WorldWideScience

Sample records for understand mechanisms involved

  1. Understanding the molecular mechanisms involved in the interfacial self-healing of supramolecular rubbers

    NARCIS (Netherlands)

    Bose, R.K.; Garcia Espallargas, S.J.; Van der Zwaag, S.

    2013-01-01

    Supramolecular rubbers based on 2-aminoethylimidazolidone and fatty acids with epoxy crosslinks have been shown to self-heal via multiple hydrogen bonding sites. In this work, several tools are used to investigate the molecular mechanisms taking place at the interface to understand cohesive healing

  2. Altered DNA methylation: a secondary mechanism involved in carcinogenesis.

    Science.gov (United States)

    Goodman, Jay I; Watson, Rebecca E

    2002-01-01

    This review focuses on the role that DNA methylation plays in the regulation of normal and aberrant gene expression and on how, in a hypothesis-driven fashion, altered DNA methylation may be viewed as a secondary mechanism involved in carcinogenesis. Research aimed at discerning the mechanisms by which chemicals can transform normal cells into frank carcinomas has both theoretical and practical implications. Through an increased understanding of the mechanisms by which chemicals affect the carcinogenic process, we learn more about basic biology while, at the same time, providing the type of information required to make more rational safety assessment decisions concerning their actual potential to cause cancer under particular conditions of exposure. One key question is: does the mechanism of action of the chemical in question involve a secondary mechanism and, if so, what dose may be below its threshold?

  3. Mechanisms involved in the transport of mercuric ions in target tissues

    Science.gov (United States)

    Bridges, Christy C.; Zalups, Rudolfs K.

    2016-01-01

    Mercury exists in the environment in various forms, all of which pose a risk to human health. Despite guidelines regulating the industrial release of mercury into the environment, humans continue to be exposed regularly to various forms of this metal via inhalation or ingestion. Following exposure, mercuric ions are taken up by and accumulate in numerous organs, including brain, intestine, kidney, liver, and placenta. In order to understand the toxicological effects of exposure to mercury, a thorough understanding of the mechanisms that facilitate entry of mercuric ions into target cells must first be obtained. A number of mechanisms for the transport of mercuric ions into target cells and organs have been proposed in recent years. However, the ability of these mechanisms to transport mercuric ions and the regulatory features of these carriers have not been characterized completely. The purpose of this review is to summarize the current findings related to the mechanisms that may be involved in the transport of inorganic and organic forms of mercury in target tissues and organs. This review will describe mechanisms known to be involved in the transport of mercury and will also propose additional mechanisms that may potentially be involved in the transport of mercuric ions into target cells. PMID:27422290

  4. Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change

    Science.gov (United States)

    Visintainer, Tammie; Linn, Marcia

    2015-01-01

    Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in…

  5. Understanding and imitating unfamiliar actions: distinct underlying mechanisms.

    Directory of Open Access Journals (Sweden)

    Joana C Carmo

    Full Text Available The human "mirror neuron system" has been proposed to be the neural substrate that underlies understanding and, possibly, imitating actions. However, since the brain activity with mirror properties seems insufficient to provide a good description for imitation of actions outside one's own repertoire, the existence of supplementary processes has been proposed. Moreover, it is unclear whether action observation requires the same neural mechanisms as the explicit access to their meaning. The aim of this study was two-fold as we investigated whether action observation requires different processes depending on 1 whether the ultimate goal is to imitate or understand the presented actions and 2 whether the to-be-imitated actions are familiar or unfamiliar to the subject. Participants were presented with both meaningful familiar actions and meaningless unfamiliar actions that they had to either imitate or discriminate later. Event-related Potentials were used as differences in brain activity could have been masked by the use of other techniques with lower temporal resolution. In the imitation task, a sustained left frontal negativity was more pronounced for meaningless actions than for meaningful ones, starting from an early time-window. Conversely, observing unfamiliar versus familiar actions with the intention of discriminating them led to marked differences over right centro-posterior scalp regions, in both middle and latest time-windows. These findings suggest that action imitation and action understanding may be sustained by dissociable mechanisms: while imitation of unfamiliar actions activates left frontal processes, that are likely to be related to learning mechanisms, action understanding involves dedicated operations which probably require right posterior regions, consistent with their involvement in social interactions.

  6. Understanding the dynamics of parent involvement in schooling ...

    African Journals Online (AJOL)

    Understanding the dynamics of parent involvement in schooling within the poverty context. ... South African Journal of Education ... understand the realities and dynamics facing parents when attempting to be involved in their child\\'s schooling.

  7. Understanding Neurological Disease Mechanisms in the Era of Epigenetics

    Science.gov (United States)

    Qureshi, Irfan A.; Mehler, Mark F.

    2015-01-01

    The burgeoning field of epigenetics is making a significant impact on our understanding of brain evolution, development, and function. In fact, it is now clear that epigenetic mechanisms promote seminal neurobiological processes, ranging from neural stem cell maintenance and differentiation to learning and memory. At the molecular level, epigenetic mechanisms regulate the structure and activity of the genome in response to intracellular and environmental cues, including the deployment of cell type–specific gene networks and those underlying synaptic plasticity. Pharmacological and genetic manipulation of epigenetic factors can, in turn, induce remarkable changes in neural cell identity and cognitive and behavioral phenotypes. Not surprisingly, it is also becoming apparent that epigenetics is intimately involved in neurological disease pathogenesis. Herein, we highlight emerging paradigms for linking epigenetic machinery and processes with neurological disease states, including how (1) mutations in genes encoding epigenetic factors cause disease, (2) genetic variation in genes encoding epigenetic factors modify disease risk, (3) abnormalities in epigenetic factor expression, localization, or function are involved in disease pathophysiology, (4) epigenetic mechanisms regulate disease-associated genomic loci, gene products, and cellular pathways, and (5) differential epigenetic profiles are present in patient-derived central and peripheral tissues. PMID:23571666

  8. Examining Understandings of Parent Involvement in Early Childhood Programs

    Science.gov (United States)

    Hilado, Aimee V.; Kallemeyn, Leanne; Phillips, Lauren

    2013-01-01

    The importance of parent involvement in children's development and learning is increasingly recognized in the research literature and in federal and state policies; however, no unified definition of parent involvement exists. This study examined different understandings and definitions of parent involvement in a sample of administrators of…

  9. Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change

    Science.gov (United States)

    Visintainer, Tammie; Linn, Marcia

    2015-04-01

    Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in the Web-based Inquiry Science Environment (WISE), engages sixth-grade students in conducting virtual investigations using NetLogo models to foster an understanding of core mechanisms including the greenhouse effect. Students then test how the greenhouse effect is enhanced by everyday energy use. This study draws on three data sources: (1) pre- and post-unit interviews, (2) analysis of embedded assessments following virtual investigations, and (3) contrasting cases of two students (normative vs. non-normative understanding of the greenhouse effect). Results show the value of using virtual investigations for teaching the mechanisms associated with global climate change. Interviews document that students hold a wide range of ideas about the mechanisms driving global climate change. Investigations with models help students use evidence-based reasoning to distinguish their ideas. Results show that understanding the greenhouse effect offers a foundation for building connections between everyday energy use and increases in global temperature. An impediment to establishing coherent understanding was the persistence of an alternative conception about ozone as an explanation for climate change. These findings illustrate the need for regular revision of curriculum based on classroom trials. We discuss key design features of models and instructional revisions that can transform the teaching and learning of global climate change.

  10. Understanding Mechanical Design with Respect to Manufacturability

    Science.gov (United States)

    Mondell, Skyler

    2010-01-01

    At the NASA Prototype Development Laboratory in Kennedy Space Center, Fl, several projects concerning different areas of mechanical design were undertaken in order to better understand the relationship between mechanical design and manufacturabiIity. The assigned projects pertained specifically to the NASA Space Shuttle, Constellation, and Expendable Launch Vehicle programs. During the work term, mechanical design practices relating to manufacturing processes were learned and utilized in order to obtain an understanding of mechanical design with respect to manufacturability.

  11. Understanding biochar mechanisms for practical implementation

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Bruno [Halle-Wittenberg Univ. (Germany). Inst. fuer Agrar- und Ernaehrungeswissenschaften Bodenbiogeochemie; Kammann, Claudia [Arbeitskreis zur Nutzung von Sekundaerrohstoffen und fuer Klimaschutz (ANS) e.V., Braunschweig (Germany). Fachausschuss Biokohle; Hochschule Geisenheim Univ. (Germany). Klimafolgenforschung-Klimawandel in Spezialkulturen; Loewen, Achim (ed.) [Arbeitskreis zur Nutzung von Sekundaerrohstoffen und fuer Klimaschutz (ANS) e.V., Braunschweig (Germany); HAWK Hochschule fuer Angewandte Wissenschaft und Kunst Hildesheim, Holzminden, Goettingen (Germany). Fachgebiet Nachhaltige Energie- und Umwelttechnik NEUtec

    2015-07-01

    The conference on ''understanding biochar mechanisms for practical implementation'' 2015 at the Geisenheim University aims at understanding biochar mechanism, that are crucial for beneficial and safety biochar technology implementation. Further issues are ecotoxicology, biochar in agriculture, horticulture, and animal husbandry. Practical issues concern analysis and characterization of technological processes, sustainable uses and certification, regulation and marketing aspects. The Conference is structured in 10 sessions.

  12. Towards a Better Understanding of the Molecular Mechanisms Involved in Sunlight-Induced Melanoma

    Directory of Open Access Journals (Sweden)

    Williams Mandy

    2005-01-01

    Full Text Available Although much less prevalent than its nonmelanoma skin cancer counterparts, cutaneous malignant melanoma (CMM is the most lethal human skin cancer. Epidemiological and biological studies have established a strong link between lifetime exposure to ultraviolet (UV light, particularly sunburn in childhood, and the development of melanoma. However, the specific molecular targets of this environmental carcinogen are not known. Data obtained from genetic and molecular studies over the last few years have identified the INK4a/ARF locus as the “gatekeeper” melanoma suppressor, encoding two tumour suppressor proteins in human, p16 INK4a and p14 ARF . Recent developments in molecular biotechnology and research using laboratory animals have made a significant gene breakthrough identifying the components of the p16 INK4a /Rb pathway as the principal and rate-limiting targets of UV radiation actions in melanoma formation. This review summarizes the current knowledge of the molecular mechanisms involved in melanoma development and its relationship to sunlight UV radiation.

  13. Respiratory mechanics to understand ARDS and guide mechanical ventilation.

    Science.gov (United States)

    Mauri, Tommaso; Lazzeri, Marta; Bellani, Giacomo; Zanella, Alberto; Grasselli, Giacomo

    2017-11-30

    As precision medicine is becoming a standard of care in selecting tailored rather than average treatments, physiological measurements might represent the first step in applying personalized therapy in the intensive care unit (ICU). A systematic assessment of respiratory mechanics in patients with the acute respiratory distress syndrome (ARDS) could represent a step in this direction, for two main reasons. Approach and Main results: On the one hand, respiratory mechanics are a powerful physiological method to understand the severity of this syndrome in each single patient. Decreased respiratory system compliance, for example, is associated with low end expiratory lung volume and more severe lung injury. On the other hand, respiratory mechanics might guide protective mechanical ventilation settings. Improved gravitationally dependent regional lung compliance could support the selection of positive end-expiratory pressure and maximize alveolar recruitment. Moreover, the association between driving airway pressure and mortality in ARDS patients potentially underlines the importance of sizing tidal volume on respiratory system compliance rather than on predicted body weight. The present review article aims to describe the main alterations of respiratory mechanics in ARDS as a potent bedside tool to understand severity and guide mechanical ventilation settings, thus representing a readily available clinical resource for ICU physicians.

  14. Recent progress on understanding the mechanisms of amyloid nucleation.

    Science.gov (United States)

    Chatani, Eri; Yamamoto, Naoki

    2018-04-01

    Amyloid fibrils are supramolecular protein assemblies with a fibrous morphology and cross-β structure. The formation of amyloid fibrils typically follows a nucleation-dependent polymerization mechanism, in which a one-step nucleation scheme has widely been accepted. However, a variety of oligomers have been identified in early stages of fibrillation, and a nucleated conformational conversion (NCC) mechanism, in which oligomers serve as a precursor of amyloid nucleation and convert to amyloid nuclei, has been proposed. This development has raised the need to consider more complicated multi-step nucleation processes in addition to the simplest one-step process, and evidence for the direct involvement of oligomers as nucleation precursors has been obtained both experimentally and theoretically. Interestingly, the NCC mechanism has some analogy with the two-step nucleation mechanism proposed for inorganic and organic crystals and protein crystals, although a more dramatic conformational conversion of proteins should be considered in amyloid nucleation. Clarifying the properties of the nucleation precursors of amyloid fibrils in detail, in comparison with those of crystals, will allow a better understanding of the nucleation of amyloid fibrils and pave the way to develop techniques to regulate it.

  15. Understanding the mechanisms of lung mechanical stress

    Directory of Open Access Journals (Sweden)

    C.S.N.B. Garcia

    2006-06-01

    Full Text Available Physical forces affect both the function and phenotype of cells in the lung. Bronchial, alveolar, and other parenchymal cells, as well as fibroblasts and macrophages, are normally subjected to a variety of passive and active mechanical forces associated with lung inflation and vascular perfusion as a result of the dynamic nature of lung function. These forces include changes in stress (force per unit area or strain (any forced change in length in relation to the initial length and shear stress (the stress component parallel to a given surface. The responses of cells to mechanical forces are the result of the cell's ability to sense and transduce these stimuli into intracellular signaling pathways able to communicate the information to its interior. This review will focus on the modulation of intracellular pathways by lung mechanical forces and the intercellular signaling. A better understanding of the mechanisms by which lung cells transduce physical forces into biochemical and biological signals is of key importance for identifying targets for the treatment and prevention of physical force-related disorders.

  16. How to understand quantum mechanics

    CERN Document Server

    Ralston, John P

    2018-01-01

    How to Understand Quantum Mechanics presents an accessible introduction to understanding quantum mechanics in a natural and intuitive way, which was advocated by Erwin Schroedinger and Albert Einstein. A theoretical physicist reveals dozens of easy tricks that avoid long calculations, makes complicated things simple, and bypasses the worthless anguish of famous scientists who died in angst. The author's approach is light-hearted, and the book is written to be read without equations, however all relevant equations still appear with explanations as to what they mean. The book entertainingly rejects quantum disinformation, the MKS unit system (obsolete), pompous non-explanations, pompous people, the hoax of the 'uncertainty principle' (it is just a math relation), and the accumulated junk-DNA that got into the quantum operating system by misreporting it. The order of presentation is new and also unique by warning about traps to be avoided, while separating topics such as quantum probability to let the Schroeding...

  17. Application of microscopy methods to the understanding of mechanisms involved in ilmenite reduction by hydrogen

    International Nuclear Information System (INIS)

    De Vries, M.; Grey, I.; Fitzgerald, J.

    2003-01-01

    Full text: Titania pigment is one of the major drivers of the mineral sands industry with production of over 4 million tpa in 2002 for paints, plastics, paper and ceramics applications. The main feedstock for titania pigment production is ilmenite, FeTiO 3 . It is used either directly or after it has been upgraded to a higher titania content. The major commercial upgrading processes are electro smelting (titania slag) or high temperature char reduction followed by iron removal (synthetic rutile SR). Future ilmenite upgrading processes are likely to use low temperature hydrogen reduction according to reaction, followed by aeration of the metallic iron and acid leaching to produce a high grade SR (Nicholson et al, 2000). The commercial application of such a process requires a detailed knowledge of the kinetics of reaction. FeTiO 3 + H 2 = Fe(m) + TiO 2 + H 2 O. The kinetics of ilmenite reduction has been studied at CSIRO Minerals using a specially designed thermogravimetric apparatus built around a Cahn pressurised symmetrical beam balance. The kinetics have been measured as a function of different operating parameters such as temperature, gas velocity and pressure. The parameters were set so as to minimise mass transport effects and increase chemical reaction control and to ensure the reduction kinetics are outside the gas starvation region. Small samples were used that had been sintered at close to melting point to form large grains with low unconnected porosity. High flow rates of reactant gas were also used. The application of a range of microscopy techniques to the reduced samples at various stages of reaction conversion has been critical to the development of an understanding of the reaction mechanisms. From analysis of TEM, IFESEM and optical microscopy results it appears that initially, chemical reaction is rate controlling at the surface and as the reaction proceeds topochemically inwards then diffusion mechanisms increase their control. Reaction proceeds

  18. The Vulnerability of Vessels Involved in the Role of Embolism and Hypoperfusion in the Mechanisms of Ischemic Cerebrovascular Diseases

    Directory of Open Access Journals (Sweden)

    Yong Peng Yu

    2016-01-01

    Full Text Available Accurate definition and better understanding of the mechanisms of stroke are crucial as this will guide the effective care and therapy. In this paper, we review the previous basic and clinical researches on the causes or mechanisms of ischemic cerebrovascular diseases (ICVD and interpret the correlation between embolism and hypoperfusion based on vascular stenosis and arterial intimal lesions. It was suggested that if there is no embolus (dynamic or in situ emboli, there might be no cerebral infarction. Three kinds of different clinical outcomes of TIA were theoretically interpreted based on its mechanisms. We suppose that there is a correlation between embolism and hypoperfusion, and which mechanisms (hypoperfusion or hypoperfusion induced microemboli playing the dominant role in each type of ICVD depends on the unique background of arterial intimal lesions (the vulnerability of vessels. That is to say, the vulnerability of vessels is involved in the role of embolism and hypoperfusion in the mechanisms of ischemic cerebrovascular diseases. This inference might enrich and provide better understandings for the underlying etiologies of ischemic cerebrovascular events.

  19. The mechanisms involved at the cell level

    International Nuclear Information System (INIS)

    Leblanc, G.; Pourcher, Th.; Perron, B.; Guillain, F.; Quemeneur, E.; Fritsch, P.

    2003-01-01

    The mechanisms responsible at the cell level for inducing toxic reactions after contamination are as yet only imperfectly known. Work still needs to be done for both contaminants that have a biological role, such as iodine, and those that do not, such as cadmium, uranium and plutonium. In particular, these mechanisms bring into play, in biological membranes, carriers which are the physiological partners responsible for material exchange with the environment or inside the body. As they lack absolute selectivity, these carriers, which are involved in the assimilation and accumulation of vital mineral elements, also have the ability to transport toxic elements and isotopes. (authors)

  20. Mechanism(s) involved in opioid drug abuse modulation of HAND.

    Science.gov (United States)

    Dutta, Raini; Roy, Sabita

    2012-07-01

    Drug abuse and HIV infection are interlinked. From the onset of the HIV/AIDS epidemic, the impact of illicit drug use on HIV disease progression has been a focus of many investigations. Both laboratory-based and epidemiological studies strongly indicate that drug abuse may exacerbate HIV disease progression and increase mortality and morbidity in these patients. Increase susceptibility to opportunistic infection has been implicated as one of the major causes for this detriment. Furthermore, opioids are known to elicit prevalence of neurodegenerative disorders in HIV-infected patients. Numerous authors have delineated various molecular as well as cellular mechanisms associated with neurological complications in these patients. This review gives an overview of these findings. Understanding the mechanisms will allow for the development of targeted therapies aimed at reducing the progression of neurocognitive decline in the drug abusing HIV infected individuals.

  1. Unit mechanisms of fission gas release: Current understanding and future needs

    Science.gov (United States)

    Tonks, Michael; Andersson, David; Devanathan, Ram; Dubourg, Roland; El-Azab, Anter; Freyss, Michel; Iglesias, Fernando; Kulacsy, Katalin; Pastore, Giovanni; Phillpot, Simon R.; Welland, Michael

    2018-06-01

    Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel and gap properties. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are beginning to reveal new understanding of the unit mechanisms that define fission product behavior. Here, existing research on the basic mechanisms of fission gas release during normal reactor operation are summarized and critical areas where work is needed are identified. This basic understanding of the fission gas behavior mechanisms has the potential to revolutionize our ability to predict fission product behavior and to design fuels with improved performance. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.

