface research, a brain and a robot are mutually connected within a closed loop. In this paper, we review the theoretical backgrounds of these three interdisciplinary fields and their recent progress. Then, we introduce recent efforts to reintegrate these research fields into a coherent perspective and propose a new direction that integrates brain science and robotics where the decoding of information from the brain, robot control based on the decoded information and multimodal feedback to the brain from the robot are carried out in real time and in a closed loop. PMID:25589568

  5. Models for the brane-bulk interaction: Toward understanding braneworld cosmological perturbations

    Science.gov (United States)

    Binétruy, Pierre; Bucher, Martin; Carvalho, Carla

    2004-08-01

    Using some simple toy models, we explore the nature of the brane-bulk interaction for cosmological models with a large extra dimension. We are in particular interested in understanding the role of the bulk gravitons, which from the point of view of an observer on the brane will appear to generate dissipation and nonlocality, effects that cannot be incorporated into an effective (3+1)-dimensional Lagrangian field theoretic description. We explicitly work out the dynamics of several discrete systems consisting of a finite number of degrees of freedom on the boundary coupled to a (1+1)-dimensional field theory subject to a variety of wave equations. Systems both with and without time translation invariance are considered and moving boundaries are discussed as well. The models considered contain all the qualitative features of quantized linearized cosmological perturbations for a Randall-Sundrum universe having an arbitrary expansion history, with the sole exception of gravitational gauge invariance, which will be treated in a later paper.

  6. T Lymphocyte-Endothelial Interactions: Emerging Understanding of Trafficking and Antigen-Specific Immunity

    Directory of Open Access Journals (Sweden)

    Christopher Vincent Carman

    2015-11-01

    Full Text Available Antigen-specific immunity requires regulated trafficking of T cells in and out of diverse tissues in order to orchestrate lymphocyte development, immune surveillance, responses and memory. The endothelium serves as a unique barrier, as well as a sentinel, between the blood and the tissues and as such it plays an essential locally tuned role in regulating T cell migration and information exchange. While it is well established that chemoattractants and adhesion molecules are major determinants of T cell trafficking, emerging studies have now enumerated a large number of molecular players as well as a range of discrete cellular remodeling activities (e.g. transmigratory cups and invadosome-like protrusions, IPLs that participate in directed migration and pathfinding by T cells. In addition to providing trafficking cues, intimate cell-cell interaction between lymphocytes and endothelial cells provide instruction to T cells that influence their activation and differentiation states. Perhaps the most intriguing and underappreciated of these ‘sentinel’ roles is the ability of the endothelium to act as a non-hematopoietic ‘semi-professional’ antigen-presenting cell. Close contacts between circulating T cells and antigen-presenting endothelium may play unique non-redundant roles in shaping adaptive immune responses within the periphery. A better understanding of the mechanisms directing T cell trafficking and the antigen-presenting role of the endothelium may not only increase our knowledge of the adaptive immune response but also empower the utility of emerging immunomodulatory therapeutics.

  7. Process-based species pools reveal the hidden signature of biotic interactions amid the influence of temperature filtering

    DEFF Research Database (Denmark)

    Lessard, Jean-Philippe; Weinstein, Ben G.; Borregaard, Michael Krabbe

    2016-01-01

    A persistent challenge in ecology is to tease apart the in-fluence of multiple processes acting simultaneously and interacting in complex ways to shape the structure of species assemblages. We implement a heuristic approach that relies on explicitly defining spe-cies pools and permits assessment ...

  8. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau.

    Science.gov (United States)

    Liang, Eryuan; Wang, Yafeng; Piao, Shilong; Lu, Xiaoming; Camarero, Jesús Julio; Zhu, Haifeng; Zhu, Liping; Ellison, Aaron M; Ciais, Philippe; Peñuelas, Josep

    2016-04-19

    The alpine treeline is commonly regarded as being sensitive to climatic warming because regeneration and growth of trees at treeline generally are limited by low temperature. The alpine treelines of the Tibetan Plateau (TP) occur at the highest elevations (4,900 m above sea level) in the Northern Hemisphere. Ongoing climatic warming is expected to shift treelines upward. Studies of treeline dynamics at regional and local scales, however, have yielded conflicting results, indicating either unchanging treeline elevations or upward shifts. To reconcile this conflict, we reconstructed in detail a century of treeline structure and tree recruitment at sites along a climatic gradient of 4 °C and mean annual rainfall of 650 mm on the eastern TP. Species interactions interacted with effects of warming on treeline and could outweigh them. Densification of shrubs just above treeline inhibited tree establishment, and slowed upward movement of treelines on a time scale of decades. Interspecific interactions are major processes controlling treeline dynamics that may account for the absence of an upward shift at some TP treelines despite continued climatic warming.

  9. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau

    Science.gov (United States)

    Liang, Eryuan; Wang, Yafeng; Piao, Shilong; Lu, Xiaoming; Camarero, Jesús Julio; Zhu, Haifeng; Zhu, Liping; Ciais, Philippe; Peñuelas, Josep

    2016-01-01

    The alpine treeline is commonly regarded as being sensitive to climatic warming because regeneration and growth of trees at treeline generally are limited by low temperature. The alpine treelines of the Tibetan Plateau (TP) occur at the highest elevations (4,900 m above sea level) in the Northern Hemisphere. Ongoing climatic warming is expected to shift treelines upward. Studies of treeline dynamics at regional and local scales, however, have yielded conflicting results, indicating either unchanging treeline elevations or upward shifts. To reconcile this conflict, we reconstructed in detail a century of treeline structure and tree recruitment at sites along a climatic gradient of 4 °C and mean annual rainfall of 650 mm on the eastern TP. Species interactions interacted with effects of warming on treeline and could outweigh them. Densification of shrubs just above treeline inhibited tree establishment, and slowed upward movement of treelines on a time scale of decades. Interspecific interactions are major processes controlling treeline dynamics that may account for the absence of an upward shift at some TP treelines despite continued climatic warming. PMID:27044083

  10. Hemoparasites in a wild primate: Infection patterns suggest interaction of Plasmodium and Babesia in a lemur species

    Directory of Open Access Journals (Sweden)

    Andrea Springer

    2015-12-01

    Full Text Available Hemoparasites can cause serious morbidity in humans and animals and often involve wildlife reservoirs. Understanding patterns of hemoparasite infections in natural populations can therefore inform about emerging disease risks, especially in the light of climate change and human disruption of natural ecosystems. We investigated the effects of host age, sex, host group size and season on infection patterns of Plasmodium sp., Babesia sp. and filarial nematodes in a population of wild Malagasy primates, Verreaux's sifakas (Propithecus verreauxi, as well as the effects of these infections on hematological variables. We tested 45 blood samples from 36 individuals and identified two species of Plasmodium, one species of Babesia and two species of filarial nematodes. Plasmodium spp. and Babesia sp. infections showed opposite patterns of age-dependency, with babesiosis being prevalent among young animals, while older animals were infected with Plasmodium sp. In addition, Babesia sp. infection was a statistically significant negative predictor of Plasmodium sp. infection. These results suggest that Plasmodium and Babesia parasites may interact within the host, either through cross-immunity or via resource competition, so that Plasmodium infections can only establish after babesiosis has resolved. We found no effects of host sex, host group size and season on hemoparasite infections. Infections showed high prevalences and did not influence hematological variables. This preliminary evidence supports the impression that the hosts and parasites considered in this study appear to be well-adapted to each other, resulting in persistent infections with low pathogenic and probably low zoonotic potential. Our results illustrate the crucial role of biodiversity in host-parasite relationships, specifically how within-host pathogen diversity may regulate the abundance of parasites.

  11. Hemoparasites in a wild primate: Infection patterns suggest interaction of Plasmodium and Babesia in a lemur species.

    Science.gov (United States)

    Springer, Andrea; Fichtel, Claudia; Calvignac-Spencer, Sébastien; Leendertz, Fabian H; Kappeler, Peter M

    2015-12-01

    Hemoparasites can cause serious morbidity in humans and animals and often involve wildlife reservoirs. Understanding patterns of hemoparasite infections in natural populations can therefore inform about emerging disease risks, especially in the light of climate change and human disruption of natural ecosystems. We investigated the effects of host age, sex, host group size and season on infection patterns of Plasmodium sp., Babesia sp. and filarial nematodes in a population of wild Malagasy primates, Verreaux's sifakas (Propithecus verreauxi), as well as the effects of these infections on hematological variables. We tested 45 blood samples from 36 individuals and identified two species of Plasmodium, one species of Babesia and two species of filarial nematodes. Plasmodium spp. and Babesia sp. infections showed opposite patterns of age-dependency, with babesiosis being prevalent among young animals, while older animals were infected with Plasmodium sp. In addition, Babesia sp. infection was a statistically significant negative predictor of Plasmodium sp. infection. These results suggest that Plasmodium and Babesia parasites may interact within the host, either through cross-immunity or via resource competition, so that Plasmodium infections can only establish after babesiosis has resolved. We found no effects of host sex, host group size and season on hemoparasite infections. Infections showed high prevalences and did not influence hematological variables. This preliminary evidence supports the impression that the hosts and parasites considered in this study appear to be well-adapted to each other, resulting in persistent infections with low pathogenic and probably low zoonotic potential. Our results illustrate the crucial role of biodiversity in host-parasite relationships, specifically how within-host pathogen diversity may regulate the abundance of parasites.

  12. Species distribution models contribute to determine the effect of climate and interspecific interactions in moving hybrid zones.

    Science.gov (United States)

    Engler, J O; Rödder, D; Elle, O; Hochkirch, A; Secondi, J

    2013-11-01

    Climate is a major factor delimiting species' distributions. However, biotic interactions may also be prominent in shaping geographical ranges, especially for parapatric species forming hybrid zones. Determining the relative effect of each factor and their interaction of the contact zone location has been difficult due to the lack of broad scale environmental data. Recent developments in species distribution modelling (SDM) now allow disentangling the relative contributions of climate and species' interactions in hybrid zones and their responses to future climate change. We investigated the moving hybrid zone between the breeding ranges of two parapatric passerines in Europe. We conducted SDMs representing the climatic conditions during the breeding season. Our results show a large mismatch between the realized and potential distributions of the two species, suggesting that interspecific interactions, not climate, account for the present location of the contact zone. The SDM scenarios show that the southerly distributed species, Hippolais polyglotta, might lose large parts of its southern distribution under climate change, but a similar gain of novel habitat along the hybrid zone seems unlikely, because interactions with the other species (H. icterina) constrain its range expansion. Thus, whenever biotic interactions limit range expansion, species may become 'trapped' if range loss due to climate change is faster than the movement of the contact zone. An increasing number of moving hybrid zones are being reported, but the proximate causes of movement often remain unclear. In a global context of climate change, we call for more interest in their interactions with climate change. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  13. Predicting and understanding comprehensive drug-drug interactions via semi-nonnegative matrix factorization.

    Science.gov (United States)

    Yu, Hui; Mao, Kui-Tao; Shi, Jian-Yu; Huang, Hua; Chen, Zhi; Dong, Kai; Yiu, Siu-Ming

    2018-04-11

    Drug-drug interactions (DDIs) always cause unexpected and even adverse drug reactions. It is important to identify DDIs before drugs are used in the market. However, preclinical identification of DDIs requires much money and time. Computational approaches have exhibited their abilities to predict potential DDIs on a large scale by utilizing pre-market drug properties (e.g. chemical structure). Nevertheless, none of them can predict two comprehensive types of DDIs, including enhancive and degressive DDIs, which increases and decreases the behaviors of the interacting drugs respectively. There is a lack of systematic analysis on the structural relationship among known DDIs. Revealing such a relationship is very important, because it is able to help understand how DDIs occur. Both the prediction of comprehensive DDIs and the discovery of structural relationship among them play an important guidance when making a co-prescription. In this work, treating a set of comprehensive DDIs as a signed network, we design a novel model (DDINMF) for the prediction of enhancive and degressive DDIs based on semi-nonnegative matrix factorization. Inspiringly, DDINMF achieves the conventional DDI prediction (AUROC = 0.872 and AUPR = 0.605) and the comprehensive DDI prediction (AUROC = 0.796 and AUPR = 0.579). Compared with two state-of-the-art approaches, DDINMF shows it superiority. Finally, representing DDIs as a binary network and a signed network respectively, an analysis based on NMF reveals crucial knowledge hidden among DDIs. Our approach is able to predict not only conventional binary DDIs but also comprehensive DDIs. More importantly, it reveals several key points about the DDI network: (1) both binary and signed networks show fairly clear clusters, in which both drug degree and the difference between positive degree and negative degree show significant distribution; (2) the drugs having large degrees tend to have a larger difference between positive degree

  14. Probability of detecting marine predator-prey and species interactions using novel hybrid acoustic transmitter-receiver tags.

    Directory of Open Access Journals (Sweden)

    Laurie L Baker

    Full Text Available Understanding the nature of inter-specific and conspecific interactions in the ocean is challenging because direct observation is usually impossible. The development of dual transmitter/receivers, Vemco Mobile Transceivers (VMT, and satellite-linked (e.g. GPS tags provides a unique opportunity to better understand between and within species interactions in space and time. Quantifying the uncertainty associated with detecting a tagged animal, particularly under varying field conditions, is vital for making accurate biological inferences when using VMTs. We evaluated the detection efficiency of VMTs deployed on grey seals, Halichoerus grypus, off Sable Island (NS, Canada in relation to environmental characteristics and seal behaviour using generalized linear models (GLM to explore both post-processed detection data and summarized raw VMT data. When considering only post-processed detection data, only about half of expected detections were recorded at best even when two VMT-tagged seals were estimated to be within 50-200 m of one another. At a separation of 400 m, only about 15% of expected detections were recorded. In contrast, when incomplete transmissions from the summarized raw data were also considered, the ratio of complete transmission to complete and incomplete transmissions was about 70% for distances ranging from 50-1000 m, with a minimum of around 40% at 600 m and a maximum of about 85% at 50 m. Distance between seals, wind stress, and depth were the most important predictors of detection efficiency. Access to the raw VMT data allowed us to focus on the physical and environmental factors that limit a transceiver's ability to resolve a transmitter's identity.

  15. They Work Together to Roar: Kindergartners' Understanding of an Interactive Causal Task

    Science.gov (United States)

    Solis, S. Lynneth; Grotzer, Tina A.

    2016-01-01

    The aim of this study was to investigate kindergartners' exploration of interactive causality during their play with a pair of toy sound blocks. Interactive causality refers to a type of causal pattern in which two entities interact to produce a causal force, as in particle attraction and symbiotic relationships. Despite being prevalent in nature,…

  16. Meeting report - Intercellular interactions in context: towards a mechanistic understanding of cells in organs.

    Science.gov (United States)

    Bryant, David; Johnson, Aaron

    2017-07-01

    The Company of Biologists held the workshop 'Intercellular interactions in context: towards a mechanistic understanding of cells in organs' at historic Wiston House in West Sussex, UK, 5-8 February 2017. The meeting brought together around 30 scientists from disparate backgrounds - yet with a common interest of how tissue morphogenesis occurs and its dysregulation leads to pathologies - to intensively discuss their latest research, the current state of the field, as well as any challenges for the future. This report summarises the concepts and challenges that arose as key questions for the fields of cell, cancer and developmental biology. By design of the organizers - Andrew Ewald (John Hopkins University, MA), John Wallingford (University of Texas at Austin, TX) and Peter Friedl (Radboud University, Nijmegen, The Netherlands) - the attendee makeup was cross-sectional: both in terms of career stage and scientific background. This intermingling was mirrored in the workshop format; all participants - irrespective of career stage - were given equal speaking and question time, and all early-career researchers also chaired a session, which promoted an atmosphere for discussions that were open, egalitarian and supportive. This was particularly evident in the scheduled 'out-of-the-box' sessions, which provided an avenue for participants to raise ideas and concepts or to discuss specific problems they wanted feedback or clarification on. In the following, rather than act as court reporters and convey chronological accounting of presentations, we present the questions that arose from the workshop and should be posed to the field at large, by discussing the presentations as they relate to these concepts. © 2017. Published by The Company of Biologists Ltd.

  17. Towards an Enhanced Understanding of Plant–Microbiome Interactions to Improve Phytoremediation: Engineering the Metaorganism

    Science.gov (United States)

    Thijs, Sofie; Sillen, Wouter; Rineau, Francois; Weyens, Nele; Vangronsveld, Jaco

    2016-01-01

    Phytoremediation is a promising technology to clean-up contaminated soils based on the synergistic actions of plants and microorganisms. However, to become a widely accepted, and predictable remediation alternative, a deeper understanding of the plant–microbe interactions is needed. A number of studies link the success of phytoremediation to the plant-associated microbiome functioning, though whether the microbiome can exist in alternative, functional states for soil remediation, is incompletely understood. Moreover, current approaches that target the plant host, and environment separately to improve phytoremediation, potentially overlook microbial functions and properties that are part of the multiscale complexity of the plant-environment wherein biodegradation takes place. In contrast, in situ studies of phytoremediation research at the metaorganism level (host and microbiome together) are lacking. Here, we discuss a competition-driven model, based on recent evidence from the metagenomics level, and hypotheses generated by microbial community ecology, to explain the establishment of a catabolic rhizosphere microbiome in a contaminated soil. There is evidence to ground that if the host provides the right level and mix of resources (exudates) over which the microbes can compete, then a competitive catabolic and plant-growth promoting (PGP) microbiome can be selected for as long as it provides a competitive superiority in the niche. The competition-driven model indicates four strategies to interfere with the microbiome. Specifically, the rhizosphere microbiome community can be shifted using treatments that alter the host, resources, environment, and that take advantage of prioritization in inoculation. Our model and suggestions, considering the metaorganism in its natural context, would allow to gain further knowledge on the plant–microbial functions, and facilitate translation to more effective, and predictable phytotechnologies. PMID:27014254

  18. Towards an Enhanced Understanding of Plant-Microbiome Interactions to Improve Phytoremediation: Engineering the Metaorganism

    Directory of Open Access Journals (Sweden)

    Sofie eThijs

    2016-03-01

    Full Text Available Phytoremediation is a promising technology to clean-up contaminated soils based on the synergistic actions of plants and microorganisms. However, to become a widely accepted, and predictable remediation alternative, a deeper understanding of the plant-microbe interactions is needed. A number of studies link the success of phytoremediation to the plant-associated microbiome functioning, though whether the microbiome can exist in alternative, functional states for soil remediation, is incompletely understood. Moreover, current approaches that target the plant host, and environment separately to improve phytoremediation, potentially overlook microbial functions and properties that are part of the multiscale complexity of the plant-environment wherein biodegradation takes place. In contrast, in situ studies of phytoremediation research at the metaorganism level (host and microbiome together are lacking. Here, we discuss a competition-driven model, based on recent evidence from the metagenomics level, and hypotheses generated by microbial community ecology, to explain the establishment of a catabolic rhizosphere microbiome in a contaminated soil. There is evidence to ground that if the host provides the right level and mix of resources (exudates over which the microbes can compete, then a competitive catabolic and plant-growth promoting (PGP microbiome can be selected for as long as it provides a competitive superiority in the niche. The competition-driven model indicates four strategies to interfere with the microbiome. Specifically, the rhizosphere microbiome community can be shifted using treatments that alter the host, resources, environment, and that take advantage of prioritization in inoculation. Our model and suggestions, considering the metaorganism in its natural context, would allow to gain further knowledge on the plant-microbial functions, and facilitate translation to more effective, and predictable phytotechnologies.

  19. Children's aesthetic understanding of photographic art and the quality of art-related parent-child interactions.

    Science.gov (United States)

    Szechter, Lisa E; Liben, Lynn S

    2007-01-01

    This research was designed to examine the quality of children's aesthetic understanding of photographs, observe social interactions between parents and children in this aesthetic domain, and study whether qualitatively different dyadic interactions were associated with children's own aesthetic understanding. Parents and children (7-13 years; 40 dyads) individually completed measures of aesthetic understanding and jointly selected photographs for a souvenir scrapbook. Parents' artistic experience varied widely and was associated with their own performance on aesthetic understanding measures. Children's performance on the individual aesthetic tasks was related to age, but not to parents' art experience nor to the qualities of parent-child discussions of aesthetic concepts. Among both parents and children, artistic experience was associated with aesthetic preferences for photographs.

  20. Understanding the limits of animal models as predictors of human biology: lessons learned from the sbv IMPROVER Species Translation Challenge.

    Science.gov (United States)

    Rhrissorrakrai, Kahn; Belcastro, Vincenzo; Bilal, Erhan; Norel, Raquel; Poussin, Carine; Mathis, Carole; Dulize, Rémi H J; Ivanov, Nikolai V; Alexopoulos, Leonidas; Rice, J Jeremy; Peitsch, Manuel C; Stolovitzky, Gustavo; Meyer, Pablo; Hoeng, Julia

    2015-02-15

    Inferring how humans respond to external cues such as drugs, chemicals, viruses or hormones is an essential question in biomedicine. Very often, however, this question cannot be addressed because it is not possible to perform experiments in humans. A reasonable alternative consists of generating responses in animal models and 'translating' those results to humans. The limitations of such translation, however, are far from clear, and systematic assessments of its actual potential are urgently needed. sbv IMPROVER (systems biology verification for Industrial Methodology for PROcess VErification in Research) was designed as a series of challenges to address translatability between humans and rodents. This collaborative crowd-sourcing initiative invited scientists from around the world to apply their own computational methodologies on a multilayer systems biology dataset composed of phosphoproteomics, transcriptomics and cytokine data derived from normal human and rat bronchial epithelial cells exposed in parallel to 52 different stimuli under identical conditions. Our aim was to understand the limits of species-to-species translatability at different levels of biological organization: signaling, transcriptional and release of secreted factors (such as cytokines). Participating teams submitted 49 different solutions across the sub-challenges, two-thirds of which were statistically significantly better than random. Additionally, similar computational methods were found to range widely in their performance within the same challenge, and no single method emerged as a clear winner across all sub-challenges. Finally, computational methods were able to effectively translate some specific stimuli and biological processes in the lung epithelial system, such as DNA synthesis, cytoskeleton and extracellular matrix, translation, immune/inflammation and growth factor/proliferation pathways, better than the expected response similarity between species. pmeyerr@us.ibm.com or Julia

  1. Allelopathic interactions between the opportunistic species Ulva prolifera and the native macroalga Gracilaria lichvoides.

    Directory of Open Access Journals (Sweden)

    Dong Xu

    Full Text Available Allelopathy, one type of direct plant competition, can be a potent mechanism through which plant communities are structured. The aim of this study was to determine whether allelopathic interactions occur between the opportunistic green tide-forming species Ulva prolifera and the native macroalga Gracilaria lichvoides, both of which were collected from the coastline of East China sea. In laboratory experiments, the presence of G. lichvoides at 1.25 g wet weight L(-1 significantly inhibited growth and photosynthesis of U. prolifera at concentrations of 1.25, 2.50, and 3.75 g wet weight L(-1 (p0.05. Culture medium experiments further confirmed that some allelochemicals may be released by both of the tested macroalgae, and these could account for the observed physiological inhibition of growth and photosynthesis. Moreover, the native macroalgae G. lichvoides was a stronger competitor than the opportunistic species U. prolifera. Collectively, the results of the present study represent a significant advance in exploring ecological questions about the effects of green tide blooms on the macroalgal community.

  2. Interactive effects of plant-available soil silicon and herbivory on competition between two grass species

    Science.gov (United States)

    Garbuzov, Mihail; Reidinger, Stefan; Hartley, Susan E.

    2011-01-01

    Background and Aims The herbivore defence system of true grasses (Poaceae) is predominantly based on silicon that is taken up from the soil and deposited in the leaves in the form of abrasive phytoliths. Silicon uptake mechanisms can be both passive and active, with the latter suggesting that there is an energetic cost to silicon uptake. This study assessed the effects of plant-available soil silicon and herbivory on the competitive interactions between the grasses Poa annua, a species that has previously been reported to accumulate only small amounts of silicon, and Lolium perenne, a high silicon accumulator. Methods Plants were grown in mono- and mixed cultures under greenhouse conditions. Plant-available soil silicon levels were manipulated by adding silicon to the soil in the form of sodium silicate. Subsets of mixed culture pots were exposed to above-ground herbivory by desert locusts (Schistocerca gregaria). Key Results In the absence of herbivory, silicon addition increased biomass of P. annua but decreased biomass of L. perenne. Silicon addition increased foliar silicon concentrations of both grass species >4-fold. Under low soil-silicon availability the herbivores removed more leaf biomass from L. perenne than from P. annua, whereas under high silicon availability the reverse was true. Consequently, herbivory shifted the competitive balance between the two grass species, with the outcome depending on the availability of soil silicon. Conclusions It is concluded that a complex interplay between herbivore abundance, growth–defence trade-offs and the availability of soil silicon in the grasses' local environment affects the outcome of inter-specific competition, and so has the potential to impact on plant community structure. PMID:21868406

  3. Competitive Interactions in Mixed-Species Biofilms Containing the Marine Bacterium Pseudoalteromonas tunicata

    Science.gov (United States)

    Rao, Dhana; Webb, Jeremy S.; Kjelleberg, Staffan

    2005-01-01

    Pseudoalteromonas tunicata is a biofilm-forming marine bacterium that is often found in association with the surface of eukaryotic organisms. It produces a range of extracellular inhibitory compounds, including an antibacterial protein (AlpP) thought to be beneficial for P. tunicata during competition for space and nutrients on surfaces. As part of our studies on the interactions between P. tunicata and the epiphytic bacterial community on the marine plant Ulva lactuca, we investigated the hypothesis that P. tunicata is a superior competitor compared with other bacteria isolated from the plant. A number of U. lactuca bacterial isolates were (i) identified by 16S rRNA gene sequencing, (ii) characterized for the production of or sensitivity to extracellular antibacterial proteins, and (iii) labeled with a fluorescent color tag (either the red fluorescent protein DsRed or green fluorescent protein). We then grew single- and mixed-species bacterial biofilms containing P. tunicata in glass flow cell reactors. In pure culture, all the marine isolates formed biofilms containing microcolony structures within 72 h. However, in mixed-species biofilms, P. tunicata removed the competing strain unless its competitor was relatively insensitive to AlpP (Pseudoalteromonas gracilis) or produced strong inhibitory activity against P. tunicata (Roseobacter gallaeciensis). Moreover, biofilm studies conducted with an AlpP− mutant of P. tunicata indicated that the mutant was less competitive when it was introduced into preestablished biofilms, suggesting that AlpP has a role during competitive biofilm formation. When single-species biofilms were allowed to form microcolonies before the introduction of a competitor, these microcolonies coexisted with P. tunicata for extended periods of time before they were removed. Two marine bacteria (R. gallaeciensis and P. tunicata) were superior competitors in this study. Our data suggest that this dominance can be attributed to the ability of

  4. From Trust in Automation to Decision Neuroscience: Applying Cognitive Neuroscience Methods to Understand and Improve Interaction Decisions Involved in Human Automation Interaction

    Science.gov (United States)

    Drnec, Kim; Marathe, Amar R.; Lukos, Jamie R.; Metcalfe, Jason S.

    2016-01-01

    Human automation interaction (HAI) systems have thus far failed to live up to expectations mainly because human users do not always interact with the automation appropriately. Trust in automation (TiA) has been considered a central influence on the way a human user interacts with an automation; if TiA is too high there will be overuse, if TiA is too low there will be disuse. However, even though extensive research into TiA has identified specific HAI behaviors, or trust outcomes, a unique mapping between trust states and trust outcomes has yet to be clearly identified. Interaction behaviors have been intensely studied in the domain of HAI and TiA and this has led to a reframing of the issues of problems with HAI in terms of reliance and compliance. We find the behaviorally defined terms reliance and compliance to be useful in their functionality for application in real-world situations. However, we note that once an inappropriate interaction behavior has occurred it is too late to mitigate it. We therefore take a step back and look at the interaction decision that precedes the behavior. We note that the decision neuroscience community has revealed that decisions are fairly stereotyped processes accompanied by measurable psychophysiological correlates. Two literatures were therefore reviewed. TiA literature was extensively reviewed in order to understand the relationship between TiA and trust outcomes, as well as to identify gaps in current knowledge. We note that an interaction decision precedes an interaction behavior and believe that we can leverage knowledge of the psychophysiological correlates of decisions to improve joint system performance. As we believe that understanding the interaction decision will be critical to the eventual mitigation of inappropriate interaction behavior, we reviewed the decision making literature and provide a synopsis of the state of the art understanding of the decision process from a decision neuroscience perspective. We forward

  5. From Trust in Automation to Decision Neuroscience: Applying Cognitive Neuroscience Methods to Understand and Improve Interaction Decisions Involved in Human Automation Interaction.

    Science.gov (United States)

    Drnec, Kim; Marathe, Amar R; Lukos, Jamie R; Metcalfe, Jason S

    2016-01-01

    Human automation interaction (HAI) systems have thus far failed to live up to expectations mainly because human users do not always interact with the automation appropriately. Trust in automation (TiA) has been considered a central influence on the way a human user interacts with an automation; if TiA is too high there will be overuse, if TiA is too low there will be disuse. However, even though extensive research into TiA has identified specific HAI behaviors, or trust outcomes, a unique mapping between trust states and trust outcomes has yet to be clearly identified. Interaction behaviors have been intensely studied in the domain of HAI and TiA and this has led to a reframing of the issues of problems with HAI in terms of reliance and compliance. We find the behaviorally defined terms reliance and compliance to be useful in their functionality for application in real-world situations. However, we note that once an inappropriate interaction behavior has occurred it is too late to mitigate it. We therefore take a step back and look at the interaction decision that precedes the behavior. We note that the decision neuroscience community has revealed that decisions are fairly stereotyped processes accompanied by measurable psychophysiological correlates. Two literatures were therefore reviewed. TiA literature was extensively reviewed in order to understand the relationship between TiA and trust outcomes, as well as to identify gaps in current knowledge. We note that an interaction decision precedes an interaction behavior and believe that we can leverage knowledge of the psychophysiological correlates of decisions to improve joint system performance. As we believe that understanding the interaction decision will be critical to the eventual mitigation of inappropriate interaction behavior, we reviewed the decision making literature and provide a synopsis of the state of the art understanding of the decision process from a decision neuroscience perspective. We forward

  6. Geo-Sandbox: An Interactive Geoscience Training Tool with Analytics to Better Understand Student Problem Solving Approaches

    Science.gov (United States)

    Butt, N.; Pidlisecky, A.; Ganshorn, H.; Cockett, R.

    2015-12-01

    The software company 3 Point Science has developed three interactive learning programs designed to teach, test and practice visualization skills and geoscience concepts. A study was conducted with 21 geoscience students at the University of Calgary who participated in 2 hour sessions of software interaction and written pre and post-tests. Computer and SMART touch table interfaces were used to analyze user interaction, problem solving methods and visualization skills. By understanding and pinpointing user problem solving methods it is possible to reconstruct viewpoints and thought processes. This could allow us to give personalized feedback in real time, informing the user of problem solving tips and possible misconceptions.

  7. Coevolution study of mitochondria respiratory chain proteins: toward the understanding of protein--protein interaction.

    Science.gov (United States)

    Yang, Ming; Ge, Yan; Wu, Jiayan; Xiao, Jingfa; Yu, Jun

    2011-05-20

    Coevolution can be seen as the interdependency between evolutionary histories. In the context of protein evolution, functional correlation proteins are ever-present coordinated evolutionary characters without disruption of organismal integrity. As to complex system, there are two forms of protein--protein interactions in vivo, which refer to inter-complex interaction and intra-complex interaction. In this paper, we studied the difference of coevolution characters between inter-complex interaction and intra-complex interaction using "Mirror tree" method on the respiratory chain (RC) proteins. We divided the correlation coefficients of every pairwise RC proteins into two groups corresponding to the binary protein--protein interaction in intra-complex and the binary protein--protein interaction in inter-complex, respectively. A dramatical discrepancy is detected between the coevolution characters of the two sets of protein interactions (Wilcoxon test, p-value = 4.4 × 10(-6)). Our finding reveals some critical information on coevolutionary study and assists the mechanical investigation of protein--protein interaction. Furthermore, the results also provide some unique clue for supramolecular organization of protein complexes in the mitochondrial inner membrane. More detailed binding sites map and genome information of nuclear encoded RC proteins will be extraordinary valuable for the further mitochondria dynamics study. Copyright © 2011. Published by Elsevier Ltd.

  8. Collaborative Research: Atmospheric Pressure Plasma-Biomaterial Surface Interactions - Bridging Understanding of APP Sources to Rational Modification of Biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Graves, David Barry [Univ. of California, Berkeley, CA (United States)

    2017-11-24

    The overriding objective of this work is to bridge the gap between understanding of atmospheric pressure plasma (APP) sources and predictive chemical modifications of biomolecules. A key aspect of this problem is to understand what oxidizing species are created in water adjacent to APP jets that would ultimately affect aqueous biomolecules. We report the production of highly oxidative species in solutions exposed to a self-pulsed corona discharge in air. We examine how the properties of the target solution (pH, conductivity) and the discharge power affect the discharge stability and the production of H2O2. Indigo carmine, a common organic dye, is used as an indicator of oxidative strength and in particular, hydroxyl radical (OH•) production. The observed rate of indigo oxidation in contact with the discharge far exceeds that predicted from reactions based on concentrations of species measured in the bulk solution. The generation of H2O2 and the oxidation of indigo carmine indicate a high concentration of highly oxidizing species such as OH• at the plasma-liquid interface. These results indicate that reactions at the air plasma-liquid interface play a dominant role in species oxidation during direct non-equilibrium atmospheric pressure plasma (NE-APP) treatment.

  9. Biotic and abiotic factors investigated in two Drosophila species – evidence of both negative and positive fitness effects of interactions on performance

    DEFF Research Database (Denmark)

    Ørsted, Michael; Schou, Mads Fristrup; Kristensen, Torsten Nygård

    2017-01-01

    more informative descriptions of complex interactions we implemented re-conceptualised definitions of synergism and antagonism. We found approximately equal proportions of synergistic and antagonistic interactions in both species, however the effects of interactions on performance differed between...

  10. Students' Understanding on Newton's Third Law in Identifying the Reaction Force in Gravity Interactions

    Science.gov (United States)

    Zhou, Shaona; Zhang, Chunbin; Xiao, Hua

    2015-01-01

    In the past three decades, previous researches showed that students had various misconceptions of Newton's Third Law. The present study focused on students' difficulties in identifying the third-law force pair in gravity interaction situations. An instrument involving contexts with gravity and non-gravity associated interactions was designed and…

  11. Extending Face-to-Face Interactions: Understanding and Developing an Online Teacher and Family Community

    Science.gov (United States)

    Zhang, Chun; Du, Jianxia; Sun, Li; Ding, Yi

    2018-01-01

    Technology has been quickly changing human interactions, traditional practices, and almost every aspect of our lives. It is important to maintain effective face-to-face communication and interactions between teachers and families. Nonetheless, technology and its tools can also extend and enhance family-teacher relationships and partnerships. This…

  12. Parent-Adolescent Collaboration: An Interpersonal Model for Understanding Optimal Interactions

    Science.gov (United States)

    Beveridge, Ryan M.; Berg, Cynthia A.

    2007-01-01

    Current parent-adolescent behavioral interaction research highlights the importance of three elements of behavior in defining adaptive interactions: autonomy, control, and warmth vs. hostility. However, this research has largely addressed the developmental needs and psychosocial outcomes of adolescents, as opposed to parents, with a focus on how…

  13. User-generated content? Get Serious! Understanding the interactions between organizations and customers on social media

    NARCIS (Netherlands)

    Moser, C.; van Eijkeren, A

    2016-01-01

    This study examines interactions between customers and organisations on social media by investigating how user-generated content influences interactions between organisations and customers on social media. In compliance with existing perspectives on user-generated content, a total of seven

  14. Understanding the Symbolic Capital of Intercultural Interactions: A Case Study of International Students in Australia

    Science.gov (United States)

    Pham, Lien; Tran, Ly

    2015-01-01

    Intercultural interaction plays an important role in contributing to international students' learning and wellbeing in the host country. While research on international students' intercultural interactions reveals multifaceted aspects of personal and social factors, there is a tendency to consider language barrier and cultural differences as…

  15. Understanding the influence of social interactions on individual's behavior pattern in a work environment

    NARCIS (Netherlands)

    Chen, Chih-Wei; Aztiria, Asier; Ben Allouch, Soumaya; Aghajan, Hamid; Salah, Albert Ali; Lepri, Bruno

    2011-01-01

    In this work, we study social interactions in a work environment and investigate how the presence of other people changes personal behavior patterns. We design the visual processing algorithms to track multiple people in the environment and detect dyadic interactions using a discriminative

  16. The Effect of Interactive Lecture Demonstrations on Students' Understanding of Heat and Temperature: A Study from Thailand

    Science.gov (United States)

    Tanahoung, Choksin; Chitaree, Ratchapak; Soankwan, Chernchok; Sharma, Manjula D.; Johnston, Ian D.

    2009-01-01

    The purpose of this study was to investigate the effectiveness of Interactive Lecture Demonstrations over traditional instruction on university students' understanding of heat and temperature. The participants were 327 first year undergraduate students from two science classes in two academic years from the same university in Thailand. One class…

  17. The molecular understanding of interfacial interactions of functionalized graphene and chitosan

    International Nuclear Information System (INIS)

    Zhang, Hong-ping; Luo, Xue-gang; Lin, Xiao-yan; Lu, Xiong; Tang, Youhong

    2016-01-01

    Graphical abstract: The type of the functional groups can be used to modulating interactions between graphene sheet and chitosan. - Highlights: • Investigate interfacial interactions between chitosan and functionalized graphene by DFT. • Observe covalent linkages between COOH-modified graphene and chitosan units. • Multi-functionalized graphene regulates the interfacial interactions with chitosan. • It is useful for guiding the preparation of graphene/chitosan composites. - Abstract: Graphene-reinforced chitosan scaffolds have been extensively studied for several years as promising hard tissue replacements. However, the interfacial interactions between graphene and chitosan are strongly related to the solubility, processability, and mechanical properties of graphene-reinforced chitosan (G–C) composites. The functionalization of graphene is regarded as the most effective way to improve the abovementioned properties of the G–C composite. In this study, the interfacial interactions between chitosan and functionalized graphene sheets with carboxylization (COOH-), amination (NH 2 -), and hydroxylation (OH-) groups were systematically studied at the electronic level using the method of ab initio simulations based on quantum mechanics theory and the observations were compared with reported experimental results. The covalent linkages between COOH-modified graphene and the chitosan units were demonstrated and the combination of multi-functionalization on graphene could regulate the interfacial interactions between graphene and the chitosan. The interfacial interactions between chitosan and properly functionalized graphene are critical for the preparation of G–C-based composites for tissue engineering scaffolds and other applications.

  18. Potential problems of removing one invasive species at a time: a meta-analysis of the interactions between invasive vertebrates and unexpected effects of removal programs

    Directory of Open Access Journals (Sweden)

    Sebastián A. Ballari

    2016-06-01

    Full Text Available Although the co-occurrence of nonnative vertebrates is a ubiquitous global phenomenon, the study of interactions between invaders is poorly represented in the literature. Limited understanding of the interactions between co-occurring vertebrates can be problematic for predicting how the removal of only one invasive—a common management scenario—will affect native communities. We suggest a trophic food web framework for predicting the effects of single-species management on native biodiversity. We used a literature search and meta-analysis to assess current understanding of how the removal of one invasive vertebrate affects native biodiversity relative to when two invasives are present. The majority of studies focused on the removal of carnivores, mainly within aquatic systems, which highlights a critical knowledge gap in our understanding of co-occurring invasive vertebrates. We found that removal of one invasive vertebrate caused a significant negative effect on native species compared to when two invasive vertebrates were present. These unexpected results could arise because of the positioning and hierarchy of the co-occurring invasives in the food web (e.g., carnivore–carnivore or carnivore–herbivore. We consider that there are important knowledge gaps to determinate the effects of multiple co-existing invaders on native ecosystems, and this information could be precious for management.

  19. Potential problems of removing one invasive species at a time: a meta-analysis of the interactions between invasive vertebrates and unexpected effects of removal programs.

    Science.gov (United States)

    Ballari, Sebastián A; Kuebbing, Sara E; Nuñez, Martin A

    2016-01-01

    Although the co-occurrence of nonnative vertebrates is a ubiquitous global phenomenon, the study of interactions between invaders is poorly represented in the literature. Limited understanding of the interactions between co-occurring vertebrates can be problematic for predicting how the removal of only one invasive-a common management scenario-will affect native communities. We suggest a trophic food web framework for predicting the effects of single-species management on native biodiversity. We used a literature search and meta-analysis to assess current understanding of how the removal of one invasive vertebrate affects native biodiversity relative to when two invasives are present. The majority of studies focused on the removal of carnivores, mainly within aquatic systems, which highlights a critical knowledge gap in our understanding of co-occurring invasive vertebrates. We found that removal of one invasive vertebrate caused a significant negative effect on native species compared to when two invasive vertebrates were present. These unexpected results could arise because of the positioning and hierarchy of the co-occurring invasives in the food web (e.g., carnivore-carnivore or carnivore-herbivore). We consider that there are important knowledge gaps to determinate the effects of multiple co-existing invaders on native ecosystems, and this information could be precious for management.

  20. Towards a better understanding of the specificity of protein-protein interaction

    Czech Academy of Sciences Publication Activity Database

    Kysilka, Jiří; Vondrášek, Jiří

    2012-01-01

    Roč. 25, č. 11 (2012), s. 604-615 ISSN 0952-3499 R&D Projects: GA ČR GAP208/10/0725; GA ČR GAP302/10/0427; GA MŠk(CZ) LH11020 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50520701 Keywords : protein-protein interaction * molecular recognition * x-ray structure analysis * empirical potentials * side chain-side chain interaction * interaction energy * bioinformatics Subject RIV: CE - Biochemistry Impact factor: 3.006, year: 2012

  1. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour.

    Science.gov (United States)

    Kaiser-Bunbury, Christopher N; Muff, Stefanie; Memmott, Jane; Müller, Christine B; Caflisch, Amedeo

    2010-04-01

    Species extinctions pose serious threats to the functioning of ecological communities worldwide. We used two qualitative and quantitative pollination networks to simulate extinction patterns following three removal scenarios: random removal and systematic removal of the strongest and weakest interactors. We accounted for pollinator behaviour by including potential links into temporal snapshots (12 consecutive 2-week networks) to reflect mutualists' ability to 'switch' interaction partners (re-wiring). Qualitative data suggested a linear or slower than linear secondary extinction while quantitative data showed sigmoidal decline of plant interaction strength upon removal of the strongest interactor. Temporal snapshots indicated greater stability of re-wired networks over static systems. Tolerance of generalized networks to species extinctions was high in the random removal scenario, with an increase in network stability if species formed new interactions. Anthropogenic disturbance, however, that promote the extinction of the strongest interactors might induce a sudden collapse of pollination networks.

  2. Multiple stressor effects in Chlamydomonas reinhardtii--toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants.

    Science.gov (United States)

    Korkaric, Muris; Behra, Renata; Fischer, Beat B; Junghans, Marion; Eggen, Rik I L

    2015-05-01

    The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Soil-structure interaction studies for understanding the behavior of integral abutment bridges.

    Science.gov (United States)

    2012-03-01

    Integral Abutment Bridges (IAB) are bridges without any joints within the bridge deck or between the : superstructure and the abutments. An IAB provides many advantages during construction and maintenance of : a bridge. Soil-structure interactions at...

  4. Species co-occurrence networks: Can they reveal trophic and non-trophic interactions in ecological communities?

    Science.gov (United States)

    Freilich, Mara A; Wieters, Evie; Broitman, Bernardo R; Marquet, Pablo A; Navarrete, Sergio A

    2018-03-01

    Co-occurrence methods are increasingly utilized in ecology to infer networks of species interactions where detailed knowledge based on empirical studies is difficult to obtain. Their use is particularly common, but not restricted to, microbial networks constructed from metagenomic analyses. In this study, we test the efficacy of this procedure by comparing an inferred network constructed using spatially intensive co-occurrence data from the rocky intertidal zone in central Chile to a well-resolved, empirically based, species interaction network from the same region. We evaluated the overlap in the information provided by each network and the extent to which there is a bias for co-occurrence data to better detect known trophic or non-trophic, positive or negative interactions. We found a poor correspondence between the co-occurrence network and the known species interactions with overall sensitivity (probability of true link detection) equal to 0.469, and specificity (true non-interaction) equal to 0.527. The ability to detect interactions varied with interaction type. Positive non-trophic interactions such as commensalism and facilitation were detected at the highest rates. These results demonstrate that co-occurrence networks do not represent classical ecological networks in which interactions are defined by direct observations or experimental manipulations. Co-occurrence networks provide information about the joint spatial effects of environmental conditions, recruitment, and, to some extent, biotic interactions, and among the latter, they tend to better detect niche-expanding positive non-trophic interactions. Detection of links (sensitivity or specificity) was not higher for well-known intertidal keystone species than for the rest of consumers in the community. Thus, as observed in previous empirical and theoretical studies, patterns of interactions in co-occurrence networks must be interpreted with caution, especially when extending interaction

  5. Understanding human – bat interactions in NSW, Australia: improving risk communication for prevention of Australian bat lyssavirus

    OpenAIRE

    Quinn, Emma K; Massey, Peter D; Cox-Witton, Keren; Paterson, Beverley J; Eastwood, Keith; Durrheim, David N

    2014-01-01

    Background Australian bat lyssavirus (ABLV) infects a number of flying fox and insectivorous bats species in Australia. Human infection with ABLV is inevitably fatal unless prior vaccination and/or post-exposure treatment (PET) is given. Despite ongoing public health messaging about the risks associated with bat contact, surveillance data have revealed a four-fold increase in the number of people receiving PET for bat exposure in NSW between 2007 and 2011. Our study aimed to better understand...

  6. Understanding interparticle interactions in dry powder inhalation : glass beads as an innovative model carrier system

    OpenAIRE

    Renner, Niklas Ludwig

    2017-01-01

    Delivery of drugs via the pulmonary route is the most common approach to treat diseases of the respiratory system, e.g. asthma bronchiale. Here, the active pharmaceutical ingredient is generally formulated in a so-called interactive mixture with a coarse and inert carrier. This enhances flowability and therefore dose metering and dispersibility. Interparticle interactions between carrier and drug govern aerosolisation behaviour of the blend and consequently the efficacy of the drug deposition...

  7. Using cross-species comparisons and a neurobiological framework to understand early social deprivation effects on behavioral development.

    Science.gov (United States)

    Brett, Zoë H; Humphreys, Kathryn L; Fleming, Alison S; Kraemer, Gary W; Drury, Stacy S

    2015-05-01

    Building upon the transactional model of brain development, we explore the impact of early maternal deprivation on neural development and plasticity in three neural systems: hyperactivity/impulsivity, executive function, and hypothalamic-pituitary-adrenal axis functioning across rodent, nonhuman primate, and human studies. Recognizing the complexity of early maternal-infant interactions, we limit our cross-species comparisons to data from rodent models of artificial rearing, nonhuman primate studies of peer rearing, and the relations between these two experimental approaches and human studies of children exposed to the early severe psychosocial deprivation associated with institutional care. In addition to discussing the strengths and limitations of these paradigms, we present the current state of research on the neurobiological impact of early maternal deprivation and the evidence of sensitive periods, noting methodological challenges. Integrating data across preclinical animal models and human studies, we speculate about the underlying biological mechanisms; the differential impact of deprivation due to temporal factors including onset, offset, and duration of the exposure; and the possibility and consequences of reopening of sensitive periods during adolescence.

  8. An attempt to understand glioma stem cell biology through centrality analysis of a protein interaction network.

    Science.gov (United States)

    Mallik, Mrinmay Kumar

    2018-02-07

    Biological networks can be analyzed using "Centrality Analysis" to identify the more influential nodes and interactions in the network. This study was undertaken to create and visualize a biological network comprising of protein-protein interactions (PPIs) amongst proteins which are preferentially over-expressed in glioma cancer stem cell component (GCSC) of glioblastomas as compared to the glioma non-stem cancer cell (GNSC) component and then to analyze this network through centrality analyses (CA) in order to identify the essential proteins in this network and their interactions. In addition, this study proposes a new centrality analysis method pertaining exclusively to transcription factors (TFs) and interactions amongst them. Moreover the relevant molecular functions, biological processes and biochemical pathways amongst these proteins were sought through enrichment analysis. A protein interaction network was created using a list of proteins which have been shown to be preferentially expressed or over-expressed in GCSCs isolated from glioblastomas as compared to the GNSCs. This list comprising of 38 proteins, created using manual literature mining, was submitted to the Reactome FIViz tool, a web based application integrated into Cytoscape, an open source software platform for visualizing and analyzing molecular interaction networks and biological pathways to produce the network. This network was subjected to centrality analyses utilizing ranked lists of six centrality measures using the FIViz application and (for the first time) a dedicated centrality analysis plug-in ; CytoNCA. The interactions exclusively amongst the transcription factors were nalyzed through a newly proposed centrality analysis method called "Gene Expression Associated Degree Centrality Analysis (GEADCA)". Enrichment analysis was performed using the "network function analysis" tool on Reactome. The CA was able to identify a small set of proteins with consistently high centrality ranks that

  9. The Merapi Interactive Project: Offering a Fancy Cross-Disciplinary Scientific Understanding of Merapi Volcano to a Wide Audience.

    Science.gov (United States)

    Morin, J.; Kerlow, I.

    2015-12-01

    The Merapi volcano is of great interest to a wide audience as it is one of the most dangerous volcanoes worldwide and a beautiful touristic spot. The scientific literature available on that volcano both in Earth and Social sciences is rich but mostly inaccessible to the public because of the scientific jargon and the restricted database access. Merapi Interactive aims at developing clear information and attractive content about Merapi for a wide audience. The project is being produced by the Art and Media Group at the Earth Observatory of Singapore, and it takes the shape of an e-book. It offers a consistent, comprehensive, and jargon-filtered synthesis of the main volcanic-risk related topics about Merapi: volcanic mechanisms, eruptive history, associated hazards and risks, the way inhabitants and scientists deal with it, and what daily life at Merapi looks like. The project provides a background to better understand volcanoes, and it points out some interactions between scientists and society. We propose two levels of interpretation: one that is understandable by 10-year old kids and above and an expert level with deeper presentations of specific topics. Thus, the Merapi Interactive project intends to provide an engaging and comprehensive interactive book that should interest kids, adults, as well as Earth Sciences undergraduates and academics. Merapi Interactive is scheduled for delivery in mid-2016.

  10. Teaching Interaction Design and Children: Understanding the Relevance of Theory for Design

    Directory of Open Access Journals (Sweden)

    Tilde Bekker

    2014-08-01

    Full Text Available In this paper we address the challenge of teaching interaction design for children’s products especially pertaining to bridging the gap between child development theories and interaction design issues. We describe our experiences from developing a one-week course on interaction design and children, that is part of a competency based Masters program in design. We conclude that key elements in this course, to support learning how to incorporate theoretical knowledge in design, are a providing design tool that covers a child developmental model of four domains (cognitive, social, emotional and physical , such as the Developmentally Situated Design cards for creating child personas and design concepts b using a design exercise c giving students the possibility to work on several iterations d giving students more than one age-group to work with in the project, and e providing the students with an evaluation protocol.

  11. Interaction between Mitochondrial Reactive Oxygen Species, Heme Oxygenase, and Nitric Oxide Synthase Stimulates Phagocytosis in Macrophages

    Directory of Open Access Journals (Sweden)

    Andrea Müllebner

    2018-01-01

    Full Text Available BackgroundMacrophages are cells of the innate immune system that populate every organ. They are required not only for defense against invading pathogens and tissue repair but also for maintenance of tissue homeostasis and iron homeostasis.AimThe aim of this study is to understand whether heme oxygenase (HO and nitric oxide synthase (NOS contribute to the regulation of nicotinamide adenine dinucleotide phosphate oxidase (NOX activity and phagocytosis, two key components of macrophage function.MethodsThis study was carried out using resting J774A.1 macrophages treated with hemin or vehicle. Activity of NOS, HO, or NOX was inhibited using specific inhibitors. Reactive oxygen species (ROS formation was determined by Amplex® red assay, and phagocytosis was measured using fluorescein isothiocyanate-labeled bacteria. In addition, we analyzed the fate of the intracellular heme by using electron spin resonance.ResultsWe show that both enzymes NOS and HO are essential for phagocytic activity of macrophages. NOS does not directly affect phagocytosis, but stimulates NOX activity via nitric oxide-triggered ROS production of mitochondria. Treatment of macrophages with hemin results in intracellular accumulation of ferrous heme and an inhibition of phagocytosis. In contrast to NOS, HO products, including carbon monoxide, neither clearly affect NOX activity nor clearly affect phagocytosis, but phagocytosis is accelerated by HO-mediated degradation of heme.ConclusionBoth enzymes contribute to the bactericidal activity of macrophages independently, by controlling different pathways.

  12. Timing of stressors alters interactive effects on a coastal foundation species.

    Science.gov (United States)

    Bible, Jillian M; Cheng, Brian S; Chang, Andrew L; Ferner, Matthew C; Wasson, Kerstin; Zabin, Chela J; Latta, Marilyn; Sanford, Eric; Deck, Anna; Grosholz, Edwin D

    2017-09-01

    The effects of climate-driven stressors on organismal performance and ecosystem functioning have been investigated across many systems; however, manipulative experiments generally apply stressors as constant and simultaneous treatments, rather than accurately reflecting temporal patterns in the natural environment. Here, we assessed the effects of temporal patterns of high aerial temperature and low salinity on survival of Olympia oysters (Ostrea lurida), a foundation species of conservation and restoration concern. As single stressors, low salinity (5 and 10 psu) and the highest air temperature (40°C) resulted in oyster mortality of 55.8, 11.3, and 23.5%, respectively. When applied on the same day, low salinity and high air temperature had synergistic negative effects that increased oyster mortality. This was true even for stressor levels that were relatively mild when applied alone (10 psu and 35°C). However, recovery times of two or four weeks between stressors eliminated the synergistic effects. Given that most natural systems threatened by climate change are subject to multiple stressors that vary in the timing of their occurrence, our results suggest that it is important to examine temporal variation of stressors in order to more accurately understand the possible biological responses to global change. © 2017 by the Ecological Society of America.

  13. Understanding interactions in virtual HIV communities: a social network analysis approach.

    Science.gov (United States)

    Shi, Jingyuan; Wang, Xiaohui; Peng, Tai-Quan; Chen, Liang

    2017-02-01

    This study investigated the driving mechanism of building interaction ties among the people living with HIV/AIDS in one of the largest virtual HIV communities in China using social network analysis. Specifically, we explained the probability of forming interaction ties with homophily and popularity characteristics. The exponential random graph modeling results showed that members in this community tend to form homophilous ties in terms of shared location and interests. Moreover, we found a tendency away from popularity effect. This suggests that in this community, resources and information were not disproportionally received by a few of members, which could be beneficial to the overall community.

  14. Can toxicokinetic and toxicodynamic modeling be used to understand and predict synergistic interactions between chemicals?

    DEFF Research Database (Denmark)

    Cedergreen, Nina; Dalhoff, Kristoffer; Li, Dan

    2017-01-01

    including synergists. The aim of the present study is to develop a mechanistic toxicokinetic (TK) and toxicodynamic (TD) model for the synergistic mixture of the azole fungicide, propiconazole (the synergist), and the insecticide, α-cypermethrin, on the mortality of the crustacean Daphnia magna. The study...... by their effect on the biotransformation rate but that this effect could only partly be explained by the effect of the two azoles on cytochrome P450 activity, measured on D. magna in vivo. TKTD models of interacting mixtures seem to be a promising tool to test mechanisms of interactions between chemicals...

  15. A perspective on multi-user interaction design based on an understanding of domestic lighting conflict

    NARCIS (Netherlands)

    Niemantsverdriet, K.; van Essen, H.A.; Eggen, J.H.

    2017-01-01

    More and more connected systems are entering the social and shared home environment. Interaction with these systems is often rather individual and based on personal preferences, leading to conflicts in multi-user situations. In this paper, we aim to develop a perspective on how to design for

  16. Upper Secondary Students' Understanding of the Basic Physical Interactions in Analogous Atomic and Solar Systems

    Science.gov (United States)

    Taber, Keith S.

    2013-01-01

    Comparing the atom to a "tiny solar system" is a common teaching analogy, and the extent to which learners saw the systems as analogous was investigated. English upper secondary students were asked parallel questions about the physical interactions between the components of a simple atomic system and a simple solar system to investigate…

  17. Understanding the electron-phonon interaction in polar crystals: Perspective presented by the vibronic theory

    Science.gov (United States)

    Pishtshev, A.; Kristoffel, N.

    2017-05-01

    We outline our novel results relating to the physics of the electron-TO-phonon (el-TO-ph) interaction in a polar crystal. We explained why the el-TO-ph interaction becomes effectively strong in a ferroelectric, and showed how the electron density redistribution establishes favorable conditions for soft-behavior of the long-wavelength branch of the active TO vibration. In the context of the vibronic theory it has been demonstrated that at the macroscopic level the interaction of electrons with the polar zone-centre TO phonons can be associated with the internal long-range dipole forces. Also we elucidated a methodological issue of how local field effects are incorporated within the vibronic theory. These result provided not only substantial support for the vibronic mechanism of ferroelectricity but also presented direct evidence of equivalence between vibronic and the other lattice dynamics models. The corresponding comparison allowed us to introduce the original parametrization for constants of the vibronic interaction in terms of key material constants. The applicability of the suggested formula has been tested for a wide class of polar materials.

  18. Understanding guide dog team interactions: design opportunities to support work and play

    NARCIS (Netherlands)

    Hauser, S.; Wakkary, R.L.; Neustaedter, C.

    2014-01-01

    The visually impaired have been a longstanding and well-recognized user group addressed in the field of Human-Computer Interaction (HCI). Recently, the study of sighted dog owners and their pets has gained interest in HCI. Despite this, there is a noticeable gap in the field with regards to research

  19. Understanding Information Sharing Among Scientists Through a Professional Online Community: Analyses on Interaction Patterns and Contents

    Directory of Open Access Journals (Sweden)

    Shin, Eun-Ja

    2017-12-01

    Full Text Available Even through many professional organizations increasingly use Q&A sites in their online communities for information sharing, there are few studies which examine what is really going on in the Q&A activities in professional online communities (POC. This study aims to examine the interaction patterns and contents posted in the Q&A site of a POC, KOSEN, a science and technology online community in South Korea, focusing on how actively scientific information and knowledge are shared. The interaction patterns among the participants were identified through social network analysis (SNA and the contents in the Q&As were examined by content analysis. The results show that the overall network indicated a moderate level of participation and connection and answerers especially tended to be active. Also, there are different interaction patterns depending on academic fields. Relatively few participants were posting leaders who seemed to steer the overall interactions. Furthermore, some content related to manipulation and explanation for experiments, which are in urgent need, seem to be posted in the sites more frequently with more amounts. Combining both SNA and content analysis, this study demonstrated how actively information and knowledge is shared and what types of contents are exchanged. The findings have practical implications for POC managers and practitioners.

  20. Towards Understanding the Two Way Interaction Effects of Extraversion and Openness to Experience on Career Commitment

    Science.gov (United States)

    Arora, Ridhi; Rangnekar, Santosh

    2016-01-01

    In this study, we examined potential two-way interaction effects of the Big Five personality traits extraversion and openness to experience on career commitment measured in terms of three components of career identity, career resilience, and career planning. Participants included 450 managers from public and private sector organizations in North…

  1. Plants on the move: plant-soil interactions in poleward shifting plant species

    NARCIS (Netherlands)

    Grunsven, van R.H.A.

    2008-01-01

    As a result of recent global climate change, areas that have previously been climatically unsuitable for species have now become suitable new habitats. Many plant-species are expanding their range polewards, colonizing these newly available areas. If these species are able to expand their range

  2. Plant-soil interactions in the expansion and native range of a poleward shifting plant species

    NARCIS (Netherlands)

    Grunsven, van R.H.A.; Putten, van der W.H.; Bezemer, T.M.; Berendse, F.; Veenendaal, E.M.