  2. Advanced waterflooding in chalk reservoirs: Understanding of underlying mechanisms

    DEFF Research Database (Denmark)

    Zahid, Adeel; Sandersen, Sara Bülow; Stenby, Erling Halfdan

    2011-01-01

    Over the last decade, a number of studies have shown SO42−, Ca2+ and Mg2+ to be potential determining ions, which may be added to the injected brine for improving oil recovery during waterflooding in chalk reservoirs. However the understanding of the mechanism leading to an increase in oil recove...... of a microemulsion phase could be the possible reasons for the observed increase in oil recovery with sulfate ions at high temperature in chalk reservoirs besides the mechanism of the rock wettability alteration, which has been reported in most previous studies.......Over the last decade, a number of studies have shown SO42−, Ca2+ and Mg2+ to be potential determining ions, which may be added to the injected brine for improving oil recovery during waterflooding in chalk reservoirs. However the understanding of the mechanism leading to an increase in oil recovery...

  3. Advances in the understanding of crystal growth mechanisms

    CERN Document Server

    Nishinaga, T; Harada, J; Sasaki, A; Takei, H

    1997-01-01

    This book contains the results of a research project entitled Crystal Growth Mechanisms on an Atomic Scale, which was carried out for 3 years by some 72 reseachers. Until recently in Japan, only the technological aspects of crystal growth have been emphasized and attention was paid only to its importance in industry. However the scientific aspects also need to be considered so that the technology of crystal growth can be developed even further. This project therefore aimed at understanding crystal growth and the emphasis was on finding growth mechanisms on an atomic scale.

  4. Tokamak engineering mechanics

    International Nuclear Information System (INIS)

    Song, Yuntao; Wu, Weiyue; Du, Shijun

    2014-01-01

    Provides a systematic introduction to tokamaks in engineering mechanics. Includes design guides based on full mechanical analysis, which makes it possible to accurately predict load capacity and temperature increases. Presents comprehensive information on important design factors involving materials. Covers the latest advances in and up-to-date references on tokamak devices. Numerous examples reinforce the understanding of concepts and provide procedures for design. Tokamak Engineering Mechanics offers concise and thorough coverage of engineering mechanics theory and application for tokamaks, and the material is reinforced by numerous examples. Chapter topics include general principles, static mechanics, dynamic mechanics, thermal fluid mechanics and multiphysics structural mechanics of tokamak structure analysis. The theoretical principle of the design and the methods of the analysis for various components and load conditions are presented, while the latest engineering technologies are also introduced. The book will provide readers involved in the study of mechanical/fusion engineering with a general understanding of tokamak engineering mechanics.

  5. Student Understanding of Time Dependence in Quantum Mechanics

    Science.gov (United States)

    Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.

    2015-01-01

    The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing…

  6. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms.

    Science.gov (United States)

    Vidal-Dupiol, Jeremie; Adjeroud, Mehdi; Roger, Emmanuel; Foure, Laurent; Duval, David; Mone, Yves; Ferrier-Pages, Christine; Tambutte, Eric; Tambutte, Sylvie; Zoccola, Didier; Allemand, Denis; Mitta, Guillaume

    2009-08-04

    Coral bleaching can be defined as the loss of symbiotic zooxanthellae and/or their photosynthetic pigments from their cnidarian host. This major disturbance of reef ecosystems is principally induced by increases in water temperature. Since the beginning of the 1980s and the onset of global climate change, this phenomenon has been occurring at increasing rates and scales, and with increasing severity. Several studies have been undertaken in the last few years to better understand the cellular and molecular mechanisms of coral bleaching but the jigsaw puzzle is far from being complete, especially concerning the early events leading to symbiosis breakdown. The aim of the present study was to find molecular actors involved early in the mechanism leading to symbiosis collapse. In our experimental procedure, one set of Pocillopora damicornis nubbins was subjected to a gradual increase of water temperature from 28 degrees C to 32 degrees C over 15 days. A second control set kept at constant temperature (28 degrees C). The differentially expressed mRNA between the stressed states (sampled just before the onset of bleaching) and the non stressed states (control) were isolated by Suppression Subtractive Hybridization. Transcription rates of the most interesting genes (considering their putative function) were quantified by Q-RT-PCR, which revealed a significant decrease in transcription of two candidates six days before bleaching. RACE-PCR experiments showed that one of them (PdC-Lectin) contained a C-Type-Lectin domain specific for mannose. Immunolocalisation demonstrated that this host gene mediates molecular interactions between the host and the symbionts suggesting a putative role in zooxanthellae acquisition and/or sequestration. The second gene corresponds to a gene putatively involved in calcification processes (Pdcyst-rich). Its down-regulation could reflect a trade-off mechanism leading to the arrest of the mineralization process under stress. Under thermal stress

  7. Unit mechanisms of fission gas release: Current understanding and future needs

    Energy Technology Data Exchange (ETDEWEB)

    Tonks, Michael; Andersson, David; Devanathan, Ram; Dubourg, Roland; El-Azab, Anter; Freyss, Michel; Iglesias, Fernando; Kulacsy, Katalin; Pastore, Giovanni; Phillpot, Simon R.; Welland, Michael

    2018-06-01

    Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel properties and, once the gas is released into the gap between the fuel and cladding, lowering gap thermal conductivity and increasing gap pressure. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are being applied to provide unprecedented understanding of the unit mechanisms that define the fission product behavior. In this article, existing research on the basic mechanisms behind the various stages of fission gas release during normal reactor operation are summarized and critical areas where experimental and simulation work is needed are identified. This basic understanding of the fission gas behavior mechanisms has the potential to revolutionize our ability to predict fission product behavior during reactor operation and to design fuels that have improved fission product retention. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.

  8. Facilitating evaluations of innovative, competence-based assessment: Creating understanding and involving multiple stakeholders

    NARCIS (Netherlands)

    Gulikers, J.T.M.; Baartman, L.K.J.; Biemans, H.

    2010-01-01

    Schools are held more responsible for evaluating, quality assuring and improving their student assessments. Teachers’ lack of understanding of new, competence-based assessments as well as the lack of key stakeholders’ involvement, hamper effective and efficient self-evaluations by teachers of

  9. Facilitating evaluations of innovative, competence-based assessments: creating understanding and involving multiple stakeholders.

    NARCIS (Netherlands)

    Gulikers, J.T.M.; Baartman, L.; Biemans, H.J.A.

    2010-01-01

    Schools are held more responsible for evaluating, quality assuring and improving their student assessments. Teachers’ lack of understanding of new, competence-based assessments as well as the lack of key stakeholders’ involvement, hamper effective and efficient self-evaluations by teachers of

  10. Understanding mechanisms of toxicity: Insights from drug discovery research

    International Nuclear Information System (INIS)

    Houck, Keith A.; Kavlock, Robert J.

    2008-01-01

    Toxicology continues to rely heavily on use of animal testing for prediction of potential for toxicity in humans. Where mechanisms of toxicity have been elucidated, for example endocrine disruption by xenoestrogens binding to the estrogen receptor, in vitro assays have been developed as surrogate assays for toxicity prediction. This mechanistic information can be combined with other data such as exposure levels to inform a risk assessment for the chemical. However, there remains a paucity of such mechanistic assays due at least in part to lack of methods to determine specific mechanisms of toxicity for many toxicants. A means to address this deficiency lies in utilization of a vast repertoire of tools developed by the drug discovery industry for interrogating the bioactivity of chemicals. This review describes the application of high-throughput screening assays as experimental tools for profiling chemicals for potential for toxicity and understanding underlying mechanisms. The accessibility of broad panels of assays covering an array of protein families permits evaluation of chemicals for their ability to directly modulate many potential targets of toxicity. In addition, advances in cell-based screening have yielded tools capable of reporting the effects of chemicals on numerous critical cell signaling pathways and cell health parameters. Novel, more complex cellular systems are being used to model mammalian tissues and the consequences of compound treatment. Finally, high-throughput technology is being applied to model organism screens to understand mechanisms of toxicity. However, a number of formidable challenges to these methods remain to be overcome before they are widely applicable. Integration of successful approaches will contribute towards building a systems approach to toxicology that will provide mechanistic understanding of the effects of chemicals on biological systems and aid in rationale risk assessments

  11. Predictive Mechanisms Are Not Involved the Same Way during Human-Human vs. Human-Machine Interactions: A Review

    Directory of Open Access Journals (Sweden)

    Aïsha Sahaï

    2017-10-01

    Full Text Available Nowadays, interactions with others do not only involve human peers but also automated systems. Many studies suggest that the motor predictive systems that are engaged during action execution are also involved during joint actions with peers and during other human generated action observation. Indeed, the comparator model hypothesis suggests that the comparison between a predicted state and an estimated real state enables motor control, and by a similar functioning, understanding and anticipating observed actions. Such a mechanism allows making predictions about an ongoing action, and is essential to action regulation, especially during joint actions with peers. Interestingly, the same comparison process has been shown to be involved in the construction of an individual's sense of agency, both for self-generated and observed other human generated actions. However, the implication of such predictive mechanisms during interactions with machines is not consensual, probably due to the high heterogeneousness of the automata used in the experimentations, from very simplistic devices to full humanoid robots. The discrepancies that are observed during human/machine interactions could arise from the absence of action/observation matching abilities when interacting with traditional low-level automata. Consistently, the difficulties to build a joint agency with this kind of machines could stem from the same problem. In this context, we aim to review the studies investigating predictive mechanisms during social interactions with humans and with automated artificial systems. We will start by presenting human data that show the involvement of predictions in action control and in the sense of agency during social interactions. Thereafter, we will confront this literature with data from the robotic field. Finally, we will address the upcoming issues in the field of robotics related to automated systems aimed at acting as collaborative agents.

  12. Understanding Mechanism of Photocatalytic Microbial Decontamination of Environmental Wastewater

    Directory of Open Access Journals (Sweden)

    Chhabilal Regmi

    2018-02-01

    Full Text Available Several photocatalytic nanoparticles are synthesized and studied for potential application for the degradation of organic and biological wastes. Although these materials degrade organic compounds by advance oxidation process, the exact mechanisms of microbial decontamination remains partially known. Understanding the real mechanisms of these materials for microbial cell death and growth inhibition helps to fabricate more efficient semiconductor photocatalyst for large-scale decontamination of environmental wastewater or industries and hospitals/biomedical labs generating highly pathogenic bacteria and toxic molecules containing liquid waste by designing a reactor. Recent studies on microbial decontamination by photocatalytic nanoparticles and their possible mechanisms of action is highlighted with examples in this mini review.

  13. Mechanism of oxidative stress involved in the toxicity of ZnO nanoparticles against eukaryotic cells

    Directory of Open Access Journals (Sweden)

    M. Saliani

    2016-01-01

    Full Text Available ZnO NPs (zinc oxide nanoparticles has generated significant scientific interest as a novel antibacterial and anticancer agent. Since oxidative stress is a critical determinant of ZnO NPs-induced damage, it is necessary to characterize their underlying mode of action. Different structural and physicochemical properties of ZnO NPs such as particle surface, size, shape, crystal structure, chemical position, and presence of metals can lead to changes in biological activities including ROS (reactive oxygen species production. However, there are some inconsistencies in the literature on the relation between the physicochemical features of ZnO NPs and their plausible oxidative stress mechanism. Herein, the possible oxidative stress mechanism of ZnO NPs was reviewed. This is worthy of further detailed evaluations in order to improve our understanding of vital NPs characteristics governing their toxicity. Therefore, this study focuses on the different reported oxidative stress paradigms induced by ZnO NPs including ROS generated by NPs, oxidative stress due to the NPs-cell interaction, and role of the particle dissolution in the oxidative damage. Also, this study tries to characterize and understand the multiple pathways involved in oxidative stress induced by ZnO NPs. Knowledge about different cellular signaling cascades stimulated by ZnO NPs lead to the better interpretation of the toxic influences induced by the cellular and acellular parameters. Regarding the potential benefits of toxic effects of ZnO NPs, in-depth evaluation of their toxicity mechanism and various effects of these nanoparticles would facilitate their implementation for biomedical applications.

  14. Intact and Impaired Mechanisms of Action Understanding in Autism

    Science.gov (United States)

    Vivanti, Giacomo; McCormick, Carolyn; Young, Gregory S.; Abucayan, Floridette; Hatt, Naomi; Nadig, Aparna; Ozonoff, Sally; Rogers, Sally J.

    2016-01-01

    Typically developing children understand and predict others’ behavior by extracting and processing relevant information such as the logic of their actions within the situational constraints and the intentions conveyed by their gaze direction and emotional expressions. Children with autism have difficulties understanding and predicting others’ actions. With the use of eye tracking and behavioral measures, we investigated action understanding mechanisms used by 18 children with autism and a well-matched group of 18 typically developing children. Results showed that children with autism (a) consider situational constraints in order to understand the logic of an agent’s action and (b) show typical usage of the agent’s emotional expressions to infer his or her intentions. We found (c) subtle atypicalities in the way children with autism respond to an agent’s direct gaze and (d) marked impairments in their ability to attend to and interpret referential cues such as a head turn for understanding an agent’s intentions. PMID:21401220

  15. Facilitating Evaluations of Innovative, Competence-Based Assessments: Creating Understanding and Involving Multiple Stakeholders

    Science.gov (United States)

    Gulikers, Judith T. M.; Baartman, Liesbeth K. J.; Biemans, Harm J. A.

    2010-01-01

    Schools are held more responsible for evaluating, quality assuring and improving their student assessments. Teachers' lack of understanding of new, competence-based assessments as well as the lack of key stakeholders' involvement, hamper effective and efficient self-evaluations by teachers of innovative, competence-based assessments (CBAs). While…

  16. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals

    International Nuclear Information System (INIS)

    Dao, M.; Lu, L.; Asaro, R.J.; Hosson, J.T.M. de; Ma, E.

    2007-01-01

    Focusing on nanocrystalline (nc) pure face-centered cubic metals, where systematic experimental data are available, this paper presents a brief overview of the recent progress made in improving mechanical properties of nc materials, and in quantitatively and mechanistically understanding the underlying mechanisms. The mechanical properties reviewed include strength, ductility, strain rate and temperature dependence, fatigue and tribological properties. The highlighted examples include recent experimental studies in obtaining both high strength and considerable ductility, the compromise between enhanced fatigue limit and reduced crack growth resistance, the stress-assisted dynamic grain growth during deformation, and the relation between rate sensitivity and possible deformation mechanisms. The recent advances in obtaining quantitative and mechanics-based models, developed in line with the related transmission electron microscopy and relevant molecular dynamics observations, are discussed with particular attention to mechanistic models of partial/perfect-dislocation or deformation-twin-mediated deformation processes interacting with grain boundaries, constitutive modeling and simulations of grain size distribution and dynamic grain growth, and physically motivated crystal plasticity modeling of pure Cu with nanoscale growth twins. Sustained research efforts have established a group of nanocrystalline and nanostructured metals that exhibit a combination of high strength and considerable ductility in tension. Accompanying the gradually deepening understanding of the deformation mechanisms and their relative importance, quantitative and mechanisms-based constitutive models that can realistically capture experimentally measured and grain-size-dependent stress-strain behavior, strain-rate sensitivity and even ductility limit are becoming available. Some outstanding issues and future opportunities are listed and discussed

  17. The corticotropin-releasing hormone network and the hypothalamic-pituitary-adrenal axis: molecular and cellular mechanisms involved.

    Science.gov (United States)

    Bonfiglio, Juan José; Inda, Carolina; Refojo, Damián; Holsboer, Florian; Arzt, Eduardo; Silberstein, Susana

    2011-01-01

    Corticotropin-releasing hormone (CRH) plays a key role in adjusting the basal and stress-activated hypothalamic-pituitary-adrenal axis (HPA). CRH is also widely distributed in extrahypothalamic circuits, where it acts as a neuroregulator to integrate the complex neuroendocrine, autonomic, and behavioral adaptive response to stress. Hyperactive and/or dysregulated CRH circuits are involved in neuroendocrinological disturbances and stress-related mood disorders such as anxiety and depression. This review describes the main physiological features of the CRH network and summarizes recent relevant information concerning the molecular mechanism of CRH action obtained from signal transduction studies using cells and wild-type and transgenic mice lines. Special focus is placed on the MAPK signaling pathways triggered by CRH through the CRH receptor 1 that plays an essential role in CRH action in pituitary corticotrophs and in specific brain structures. Recent findings underpin the concept of specific CRH-signaling pathways restricted to specific anatomical areas. Understanding CRH action at molecular levels will not only provide insight into the precise CRH mechanism of action, but will also be instrumental in identifying novel targets for pharmacological intervention in neuroendocrine tissues and specific brain areas involved in CRH-related disorders. Copyright © 2011 S. Karger AG, Basel.

  18. Smartphone users: Understanding how security mechanisms are perceived and new persuasive methods

    Science.gov (United States)

    Alsaleh, Mansour; Alomar, Noura; Alarifi, Abdulrahman

    2017-01-01

    Protecting smartphones against security threats is a multidimensional problem involving human and technological factors. This study investigates how smartphone users’ security- and privacy-related decisions are influenced by their attitudes, perceptions, and understanding of various security threats. In this work, we seek to provide quantified insights into smartphone users’ behavior toward multiple key security features including locking mechanisms, application repositories, mobile instant messaging, and smartphone location services. To the best of our knowledge, this is the first study that reveals often unforeseen correlations and dependencies between various privacy- and security-related behaviors. Our work also provides evidence that making correct security decisions might not necessarily correlate with individuals’ awareness of the consequences of security threats. By comparing participants’ behavior and their motives for adopting or ignoring certain security practices, we suggest implementing additional persuasive approaches that focus on addressing social and technological aspects of the problem. On the basis of our findings and the results presented in the literature, we identify the factors that might influence smartphone users’ security behaviors. We then use our understanding of what might drive and influence significant behavioral changes to propose several platform design modifications that we believe could improve the security levels of smartphones. PMID:28297719

  19. Smartphone users: Understanding how security mechanisms are perceived and new persuasive methods.

    Directory of Open Access Journals (Sweden)

    Mansour Alsaleh

    Full Text Available Protecting smartphones against security threats is a multidimensional problem involving human and technological factors. This study investigates how smartphone users' security- and privacy-related decisions are influenced by their attitudes, perceptions, and understanding of various security threats. In this work, we seek to provide quantified insights into smartphone users' behavior toward multiple key security features including locking mechanisms, application repositories, mobile instant messaging, and smartphone location services. To the best of our knowledge, this is the first study that reveals often unforeseen correlations and dependencies between various privacy- and security-related behaviors. Our work also provides evidence that making correct security decisions might not necessarily correlate with individuals' awareness of the consequences of security threats. By comparing participants' behavior and their motives for adopting or ignoring certain security practices, we suggest implementing additional persuasive approaches that focus on addressing social and technological aspects of the problem. On the basis of our findings and the results presented in the literature, we identify the factors that might influence smartphone users' security behaviors. We then use our understanding of what might drive and influence significant behavioral changes to propose several platform design modifications that we believe could improve the security levels of smartphones.

  20. Framework for Understanding the Patterns of Student Difficulties in Quantum Mechanics

    Science.gov (United States)

    Marshman, Emily; Singh, Chandralekha

    2015-01-01

    Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. Here, we describe a framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that…

  1. Involvement of midbrain tectum neurokinin-mediated mechanisms in fear and anxiety

    International Nuclear Information System (INIS)

    Brenes, J.C.; Broiz, A.C.; Bassi, G.S.; Schwarting, R.K.W.; Brandão, M.L.