    2010-01-01

    Climate warming causes range shifts of many species toward higher latitudes and altitudes. However, range shifts of host species do not necessarily proceed at the same rates as those of their enemies and symbionts. Here, we examined how a range shifting plant species performs in soil from its

  3. Plant–soil interactions in the expansion and native range of a poleward shifting plant species

    NARCIS (Netherlands)

    Van Grunsven, R.H.A.; Van der Putten, W.H.; Bezemer, T.M.; Berendse, F.; Veenendaal, E.M.

    2010-01-01

    Climate warming causes range shifts of many species toward higher latitudes and altitudes. However, range shifts of host species do not necessarily proceed at the same rates as those of their enemies and symbionts. Here, we examined how a range shifting plant species performs in soil from its

  4. Multiple stressor effects in Chlamydomonas reinhardtii – Toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Korkaric, Muris [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland); Behra, Renata; Fischer, Beat B. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); Junghans, Marion [Swiss Center for Applied Ecotoxicology Eawag-EPFL, 8600, Duebendorf (Switzerland); Eggen, Rik I.L., E-mail: rik.eggen@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland)

    2015-05-15

    Highlights: • Systematic study of multiple stressor effects of UVR and chemicals in C. reinhardtii. • UVR and chemicals did not act independently on algal photosynthesis and reproduction. • Multiple stressor effects of UVR and chemicals depended on chemical MOA. • Synergistic effect interactions not limited to oxidative stress inducing chemicals. • Multiple MOAs of UVR may limit applicability of current prediction models. - Abstract: The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are

  5. Multiple stressor effects in Chlamydomonas reinhardtii – Toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants

    International Nuclear Information System (INIS)

    Korkaric, Muris; Behra, Renata; Fischer, Beat B.; Junghans, Marion; Eggen, Rik I.L.

    2015-01-01

    Highlights: • Systematic study of multiple stressor effects of UVR and chemicals in C. reinhardtii. • UVR and chemicals did not act independently on algal photosynthesis and reproduction. • Multiple stressor effects of UVR and chemicals depended on chemical MOA. • Synergistic effect interactions not limited to oxidative stress inducing chemicals. • Multiple MOAs of UVR may limit applicability of current prediction models. - Abstract: The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are

  6. An Interactive Modeling Lesson Increases Students' Understanding of Ploidy during Meiosis

    Science.gov (United States)

    Wright, L. Kate; Newman, Dina L.

    2011-01-01

    Chromosome structure is confusing to students at all levels, and chromosome behavior during meiosis is a notoriously difficult topic. Undergraduate biology majors are exposed to the process of meiosis numerous times during their presecondary and postsecondary education, yet understanding of key concepts, such as the point at which haploidy is…

  7. Argument Construction in Understanding Noncovalent Interactions: A Comparison of Two Argumentation Frameworks

    Science.gov (United States)

    Cooper, A. Kat; Oliver-Hoyo, M. T.

    2016-01-01

    Argument construction is a valuable ability for explaining scientific phenomena and introducing argumentation skills as part of a curriculum can greatly enhance student understanding by promoting self-reflection on the topic under investigation. This article aims to use argument construction as a technique to support an activity designed to…

  8. Using Interactive Technology to Support Students' Understanding of the Greenhouse Effect and Global Warming

    Science.gov (United States)

    Varma, Keisha; Linn, Marcia C.

    2012-01-01

    In this work, we examine middle school students' understanding of the greenhouse effect and global warming. We designed and refined a technology-enhanced curriculum module called "Global Warming: Virtual Earth". In the module activities, students conduct virtual experiments with a visualization of the greenhouse effect. They analyze data and draw…

  9. A First Step toward the Automatic Understanding of Social Touch for Naturalistic Human–Robot Interaction

    NARCIS (Netherlands)

    Jung, Merel Madeleine; Poel, Mannes; Reidsma, Dennis; Heylen, Dirk K.J.

    2017-01-01

    Social robots should be able to automatically understand and respond to human touch. The meaning of touch does not only depend on the form of touch but also on the context in which the touch takes place. To gain more insight into the factors that are relevant to interpret the meaning of touch within

  10. Process-Based Species Pools Reveal the Hidden Signature of Biotic Interactions Amid the Influence of Temperature Filtering.

    Science.gov (United States)

    Lessard, Jean-Philippe; Weinstein, Ben G; Borregaard, Michael K; Marske, Katharine A; Martin, Danny R; McGuire, Jimmy A; Parra, Juan L; Rahbek, Carsten; Graham, Catherine H

    2016-01-01

    A persistent challenge in ecology is to tease apart the influence of multiple processes acting simultaneously and interacting in complex ways to shape the structure of species assemblages. We implement a heuristic approach that relies on explicitly defining species pools and permits assessment of the relative influence of the main processes thought to shape assemblage structure: environmental filtering, dispersal limitations, and biotic interactions. We illustrate our approach using data on the assemblage composition and geographic distribution of hummingbirds, a comprehensive phylogeny and morphological traits. The implementation of several process-based species pool definitions in null models suggests that temperature-but not precipitation or dispersal limitation-acts as the main regional filter of assemblage structure. Incorporating this environmental filter directly into the definition of assemblage-specific species pools revealed an otherwise hidden pattern of phylogenetic evenness, indicating that biotic interactions might further influence hummingbird assemblage structure. Such hidden patterns of assemblage structure call for a reexamination of a multitude of phylogenetic- and trait-based studies that did not explicitly consider potentially important processes in their definition of the species pool. Our heuristic approach provides a transparent way to explore patterns and refine interpretations of the underlying causes of assemblage structure.

  11. HitPredict version 4: comprehensive reliability scoring of physical protein-protein interactions from more than 100 species.

    Science.gov (United States)

    López, Yosvany; Nakai, Kenta; Patil, Ashwini

    2015-01-01

    HitPredict is a consolidated resource of experimentally identified, physical protein-protein interactions with confidence scores to indicate their reliability. The study of genes and their inter-relationships using methods such as network and pathway analysis requires high quality protein-protein interaction information. Extracting reliable interactions from most of the existing databases is challenging because they either contain only a subset of the available interactions, or a mixture of physical, genetic and predicted interactions. Automated integration of interactions is further complicated by varying levels of accuracy of database content and lack of adherence to standard formats. To address these issues, the latest version of HitPredict provides a manually curated dataset of 398 696 physical associations between 70 808 proteins from 105 species. Manual confirmation was used to resolve all issues encountered during data integration. For improved reliability assessment, this version combines a new score derived from the experimental information of the interactions with the original score based on the features of the interacting proteins. The combined interaction score performs better than either of the individual scores in HitPredict as well as the reliability score of another similar database. HitPredict provides a web interface to search proteins and visualize their interactions, and the data can be downloaded for offline analysis. Data usability has been enhanced by mapping protein identifiers across multiple reference databases. Thus, the latest version of HitPredict provides a significantly larger, more reliable and usable dataset of protein-protein interactions from several species for the study of gene groups. Database URL: http://hintdb.hgc.jp/htp. © The Author(s) 2015. Published by Oxford University Press.

  12. Interactions between elevated CO2 concentration, nitrogen and water : effects on growth and water use of six perennial plant species

    NARCIS (Netherlands)

    Arp, W.J.; Mierlo, J.E.M.; Berendse, F.; Snijders, W.

    1998-01-01

    Two experiments are described in which plants of six species were grown for one full season in greenhouse compartments with 350 or 560 mol mol1 CO2. In the first experiment two levels of nitrogen supply were applied to study the interaction between CO2 and nitrogen. In the second experiment two

  13. Understanding “Baby Boomers” and “Millennials” motivations to interact with brands on Social Media

    OpenAIRE

    Oliveira, Rute Sofia Matos de

    2017-01-01

    The emergence and importance of social media and, in particular, social networking sites (SNS), has made it possible for an accessible integration between consumers and brands, by providing unlimited reasons for users to express, share and create content. The aim of this dissertation is to explore what motivates consumers to interact with brands on social media and to understand the relevance of those variables in explaining consumers’ loyalty toward a brand. Members of two distinct genera...

  14. Social meanings and understandings in patient-nurse interaction in the community practice setting: a grounded theory study

    Directory of Open Access Journals (Sweden)

    Stoddart Kathleen M

    2012-09-01

    Full Text Available Abstract Background The patient-nurse relationship is a traditional concern of healthcare research. However, patient-nurse interaction is under examined from a social perspective. Current research focuses mostly on specific contexts of care delivery and experience related to medical condition or illness, or to nurses’ speciality. Consequentially, this paper is about the social meanings and understandings at play within situated patient-nurse interaction in the community practice setting in a transforming healthcare service. Methods Grounded theory methodology was used and the research process was characterised by principles of theoretical sensitivity and constant comparative analysis. The field of study was four health centres in the community. The participants were patients and nurses representative of those attending or working in the health centres and meeting there by scheduled appointment. Data collection methods were observations, informal interviews and semi-structured interviews. Results Key properties of ‘Being a good patient, being a good nurse’, ‘Institutional experiences’ and ‘Expectations about healthcare’ were associated with the construction of a category entitled ‘Experience’. Those key properties captured that in an evolving healthcare environment individuals continually re-constructed their reality of being a patient or nurse as they endeavoured to perform appropriately; articulation of past and present healthcare experiences was important in that process. Modus operandi in role as patient was influenced by past experiences in healthcare and by those in non-healthcare institutions in terms of engagement and involvement (or not in interaction. Patients’ expectations about interaction in healthcare included some uncertainly as they strived to make sense of the changing roles and expertise of nurses and, differentiating between the roles and expertise of nurses and doctors. Conclusions The importance of social

  15. Towards Biological Control of Kudzu Through an Improved Understanding of Insect-Kudzu Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Orr, D.; Barber, G.; DeBarr, G.; Thornton, M.

    2001-08-03

    The authors evaluated various approaches to the biological control of kudzu and exotic weed that infests the SRS. A large number of native pollinators were found to be attracted to kudzu. The viability of seed was found to be low, between 2% and 11%. This is the result of native Hemiptera. The results suggest that seed feeding insects should not be targeted for importation. Both kudzu and soybeans had the same level of abundance and diversity of herbivore insects and the same levels of defoliation. No vine or root damaging species were found. Efforts should be targeted to the latter insects to control kudzu.

  16. Mechanistic understanding of nanoparticles' interactions with extracellular matrix: the cell and immune system.

    Science.gov (United States)

    Engin, Ayse Basak; Nikitovic, Dragana; Neagu, Monica; Henrich-Noack, Petra; Docea, Anca Oana; Shtilman, Mikhail I; Golokhvast, Kirill; Tsatsakis, Aristidis M

    2017-06-24

    Extracellular matrix (ECM) is an extraordinarily complex and unique meshwork composed of structural proteins and glycosaminoglycans. The ECM provides essential physical scaffolding for the cellular constituents, as well as contributes to crucial biochemical signaling. Importantly, ECM is an indispensable part of all biological barriers and substantially modulates the interchange of the nanotechnology products through these barriers. The interactions of the ECM with nanoparticles (NPs) depend on the morphological characteristics of intercellular matrix and on the physical characteristics of the NPs and may be either deleterious or beneficial. Importantly, an altered expression of ECM molecules ultimately affects all biological processes including inflammation. This review critically discusses the specific behavior of NPs that are within the ECM domain, and passing through the biological barriers. Furthermore, regenerative and toxicological aspects of nanomaterials are debated in terms of the immune cells-NPs interactions.

  17. [Use of laws of interelement interactions for understanding of mechanisms of various human diseases].

    Science.gov (United States)

    Barashkov, G K; Zaĭtseva, L I

    2008-01-01

    The review considers the basic laws of interaction of elements in real physiological conditions of metabolism. The law of replacement and two it consequences have been formulated taking into account a major principle of cybernetics, the feedback principle. A rule of a fractional threshold and the law of toxicity based on the Mertz's rules have been formulated. These laws have been used here for consideration of mechanisms of occurrence and development of apoptosis and also side-effects of statins. Study of bioinorganic mechanisms of different diseases is a erspective way for search of complex connections of metals and ligands, capable to interaction with initiators of chain reactions, and for a finding of substances--inhibitors these reactions.

  18. Understanding the nanoscale local buckling behavior of vertically aligned MWCNT arrays with van der Waals interactions

    Science.gov (United States)

    Li, Yupeng; Kim, Hyung-Ick; Wei, Bingqing; Kang, Junmo; Choi, Jae-Boong; Nam, Jae-Do; Suhr, Jonghwan

    2015-08-01

    The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect.The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03581c

  19. Understanding the Effect of Audio Communication Delay on Distributed Team Interaction

    Science.gov (United States)

    2013-06-01

    means for members to socialize and learn about each other, engenders development cooperative relationships, and lays a foundation for future interaction...length will result in increases in task completion time and mental workload. 3. Audiovisual technology will moderate the effect of communication...than audio alone. 4. Audiovisual technology will moderate the effect of communication delays such that task completion time and mental workload will

  20. Pathways of understanding: The interactions of humanity and global environmental change

    International Nuclear Information System (INIS)

    Jacobson, H.K.; Katzenberger, J.; Lousma, J.; Mooney, H.A.; Moss, R.H.; Kuhn, W.; Luterbacher, U.; Wiegandt, E.

    1992-01-01

    How humans, interacting within social systems, affect and are affected by global change is explored. Recognizing the impact human activities have on the environment and responding to the need to document the interactions among human activities, the Consortium for International Earth Science Information Network (CIESIN) commissioned a group of 12 scientists to develop a framework illustrating the key human systems that contribute to global change. This framework, called the Social Process Diagram, will help natural and social scientists, educators, resource managers and policy makers envision and analyze how human systems interact among themselves and with the natural system. The Social Process Diagram consists of the following blocks that constitute the Diagram's structural framework: (1) fund of knowledge and experience; (2) preferences and expectations; (3) factors of production and technology; (4) population and social structure; (5) economic systems; (6) political systems and institutions; and (7) global scale environmental processes. To demonstrate potential ways the Diagram can be used, this document includes 3 hypothetical scenarios of global change issues: global warming and sea level rise; the environmental impact of human population migration; and energy and the environment. These scenarios demonstrate the Diagram's usefulness for visualizing specific processes that might be studied to evaluate a particular global change issues. The scenario also shows that interesting and unanticipated questions may emerge as links are explored between categories on the Diagram

  1. Pathways of Understanding: the Interactions of Humanity and Global Environmental Change

    Science.gov (United States)

    Jacobson, Harold K.; Katzenberger, John; Lousma, Jack; Mooney, Harold A.; Moss, Richard H.; Kuhn, William; Luterbacher, Urs; Wiegandt, Ellen

    1992-01-01

    How humans, interacting within social systems, affect and are affected by global change is explored. Recognizing the impact human activities have on the environment and responding to the need to document the interactions among human activities, the Consortium for International Earth Science Information Network (CIESIN) commissioned a group of 12 scientists to develop a framework illustrating the key human systems that contribute to global change. This framework, called the Social Process Diagram, will help natural and social scientists, educators, resource managers and policy makers envision and analyze how human systems interact among themselves and with the natural system. The Social Process Diagram consists of the following blocks that constitute the Diagram's structural framework: (1) fund of knowledge and experience; (2) preferences and expectations; (3) factors of production and technology; (4) population and social structure; (5) economic systems; (6) political systems and institutions; and (7) global scale environmental processes. To demonstrate potential ways the Diagram can be used, this document includes 3 hypothetical scenarios of global change issues: global warming and sea level rise; the environmental impact of human population migration; and energy and the environment. These scenarios demonstrate the Diagram's usefulness for visualizing specific processes that might be studied to evaluate a particular global change issues. The scenario also shows that interesting and unanticipated questions may emerge as links are explored between categories on the Diagram.

  2. Biosensors paving the way to understanding the interaction between cadmium and the estrogen receptor alpha.

    Directory of Open Access Journals (Sweden)

    Peter Fechner

    Full Text Available Cadmium is a toxic heavy metal ubiquitously present in the environment and subsequently in the human diet. Cadmium has been proposed to disrupt the endocrine system, targeting in particular the estrogen signaling pathway already at environmentally relevant concentrations. Thus far, the reports on the binding affinity of cadmium towards human estrogen receptor alpha (hERα have been contradicting, as have been the reports on the in vivo estrogenicity of cadmium. Hence, the mode of interaction between cadmium and the receptor remains unclear. Here, we investigated the interaction between cadmium and hERα on a molecular level by applying a novel, label-free biosensor technique based on reflectometric interference spectroscopy (RIfS. We studied the binding of cadmium to hERα, and the conformation of the receptor following cadmium treatment. Our data reveals that cadmium interacts with the ligand binding domain (LBD of the ERα and affects the conformation of the receptor. However, the binding event, as well as the induced conformation change, greatly depends on the accessibility of the cysteine tails in the LBD. As the LBD cysteine residues have been reported as targets of post-translational modifications in vivo, we present a hypothesis according to which different cellular pools of ERα respond to cadmium differently. Our proposed theory could help to explain some of the previously contradicting results regarding estrogen-like activity of cadmium.

  3. Recent advances in the understanding of the interaction of antidepressant drugs with serotonin and norepinephrine transporters

    DEFF Research Database (Denmark)

    Andersen, Jacob; Kristensen, Anders Skov; Bang-Andersen, Benny

    2009-01-01

    The biogenic monoamine transporters are integral membrane proteins that perform active transport of extracellular dopamine, serotonin and norepinephrine into cells. These transporters are targets for therapeutic agents such as antidepressants, as well as addictive substances such as cocaine...... and amphetamine. Seminal advances in the understanding of the structure and function of this transporter family have recently been accomplished by structural studies of a bacterial transporter, as well as medicinal chemistry and pharmacological studies of mammalian transporters. This feature article focuses...

  4. Weak intramolecular interaction effects on the torsional spectra of ethylene glycol, an astrophysical species

    Energy Technology Data Exchange (ETDEWEB)

    Boussessi, R., E-mail: rahma.boussesi@iem.cfmac.csic.es [Departamento de Química y Física Teóricas, I. Estructura de la Materia, IEM-CSIC, Serrano 121, Madrid 28006 (Spain); Laboratoire de Spectroscopie Atomique, Moléculaire et Applications-LSAMA LR01ES09, Faculté des sciences de Tunis, Université de Tunis El Manar, 2092 Tunis (Tunisia); Senent, M. L., E-mail: ml.senent@csic.es [Departamento de Química y Física Teóricas, I. Estructura de la Materia, IEM-CSIC, Serrano 121, Madrid 28006 (Spain); Jaïdane, N. [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications-LSAMA LR01ES09, Faculté des sciences de Tunis, Université de Tunis El Manar, 2092 Tunis (Tunisia)

    2016-04-28

    An elaborate variational procedure of reduced dimensionality based on explicitly correlated coupled clusters calculations is applied to understand the far infrared spectrum of ethylene-glycol, an astrophysical species. This molecule can be classified in the double molecular symmetry group G{sub 8} and displays nine stable conformers, gauche and trans. In the gauche region, the effect of the potential energy surface anisotropy due to the formation of intramolecular hydrogen bonds is relevant. For the primary conformer, stabilized by a hydrogen bond, the ground vibrational state rotational constants are computed to be A{sub 0} = 15 369.57 MHz, B{sub 0} = 5579.87 MHz, and C{sub 0} = 4610.02 MHz corresponding to differences of 6.3 MHz, 7.2 MHz, and 3.5 MHz from the experimental parameters. Ethylene glycol displays very low torsional energy levels whose classification is not straightforward and requires a detailed analysis of the torsional wavefunctions. Tunneling splittings are significant and unpredictable due to the anisotropy of the potential energy surface PES. The ground vibrational state splits into 16 sublevels separated ∼142 cm{sup −1}. The splitting of the “G1 sublevels” was calculated to be ∼0.26 cm{sup −1} in very good agreement with the experimental data (0.2 cm{sup −1} = 6.95 MHz). Transitions corresponding to the three internal rotation modes allow assignment of previously observed Q branches. Band patterns, calculated between 362.3 cm{sup −1} and 375.2 cm{sup −1}, 504 cm{sup −1} and 517 cm{sup −1}, and 223.3 cm{sup −1} and 224.1 cm{sup −1}, that correspond to the tunnelling components of the v{sub 21} fundamental (v{sub 21} = OH-torsional mode), are assigned to the prominent experimental Q branches.

  5. Impact of interspecific interactions on the soil water uptake depth in a young temperate mixed species plantation

    Science.gov (United States)

    Grossiord, Charlotte; Gessler, Arthur; Granier, André; Berger, Sigrid; Bréchet, Claude; Hentschel, Rainer; Hommel, Robert; Scherer-Lorenzen, Michael; Bonal, Damien

    2014-11-01

    Interactions between tree species in forests can be beneficial to ecosystem functions and services related to the carbon and water cycles by improving for example transpiration and productivity. However, little is known on below- and above-ground processes leading to these positive effects. We tested whether stratification in soil water uptake depth occurred between four tree species in a 10-year-old temperate mixed species plantation during a dry summer. We selected dominant and co-dominant trees of European beech, Sessile oak, Douglas fir and Norway spruce in areas with varying species diversity, competition intensity, and where different plant functional types (broadleaf vs. conifer) were present. We applied a deuterium labelling approach that consisted of spraying labelled water to the soil surface to create a strong vertical gradient of the deuterium isotope composition in the soil water. The deuterium isotope composition of both the xylem sap and the soil water was measured before labelling, and then again three days after labelling, to estimate the soil water uptake depth using a simple modelling approach. We also sampled leaves and needles from selected trees to measure their carbon isotope composition (a proxy for water use efficiency) and total nitrogen content. At the end of the summer, we found differences in the soil water uptake depth between plant functional types but not within types: on average, coniferous species extracted water from deeper layers than did broadleaved species. Neither species diversity nor competition intensity had a detectable influence on soil water uptake depth, foliar water use efficiency or foliar nitrogen concentration in the species studied. However, when coexisting with an increasing proportion of conifers, beech extracted water from progressively deeper soil layers. We conclude that complementarity for water uptake could occur in this 10-year-old plantation because of inherent differences among functional groups (conifers

  6. Using Interactive Case Studies to Support Students Understandings of Local Environmental Problems

    Directory of Open Access Journals (Sweden)

    Z. Kostova

    2012-12-01

    Full Text Available The article presents designed and refined an interactive-enhanced curriculum module for 9th grade secondary school students in Bulgaria, based on environmental case studies. In the module activities students from two schools studied the local environments, performed observations and experiments, collected and analyzed data, prepared and presented posters and role plays, made connections between scientific processes and socio-scientific issues and drew conclusions about the global effects of locally created environmental problems. The students’ critical observations of the quality of their surroundings helped them to make a list of local environmental problems, to apply interactive strategies in studying them and to propose rational scientifically based solutions. In the study the attention was directed to the advantages and disadvantages of poster presentations and role playing and to the specific learning difficulties that students had to overcome. Students’ achievements from the two experimental schools were assessed independently in order to give us insights into the details of learning using different interactive strategies and into the acquired performance skills, dependant on students’ interests and personal abilities. The three versions of the module (traditional, dominated by teacher presentation; poster preparation and presentation in which students imitate scientific team research; and role playing in which students not only study the local environmental problems but assume social roles to cope with them demonstrate three levels of students learning independence. Specific assessment tests and check lists were developed for analyzing, evaluating and comparing students’ achievements in each version of the module and in each school. Ecological knowledge assessment tests were based on Bloom’s taxonomy of educational objectives. Poster and role playing preparations and presentations were assessed by specific criteria, shown in the

  7. Interactive tool that empowers structural understanding and enables FEM analysis in a parametric design environment

    DEFF Research Database (Denmark)

    Christensen, Jesper Thøger; Parigi, Dario; Kirkegaard, Poul Henning

    2014-01-01

    This paper introduces an interactive tool developed to integrate structural analysis in the architectural design environment from the early conceptual design stage. The tool improves exchange of data between the design environment of Rhino Grasshopper and the FEM analysis of Autodesk Robot...... Structural Analysis. Further the tool provides intuitive setup and visual aids in order to facilitate the process. Enabling students and professionals to quickly analyze and evaluate multiple design variations. The tool has been developed inside the Performance Aided Design course at the Master...... of Architecture and Design at Aalborg University...

  8. Understanding and improving the efficiency of full configuration interaction quantum Monte Carlo.

    Science.gov (United States)

    Vigor, W A; Spencer, J S; Bearpark, M J; Thom, A J W

    2016-03-07

    Within full configuration interaction quantum Monte Carlo, we investigate how the statistical error behaves as a function of the parameters which control the stochastic sampling. We define the inefficiency as a measure of the statistical error per particle sampling the space and per time step and show there is a sizeable parameter regime where this is minimised. We find that this inefficiency increases sublinearly with Hilbert space size and can be reduced by localising the canonical Hartree-Fock molecular orbitals, suggesting that the choice of basis impacts the method beyond that of the sign problem.

  9. Understanding and improving the efficiency of full configuration interaction quantum Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Vigor, W. A.; Bearpark, M. J. [Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Spencer, J. S. [Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Thom, A. J. W. [Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2016-03-07

    Within full configuration interaction quantum Monte Carlo, we investigate how the statistical error behaves as a function of the parameters which control the stochastic sampling. We define the inefficiency as a measure of the statistical error per particle sampling the space and per time step and show there is a sizeable parameter regime where this is minimised. We find that this inefficiency increases sublinearly with Hilbert space size and can be reduced by localising the canonical Hartree–Fock molecular orbitals, suggesting that the choice of basis impacts the method beyond that of the sign problem.

  10. Understanding the Work-Life Interaction from a Working Time Perspective

    DEFF Research Database (Denmark)

    Pedersen, Vivi Bach

    time not only defines the temporal structure of work, but also determines the individual’s social time. The theoretical framework is based on theories concerning influence, in particular Organizational Participation (e.g. Heller, Pusic, Strauss & Wilpert, 1998) and Self-Determination Theory (e.g. Deci...... & Ryan, 2002). Through theoretical analyses it is shown that a participatory influence approach reveals new perspectives in understanding the complexity of the work-life phenomenon and help counteracting the undesirable split-up between the existing conflict versus balance approaches. Participants from...

  11. Towards understanding the trajectory and interactions of the gut microbiome in healthy older humans

    DEFF Research Database (Denmark)

    Castro Mejia, Josue Leonardo

    The human gastrointestinal tract (GIT) is inhabited by a vast amount of microorganisms from different domains of life collectively denominated the gut microbiome (GM). Among its numerous functions, GM plays a crucial role in developing the immune system in early-life and contributes to maintain...... by food-selectivity (pickiness) and associated patterns of carbohydrates’ consumption (and total energy), reflecting changes in GM composition that corresponded with signs of glucoseintolerance. Lastly, in order to gain understanding on the role of viral communities in the gut of older adults, we...

  12. Interactive simulations for promoting transdisciplinary understanding: a case study of the Western Cape fisheries, South Africa

    Directory of Open Access Journals (Sweden)

    Cecile Proches

    2012-07-01

    Full Text Available Simulations have proven beneficial in enabling participants from various backgrounds to meaningfully engage in learning from experience. The aim of this paper is to investigate how interactive simulations can play a role in navigating the changes faced in a multi- stakeholder setting, characterised by users dependent on marine resources and an authorising institution. Relevant literature in the areas of simulation and gaming, change management, systems thinking, and complexity theory was examined. A qualitative research approach and purposive sampling were employed. Interviews were first conducted with diverse stakeholders in the Western Cape fisheries of South Africa to determine the issues. A simulation was thereafter designed. The main findings from this study indicate that simulation use illustrates how the various stakeholders in a system interact, and how their actions and decisions influence each other. The simulation may be used in other areas of natural resource management, as well as in other kinds of multi- stakeholder scenarios. Keywords: Simulation and gaming, Change management, Fisheries, Multi-stakeholder scenarios, Systems thinking, Complexity theory Disciplines: Conflict Resolution, Leadership Studies, Management Studies, Natural Resource Management

  13. Understanding AuNP interaction with low-generation PAMAM dendrimers: a CIELab and deconvolution study

    International Nuclear Information System (INIS)

    Jimenez-Ruiz, A.; Carnerero, J. M.; Castillo, P. M.; Prado-Gotor, R.

    2017-01-01

    Low-generation polyamidoamine (PAMAM) dendrimers are known to adsorb on the surface of gold nanoparticles (AuNPs) causing aggregation and color changes. In this paper, a thorough study of this affinity using absorption spectroscopy, colorimetric, and emission methods has been carried out. Results show that, for citrate-capped gold nanoparticles, interaction with the dendrimer is not only of an electrostatic character but instead occurs, at least in part, through the dendrimer’s uncharged internal amino groups. The possibilities of the CIELab chromaticity system parameters’ evolution have also been explored in order to quantify dendrimer interaction with the red-colored nanoparticles. By measuring and quantifying 17 nm citrate-capped AuNP color changes, which are strongly dependant on their aggregation state, binding free energies are obtained for the first time for these systems. Results are confirmed via an alternate fitting method which makes use of deconvolution parameters from absorbance spectra. Binding free energies obtained through the use of both means are in good agreement with each other.

  14. Investigation of corner shock boundary layer interactions to understand inlet unstart

    Science.gov (United States)

    Funderburk, Morgan

    2015-11-01

    Inlet unstart is a detrimental phenomenon in dual-mode ramjet/scramjet engines that causes severe loss of thrust, large transient structural load, and potentially a loss of the aircraft. In order to analyze the effects that the corner shock boundary layer interaction (SBLI) has on initiating and perpetuating inlet unstart, a qualitative and quantitative investigation into mean and dynamic features of corner SBLI at various Mach numbers is made. Surface streakline visualization showed that the corner SBLI is highly three-dimensional with a dominant presence of corner separation vortex. Further, the peak r.m.s. pressure was located at the periphery of corner separation vortex, suggesting that the unsteady loading is caused by the corner vortex. Power spectral densities of wall-pressure fluctuations in the peak r.m.s. location were analyzed in order to characterize the dominant frequencies of oscillation of the flow structures and to unravel the dynamic interactions between them in order to expand the operating margin of future hypersonic air breathing vehicles.