    2012-01-01

    Electrical stimulation of midbrain tectum structures, particularly the dorsal periaqueductal gray (dPAG) and inferior colliculus (IC), produces defensive responses, such as freezing and escape behavior. Freezing also ensues after termination of dPAG stimulation (post-stimulation freezing). These defensive reaction responses are critically mediated by Y -aminobutyric acid and 5-hydroxytryptamine mechanisms in the midbrain tectum. Neurokinins (NKs) also play a role in the mediation of dPAG stimulation-evoked fear, but how NK receptors are involved in the global processing and expression of fear at the level of the midbrain tectum is yet unclear. The present study investigated the role of NK-1 receptors in unconditioned defensive behavior induced by electrical stimulation of the dPAG and IC of male Wistar rats. Spantide (100 pmol/0.2 µL), a selective NK-1 antagonist, injected into these midbrain structures had anti-aversive effects on defensive responses and distress ultrasonic vocalizations induced by stimulation of the dPAG but not of the IC. Moreover, intra-dPAG injections of spantide did not influence post-stimulation freezing or alter exploratory behavior in rats subjected to the elevated plus maze. These results suggest that NK-1 receptors are mainly involved in the mediation of defensive behavior organized in the dPAG. Dorsal periaqueductal gray-evoked post-stimulation freezing was not affected by intra-dPAG injections of spantide, suggesting that NK-1-mediated mechanisms are only involved in the output mechanisms of defensive behavior and not involved in the processing of ascending aversive information from the dPAG

  2. Involvement of midbrain tectum neurokinin-mediated mechanisms in fear and anxiety

    Energy Technology Data Exchange (ETDEWEB)

    Brenes, J.C. [Experimental and Physiological Psychology, Philipps-University of Marburg, Marburg (Germany); Broiz, A.C.; Bassi, G.S. [Instituto de Neurociências e Comportamento, Campus USP, Ribeirão Preto, SP (Brazil); Laboratório de Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Schwarting, R.K.W. [Experimental and Physiological Psychology, Philipps-University of Marburg, Marburg (Germany); Brandão, M.L. [Instituto de Neurociências e Comportamento, Campus USP, Ribeirão Preto, SP (Brazil); Laboratório de Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-03-09

    Electrical stimulation of midbrain tectum structures, particularly the dorsal periaqueductal gray (dPAG) and inferior colliculus (IC), produces defensive responses, such as freezing and escape behavior. Freezing also ensues after termination of dPAG stimulation (post-stimulation freezing). These defensive reaction responses are critically mediated by {sub Y}-aminobutyric acid and 5-hydroxytryptamine mechanisms in the midbrain tectum. Neurokinins (NKs) also play a role in the mediation of dPAG stimulation-evoked fear, but how NK receptors are involved in the global processing and expression of fear at the level of the midbrain tectum is yet unclear. The present study investigated the role of NK-1 receptors in unconditioned defensive behavior induced by electrical stimulation of the dPAG and IC of male Wistar rats. Spantide (100 pmol/0.2 µL), a selective NK-1 antagonist, injected into these midbrain structures had anti-aversive effects on defensive responses and distress ultrasonic vocalizations induced by stimulation of the dPAG but not of the IC. Moreover, intra-dPAG injections of spantide did not influence post-stimulation freezing or alter exploratory behavior in rats subjected to the elevated plus maze. These results suggest that NK-1 receptors are mainly involved in the mediation of defensive behavior organized in the dPAG. Dorsal periaqueductal gray-evoked post-stimulation freezing was not affected by intra-dPAG injections of spantide, suggesting that NK-1-mediated mechanisms are only involved in the output mechanisms of defensive behavior and not involved in the processing of ascending aversive information from the dPAG.

  3. Mechanisms Involved in Exercise-Induced Cardioprotection: A Systematic Review

    Science.gov (United States)

    Borges, Juliana Pereira; Lessa, Marcos Adriano

    2015-01-01

    Background Acute myocardial infarction is the leading cause of morbidity and mortality worldwide. Furthermore, research has shown that exercise, in addition to reducing cardiovascular risk factors, can also protect the heart against injury due to ischemia and reperfusion through a direct effect on the myocardium. However, the specific mechanism involved in exerciseinduced cardiac preconditioning is still under debate. Objective To perform a systematic review of the studies that have addressed the mechanisms by which aerobic exercise promotes direct cardioprotection against ischemia and reperfusion injury. Methods A search was conducted using MEDLINE, Literatura Latino-Americana e do Caribe de Informação em Ciências da Saúde, and Scientific Electronic Library Online databases. Data were extracted in a standardized manner by two independent researchers, who were responsible for assessing the methodological quality of the studies. Results The search retrieved 78 studies; after evaluating the abstracts, 30 studies were excluded. The manuscripts of the remaining 48 studies were completely read and, of these, 20 were excluded. Finally, 28 studies were included in this systematic review. Conclusion On the basis of the selected studies, the following are potentially involved in the cardioprotective response to exercise: increased heat shock protein production, nitric oxide pathway involvement, increased cardiac antioxidant capacity, improvement in ATP-dependent potassium channel function, and opioid system activation. Despite all the previous investigations, further research is still necessary to obtain more consistent conclusions. PMID:25830711

  4. Education on invasive mechanical ventilation involving intensive care nurses: a systematic review.

    Science.gov (United States)

    Guilhermino, Michelle C; Inder, Kerry J; Sundin, Deborah

    2018-03-26

    Intensive care unit nurses are critical for managing mechanical ventilation. Continuing education is essential in building and maintaining nurses' knowledge and skills, potentially improving patient outcomes. The aim of this study was to determine whether continuing education programmes on invasive mechanical ventilation involving intensive care unit nurses are effective in improving patient outcomes. Five electronic databases were searched from 2001 to 2016 using keywords such as mechanical ventilation, nursing and education. Inclusion criteria were invasive mechanical ventilation continuing education programmes that involved nurses and measured patient outcomes. Primary outcomes were intensive care unit mortality and in-hospital mortality. Secondary outcomes included hospital and intensive care unit length of stay, length of intubation, failed weaning trials, re-intubation incidence, ventilation-associated pneumonia rate and lung-protective ventilator strategies. Studies were excluded if they excluded nurses, patients were ventilated for less than 24 h, the education content focused on protocol implementation or oral care exclusively or the outcomes were participant satisfaction. Quality was assessed by two reviewers using an education intervention critical appraisal worksheet and a risk of bias assessment tool. Data were extracted independently by two reviewers and analysed narratively due to heterogeneity. Twelve studies met the inclusion criteria for full review: 11 pre- and post-intervention observational and 1 quasi-experimental design. Studies reported statistically significant reductions in hospital length of stay, length of intubation, ventilator-associated pneumonia rates, failed weaning trials and improvements in lung-protective ventilation compliance. Non-statistically significant results were reported for in-hospital and intensive care unit mortality, re-intubation and intensive care unit length of stay. Limited evidence of the effectiveness of

  5. Understanding the Value of Volunteer Involvement

    Science.gov (United States)

    Terry, Bryan; Harder, Amy; Pracht, Dale

    2011-01-01

    Volunteers can be an important resource of many nonprofit organizations. The ability to meet the mission, goals and objectives of nonprofit organizations often depends upon the effectiveness of volunteer involvement in direct service delivery or indirect program support. Volunteer involvement utilizes financial and non-financial resources of an…

  6. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms

    Directory of Open Access Journals (Sweden)

    Tambutte Sylvie

    2009-08-01

    Full Text Available Abstract Background Coral bleaching can be defined as the loss of symbiotic zooxanthellae and/or their photosynthetic pigments from their cnidarian host. This major disturbance of reef ecosystems is principally induced by increases in water temperature. Since the beginning of the 1980s and the onset of global climate change, this phenomenon has been occurring at increasing rates and scales, and with increasing severity. Several studies have been undertaken in the last few years to better understand the cellular and molecular mechanisms of coral bleaching but the jigsaw puzzle is far from being complete, especially concerning the early events leading to symbiosis breakdown. The aim of the present study was to find molecular actors involved early in the mechanism leading to symbiosis collapse. Results In our experimental procedure, one set of Pocillopora damicornis nubbins was subjected to a gradual increase of water temperature from 28°C to 32°C over 15 days. A second control set kept at constant temperature (28°C. The differentially expressed mRNA between the stressed states (sampled just before the onset of bleaching and the non stressed states (control were isolated by Suppression Subtractive Hybridization. Transcription rates of the most interesting genes (considering their putative function were quantified by Q-RT-PCR, which revealed a significant decrease in transcription of two candidates six days before bleaching. RACE-PCR experiments showed that one of them (PdC-Lectin contained a C-Type-Lectin domain specific for mannose. Immunolocalisation demonstrated that this host gene mediates molecular interactions between the host and the symbionts suggesting a putative role in zooxanthellae acquisition and/or sequestration. The second gene corresponds to a gene putatively involved in calcification processes (Pdcyst-rich. Its down-regulation could reflect a trade-off mechanism leading to the arrest of the mineralization process under stress

  7. Getting the phenotypes right: an essential ingredient for understanding aetiological mechanisms underlying persistent violence and developing effective treatments

    Directory of Open Access Journals (Sweden)

    Sheilagh Hodgins

    2009-11-01

    Full Text Available In order to reduce societal levels of violence, it is essential to advance understanding of the neurobiological mechanisms involved in initiating and maintaining individual patterns of physical aggression. New technologies such as Magnetic Resonance Imagining and analyses of DNA provide tools for identifying these mechanisms. The reliability and validity of the results of studies using these tools depend not only on aspects of the technology, but also on the methodological rigour with which the studies are conducted, particularly with respect to characterizing the phenotype. The present article discusses five challenges confronting scientists who aim to advance understanding of the neurobiological mechanisms associated with persistent violence. These challenges are: (1 to develop evidence-based hypotheses and to design studies that test alternate hypotheses; (2 to recruit samples that are homogeneous with respect to variables that may be linked to neurobiological mechanisms underpinning violent behaviour; (3 to use reliable and valid measures in order to fully characterize participants so that the external validity of the results is evident; (4 to restrict the range of age of participants so as not to confuse developmental change with group differences; and (5 to take account of sex. Our goal is to contribute to elevating methodological standards in this new field of research and to thereby improve the validity of results and move closer to finding effective ways to reduce violence

  8. A Study of the Effect of Preschool Children's Participation in Sensorimotor Activities on Their Understanding of the Mechanical Equilibrium of a Balance Beam

    Science.gov (United States)

    Hadzigeorgiou, Yannis; Anastasiou, Leonidas; Konsolas, Manos; Prevezanou, Barbara

    2009-01-01

    The purpose of this study was to investigate whether participation in sensorimotor activities by preschool children involving their own bodily balance while walking on a beam over the floor has an effect on their understanding of the mechanical equilibrium of a balance beam. The balance beam consisted of a horizontal stick balancing around its…

  9. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT I, UNDERSTANDING MECHANICAL CLUTCHES.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    ONE OF A 25-MODULE COURSE DESIGNED TO UPGRADE THE JOB SKILLS AND TECHNICAL KNOWLEDGE OF DIESEL MAINENANCE MECHANICS THIS MATERIAL WAS DEVELOPED BY INDUSTRIAL TRAINING AND SUBJECT-MATTER SPECIALISTS AND TESTED IN INDUSTRIAL TRAINING SITUATIONS. THE PURPOSE OF THIS FIRST UNIT IS TO DEVELOP AN UNDERSTANDING OF COMPONENTS, OPERATION, AND ADJUSTMENTS…

  10. Investigating and Improving Student Understanding of Key Ideas in Quantum Mechanics throughout Instruction

    Science.gov (United States)

    Emigh, Paul Jeffrey

    This dissertation describes research on student understanding of quantum mechanics across multiple levels of instruction. The primary focus has been to identify patterns in student reasoning related to key concepts in quantum mechanics. The specific topics include quantum measurements, time dependence, vector spaces, and angular momentum. The research has spanned a variety of different quantum courses intended for introductory physics students, upper-division physics majors, and graduate students in physics. The results of this research have been used to develop a set of curriculum, Tutorials in Physics: Quantum Mechanics, for addressing the most persistent student difficulties. We document both the development of this curriculum and how it has impacted and improved student understanding of quantum mechanics.

  11. Final Report: Improving the understanding of the coupled thermal-mechanical-hydrologic behavior of consolidating granular salt

    Energy Technology Data Exchange (ETDEWEB)

    Stormont, John [Univ. of New Mexico, Albuquerque, NM (United States); Lampe, Brandon [Univ. of New Mexico, Albuquerque, NM (United States); Mills, Melissa [Univ. of New Mexico, Albuquerque, NM (United States); Paneru, Laxmi [Univ. of New Mexico, Albuquerque, NM (United States); Lynn, Timothy [Univ. of New Mexico, Albuquerque, NM (United States); Piya, Aayush [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-09-09

    The goal of this project is to improve the understanding of key aspects of the coupled thermal-mechanical-hydrologic response of granular (or crushed) salt used as a seal material for shafts, drifts, and boreholes in mined repositories in salt. The project is organized into three tasks to accomplish this goal: laboratory measurements of granular salt consolidation (Task 1), microstructural observations on consolidated samples (Task 2), and constitutive model development and evaluation (Task 3). Task 1 involves laboratory measurements of salt consolidation along with thermal properties and permeability measurements conducted under a range of temperatures and stresses expected for potential mined repositories in salt. Testing focused on the role of moisture, temperature and stress state on the hydrologic (permeability) and thermal properties of consolidating granular salt at high fractional densities. Task 2 consists of microstructural observations made on samples after they have been consolidated to interpret deformation mechanisms and evaluate the ability of the constitutive model to predict operative mechanisms under different conditions. Task 3 concerns the development of the coupled thermal-mechanical-hydrologic constitutive model for granular salt consolidation. The measurements and observations in Tasks 1 and 2 were used to develop a thermal-mechanical constitutive model. Accomplishments and status from each of these efforts is reported in subsequent sections of this report

  12. Novel mechanisms of sildenafil in pulmonary hypertension involving cytokines/chemokines, MAP kinases and Akt.

    Directory of Open Access Journals (Sweden)

    Tamas Kiss

    Full Text Available Pulmonary arterial hypertension (PH is associated with high mortality due to right ventricular failure and hypoxia, therefore to understand the mechanism by which pulmonary vascular remodeling initiates these processes is very important. We used a well-characterized monocrotaline (MCT-induced rat PH model, and analyzed lung morphology, expression of cytokines, mitogen-activated protein kinase (MAPK phosphorylation, and phosphatidylinositol 3-kinase-Akt (PI-3k-Akt pathway and nuclear factor (NF-κB activation in order to elucidate the mechanisms by which sildenafil's protective effect in PH is exerted. Besides its protective effect on lung morphology, sildenafil suppressed multiple cytokines involved in neutrophil and mononuclear cells recruitment including cytokine-induced neutrophil chemoattractant (CINC-1, CINC-2α/β, tissue inhibitor of metalloproteinase (TIMP-1, interleukin (IL-1α, lipopolysaccharide induced CXC chemokine (LIX, monokine induced by gamma interferon (MIG, macrophage inflammatory protein (MIP-1α, and MIP-3α. NF-κB activation and phosphorylation were also attenuated by sildenafil. Furthermore, sildenafil reduced extracellular signal-regulated kinase (ERK1/2 and p38 MAPK activation while enhanced activation of the cytoprotective Akt pathway in PH. These data suggest a beneficial effect of sildenafil on inflammatory and kinase signaling mechanisms that substantially contribute to its protective effects, and may have potential implications in designing future therapeutic strategies in the treatment of pulmonary hypertension.

  13. How Electroconvulsive Therapy Works?: Understanding the Neurobiological Mechanisms

    Science.gov (United States)

    Singh, Amit; Kar, Sujita Kumar

    2017-01-01

    Electroconvulsive therapy (ECT) is a time tested treatment modality for the management of various psychiatric disorders. There have been a lot of modifications in the techniques of delivering ECT over decades. Despite lots of criticisms encountered, ECT has still been used commonly in clinical practice due to its safety and efficacy. Research evidences found multiple neuro-biological mechanisms for the therapeutic effect of ECT. ECT brings about various neuro-physiological as well as neuro-chemical changes in the macro- and micro-environment of the brain. Diverse changes involving expression of genes, functional connectivity, neurochemicals, permeability of blood-brain-barrier, alteration in immune system has been suggested to be responsible for the therapeutic effects of ECT. This article reviews different neurobiological mechanisms responsible for the therapeutic efficacy of ECT. PMID:28783929

  14. Analysis of DNA replication associated chromatin decondensation: in vivo assay for understanding chromatin remodeling mechanisms of selected proteins.

    Science.gov (United States)

    Borysov, Sergiy; Bryant, Victoria L; Alexandrow, Mark G

    2015-01-01

    mechanisms underlying DNA replication associated chromatin accessibility, this unique and powerful experimental system has the propensity to be a valuable tool for understanding chromatin remodeling mechanisms orchestrated by other cellular processes such as DNA repair, recombination, mitotic chromosome condensation, or other chromosome dynamics involving chromatin alterations and accessibility.

  15. Stress corrosion cracking of alloy 600 in water at high temperature: contribution to a phenomenological approach to the understanding of mechanisms

    International Nuclear Information System (INIS)

    Abadie, Pascale

    1998-01-01

    This research thesis aims at being a contribution to the understanding of mechanisms of stress corrosion cracking of an alloy 600 in water at high temperature. More precisely, it aimed at determining, by using quantitative data characterizing cracking phenomenology, which mechanism(s) is (are) able to explain crack initiation and crack growth. These data concern quantitative characterization of crack initiation, of crack growth and of the influence of two cracking parameters (strain rate, medium hydrogen content). They have been obtained by quantifying cracking through the application of a morphological model. More precisely, these data are: evolution of crack density during a tensile test at slow rate, value of initial crack width with respect to grain boundary length, and relationship between crack density and medium hydrogen content. It appears that hydrogen absorption seems to be involved in the crack initiation mechanism. Crack growth mechanisms and crack growth rates are also discussed [fr

  16. Understanding Creep Mechanisms in Graphite with Experiments, Multiscale Simulations, and Modeling

    International Nuclear Information System (INIS)

    2014-01-01

    Disordering mechanisms in graphite have a long history with conflicting viewpoints. Using Raman and x-ray photon spectroscopy, electron microscopy, x-ray diffraction experiments and atomistic modeling and simulations, the current project has developed a fundamental understanding of early-to-late state radiation damage mechanisms in nuclear reactor grade graphite (NBG-18 and PCEA). We show that the topological defects in graphite play an important role under neutron and ion irradiation.

  17. Understanding Creep Mechanisms in Graphite with Experiments, Multiscale Simulations, and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Eapen, Jacob [North Carolina State Univ., Raleigh, NC (United States); Murty, Korukonda [North Carolina State Univ., Raleigh, NC (United States); Burchell, Timothy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-06-02

    Disordering mechanisms in graphite have a long history with conflicting viewpoints. Using Raman and x-ray photon spectroscopy, electron microscopy, x-ray diffraction experiments and atomistic modeling and simulations, the current project has developed a fundamental understanding of early-to-late state radiation damage mechanisms in nuclear reactor grade graphite (NBG-18 and PCEA). We show that the topological defects in graphite play an important role under neutron and ion irradiation.

  18. Understanding the molecular mechanisms of reprogramming

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Marie N. [Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla 92037, CA (United States); University Hospital of Würzburg, Department of Pediatrics, 2 Josef-Schneiderstrasse, 97080 Würzburg (Germany); Sancho-Martinez, Ignacio [Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla 92037, CA (United States); Centre for Stem Cells and Regenerative Medicine, King' s College London, 28th Floor, Tower Wing, Guy' s Hospital, Great Maze Pond, London (United Kingdom); Izpisua Belmonte, Juan Carlos, E-mail: belmonte@salk.edu [Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla 92037, CA (United States)

    2016-05-06

    Despite the profound and rapid advancements in reprogramming technologies since the generation of the first induced pluripotent stem cells (iPSCs) in 2006[1], the molecular basics of the process and its implications are still not fully understood. Recent work has suggested that a subset of TFs, so called “Pioneer TFs”, play an important role during the stochastic phase of iPSC reprogramming [2–6]. Pioneer TFs activities differ from conventional transcription factors in their mechanism of action. They bind directly to condensed chromatin and elicit a series of chromatin remodeling events that lead to opening of the chromatin. Chromatin decondensation by pioneer factors progressively occurs during cell division and in turn exposes specific gene promoters in the DNA to which TFs can now directly bind to promoters that are readily accessible[2, 6]. Here, we will summarize recent advancements on our understanding of the molecular mechanisms underlying reprogramming to iPSC as well as the implications that pioneer Transcription Factor activities might play during different lineage conversion processes. - Highlights: • Pioneer transcription factor activity underlies the initial steps of iPSC generation. • Reprogramming can occur by cis- and/or trans- reprogramming events. • Cis-reprogramming implies remodeling of the chromatin for enabling TF accessibility. • Trans-reprogramming encompasses direct binding of Tfs to their target gene promoters.

  19. Extracellular Molecules Involved in Cancer Cell Invasion

    International Nuclear Information System (INIS)

    Stivarou, Theodora; Patsavoudi, Evangelia

    2015-01-01

    Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion

  20. Understanding intellectual disability through RASopathies.

    Science.gov (United States)

    San Martín, Alvaro; Pagani, Mario Rafael

    2014-01-01

    Intellectual disability, commonly known as mental retardation in the International Classification of Disease from World Health Organization, is the term that describes an intellectual and adaptive cognitive disability that begins in early life during the developmental period. Currently the term intellectual disability is the preferred one. Although our understanding of the physiological basis of learning and learning disability is poor, a general idea is that such condition is quite permanent. However, investigations in animal models suggest that learning disability can be functional in nature and as such reversible through pharmacology or appropriate learning paradigms. A fraction of the cases of intellectual disability is caused by point mutations or deletions in genes that encode for proteins of the RAS/MAP kinase signaling pathway known as RASopathies. Here we examined the current understanding of the molecular mechanisms involved in this group of genetic disorders focusing in studies which provide evidence that intellectual disability is potentially treatable and curable. The evidence presented supports the idea that with the appropriate understanding of the molecular mechanisms involved, intellectual disability could be treated pharmacologically and perhaps through specific mechanistic-based teaching strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Mechanisms Design

    DEFF Research Database (Denmark)

    Restrepo-Giraldo, John Dairo

    2006-01-01

    Most products and machines involve some kind of controlled movement. From window casements to DVD players, from harbor cranes to the shears to prune your garden, all these machines require mechanisms to move. This course intends to provide the analytical and conceptual tools to design such mechan......Most products and machines involve some kind of controlled movement. From window casements to DVD players, from harbor cranes to the shears to prune your garden, all these machines require mechanisms to move. This course intends to provide the analytical and conceptual tools to design...... using criteria such as size, performance parameters, operation environment, etc. Content: Understanding Mechanisms Design (2 weeks) Definitions, mechanisms representations, kinematic diagrams, the four bar linkage, mobility, applications of mechanisms, types of mechanisms, special mechanisms, the design......: equations for various mechanisms. At the end of this module you will be able to analyze existing mechanisms and to describe their movement. Designing mechanisms (7 weeks) Type synthesis and dimensional synthesis, function generation, path generation, three precision points in multi-loop mechanisms...

  2. Student understanding of time dependence in quantum mechanics

    Directory of Open Access Journals (Sweden)

    Paul J. Emigh

    2015-09-01

    Full Text Available [This paper is part of the Focused Collection on Upper Division Physics Courses.] The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing the key role of the energy eigenbasis in determining the time dependence of wave functions. Through analysis of student responses to a set of four interrelated tasks, we categorize some of the difficulties that underlie common errors. The conceptual and reasoning difficulties that have been identified are illustrated through student responses to four sets of questions administered at different points in a junior-level course on quantum mechanics. Evidence is also given that the problems persist throughout undergraduate instruction and into the graduate level.

  3. Extracellular Molecules Involved in Cancer Cell Invasion

    Directory of Open Access Journals (Sweden)

    Theodora Stivarou

    2015-01-01

    Full Text Available Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  4. Neurobiological mechanisms involved in sleep bruxism.

    Science.gov (United States)

    Lavigne, G J; Kato, T; Kolta, A; Sessle, B J

    2003-01-01

    Sleep bruxism (SB) is reported by 8% of the adult population and is mainly associated with rhythmic masticatory muscle activity (RMMA) characterized by repetitive jaw muscle contractions (3 bursts or more at a frequency of 1 Hz). The consequences of SB may include tooth destruction, jaw pain, headaches, or the limitation of mandibular movement, as well as tooth-grinding sounds that disrupt the sleep of bed partners. SB is probably an extreme manifestation of a masticatory muscle activity occurring during the sleep of most normal subjects, since RMMA is observed in 60% of normal sleepers in the absence of grinding sounds. The pathophysiology of SB is becoming clearer, and there is an abundance of evidence outlining the neurophysiology and neurochemistry of rhythmic jaw movements (RJM) in relation to chewing, swallowing, and breathing. The sleep literature provides much evidence describing the mechanisms involved in the reduction of muscle tone, from sleep onset to the atonia that characterizes rapid eye movement (REM) sleep. Several brainstem structures (e.g., reticular pontis oralis, pontis caudalis, parvocellularis) and neurochemicals (e.g., serotonin, dopamine, gamma aminobutyric acid [GABA], noradrenaline) are involved in both the genesis of RJM and the modulation of muscle tone during sleep. It remains unknown why a high percentage of normal subjects present RMMA during sleep and why this activity is three times more frequent and higher in amplitude in SB patients. It is also unclear why RMMA during sleep is characterized by co-activation of both jaw-opening and jaw-closing muscles instead of the alternating jaw-opening and jaw-closing muscle activity pattern typical of chewing. The final section of this review proposes that RMMA during sleep has a role in lubricating the upper alimentary tract and increasing airway patency. The review concludes with an outline of questions for future research.

  5. Understand quantum mechanics

    International Nuclear Information System (INIS)

    Omnes, R.

    2000-01-01

    The author presents the interpretation of quantum mechanics in a simple and direct way. This book may be considered as a complement of specialized books whose aim is to present the mathematical developments of quantum mechanics. As early as the beginning of quantum theory, Bohr, Heisenberg and Pauli proposed the basis of what is today called the interpretation of Copenhagen. This interpretation is still valid but 2 important discoveries have led to renew some aspects of the interpretation of Copenhagen. The first one was the discovery of the decoherence phenomenon which is responsible for the absence of quantum interferences in the macroscopic world. The second discovery was the achievement of the complete derivation of classical physics from quantum physics, it means that the classical determinism fits in the framework of quantum probabilism. A short summary ends each chapter. (A.C.)

  6. Molecular and genetic approach to understanding the mechanisms by which fractionated X-irradiation induces leukemia in mice

    Energy Technology Data Exchange (ETDEWEB)

    Meruelo, D; Rossomando, A

    1986-01-01

    The authors laboratory's approach to try to shed light on the question of a viral etiology for radiation-induced leukemia has focused on defining, localizing and understanding the mode of action of genes involved in susceptibility to fractionated x-irradiation-(FXI) induced disease. These studies have indicated that multiple genes control the process of leukemogenesis. Not every mouse strain which shows some susceptibility to FXI-induced leukemia carries the susceptible gene at each of the multiple loci involved in the disease process. It is plausible to conclude that more than one mechanism of leukemogenesis can be triggered by FXI. Studies have focused on the mode of action of one such locus Ril-1. Several reagents have been developed to help clone and characterize this locus. Currently chromosomal ''walking'' and ''hopping'' techniques are being used in conjunction with an RFLP molecular probe which is adjacent to Ril-1. In addition a cDNA library has been prepared from a radiation-induced thymoma and substraction hybridization analysis is being used in the search for Ril-1.

  7. A novel mechanism of hippocampal LTD involving muscarinic receptor-triggered interactions between AMPARs, GRIP and liprin-α

    Directory of Open Access Journals (Sweden)

    Dickinson Bryony A

    2009-06-01

    Full Text Available Abstract Background Long-term depression (LTD in the hippocampus can be induced by activation of different types of G-protein coupled receptors, in particular metabotropic glutamate receptors (mGluRs and muscarinic acethycholine receptors (mAChRs. Since mGluRs and mAChRs activate the same G-proteins and isoforms of phospholipase C (PLC, it would be expected that these two forms of LTD utilise the same molecular mechanisms. However, we find a distinct mechanism of LTD involving GRIP and liprin-α. Results Whilst both forms of LTD require activation of tyrosine phosphatases and involve internalisation of AMPARs, they use different molecular interactions. Specifically, mAChR-LTD, but not mGluR-LTD, is blocked by peptides that inhibit the binding of GRIP to the AMPA receptor subunit GluA2 and the binding of GRIP to liprin-α. Thus, different receptors that utilise the same G-proteins can regulate AMPAR trafficking and synaptic efficacy via distinct molecular mechanisms. Conclusion Our results suggest that mAChR-LTD selectively involves interactions between GRIP and liprin-α. These data indicate a novel mechanism of synaptic plasticity in which activation of M1 receptors results in AMPAR endocytosis, via a mechanism involving interactions between GluA2, GRIP and liprin-α.

  8. Understanding dental CAD/CAM for restorations - dental milling machines from a mechanical engineering viewpoint. Part A: chairside milling machines.

    Science.gov (United States)

    Lebon, Nicolas; Tapie, Laurent; Duret, Francois; Attal, Jean-Pierre

    2016-01-01

    The dental milling machine is an important device in the dental CAD/CAM chain. Nowadays, dental numerical controlled (NC) milling machines are available for dental surgeries (chairside solution). This article provides a mechanical engineering approach to NC milling machines to help dentists understand the involvement of technology in digital dentistry practice. First, some technical concepts and definitions associated with NC milling machines are described from a mechanical engineering viewpoint. The technical and economic criteria of four chairside dental NC milling machines that are available on the market are then described. The technical criteria are focused on the capacities of the embedded technologies of these milling machines to mill both prosthetic materials and types of shape restorations. The economic criteria are focused on investment costs and interoperability with third-party software. The clinical relevance of the technology is assessed in terms of the accuracy and integrity of the restoration.

  9. Drug-drug interactions involving lysosomes: mechanisms and potential clinical implications.

    Science.gov (United States)

    Logan, Randall; Funk, Ryan S; Axcell, Erick; Krise, Jeffrey P

    2012-08-01

    Many commercially available, weakly basic drugs have been shown to be lysosomotropic, meaning they are subject to extensive sequestration in lysosomes through an ion trapping-type mechanism. The extent of lysosomal trapping of a drug is an important therapeutic consideration because it can influence both activity and pharmacokinetic disposition. The administration of certain drugs can alter lysosomes such that their accumulation capacity for co-administered and/or secondarily administered drugs is altered. In this review the authors explore what is known regarding the mechanistic basis for drug-drug interactions involving lysosomes. Specifically, the authors address the influence of drugs on lysosomal pH, volume and lipid processing. Many drugs are known to extensively accumulate in lysosomes and significantly alter their structure and function; however, the therapeutic and toxicological implications of this remain controversial. The authors propose that drug-drug interactions involving lysosomes represent an important potential source of variability in drug activity and pharmacokinetics. Most evaluations of drug-drug interactions involving lysosomes have been performed in cultured cells and isolated tissues. More comprehensive in vivo evaluations are needed to fully explore the impact of this drug-drug interaction pathway on therapeutic outcomes.

  10. Mechanisms influencing student understanding on an outdoor guided field trip

    Science.gov (United States)

    Caskey, Nourah Al-Rashid

    Field trips are a basic and important, yet often overlooked part of the student experience. They provide the opportunity to integrate real world knowledge with classroom learning and student previous personal experiences. Outdoor guided field trips leave students with an increased understanding, awareness and interest and in science. However, the benefits of this experience are ambiguous at best (Falk and Balling, 1982; Falk and Dierking, 1992; Kisiel, 2006.) Students on an outdoor guided field trip to a local nature park experienced a significant increase in their understanding of the rock cycle. The changes in the pre-field trip test and the post-field trip test as well as their answers in interviews showed a profound change in the students' understanding and in their interest in the subject matter. The use of the "student's voice" (Bamberger and Tal, 2008) was the motivation for data analysis. By using the students' voice, I was able to determine the mechanisms that might influence their understanding of a subject. The central concepts emerging from the data were: the outdoor setting; the students' interest; the social interaction. From these central concepts, a conceptual model was developed. The outdoor setting allows for the freedom to explore, touch, smell and movement. This, in turn, leads to an increased interest in subject matter. As the students are exploring, they are enjoying themselves and become more open to learning. Interest leads to a desire to learn (Dewey, 1975). In addition to allowing the freedom to explore and move, the outdoor setting creates the condition for social interaction. The students talk to each other as they walk; they have in-depth discourse regarding the subject matter---with the teachers, each other and with the guides. The guides have an extremely important role in the students' learning. The more successful guides not only act as experts, but also adjust to the students' needs and act or speak accordingly. The

  11. Engagement: Looking beyond the mirror to understand action understanding.

    Science.gov (United States)

    Reddy, Vasudevi; Uithol, Sebo

    2016-03-01

    In this paper, we argue that the current focus on mirroring as the route to explaining the development of action understanding is misleading and problematic. It facilitates a fundamentally spectatorial stance, ignoring engagement and dialogue; it focuses on similarity between self and other and neglects difference; and it succumbs to the static terminology of mechanism rather than a dynamic language of process. Contrary to this view, dialogic exchanges are evident from the start of life, revealing infants' ability to engage with and respond appropriately to actions that are outside their own motor repertoire. We suggest that engagement rather than mirroring better accounts for many current findings in action understanding. The neurological evidence to date shows that action perception involves a process of continuous synchronization and change, suggesting that it might be more fruitful for research and theory to look beyond mirroring and instead adopt dynamic processual explanations of action understanding within interaction. © 2015 The British Psychological Society.

  12. Quantum-Mechanical Calculations on Molecular Substructures Involved in Nanosystems

    Directory of Open Access Journals (Sweden)

    Beata Szefler

    2014-09-01

    Full Text Available In this review article, four ideas are discussed: (a aromaticity of fullerenes patched with flowers of 6-and 8-membered rings, optimized at the HF and DFT levels of theory, in terms of HOMA and NICS criteria; (b polybenzene networks, from construction to energetic and vibrational spectra computations; (c quantum-mechanical calculations on the repeat units of various P-type crystal networks and (d construction and stability evaluation, at DFTB level of theory, of some exotic allotropes of diamond D5, involved in hyper-graphenes. The overall conclusion was that several of the yet hypothetical molecular nanostructures herein described are serious candidates to the status of real molecules.

  13. New Insights on Neurobiological Mechanisms underlying Alcohol Addiction

    Science.gov (United States)

    Cui, Changhai; Noronha, Antonio; Morikawa, Hitoshi; Alvarez, Veronica A.; Stuber, Garret D.; Szumlinski, Karen K.; Kash, Thomas L.; Roberto, Marisa; Wilcox, Mark V.

    2012-01-01

    Alcohol dependence/addiction is mediated by complex neural mechanisms that involve multiple brain circuits and neuroadaptive changes in a variety of neurotransmitter and neuropeptide systems. Although recent studies have provided substantial information on the neurobiological mechanisms that drive alcohol drinking behavior, significant challenges remain in understanding how alcohol-induced neuroadaptations occur and how different neurocircuits and pathways cross-talk. This review article highlights recent progress in understanding neural mechanisms of alcohol addiction from the perspectives of the development and maintenance of alcohol dependence. It provides insights on cross talks of different mechanisms and reviews the latest studies on metaplasticity, structural plasticity, interface of reward and stress pathways, and cross-talk of different neural signaling systems involved in binge-like drinking and alcohol dependence. PMID:23159531

  14. Breadth and depth involvement: Understanding Internet gambling involvement and its relationship to gambling problems.

    Science.gov (United States)

    LaPlante, Debi A; Nelson, Sarah E; Gray, Heather M

    2014-06-01

    The "involvement effect" refers to the finding that controlling for gambling involvement often reduces or eliminates frequently observed game-specific associations with problem gambling. In other words, broader patterns of gambling behavior, particularly the number of types of games played over a defined period, contribute more to problem gambling than playing specific games (e.g., lottery, casino, Internet gambling). This study extends this burgeoning area of inquiry in three primary ways. First, it tests independently and simultaneously the predictive power of two gambling patterns: breadth involvement (i.e., the number of games an individual plays) and depth involvement (i.e., the number of days an individual plays). Second, it includes the first involvement analyses of actual betting activity records that are associated with clinical screening information. Third, it evaluates and compares the linearity of breadth and depth effects. We conducted analyses of the actual gambling activity of 1,440 subscribers to the bwin.party gambling service who completed an online gambling disorder screen. In all, 11 of the 16 games we examined had a significant univariate association with a positive screen for gambling disorder. However, after controlling for breadth involvement, only Live Action Internet sports betting retained a significant relationship with potential gambling-related problems. Depth involvement, though significantly related to potential problems, did not impact game-based gambling disorder associations as much as breadth involvement. Finally, breadth effects appeared steeply linear, with a slight quadratic component manifesting beyond four games played, but depth effects appeared to have a strong linear component and a slight cubic component.

  15. Material properties of biofilms – key methods for understanding permeability and mechanics

    Science.gov (United States)

    Billings, Nicole; Birjiniuk, Alona; Samad, Tahoura S.; Doyle, Patrick S.; Ribbeck, Katharina

    2015-01-01

    Microorganisms can form biofilms, which are multicellular communities surrounded by a hydrated extracellular matrix of polymers. Central properties of the biofilm are governed by this extracellular matrix, which provides mechanical stability to the three-dimensional biofilm structure, regulates the ability of the biofilm to adhere to surfaces, and determines the ability of the biofilm to adsorb gasses, solutes, and foreign cells. Despite their critical relevance for understanding and eliminating of biofilms, the materials properties of the extracellular matrix are understudied. Here, we offer the reader a guide to current technologies that can be utilized to specifically assess the permeability and mechanical properties of the biofilm matrix and its interacting components. In particular, we highlight technological advances in instrumentation and interactions between multiple disciplines that have broadened the spectrum of methods available to conduct these studies. We review pioneering work that furthers our understanding of the material properties of biofilms. PMID:25719969

  16. Understanding the mechanical and acoustical characteristics of sand aggregates compacting under triaxial conditions

    Science.gov (United States)

    Hangx, Suzanne; Brantut, Nicolas

    2016-04-01

    Mechanisms such as grain rearrangement, coupled with elastic deformation, grain breakage, grain rearrangement, grain rotation, and intergranular sliding, play a key role in determining porosity and permeability reduction during burial of clastic sediments. Similarly, in poorly consolidated, highly porous sands and sandstones, grain rotation, intergranular sliding, grain failure, and pore collapse often lead to significant reduction in porosity through the development of compaction bands, with the reduced porosity and permeability of such bands producing natural barriers to flow within reservoir rocks. Such time-independent compaction processes operating in highly porous water- and hydrocarbon-bearing clastic reservoirs can exert important controls on production-related reservoir deformation, subsidence, and induced seismicity. We performed triaxial compression experiments on sand aggregates consisting of well-rounded Ottawa sand (d = 300-400 μm; φ = 36.1-36.4%) at room temperature, to systematically investigate the effect of confining pressure (Pceff = 5-100 MPa), strain rate (10-6-10-4 s-1) and chemical environment (decane vs. water; Pf = 5 MPa) on compaction. For a limited number of experiments grain size distribution (d = 180-500 μm) and grain shape (subangular Beaujean sand; d = 180-300 μm) were varied to study their effect. Acoustic emission statistics and location, combined with microstructural and grain size analysis, were used to verify the operating microphysical compaction mechanisms. All tests showed significant pre-compaction during the initial hydrostatic (set-up) phase, with quasi-elastic loading behaviour accompanied by permanent deformation during the differential loading stage. This permanent volumetric strain involved elastic grain contact distortion, particle rearrangement, and grain failure. From the acoustic data and grain size analysis, it was evident that at low confining pressure grain rearrangement controlled compaction, with grain

  17. Protein Machineries Involved in the Attachment of Heme to Cytochrome c: Protein Structures and Molecular Mechanisms

    Directory of Open Access Journals (Sweden)

    Carlo Travaglini-Allocatelli

    2013-01-01

    Full Text Available Cytochromes c (Cyt c are ubiquitous heme-containing proteins, mainly involved in electron transfer processes, whose structure and functions have been and still are intensely studied. Surprisingly, our understanding of the molecular mechanism whereby the heme group is covalently attached to the apoprotein (apoCyt in the cell is still largely unknown. This posttranslational process, known as Cyt c biogenesis or Cyt c maturation, ensures the stereospecific formation of the thioether bonds between the heme vinyl groups and the cysteine thiols of the apoCyt heme binding motif. To accomplish this task, prokaryotic and eukaryotic cells have evolved distinctive protein machineries composed of different proteins. In this review, the structural and functional properties of the main maturation apparatuses found in gram-negative and gram-positive bacteria and in the mitochondria of eukaryotic cells will be presented, dissecting the Cyt c maturation process into three functional steps: (i heme translocation and delivery, (ii apoCyt thioreductive pathway, and (iii apoCyt chaperoning and heme ligation. Moreover, current hypotheses and open questions about the molecular mechanisms of each of the three steps will be discussed, with special attention to System I, the maturation apparatus found in gram-negative bacteria.