  15. Understanding AuNP interaction with low-generation PAMAM dendrimers: a CIELab and deconvolution study

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Ruiz, A., E-mail: ailjimrui@alum.us.es; Carnerero, J. M.; Castillo, P. M.; Prado-Gotor, R., E-mail: pradogotor@us.es [University of Seville, The Department of Physical Chemistry (Spain)

    2017-01-15

    Low-generation polyamidoamine (PAMAM) dendrimers are known to adsorb on the surface of gold nanoparticles (AuNPs) causing aggregation and color changes. In this paper, a thorough study of this affinity using absorption spectroscopy, colorimetric, and emission methods has been carried out. Results show that, for citrate-capped gold nanoparticles, interaction with the dendrimer is not only of an electrostatic character but instead occurs, at least in part, through the dendrimer’s uncharged internal amino groups. The possibilities of the CIELab chromaticity system parameters’ evolution have also been explored in order to quantify dendrimer interaction with the red-colored nanoparticles. By measuring and quantifying 17 nm citrate-capped AuNP color changes, which are strongly dependant on their aggregation state, binding free energies are obtained for the first time for these systems. Results are confirmed via an alternate fitting method which makes use of deconvolution parameters from absorbance spectra. Binding free energies obtained through the use of both means are in good agreement with each other.

  16. From idea to blah! understanding mobile services development as interactive innovation

    Directory of Open Access Journals (Sweden)

    Eduardo Fontana

    2005-08-01

    Full Text Available Mobile communications are permeating virtually every aspect of our lives. The market is experiencing rapid improvements in technologies, while mobile operators are trying to figure out new ways their infrastructures can provide services to the customers. Furthermore, user-innovation with new ways of using these technologies generates powerful feedback loops back into the innovation processes. In this turbulent environment it is difficult to capture and conceptualize how newness comes about and what the main characteristics of innovation are. The aim of this paper is to illustrate how the concept of interactive innovation can be applied to explain the development of mobile services. This study adopts the perspective of the developer rather than the user. Moreover, through the social construction of technology lens, the concepts of sense-making and bricolage are applied to explain the innovation appropriation process during the mobile data value chain improvement process. One of the conclusions drawn is that in the rapidly changing and complex context of mobile services development, the traditional notion of ‘interactive innovation’ cannot fully explain this phenomenon that takes place.

  17. Evaluating role of interactive visualization tool in improving students' conceptual understanding of chemical equilibrium

    Science.gov (United States)

    Sampath Kumar, Bharath

    The purpose of this study is to examine the role of partnering visualization tool such as simulation towards development of student's concrete conceptual understanding of chemical equilibrium. Students find chemistry concepts abstract, especially at the microscopic level. Chemical equilibrium is one such topic. While research studies have explored effectiveness of low tech instructional strategies such as analogies, jigsaw, cooperative learning, and using modeling blocks, fewer studies have explored the use of visualization tool such as simulations in the context of dynamic chemical equilibrium. Research studies have identified key reasons behind misconceptions such as lack of systematic understanding of foundational chemistry concepts, failure to recognize the system is dynamic, solving numerical problems on chemical equilibrium in an algorithmic fashion, erroneous application Le Chatelier's principle (LCP) etc. Kress et al. (2001) suggested that external representation in the form of visualization is more than a tool for learning, because it enables learners to make meanings or express their ideas which cannot be readily done so through a verbal representation alone. Mixed method study design was used towards data collection. The qualitative portion of the study is aimed towards understanding the change in student's mental model before and after the intervention. A quantitative instrument was developed based on common areas of misconceptions identified by research studies. A pilot study was conducted prior to the actual study to obtain feedback from students on the quantitative instrument and the simulation. Participants for the pilot study were sampled from a single general chemistry class. Following the pilot study, the research study was conducted with a total of 27 students (N=15 in experimental group and N=12 in control group). Prior to participating in the study, students have completed their midterm test on the topic of chemical equilibrium. Qualitative

  18. An updated understanding of Texas bumble bee (Hymenoptera: Apidae species presence and potential distributions in Texas, USA

    Directory of Open Access Journals (Sweden)

    Jessica L. Beckham

    2017-08-01

    Full Text Available Texas is the second largest state in the United States of America, and the largest state in the contiguous USA at nearly 700,000 sq. km. Several Texas bumble bee species have shown evidence of declines in portions of their continental ranges, and conservation initiatives targeting these species will be most effective if species distributions are well established. To date, statewide bumble bee distributions for Texas have been inferred primarily from specimen records housed in natural history collections. To improve upon these maps, and help inform conservation decisions, this research aimed to (1 update existing Texas bumble bee presence databases to include recent (2007–2016 data from citizen science repositories and targeted field studies, (2 model statewide species distributions of the most common bumble bee species in Texas using MaxEnt, and (3 identify conservation target areas for the state that are most likely to contain habitat suitable for multiple declining species. The resulting Texas bumble bee database is comprised of 3,580 records, to include previously compiled museum records dating from 1897, recent field survey data, and vetted records from citizen science repositories. These data yielded an updated state species list that includes 11 species, as well as species distribution models (SDMs for the most common Texas bumble bee species, including two that have shown evidence of range-wide declines: B. fraternus (Smith, 1854 and B. pensylvanicus (DeGeer, 1773. Based on analyses of these models, we have identified conservation priority areas within the Texas Cross Timbers, Texas Blackland Prairies, and East Central Texas Plains ecoregions where suitable habitat for both B. fraternus and B. pensylvanicus are highly likely to co-occur.

  19. I just ran a thousand analyses: benefits of multiple testing in understanding equivocal evidence on gene-environment interactions.

    Directory of Open Access Journals (Sweden)

    Vera E Heininga

    Full Text Available In psychiatric genetics research, the volume of ambivalent findings on gene-environment interactions (G x E is growing at an accelerating pace. In response to the surging suspicions of systematic distortion, we challenge the notion of chance capitalization as a possible contributor. Beyond qualifying multiple testing as a mere methodological issue that, if uncorrected, leads to chance capitalization, we advance towards illustrating the potential benefits of multiple tests in understanding equivocal evidence in genetics literature.We focused on the interaction between the serotonin-transporter-linked promotor region (5-HTTLPR and childhood adversities with regard to depression. After testing 2160 interactions with all relevant measures available within the Dutch population study of adolescents TRAILS, we calculated percentages of significant (p < .05 effects for several subsets of regressions. Using chance capitalization (i.e. overall significance rate of 5% alpha and randomly distributed findings as a competing hypothesis, we expected more significant effects in the subsets of regressions involving: 1 interview-based instead of questionnaire-based measures; 2 abuse instead of milder childhood adversities; and 3 early instead of later adversities. Furthermore, we expected equal significance percentages across 4 male and female subsamples, and 5 various genotypic models of 5-HTTLPR.We found differences in the percentages of significant interactions among the subsets of analyses, including those regarding sex-specific subsamples and genetic modeling, but often in unexpected directions. Overall, the percentage of significant interactions was 7.9% which is only slightly above the 5% that might be expected based on chance.Taken together, multiple testing provides a novel approach to better understand equivocal evidence on G x E, showing that methodological differences across studies are a likely reason for heterogeneity in findings - but chance

  20. Understanding cellulose dissolution: energetics of interactions of ionic liquids and cellobiose revealed by solution microcalorimetry.

    Science.gov (United States)

    de Oliveira, Heitor Fernando Nunes; Rinaldi, Roberto

    2015-05-11

    In this report, the interactions between fifteen selected ionic liquids (ILs) and cellobiose (CB) are examined by high-precision solution microcalorimetry. The heat of mixing (Δmix H) of CB and ILs, or CB and IL/molecular solvent (MS) solutions, provides the first ever-published measure of the affinity of CB with ILs. Most importantly, we found that there is a very good correlation between the nature of the results found for Δmix H(CB) and the solubility behavior of cellulose. This correlation suggests that Δmix H(CB) offers a good estimate of the enthalpy of dissolution of cellulose even in solvents in which cellulose is insoluble. Therefore, the current findings open up new horizons for unravelling the intricacies of the thermodynamic factors accounting for the spontaneity of cellulose dissolution in ILs or IL/MS solutions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The repository ecology an approach to understanding repository and service interactions

    CERN Document Server

    CERN. Geneva; Hagemann, Melissa

    2007-01-01

    An increasing number of university institutions and other organisations are deciding to deploy repositories and a growing number of formal and informal distributed services are supporting or capitalising on the information these repositories provide. Despite reasonably well understood technical architectures, early majority adopters may struggle to articulate their place within the actualities of a wider information environment. The idea of a repository ecology provides developers and administrators with a useful way of articulating and analysing their place in the information environment, and the technical and organisational interactions they have, or are developing, with other parts of such an environment. This presentation will provide an overview of the concept of a repository ecology and examine some examples from the domains of scholarly communications and elearning.

  2. Interactive Whiteboard Integration in Classrooms: Active Teachers Understanding about Their Training Process

    Science.gov (United States)

    Pujol, Meritxell Cortada; Quintana, Maria Graciela Badilla; Romaní, Jordi Riera

    With the incorporation in education of Information and Communication Technologies (ICT), especially the Interactive Whiteboard (IWB), emerges the need for a proper teacher training process due to adequate the integration and the didactic use of this tool in the classroom. This article discusses the teachers' perception on the training process for ICT integration. Its main aim is to contribute to the unification of minimum criteria for effective ICT implementation in any training process for active teachers. This case study begins from the development of a training model called Eduticom which was putted into practice in 4 schools in Catalonia, Spain. Findings indicated different teachers' needs such as an appropriate infrastructure, a proper management and a flexible training model which essentially addresses methodological and didactic aspects of IWB uses in the classroom.

  3. The repository ecology: an approach to understanding repository and service interactions

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    An increasing number of university institutions and other organisations are deciding to deploy repositories and a growing number of formal and informal distributed services are supporting or capitalising on the information these repositories provide. Despite reasonably well understood technical architectures, early majority adopters may struggle to articulate their place within the actualities of a wider information environment. The idea of a repository ecology provides developers and administrators with a useful way of articulating and analysing their place in the information environment, and the technical and organisational interactions they have, or are developing, with other parts of such an environment. This presentation will provide an overview of the concept of a repository ecology and examine some examples from the domains of scholarly communications and elearning. View John Robertson's biography

  4. Caught in the Same Net? Small-Scale Fishermen's Perceptions of Fisheries Interactions with Sea Turtles and Other Protected Species

    Directory of Open Access Journals (Sweden)

    Aliki Panagopoulou

    2017-06-01

    Full Text Available Small-scale fisheries are responsible for high numbers of animals caught as bycatch, such as turtles, cetaceans, and seals. Bycatch and its associated mortality is a major conservation challenge for these species and is considered undesirable by fishermen. To gain insights on the impact of bycatch on small-scale fishermen and put it in context with other financial and environmental challenges they face, we conducted questionnaire-based interviews on fishermen working on Crete, Greece. We investigated fishermen's perceptions of sea turtle and other protected species interactions, and the impacts of such interactions on their profession and livelihoods. Our results indicate a connection between declining fish stocks, related increased fishing effort, and reported increased frequency of interactions between fishermen and sea turtles. Respondents believed that their livelihoods were endangered by industrial fishing and environmental problems, but thought that combined interactions with turtles and other marine megafauna species were a larger problem. Responses suggested that extending compensation to fishermen may be a good conservation intervention. Small-scale fishermen hold a wealth of knowledge about the marine environment and its resources. This may be of help to researchers and policy makers as it could be used to achieve a better managed, sustainable fishery. Including small-scale fishermen in the process of developing regulations will both enhance those regulations and increase compliance with them.

  5. Myrteae phylogeny, calibration, biogeography and diversification patterns: Increased understanding in the most species rich tribe of Myrtaceae.

    Science.gov (United States)

    Vasconcelos, Thais N C; Proença, Carol E B; Ahmad, Berhaman; Aguilar, Daniel S; Aguilar, Reinaldo; Amorim, Bruno S; Campbell, Keron; Costa, Itayguara R; De-Carvalho, Plauto S; Faria, Jair E Q; Giaretta, Augusto; Kooij, Pepijn W; Lima, Duane F; Mazine, Fiorella F; Peguero, Brigido; Prenner, Gerhard; Santos, Matheus F; Soewarto, Julia; Wingler, Astrid; Lucas, Eve J

    2017-04-01

    Myrteae (c. 2500 species; 51 genera) is the largest tribe of Myrtaceae and an ecologically important groups of angiosperms in the Neotropics. Systematic relationships in Myrteae are complex, hindering conservation initiatives and jeopardizing evolutionary modelling. A well-supported and robust phylogenetic hypothesis was here targeted towards a comprehensive understanding of the relationships within the tribe. The resultant topology was used as a base for key evolutionary analyses such as age estimation, historical biogeography and diversification rate patterns. One nuclear (ITS) and seven chloroplast (psbA-trnH, matK, ndhF, trnl-trnF, trnQ-rps16, rpl16 and rpl32-trnL) DNA regions for 115 taxa representing 46 out of the 51 genera in the tribe were accessed and analysed using maximum likelihood and Bayesian inference tools for phylogenetic reconstruction. Dates of diversification events were estimated and contrasted using two distinct fossil sets (macro and pollen) in BEAST. The subsequent dated phylogenies were compared and analysed for biogeographical patterns using BioGeoBEARS and diversification rates using BAMM. Myrteae phylogeny presents strong statistical support for three major clades within the tribe: Australasian group, Myrtus group and Main Neotropical Lineage. Dating results from calibration using macrofossil are an average of 20 million years older and show an early Paleocene origin of Myrteae, against a mid-Eocene one from the pollen fossil calibration. Biogeographic analysis shows the origin of Myrteae in Zealandia in both calibration approaches, followed by a widespread distribution throughout the still-linked Gondwana continents and diversification of Neotropical endemic lineages by later vicariance. Best configuration shift indicates three points of acceleration in diversification rates, all of them occurring in the Main Neotropical Lineage. Based on the reconstructed topology, several new taxonomic placements were recovered, including: the

  6. Insights on plant interaction between dominating species from patterns of plant association

    DEFF Research Database (Denmark)

    Damgaard, Christian; Ehlers, Bodil K.; Ransijn, Johannes C.G.

    2018-01-01

    Abstract It has been suggested that in order to infer ecological processes from observed patterns of species abundance we need to investigate the covariance in species abundance. Consequently, an expression for the expected covariance of pin-point cover measurements of two speciesisdeveloped.By c...

  7. Understanding the structural drivers governing glass-water interactions in borosilicate based model bioactive glasses.

    Science.gov (United States)

    Stone-Weiss, Nicholas; Pierce, Eric M; Youngman, Randall E; Gulbiten, Ozgur; Smith, Nicholas J; Du, Jincheng; Goel, Ashutosh

    2018-01-01

    The past decade has witnessed a significant upsurge in the development of borate and borosilicate based resorbable bioactive glasses owing to their faster degradation rate in comparison to their silicate counterparts. However, due to our lack of understanding about the fundamental science governing the aqueous corrosion of these glasses, most of the borate/borosilicate based bioactive glasses reported in the literature have been designed by "trial-and-error" approach. With an ever-increasing demand for their application in treating a broad spectrum of non-skeletal health problems, it is becoming increasingly difficult to design advanced glass formulations using the same conventional approach. Therefore, a paradigm shift from the "trial-and-error" approach to "materials-by-design" approach is required to develop new-generations of bioactive glasses with controlled release of functional ions tailored for specific patients and disease states, whereby material functions and properties can be predicted from first principles. Realizing this goal, however, requires a thorough understanding of the complex sequence of reactions that control the dissolution kinetics of bioactive glasses and the structural drivers that govern them. While there is a considerable amount of literature published on chemical dissolution behavior and apatite-forming ability of potentially bioactive glasses, the majority of this literature has been produced on silicate glass chemistries using different experimental and measurement protocols. It follows that inter-comparison of different datasets reveals inconsistencies between experimental groups. There are also some major experimental challenges or choices that need to be carefully navigated to unearth the mechanisms governing the chemical degradation behavior and kinetics of boron-containing bioactive glasses, and to accurately determine the composition-structure-property relationships. In order to address these challenges, a simplified

  8. Understanding of the Interaction between Clearance Leakage Flow and Main Passage Flow in a VGT Turbine

    Directory of Open Access Journals (Sweden)

    Ben Zhao

    2015-02-01

    Full Text Available The clearance flow between the nozzle and endwall in a variable geometry turbine (VGT has been numerically investigated to understand the clearance effect on the VGT performance and internal flow. It was found that the flow rate through turbine increases but the turbine efficiency decreases with height of clearance. Detailed flow field analyses indicated that most of the efficiency loss resulting from the leakage flow occurs at the upstream of the rotor area, that is, in the nozzle endwall clearance and between the nozzle vanes. There are two main mechanisms associated with this efficiency loss. One is due to the formation of the local vortex flow structure between the clearance flow and the main flow. The other is due to the impact of the clearance flow on the main flow after the nozzle throat. This impact reduces the span of shockwave with increased shockwave magnitude by changing the trajectory of the main flow.

  9. Transdisciplinary science: a path to understanding the interactions among ocean acidification, ecosystems, and society

    Science.gov (United States)

    Yates, Kimberly K.; Turley, Carol; Hopkinson, Brian M.; Todgham, Anne E.; Cross, Jessica N.; Greening, Holly; Williamson, Phillip; Van Hooidonk, Ruben; Deheyn, Dimitri D.; Johnson, Zachary

    2015-01-01

    The global nature of ocean acidification (OA) transcends habitats, ecosystems, regions, and science disciplines. The scientific community recognizes that the biggest challenge in improving understanding of how changing OA conditions affect ecosystems, and associated consequences for human society, requires integration of experimental, observational, and modeling approaches from many disciplines over a wide range of temporal and spatial scales. Such transdisciplinary science is the next step in providing relevant, meaningful results and optimal guidance to policymakers and coastal managers. We discuss the challenges associated with integrating ocean acidification science across funding agencies, institutions, disciplines, topical areas, and regions, and the value of unifying science objectives and activities to deliver insights into local, regional, and global scale impacts. We identify guiding principles and strategies for developing transdisciplinary research in the ocean acidification science community.

  10. Health Care Professionals' Understandings of Cross-Cultural Interaction in End-of-Life Care: A Focus Group Study.

    Science.gov (United States)

    Milberg, Anna; Torres, Sandra; Ågård, Pernilla

    2016-01-01

    The academic debate on cross-cultural interaction within the context of end-of-life care takes for granted that this interaction is challenging. However, few empirical studies have actually focused on what health care professionals think about this interaction. This study aimed to explore health care professionals' understandings of cross-cultural interaction during end-of-life care. Sixty end-of-life care professionals were recruited from eleven care units in Sweden to take part in focus group interviews. These interviews were analyzed using qualitative content analysis. The health care professionals interviewed talked about cross-cultural interaction in end-of-life care as interaction that brings about uncertainty, stress and frustration even though they had limited experience of this type of interaction. The focus group discussions brought attention to four specific challenges that they expected to meet when they care for patients with migrant backgrounds since they took for granted that they would have an ethno-cultural background that is different to their own. These challenges had to do with communication barriers, 'unusual' emotional and pain expressions, the expectation that these patients' families would be 'different' and the anticipation that these patients and their families lack knowledge. At the core of the challenges in question is the idea that cross-cultural interaction means meeting "the unknown". In addition, the end-of-life care professionals interviewed talked about patients whose backgrounds they did not share in homogenizing terms. It is against this backdrop that they worried about their ability to provide end-of-life care that is individualized enough to meet the needs of these patients. The study suggests that end-of-life care professionals who regard cross-cultural interaction in this manner could face actual challenges when caring for patients whose backgrounds they regard as "the unknown" since they anticipate a variety of challenges

  11. Health Care Professionals’ Understandings of Cross-Cultural Interaction in End-of-Life Care: A Focus Group Study

    Science.gov (United States)

    Torres, Sandra; Ågård, Pernilla

    2016-01-01

    Objective The academic debate on cross-cultural interaction within the context of end-of-life care takes for granted that this interaction is challenging. However, few empirical studies have actually focused on what health care professionals think about this interaction. This study aimed to explore health care professionals’ understandings of cross-cultural interaction during end-of-life care. Methods Sixty end-of-life care professionals were recruited from eleven care units in Sweden to take part in focus group interviews. These interviews were analyzed using qualitative content analysis. Results The health care professionals interviewed talked about cross-cultural interaction in end-of-life care as interaction that brings about uncertainty, stress and frustration even though they had limited experience of this type of interaction. The focus group discussions brought attention to four specific challenges that they expected to meet when they care for patients with migrant backgrounds since they took for granted that they would have an ethno-cultural background that is different to their own. These challenges had to do with communication barriers, ‘unusual’ emotional and pain expressions, the expectation that these patients’ families would be ‘different’ and the anticipation that these patients and their families lack knowledge. At the core of the challenges in question is the idea that cross-cultural interaction means meeting “the unknown”. In addition, the end-of-life care professionals interviewed talked about patients whose backgrounds they did not share in homogenizing terms. It is against this backdrop that they worried about their ability to provide end-of-life care that is individualized enough to meet the needs of these patients. Conclusions The study suggests that end-of-life care professionals who regard cross-cultural interaction in this manner could face actual challenges when caring for patients whose backgrounds they regard as

  12. Health Care Professionals' Understandings of Cross-Cultural Interaction in End-of-Life Care: A Focus Group Study.

    Directory of Open Access Journals (Sweden)

    Anna Milberg

    Full Text Available The academic debate on cross-cultural interaction within the context of end-of-life care takes for granted that this interaction is challenging. However, few empirical studies have actually focused on what health care professionals think about this interaction. This study aimed to explore health care professionals' understandings of cross-cultural interaction during end-of-life care.Sixty end-of-life care professionals were recruited from eleven care units in Sweden to take part in focus group interviews. These interviews were analyzed using qualitative content analysis.The health care professionals interviewed talked about cross-cultural interaction in end-of-life care as interaction that brings about uncertainty, stress and frustration even though they had limited experience of this type of interaction. The focus group discussions brought attention to four specific challenges that they expected to meet when they care for patients with migrant backgrounds since they took for granted that they would have an ethno-cultural background that is different to their own. These challenges had to do with communication barriers, 'unusual' emotional and pain expressions, the expectation that these patients' families would be 'different' and the anticipation that these patients and their families lack knowledge. At the core of the challenges in question is the idea that cross-cultural interaction means meeting "the unknown". In addition, the end-of-life care professionals interviewed talked about patients whose backgrounds they did not share in homogenizing terms. It is against this backdrop that they worried about their ability to provide end-of-life care that is individualized enough to meet the needs of these patients.The study suggests that end-of-life care professionals who regard cross-cultural interaction in this manner could face actual challenges when caring for patients whose backgrounds they regard as "the unknown" since they anticipate a variety

  13. Sticking to cellulose: exploiting Arabidopsis seed coat mucilage to understand cellulose biosynthesis and cell wall polysaccharide interactions.

    Science.gov (United States)

    Griffiths, Jonathan S; North, Helen M

    2017-05-01

    The cell wall defines the shape of cells and ultimately plant architecture. It provides mechanical resistance to osmotic pressure while still being malleable and allowing cells to grow and divide. These properties are determined by the different components of the wall and the interactions between them. The major components of the cell wall are the polysaccharides cellulose, hemicellulose and pectin. Cellulose biosynthesis has been extensively studied in Arabidopsis hypocotyls, and more recently in the mucilage-producing epidermal cells of the seed coat. The latter has emerged as an excellent system to study cellulose biosynthesis and the interactions between cellulose and other cell wall polymers. Here we review some of the major advances in our understanding of cellulose biosynthesis in the seed coat, and how mucilage has aided our understanding of the interactions between cellulose and other cell wall components required for wall cohesion. Recently, 10 genes involved in cellulose or hemicellulose biosynthesis in mucilage have been identified. These discoveries have helped to demonstrate that xylan side-chains on rhamnogalacturonan I act to link this pectin directly to cellulose. We also examine other factors that, either directly or indirectly, influence cellulose organization or crystallization in mucilage. © 2017 INRA. New Phytologist © 2017 New Phytologist Trust.

  14. Understanding morphological variability in a taxonomic context in Chilean diplomystids (Teleostei: Siluriformes, including the description of a new species

    Directory of Open Access Journals (Sweden)

    Gloria Arratia

    2017-02-01

    Full Text Available Following study of the external morphology and its unmatched variability throughout ontogeny and a re-examination of selected morphological characters based on many specimens of diplomystids from Central and South Chile, we revised and emended previous specific diagnoses and consider Diplomystes chilensis, D. nahuelbutaensis, D. camposensis, and Olivaichthys viedmensis (Baker River to be valid species. Another group, previously identified as Diplomystes sp., D. spec., D. aff. chilensis, and D. cf. chilensis inhabiting rivers between Rapel and Itata Basins is given a new specific name (Diplomystes incognitus and is diagnosed. An identification key to the Chilean species, including the new species, is presented. All specific diagnoses are based on external morphological characters, such as aspects of the skin, neuromast lines, and main lateral line, and position of the anus and urogenital pore, as well as certain osteological characters to facilitate the identification of these species that previously was based on many internal characters. Diplomystids below 150 mm standard length (SL share a similar external morphology and body proportions that make identification difficult; however, specimens over 150 mm SL can be diagnosed by the position of the urogenital pore and anus, and a combination of external and internal morphological characters. According to current knowledge, diplomystid species have an allopatric distribution with each species apparently endemic to particular basins in continental Chile and one species (O. viedmensis known only from one river in the Chilean Patagonia, but distributed extensively in southern Argentina.

  15. Landscape-scale evaluation of asymmetric interactions between Brown Trout and Brook Trout using two-species occupancy models

    Science.gov (United States)

    Wagner, Tyler; Jefferson T. Deweber,; Jason Detar,; John A. Sweka,

    2013-01-01

    Predicting the distribution of native stream fishes is fundamental to the management and conservation of many species. Modeling species distributions often consists of quantifying relationships between species occurrence and abundance data at known locations with environmental data at those locations. However, it is well documented that native stream fish distributions can be altered as a result of asymmetric interactions between dominant exotic and subordinate native species. For example, the naturalized exotic Brown Trout Salmo trutta has been identified as a threat to native Brook Trout Salvelinus fontinalis in the eastern United States. To evaluate large-scale patterns of co-occurrence and to quantify the potential effects of Brown Trout presence on Brook Trout occupancy, we used data from 624 stream sites to fit two-species occupancy models. These models assumed that asymmetric interactions occurred between the two species. In addition, we examined natural and anthropogenic landscape characteristics we hypothesized would be important predictors of occurrence of both species. Estimated occupancy for Brook Trout, from a co-occurrence model with no landscape covariates, at sites with Brown Trout present was substantially lower than sites where Brown Trout were absent. We also observed opposing patterns for Brook and Brown Trout occurrence in relation to percentage forest, impervious surface, and agriculture within the network catchment. Our results are consistent with other studies and suggest that alterations to the landscape, and specifically the transition from a forested catchment to one that contains impervious surface or agriculture, reduces the occurrence probability of wild Brook Trout. Our results, however, also suggest that the presence of Brown Trout results in lower occurrence probability of Brook Trout over a range of anthropogenic landscape characteristics, compared with streams where Brown Trout were absent.

  16. Establishment and metabolic analysis of a model microbial community for understanding trophic and electron accepting interactions of subsurface anaerobic environments

    Directory of Open Access Journals (Sweden)

    Yang Zamin K

    2010-05-01

    Full Text Available Abstract Background Communities of microorganisms control the rates of key biogeochemical cycles, and are important for biotechnology, bioremediation, and industrial microbiological processes. For this reason, we constructed a model microbial community comprised of three species dependent on trophic interactions. The three species microbial community was comprised of Clostridium cellulolyticum, Desulfovibrio vulgaris Hildenborough, and Geobacter sulfurreducens and was grown under continuous culture conditions. Cellobiose served as the carbon and energy source for C. cellulolyticum, whereas D. vulgaris and G. sulfurreducens derived carbon and energy from the metabolic products of cellobiose fermentation and were provided with sulfate and fumarate respectively as electron acceptors. Results qPCR monitoring of the culture revealed C. cellulolyticum to be dominant as expected and confirmed the presence of D. vulgaris and G. sulfurreducens. Proposed metabolic modeling of carbon and electron flow of the three-species community indicated that the growth of C. cellulolyticum and D. vulgaris were electron donor limited whereas G. sulfurreducens was electron acceptor limited. Conclusions The results demonstrate that C. cellulolyticum, D. vulgaris, and G. sulfurreducens can be grown in coculture in a continuous culture system in which D. vulgaris and G. sulfurreducens are dependent upon the metabolic byproducts of C. cellulolyticum for nutrients. This represents a step towards developing a tractable model ecosystem comprised of members representing the functional groups of a trophic network.

  17. Teachers' Beliefs about the Role of Interaction in Teaching Newtonian Mechanics and Its Influence on Students' Conceptual Understanding of Newton's Third Law

    Science.gov (United States)

    Jauhiainen, Johanna; Koponen, Ismo T.; Lavonen, Jari

    2006-01-01

    Students' conceptual understanding of Newton's third law has been the subject of numerous studies. These studies have often pointed out the importance of addressing the concept of interaction in teaching Newtonian mechanics. In this study, teachers were interviewed in order to examine how they understand interaction and use it in their…

  18. Enactive cinema paves way towards understanding complex real-time social interaction in neuroimaging experiments

    Directory of Open Access Journals (Sweden)

    Pia eTikka

    2012-11-01

    Full Text Available We outline general theoretical and practical implications of what we promote as enactive cinema for the neuroscientific study of online socio-emotional interaction. In a real-time functional magnetic resonance imaging (rt-fMRI setting, participants are immersed in cinematic experiences that simulate social situations. While viewing, their physiological reactions - including brain responses - are tracked, representing implicit and unconscious experiences of the on-going social situations. These reactions, in turn, are analysed in real-time and fed back to modify the cinematic sequences they are viewing while being scanned. Due to the engaging cinematic content, the proposed setting focuses on living-by in terms of shared psycho-physiological epiphenomena of experience rather than active coping in terms of goal-oriented motor actions. It constitutes a means to parametrically modify stimuli that depict social situations and their broader environmental contexts. As an alternative to studying the variation of brain responses as a function of a priori fixed stimuli, this method can be applied to survey the range of stimuli that evoke similar responses across participants at particular brain regions of interest.

  19. Enactive cinema paves way for understanding complex real-time social interaction in neuroimaging experiments.

    Science.gov (United States)

    Tikka, Pia; Väljamäe, Aleksander; de Borst, Aline W; Pugliese, Roberto; Ravaja, Niklas; Kaipainen, Mauri; Takala, Tapio

    2012-01-01

    We outline general theoretical and practical implications of what we promote as enactive cinema for the neuroscientific study of online socio-emotional interaction. In a real-time functional magnetic resonance imaging (rt-fMRI) setting, participants are immersed in cinematic experiences that simulate social situations. While viewing, their physiological reactions-including brain responses-are tracked, representing implicit and unconscious experiences of the on-going social situations. These reactions, in turn, are analyzed in real-time and fed back to modify the cinematic sequences they are viewing while being scanned. Due to the engaging cinematic content, the proposed setting focuses on living-by in terms of shared psycho-physiological epiphenomena of experience rather than active coping in terms of goal-oriented motor actions. It constitutes a means to parametrically modify stimuli that depict social situations and their broader environmental contexts. As an alternative to studying the variation of brain responses as a function of a priori fixed stimuli, this method can be applied to survey the range of stimuli that evoke similar responses across participants at particular brain regions of interest.

  20. Understanding trophic interactions of Orius spp. (Hemiptera: Anthocoridae) in lettuce crops by molecular methods.

    Science.gov (United States)

    Gomez-Polo, Priscila; Alomar, Oscar; Castañé, Cristina; Aznar-Fernández, Thaïs; Lundgren, Jonathan G; Piñol, Josep; Agustí, Nuria

    2016-02-01

    The aphid Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae) and the thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) are common pests in Mediterranean lettuce crops, where Orius spp. are common generalist predators. Predation by Orius spp. was studied in a lettuce plot by conventional polymerase chain reaction (PCR) and real-time PCR analyses using specific primers of both main pests. Also, high-throughput sequencing was used to have a wider approach of the diet of these predators in natural field conditions. Molecular analyses indicated a higher predation on N. ribisnigri in spring and on F. occidentalis in summer. Predation on alternative prey, like Collembola, was also found in both seasons. Real-time PCR was more sensitive than conventional PCR in showing the target trophic links, whereas high-throughput sequencing revealed predation on other natural enemies - intraguild predation (IGP), showing other trophic interactions of Orius majusculus within the studied ecosystem. This study gives important information about the trophic relationships present in Mediterranean lettuce crops in different periods of the year. The detected predation by Orius spp. on alternative prey, as well as on other natural enemies, should be further investigated to clarify whether it adds or detracts to the biological control of N. ribisnigri and F. occidentalis. © 2015 Society of Chemical Industry.

  1. Understanding the Flow Physics of Shock Boundary-Layer Interactions Using CFD and Numerical Analyses

    Science.gov (United States)

    Friedlander, David J.

    2013-01-01

    Computational fluid dynamic (CFD) analyses of the University of Michigan (UM) Shock/Boundary-Layer Interaction (SBLI) experiments were performed as an extension of the CFD SBLI Workshop held at the 48th AIAA Aerospace Sciences Meeting in 2010. In particular, the UM Mach 2.75 Glass Tunnel with a semi-spanning 7.75deg wedge was analyzed in attempts to explore key physics pertinent to SBLI's, including thermodynamic and viscous boundary conditions as well as turbulence modeling. Most of the analyses were 3D CFD simulations using the OVERFLOW flow solver, with additional quasi-1D simulations performed with an in house MATLAB code interfacing with the NIST REFPROP code to explore perfect verses non-ideal air. A fundamental exploration pertaining to the effects of particle image velocimetry (PIV) on post-processing data is also shown. Results from the CFD simulations showed an improvement in agreement with experimental data with key contributions including adding a laminar zone upstream of the wedge and the necessity of mimicking PIV particle lag for comparisons. Results from the quasi-1D simulation showed that there was little difference between perfect and non-ideal air for the configuration presented.

  2. [Understanding social interaction in children with autism spectrum disorders: does whole-body motion mean anything to them?].

    Science.gov (United States)

    Centelles, L; Assaiante, C; Etchegoyhen, K; Bouvard, M; Schmitz, C

    2012-06-01

    Autism spectrum disorders (ASD) are characterized by difficulties in social interaction and verbal and non verbal reciprocal communication. Face and gaze direction, which participate in non verbal communication, are described as atypical in ASD. Also body movements carry multiple social cues. Under certain circumstances, for instance when seeing two persons from far, they constitute the only support that allows the grasping of a social content. Here, we investigated the contribution of whole-body motion processing in social understanding. The aim of the study was to evaluate whether children with ASD make use of information carried by body motion to categorize dynamic visual scenes that portrayed social interactions. In 1973, Johansson devised a technique for studying the perception of biological motion that minimizes static form information from the stimulus, but retains motion information. In these point-light displays, the movement figure, such as a body, is represented by a small number of illuminated dots positioned to highlight the motion of the body parts. We used Johansson's model to explore the ability of children with ASD to understand social interactions based on human movement analysis. Three-second silent point-light displays were created by videotaping two actors. The two actors were either interacting together or moving side by side without interacting. A large range of social interaction displays were used to cover social scenes depicting social norms (conventional gestures and courteous attitudes), emotional situations (carrying positive or negative valences) and scenes from games (sports, dance, etc.). Children were asked to carefully watch the stimuli and to classify them according to the question "Are the two persons communicating or not?". Four sessions of 3 minutes were performed by each child. Children with ASD were compared with typically developing control children matched with either non verbal mental age or chronological age. Response and

  3. Understanding the interaction between wild fire and vegetation distribution within the NCAR CESM framework

    Science.gov (United States)

    Seo, H.; Kim, Y.; Kim, H. J.

    2017-12-01

    Every year wild fire brings about 400Mha of land burned therefore 2Pg of carbon emissions from the surface occur. In this way fire not only affects the carbon circulation but also has an effect on the terrestrial ecosystems. This study aims to understand role of fire on the geographic vegetation distribution and the terrestrial carbon balances within the NCAR CESM framework, specifically with the CLM-BGC and CLM-BGC-DV. Global climate data from Climate Research Unit (CRU)-National Centers for Environmental Prediction (NCEP) data ranging from 1901 to 2010 are used to drive the land models. First, by comparing fire-on and fire-off simulations with the CLM-BGC-DV, the fire impacts in dynamic vegetation are quantified by the fractional land areas of the different plant functional types. In addition, we examine how changes in vegetation distribution affect the total sum of the burned areas and the carbon balances. This study would provide the limits of and suggestions for the fire and dynamic vegetation modules of the CLM-BGC. AcknowledgementsThis work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2015R1C1A2A01054800) and by the Korea Meteorological Administration R&D Program under Grant KMIPA 2015-6180. This work was also supported by the Yonsei University Future-leading Research Initiative of 2015(2016-22-0061).

  4. A Transforming Electricity System: Understanding the Interactions Between Clean Energy Technologies, Markets, and Policies

    Science.gov (United States)

    Mooney, David

    The U.S. electricity system is currently undergoing a dramatic transformation. State-level renewable portfolio standards, abundant natural gas at low prices, and rapidly falling prices for wind and solar technologies are among the factors that have ushered in this transformation. With objective, rigorous, technology-neutral analysis, NREL aims to increase the understanding of energy policies, markets, resources, technologies, and infrastructure and their connections with economic, environmental, and security priorities. The results of these analyses are meant to inform R&D, policy, and investment decisions as energy-efficient and renewable energy technologies advance from concept to commercial application to market penetration. This talk will provide an overview of how NREL uses high-fidelity data, deep knowledge of energy technology cost and performance, and advanced models and tools to provide the information needed to ensure this transformation occurs economically, while maintaining system reliability. Examples will be explored and will include analysis of tax credit impacts on wind and solar deployment and power sector emissions, as well as analysis of power systems operations in the Eastern Interconnection under 30% wind and solar penetration scenarios. Invited speaker number 47185.

  5. Frameworks for Understanding the Nature of Interactions, Networking, and Community in a Social Networking Site for Academic Practice

    Directory of Open Access Journals (Sweden)

    Grainne Conole

    2011-03-01

    Full Text Available This paper describes a new social networking site, Cloudworks, which has been developed to enable discussion and sharing of learning and teaching ideas/designs and to promote reflective academic practice. The site aims to foster new forms of social and participatory practices (peer critiquing, sharing, user-generated content, aggregation, and personalisation within an educational context. One of the key challenges in the development of the site has been to understand the user interactions and the changing patterns of user behaviour as it evolves. The paper explores the extent to which four frameworks that have been used in researching networked learning contexts can provide insights into the patterns of user behaviour that we see in Cloudworks. The paper considers this within the current debate about the new types of interactions, networking, and community being observed as users adapt to and appropriate new technologies.

  6. Narratives with Robots: The Impact of Interaction Context and Individual Differences on Story Recall and Emotional Understanding

    Directory of Open Access Journals (Sweden)

    Iolanda Leite

    2017-07-01

    Full Text Available Role-play scenarios have been considered a successful learning space for children to develop their social and emotional abilities. In this paper, we investigate whether socially assistive robots in role-playing settings are as effective with small groups of children as they are with a single child and whether individual factors such as gender, grade level (first vs. second, perception of the robots (peer vs. adult, and empathy level (low vs. high play a role in these two interaction contexts. We conducted a three-week repeated exposure experiment where 40 children interacted with socially assistive robotic characters that acted out interactive stories around words that contribute to expanding children’s emotional vocabulary. Our results showed that although participants who interacted alone with the robots recalled the stories better than participants in the group condition, no significant differences were found in children’s emotional interpretation of the narratives. With regard to individual differences, we found that a single child setting appeared more appropriate to first graders than a group setting, empathy level is an important predictor for emotional understanding of the narratives, and children’s performance varies depending on their perception of the robots (peer vs. adult in the two conditions.

  7. Interaction between G Protein-Coupled Receptor 143 and Tyrosinase: Implications for Understanding Ocular Albinism Type 1.

    Science.gov (United States)

    De Filippo, Elisabetta; Schiedel, Anke C; Manga, Prashiela

    2017-02-01

    Developmental eye defects in X-linked ocular albinism type 1 are caused by G-protein coupled receptor 143 (GPR143) mutations. Mutations result in dysfunctional melanosome biogenesis and macromelanosome formation in pigment cells, including melanocytes and retinal pigment epithelium. GPR143, primarily expressed in pigment cells, localizes exclusively to endolysosomal and melanosomal membranes unlike most G protein-coupled receptors, which localize to the plasma membrane. There is some debate regarding GPR143 function and elucidating the role of this receptor may be instrumental for understanding neurogenesis during eye development and for devising therapies for ocular albinism type I. Many G protein-coupled receptors require association with other proteins to function. These G protein-coupled receptor-interacting proteins also facilitate fine-tuning of receptor activity and tissue specificity. We therefore investigated potential GPR143 interaction partners, with a focus on the melanogenic enzyme tyrosinase. GPR143 coimmunoprecipitated with tyrosinase, while confocal microscopy demonstrated colocalization of the proteins. Furthermore, tyrosinase localized to the plasma membrane when coexpressed with a GPR143 trafficking mutant. The physical interaction between the proteins was confirmed using fluorescence resonance energy transfer. This interaction may be required in order for GPR143 to function as a monitor of melanosome maturation. Identifying tyrosinase as a potential GPR143 binding protein opens new avenues for investigating the mechanisms that regulate pigmentation and neurogenesis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Understanding aerosol-cloud interactions in the development of orographic cumulus congestus during IPHEx

    Science.gov (United States)

    Barros, A. P.; Duan, Y.

    2017-12-01

    A new cloud parcel model (CPM) including activation, condensation, collision-coalescence, and lateral entrainment processes is presented here to investigate aerosol-cloud interactions (ACI) in cumulus development prior to rainfall onset. The CPM was employed along with ground based radar and surface aerosol measurements to predict the vertical structure of cloud formation at early stages and evaluated against airborne observations of cloud microphysics and thermodynamic conditions during the Integrated Precipitation and Hydrology Experiment (IPHEx) over the Southern Appalachian Mountains. Further, the CPM was applied to explore the space of ACI physical parameters controlling cumulus congestus growth not available from measurements, and to examine how variations in aerosol properties and microphysical processes influence the evolution and thermodynamic state of clouds over complex terrain via sensitivity analysis. Modeling results indicate that simulated spectra with a low value of condensation coefficient (0.01) are in good agreement with IPHEx aircraft observations around the same altitude. This is in contrast with high values reported in previous studies assuming adiabatic conditions. Entrainment is shown to govern the vertical development of clouds and the change of droplet numbers with height, and the sensitivity analysis suggests that there is a trade-off between entrainment strength and condensation process. Simulated CDNC also exhibits high sensitivity to variations in initial aerosol concentration at cloud base, but weak sensitivity to aerosol hygroscopicity. Exploratory multiple-parcel simulations capture realistic time-scales of vertical development of cumulus congestus (deeper clouds and faster droplet growth). These findings provide new insights into determinant factors of mid-day cumulus congestus formation that can explain a large fraction of warm season rainfall in mountainous regions.

  9. An interactive modelling tool for understanding hydrological processes in lowland catchments

    Science.gov (United States)

    Brauer, Claudia; Torfs, Paul; Uijlenhoet, Remko

    2016-04-01

    Recently, we developed the Wageningen Lowland Runoff Simulator (WALRUS), a rainfall-runoff model for catchments with shallow groundwater (Brauer et al., 2014ab). WALRUS explicitly simulates processes which are important in lowland catchments, such as feedbacks between saturated and unsaturated zone and between groundwater and surface water. WALRUS has a simple model structure and few parameters with physical connotations. Some default functions (which can be changed easily for research purposes) are implemented to facilitate application by practitioners and students. The effect of water management on hydrological variables can be simulated explicitly. The model description and applications are published in open access journals (Brauer et al, 2014). The open source code (provided as R package) and manual can be downloaded freely (www.github.com/ClaudiaBrauer/WALRUS). We organised a short course for Dutch water managers and consultants to become acquainted with WALRUS. We are now adapting this course as a stand-alone tutorial suitable for a varied, international audience. In addition, simple models can aid teachers to explain hydrological principles effectively. We used WALRUS to generate examples for simple interactive tools, which we will present at the EGU General Assembly. C.C. Brauer, A.J. Teuling, P.J.J.F. Torfs, R. Uijlenhoet (2014a): The Wageningen Lowland Runoff Simulator (WALRUS): a lumped rainfall-runoff model for catchments with shallow groundwater, Geosci. Model Dev., 7, 2313-2332. C.C. Brauer, P.J.J.F. Torfs, A.J. Teuling, R. Uijlenhoet (2014b): The Wageningen Lowland Runoff Simulator (WALRUS): application to the Hupsel Brook catchment and Cabauw polder, Hydrol. Earth Syst. Sci., 18, 4007-4028.

  10. Ontogenesis of muscle and adipose tissues and their interactions in ruminants and other species.

    Science.gov (United States)

    Bonnet, M; Cassar-Malek, I; Chilliard, Y; Picard, B

    2010-07-01

    The lean-to-fat ratio, that is, the relative masses of muscle and adipose tissue, is a criterion for the yield and quality of bovine carcasses and meat. This review describes the interactions between muscle and adipose tissue (AT) that may regulate the dynamic balance between the number and size of muscle v. adipose cells. Muscle and adipose tissue in cattle grow by an increase in the number of cells (hyperplasia), mainly during foetal life. The total number of muscle fibres is set by the end of the second trimester of gestation. By contrast, the number of adipocytes is never set. Number of adipocytes increases mainly before birth until 1 year of age, depending on the anatomical location of the adipose tissue. Hyperplasia concerns brown pre-adipocytes during foetal life and white pre-adipocytes from a few weeks after birth. A decrease in the number of secondary myofibres and an increase in adiposity in lambs born from mothers severely underfed during early pregnancy suggest a balance in the commitment of a common progenitor into the myogenic or adipogenic lineages, or a reciprocal regulation of the commitment of two distinct progenitors. The developmental origin of white adipocytes is a subject of debate. Molecular and histological data suggested a possible transdifferentiation of brown into white adipocytes, but this hypothesis has now been challenged by the characterization of distinct precursor cells for brown and white adipocytes in mice. Increased nutrient storage in fully differentiated muscle fibres and adipocytes, resulting in cell enlargement (hypertrophy), is thought to be the main mechanism, whereby muscle and fat masses increase in growing cattle. Competition or prioritization between adipose and muscle cells for the uptake and metabolism of nutrients is suggested, besides the successive waves of growth of muscle v. adipose tissue, by the inhibited or delayed adipose tissue growth in bovine genotypes exhibiting strong muscular development. This

  11. Early establishment of trees at the alpine treeline: idiosyncratic species responses to temperature-moisture interactions.

    Science.gov (United States)

    Loranger, Hannah; Zotz, Gerhard; Bader, Maaike Y

    2016-01-01

    On a global scale, temperature is the main determinant of arctic and alpine treeline position. However on a local scale, treeline form and position vary considerably due to other climatic factors, tree species ecology and life-stage-dependent responses. For treelines to advance poleward or uphill, the first steps are germination and seedling establishment. These earliest life stages may be major bottlenecks for treeline tree populations and will depend differently on climatic conditions than adult trees. We investigated the effect of soil temperature and moisture on germination and early seedling survival in a field experiment in the French Alps near the local treeline (2100 m a.s.l.) using passive temperature manipulations and two watering regimes. Five European treeline tree species were studied: Larix decidua, Picea abies, Pinus cembra, Pinus uncinata and Sorbus aucuparia In addition, we monitored the germination response of three of these species to low temperatures under controlled conditions in growth chambers. The early establishment of these trees at the alpine treeline was limited either by temperature or by moisture, the sensitivity to one factor often depending on the intensity of the other. The results showed that the relative importance of the two factors and the direction of the effects are highly species-specific, while both factors tend to have consistent effects on both germination and early seedling survival within each species. We show that temperature and water availability are both important contributors to establishment patterns of treeline trees and hence to species-specific forms and positions of alpine treelines. The observed idiosyncratic species responses highlight the need for studies including several species and life-stages to create predictive power concerning future treeline dynamics. © The Authors 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.

  12. Chasing Ecological Interactions.

    Science.gov (United States)

    Jordano, Pedro

    2016-09-01

    Basic research on biodiversity has concentrated on individual species-naming new species, studying distribution patterns, and analyzing their evolutionary relationships. Yet biodiversity is more than a collection of individual species; it is the combination of biological entities and processes that support life on Earth. To understand biodiversity we must catalog it, but we must also assess the ways species interact with other species to provide functional support for the Tree of Life. Ecological interactions may be lost well before the species involved in those interactions go extinct; their ecological functions disappear even though they remain. Here, I address the challenges in studying the functional aspects of species interactions and how basic research is helping us address the fast-paced extinction of species due to human activities.

  13. Reproductive interference and fecundity affect competitive interactions of sibling species with low mating barriers: experimental and theoretical evidence.

    Science.gov (United States)

    Gebiola, M; Kelly, S E; Velten, L; Zug, R; Hammerstein, P; Giorgini, M; Hunter, M S

    2017-12-01

    When allopatric species with incomplete prezygotic isolation come into secondary contact, the outcome of their interaction is not easily predicted. The parasitoid wasp Encarsia suzannae (iES), infected by Cardinium inducing cytoplasmic incompatibility (CI), and its sibling species E. gennaroi (EG), not infected by bacterial endosymbionts, may have diverged because of the complementary action of CI and asymmetric hybrid incompatibilities. Whereas postzygotic isolation is now complete because of sterility of F1 hybrid progeny, prezygotic isolation is still incipient. We set up laboratory population cage experiments to evaluate the outcome of the interaction between ES and EG in two pairwise combinations: iES vs EG and cured ES (cES, where Cardinium was removed with antibiotics) vs EG. We also built a theoretical model aimed at exploring the role of life-history differences and asymmetric mating on competitive outcomes. In three of four cages in each treatment, ES dominated the interaction. We found evidence for reproductive interference, driven by asymmetric mating preferences, that gave a competitive edge to ES, the species that better discriminated against heterospecifics. However, we did not find the fecundity cost previously shown to be associated with Cardinium infection in iES. The model largely supported the experimental results. The finding of only a slight competitive edge of ES over EG in population cages suggests that in a more heterogeneous environment the species could coexist. This is supported by evidence that the two species coexist in sympatry, where preliminary data suggest reproductive character displacement may have reinforced postzygotic isolation.

  14. Power-Law Kinetics and Determinant Criteria for the Preclusion of Multistationarity in Networks of Interacting Species

    DEFF Research Database (Denmark)

    Wiuf, Carsten Henrik; Feliu, Elisenda

    2013-01-01

    is derived from the determinant of the Jacobian of the species formation rate function. Using this characterization, we further derive similar determinant criteria applicable to general sets of kinetics. The criteria are conceptually simple, computationally tractable, and easily implemented. Our approach...... embraces and extends previous work on multistationarity, such as work in relation to chemical reaction networks with dynamics defined by mass-action or noncatalytic kinetics, and also work based on graphical analysis of the interaction graph associated with the system. Further, we interpret the criteria...... and how the species influence each reaction. We characterize families of so-called power-law kinetics for which the associated species formation rate function is injective within each stoichiometric class and thus the network cannot exhibit multistationarity. The criterion for power-law kinetics...

  15. Furthering our Understanding of Land Surface Interactions using SVAT modelling: Results from SimSphere's Validation

    Science.gov (United States)

    North, Matt; Petropoulos, George; Ireland, Gareth; Rendal, Daisy; Carlson, Toby

    2015-04-01

    With current predicted climate change, there is an increased requirement to gain knowledge on the terrestrial biosphere, for numerous agricultural, hydrological and meteorological applications. To this end, Soil Vegetation Atmospheric Transfer (SVAT) models are quickly becoming the preferred scientific tool to monitor, at fine temporal and spatial resolutions, detailed information on numerous parameters associated with Earth system interactions. Validation of any model is critical to assess its accuracy, generality and realism to distinctive ecosystems and subsequently acts as important step before its operational distribution. In this study, the SimSphere SVAT model has been validated to fifteen different sites of the FLUXNET network, where model performance was statistically evaluated by directly comparing the model predictions vs in situ data, for cloud free days with a high energy balance closure. Specific focus is given to the models ability to simulate parameters associated with the energy balance, namely Shortwave Incoming Solar Radiation (Rg), Net Radiation (Rnet), Latent Heat (LE), Sensible Heat (H), Air Temperature at 1.3m (Tair 1.3m) and Air temperature at 50m (Tair 50m). Comparisons were performed for a number distinctive ecosystem types and for 150 days in total using in-situ data from ground observational networks acquired from the year 2011 alone. Evaluation of the models' coherence to reality was evaluated on the basis of a series of statistical parameters including RMSD, R2, Scatter, Bias, MAE , NASH index, Slope and Intercept. Results showed good to very good agreement between predicted and observed datasets, particularly so for LE, H, Tair 1.3m and Tair 50m where mean error distribution values indicated excellent model performance. Due to the systematic underestimation, poorer simulation accuracies were exhibited for Rg and Rnet, yet all values reported are still analogous to other validatory studies of its kind. In overall, the model

  16. M-GCAT: interactively and efficiently constructing large-scale multiple genome comparison frameworks in closely related species

    Directory of Open Access Journals (Sweden)

    Messeguer Xavier

    2006-10-01

    Full Text Available Abstract Background Due to recent advances in whole genome shotgun sequencing and assembly technologies, the financial cost of decoding an organism's DNA has been drastically reduced, resulting in a recent explosion of genomic sequencing projects. This increase in related genomic data will allow for in depth studies of evolution in closely related species through multiple whole genome comparisons. Results To facilitate such comparisons, we present an interactive multiple genome comparison and alignment tool, M-GCAT, that can efficiently construct multiple genome comparison frameworks in closely related species. M-GCAT is able to compare and identify highly conserved regions in up to 20 closely related bacterial species in minutes on a standard computer, and as many as 90 (containing 75 cloned genomes from a set of 15 published enterobacterial genomes in an hour. M-GCAT also incorporates a novel comparative genomics data visualization interface allowing the user to globally and locally examine and inspect the conserved regions and gene annotations. Conclusion M-GCAT is an interactive comparative genomics tool well suited for quickly generating multiple genome comparisons frameworks and alignments among closely related species. M-GCAT is freely available for download for academic and non-commercial use at: http://alggen.lsi.upc.es/recerca/align/mgcat/intro-mgcat.html.

  17. Species interactions during diversification and community assembly in an island radiation of shrews.

    Directory of Open Access Journals (Sweden)

    Jacob A Esselstyn

    Full Text Available BACKGROUND: Closely related, ecologically similar species often have adjacent distributions, suggesting competitive exclusion may contribute to the structure of some natural communities. In systems such as island archipelagos, where speciation is often tightly associated with dispersal over oceanic barriers, competitive exclusion may prevent population establishment following inter-island dispersal and subsequent cladogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Using a combination of tools, we test the hypothesis that the distributions of shrew (Crocidura species in the Philippines are the result of competitive exclusion preventing secondary invasion of occupied islands. We first compare ecological niche models between two widespread, allopatric species and find statistical support for their ecological similarity, implying that competition for habitat between these species is possible. We then examine dispersion patterns among sympatric species and find some signal for overdispersion of body size, but not for phylogenetic branch length. Finally, we simulate the process of inter-island colonization under a stochastic model of dispersal lacking ecological forces. Results are dependent on the geographic scope and colonization probability employed. However, some combinations suggest that the number of inter-island dispersal events necessary to populate the archipelago may be much higher than the minimum number of colonization events necessary to explain current estimates of species richness and phylogenetic relationships. If our model is appropriate, these results imply that alternative factors, such as competitive exclusion, may have influenced the process of inter-island colonization and subsequent cladogenesis. CONCLUSIONS/SIGNIFICANCE: We interpret the combined results as providing tenuous evidence that similarity in body size may prevent co-occurrence in Philippine shrews and that competitive exclusion among ecologically similar species, rather

  18. Characterization of iodine species in the marine aerosol:to understand their roles in particle formation processes

    Institute of Scientific and Technical Information of China (English)

    Hongwei Chen; Rolf Brandt; Rolf Bandur; Thorsten Hoffmann

    2006-01-01

    In this contribution,iodine chemistry in the Marine Boundary Layer(MBL)is introduced.A series of methodologies for the measurements of iodine species in the gas and particle phases of the coastal atmosphere has been developed.Iodine species in the gas phase in real air samples has been determined in two field campaigns at the west coast of Ireland,indicating that gaseous iodo-hydrocarbons and elemental iodine are the precursors of new particle formation.Particulate iodine speciation from the same measurement campaigns show that the non-water-soluble iodine compounds are the main iodine species during the marine particle formation.A seaweed-chamber experiment was performed,indicating that gaseous I2 is one of the important precursors that lead to new particle formation in the presence of solar light in the ambient air at the coastal tidal area.

  19. Affect recognition and the quality of mother-infant interaction: understanding parenting difficulties in mothers with schizophrenia.

    Science.gov (United States)

    Healy, Sarah J; Lewin, Jona; Butler, Stephen; Vaillancourt, Kyla; Seth-Smith, Fiona

    2016-02-01

    This study investigated the quality of mother-infant interaction and maternal ability to recognise adult affect in three study groups consisting of mothers with a diagnosis of schizophrenia, mothers with depression and healthy controls. Sixty-four mothers were recruited from a Mother and Baby Unit and local children's centres. A 5-min mother-infant interaction was coded on a number of caregiving variables. Affect recognition and discrimination abilities were tested via a series of computerised tasks. Group differences were found both in measures of affect recognition and in the mother-infant interaction. Mothers with schizophrenia showed consistent impairments across most of the parenting measures and all measures of affect recognition and discrimination. Mothers with depression fell between the mothers with schizophrenia and healthy controls on most measures. However, depressed women's parenting was not significantly poorer than controls on any of the measures, and only showed trends for differences with mothers with schizophrenia on a few measures. Regression analyses found impairments in affect recognition and a diagnosis of schizophrenia to predict the occurrence of odd or unusual speech in the mother-infant interaction. Results add to the growing body of knowledge on the mother-infant interaction in mothers with schizophrenia and mothers with depression compared to healthy controls, suggesting a need for parenting interventions aimed at mothers with these conditions. While affect recognition impairments were not found to fully explain differences in parenting among women with schizophrenia, further research is needed to understand the psychopathology of parenting disturbances within this clinical group.

  20. Pleistocene climate, phylogeny, and climate envelope models: an integrative approach to better understand species' response to climate change.

    Directory of Open Access Journals (Sweden)

    A Michelle Lawing

    Full Text Available Mean annual temperature reported by the Intergovernmental Panel on Climate Change increases at least 1.1°C to 6.4°C over the next 90 years. In context, a change in climate of 6°C is approximately the difference between the mean annual temperature of the Last Glacial Maximum (LGM and our current warm interglacial. Species have been responding to changing climate throughout Earth's history and their previous biological responses can inform our expectations for future climate change. Here we synthesize geological evidence in the form of stable oxygen isotopes, general circulation paleoclimate models, species' evolutionary relatedness, and species' geographic distributions. We use the stable oxygen isotope record to develop a series of temporally high-resolution paleoclimate reconstructions spanning the Middle Pleistocene to Recent, which we use to map ancestral climatic envelope reconstructions for North American rattlesnakes. A simple linear interpolation between current climate and a general circulation paleoclimate model of the LGM using stable oxygen isotope ratios provides good estimates of paleoclimate at other time periods. We use geologically informed rates of change derived from these reconstructions to predict magnitudes and rates of change in species' suitable habitat over the next century. Our approach to modeling the past suitable habitat of species is general and can be adopted by others. We use multiple lines of evidence of past climate (isotopes and climate models, phylogenetic topology (to correct the models for long-term changes in the suitable habitat of a species, and the fossil record, however sparse, to cross check the models. Our models indicate the annual rate of displacement in a clade of rattlesnakes over the next century will be 2 to 3 orders of magnitude greater (430-2,420 m/yr than it has been on average for the past 320 ky (2.3 m/yr.