  18. Using interviews to understand the assignment mechanism in a nonexperimental study: the case of eighth grade algebra.

    Science.gov (United States)

    Rickles, Jordan H

    2011-10-01

    Many inquiries regarding the causal effects of policies or programs are based on research designs where the treatment assignment process is unknown, and thus valid inferences depend on tenuous assumptions about the assignment mechanism. This article draws attention to the importance of understanding the assignment mechanism in policy and program evaluation studies, and illustrates how information collected through interviews can develop a richer understanding of the assignment mechanism. Focusing on the issue of student assignment to algebra in 8th grade, I show how a preliminary data collection effort aimed at understanding the assignment mechanism is particularly beneficial in multisite observational studies in education. The findings, based on ten interviews and administrative data from a large school district, draw attention to the often ignored heterogeneity in the assignment mechanism across schools. These findings likely extend beyond the current research project in question to related educational policy issues such as ability grouping, tracking, differential course taking, and curricular intensity, as well as other social programs in which the assignment mechanism can differ across sites.

  19. Biological pathways and genetic mechanisms involved in social functioning.

    Science.gov (United States)

    Ordoñana, Juan R; Bartels, Meike; Boomsma, Dorret I; Cella, David; Mosing, Miriam; Oliveira, Joao R; Patrick, Donald L; Veenhoven, Ruut; Wagner, Gert G; Sprangers, Mirjam A G

    2013-08-01

    To describe the major findings in the literature regarding associations between biological and genetic factors and social functioning, paying special attention to: (1) heritability studies on social functioning and related concepts; (2) hypothesized biological pathways and genetic variants that could be involved in social functioning, and (3) the implications of these results for quality-of-life research. A search of Web of Science and PubMed databases was conducted using combinations of the following keywords: genetics, twins, heritability, social functioning, social adjustment, social interaction, and social dysfunction. Variability in the definitions and measures of social functioning was extensive. Moderate to high heritability was reported for social functioning and related concepts, including prosocial behavior, loneliness, and extraversion. Disorders characterized by impairments in social functioning also show substantial heritability. Genetic variants hypothesized to be involved in social functioning are related to the network of brain structures and processes that are known to affect social cognition and behavior. Better knowledge and understanding about the impact of genetic factors on social functioning is needed to help us to attain a more comprehensive view of health-related quality-of-life (HRQOL) and will ultimately enhance our ability to identify those patients who are vulnerable to poor social functioning.

  20. Evaluation of autophagy as a mechanism involved in air pollutant-induced pulmonary injury

    Science.gov (United States)

    Evaluation of autophagy as a mechanism involved in air pollutant-induced pulmonary injuryHenriquez, A.1, Snow, S.2, Miller, D1.,Schladweiler, M.2 and Kodavanti, U2.1 Curriculum in Toxicology, UNC, Chapel Hill, NC. 2 EPHD/NHEERL, US EPA, RTP, Durham, NC. ...

  1. A molecular and genetic approach to understanding the mechanisms by which fractionated X-irradiation induces leukemia in mice

    International Nuclear Information System (INIS)

    Meruelo, D.; Rossomando, A.

    1986-01-01

    The authors laboratory's approach to try to shed light on the question of a viral etiology for radiation-induced leukemia has focused on defining, localizing and understanding the mode of action of genes involved in susceptibility to fractionated x-irradiation-(FXI) induced disease. These studies have indicated that multiple genes control the process of leukemogenesis. Not every mouse strain which shows some susceptibility to FXI-induced leukemia carries the susceptible gene at each of the multiple loci involved in the disease process. It is plausible to conclude that more than one mechanism of leukemogenesis can be triggered by FXI. Studies have focused on the mode of action of one such locus Ril-1. Several reagents have been developed to help clone and characterize this locus. Currently chromosomal ''walking'' and ''hopping'' techniques are being used in conjunction with an RFLP molecular probe which is adjacent to Ril-1. In addition a cDNA library has been prepared from a radiation-induced thymoma and substraction hybridization analysis is being used in the search for Ril-1. (author)

  2. Mechanics of ultrasound elastography

    Science.gov (United States)

    Li, Guo-Yang

    2017-01-01

    Ultrasound elastography enables in vivo measurement of the mechanical properties of living soft tissues in a non-destructive and non-invasive manner and has attracted considerable interest for clinical use in recent years. Continuum mechanics plays an essential role in understanding and improving ultrasound-based elastography methods and is the main focus of this review. In particular, the mechanics theories involved in both static and dynamic elastography methods are surveyed. They may help understand the challenges in and opportunities for the practical applications of various ultrasound elastography methods to characterize the linear elastic, viscoelastic, anisotropic elastic and hyperelastic properties of both bulk and thin-walled soft materials, especially the in vivo characterization of biological soft tissues. PMID:28413350

  3. Investigating and Improving Student Understanding of Quantum Mechanics in the Context of Single Photon Interference

    Science.gov (United States)

    Marshman, Emily; Singh, Chandralekha

    2017-01-01

    Single photon experiments involving a Mach-Zehnder interferometer can illustrate the fundamental principles of quantum mechanics, e.g., the wave-particle duality of a single photon, single photon interference, and the probabilistic nature of quantum measurement involving single photons. These experiments explicitly make the connection between the…

  4. Framework for understanding the patterns of student difficulties in quantum mechanics

    Directory of Open Access Journals (Sweden)

    Emily Marshman

    2015-09-01

    Full Text Available [This paper is part of the Focused Collection on Upper Division Physics Courses.] Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. Here, we describe a framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that the challenges many students face in developing expertise in quantum mechanics are analogous to the challenges introductory students face in developing expertise in introductory classical mechanics. This framework incorporates both the effects of diversity in upper-level students’ prior preparation, goals, and motivation in general (i.e., the facts that even in upper-level courses, students may be inadequately prepared, have unclear goals, and have insufficient motivation to excel as well as the “paradigm shift” from classical mechanics to quantum mechanics. The framework is based on empirical investigations demonstrating that the patterns of reasoning, problem-solving, and self-monitoring difficulties in quantum mechanics bear a striking resemblance to those found in introductory classical mechanics. Examples from research in quantum mechanics and introductory classical mechanics are discussed to illustrate how the patterns of difficulties are analogous as students learn to unpack the respective principles and grasp the formalism in each knowledge domain during the development of expertise. Embracing such a framework and contemplating the parallels between the difficulties in these two knowledge domains can enable researchers to leverage the extensive literature for introductory physics education research to guide the design of teaching and learning tools for helping students develop expertise in quantum mechanics.

  5. Framework for understanding the patterns of student difficulties in quantum mechanics

    Science.gov (United States)

    Marshman, Emily; Singh, Chandralekha

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. Here, we describe a framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that the challenges many students face in developing expertise in quantum mechanics are analogous to the challenges introductory students face in developing expertise in introductory classical mechanics. This framework incorporates both the effects of diversity in upper-level students' prior preparation, goals, and motivation in general (i.e., the facts that even in upper-level courses, students may be inadequately prepared, have unclear goals, and have insufficient motivation to excel) as well as the "paradigm shift" from classical mechanics to quantum mechanics. The framework is based on empirical investigations demonstrating that the patterns of reasoning, problem-solving, and self-monitoring difficulties in quantum mechanics bear a striking resemblance to those found in introductory classical mechanics. Examples from research in quantum mechanics and introductory classical mechanics are discussed to illustrate how the patterns of difficulties are analogous as students learn to unpack the respective principles and grasp the formalism in each knowledge domain during the development of expertise. Embracing such a framework and contemplating the parallels between the difficulties in these two knowledge domains can enable researchers to leverage the extensive literature for introductory physics education research to guide the design of teaching and learning tools for helping students develop expertise in quantum mechanics.

  6. Pathophysiology of major depressive disorder: mechanisms involved in etiology are not associated with clinical progression.

    Science.gov (United States)

    Verduijn, J; Milaneschi, Y; Schoevers, R A; van Hemert, A M; Beekman, A T F; Penninx, B W J H

    2015-09-29

    Meta-analyses support the involvement of different pathophysiological mechanisms (inflammation, hypothalamic-pituitary (HPA)-axis, neurotrophic growth and vitamin D) in major depressive disorder (MDD). However, it remains unknown whether dysregulations in these mechanisms are more pronounced when MDD progresses toward multiple episodes and/or chronicity. We hypothesized that four central pathophysiological mechanisms of MDD are not only involved in etiology, but also associated with clinical disease progression. Therefore, we expected to find increasingly more dysregulation across consecutive stages of MDD progression. The sample from the Netherlands Study of Depression and Anxiety (18-65 years) consisted of 230 controls and 2333 participants assigned to a clinical staging model categorizing MDD in eight stages (0, 1A, 1B, 2, 3A, 3B, 3C and 4), from familial risk at MDD (stage 0) to chronic MDD (stage 4). Analyses of covariance examined whether pathophysiological mechanism markers (interleukin (IL)-6, C-reactive protein (CRP), cortisol, brain-derived neurotrophic factor and vitamin D) showed a linear trend across controls, those at risk for MDD (stages 0, 1A and 1B), and those with full-threshold MDD (stages 2, 3A, 3B, 3C and 4). Subsequently, pathophysiological differences across separate stages within those at risk and with full-threshold MDD were examined. A linear increase of inflammatory markers (CRP P=0.026; IL-6 P=0.090), cortisol (P=0.025) and decrease of vitamin D (P<0.001) was found across the entire sample (for example, from controls to those at risk and those with full-threshold MDD). Significant trends of dysregulations across stages were present in analyses focusing on at-risk individuals (IL-6 P=0.050; cortisol P=0.008; vitamin D P<0.001); however, no linear trends were found in dysregulations for any of the mechanisms across more progressive stages of full-threshold MDD. Our results support that the examined pathophysiological mechanisms are

  7. Understanding the thermal, mechanical and electrical properties of epoxy nanocomposites

    International Nuclear Information System (INIS)

    Sarathi, R.; Sahu, R.K.; Rajeshkumar, P.

    2007-01-01

    In the present work, the electrical, mechanical and thermal properties of epoxy nanocomposite materials were studied. The electrical insulation characteristics were analyzed through short time breakdown voltage test, accelerated electrical ageing test, and by tracking test. The breakdown voltage increases with increase in nano-clay content up to 5 wt%, under AC and DC voltages. The volume resistivity, permittivity and tan(δ) of the epoxy nanocomposites were measured. The Weibull studies indicate that addition of nanoclay upto 5 wt% enhances the characteristic life of epoxy nanocomposite insulation material. The tracking test results indicate that the tracking time is high with epoxy nanocomposites as compared to pure epoxy. Ageing studies were carried out to understand the surface characteristic variation through contact angle measurement. The hydrophobicity of the insulating material was analysed through contact angle measurement. The diffusion coefficients of the material with different percentage of clay in epoxy nanocomposites were calculated. The exfoliation characteristics in epoxy nanocomposites were analyzed through wide angle X-ray diffraction (WAXD) studies. The thermal behaviour of the epoxy nanocomposites was analyzed by carrying out thermo gravimetric-differential thermal analysis (TG-DTA) studies. Heat deflection temperature of the material was measured to understand the stability of the material for intermittent temperature variation. The dynamic mechanical analysis (DMA) results indicated that storage modulus of the material increases with small amount of clay in epoxy resin. The activation energy of the material was calculated from the DMA results

  8. A Framework for Understanding the Patterns of Student Difficulties in Quantum Mechanics

    Science.gov (United States)

    Singh, Chandralekha

    2015-04-01

    Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. We describe a theoretical framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that the challenges many students face in developing expertise in quantum mechanics are analogous to the challenges introductory students face in developing expertise in introductory classical mechanics. This framework incorporates the effects of diversity in students' prior preparation, goals and motivation for taking upper-level physics courses in general as well as the ``paradigm shift'' from classical mechanics to quantum mechanics. The framework is based on empirical investigations demonstrating that the patterns of reasoning, problem-solving, and self-monitoring difficulties in quantum mechanics bear a striking resemblance to those found in introductory classical mechanics. Examples from research in quantum mechanics and introductory classical mechanics will be discussed to illustrate how the patterns of difficulties are analogous as students learn to unpack the respective principles and grasp the formalism in each knowledge domain during the development of expertise. Embracing such a theoretical framework and contemplating the parallels between the difficulties in these two knowledge domains can enable researchers to leverage the extensive literature for introductory physics education research to guide the design of teaching and learning tools for helping students develop expertise in quantum mechanics. Support from the National Science Foundation is gratefully acknowledged.

  9. Cognitive Neuroscience Approaches to Understanding Behavior Change in Alcohol Use Disorder Treatments.

    Science.gov (United States)

    Naqvi, Nasir H; Morgenstern, Jon

    2015-01-01

    Researchers have begun to apply cognitive neuroscience concepts and methods to study behavior change mechanisms in alcohol use disorder (AUD) treatments. This review begins with an examination of the current state of treatment mechanisms research using clinical and social psychological approaches. It then summarizes what is currently understood about the pathophysiology of addiction from a cognitive neuroscience perspective. Finally, it reviews recent efforts to use cognitive neuroscience approaches to understand the neural mechanisms of behavior change in AUD, including studies that use neural functioning to predict relapse and abstinence; studies examining neural mechanisms that operate in current evidence-based behavioral interventions for AUD; as well as research on novel behavioral interventions that are being derived from our emerging understanding of the neural and cognitive mechanisms of behavior change in AUD. The article highlights how the regulation of subcortical regions involved in alcohol incentive motivation by prefrontal cortical regions involved in cognitive control may be a core mechanism that plays a role in these varied forms of behavior change in AUD. We also lay out a multilevel framework for integrating cognitive neuroscience approaches with more traditional methods for examining AUD treatment mechanisms.

  10. Primer: Fracture mechanics in the nuclear power industry

    International Nuclear Information System (INIS)

    Wessel, E.T.; Server, W.L.; Kennedy, E.L.

    1990-01-01

    This Primer is intended to familiarize utility engineers with the fracture mechanics technology and to provide the basis for a working knowledge of the subject. It is directed towards all the engineering disciplines that are involved either directly or indirectly with the structural reliability of electrical power generation equipment and systems. These engineering disciplines include such areas as: design and stress analysis, metallurgy and materials, nondestructive inspection and quality control, structural analysis and reliability engineering, chemical engineering and water chemistry control, and architectural engineering. This Primer does not provide a comprehensive, in-depth treatment of all the detailed aspects involved in fracture mechanics. It does, however, provide sufficient information and a common vocabulary that should enable engineers to: read and converse intelligently about the subject, understand and utilize ASME Codes and Regulatory Guides involving fracture mechanics, absorb technical information presented and discussed at various technical meetings, and begin to apply this technology towards actual engineering problems encountered in the course of their work. Example problems are provided to further enhance an understanding of fracture mechanics. Also, Appendix A describes fracture mechanics computer codes available through EPRI to analyze rotors, reactor pressure vessels and piping

  11. DHA involvement in neurotransmission process

    Directory of Open Access Journals (Sweden)

    Vancassel Sylvie

    2007-05-01

    Full Text Available The very high enrichment of the nervous system in the polyunsaturated fatty acids, arachidonic (AA, 20: 4n-6 and docosahexaenoic acids (DHA, 22: 6n-3, is dependant of the dietary availability of their respective precursors, linoleic (18: 2n-6 and_-linolenic acids (18: 3n-3. Inadequate amounts of DHA in brain membranes have been linked to a wide variety of abnormalities ranging from visual acuity and learning irregularities, to psychopathologies. However, the molecular mechanisms involved remain unknown. Several years ago, we hypothesized that a modification of DHA contents of neuronal membranes by dietary modulation could change the neurotransmission function and then underlie inappropriate behavioural response. We showed that, in parallel to a severe loss of brain DHA concomitant to a compensatory substitution by 22:5n-6, the dietary lack of α-linolenic acid during development induced important changes in the release of neurotransmitters (dopamine, serotonin, acetylcholine in cerebral areas specifically involved in learning, memory and reward processes. Data suggested alteration of presynaptic storage process and dysregulations of reciprocal functional interactions between monoaminergic and cholinergic pathways. Moreover, we showed that recovery of these neurochemical changes was possible when the deficient diet was switched to a diet balanced in n-3 and n-6 PUFA before weaning. The next step is to understand the mechanism involved. Particularly, we focus on the study of the metabolic cooperation between the endothelial cell, the astrocyte and the neuron which regulate synaptic transmission.These works could contribute to the understanding of the link between some neuropsychiatric disorders and the metabolism of n-3 PUFA, through their action on neurotransmission.

  12. The "Mysteries of Hypnosis:" Helping Us Better Understand Hypnosis and Empathic Involvement Theory (EIT).

    Science.gov (United States)

    Pekala, Ronald J

    2016-01-01

    Wickramasekera II (2015) has penned a comprehensive and thoughtful review article demonstrating how empathy is intimately involved in the psychology and neurophysiology of hypnosis and the self. Hypnosis is a very "mental" or subjective phenomenon for both the client and the research participant. To better assess the mind of the client/participant during hypnosis, it is my belief that we need to generate more "precise" phenomenological descriptors of the mind during hypnosis and related empathic conditions, as Wickramasekera II (2015) has suggested in his article. Although any phenomenological methodology will have its limits and disadvantages, noetics (as defined in the article below) can help us better understand hypnosis, empathic involvement theory, and the brain/mind/behavior interface. By quantifying the mind in a comprehensive manner, just as the brain is comprehensively quantified via fMRI and qEEG technologies, noetic analysis can help us more precisely assess the mind and relate it to the brain and human behavior and experience.

  13. Absorption of Carotenoids and Mechanisms Involved in Their Health-Related Properties.

    Science.gov (United States)

    Cervantes-Paz, Braulio; Victoria-Campos, Claudia I; Ornelas-Paz, José de Jesús

    Carotenoids participate in the normal metabolism and function of the human body. They are involved in the prevention of several diseases, especially those related to the inflammation syndrome. Their main mechanisms of action are associated to their potent antioxidant activity and capacity to regulate the expression of specific genes and proteins. Recent findings suggest that carotenoid metabolites may explain several processes where the participation of their parent carotenoids was unclear. The health benefits of carotenoids strongly depend on their absorption and transformation during gastrointestinal digestion. The estimation of the 'bioaccessibility' of carotenoids through in vitro models have made possible the evaluation of the effect of a large number of factors on key stages of carotenoid digestion and intestinal absorption. The bioaccessibility of these compounds allows us to have a clear idea of their potential bioavailability, a term that implicitly involves the biological activity of these compounds.

  14. Mechanisms involved in metformin action in the treatment of polycystic ovary syndrome.

    Science.gov (United States)

    Motta, A B

    2009-01-01

    The N, N' dimethyl-biguanide : Metformin is an antidiabetic drug that increases glucose utilization in insulin-sensitive tissues. As Polycystic Ovary Syndrome (PCOS) and diabetes share some altered parameters-such as abnormal glucose: insulin ratio, altered lipidic metabolism and insulin-resistance syndrome- the use of metformin has become increasingly accepted and widespread in the treatment of PCOS. Currently, metformin is used to induce ovulation and during early pregnancy in PCOS patients, however, a complete knowledge of the metformin action has not been achieved yet. This review describes beyond the classical reproductive action of metformin and explores other benefits of the drug. In addition, the present work discusses the molecular mechanisms involved further than the classical pathway that involves the AMP-activated protein kinase.