  1. Transcriptomic profiling of interacting nasal staphylococci species reveals global changes in gene and non-coding RNA expression

    DEFF Research Database (Denmark)

    Hermansen, Grith Miriam Maigaard; Sazinas, Pavelas; Kofod, Ditte

    2018-01-01

    Interspecies interactions between bacterial pathogens and the commensal microbiota can influence disease outcome. In the nasal cavities, Staphylococcus epidermidis has been shown to be a determining factor for Staphylococcus aureus colonization and biofilm formation. However, the interaction...... between S. epidermidis and S. aureus has mainly been described by phenotypic analysis, and little is known about how this interaction modulates gene expression.This study aimed to determine the interactome of nasal S. aureus and S. epidermidis isolates to understand the molecular effect of interaction...... also identified putative non-coding RNAs (ncRNAs) and, interestingly, detected a putative ncRNA transcribed antisense to esp, the serine protease of S. epidermidis, that has previously been shown to inhibit nasal colonization of S. aureus. In our study, the gene encoding Esp and the antisense nc...

  2. Model of competence: a conceptual framework for understanding the person-environment interaction for persons with motor disabilities.

    Science.gov (United States)

    Rousseau, Jacqueline; Potvin, Louise; Dutil, Elisabeth; Falta, Patricia

    2002-01-01

    The "Model of Competence" has been recently elaborated to help expand our understanding relating to a person's interaction with the environment. Specifically, it seeks to deal with the issues related to the home adaptation (the home layout and equipment) for a person living with motor disabilities. This theoretical model takes into account various characteristics of the person as well as of the environment, by re-grouping six concepts: person, environment, activity, role, competence and handicap situation. The "Model of Competence" is distinct because it includes: (1) both the human and the nonhuman dimension of the environment; (2) personal characteristics other than the strictly physical ones; (3) a clear identification of the interaction between the person and the environment; and (4) a means of operationalizing it via an assessment instrument. This model proposes an innovative approach to the person-environment relation in terms of personalizing accessibility, and thereby offers a new approach to understanding the concept of universal access. It has been developed for research and application, and addresses several disciplines.

  3. Understanding response patterns in dyadic conflict: An interactive approach combining self-construal and opponent's dominance-submissiveness.

    Science.gov (United States)

    Au, Al K C; Lam, Shui-Fong

    2017-04-01

    Previous works on the effect of self-construal in interpersonal behaviours tend to adopt a main effect approach. The present research proposes an interactive approach in understanding two response patterns in dyadic conflict by combining self-construal and the stance of the opponent. Independent self-construal was hypothesised to be associated with a self-centred pattern of conflict response, which is characterised by taking contending responses regardless of whether the stance of the opponent is dominant or submissive. Relational self-construal was hypothesised to be associated with a tuning-in pattern of conflict response, which is characterised by showing contending responses when the opponent is submissive but yielding responses when the opponent is dominant. With trait self-construal measured and opponent's stance manipulated, Study 1 provided initial support for the hypotheses. Study 2 showed a three-way interaction effect between trait self-construal, manipulated self-construal and the opponent's stance on actual conflict responses during discussion of a scenario. The effect of self-construal manipulation was only observed among people who were low in trait independent self-construal and average in trait relational self-construal. The results pinpoint the importance of considering personal and opponent factors simultaneously in understanding the dynamics of dyadic conflict processes. © 2015 International Union of Psychological Science.

  4. Gödel, Escher, and degree of handedness: differences in interhemispheric interaction predict differences in understanding self-reference.

    Science.gov (United States)

    Niebauer, Christopher Lee; Garvey, Kilian

    2004-01-01

    Ramachandran (1995) theorised that the left hemisphere (LH) is specialised for making a single and consistent interpretation of the self and the world, whereas the right hemisphere (RH) is responsible for monitoring anomalies in reference to these interpretations. If the anomalous information reaches a threshold, it interacts with the LH to update these interpretations or beliefs. Because mixed handers may have greater degrees of interhemispheric interaction compared to strong handers, they may have a lower threshold for updating beliefs. Two previous studies found this to be the case (Niebauer, Aselage, & Schutte, 2002a; Niebauer, Christman, & Reid, 2002b). Because monitoring one's beliefs may involve metacognitive processes, i.e., cognitions about cognitions, this model was extended to help explain individual differences in understanding self-referential concepts. In the first two studies, mixed-handed participants displayed a greater understanding of self-reference using a conceptual description of Gödel's Incompleteness Theorem. In a third study, mixed-handed participants displayed greater appreciation for self-referential works of M. C. Escher. Implications for a neuropsychological model of metacognition are discussed.

  5. PHI-base: a new interface and further additions for the multi-species pathogen–host interactions database

    Science.gov (United States)

    Urban, Martin; Cuzick, Alayne; Rutherford, Kim; Irvine, Alistair; Pedro, Helder; Pant, Rashmi; Sadanadan, Vidyendra; Khamari, Lokanath; Billal, Santoshkumar; Mohanty, Sagar; Hammond-Kosack, Kim E.

    2017-01-01

    The pathogen–host interactions database (PHI-base) is available at www.phi-base.org. PHI-base contains expertly curated molecular and biological information on genes proven to affect the outcome of pathogen–host interactions reported in peer reviewed research articles. In addition, literature that indicates specific gene alterations that did not affect the disease interaction phenotype are curated to provide complete datasets for comparative purposes. Viruses are not included. Here we describe a revised PHI-base Version 4 data platform with improved search, filtering and extended data display functions. A PHIB-BLAST search function is provided and a link to PHI-Canto, a tool for authors to directly curate their own published data into PHI-base. The new release of PHI-base Version 4.2 (October 2016) has an increased data content containing information from 2219 manually curated references. The data provide information on 4460 genes from 264 pathogens tested on 176 hosts in 8046 interactions. Prokaryotic and eukaryotic pathogens are represented in almost equal numbers. Host species belong ∼70% to plants and 30% to other species of medical and/or environmental importance. Additional data types included into PHI-base 4 are the direct targets of pathogen effector proteins in experimental and natural host organisms. The curation problems encountered and the future directions of the PHI-base project are briefly discussed. PMID:27915230

  6. PHI-base: a new interface and further additions for the multi-species pathogen-host interactions database.

    Science.gov (United States)

    Urban, Martin; Cuzick, Alayne; Rutherford, Kim; Irvine, Alistair; Pedro, Helder; Pant, Rashmi; Sadanadan, Vidyendra; Khamari, Lokanath; Billal, Santoshkumar; Mohanty, Sagar; Hammond-Kosack, Kim E

    2017-01-04

    The pathogen-host interactions database (PHI-base) is available at www.phi-base.org PHI-base contains expertly curated molecular and biological information on genes proven to affect the outcome of pathogen-host interactions reported in peer reviewed research articles. In addition, literature that indicates specific gene alterations that did not affect the disease interaction phenotype are curated to provide complete datasets for comparative purposes. Viruses are not included. Here we describe a revised PHI-base Version 4 data platform with improved search, filtering and extended data display functions. A PHIB-BLAST search function is provided and a link to PHI-Canto, a tool for authors to directly curate their own published data into PHI-base. The new release of PHI-base Version 4.2 (October 2016) has an increased data content containing information from 2219 manually curated references. The data provide information on 4460 genes from 264 pathogens tested on 176 hosts in 8046 interactions. Prokaryotic and eukaryotic pathogens are represented in almost equal numbers. Host species belong ∼70% to plants and 30% to other species of medical and/or environmental importance. Additional data types included into PHI-base 4 are the direct targets of pathogen effector proteins in experimental and natural host organisms. The curation problems encountered and the future directions of the PHI-base project are briefly discussed. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Plant community resistance to invasion by Bromus species – the roles of community attributes, Bromus Interactions with plant communities, and Bromus traits

    Science.gov (United States)

    Chambers, Jeanne; Germino, Matthew; Belnap, Jayne; Brown, Cynthia; Schupp, Eugene W.; St. Clair, Samuel B

    2016-01-01

    The factors that determine plant community resistance to exotic annual Bromus species (Bromushereafter) are diverse and context specific. They are influenced by the environmental characteristics and attributes of the community, the traits of Bromus species, and the direct and indirect interactions of Bromus with the plant community. Environmental factors, in particular ambient and soil temperatures, have significant effects on the ability of Bromus to establish and spread. Seasonality of precipitation relative to temperature influences plant community resistance toBromus through effects on soil water storage, timing of water and nutrient availability, and dominant plant life forms. Differences among plant communities in how well soil resource use by the plant community matches resource supply rates can influence the magnitude of resource fluctuations due to either climate or disturbance and thus the opportunities for invasion. The spatial and temporal patterns of resource availability and acquisition of growth resources by Bromus versus native species strongly influence resistance to invasion. Traits of Bromus that confer a “priority advantage” for resource use in many communities include early-season germination and high growth and reproductive rates. Resistance to Bromus can be overwhelmed by high propagule supply, low innate seed dormancy, and large, if short-lived, seed banks. Biological crusts can inhibit germination and establishment of invasive annual plants, including several annual Bromus species, but are effective only in the absence of disturbance. Herbivores can have negative direct effects on Bromus, but positive indirect effects through decreases in competitors. Management strategies can be improved through increased understanding of community resistance to exotic annual Bromus species.

  8. Ionic interactions in electroactive self-assembled monolayers of ferrocene species

    Science.gov (United States)

    Delong, Hugh C.; Donohue, John J.; Buttry, Daniel A.

    1991-04-01

    The electrochemical and interfacial behavior of two types of electroactive self-assembled monolayer systems is investigated at gold electrodes. The first type is a ferrocene-based surfactant (a redox surfactant) derived from (dimethylamino)methylferrocene via quaternization of the amino group with various n-alkylbromides. These have a long alkyl chain with 16 or 18 carbons in the chain pendent from the cationic ammonium group. These are referred to as C16 and C18. The second type is a ferrocene-based dimeric species with a disulfide functional group capable of providing a permanent anchor to the Au electrode, thus endowing monolayers of this species with exceptional stability towards desorption. The electrochemical quartz crystal microbalance (EQM) is used to monitor the mass changes which occur at the electrode surface during the redox processes of these two species.

  9. A rapid method for selecting suitable animal species for studying pathogen interactions with plasma protein ligands in vivo.

    Science.gov (United States)

    Naudin, Clément; Schumski, Ariane; Salo-Ahen, Outi M H; Herwald, Heiko; Smeds, Emanuel

    2017-05-01

    Species tropism constitutes a serious problem for developing relevant animal models of infection. Human pathogens can express virulence factors that show specific selectivity to human proteins, while their affinity for orthologs from other species can vary significantly. Suitable animal species must be used to analyse whether virulence factors are potential targets for drug development. We developed an assay that rapidly predicts applicable animal species for studying virulence factors binding plasma proteins. We used two well-characterized Staphylococcus aureus proteins, SSL7 and Efb, to develop an ELISA-based inhibition assay using plasma from different animal species. The interaction between SSL7 and human C5 and the binding of Efb to human fibrinogen and human C3 was studied. Affinity experiments and Western blot analyses were used to validate the assay. Human, monkey and cat plasma interfered with binding of SSL7 to human C5. Binding of Efb to human fibrinogen was blocked in human, monkey, gerbil and pig plasma, while human, monkey, gerbil, rabbit, cat and guinea pig plasma inhibited the binding of Efb to human C3. These results emphasize the importance of choosing correct animal models, and thus, our approach is a rapid and cost-effective method that can be used to prevent unnecessary animal experiments. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  10. Quantitative thermodynamic predication of interactions between nucleic acid and non-nucleic acid species using Microsoft excel.

    Science.gov (United States)

    Zou, Jiaqi; Li, Na

    2013-09-01

    Proper design of nucleic acid sequences is crucial for many applications. We have previously established a thermodynamics-based quantitative model to help design aptamer-based nucleic acid probes by predicting equilibrium concentrations of all interacting species. To facilitate customization of this thermodynamic model for different applications, here we present a generic and easy-to-use platform to implement the algorithm of the model with Microsoft(®) Excel formulas and VBA (Visual Basic for Applications) macros. Two Excel spreadsheets have been developed: one for the applications involving only nucleic acid species, the other for the applications involving both nucleic acid and non-nucleic acid species. The spreadsheets take the nucleic acid sequences and the initial concentrations of all species as input, guide the user to retrieve the necessary thermodynamic constants, and finally calculate equilibrium concentrations for all species in various bound and unbound conformations. The validity of both spreadsheets has been verified by comparing the modeling results with the experimental results on nucleic acid sequences reported in the literature. This Excel-based platform described here will allow biomedical researchers to rationalize the sequence design of nucleic acid probes using the thermodynamics-based modeling even without relevant theoretical and computational skills. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Quantum interactive learning tutorial on the double-slit experiment to improve student understanding of quantum mechanics

    Science.gov (United States)

    Sayer, Ryan; Maries, Alexandru; Singh, Chandralekha

    2017-06-01

    Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students' prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in various situations that appear to be counterintuitive and contradict classical notions of particles and waves. For example, if we send single electrons through the slits, they may behave as a "wave" in part of the experiment and as a "particle" in another part of the same experiment. Here we discuss the development and evaluation of a research-validated Quantum Interactive Learning Tutorial (QuILT) which makes use of an interactive simulation to improve student understanding of the double-slit experiment and strives to help students develop a good grasp of foundational issues in quantum mechanics. We discuss common student difficulties identified during the development and evaluation of the QuILT and analyze the data from the pretest and post test administered to the upper-level undergraduate and first-year physics graduate students before and after they worked on the QuILT to assess its effectiveness. These data suggest that on average, the QuILT was effective in helping students develop a more robust understanding of foundational concepts in quantum mechanics that defy classical intuition using the context of the double-slit experiment. Moreover, upper-level undergraduates outperformed physics graduate students on the post test. One possible reason for this difference in performance may be the level of student engagement with the QuILT due to the grade incentive. In the undergraduate course, the post test was graded for correctness while in the graduate course, it was only graded for completeness.

  12. Quantum interactive learning tutorial on the double-slit experiment to improve student understanding of quantum mechanics

    Directory of Open Access Journals (Sweden)

    Ryan Sayer

    2017-05-01

    Full Text Available Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students’ prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in various situations that appear to be counterintuitive and contradict classical notions of particles and waves. For example, if we send single electrons through the slits, they may behave as a “wave” in part of the experiment and as a “particle” in another part of the same experiment. Here we discuss the development and evaluation of a research-validated Quantum Interactive Learning Tutorial (QuILT which makes use of an interactive simulation to improve student understanding of the double-slit experiment and strives to help students develop a good grasp of foundational issues in quantum mechanics. We discuss common student difficulties identified during the development and evaluation of the QuILT and analyze the data from the pretest and post test administered to the upper-level undergraduate and first-year physics graduate students before and after they worked on the QuILT to assess its effectiveness. These data suggest that on average, the QuILT was effective in helping students develop a more robust understanding of foundational concepts in quantum mechanics that defy classical intuition using the context of the double-slit experiment. Moreover, upper-level undergraduates outperformed physics graduate students on the post test. One possible reason for this difference in performance may be the level of student engagement with the QuILT due to the grade incentive. In the undergraduate course, the post test was graded for correctness while in the graduate course, it was only graded for completeness.

  13. Evidence for a multi-species coccolith volume change over the past two centuries: understanding a potential ocean acidification response

    Directory of Open Access Journals (Sweden)

    P. R. Halloran

    2008-12-01

    Full Text Available Major questions surround the species-specific nature of coccolithophore calcification in response to rising atmospheric CO2 levels. Here we present CaCO3 particle volume distribution data from the coccolith size-fraction of a rapidly accumulating North Atlantic sediment core. Without direct volume measurements on coccoliths produced by individual coccolithophore species, and knowledge of organic, as well as inorganic carbon production, it is not possible to state conclusively the coccolithophore calcification change at this site. However, by analysing the size distribution of CaCO3 particles in the less than 10 μm sediment fraction, we demonstrate a changing particle volume since the late 20th Century consistent with an increase in the mass of coccoliths produced by the larger coccolithophore species, and potentially a decrease in mass of coccoliths produced by the smaller species, present at this location. This finding has significant implications for the realistic representation of an assemblage-wide coccolithophore CO2-calcification response in numerical models.

  14. Understanding the extreme species richness of semi-dry grasslands in east-central Europe: a comparative approach

    Czech Academy of Sciences Publication Activity Database

    Roleček, Jan; Čornej, I. I.; Tokarjuk, A. I.

    2014-01-01

    Roč. 86, č. 1 (2014), s. 13-34 ISSN 0032-7786 R&D Projects: GA ČR(CZ) GAP504/12/0649 Institutional support: RVO:67985939 Keywords : species richness * environmental history * disjunct distribution Subject RIV: EF - Botanics Impact factor: 4.104, year: 2014

  15. Oak Decline as Illustrated Through Plant-Climate Interactions Near the Northern Edge of Species Range

    Czech Academy of Sciences Publication Activity Database

    Helama, S.; Sohar, Kristina; Läänelaid, A.; Mäkelä, H. M.; Raisio, J.

    2016-01-01

    Roč. 82, č. 1 (2016), s. 1-23 ISSN 0006-8101 Institutional support: RVO:67985939 Keywords : climate change * plant-climate interactions * mortality Subject RIV: EH - Ecology, Behaviour Impact factor: 2.769, year: 2016

  16. Trait plasticity in species interactions: a driving force of community dynamics.

    NARCIS (Netherlands)

    Berg, M.P.; Ellers, J.

    2010-01-01

    Evolutionary community ecology is an emerging field of study that includes evolutionary principles such as individual trait variation and plasticity of traits to provide a more mechanistic insight as to how species diversity is maintained and community processes are shaped across time and space. In

  17. Interactions between abiotic filters, landscape structure and species traits as determinants of dairy farmland plant diversity

    NARCIS (Netherlands)

    Lomba, A.; Bunce, R.G.H.; Jongman, R.H.G.; Moreira, F.; Honrado, J.

    2011-01-01

    Maintaining farmland biodiversity in Europe under scenarios of agricultural intensification is a keystone challenge of nature conservation. The recruitment of species from the regional pool to local landscape mosaics and individual patches is known to be determined by multi-scale ecological filters.

  18. Interactions among species in a tri-trophic system: the influence of ...

    African Journals Online (AJOL)

    Metapopulation dynamics is now so widely used to describe the distribution and abundance of species living in fragmented landscapes that other ecological factors (e.g. habitat quality) can be overlooked. To determine the precise habitat requirements of an endangered and narrowly endemic lycaenid butterfly, I studied its ...

  19. Functional indicators of response mechanisms to nitrogen deposition, ozone, and their interaction in two Mediterranean tree species.

    Directory of Open Access Journals (Sweden)

    Lina Fusaro

    Full Text Available The effects of nitrogen (N deposition, tropospheric ozone (O3 and their interaction were investigated in two Mediterranean tree species, Fraxinus ornus L. (deciduous and Quercus ilex L. (evergreen, having different leaf habits and resource use strategies. An experiment was conducted under controlled condition to analyse how nitrogen deposition affects the ecophysiological and biochemical traits, and to explore how the nitrogen-induced changes influence the response to O3. For both factors we selected realistic exposures (20 kg N ha-1 yr-1 and 80 ppb h for nitrogen and O3, respectively, in order to elucidate the mechanisms implemented by the plants. Nitrogen addition resulted in higher nitrogen concentration at the leaf level in F. ornus, whereas a slight increase was detected in Q. ilex. Nitrogen enhanced the maximum rate of assimilation and ribulose 1,5-bisphosphate regeneration in both species, whereas it influenced the light harvesting complex only in the deciduous F. ornus that was also affected by O3 (reduced assimilation rate and accelerated senescence-related processes. Conversely, Q. ilex developed an avoidance mechanism to cope with O3, confirming a substantial O3 tolerance of this species. Nitrogen seemed to ameliorate the harmful effects of O3 in F. ornus: the hypothesized mechanism of action involved the production of nitrogen oxide as the first antioxidant barrier, followed by enzymatic antioxidant response. In Q. ilex, the interaction was not detected on gas exchange and photosystem functionality; however, in this species, nitrogen might stimulate an alternative antioxidant response such as the emission of volatile organic compounds. Antioxidant enzyme activity was lower in plants treated with both O3 and nitrogen even though reactive oxygen species production did not differ between the treatments.

  20. QQS orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions.

    Science.gov (United States)

    Li, Ling; Zheng, Wenguang; Zhu, Yanbing; Ye, Huaxun; Tang, Buyun; Arendsee, Zebulun W; Jones, Dallas; Li, Ruoran; Ortiz, Diego; Zhao, Xuefeng; Du, Chuanlong; Nettleton, Dan; Scott, M Paul; Salas-Fernandez, Maria G; Yin, Yanhai; Wurtele, Eve Syrkin

    2015-11-24

    The allocation of carbon and nitrogen resources to the synthesis of plant proteins, carbohydrates, and lipids is complex and under the control of many genes; much remains to be understood about this process. QQS (Qua-Quine Starch; At3g30720), an orphan gene unique to Arabidopsis thaliana, regulates metabolic processes affecting carbon and nitrogen partitioning among proteins and carbohydrates, modulating leaf and seed composition in Arabidopsis and soybean. Here the universality of QQS function in modulating carbon and nitrogen allocation is exemplified by a series of transgenic experiments. We show that ectopic expression of QQS increases soybean protein independent of the genetic background and original protein content of the cultivar. Furthermore, transgenic QQS expression increases the protein content of maize, a C4 species (a species that uses 4-carbon photosynthesis), and rice, a protein-poor agronomic crop, both highly divergent from Arabidopsis. We determine that QQS protein binds to the transcriptional regulator AtNF-YC4 (Arabidopsis nuclear factor Y, subunit C4). Overexpression of AtNF-YC4 in Arabidopsis mimics the QQS-overexpression phenotype, increasing protein and decreasing starch levels. NF-YC, a component of the NF-Y complex, is conserved across eukaryotes. The NF-YC4 homologs of soybean, rice, and maize also bind to QQS, which provides an explanation of how QQS can act in species where it does not occur endogenously. These findings are, to our knowledge, the first insight into the mechanism of action of QQS in modulating carbon and nitrogen allocation across species. They have major implications for the emergence and function of orphan genes, and identify a nontransgenic strategy for modulating protein levels in crop species, a trait of great agronomic significance.

  1. Current Understanding of Physicochemical Mechanisms for Cell Membrane Penetration of Arginine-rich Cell Penetrating Peptides: Role of Glycosaminoglycan Interactions.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Saito, Hiroyuki

    2018-01-01

    Arginine-rich cell penetrating peptides (CPPs) are very promising drug carriers to deliver membrane-impermeable pharmaceuticals, such as siRNA, bioactive peptides and proteins. CPPs directly penetrate into cells across cell membranes via a spontaneous energy-independent process, in which CPPs appear to interact with acidic lipids in the outer leaflet of the cell membrane. However, acidic lipids represent only 10 to 20% of the total membrane lipid content and in mammalian cell membranes they are predominantly located in the inner leaflet. Alternatively, CPPs favorably bind in a charge density- dependent manner to negatively charged, sulfated glycosaminoglycans (GAGs), such as heparan sulfate and chondroitin sulfate, which are abundant on the cell surface and are involved in many biological functions. We have recently demonstrated that the interaction of CPPs with sulfated GAGs plays a critical role in their direct cell membrane penetration: the favorable enthalpy contribution drives the high-affinity binding of arginine-rich CPPs to sulfated GAGs, initiating an efficient cell membrane penetration. The favorable enthalpy gain is presumably mainly derived from a unique property of the guanidino group of arginine residues forming multidentate hydrogen bonding with sulfate and carboxylate groups in GAGs. Such interactions can be accompanied with charge neutralization of arginine-rich CPPs, promoting their partition into cell membranes. This review summarizes the current understanding of the physicochemical mechanism for lipid membrane penetration of CPPs, and discusses the role of the GAG interactions on the cell membrane penetration of CPPs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Species interactions in an Andean bird–flowering plant network: phenology is more important than abundance or morphology

    Directory of Open Access Journals (Sweden)

    Oscar Gonzalez

    2016-12-01

    Full Text Available Biological constraints and neutral processes have been proposed to explain the properties of plant–pollinator networks. Using interactions between nectarivorous birds (hummingbirds and flowerpiercers and flowering plants in high elevation forests (i.e., “elfin” forests of the Andes, we explore the importance of biological constraints and neutral processes (random interactions to explain the observed species interactions and network metrics, such as connectance, specialization, nestedness and asymmetry. In cold environments of elfin forests, which are located at the top of the tropical montane forest zone, many plants are adapted for pollination by birds, making this an ideal system to study plant–pollinator networks. To build the network of interactions between birds and plants, we used direct field observations. We measured abundance of birds using mist-nets and flower abundance using transects, and phenology by scoring presence of birds and flowers over time. We compared the length of birds’ bills to flower length to identify “forbidden interactions”—those interactions that could not result in legitimate floral visits based on mis-match in morphology. Diglossa flowerpiercers, which are characterized as “illegitimate” flower visitors, were relatively abundant. We found that the elfin forest network was nested with phenology being the factor that best explained interaction frequencies and nestedness, providing support for biological constraints hypothesis. We did not find morphological constraints to be important in explaining observed interaction frequencies and network metrics. Other network metrics (connectance, evenness and asymmetry, however, were better predicted by abundance (neutral process models. Flowerpiercers, which cut holes and access flowers at their base and, consequently, facilitate nectar access for other hummingbirds, explain why morphological mis-matches were relatively unimportant in this system. Future

  3. Re-Structuring of Marine Communities Exposed to Environmental Change: A Global Study on the Interactive Effects of Species and Functional Richness

    Science.gov (United States)

    Wahl, Martin; Link, Heike; Alexandridis, Nicolaos; Thomason, Jeremy C.; Cifuentes, Mauricio; Costello, Mark J.; da Gama, Bernardo A. P.; Hillock, Kristina; Hobday, Alistair J.; Kaufmann, Manfred J.; Keller, Stefanie; Kraufvelin, Patrik; Krüger, Ina; Lauterbach, Lars; Antunes, Bruno L.; Molis, Markus; Nakaoka, Masahiro; Nyström, Julia; bin Radzi, Zulkamal; Stockhausen, Björn; Thiel, Martin; Vance, Thomas; Weseloh, Annika; Whittle, Mark; Wiesmann, Lisa; Wunderer, Laura; Yamakita, Takehisa; Lenz, Mark

    2011-01-01

    Species richness is the most commonly used but controversial biodiversity metric in studies on aspects of community stability such as structural composition or productivity. The apparent ambiguity of theoretical and experimental findings may in part be due to experimental shortcomings and/or heterogeneity of scales and methods in earlier studies. This has led to an urgent call for improved and more realistic experiments. In a series of experiments replicated at a global scale we translocated several hundred marine hard bottom communities to new environments simulating a rapid but moderate environmental change. Subsequently, we measured their rate of compositional change (re-structuring) which in the great majority of cases represented a compositional convergence towards local communities. Re-structuring is driven by mortality of community components (original species) and establishment of new species in the changed environmental context. The rate of this re-structuring was then related to various system properties. We show that availability of free substratum relates negatively while taxon richness relates positively to structural persistence (i.e., no or slow re-structuring). Thus, when faced with environmental change, taxon-rich communities retain their original composition longer than taxon-poor communities. The effect of taxon richness, however, interacts with another aspect of diversity, functional richness. Indeed, taxon richness relates positively to persistence in functionally depauperate communities, but not in functionally diverse communities. The interaction between taxonomic and functional diversity with regard to the behaviour of communities exposed to environmental stress may help understand some of the seemingly contrasting findings of past research. PMID:21611170

  4. Postmortem evidence of interactions of bottlenose dolphins (Tursiops truncatus) with other dolphin species in south-west England.

    Science.gov (United States)

    Barnett, J; Davison, N; Deaville, R; Monies, R; Loveridge, J; Tregenza, N; Jepson, P D

    2009-10-10

    Reports of violent interactions between bottlenose dolphins (Tursiops truncatus) and harbour porpoises (Phocoena phocoena) in the coastal waters of the UK are well documented. Examination of stranded cetaceans by the Cornwall Wildlife Trust Marine Strandings Network and the UK Cetacean Strandings Investigation Programme has indicated that seven animals, of four other species, found stranded in south-west England, had pathology consistent with bottlenose dolphin interaction, including two juvenile and two adult common dolphins (Delphinus delphis), one juvenile pilot whale (Globicephala melas), one juvenile Risso's dolphin (Grampus griseus) and one adult striped dolphin (Stenella coeruleoalba). Although recorded traumatic lesions were often not as severe as those found in harbour porpoises, it is probable that the interactions did contribute to stranding and/or death in all four of the juvenile animals examined. Furthermore, analysis of photographs taken before establishment of the Marine Strandings Network revealed rake (teeth) marks consistent with bottlenose dolphin interaction on one stranded common dolphin in 1992. A number of causes have been suggested for these interactions in harbour porpoises stranded in the UK and it is possible that any combination of these factors may also be implicated in the cases described in this report.

  5. The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome.

    Science.gov (United States)

    Pii, Youry; Borruso, Luigimaria; Brusetti, Lorenzo; Crecchio, Carmine; Cesco, Stefano; Mimmo, Tanja

    2016-02-01

    Plant-associated microorganisms can stimulate plants growth and influence both crops yield and quality by nutrient mobilization and transport. Therefore, rhizosphere microbiome appears to be one of the key determinants of plant health and productivity. The roots of plants have the ability to influence its surrounding microbiology, the rhizosphere microbiome, through the creation of specific chemical niches in the soil mediated by the release of phytochemicals (i.e. root exudates) that depends on several factors, such as plants genotype, soil properties, plant nutritional status, climatic conditions. In the present research, two different crop species, namely barley and tomato, characterized by different strategies for Fe acquisition, have been grown in the RHIZOtest system using either complete or Fe-free nutrient solution to induce Fe starvation. Afterward, plants were cultivated for 6 days on two different calcareous soils. Total DNA was extracted from rhizosphere and bulk soil and 454 pyrosequencing technology was applied to V1-V3 16S rRNA gene region. Approximately 5000 sequences were obtained for each sample. The analysis of the bacterial population confirmed that the two bulk soils showed a different microbial community. The presence of the two plant species, as well as the nutritional status (Fe-deficiency and Fe-sufficiency), could promote a differentiation of the rhizosphere microbiome, as highlighted by non-metric multidimensional scaling (NMDS) analysis. Alphaproteobacteria, Actinobacteria, Chloracidobacteria, Thermoleophilia, Betaproteobacteria, Saprospirae, Gemmatimonadetes, Gammaproteobacteria, Acidobacteria were the most represented classes in all the samples analyzed even though their relative abundance changed as a function of the soil, plant species and nutritional status. To our knowledge, this research demonstrate for the first time that different plants species with a diverse nutritional status can promote the development of a peculiar

  6. Agency interaction at the Savannah River Plant under the Endangered Species Act

    International Nuclear Information System (INIS)

    Mackey, H.E. Jr.

    1985-01-01

    The 300 square mile Savannah River Plant (SRP) offers a variety of protected habitats for endangered species including the alligator (resident), red-cockaded woodpecker (resident), short-nose sturgeon (migratory), and wood stork (fish-forager). The most recent of these four species to be listed by the US Fish and Wildlife Service (US FWS) is the wood stork. It had been observed prior to 1983 as an infrequent forager in the SRP Savannah River Swamp which adjoins SRP on the south and southwest. In anticipation of its listing as an endangered species, DOE-SR requested in the spring of 1983 that the Savannah River Ecology Laboratory, University of Georgia, conduct field surveys and studies of the nearest colony of wood storks to SRP (the Birdsville colony in north-central Georgia). The objective of these studies was to determine potential effects of the flooding of the Steel Creek swamp area with cooling water from L-Reactor. L-Reactor, which is proposed for restart, has not been operated since 1968. The survey found that wood storks forage in the Steel Creek delta swamp area of the Savannah River at SRP. Based on the numbers of storks at various foraging locations, sites at SRP ranked higher than non-SRP sites during the pre-fledging phase of the colony. Cold flow testing of L-Reactor also demonstrated that foraging sites in the Steel Creek delta would be unavailable during L-Reactor operation because of increased water levels

  7. Towards a New Understanding of the e-Business Strategic Process: The Rise of a Dynamic Interaction-Based Approach

    DEFF Research Database (Denmark)

    Ivang, Reimer

    2013-01-01

    -business strategic process adapt to changes in the planning environment and internal changes within the organization? E-business strategy, because of increased uncertainty and environmental complexity, must encourage interaction between key stakeholders that implement and use the e-business technology......In the early 1970s, strategic planning was introduced onto the corporate management scene and since then it has been a dominating conceptual frame for understanding and designing various strategies in the corporate world. Nearly a decade later, strategic planning has been used by various scholars...... to explain how companies could strategize in the field of ICT and e-business. Strategic information systems planning (SISP) is an example of this application of strategic planning in the field of e-business. The prominence of SISP within the corporate IS strategy literature has been dramatic, but today...

  8. Cross-habitat interactions among bivalve species control community structure on intertidal flats

    NARCIS (Netherlands)

    Donadi, S.; van der Heide, T.; van der Zee, E.M.; Eklöf, J.S.; van de Koppel, J.; Weerman, E.J.; Piersma, T.; Olff, H.; Eriksson, B.K.

    2013-01-01

    Increasing evidence shows that spatial interactions between sedentary organisms can structure communities and promote landscape complexity in many ecosystems. Here we tested the hypothesis that reef-forming mussels (Mytilus edulis L.), a dominant intertidal ecosystem engineer in the Wadden Sea,

  9. Cross-habitat interactions among bivalve species control community structure on intertidal flats

    NARCIS (Netherlands)

    Donadi, Serena; van der Heide, Tjisse; van der Zee, Els M.; Eklöf, Johan S.; van de Koppel, Johan; Weerman, Ellen J.; Piersma, Theunis; Olff, Han; Eriksson, Britas Klemens

    Increasing evidence shows that spatial interactions between sedentary organisms can structure communities and promote landscape complexity in many ecosystems. Here we tested the hypothesis that reef-forming mussels (Mytilus edulis L.), a dominant intertidal ecosystem engineer in the Wadden Sea,

  10. Interaction between Pyricularia oryzae, four Helminthosporium species and Curvularia lunata in rice leaves

    Directory of Open Access Journals (Sweden)

    M. Bahous

    2003-08-01

    Full Text Available The interaction between six fungal parasites of rice: Pyricularia oryzae, Helminthosporium oryzae, H. sativum, H. spiciferum, H. australiensis and Curvularia lunata was studied quantitatively by a modified plant ecology technique known as the de Wit replacement series. Each fungus was inoculated alone or in combination with one of the other five fungi in various proportions into rice plants under experimental conditions. Leaves developing lesions were harvested and incubated in a moist chamber. The yield of each fungus was its conidial production on the rice leaves. The artificial inoculations indicated that interactions between the pathogens in the mixture could be beneficial, antagonistic, or null. Interspecific interaction (i.e. antagonism occurred in the majority of paired combinations (H. oryzae + P. oryzae; H. sativum + H. spiciferum, H. australiensis, C. lunata or P. oryzae; H. australiensis + H. spiciferum, C. lunata or P. oryzae; and P. oryzae + C. lunata. The relative yield total (RYT lines were significantly lower than the expected value, which is 1. The RYT lines were concave upward, revealing a beneficial effect of one or both pathogens on the other, when H. oryzae was in mixture with H. sativum or H. spiciferum. A null effect between fungi occurred in four combinations (H. oryzae + H. australiensis or C. lunata; H. spiciferum + C. lunata; and P. oryzae + H. spiciferum showing that with these combinations inter- and intraspecific competitions were equal in intensity. Thus, the de Wit replacement series technique indicated that it was possible to quantify the interaction between all the pathogenic fungi tested.

  11. Negative Plant-Soil Feedback and Positive Species Interaction in a Herbaceous Plant Community

    NARCIS (Netherlands)

    Bonanomi, G.; Rietkerk, M.; Dekker, S.C.; Mazzoleni, S.

    2005-01-01

    Increasing evidence shows that facilitative interaction and negative plant¿soil feedback are driving factors of plant population dynamics and community processes. We studied the intensity and the relative impact of negative feedback on clonal growth and seed germination of Scirpus holoschoenus, a

  12. Negative Plant–Soil Feedback and Positive Species Interaction in a Herbaceous Plant Community

    NARCIS (Netherlands)

    Bonanomi, G.; Rietkerk, M.G.; Dekker, S.C.; Mazzoleni, S.

    2005-01-01

    Increasing evidence shows that facilitative interaction and negative plant–soil feedback are driving factors of plant population dynamics and community processes. We studied the intensity and the relative impact of negative feedback on clonal growth and seed germination of Scirpus holoschoenus, a

  13. Deriving a Benefit Transfer Function for Threatened and Endangered Species in Interaction with Their Level of Charisma

    Directory of Open Access Journals (Sweden)

    Franklin Amuakwa-Mensah

    2018-02-01

    Full Text Available Biodiversity and species conservation are among the most urgent global issues. Both are under serious threat because of human intrusion and as a result, it is likely that present and future projects will affect threatened and endangered species. Thus, it is important to account for these impacts when evaluating and conducting cost and benefit analyses of projects. Due to their public good character and non-tradability, the total economic value of threatened and endangered species cannot be reflected by a market price and therefore, alternative approaches (stated preference method are needed to determine their monetary value. This paper reviews and compares the valuation literature on threatened and endangered animals and conducts a meta-analysis regression to identify explanatory variables for the variation in willingness to pay for threatened and endangered species. The main findings of the meta-analysis show that the interaction of the level of threat and charisma have a positive effect on willingness to pay. Furthermore, developed countries have a higher willingness to pay compared to developing countries. Similarly, visitors of conservation sites have higher willingness to pay than residents. The provided example of a benefit transfer of the estimated function shows the practicability of our results.

  14. INTERACTION BETWEEN NATIVE AND ALIEN SPECIES OF CRAYFISH IN AUSTRIA: CASE STUDIES

    Directory of Open Access Journals (Sweden)

    PÖCKL M.

    2002-07-01

    Full Text Available In Austria, three indigenous crayfish species occur: the noble crayfish (Astacus astacus, the stone crayfish (Austropotamobius torrentium, and the white-clawed crayfish (Austropotamobius pallipes. It is not known if Astacus leptodactylus is autochthonous in the very eastern part of Austria, near the border with Hungary and Slovakia. In other parts of Austria the Turkish crayfish has been transplanted into several gravel pits and ponds. Up to now, the red swamp crayfish (Procambarus clarkii is not known to occur in the wild, but can be bought alive in fish markets, restaurants, and the aquarium trade. The Nearctic spiny-cheek crayfish (Orconectes limosus and the signal crayfish (Pacifastacus leniusculus have been introduced since the 1970s by crayfish farmers because these species are resistant to the crayfish plague fungus (Aphanomyces astaci. There are just a few populations of O. limosus, and the species is not spreading actively. However, P. leniusculus is widespread all over Austria, and was illegally introduced from one water body to another. It can be characterized as an aggressive, invasive North American species, spreading actively and acting as a vector of the crayfish plague. Unfortunately the habitat requirements of the native noble crayfish and the alien signal crayfish are nearly the same. Case studies are given in the following chapters: the first group of examples refers to water bodies where the alien signal crayfish is most probably the cause of displacement of the indigenous noble crayfish: 1 Hintersee, 2 Irrsee (« Zeller See », 3 north-western Lower Austria (« Waldviertel », 4 Merzenstein (aquacultural enterprise, 5 Neufelder See. The second group of examples refers to water bodies where alien and indigenous species are able to coexist: a the confluence of the main course of the Danube River, the Ölhafen and the Neue Donau in the southeast part of Vienna, b the Schönauer Wasser, a backwater of the Danube River downstream

  15. Understanding Oxygen Vacancy Formation, Interaction, Transport, and Strain in SOFC Components via Combined Thermodynamics and First Principles Calculations

    Science.gov (United States)

    Das, Tridip

    Understanding of the vacancy formation, interaction, increasing its concentration and diffusion, and controlling its chemical strain will advance the design of mixed ionic and electronic conductor (MIEC) materials via element doping and strain engineering. This is especially central to improve the performance of the solid oxide fuel cell (SOFC), an energy conversion device for sustainable future. The oxygen vacancy concentration grows exponentially with the temperature at dilute vacancy concentration but not at higher concentration, or even decreases due to oxygen vacancy interaction and vacancy ordered phase change. This limits the ionic conductivity. Using density functional theory (DFT), we provided fundamental understanding on how oxygen vacancy interaction originates in one of the typical MIEC, La1-xSrxFeO3-delta (LSF). The vacancy interaction is determined by the interplay of the charge state of multi-valence ion (Fe), aliovalent doping (La/Sr ratio), the crystal structure, and the oxygen vacancy concentration and/or nonstoichiometry (delta). It was found excess electrons left due to the formation of a neutral oxygen vacancy get distributed to Fe directly connected to the vacancy or to the second nearest neighboring Fe, based on crystal field splitting of Fe 3d orbital in different Fe-O polyhedral coordination. The progressively larger polaron size and anisotropic shape changes with increasing Sr-content resulted in increasing oxygen vacancy interactions, as indicated by an increase in the oxygen vacancy formation energy above a critical delta threshold. This was consistent with experimental results showing that Sr-rich LSF and highly oxygen deficient compositions are prone to oxygen-vacancy-ordering-induced phase transformations, while Sr-poor and oxygen-rich LSF compositions are not. Since oxygen vacancy induced phase transformations, cause a decrease in the mobile oxygen vacancy site fraction (X), both delta and X were predicted as a function of

  16. Interventions and Interactions: Understanding Coupled Human-Water Dynamics for Improved Water Resources Management in the Himalayas

    Science.gov (United States)

    Crootof, A.

    2017-12-01

    Understanding coupled human-water dynamics offers valuable insights to address fundamental water resources challenges posed by environmental change. With hydropower reshaping human-water interactions in mountain river basins, there is a need for a socio-hydrology framework—which examines two-way feedback loops between human and water systems—to more effectively manage water resources. This paper explores the cross-scalar interactions and feedback loops between human and water systems in river basins affected by run-of-the-river hydropower and highlights the utility of a socio-hydrology perspectives to enhance water management in the face of environmental change. In the Himalayas, the rapid expansion of run-of-the-river hydropower—which diverts streamflow for energy generation—is reconfiguring the availability, location, and timing of water resources. This technological intervention in the river basin not only alters hydrologic dyanmics but also shapes social outcomes. Using hydropower development in the highlands of Uttarakhand, India as a case study, I first illustrate how run-of-the-river projects transform human-water dynamics by reshaping the social and physical landscape of a river basin. Second, I emphasize how examining cross-scalar feedbacks among structural dynamics, social outcomes, and values and norms in this coupled human-water system can inform water management. Third, I present hydrological and social literature, raised separately, to indicate collaborative research needs and knowledge gaps for coupled human-water systems affected by run-of-the-river hydropower. The results underscore the need to understand coupled human-water dynamics to improve water resources management in the face of environmental change.

  17. Development of an Intelligent Digital Watershed to understand water-human interaction for a sustainable Agroeconomy in Midwest USA

    Science.gov (United States)

    Mishra, S. K.; Rapolu, U.; Ding, D.; Muste, M.; Bennett, D.; Schnoor, J. L.

    2011-12-01

    Human activity is intricately linked to the quality and quantity of water resources. Although many studies have examined water-human interaction, the complexity of such coupled systems is not well understood largely because of gaps in our knowledge of water-cycle processes which are heavily influenced by socio-economic drivers. Considerable research has been performed to develop an understanding of the impact of local land use decisions on field and catchment processes at an annual basis. Still less is known about the impact of economic and environmental outcomes on decision-making processes at the local and national level. Traditional geographic information management systems lack the ability to support the modeling and analysis of complex spatial processes. New frameworks are needed to track, query, and analyze the massive amounts of data generated by ensembles of simulations produced by multiple models that couple socioeconomic and natural system processes. On this context, we propose to develop an Intelligent Digital Watershed (IDW) which fuses emerging concepts of Digital Watershed (DW). DW is a comprehensive characterization of the eco hydrologic systems based on the best available digital data generated by measurements and simulations models. Prototype IDW in the form of a cyber infrastructure based engineered system will facilitate novel insights into human/environment interactions through multi-disciplinary research focused on watershed-related processes at multiple spatio-temporal scales. In ongoing effort, the prototype IDW is applied to Clear Creek watershed, an agricultural dominating catchment in Iowa, to understand water-human processes relevant to management decisions by farmers regarding agro ecosystems. This paper would also lay out the database design that stores metadata about simulation scenarios, scenario inputs and outputs, and connections among these elements- essentially the database. The paper describes the cyber infrastructure and

  18. A raft-associated species of phosphatidylethanolamine interacts with cholesterol comparably to sphingomyelin. A Langmuir-Blodgett monolayer study.

    Directory of Open Access Journals (Sweden)

    Michal Grzybek

    Full Text Available BACKGROUND: Specific interactions between sphingomyelin (SM and cholesterol (Ch are commonly believed to play a key role in the formation of rafts in the biological membranes. A weakness of this model is the implication that these microdomains are confined to the outer bilayer leaflet. The cytoplasmic leaflet, which contains the bulk of phosphatidylethanolamine (PE, phosphatidylserine (PS and phosphatidylinositol (PI, is thought also to harbour half of the membrane cholesterol. Moreover, SLPE (1-stearoyl-2-linoleoyl-sn-glycero-3-phosphatidyl-ethanolamine has recently been shown to be enriched in isolated detergent-resistant membranes (DRM, and this enrichment was independent of the method of isolation of DRM. METHODOLOGY/PRINCIPAL FINDINGS: Here we present quantitative evidence coming from Langmuir-Blodgett monolayer experiments that SLPE forms complex with Ch similar to that between SM and Ch. The energies of these interactions as calculated form the monolayer studies are highly negative. FRAP analysis showed that NBD-Ch recovery was similar in liposomes composed of DOPC/Ch SM or SLPE but not DPPE, providing further evidence that SLPE may form an l(o phase in the presence of high Ch concentration. Experiments on the solubility of DOPC liposomes containing DPPE/Ch (1ratio1, SM/Ch (1ratio1 or SLPE/Ch (1ratio1 showed the presence of Triton X-100 insoluble floating fraction (TIFF in the case of SM/Ch or SLPE/Ch but not in DPPE/Ch containing liposomes. Quantitative determination of particular lipid species in the TIFF fraction confirms the conclusion that SLPE (or similar PE species could be an important constituent of the inner leaflet raft. CONCLUSION: Such interactions suggest a possible existence of inner-leaflet nanoscale assemblies composed of cholesterol complexes with SLPE or similar unsaturated PE species.

  19. Modeling of the Dorsal Gradient across Species Reveals Interaction between Embryo Morphology and Toll Signaling Pathway during Evolution

    Science.gov (United States)

    Koslen, Hannah R.; Chiel, Hillel J.; Mizutani, Claudia Mieko

    2014-01-01

    Morphogenetic gradients are essential to allocate cell fates in embryos of varying sizes within and across closely related species. We previously showed that the maternal NF-κB/Dorsal (Dl) gradient has acquired different shapes in Drosophila species, which result in unequally scaled germ layers along the dorso-ventral axis and the repositioning of the neuroectodermal borders. Here we combined experimentation and mathematical modeling to investigate which factors might have contributed to the fast evolutionary changes of this gradient. To this end, we modified a previously developed model that employs differential equations of the main biochemical interactions of the Toll (Tl) signaling pathway, which regulates Dl nuclear transport. The original model simulations fit well the D. melanogaster wild type, but not mutant conditions. To broaden the applicability of this model and probe evolutionary changes in gradient distributions, we adjusted a set of 19 independent parameters to reproduce three quantified experimental conditions (i.e. Dl levels lowered, nuclear size and density increased or decreased). We next searched for the most relevant parameters that reproduce the species-specific Dl gradients. We show that adjusting parameters relative to morphological traits (i.e. embryo diameter, nuclear size and density) alone is not sufficient to reproduce the species Dl gradients. Since components of the Tl pathway simulated by the model are fast-evolving, we next asked which parameters related to Tl would most effectively reproduce these gradients and identified a particular subset. A sensitivity analysis reveals the existence of nonlinear interactions between the two fast-evolving traits tested above, namely the embryonic morphological changes and Tl pathway components. Our modeling further suggests that distinct Dl gradient shapes observed in closely related melanogaster sub-group lineages may be caused by similar sequence modifications in Tl pathway components, which

  20. Understanding the interactions of phosphonate-based flame-retarding additives with graphitic anode for lithium ion batteries

    International Nuclear Information System (INIS)

    Feng, Jinkui; Ma, Peng; Yang, Hanxi; Lu, Li

    2013-01-01

    Highlights: •Diethyl ethylphosphonate (DEEP) and dimethyl methylphosphonate are tested as flame retardants for lithium ion batteries. •The DMMP shows a destructive reaction with graphitic anode while DEEP shows a self-reduction mechanism. •DEEP is reported for the first time as flame-retardant additive for lithium ion batteries and demonstrates a much better compatibility with graphitic anode. -- Abstract: The compatibility with graphitic anode has been one key problem in developing flame-retarding additives for lithium ion batteries. To understand the interactions between flame-retarding additives and graphitic anode, two phosphonate esters (dimethyl methylphosphonate DMMP and diethyl ethylphosphonate DEEP) are selected and characterized as flame retardant addtives. DEEP is reported as a flame-retarding additive for the first time. Their interactions with graphite anode are characterized via current-static charge–discharge, ex-situ XRD, FE-SEM and AC impedance. The results reveal that the two phosphonate esters demonstrate different reaction mechanisms with graphitic anode, which result in different anode compatibility. These findings may be useful for designing better flame-retarding additives for lithium ion batteries

  1. Understanding the interaction between an obligate hyperparasitic bacterium, Pasteuria penetrans and its obligate plant-parasitic nematode host, Meloidogyne spp.

    Science.gov (United States)

    Davies, Keith G

    2009-01-01

    Pasteuria penetrans is an endospore-forming bacterium, which is a hyperparasite of root-knot nematodes Meloidogyne spp. that are economically important pests of a wide range of crops. The life cycle of the bacterium and nematode are described with emphasis on the bacterium's potential as a biocontrol agent. Two aspects that currently prohibit the commercial development of the bacterium as a biocontrol agent are the inability to culture it outside its host and its host specificity. Vegetative growth of the bacterium is possible in vitro; however, getting the vegetative stages of the bacterium to enter sporogenesis has been problematic. Insights from genomic survey sequences regarding the role of cation concentration and the phosphorylation of Spo0F have proved useful in inducing vegetative bacteria to sporulate. Similarly, genomic data have also proved useful in understanding the attachment of endospores to the cuticle of infective nematode juveniles, and a Velcro-like model of spore attachment is proposed that involves collagen-like fibres on the surface of the endospore interacting with mucins on the nematode cuticle. Ecological studies of the interactions between Daphnia and Pasteuria ramosa are examined and similarities are drawn between the co-evolution of virulence in the Daphnia system and that of plant-parasitic nematodes.

  2. Understanding an Elementary School Teachers' Journey of Using Technology in the Classroom from Sand Table to Interactive Whiteboard

    Directory of Open Access Journals (Sweden)

    Ali Ersoy

    2015-09-01

    Full Text Available The aim of this study is to understand an elementary teachers’ experiences about using interactive whiteboard (IWB in the classroom. Narrative inquiry were adopted to conduct the study. The data were collected through semi-structured interviews with the teacher and analysed through narrative analysis. In the study, two major stories emerged. The first story was about the characteristics and difficulties of being an innovative and transformative teacher. In the second story, the use of technology in the classroom were cited. Second story consisted of such sub-stories as changing student profiles, teaching-learning process, measurement and evaluation process, infrastructural adequacy, stakeholder interaction, facilitator role of the technology and challenges of using IWB in the classroom. In all these stories, the examples and advantages of effective use of IWB in the classroom were explained. We can have the following suggestions from the words of the classroom teacher who has been using various technological tools in his classroom for about 40 years, including 10-year IWB use: Teachers should be open-minded for innovation in the sense of professional development, consider the interests of students, reduce the prejudice about the use of technology, utilize the processes that increase and facilitate the learning.

  3. RNA-seq in kinetoplastids: A powerful tool for the understanding of the biology and host-pathogen interactions.

    Science.gov (United States)

    Patino, Luz Helena; Ramírez, Juan David

    2017-04-01

    The kinetoplastids include a large number of parasites responsible for serious diseases in humans and animals (Leishmania and Trypanosoma brucei) considered endemic in several regions of the world. These parasites are characterized by digenetic life cycles that undergo morphological and genetic changes that allow them to adapt to different microenvironments on their vertebrates and invertebrates hosts. Recent advances in ´omics´ technology, specifically transcriptomics have allowed to reveal aspects associated with such molecular changes. So far, different techniques have been used to evaluate the gene expression profile during the various stages of the life cycle of these parasites and during the host-parasite interactions. However, some of them have serious drawbacks that limit the precise study and full understanding of their transcriptomes. Therefore, recently has been implemented the latest technology (RNA-seq), which overcomes the drawbacks of traditional methods. In this review, studies that so far have used RNA-seq are presented and allowed to expand our knowledge regarding the biology of these parasites and their interactions with their hosts. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Retrospective use of PBPK modelling to understand a clinical drug-drug interaction between dextromethorphan and GSK1034702.

    Science.gov (United States)

    Hobbs, Michael J; Bloomer, Jackie; Dear, Gordon

    2017-08-01

    1. In a clinical trial, a strong drug-drug interaction (DDI) was observed between dextromethorphan (DM, the object or victim drug) and GSK1034702 (the precipitant or perpetrator drug), following single and repeat doses. This study determined the inhibition parameters of GSK1034702 in vitro and applied PBPK modelling approaches to simulate the clinical observations and provide mechanistic hypotheses to understand the DDI. 2. In vitro assays were conducted to determine the inhibition parameters of human CYP2D6 by GSK1034702. PBPK models were populated with the in vitro parameters and DDI simulations conducted and compared to the observed data from a clinical study with DM and GSK1034702. 3. GSK1034702 was a potent direct and metabolism-dependent inhibitor of human CYP2D6, with inhibition parameters of: IC 50  =   1.6 μM, K inact  = 3.7 h -1 and K I  = 0.8 μM. Incorporating these data into PBPK models predicted a DDI after repeat, but not single, 5 mg doses of GSK1034702. 4. The DDI observed with repeat administration of GSK1034702 (5 mg) can be attributed to metabolism-dependent inhibition of CYP2D6. Further, in vitro data were generated and several potential mechanisms proposed to explain the interaction observed following a single dose of GSK1034702.

  5. Light Absorption in Coralline Algae (Rhodophyta: A Morphological and Functional Approach to Understanding Species Distribution in a Coral Reef Lagoon

    Directory of Open Access Journals (Sweden)

    Román M. Vásquez-Elizondo

    2017-09-01

    Full Text Available Red coralline algae are a cosmopolitan group with the ability to precipitate CaCO3 within the walls of their vegetative cells. The resultant carbonate structure is key for explaining their ecological success, as it provides protection against herbivores and resistance to water motion. However, its potential contribution to enhance thallus light absorption efficiency through multiple light scattering on algal skeleton, similar to the effect documented for scleractinian corals, has not been yet investigated. Here, we initiate this analysis, characterizing thallus optical properties of three coralline species, which differed in pigment content and thallus mass area (TMA, gDW m−2. The three species, the rhodolith Neogoniolithon sp., the crustose coralline alga (CCA, Lithothamnion sp., and the articulated alga Amphiroa tribulus, represent the more distinctive coralline growth-forms and are able to colonize contrasting light environments in Caribbean coral reefs. The thicker thalli of the rhodoliths were the most efficient light collectors, as evidenced by their higher pigment absorption efficiency (a*Chla; m2 mgChla−1 and photosynthetic rates per unit area. This could explain rhodolith success in oligotrophic, highly illuminated reef environments. In contrast, the thinner thalli of the CCA, a low-light specialist, showed the highest metabolic rates normalized to mass and the highest light absorption efficiencies per unit mass (a*M; m2 gdw−1. Therefore, the ecological success of the CCA in cryptic habitats within the reef cannot be explained only by its low-light physiology, but also by its capacity to reduce the structural costs of their thalli, and thus of its new growth. Lastly, the ecological success of Amphiroa tribulus, which displayed intermediate values for the efficiency of light absorption, metabolic rates and TMA, was explained by its ability to construct the largest light collectors (algal canopies thanks to the presence of flexible

  6. New insights on the species-specific allelopathic interactions between macrophytes and marine HAB dinoflagellates.

    Directory of Open Access Journals (Sweden)

    Hela Ben Gharbia

    Full Text Available Macrophytes are known to release allelochemicals that have the ability to inhibit the proliferation of their competitors. Here, we investigated the effects of the fresh leaves of two magnoliophytes (Zostera noltei and Cymodocea nodosa and thalli of the macroalgae Ulva rigida on three HAB-forming benthic dinoflagellates (Ostreopsis cf. ovata, Prorocentrum lima, and Coolia monotis. The effects of C. nodosa and U. rigida were also tested against the neurotoxic planktonic dinoflagellate Alexandrium pacificum Litaker sp. nov (former Alexandrium catenella. Co-culture experiments were conducted under controlled laboratory conditions and potential allelopathic effects of the macrophytes on the growth, photosynthesis and toxin production of the targeted dinoflagellates were evaluated. Results showed that U. rigida had the strongest algicidal effect and that the planktonic A. pacificum was the most vulnerable species. Benthic dinoflagellates seemed more tolerant to potential allelochemicals produced by macrophytes. Depending on the dinoflagellate/macrophyte pairs and the weight of leaves/thalli tested, the studied physiological processes were moderately to heavily altered. Our results suggest that the allelopathic activity of the macrophytes could influence the development of HAB species.

  7. New insights on the species-specific allelopathic interactions between macrophytes and marine HAB dinoflagellates.

    Science.gov (United States)

    Ben Gharbia, Hela; Kéfi-Daly Yahia, Ons; Cecchi, Philippe; Masseret, Estelle; Amzil, Zouher; Herve, Fabienne; Rovillon, Georges; Nouri, Habiba; M'Rabet, Charaf; Couet, Douglas; Zmerli Triki, Habiba; Laabir, Mohamed

    2017-01-01

    Macrophytes are known to release allelochemicals that have the ability to inhibit the proliferation of their competitors. Here, we investigated the effects of the fresh leaves of two magnoliophytes (Zostera noltei and Cymodocea nodosa) and thalli of the macroalgae Ulva rigida on three HAB-forming benthic dinoflagellates (Ostreopsis cf. ovata, Prorocentrum lima, and Coolia monotis). The effects of C. nodosa and U. rigida were also tested against the neurotoxic planktonic dinoflagellate Alexandrium pacificum Litaker sp. nov (former Alexandrium catenella). Co-culture experiments were conducted under controlled laboratory conditions and potential allelopathic effects of the macrophytes on the growth, photosynthesis and toxin production of the targeted dinoflagellates were evaluated. Results showed that U. rigida had the strongest algicidal effect and that the planktonic A. pacificum was the most vulnerable species. Benthic dinoflagellates seemed more tolerant to potential allelochemicals produced by macrophytes. Depending on the dinoflagellate/macrophyte pairs and the weight of leaves/thalli tested, the studied physiological processes were moderately to heavily altered. Our results suggest that the allelopathic activity of the macrophytes could influence the development of HAB species.

  8. A dynamic ecosystem process model for understanding interactions between permafrost thawing and vegetation responses in the arctic

    Science.gov (United States)

    Xu, C.; Travis, B. J.; Fisher, R. A.; Wilson, C. J.; McDowell, N.

    2010-12-01

    The arctic is expected to play an important role in the Earth’s future climate due to the large carbon stocks that are stored in permafrost and peatlands, a substantial proportion of which may be released to the atmosphere due to permafrost thawing. There may be positive feedbacks of permafrost thawing on plant growth by releasing stored nitrogen and increasing rooting depth; however, vegetation response to other changing variables such as CO2 and temperature can also modify soil hydrology and energy fluxes, leading to either positive or negative feedbacks on permafrost thawing. Disentangling the interactions between permafrost thawing and vegetation growth is critical for assessing the potential role of arctic regions on current and future global carbon cycling. We have developed a mechanistic, regional, and spatially explicit dynamic ecosystem process model through the integration of a 3-D soil hydrology and biogeochemistry model (Arctic Hydrology, ARCHY) and a dynamic vegetation model (Ecosystem Demography, ED), to quantify the importance of plant-permafrost interactions to soil and plant carbon storage. This model integrates important processes including photosynthesis, transpiration, respiration, 3-D competition for light, 3-D soil hydrology, energy fluxes (ice melting in the soil and solar radiation interception by canopy), nitrogen cycles (microbial decomposition, nitrogen transportation in soil, passive and active nitrogen uptake by plants), species migration, and drought-related mortality. A sensitivity analysis has been implemented to assess the importance of the hydrological cycle, the nitrogen cycle and energy fluxes in regulating the above and below-ground carbon cycles in arctic regions. Our model can fill an important gap between field and global land surface models for assessing plot and regional level hypotheses in the context of global climate.