  15. Understanding Liver Regeneration: From Mechanisms to Regenerative Medicine.

    Science.gov (United States)

    Gilgenkrantz, Hélène; Collin de l'Hortet, Alexandra

    2018-04-16

    Liver regeneration is a complex and unique process. When two-thirds of a mouse liver is removed, the remaining liver recovers its initial weight in approximately 10 days. The understanding of the mechanisms responsible for liver regeneration may help patients needing large liver resections or transplantation and may be applied to the field of regenerative medicine. All differentiated hepatocytes are capable of self-renewal, but different subpopulations of hepatocytes seem to have distinct proliferative abilities. In the setting of chronic liver diseases, a ductular reaction ensues in which liver progenitor cells (LPCs) proliferate in the periportal region. Although these LPCs have the capacity to differentiate into hepatocytes and biliary cells in vitro, their ability to participate in liver regeneration is far from clear. Their expansion has even been associated with increased fibrosis and poorer prognosis in chronic liver diseases. Controversies also remain on their origin: lineage studies in experimental mouse models of chronic injury have recently suggested that these LPCs originate from hepatocyte dedifferentiation, whereas in other situations, they seem to come from cholangiocytes. This review summarizes data published in the past 5 years in the liver regeneration field, discusses the mechanisms leading to regeneration disruption in chronic liver disorders, and addresses the potential use of novel approaches for regenerative medicine. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Clustering mechanism of oxocarboxylic acids involving hydration reaction: Implications for the atmospheric models

    Science.gov (United States)

    Liu, Ling; Kupiainen-Määttä, Oona; Zhang, Haijie; Li, Hao; Zhong, Jie; Kurtén, Theo; Vehkamäki, Hanna; Zhang, Shaowen; Zhang, Yunhong; Ge, Maofa; Zhang, Xiuhui; Li, Zesheng

    2018-06-01

    The formation of atmospheric aerosol particles from condensable gases is a dominant source of particulate matter in the boundary layer, but the mechanism is still ambiguous. During the clustering process, precursors with different reactivities can induce various chemical reactions in addition to the formation of hydrogen bonds. However, the clustering mechanism involving chemical reactions is rarely considered in most of the nucleation process models. Oxocarboxylic acids are common compositions of secondary organic aerosol, but the role of oxocarboxylic acids in secondary organic aerosol formation is still not fully understood. In this paper, glyoxylic acid, the simplest and the most abundant atmospheric oxocarboxylic acid, has been selected as a representative example of oxocarboxylic acids in order to study the clustering mechanism involving hydration reactions using density functional theory combined with the Atmospheric Clusters Dynamic Code. The hydration reaction of glyoxylic acid can occur either in the gas phase or during the clustering process. Under atmospheric conditions, the total conversion ratio of glyoxylic acid to its hydration reaction product (2,2-dihydroxyacetic acid) in both gas phase and clusters can be up to 85%, and the product can further participate in the clustering process. The differences in cluster structures and properties induced by the hydration reaction lead to significant differences in cluster formation rates and pathways at relatively low temperatures.

  17. Possible mechanisms involved in the vasorelaxant effect produced by clobenzorex in aortic segments of rats

    OpenAIRE

    Lozano-Cuenca, J.; González-Hernández, A.; López-Canales, O.A.; Villagrana-Zesati, J.R.; Rodríguez-Choreão, J.D.; Morín-Zaragoza, R.; Castillo-Henkel, E.F.; López-Canales, J.S.

    2017-01-01

    Clobenzorex is a metabolic precursor of amphetamine indicated for the treatment of obesity. Amphetamines have been involved with cardiovascular side effects such as hypertension and pulmonary arterial hypertension. The aim of the present study was to investigate whether the direct application of 10?9?10?5 M clobenzorex on isolated phenylephrine-precontracted rat aortic rings produces vascular effects, and if so, what mechanisms may be involved. Clobenzorex produced an immediate concentration-...

  18. Understanding and encouraging volunteerism and community involvement.

    Science.gov (United States)

    Stukas, Arthur A; Snyder, Mark; Clary, E Gil

    2016-01-01

    Volunteerism and community involvement have been demonstrated to offer benefits both to communities and to volunteers themselves. However, not every method to encourage these behaviors is equally effective in producing committed volunteers. Drawing on relevant theoretical and empirical literatures, we identify features of efforts that are likely to produce intrinsically motivated other-oriented volunteers and those that may produce extrinsically motivated self-oriented volunteers. In particular, we explore ways to socialize young people to help and ways to build a sense of community focused on particular issues. We also examine requirements for community service and other approaches that highlight self-oriented benefits that volunteers may obtain. Finally, we return to a focus on the importance of intrinsic motivation for promoting sustained involvement in volunteers, even as we acknowledge that volunteers who come with extrinsic or self-oriented reasons can still offer much to communities and can be satisfied when their activities match their motivations.

  19. An overview of potential molecular mechanisms involved in VSMC phenotypic modulation.

    Science.gov (United States)

    Zhang, Ming-Jie; Zhou, Yi; Chen, Lei; Wang, Yan-Qin; Wang, Xu; Pi, Yan; Gao, Chang-Yue; Li, Jing-Cheng; Zhang, Li-Li

    2016-02-01

    The fully differentiated medial vascular smooth muscle cells (VSMCs) of mature vessels keep quiescent and contractile. However, VSMC can exhibit the plasticity in phenotype switching from a differentiated and contractile phenotype to a dedifferentiated state in response to alterations in local environmental cues, which is called phenotypic modulation or switching. Distinguishing from its differentiated state expressing more smooth muscle (SM)-specific/selective proteins, the phenotypic modulation in VSMC is characterized by an increased rate of proliferation, migration, synthesis of extracellular matrix proteins and decreased expression of SM contractile proteins. Although it has been well demonstrated that phenotypic modulation of VSMC contributes to the occurrence and progression of many proliferative vascular diseases, little is known about the details of the molecular mechanisms of VSMC phenotypic modulation. Growing evidence suggests that variety of molecules including microRNAs, cytokines and biochemical factors, membrane receptors, ion channels, cytoskeleton and extracellular matrix play important roles in controlling VSMC phenotype. The focus of the present review is to provide an overview of potential molecular mechanisms involved in VSMC phenotypic modulation in recent years. To clarify VSMC differentiation and phenotypic modulation mechanisms will contribute to producing cell-based therapeutic interventions for aberrant VSMC differentiation-related diseases.

  20. Phytoremediation potential of the novel atrazine tolerant Lolium multiflorum and studies on the mechanisms involved

    International Nuclear Information System (INIS)

    Merini, Luciano J.; Bobillo, Cecilia; Cuadrado, Virginia; Corach, Daniel; Giulietti, Ana M.

    2009-01-01

    Atrazine impact on human health and the environment have been extensively studied. Phytoremediation emerged as a low cost, environmental friendly biotechnological solution for atrazine pollution in soil and water. In vitro atrazine tolerance assays were performed and Lolium multiflorum was found as a novel tolerant species, able to germinate and grow in the presence of 1 mg kg -1 of the herbicide. L. multiflorum presented 20% higher atrazine removal capacity than the natural attenuation, with high initial degradation rate in microcosms. The mechanisms involved in atrazine tolerance such as mutation in psbA gene, enzymatic detoxification via P 450 or chemical hydrolysis through benzoxazinones were evaluated. It was demonstrated that atrazine tolerance is conferred by enhanced enzymatic detoxification via P 450 . Due to its atrazine degradation capacity in soil and its agronomical properties, L. multiflorum is a candidate for designing phytoremediation strategies for atrazine contaminated agricultural soils, especially those involving run-off avoiding. - Finding of a novel atrazine-tolerant species, as a potential candidate for phytoremediating herbicide-contaminated agriculture soils and elucidation of the mechanisms involved in tolerance.

  1. Phytoremediation potential of the novel atrazine tolerant Lolium multiflorum and studies on the mechanisms involved

    Energy Technology Data Exchange (ETDEWEB)

    Merini, Luciano J. [Catedra de Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires (Argentina); Bobillo, Cecilia [Servicio de Huellas Digitales Geneticas, Facultad de Farmacia y Bioquimica, Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires, Junin 956, BS As (Argentina); Cuadrado, Virginia [Catedra de Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires (Argentina); Corach, Daniel [Servicio de Huellas Digitales Geneticas, Facultad de Farmacia y Bioquimica, Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires, Junin 956, BS As (Argentina); Giulietti, Ana M., E-mail: agiule@ffyb.uba.a [Catedra de Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires (Argentina)

    2009-11-15

    Atrazine impact on human health and the environment have been extensively studied. Phytoremediation emerged as a low cost, environmental friendly biotechnological solution for atrazine pollution in soil and water. In vitro atrazine tolerance assays were performed and Lolium multiflorum was found as a novel tolerant species, able to germinate and grow in the presence of 1 mg kg{sup -1} of the herbicide. L. multiflorum presented 20% higher atrazine removal capacity than the natural attenuation, with high initial degradation rate in microcosms. The mechanisms involved in atrazine tolerance such as mutation in psbA gene, enzymatic detoxification via P{sub 450} or chemical hydrolysis through benzoxazinones were evaluated. It was demonstrated that atrazine tolerance is conferred by enhanced enzymatic detoxification via P{sub 450}. Due to its atrazine degradation capacity in soil and its agronomical properties, L. multiflorum is a candidate for designing phytoremediation strategies for atrazine contaminated agricultural soils, especially those involving run-off avoiding. - Finding of a novel atrazine-tolerant species, as a potential candidate for phytoremediating herbicide-contaminated agriculture soils and elucidation of the mechanisms involved in tolerance.

  2. Involvement of translation and transcription processes into neurophysiological mechanisms of long-term memory reconsolidation.

    Science.gov (United States)

    Kozyrev, S A; Nikitin, V P

    2013-03-01

    We studied the involvement of translation and transcription processes into behavioral and neuronal mechanisms of reconsolidation of the long-term memory of the conditioned taste aversion in edible snails. Injection of cycloheximide (an inhibitor of protein synthesis) to the snails in 48 h after training combined with subsequent reminder and presentation of the conditional stimulus resulted in the development of persistent amnesia and depression of the responses of the defensive behavior command neurons LPl1 and RPl1 to the conditional stimulus. Injection of mRNA synthesis inhibitors actinomycin D or DRB (5,6-dichloro-1-β-D-ribofuranosylbenzimidasole) in 48 h after conditioning with subsequent reminding procedure produced no effects on memory retention and on the responses of the command neurons to the conditional stimulus. The study suggests that the proteins translated from previously synthesized and stored mRNA were involved in the mechanisms of reconsolidation of the memory responsible for conditioned taste aversion.

  3. Understanding the molecular mechanisms of human microtia via a pig model of HOXA1 syndrome

    Directory of Open Access Journals (Sweden)

    Ruimin Qiao

    2015-06-01

    Full Text Available Microtia is a congenital malformation of the outer ears. Although both genetic and environmental components have been implicated in microtia, the genetic causes of this innate disorder are poorly understood. Pigs have naturally occurring diseases comparable to those in humans, providing exceptional opportunity to dissect the molecular mechanism of human inherited diseases. Here we first demonstrated that a truncating mutation in HOXA1 causes a monogenic disorder of microtia in pigs. We further performed RNA sequencing (RNA-Seq analysis on affected and healthy pig embryos (day 14.25. We identified a list of 337 differentially expressed genes (DEGs between the normal and mutant samples, shedding light on the transcriptional network involving HOXA1. The DEGs are enriched in biological processes related to cardiovascular system and embryonic development, and neurological, renal and urological diseases. Aberrant expressions of many DEGs have been implicated in human innate deformities corresponding to microtia-associated syndromes. After applying three prioritizing algorithms, we highlighted appealing candidate genes for human microtia from the 337 DEGs. We searched for coding variants of functional significance within six candidate genes in 147 microtia-affected individuals. Of note, we identified one EVC2 non-synonymous mutation (p.Asp1174Asn as a potential disease-implicating variant for a human microtia-associated syndrome. The findings advance our understanding of the molecular mechanisms underlying human microtia, and provide an interesting example of the characterization of human disease-predisposing variants using pig models.

  4. Hierarchy of mechanisms involved in generating Na/K-ATPase polarity in MDCK epithelial cells

    NARCIS (Netherlands)

    Mays, R.W.; Siemers, K.A.; Fritz, B.A.; Lowe, A.W.; van Meer, G.; Nelson, W.J.

    1995-01-01

    We have studied mechanisms involved in generating a polarized distribution of Na/K-ATPase in the basal-lateral membrane of two clones of MDCK II cells. Both clones exhibit polarized distributions of marker proteins of the apical and basal-lateral membranes, including Na/K-ATPase, at steady state.

  5. Single turnover studies of oxidative halophenol dehalogenation by horseradish peroxidase reveal a mechanism involving two consecutive one electron steps: toward a functional halophenol bioremediation catalyst.

    Science.gov (United States)

    Sumithran, Suganya; Sono, Masanori; Raner, Gregory M; Dawson, John H

    2012-12-01

    Horseradish peroxidase (HRP) catalyzes the oxidative para-dechlorination of the environmental pollutant/carcinogen 2,4,6-trichlorophenol (2,4,6-TCP). A possible mechanism for this reaction is a direct oxygen atom transfer from HRP compound I (HRP I) to trichlorophenol to generate 2,6-dichloro 1,4-benzoquinone, a two-electron transfer process. An alternative mechanism involves two consecutive one-electron transfer steps in which HRP I is reduced to compound II (HRP II) and then to the ferric enzyme as first proposed by Wiese et al. [F.W. Wiese, H.C. Chang, R.V. Lloyd, J.P. Freeman, V.M. Samokyszyn, Arch. Environ. Contam. Toxicol. 34 (1998) 217-222]. To probe the mechanism of oxidative halophenol dehalogenation, the reactions between 2,4,6-TCP and HRP compounds I or II have been investigated under single turnover conditions (i.e., without excess H(2)O(2)) using rapid scan stopped-flow spectroscopy. Addition of 2,4,6-TCP to HRP I leads rapidly to HRP II and then more slowly to the ferric resting state, consistent with a mechanism involving two consecutive one-electron oxidations of the substrate via a phenoxy radical intermediate. HRP II can also directly dechlorinate 2,4,6-TCP as judged by rapid scan stopped-flow and mass spectrometry. This observation is particularly significant since HRP II can only carry out one-electron oxidations. A more detailed understanding of the mechanism of oxidative halophenol dehalogenation will facilitate the use of HRP as a halophenol bioremediation catalyst. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control.

    Science.gov (United States)

    Reis, Janine; Swayne, Orlando B; Vandermeeren, Yves; Camus, Mickael; Dimyan, Michael A; Harris-Love, Michelle; Perez, Monica A; Ragert, Patrick; Rothwell, John C; Cohen, Leonardo G

    2008-01-15

    Transcranial magnetic stimulation (TMS) was initially used to evaluate the integrity of the corticospinal tract in humans non-invasively. Since these early studies, the development of paired-pulse and repetitive TMS protocols allowed investigators to explore inhibitory and excitatory interactions of various motor and non-motor cortical regions within and across cerebral hemispheres. These applications have provided insight into the intracortical physiological processes underlying the functional role of different brain regions in various cognitive processes, motor control in health and disease and neuroplastic changes during recovery of function after brain lesions. Used in combination with neuroimaging tools, TMS provides valuable information on functional connectivity between different brain regions, and on the relationship between physiological processes and the anatomical configuration of specific brain areas and connected pathways. More recently, there has been increasing interest in the extent to which these physiological processes are modulated depending on the behavioural setting. The purpose of this paper is (a) to present an up-to-date review of the available electrophysiological data and the impact on our understanding of human motor behaviour and (b) to discuss some of the gaps in our present knowledge as well as future directions of research in a format accessible to new students and/or investigators. Finally, areas of uncertainty and limitations in the interpretation of TMS studies are discussed in some detail.

  7. Our Evolving Understanding of the Mechanism of Quinolones

    Directory of Open Access Journals (Sweden)

    Arnaud Gutierrez

    2018-04-01

    Full Text Available The maintenance of DNA supercoiling is essential for the proper regulation of a plethora of biological processes. As a consequence of this mode of regulation, ahead of the replication fork, DNA replication machinery is prone to introducing supercoiled regions into the DNA double helix. Resolution of DNA supercoiling is essential to maintain DNA replication rates that are amenable to life. This resolution is handled by evolutionarily conserved enzymes known as topoisomerases. The activity of topoisomerases is essential, and therefore constitutes a prime candidate for targeting by antibiotics. In this review, we present hallmark investigations describing the mode of action of quinolones, one of the antibacterial classes targeting the function of topoisomerases in bacteria. By chronologically analyzing data gathered on the mode of action of this imperative antibiotic class, we highlight the necessity to look beyond primary drug-target interactions towards thoroughly understanding the mechanism of quinolones at the level of the cell.

  8. Understanding the petrochemical cycle: Part 1

    International Nuclear Information System (INIS)

    Sedriks, W.

    1994-01-01

    Fitness in the hydrocarbon processing industry (HPI) arena involves understanding and coping with business cycles: supply and demand. This becomes increasingly more important as the industry globalizes and matures. Competitive-edge thinking needs to look hard at the forces that influence business cycles. Recognition of potential pitfalls is very important when considering: future capacity expansion, mergers and acquisitions, market departure, plant closure, potential product substitution, etc. Understanding pricing mechanisms and the workings of hockey-stick profitability profiles help HPI operators endure cycle downturns and prepare plants to maximize profits for the next upswing. The paper discusses characteristic trends, cycles in the hydrocarbon processing industry, current conditions, and mitigating cycle effects

  9. Contribution of local probes in the understanding of mechanical effect on localized corrosion

    International Nuclear Information System (INIS)

    Vignal, Vincent; Oltra, Roland; Mary, Nicolas

    2004-01-01

    Understanding the actual effects of mechanical stresses on the processes leading to pitting corrosion necessitates to develop both a mechanical approach and electrochemical experiments at a microscopic scale. Typical embrittlement can be observed after straining around MnS inclusions on a re-sulfurized 316 stainless steels and their corrosion sensitivity have been classified using the micro-capillary electrochemical cell technique. It has been shown that the numerical simulation of the location of stress gradients is possible before the local electrochemical analysis and could be a very interesting way to define the pitting susceptibility of micro-cracked areas during straining. (authors)

  10. Enhanced understanding of the relationship between chemical modification and mechanical properties of wood

    Science.gov (United States)

    Charles R. Frihart; Daniel J. Yelle; John Ralph; Robert J. Moon; Donald S. Stone; Joseph E. Jakes

    2008-01-01

    Chemical additions to wood often change its bulk properties, which can be determined using conventional macroscopic mechanical tests. However, the controlling interactions between chemicals and wood take place at and below the scale of individual cells and cell walls. To better understand the effects of chemical additions to wood, we have adapted and extended two...

  11. Understanding the spark plasma sintering from the view of materials joining

    International Nuclear Information System (INIS)

    Dong, Peng; Wang, Zhe; Wang, Wenxian; Chen, Shaoping; Zhou, Jun

    2016-01-01

    Spark plasma sintering (SPS) is an attractive consolidation process. However, the mechanism behind this process is still an open topic for debate. This paper presents the first attempt to understand the SPS mechanism from perspective of materials joining. For this, TiNi_f/Al composites were fabricated by SPS, and the interfacial microstructures were investigated using field emission scanning electron microscopy and transmission electron microscopy. According to the experimental results, several joining processes were reflected well during SPS, involving micro-arc welding, electric resistance welding and diffusion welding. The proposed understanding of SPS will be helpful to the control of sintering quality.

  12. Understanding the direct involvement of parents in policy development and school activities in a primary school

    Directory of Open Access Journals (Sweden)

    Tobin Bernie

    2017-12-01

    Full Text Available It is acknowledged that parental engagement with children’s learning and education is of vital importance. But, there is a tendency to confuse engagement with learning with engagement with the school. While all types of parents’ involvement can have a positive effect, it is actually what parents do with their child at home that has the greatest impact. However, unless parental involvement in learning is embedded in whole-school processes it is unlikely to as effective as possible. This paper documents an action research study that explores the inclusion of parents and home values in the construction of the teaching and learning environment. This was a small step towards positive parent-teacher collaboration, which allowed an exchange of knowledge, values and cultural background experiences. In acknowledging the ways in which the parents already engaged with their children’s learning, it began to enhance self-efficacy in their ability to directly affect this learning. This work has also provoked reflexive engagement of my influence and understanding of involving parents of children with additional and diverse learning needs. But, it also details the transformative journey that influenced my thinking about how we as a school could begin to develop whole-school processes to directly involve parents in policy development and school activities.

  13. Molecular Targets of Antihypertensive Peptides: Understanding the Mechanisms of Action Based on the Pathophysiology of Hypertension

    Directory of Open Access Journals (Sweden)

    Kaustav Majumder

    2014-12-01

    Full Text Available There is growing interest in using functional foods or nutraceuticals for the prevention and treatment of hypertension or high blood pressure. Although numerous preventive and therapeutic pharmacological interventions are available on the market, unfortunately, many patients still suffer from poorly controlled hypertension. Furthermore, most pharmacological drugs, such as inhibitors of angiotensin-I converting enzyme (ACE, are often associated with significant adverse effects. Many bioactive food compounds have been characterized over the past decades that may contribute to the management of hypertension; for example, bioactive peptides derived from various food proteins with antihypertensive properties have gained a great deal of attention. Some of these peptides have exhibited potent in vivo antihypertensive activity in both animal models and human clinical trials. This review provides an overview about the complex pathophysiology of hypertension and demonstrates the potential roles of food derived bioactive peptides as viable interventions targeting specific pathways involved in this disease process. This review offers a comprehensive guide for understanding and utilizing the molecular mechanisms of antihypertensive actions of food protein derived peptides.

  14. Numerical and Experimental Study of Mechanisms Involved in Boiling Histotripsy.

    Science.gov (United States)

    Pahk, Ki Joo; Gélat, Pierre; Sinden, David; Dhar, Dipok Kumar; Saffari, Nader

    2017-12-01

    The aim of boiling histotripsy is to mechanically fractionate tissue as an alternative to thermal ablation for therapeutic applications. In general, the shape of a lesion produced by boiling histotripsy is tadpole like, consisting of a head and a tail. Although many studies have demonstrated the efficacy of boiling histotripsy for fractionating solid tumors, the exact mechanisms underpinning this phenomenon are not yet well understood, particularly the interaction of a boiling vapor bubble with incoming incident shockwaves. To investigate the mechanisms involved in boiling histotripsy, a high-speed camera with a passive cavitation detection system was used to observe the dynamics of bubbles produced in optically transparent tissue-mimicking gel phantoms exposed to the field of a 2.0-MHz high-intensity focused ultrasound (HIFU) transducer. We observed that boiling bubbles were generated in a localized heated region and cavitation clouds were subsequently induced ahead of the expanding bubble. This process was repeated with HIFU pulses and eventually resulted in a tadpole-shaped lesion. A simplified numerical model describing the scattering of the incident ultrasound wave by a vapor bubble was developed to help interpret the experimental observations. Together with the numerical results, these observations suggest that the overall size of a lesion induced by boiling histotripsy is dependent on the sizes of (i) the heated region at the HIFU focus and (ii) the backscattered acoustic field by the original vapor bubble. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  15. Preschoolers’ Development of Theory of Mind: The Contribution of Understanding Psychological Causality in Stories

    Directory of Open Access Journals (Sweden)

    Wakako Sanefuji

    2018-06-01

    Full Text Available This study investigated the relationship between children’s abilities to understand causal sequences and another’s false belief. In Experiment 1, we tested 3-, 4-, 5-, and 6-year-old children (n = 28, 28, 27, and 27, respectively using false belief and picture sequencing tasks involving mechanical, behavioral, and psychological causality. Understanding causal sequences in mechanical, behavioral, and psychological stories was related to understanding other’s false beliefs. In Experiment 2, children who failed the initial false belief task (n = 50 were reassessed 5 months later. High scorers in the sequencing of the psychological stories in Experiment 1 were more likely to pass the standard false belief task than were the low scorers. Conversely, understanding causal sequences in the mechanical and behavioral stories in Experiment 1 did not predict passing the false belief task in Experiment 2. Thus, children may understand psychological causality before they are able to use it to understand false beliefs.

  16. Superoxide anions and hydrogen peroxide induce hepatocyte death by different mechanisms : Involvement of JNK and ERK MAP kinases

    NARCIS (Netherlands)

    Conde de la Rosa, L; Schoemaker, MH; Vrenken, TE; Buist-Homan, M; Havinga, R; Jansen, PLM; Moshage, H

    Background/Aims: In liver diseases, reactive oxygen species (ROS) are involved in cell death and liver injury, but the mechanisms are not completely elucidated. To elucidate the mechanisms of hepatocyte cell death induced by the ROS superoxide anions and hydrogen peroxide, primary cultures of

  17. Superoxide anions and hydrogen peroxide induce hepatocyte death by different mechanisms: involvement of JNK and ERK MAP kinases

    NARCIS (Netherlands)

    Conde de la Rosa, Laura; Schoemaker, Marieke H.; Vrenken, Titia E.; Buist-Homan, Manon; Havinga, Rick; Jansen, Peter L. M.; Moshage, Han

    2006-01-01

    BACKGROUND/AIMS: In liver diseases, reactive oxygen species (ROS) are involved in cell death and liver injury, but the mechanisms are not completely elucidated. To elucidate the mechanisms of hepatocyte cell death induced by the ROS superoxide anions and hydrogen peroxide, primary cultures of

  18. Understanding the mechanism of catalytic fast pyrolysis by unveiling reactive intermediates in heterogeneous catalysis

    Science.gov (United States)

    Hemberger, Patrick; Custodis, Victoria B. F.; Bodi, Andras; Gerber, Thomas; van Bokhoven, Jeroen A.

    2017-06-01

    Catalytic fast pyrolysis is a promising way to convert lignin into fine chemicals and fuels, but current approaches lack selectivity and yield unsatisfactory conversion. Understanding the pyrolysis reaction mechanism at the molecular level may help to make this sustainable process more economic. Reactive intermediates are responsible for product branching and hold the key to unveiling these mechanisms, but are notoriously difficult to detect isomer-selectively. Here, we investigate the catalytic pyrolysis of guaiacol, a lignin model compound, using photoelectron photoion coincidence spectroscopy with synchrotron radiation, which allows for isomer-selective detection of reactive intermediates. In combination with ambient pressure pyrolysis, we identify fulvenone as the central reactive intermediate, generated by catalytic demethylation to catechol and subsequent dehydration. The fulvenone ketene is responsible for the phenol formation. This technique may open unique opportunities for isomer-resolved probing in catalysis, and holds the potential for achieving a mechanistic understanding of complex, real-life catalytic processes.

  19. Effects and mechanisms of 3α,5α,-THP on emotion, motivation, and reward functions involving pregnane xenobiotic receptor

    Directory of Open Access Journals (Sweden)

    Cheryl A Frye

    2012-01-01

    Full Text Available Progestogens [progesterone (P4 and its products] play fundamental roles in the development and/or function of the central nervous system during pregnancy. We, and others, have investigated the role of pregnane neurosteroids for a plethora of functional effects beyond their pro-gestational processes. Emerging findings regarding the effects, mechanisms, and sources of neurosteroids have challenged traditional dogma about steroid action. How the P4 metabolite and neurosteroid, 3α-hydroxy-5α-pregnan-20-one (3α,5α-THP, influences cellular functions and behavioral processes involved in emotion/affect, motivation, and reward, is the focus of the present review. To further understand these processes, we have utilized an animal model assessing the effects, mechanisms, and sources of 3α,5α-THP. In the ventral tegmental area (VTA, 3α,5α-THP has actions to facilitate affective, and motivated, social behaviors through non-traditional targets, such as GABA, glutamate, and dopamine receptors. 3α,5α-THP levels in the midbrain VTA both facilitate, and/or are enhanced by, affective and social behavior. The pregnane xenobiotic receptor (PXR mediates the production of, and/or metabolism to, various neurobiological factors. PXR is localized to the midbrain VTA of rats. The role of PXR to influence 3α,5α-THP production from central biosynthesis, and/or metabolism of peripheral P4, in the VTA, as well as its role to facilitate, or be increased by, affective/social behaviors is under investigation. Investigating novel behavioral functions of 3α,5α-THP extends our knowledge of the neurobiology of progestogens, relevant for affective/social behaviors, and their connections to systems that regulate affect and motivated processes, such as those important for stress regulation and neuropsychiatric disorders (anxiety, depression, schizophrenia, drug dependence. Thus, further understanding of 3α,5α-THP’s role and mechanisms to enhance affective and motivated

  20. Changes in Pre-service Science Teachers' Understandings After Being Involved in Explicit Nature of Science and Socioscientific Argumentation Processes

    Science.gov (United States)

    Kutluca, A. Y.; Aydın, A.

    2017-08-01

    The study explored the changes in pre-service science teachers' understanding of the nature of science and their opinions about the nature of science, science teaching and argumentation after their participation in explicit nature of science (NOS) and socioscientific argumentation processes. The participants were 56 third-grade pre-service science teachers studying in a state university in Turkey. The treatment group comprised 27 participants, and there were 29 participants in the comparison group. The comparison group participants were involved in a student-centred science-teaching process, and the participants of the treatment group were involved in explicit NOS and socioscientific argumentation processes. In the study, which lasted a total of 11 weeks, a NOS-as-argumentation questionnaire was administered to all the participants to determine their understanding of NOS at the beginning and end of the data collection process, and six random participants of the treatment group participated in semi-structured interview questions in order to further understand their views regarding NOS, science teaching and argumentation. Qualitative and quantitative data analysis revealed that the explicit NOS and socioscientific argumentation processes had a significant effect on pre-service science teachers' NOS understandings. Furthermore, NOS, argumentation and science teaching views of the participants in the treatment group showed a positive change. The results of this study are discussed in light of the related literature, and suggestions are made within the context of contribution to science-teaching literature, improvement of education quality and education of pre-service teachers.

  1. Structure reveals regulatory mechanisms of a MaoC-like hydratase from Phytophthora capsici involved in biosynthesis of polyhydroxyalkanoates (PHAs).

    Science.gov (United States)

    Wang, Huizheng; Zhang, Kai; Zhu, Jie; Song, Weiwei; Zhao, Li; Zhang, Xiuguo

    2013-01-01

    Polyhydroxyalkanoates (PHAs) have attracted increasing attention as "green plastic" due to their biodegradable, biocompatible, thermoplastic, and mechanical properties, and considerable research has been undertaken to develop low cost/high efficiency processes for the production of PHAs. MaoC-like hydratase (MaoC), which belongs to (R)-hydratase involved in linking the β-oxidation and the PHA biosynthetic pathways, has been identified recently. Understanding the regulatory mechanisms of (R)-hydratase catalysis is critical for efficient production of PHAs that promise synthesis an environment-friendly plastic. We have determined the crystal structure of a new MaoC recognized from Phytophthora capsici. The crystal structure of the enzyme was solved at 2.00 Å resolution. The structure shows that MaoC has a canonical (R)-hydratase fold with an N-domain and a C-domain. Supporting its dimerization observed in structure, MaoC forms a stable homodimer in solution. Mutations that disrupt the dimeric MaoC result in a complete loss of activity toward crotonyl-CoA, indicating that dimerization is required for the enzymatic activity of MaoC. Importantly, structure comparison reveals that a loop unique to MaoC interacts with an α-helix that harbors the catalytic residues of MaoC. Deletion of the loop enhances the enzymatic activity of MaoC, suggesting its inhibitory role in regulating the activity of MaoC. The data in our study reveal the regulatory mechanism of an (R)-hydratase, providing information on enzyme engineering to produce low cost PHAs.

  2. Involvement of spinal NR2B-containing NMDA receptors in oxaliplatin-induced mechanical allodynia in rats

    Directory of Open Access Journals (Sweden)

    Yano Takahisa

    2011-01-01

    Full Text Available Abstract Background Oxaliplatin is a platinum-based chemotherapy drug characterized by the development of acute and chronic peripheral neuropathies. The chronic neuropathy is a dose-limiting toxicity. We previously reported that repeated administration of oxaliplatin induced cold hyperalgesia in the early phase and mechanical allodynia in the late phase in rats. In the present study, we investigated the involvement of NR2B-containing N-methyl-D-aspartate (NMDA receptors in oxaliplatin-induced mechanical allodynia in rats. Results Repeated administration of oxaliplatin (4 mg/kg, i.p., twice a week caused mechanical allodynia in the fourth week, which was reversed by intrathecal injection of MK-801 (10 nmol and memantine (1 μmol, NMDA receptor antagonists. Similarly, selective NR2B antagonists Ro25-6981 (300 nmol, i.t. and ifenprodil (50 mg/kg, p.o. significantly attenuated the oxaliplatin-induced pain behavior. In addition, the expression of NR2B protein and mRNA in the rat spinal cord was increased by oxaliplatin on Day 25 (late phase but not on Day 5 (early phase. Moreover, we examined the involvement of nitric oxide synthase (NOS as a downstream target of NMDA receptor. L-NAME, a non-selective NOS inhibitor, and 7-nitroindazole, a neuronal NOS (nNOS inhibitor, significantly suppressed the oxaliplatin-induced pain behavior. The intensity of NADPH diaphorase staining, a histochemical marker for NOS, in the superficial layer of spinal dorsal horn was obviously increased by oxaliplatin, and this increased intensity was reversed by intrathecal injection of Ro25-6981. Conclusion These results indicated that spinal NR2B-containing NMDA receptors are involved in the oxaliplatin-induced mechanical allodynia.

  3. Complement Involvement in Periodontitis: Molecular Mechanisms and Rational Therapeutic Approaches.

    Science.gov (United States)

    Hajishengallis, George; Maekawa, Tomoki; Abe, Toshiharu; Hajishengallis, Evlambia; Lambris, John D

    2015-01-01

    The complement system is a network of interacting fluid-phase and cell surface-associated molecules that trigger, amplify, and regulate immune and inflammatory signaling pathways. Dysregulation of this finely balanced network can destabilize host-microbe homeostasis and cause inflammatory tissue damage. Evidence from clinical and animal model-based studies suggests that complement is implicated in the pathogenesis of periodontitis, a polymicrobial community-induced chronic inflammatory disease that destroys the tooth-supporting tissues. This review discusses molecular mechanisms of complement involvement in the dysbiotic transformation of the periodontal microbiome and the resulting destructive inflammation, culminating in loss of periodontal bone support. These mechanistic studies have additionally identified potential therapeutic targets. In this regard, interventional studies in preclinical models have provided proof-of-concept for using complement inhibitors for the treatment of human periodontitis.

  4. Understanding quantum mechanics by measuring the properties of mesoscopic devices

    International Nuclear Information System (INIS)

    Webb, R.

    1993-01-01

    Measurements of the electrical transport and magnetic properties of micron-size scale insulators, metals, semi-metals, and semiconductors at low temperatures have uncovered a wealth of unexpected phenomena. The only way to understand these new properties is by invoking many of the postulates of quantum mechanics. The author has confirmed that the electron acts as a long-range phase-coherent wave and conventional classical forces are not as important as scalar and vector potentials in determining the response of the electron as it moves through its environment. This talk will focus on the measurement of the Aharonov-Bohm self-interference effects, nonlocal transport phenomena, and persistent currents in normal metal ring structures that have been observed in these nanostructures

  5. The effects of students' reasoning abilities on conceptual understandings and problem-solving skills in introductory mechanics

    International Nuclear Information System (INIS)

    Ates, S; Cataloglu, E

    2007-01-01

    The purpose of this study was to determine if there are relationships among freshmen/first year students' reasoning abilities, conceptual understandings and problem-solving skills in introductory mechanics. The sample consisted of 165 freshmen science education prospective teachers (female = 86, male = 79; age range 17-21) who were enrolled in an introductory physics course. Data collection was done during the fall semesters in two successive years. At the beginning of each semester, the force concept inventory (FCI) and the classroom test of scientific reasoning (CTSR) were administered to assess students' initial understanding of basic concepts in mechanics and reasoning levels. After completing the course, the FCI and the mechanics baseline test (MBT) were administered. The results indicated that there was a significant difference in problem-solving skill test mean scores, as measured by the MBT, among concrete, formal and postformal reasoners. There were no significant differences in conceptual understanding levels of pre- and post-test mean scores, as measured by FCI, among the groups. The Benferroni post hoc comparison test revealed which set of reasoning levels showed significant difference for the MBT scores. No statistical difference between formal and postformal reasoners' mean scores was observed, while the mean scores between concrete and formal reasoners and concrete and postformal reasoners were statistically significantly different

  6. Using a Virtual Tablet Machine to Improve Student Understanding of the Complex Processes Involved in Tablet Manufacturing.

    Science.gov (United States)

    Mattsson, Sofia; Sjöström, Hans-Erik; Englund, Claire

    2016-06-25

    Objective. To develop and implement a virtual tablet machine simulation to aid distance students' understanding of the processes involved in tablet production. Design. A tablet simulation was created enabling students to study the effects different parameters have on the properties of the tablet. Once results were generated, students interpreted and explained them on the basis of current theory. Assessment. The simulation was evaluated using written questionnaires and focus group interviews. Students appreciated the exercise and considered it to be motivational. Students commented that they found the simulation, together with the online seminar and the writing of the report, was beneficial for their learning process. Conclusion. According to students' perceptions, the use of the tablet simulation contributed to their understanding of the compaction process.

  7. Proteomic approaches to understanding the role of the cytoskeleton in host-defense mechanisms

    Science.gov (United States)

    Radulovic, Marko; Godovac-Zimmermann, Jasminka

    2014-01-01

    The cytoskeleton is a cellular scaffolding system whose functions include maintenance of cellular shape, enabling cellular migration, division, intracellular transport, signaling and membrane organization. In addition, in immune cells, the cytoskeleton is essential for phagocytosis. Following the advances in proteomics technology over the past two decades, cytoskeleton proteome analysis in resting and activated immune cells has emerged as a possible powerful approach to expand our understanding of cytoskeletal composition and function. However, so far there have only been a handful of studies of the cytoskeleton proteome in immune cells. This article considers promising proteomics strategies that could augment our understanding of the role of the cytoskeleton in host-defense mechanisms. PMID:21329431

  8. Evidence for the involvement of MC4 receptors in the central mechanisms of opioid antinociception

    NARCIS (Netherlands)

    Starowicz, Katarzyna

    2005-01-01

    The data described in this thesis extend general knowledge of the involvement of the MC4 receptor in mechanisms of analgesia. The following aspects outlined below constitute novel information. Firstly, the MC4R localization in the DRG is demonstrated. The MC4 receptor was assumed to exist

  9. Understanding fatherhood in Greece: father's involvement in child care

    Directory of Open Access Journals (Sweden)

    Katerina Maridaki-Kassotaki

    Full Text Available The present study aims to depict a picture of Greek fathers concerning their involvement in family and child-centered tasks over the first year of the child. Eighty fathers from rural areas with low educational and occupational status and eighty fathers from urban districts with high educational and occupational status were asked to talk about their own perceptions of fatherhood and also their participation into two parenting commitments: (a preparations before and after the birth of the child and (b involvement in play with the child and a variety of daily child-care tasks. The results show that fathers in urban regions were more involved in these activities than their counterparts in rural areas. All fathers valued fatherhood as a pleasant experience. Many fathers, however, stated that child-rearing responsibilities cause them a lot of psychological strain. The results are discussed in relation to the division of roles between spouses in Greek families.

  10. Progress in Understanding Degradation Mechanisms and Improving Stability in Organic Photovoltaics

    KAUST Repository

    Mateker, William R.

    2016-12-23

    Understanding the degradation mechanisms of organic photovoltaics is particularly important, as they tend to degrade faster than their inorganic counterparts, such as silicon and cadmium telluride. An overview is provided here of the main degradation mechanisms that researchers have identified so far that cause extrinsic degradation from oxygen and water, intrinsic degradation in the dark, and photo-induced burn-in. In addition, it provides methods for researchers to identify these mechanisms in new materials and device structures to screen them more quickly for promising long-term performance. These general strategies will likely be helpful in other photovoltaic technologies that suffer from insufficient stability, such as perovskite solar cells. Finally, the most promising lifetime results are highlighted and recommendations to improve long-term performance are made. To prevent degradation from oxygen and water for sufficiently long time periods, OPVs will likely need to be encapsulated by barrier materials with lower permeation rates of oxygen and water than typical flexible substrate materials. To improve stability at operating temperatures, materials will likely require glass transition temperatures above 100 °C. Methods to prevent photo-induced burn-in are least understood, but recent research indicates that using pure materials with dense and ordered film morphologies can reduce the burn-in effect.