  9. Reactive Oxygen Species Generation-Scavenging and Signaling during Plant-Arbuscular Mycorrhizal and Piriformospora indica Interaction under Stress Condition.

    Science.gov (United States)

    Nath, Manoj; Bhatt, Deepesh; Prasad, Ram; Gill, Sarvajeet S; Anjum, Naser A; Tuteja, Narendra

    2016-01-01

    A defined balance between the generation and scavenging of reactive oxygen species (ROS) is essential to utilize ROS as an adaptive defense response of plants under biotic and abiotic stress conditions. Moreover, ROS are not only a major determinant of stress response but also act as signaling molecule that regulates various cellular processes including plant-microbe interaction. In particular, rhizosphere constitutes the biologically dynamic zone for plant-microbe interactions which forms a mutual link leading to reciprocal signaling in both the partners. Among plant-microbe interactions, symbiotic associations of arbuscular mycorrhizal fungi (AMF) and arbuscular mycorrhizal-like fungus especially Piriformospora indica with plants are well known to improve plant growth by alleviating the stress-impacts and consequently enhance the plant fitness. AMF and P. indica colonization mainly enhances ROS-metabolism, maintains ROS-homeostasis, and thereby averts higher ROS-level accrued inhibition in plant cellular processes and plant growth and survival under stressful environments. This article summarizes the major outcomes of the recent reports on the ROS-generation, scavenging and signaling in biotic-abiotic stressed plants with AMF and P. indica colonization. Overall, a detailed exploration of ROS-signature kinetics during plant-AMF/ P. indica interaction can help in designing innovative strategies for improving plant health and productivity under stress conditions.

  10. Selective logging in tropical forests decreases the robustness of liana-tree interaction networks to the loss of host tree species.

    Science.gov (United States)

    Magrach, Ainhoa; Senior, Rebecca A; Rogers, Andrew; Nurdin, Deddy; Benedick, Suzan; Laurance, William F; Santamaria, Luis; Edwards, David P

    2016-03-16

    Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the 'health' and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana-tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of 'extinction debt'. © 2016 The Author(s).

  11. Selective logging in tropical forests decreases the robustness of liana–tree interaction networks to the loss of host tree species

    Science.gov (United States)

    Magrach, Ainhoa; Senior, Rebecca A.; Rogers, Andrew; Nurdin, Deddy; Benedick, Suzan; Laurance, William F.; Santamaria, Luis; Edwards, David P.

    2016-01-01

    Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the ‘health’ and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana–tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of ‘extinction debt’. PMID:26936241

  12. Diffusion, Coulombic interactions and multicomponent ionic transport of charged species in saturated porous media

    DEFF Research Database (Denmark)

    Rolle, Massimo; Muniruzzaman, Muhammad

    water are cross-coupled due to the effects of Coulombic interactions. Such effects are illustrated in flow-through experiments in saturated porous media. Simple strong electrolytes (i.e., salts and strong acid solutions) were selected as tracers and their transport was studied under different advection......-dominated conditions in homogeneous and heterogeneous porous media [2-3]. The model-based interpretation of the experimental results is challenging since it requires a multicomponent ionic formulation with an accurate description of local hydrodynamic dispersion and explicitly accounting for the cross-coupling...

  13. Interaction of legionella pneumophila and helicobacter pylori with bacterial species isolated from drinking water biofilms

    Directory of Open Access Journals (Sweden)

    Azevedo Nuno F

    2011-03-01

    Full Text Available Abstract Background It is well established that Legionella pneumophila is a waterborne pathogen; by contrast, the mode of Helicobacter pylori transmission remains unknown but water seems to play an important role. This work aims to study the influence of five microorganisms isolated from drinking water biofilms on the survival and integration of both of these pathogens into biofilms. Results Firstly, both pathogens were studied for auto- and co-aggregation with the species isolated from drinking water; subsequently the formation of mono and dual-species biofilms by L. pneumophila or H. pylori with the same microorganisms was investigated. Neither auto- nor co-aggregation was observed between the microorganisms tested. For biofilm studies, sessile cells were quantified in terms of total cells by SYTO 9 staining, viable L. pneumophila or H. pylori cells were quantified using 16 S rRNA-specific peptide nucleic acid (PNA probes and cultivable cells by standard culture techniques. Acidovorax sp. and Sphingomonas sp. appeared to have an antagonistic effect on L. pneumophila cultivability but not on the viability (as assessed by rRNA content using the PNA probe, possibly leading to the formation of viable but noncultivable (VBNC cells, whereas Mycobacterium chelonae increased the cultivability of this pathogen. The results obtained for H. pylori showed that M. chelonae and Sphingomonas sp. help this pathogen to maintain cultivability for at least 24 hours. Conclusions It appears that M. chelonae may have an important role in the survival of both pathogens in drinking water. This work also suggests that the presence of some microorganisms can decrease the cultivability of L. pneumophila but not the viability which indicates that the presence of autochthonous microorganisms can lead to misleading results when the safety of water is assessed by cultivable methods alone.

  14. A survey of the interaction of calcium ions with mitochondria from different tissues and species

    Science.gov (United States)

    Carafoli, Ernesto; Lehninger, Albert L.

    1971-01-01

    A survey was made of the capacity of mitochondria isolated from a number of different tissues and species to accumulate Ca2+ from the suspending medium during electron transport. The species examined included the rat, mouse, rabbit, hamster, guinea pig, cow, chicken, turtle, blowfly, yeast and Neurospora crassa. The tissues examined included vertebrate liver, kidney, brain, heart, spleen, thyroid and adrenal cortex, and the flight muscle of the blowfly. The mitochondria from all vertebrate tissues examined showed: (a) stimulation of State 4 respiration by added Ca2+ (Ca2+/~ activation ratio about 2.0), accompanied by accumulation of Ca2+ and ejection of H+, with a H+/Ca2+ ratio about 1.0; (b) a requirement of phosphate for accumulation of large amounts of Ca2+; (c) respiration-independent high-affinity binding sites for Ca2+; (d) endogenous Ca2+, which is largely released by uncoupling agents. However, mitochondria from yeast and blowfly flight muscle are unable to accumulate Ca2+ in a respiration-dependent process and possess no high-affinity Ca2+-binding sites. These findings support the view that the high-affinity sites represent the ligand-binding sites of a specific Ca2+ `permease' or transport system in the membrane. The relatively high affinity for Ca2+, which equals or exceeds the affinity for ADP, and the generally uniform characteristics of Ca2+ transport in all the vertebrate mitochondria tested strongly suggest that respiration-linked Ca2+ accumulation plays a general and fundamental role in vertebrate cell physiology. PMID:5129264

  15. Structure of the ribosomal interacting GTPase YjeQ from the enterobacterial species Salmonella typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, C. E. [Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Johnson, C.; Lamb, H. K. [Institute of Cell and Molecular Biosciences, Catherine Cookson Building, Medical School, Framlington Place, Newcastle University, Newcastle-upon-Tyne NE2 4HH (United Kingdom); Lockyer, M. [Arrow Therapeutics Ltd, Britannia House, Trinity Street, Borough, London SE1 1DA (United Kingdom); Charles, I. G. [The Wolfson Institute for Biomedical Research, The Cruciform Building, University College London, Gower Street, London WC1E 6BT (United Kingdom); Hawkins, A. R. [Institute of Cell and Molecular Biosciences, Catherine Cookson Building, Medical School, Framlington Place, Newcastle University, Newcastle-upon-Tyne NE2 4HH (United Kingdom); Stammers, D. K., E-mail: daves@strubi.ox.ac.uk [Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom)

    2007-11-01

    The X-ray crystal structure of the GTPase YjeQ from S. typhimurium is presented and compared with those of orthologues from T. maritima and B. subtilis. The YjeQ class of P-loop GTPases assist in ribosome biogenesis and also bind to the 30S subunit of mature ribosomes. YjeQ ribosomal binding is GTP-dependent and thought to specifically direct protein synthesis, although the nature of the upstream signal causing this event in vivo is as yet unknown. The attenuating effect of YjeQ mutants on bacterial growth in Escherichia coli makes it a potential target for novel antimicrobial agents. In order to further explore the structure and function of YjeQ, the isolation, crystallization and structure determination of YjeQ from the enterobacterial species Salmonella typhimurium (StYjeQ) is reported. Whilst the overall StYjeQ fold is similar to those of the previously reported Thematoga maritima and Bacillus subtilis orthologues, particularly the GTPase domain, there are larger differences in the three OB folds. Although the zinc-finger secondary structure is conserved, significant sequence differences alter the nature of the external surface in each case and may reflect varying signalling pathways. Therefore, it may be easier to develop YjeQ-specific inhibitors that target the N- and C-terminal regions, disrupting the metabolic connectivity rather than the GTPase activity. The availability of coordinates for StYjeQ will provide a significantly improved basis for threading Gram-negative orthologue sequences and in silico compound-screening studies, with the potential for the development of species-selective drugs.

  16. Structure of the ribosomal interacting GTPase YjeQ from the enterobacterial species Salmonella typhimurium

    International Nuclear Information System (INIS)

    Nichols, C. E.; Johnson, C.; Lamb, H. K.; Lockyer, M.; Charles, I. G.; Hawkins, A. R.; Stammers, D. K.

    2007-01-01

    The X-ray crystal structure of the GTPase YjeQ from S. typhimurium is presented and compared with those of orthologues from T. maritima and B. subtilis. The YjeQ class of P-loop GTPases assist in ribosome biogenesis and also bind to the 30S subunit of mature ribosomes. YjeQ ribosomal binding is GTP-dependent and thought to specifically direct protein synthesis, although the nature of the upstream signal causing this event in vivo is as yet unknown. The attenuating effect of YjeQ mutants on bacterial growth in Escherichia coli makes it a potential target for novel antimicrobial agents. In order to further explore the structure and function of YjeQ, the isolation, crystallization and structure determination of YjeQ from the enterobacterial species Salmonella typhimurium (StYjeQ) is reported. Whilst the overall StYjeQ fold is similar to those of the previously reported Thematoga maritima and Bacillus subtilis orthologues, particularly the GTPase domain, there are larger differences in the three OB folds. Although the zinc-finger secondary structure is conserved, significant sequence differences alter the nature of the external surface in each case and may reflect varying signalling pathways. Therefore, it may be easier to develop YjeQ-specific inhibitors that target the N- and C-terminal regions, disrupting the metabolic connectivity rather than the GTPase activity. The availability of coordinates for StYjeQ will provide a significantly improved basis for threading Gram-negative orthologue sequences and in silico compound-screening studies, with the potential for the development of species-selective drugs

  17. Subsurface interactions of actinide species and microorganisms. Implications for the bioremediation of actinide-organic mixtures

    International Nuclear Information System (INIS)

    Banaszak, J.E.; Rittmann, B.E.; Reed, D.T.

    1999-01-01

    By reviewing how microorganisms interact with actinides in subsurface environments, the way how bioremediation controls the fate of actinides is assessed. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. The way how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility is described. Why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions is explained. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. Development of mathematical models that link microbiological and geochemical reactions is described. Throughout, the key research needs are identified. (author)

  18. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures

    International Nuclear Information System (INIS)

    Banaszak, J.E.; Reed, D.T.; Rittmann, B.E.

    1999-01-01

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs

  19. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures.

    Energy Technology Data Exchange (ETDEWEB)

    Banaszak, J.E.; Reed, D.T.; Rittmann, B.E.

    1999-02-12

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs.

  20. Stability of strong species interactions resist the synergistic effects of local and global pollution in kelp forests.

    Directory of Open Access Journals (Sweden)

    Laura J Falkenberg

    Full Text Available Foundation species, such as kelp, exert disproportionately strong community effects and persist, in part, by dominating taxa that inhibit their regeneration. Human activities which benefit their competitors, however, may reduce stability of communities, increasing the probability of phase-shifts. We tested whether a foundation species (kelp would continue to inhibit a key competitor (turf-forming algae under moderately increased local (nutrient and near-future forecasted global pollution (CO(2. Our results reveal that in the absence of kelp, local and global pollutants combined to cause the greatest cover and mass of turfs, a synergistic response whereby turfs increased more than would be predicted by adding the independent effects of treatments (kelp absence, elevated nutrients, forecasted CO(2. The positive effects of nutrient and CO(2 enrichment on turfs were, however, inhibited by the presence of kelp, indicating the competitive effect of kelp was stronger than synergistic effects of moderate enrichment of local and global pollutants. Quantification of physicochemical parameters within experimental mesocosms suggests turf inhibition was likely due to an effect of kelp on physical (i.e. shading rather than chemical conditions. Such results indicate that while forecasted climates may increase the probability of phase-shifts, maintenance of intact populations of foundation species could enable the continued strength of interactions and persistence of communities.

  1. Integrating multiple lines of evidence to better understand the evolutionary divergence of humpback dolphins along their entire distribution range: a new dolphin species in Australian waters?

    Science.gov (United States)

    Mendez, Martin; Jefferson, Thomas A; Kolokotronis, Sergios-Orestis; Krützen, Michael; Parra, Guido J; Collins, Tim; Minton, Giana; Baldwin, Robert; Berggren, Per; Särnblad, Anna; Amir, Omar A; Peddemors, Vic M; Karczmarski, Leszek; Guissamulo, Almeida; Smith, Brian; Sutaria, Dipani; Amato, George; Rosenbaum, Howard C

    2013-12-01

    The conservation of humpback dolphins, distributed in coastal waters of the Indo-West Pacific and eastern Atlantic Oceans, has been hindered by a lack of understanding about the number of species in the genus (Sousa) and their population structure. To address this issue, we present a combined analysis of genetic and morphologic data collected from beach-cast, remote-biopsied and museum specimens from throughout the known Sousa range. We extracted genetic sequence data from 235 samples from extant populations and explored the mitochondrial control region and four nuclear introns through phylogenetic, population-level and population aggregation frameworks. In addition, 180 cranial specimens from the same geographical regions allowed comparisons of 24 morphological characters through multivariate analyses. The genetic and morphological data showed significant and concordant patterns of geographical segregation, which are typical for the kind of demographic isolation displayed by species units, across the Sousa genus distribution range. Based on our combined genetic and morphological analyses, there is convincing evidence for at least four species within the genus (S. teuszii in the Atlantic off West Africa, S. plumbea in the central and western Indian Ocean, S. chinensis in the eastern Indian and West Pacific Oceans, and a new as-yet-unnamed species off northern Australia). © 2013 John Wiley & Sons Ltd.

  2. Tool-use training in a species of rodent: the emergence of an optimal motor strategy and functional understanding.

    Directory of Open Access Journals (Sweden)

    Kazuo Okanoya

    Full Text Available BACKGROUND: Tool use is defined as the manipulation of an inanimate object to change the position or form of a separate object. The expansion of cognitive niches and tool-use capabilities probably stimulated each other in hominid evolution. To understand the causes of cognitive expansion in humans, we need to know the behavioral and neural basis of tool use. Although a wide range of animals exhibit tool use in nature, most studies have focused on primates and birds on behavioral or psychological levels and did not directly address questions of which neural modifications contributed to the emergence of tool use. To investigate such questions, an animal model suitable for cellular and molecular manipulations is needed. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated for the first time that rodents can be trained to use tools. Through a step-by-step training procedure, we trained degus (Octodon degus to use a rake-like tool with their forelimbs to retrieve otherwise out-of-reach rewards. Eventually, they mastered effective use of the tool, moving it in an elegant trajectory. After the degus were well trained, probe tests that examined whether they showed functional understanding of the tool were performed. Degus did not hesitate to use tools of different size, colors, and shapes, but were reluctant to use the tool with a raised nonfunctional blade. Thus, degus understood the functional and physical properties of the tool after extensive training. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that tool use is not a specific faculty resulting from higher intelligence, but is a specific combination of more general cognitive faculties. Studying the brains and behaviors of trained rodents can provide insights into how higher cognitive functions might be broken down into more general faculties, and also what cellular and molecular mechanisms are involved in the emergence of such cognitive functions.

  3. Understanding the dynamics in distribution of invasive alien plant species under predicted climate change in Western Himalaya.

    Science.gov (United States)

    Thapa, Sunil; Chitale, Vishwas; Rijal, Srijana Joshi; Bisht, Neha; Shrestha, Bharat Babu

    2018-01-01

    Invasive alien plant species (IAPS) can pose severe threats to biodiversity and stability of native ecosystems, therefore, predicting the distribution of the IAPS plays a crucial role in effective planning and management of ecosystems. In the present study, we use Maximum Entropy (MaxEnt) modelling approach to predict the potential of distribution of eleven IAPS under future climatic conditions under RCP 2.6 and RCP 8.5 in part of Kailash sacred landscape region in Western Himalaya. Based on the model predictions, distribution of most of these invasive plants is expected to expand under future climatic scenarios, which might pose a serious threat to the native ecosystems through competition for resources in the study area. Native scrublands and subtropical needle-leaved forests will be the most affected ecosystems by the expansion of these IAPS. The present study is first of its kind in the Kailash Sacred Landscape in the field of invasive plants and the predictions of potential distribution under future climatic conditions from our study could help decision makers in planning and managing these forest ecosystems effectively.

  4. Yakima River Species Interactions Studies; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pearsons, Todd N.; Temple, Gabriel M.; Fritts, Anthony L. (Washington Department of Fish and Wildlife, Olympia, WA)

    2005-05-01

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from the Washington Department of Fish and Wildlife (WDFW) to the Bonneville Power Administration (BPA), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the thirteenth of a series of progress reports that address species interactions research and supplementation monitoring of fishes in response to supplementation of salmon and steelhead in the upper Yakima River basin (Hindman et al. 1991; McMichael et al. 1992; Pearsons et al. 1993; Pearsons et al. 1994; Pearsons et al. 1996; Pearsons et al. 1998, Pearsons et al. 1999, Pearsons et al. 2001a, Pearsons et al. 2001b, Pearsons et al. 2002, Pearsons et al. 2003, Pearsons et al. 2004). Journal articles and book chapters have also been published from our work (McMichael 1993; Martin et al. 1995; McMichael et al. 1997; McMichael and Pearsons 1998; McMichael et al. 1998; Pearsons and Fritts 1999; McMichael et al. 1999; McMichael et al. 1999; Pearsons and Hopley 1999; Ham and Pearsons 2000; Ham and Pearsons 2001; Amaral et al. 2001; McMichael and Pearsons 2001; Pearsons 2002, Fritts and Pearsons 2004, Pearsons et al. in press, Major et al. in press). This progress report summarizes data collected between January 1, 2004 and December 31, 2004. These data were compared to findings from previous years to identify general trends and make preliminary comparisons. Interactions between fish produced as part of the YKFP, termed target species or stocks, and other species or stocks (non-target taxa) may alter the population status of non-target species or stocks. This may occur through a variety of mechanisms, such as competition, predation, and interbreeding (Pearsons et al. 1994; Busack et al. 1997; Pearsons and Hopley 1999). Furthermore, the success of a supplementation program may

  5. [Effects of shading on two Sphagnum species growth and their interactions].

    Science.gov (United States)

    Ma, Jin-Ze; Bu, Zhao-Jun; Zheng, Xing-Xing; Li, Shan-Lin; Zeng, Jing; Zhao, Gao-Lin

    2012-02-01

    Taking Sphagnum palustre and S. fallax as test materials, this paper studied their growth and interactions under shading. In monoculture, shading promoted the height growth of S. palustre markedly, but had no effect on the growth of S. fallax and the biomass and branching of S. palustre. In mixed culture, S. fallax suppressed the increase of biomass and branching of S. palustre, while S. palustre had no effects on S. fallax. With the increase of shading stress, the competition of neighbour on S. fallax intensified. When the stress increased further, neighbor effect on S. fallax tended to be positive. However, the effect of neighbour on S. palustre was always competitive and did not change with the increase of shading stress.

  6. Plant community resistance to invasion by Bromus species: The roles of community attributes, Bromus interactions with plant communities, and Bromus traits [Chapter 10

    Science.gov (United States)

    Jeanne C. Chambers; Matthew J. Germino; Jayne Belnap; Cynthia S. Brown; Eugene W. Schupp; Samuel B. St. Clair

    2016-01-01

    The factors that determine plant community resistance to exotic annual Bromus species (Bromus hereafter) are diverse and context specific. They are influenced by the environmental characteristics and attributes of the community, the traits of Bromus species, and the direct and indirect interactions of Bromus with the plant community. Environmental factors, in...

  7. Niche construction within riparian corridors. Part II: The unexplored role of positive intraspecific interactions in Salicaceae species

    Science.gov (United States)

    Corenblit, Dov; Garófano-Gómez, Virginia; González, Eduardo; Hortobágyi, Borbála; Julien, Frédéric; Lambs, Luc; Otto, Thierry; Roussel, Erwan; Steiger, Johannes; Tabacchi, Eric; Till-Bottraud, Irène

    2018-03-01

    Within riparian corridors, Salicaceae trees and shrubs affect hydrogeomorphic processes and lead to the formation of wooded fluvial landforms. These trees form dense stands and enhance plant anchorage, as grouped plants are less prone to be uprooted than free-standing individuals. This also enhances their role as ecosystem engineers through the trapping of sediment, organic matter, and nutrients. The landform formation caused by these wooded biogeomorphic landforms probably represents a positive niche construction, which ultimately leads, through facilitative processes, to an improved capacity of the individual trees to survive, exploit resources, and reach sexual maturity in the interval between destructive floods. The facilitative effects of riparian vegetation are well established; however, the nature and intensity of biotic interactions among trees of the same species forming dense woody stands and constructing the niche remain unclear. Our hypothesis is that the niche construction process also comprises more direct intraspecific interactions, such as cooperation or altruism. Our aim in this paper is to propose an original theoretical framework for positive intraspecific interactions among riparian Salicaceae species operating from establishment to sexual maturity. Within this framework, we speculate that (i) positive intraspecific interactions among trees are maximized in dynamic river reaches; (ii) during establishment, intraspecific facilitation (or helping) occurs among trees and this leads to the maintenance of a dense stand that improves survival and growth because saplings protect each other from shear stress and scour; (iii) in addition to the improved capacity to trap mineral and organic matter, individuals that constitute the dense stand can cooperate to mutually support a mycorrhizal network that will connect plants, soil, and groundwater and influence nutrient transfer, cycling, and storage within the shared constructed niche; (iv) during post

  8. A Cross-Species Study of PI3K Protein-Protein Interactions Reveals the Direct Interaction of P85 and SHP2

    Science.gov (United States)

    Breitkopf, Susanne B.; Yang, Xuemei; Begley, Michael J.; Kulkarni, Meghana; Chiu, Yu-Hsin; Turke, Alexa B.; Lauriol, Jessica; Yuan, Min; Qi, Jie; Engelman, Jeffrey A.; Hong, Pengyu; Kontaridis, Maria I.; Cantley, Lewis C.; Perrimon, Norbert; Asara, John M.

    2016-02-01

    Using a series of immunoprecipitation (IP) - tandem mass spectrometry (LC-MS/MS) experiments and reciprocal BLAST, we conducted a fly-human cross-species comparison of the phosphoinositide-3-kinase (PI3K) interactome in a drosophila S2R+ cell line and several NSCLC and human multiple myeloma cell lines to identify conserved interacting proteins to PI3K, a critical signaling regulator of the AKT pathway. Using H929 human cancer cells and drosophila S2R+ cells, our data revealed an unexpected direct binding of Corkscrew, the drosophila ortholog of the non-receptor protein tyrosine phosphatase type II (SHP2) to the Pi3k21B (p60) regulatory subunit of PI3K (p50/p85 human ortholog) but no association with Pi3k92e, the human ortholog of the p110 catalytic subunit. The p85-SHP2 association was validated in human cell lines, and formed a ternary regulatory complex with GRB2-associated-binding protein 2 (GAB2). Validation experiments with knockdown of GAB2 and Far-Western blots proved the direct interaction of SHP2 with p85, independent of adaptor proteins and transfected FLAG-p85 provided evidence that SHP2 binding on p85 occurred on the SH2 domains. A disruption of the SHP2-p85 complex took place after insulin/IGF1 stimulation or imatinib treatment, suggesting that the direct SHP2-p85 interaction was both independent of AKT activation and positively regulates the ERK signaling pathway.

  9. Population dynamics of three songbird species in a nestbox population in Central Europe show effects of density, climate and competitive interactions

    NARCIS (Netherlands)

    Smallegange, I.M.; van der Meer, J.; Fiedler, W.

    2011-01-01

    Unravelling the contributions of density-dependent and density-independent factors in determining species population dynamics is a challenge, especially if the two factors interact. One approach is to apply stochastic population models to long-term data, yet few studies have included interactions

  10. Sodium Lauryl Sulfate Stimulates the Generation of Reactive Oxygen Species through Interactions with Cell Membranes.

    Science.gov (United States)

    Mizutani, Taeko; Mori, Ryota; Hirayama, Misaki; Sagawa, Yuki; Shimizu, Kenji; Okano, Yuri; Masaki, Hitoshi

    2016-12-01

    Sodium lauryl sulfate (SLS), a representative anionic surfactant, is well-known to induce rough skin following single or multiple topical applications. The mechanism by which SLS induces rough skin is thought to result from the disruption of skin moisture function consisting of NMF and epidermal lipids. However, a recent study demonstrated that topically applied SLS easily penetrates into the living cell layers of the epidermis, which suggests that physiological alterations of keratinocytes might cause the SLS-induced rough skin. This study was conducted to clarify the effects of SLS on keratinocytes to demonstrate the contribution of SLS to the induction of rough skin. In addition, the potentials of other widely used anionic surfactants to induce rough skin were evaluated. HaCaT keratinocytes treated with SLS had increased levels of intracellular ROS and IL-1α secretion. Application of SLS on the surface of a reconstructed epidermal equivalent also showed the increased generation of ROS. Further, SLS-treated cells showed an increase of intracellular calpain activity associated with the increase of intracellular Ca 2+ concentration. The increase of intracellular ROS was abolished by the addition of BAPTA-AM, a specific chelator of Ca 2+ . In addition, IL-1α also stimulated ROS generation by HaCaT keratinocytes. An ESR spin-labeling study demonstrated that SLS increased the fluidity of membranes of liposomes and cells. Together, those results indicate that SLS initially interacts with cell membranes, which results in the elevation of intracellular Ca 2+ influx. Ca 2+ stimulates the secretion of IL-1α due to the activation of calpain, and also increases ROS generation. IL-1α also stimulates ROS generation by HaCaT keratinocytes. We conclude from these results that the elevation of intracellular ROS levels is one of the causes of SLS-induced rough skin. Finally, among the other anionic surfactants tested, sodium lauryl phosphate has less potential to induce rough

  11. A dual-species co-cultivation system to study the interactions between Roseobacters and Dinoflagellates

    Directory of Open Access Journals (Sweden)

    Hui eWang

    2014-06-01

    Full Text Available Some microalgae in nature live in symbiosis with microorganisms that can enhance or inhibit growth, thus influencing the dynamics of phytoplankton blooms. In spite of the great ecological importance of these interactions, very few defined laboratory systems are available to study them in detail. Here we present a co-cultivation system consisting of the toxic phototrophic dinoflagellate Prorocentrum minimum and the photoheterotrophic alphaproteobacterium Dinoroseobacter shibae. In a mineral medium lacking a carbon source, vitamins for the bacterium and the essential vitamin B12 for the dinoflagellate, growth dynamics reproducibly went from a mutualistic phase, where both algae and bacteria grow, to a pathogenic phase, where the algae are killed by the bacteria. The data show a Jekyll and Hyde lifestyle that had been proposed but not previously demonstrated. We used RNAseq and microarray analysis to determine which genes of D. shibae are transcribed and differentially expressed in a light dependent way at an early time-point of the co-culture when the bacterium grows very slowly. Enrichment of bacterial mRNA for transcriptome analysis was optimized, but none of the available methods proved capable of removing dinoflagellate ribosomal RNA completely. RNAseq showed that a phasin encoding gene (phaP1 which is part of the polyhydroxyalkanoate (PHA metabolism operon represented approximately 10 % of all transcripts. Five genes for aerobic anoxygenic photosynthesis were down-regulated in the light, indicating that the photosynthesis apparatus was functional. A betaine-choline-carnitine-transporter (BCCT that may be used for dimethylsulfoniopropionate (DMSP uptake was the highest up-regulated gene in the light. The data suggest that at this early mutualistic phase of the symbiosis, PHA degradation might be the main carbon and energy source of D. shibae, supplemented in the light by degradation of DMSP and aerobic anoxygenic photosynthesis.

  12. Study of Allelopathic Interaction of Wheat (Triticum aestivum L. and Some Weed Species Using Equal - Compartment – Agar Method

    Directory of Open Access Journals (Sweden)

    M. R Labbafi

    2012-02-01

    Full Text Available There are many methods for weed management one of them is putting allelopathic and cover crop in weed management programs. In order to study the effect of sowing time (delayed sowing, synchronic sowing and wheat cultivars (Shiraz, Roshan, Tabasi, Niknejad on allelopathic interaction of wheat and weed species (Secale cereale L., Avena ludoviciana L.: monocotyledon, Convolvulus arvensis L. and Vicia villosa L.: dicotyledon, an experiment was conducted with factorial arrangement in a completely randomized design and 4 replications. According to the results, the inhibitory effect of wheat on monocot weeds (oat and rye was more than in synchronic sowing and the inhibitory effect of wheat on dicot weeds (bindweed and vetch was more than in delayed sowing. Effect of wheat cultivars on rye and oat (except hypocotyls length was inhibitory and that of vetch was stimulatory. Hypocotyls length showed the most sensitivity to released allelochemicals from wheat cultivars, because root has the most contact with allelochemicals in the soil.

  13. Assessing the putative roles of X-autosome and X-Y interactions in hybrid male sterility of the Drosophila bipectinata species complex.

    Science.gov (United States)

    Mishra, Paras Kumar; Singh, Bashisth Narayan

    2007-07-01

    Interspecific F1 hybrid males of the Drosophila bipectinata species complex are sterile, while females are fertile, following Haldane's rul