  11. Progress in Understanding Degradation Mechanisms and Improving Stability in Organic Photovoltaics

    KAUST Repository

    Mateker, William R.; McGehee, Michael D.

    2016-01-01

    Understanding the degradation mechanisms of organic photovoltaics is particularly important, as they tend to degrade faster than their inorganic counterparts, such as silicon and cadmium telluride. An overview is provided here of the main degradation mechanisms that researchers have identified so far that cause extrinsic degradation from oxygen and water, intrinsic degradation in the dark, and photo-induced burn-in. In addition, it provides methods for researchers to identify these mechanisms in new materials and device structures to screen them more quickly for promising long-term performance. These general strategies will likely be helpful in other photovoltaic technologies that suffer from insufficient stability, such as perovskite solar cells. Finally, the most promising lifetime results are highlighted and recommendations to improve long-term performance are made. To prevent degradation from oxygen and water for sufficiently long time periods, OPVs will likely need to be encapsulated by barrier materials with lower permeation rates of oxygen and water than typical flexible substrate materials. To improve stability at operating temperatures, materials will likely require glass transition temperatures above 100 °C. Methods to prevent photo-induced burn-in are least understood, but recent research indicates that using pure materials with dense and ordered film morphologies can reduce the burn-in effect.

  12. Massage therapy: understanding the mechanisms of action on blood pressure. A scoping review.

    Science.gov (United States)

    Nelson, Nicole L

    2015-10-01

    Massage therapy (MT) has shown potential in reducing blood pressure (BP); however, the psychophysiological pathways and structures involved in this outcome are unclear. The aims of this scoping review were twofold. (1) To summarize the current knowledge of the mechanisms of action of MT on BP. (2) To highlight the research gaps and challenges that researchers must overcome to further elucidate how MT attenuates BP. A scoping review was conducted to examine the evidence regarding the mechanisms of action of MT on BP. This review included the thematic analysis of 27 publications that considered the influence of MT on BP. Based on this analysis, six potential BP mediating pathways were identified Current theories suggest that MT exerts sympatholytic effects through physiologic and psychological mechanisms, improves hypothalamus-pituitary-adrenocortical axis function, and increases in blood flow, which, in turn, may improve endothelial function. Future study is needed, using more scientifically rigorous methodology, to fully elucidate the mechanism of action of MT. Copyright © 2015 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  13. How LeuT shapes our understanding of the mechanisms of sodium-coupled neurotransmitter transporters.

    Science.gov (United States)

    Penmatsa, Aravind; Gouaux, Eric

    2014-03-01

    Neurotransmitter transporters are ion-coupled symporters that drive the uptake of neurotransmitters from neural synapses. In the past decade, the structure of a bacterial amino acid transporter, leucine transporter (LeuT), has given valuable insights into the understanding of architecture and mechanism of mammalian neurotransmitter transporters. Different conformations of LeuT, including a substrate-free state, inward-open state, and competitive and non-competitive inhibitor-bound states, have revealed a mechanistic framework for the transport and transport inhibition of neurotransmitters. The current review integrates our understanding of the mechanistic and pharmacological properties of eukaryotic neurotransmitter transporters obtained through structural snapshots of LeuT.

  14. Understanding the dynamics of parent involvement in schooling ...

    African Journals Online (AJOL)

    Erna Kinsey

    A qualitative study was undertaken to understand the realities and dynamics facing parents when attempting to be ... programmatic efforts for promoting children's adjustment and com- ... then conducted with six parents of two community-based support .... included in important issues regarding the education of their children.

  15. Who and What Does Involvement Involve?

    DEFF Research Database (Denmark)

    Hansen, Jeppe Oute; Petersen, Anders; Huniche, Lotte

    2015-01-01

    This article gives an account of aspects of a multi-sited field study of involvement of relatives in Danish psychiatry. By following metaphors of involvement across three sites of the psychiatric systema family site, a clinical site and a policy sitethe first author (J.O.) investigated how...... theoretical perspective laid out by Ernesto Laclau and Chantal Mouffe, the aim of this study is to show how the dominant discourse about involvement at the political and clinical sites is constituted by understandings of mentally ill individuals and by political objectives of involvement. The analysis...... the responsibility toward the mental health of the ill individual as well as toward the psychological milieu of the family....

  16. Pathogenic Mechanisms Involved in the Hematological Alterations of Arenavirus-induced Hemorrhagic Fevers

    Directory of Open Access Journals (Sweden)

    Roberto G. Pozner

    2013-01-01

    Full Text Available Viral hemorrhagic fevers (VHFs caused by arenaviruses are acute diseases characterized by fever, headache, general malaise, impaired cellular immunity, eventual neurologic involvement, and hemostatic alterations that may ultimately lead to shock and death. The causes of the bleeding are still poorly understood. However, it is generally accepted that these causes are associated to some degree with impaired hemostasis, endothelial cell dysfunction and low platelet counts or function. In this article, we present the current knowledge about the hematological alterations present in VHF induced by arenaviruses, including new aspects on the underlying pathogenic mechanisms.

  17. Statistical grand rounds: understanding the mechanism: mediation analysis in randomized and nonrandomized studies.

    Science.gov (United States)

    Mascha, Edward J; Dalton, Jarrod E; Kurz, Andrea; Saager, Leif

    2013-10-01

    In comparative clinical studies, a common goal is to assess whether an exposure, or intervention, affects the outcome of interest. However, just as important is to understand the mechanism(s) for how the intervention affects outcome. For example, if preoperative anemia was shown to increase the risk of postoperative complications by 15%, it would be important to quantify how much of that effect was due to patients receiving intraoperative transfusions. Mediation analysis attempts to quantify how much, if any, of the effect of an intervention on outcome goes though prespecified mediator, or "mechanism" variable(s), that is, variables sitting on the causal pathway between exposure and outcome. Effects of an exposure on outcome can thus be divided into direct and indirect, or mediated, effects. Mediation is claimed when 2 conditions are true: the exposure affects the mediator and the mediator (adjusting for the exposure) affects the outcome. Understanding how an intervention affects outcome can validate or invalidate one's original hypothesis and also facilitate further research to modify the responsible factors, and thus improve patient outcome. We discuss the proper design and analysis of studies investigating mediation, including the importance of distinguishing mediator variables from confounding variables, the challenge of identifying potential mediators when the exposure is chronic versus acute, and the requirements for claiming mediation. Simple designs are considered, as well as those containing multiple mediators, multiple outcomes, and mixed data types. Methods are illustrated with data collected by the National Surgical Quality Improvement Project (NSQIP) and utilized in a companion paper which assessed the effects of preoperative anemic status on postoperative outcomes.

  18. Structure reveals regulatory mechanisms of a MaoC-like hydratase from Phytophthora capsici involved in biosynthesis of polyhydroxyalkanoates (PHAs.

    Directory of Open Access Journals (Sweden)

    Huizheng Wang

    Full Text Available Polyhydroxyalkanoates (PHAs have attracted increasing attention as "green plastic" due to their biodegradable, biocompatible, thermoplastic, and mechanical properties, and considerable research has been undertaken to develop low cost/high efficiency processes for the production of PHAs. MaoC-like hydratase (MaoC, which belongs to (R-hydratase involved in linking the β-oxidation and the PHA biosynthetic pathways, has been identified recently. Understanding the regulatory mechanisms of (R-hydratase catalysis is critical for efficient production of PHAs that promise synthesis an environment-friendly plastic.We have determined the crystal structure of a new MaoC recognized from Phytophthora capsici. The crystal structure of the enzyme was solved at 2.00 Å resolution. The structure shows that MaoC has a canonical (R-hydratase fold with an N-domain and a C-domain. Supporting its dimerization observed in structure, MaoC forms a stable homodimer in solution. Mutations that disrupt the dimeric MaoC result in a complete loss of activity toward crotonyl-CoA, indicating that dimerization is required for the enzymatic activity of MaoC. Importantly, structure comparison reveals that a loop unique to MaoC interacts with an α-helix that harbors the catalytic residues of MaoC. Deletion of the loop enhances the enzymatic activity of MaoC, suggesting its inhibitory role in regulating the activity of MaoC.The data in our study reveal the regulatory mechanism of an (R-hydratase, providing information on enzyme engineering to produce low cost PHAs.

  19. Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes.

    Directory of Open Access Journals (Sweden)

    Mohammad F Saeed

    2010-09-01

    Full Text Available Zaire ebolavirus (ZEBOV, a highly pathogenic zoonotic virus, poses serious public health, ecological and potential bioterrorism threats. Currently no specific therapy or vaccine is available. Virus entry is an attractive target for therapeutic intervention. However, current knowledge of the ZEBOV entry mechanism is limited. While it is known that ZEBOV enters cells through endocytosis, which of the cellular endocytic mechanisms used remains unclear. Previous studies have produced differing outcomes, indicating potential involvement of multiple routes but many of these studies were performed using noninfectious surrogate systems such as pseudotyped retroviral particles, which may not accurately recapitulate the entry characteristics of the morphologically distinct wild type virus. Here we used replication-competent infectious ZEBOV as well as morphologically similar virus-like particles in specific infection and entry assays to demonstrate that in HEK293T and Vero cells internalization of ZEBOV is independent of clathrin, caveolae, and dynamin. Instead the uptake mechanism has features of macropinocytosis. The binding of virus to cells appears to directly stimulate fluid phase uptake as well as localized actin polymerization. Inhibition of key regulators of macropinocytosis including Pak1 and CtBP/BARS as well as treatment with the drug EIPA, which affects macropinosome formation, resulted in significant reduction in ZEBOV entry and infection. It is also shown that following internalization, the virus enters the endolysosomal pathway and is trafficked through early and late endosomes, but the exact site of membrane fusion and nucleocapsid penetration in the cytoplasm remains unclear. This study identifies the route for ZEBOV entry and identifies the key cellular factors required for the uptake of this filamentous virus. The findings greatly expand our understanding of the ZEBOV entry mechanism that can be applied to development of new

  20. Involvement of metabolites in early defense mechanism of oil palm (Elaeis guineensis Jacq.) against Ganoderma disease.

    Science.gov (United States)

    Nusaibah, S A; Siti Nor Akmar, A; Idris, A S; Sariah, M; Mohamad Pauzi, Z

    2016-12-01

    Understanding the mechanism of interaction between the oil palm and its key pathogen, Ganoderma spp. is crucial as the disease caused by this fungal pathogen leads to a major loss of revenue in leading palm oil producing countries in Southeast Asia. Here in this study, we assess the morphological and biochemical changes in Ganoderma disease infected oil palm seedling roots in both resistant and susceptible progenies. Rubber woodblocks fully colonized by G. boninense were applied as a source of inoculum to artificially infect the roots of resistant and susceptible oil palm progenies. Gas chromatography-mass spectrometry was used to measure an array of plant metabolites in 100 resistant and susceptible oil palm seedling roots treated with pathogenic Ganoderma boninense fungus. Statistical effects, univariate and multivariate analyses were used to identify key-Ganoderma disease associated metabolic agitations in both resistant and susceptible oil palm root tissues. Ganoderma disease related defense shifts were characterized based on (i) increased antifungal activity in crude extracts, (ii) increased lipid levels, beta- and gamma-sitosterol particularly in the resistant progeny, (iii) detection of heterocyclic aromatic organic compounds, benzo [h] quinoline, pyridine, pyrimidine (iv) elevation in antioxidants, alpha- and beta-tocopherol (iv) degraded cortical cell wall layers, possibly resulting from fungal hydrolytic enzyme activity needed for initial penetration. The present study suggested that plant metabolites mainly lipids and heterocyclic aromatic organic metabolites could be potentially involved in early oil palm defense mechanism against G. boninense infection, which may also highlight biomarkers for disease detection, treatment, development of resistant variety and monitoring. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Investigations into the involvement of NMDA mechanisms in recognition memory.

    Science.gov (United States)

    Warburton, E Clea; Barker, Gareth R I; Brown, Malcom W

    2013-11-01

    This review will focus on evidence showing that NMDA receptor neurotransmission is critical for synaptic plasticity processes within brain regions known to be necessary for the formation of object recognition memories. The aim will be to provide evidence concerning NMDA mechanisms related to recognition memory processes and show that recognition memory for objects, places or associations between objects and places depends on NMDA neurotransmission within the perirhinal cortex, temporal association cortex medial prefrontal cortex and hippocampus. Administration of the NMDA antagonist AP5, selectively into each of these brain regions has revealed that the extent of the involvement NMDA receptors appears dependent on the type of information required to solve the recognition memory task; thus NMDA receptors in the perirhinal cortex are crucial for the encoding of long-term recognition memory for objects, and object-in-place associations, but not for short-term recognition memory or for retrieval. In contrast the hippocampus and medial prefrontal cortex are required for both long-term and short-term recognition memory for places or associations between objects and places, or for recognition memory tasks that have a temporal component. Such studies have therefore confirmed that the multiple brain regions make distinct contributions to recognition memory but in addition that more than one synaptic plasticity process must be involved. This article is part of the Special Issue entitled 'Glutamate Receptor-Dependent Synaptic Plasticity'. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Mechanisms and factors involved in hip injuries during frontal crashes.

    Science.gov (United States)

    Yoganandan, N; Pintar, F A; Gennarelli, T A; Maltese, M R; Eppinger, R H

    2001-11-01

    This study was conducted to collect data and gain insights relative to the mechanisms and factors involved in hip injuries during frontal crashes and to study the tolerance of hip injuries from this type of loading. Unembalmed human cadavers were seated on a standard automotive seat (reinforced) and subjected to knee impact test to each lower extremity. Varying combinations of flexion and adduction/abduction were used for initial alignment conditions and pre-positioning. Accelerometers were fixed to the iliac wings and twelfth thoracic vertebral spinous process. A 23.4-kg padded pendulum impacted the knee at velocities ranging from 4.3 to 7.6 m/s. The impacting direction was along the anteroposterior axis, i.e., the global X-axis, in the body-fixed coordinate system. A load cell on the front of the pendulum recorded the impact force. Peak impact forces ranged from 2,450 to 10,950 N. The rate of loading ranged from 123 to 7,664 N/msec. The impulse values ranged from 12.4 to 31.9 Nsec. Injuries were not apparent in three tests. Eight tests resulted in trauma. Fractures involving the pelvis including the acetabulum and proximal femur occurred in five out of the eight tests, and distal femoral bone fracture occurred in one test. These results underscore the importance of leg pre-positioning and the orientation of the impacting axis to produce specific types of trauma to the pelvic region of the lower extremity.

  3. Understanding mechanical ventilators.

    Science.gov (United States)

    Chatburn, Robert L

    2010-12-01

    The respiratory care academic community has not yet adopted a standardized system for classifying and describing modes of ventilation. As a result, there is enough confusion that patient care, clinician education and even ventilator sales are all put at risk. This article summarizes a ventilator mode taxonomy that has been extensively published over the last 15 years. Specifically, the classification system has three components: a description of the control variables within breath; a description of the sequence of mandatory and spontaneous breaths; and a specification for the targeting scheme. This three-level specification provides scalability of detail to make the mode description appropriate for the particular need. At the bedside, we need only refer to a mode briefly using the first or perhaps first and second components. To distinguish between similar modes and brand names, we would need to include all components. This taxonomy uses the equation of motion for the respiratory system as the underlying theoretical framework. All terms relevant to describing modes of mechanical ventilation are defined in an extensive appendix.

  4. A trajectory-based understanding of quantum interference

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, A S; Miret-Artes, S [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, Serrano 123, 28006 Madrid (Spain)], E-mail: asanz@imaff.cfmac.csic.es, E-mail: s.miret@imaff.cfmac.csic.es

    2008-10-31

    Interference is one of the most fundamental features which characterizes quantum systems. Here we provide an exhaustive analysis of the interfere dynamics associated with wave-packet superpositions from both the standard quantum-mechanical perspective and the Bohmian one. From this analysis, clear and insightful pictures of the physics involved in these kind of processes are obtained, which are of general validity (i.e., regardless of the type of wave packets considered) in the understanding of more complex cases where interference is crucial (e.g., scattering problems, slit diffraction, quantum control scenarios or, even, multipartite interactions). In particular, we show how problems involving wave-packet interference can be mapped onto problems of wave packets scattered off potential barriers.

  5. Mechanisms involved in the chemical inhibition of the Eosin-sensitized photooxidation of trypsin

    Energy Technology Data Exchange (ETDEWEB)

    Rizzuto, F.; Spikes, J.D.

    1975-01-01

    A large series of compounds was screened for ability to protect trypsin from eosin-sensitized photodynamic inactivation. Eosin-sensitized photooxidation reactions of this type typically proceed via the triplet state of the dye and often involve singlet state oxygen as the oxidizing entity. In order to determine the mechanisms by which trypsin is protected from photoinactivation, a number of good protective agents (inhibitors) and some non-protective agents were selected for more detailed flash photolysis studies. Good inhibitors such as p-phenylenediamine, n-propyl gallate, serotonin creatinine sulfate and p-toluenediamine competed efficiently with oxygen and with trypsin for reaction with the triplet state of eosin. The inhibitors were shown to quench triplet eosin to the ground state and/or reduce triplet eosin to form the semireduced eosin radical and an oxidized form of the inhibitor. In the latter case, oxidized inhibitor could react by a reverse electron transfer reaction with the semireduced eosin radical to regenerate ground state eosin and the inhibitor. The good inhibitors also competed effectively with trypsin for oxidation by semioxidized eosin, thus giving another possible protective mechanism. Non-inhibitors such as halogen ions and the paramagnetic ions Co/sup + +/, Cu/sup + +/ and Mn/sup + +/ reacted only slowly with triplet and with semioxidized eosin. The primary pathway for the eosin-sensitized photooxidation of trypsin at pH 8.0 involved singlet oxygen, although semioxidized eosin may also participate.

  6. Theoretical study of chromophores for biological sensing: Understanding the mechanism of rhodol based multi-chromophoric systems

    Science.gov (United States)

    Rivera-Jacquez, Hector J.; Masunov, Artëm E.

    2018-06-01

    Development of two-photon fluorescent probes can aid in visualizing the cellular environment. Multi-chromophore systems display complex manifolds of electronic transitions, enabling their use for optical sensing applications. Time-Dependent Density Functional Theory (TDDFT) methods allow for accurate predictions of the optical properties. These properties are related to the electronic transitions in the molecules, which include two-photon absorption cross-sections. Here we use TDDFT to understand the mechanism of aza-crown based fluorescent probes for metals sensing applications. Our findings suggest changes in local excitation in the rhodol chromophore between unbound form and when bound to the metal analyte. These changes are caused by a charge transfer from the aza-crown group and pyrazol units toward the rhodol unit. Understanding this mechanism leads to an optimized design with higher two-photon excited fluorescence to be used in medical applications.

  7. The mechanisms involved at the cell level; Les mecanismes mis en jeu au niveau cellulaire

    Energy Technology Data Exchange (ETDEWEB)

    Leblanc, G.; Pourcher, Th.; Perron, B. [Nice Univ., Dir. des Sciences du Vivant, Dept. de Biologie Joliot-Curie, 06 (France); Guillain, F. [CEA Grenoble, Dir. des Sciences du Vivant, 38 (France); Quemeneur, E. [CEA Marcoule, Dir. des Sciences du Vivant, 30 (France); Fritsch, P. [CEA Bruyeres le Chatel, Dir. des Sciences du Vivant, 91 (France)

    2003-07-01

    The mechanisms responsible at the cell level for inducing toxic reactions after contamination are as yet only imperfectly known. Work still needs to be done for both contaminants that have a biological role, such as iodine, and those that do not, such as cadmium, uranium and plutonium. In particular, these mechanisms bring into play, in biological membranes, carriers which are the physiological partners responsible for material exchange with the environment or inside the body. As they lack absolute selectivity, these carriers, which are involved in the assimilation and accumulation of vital mineral elements, also have the ability to transport toxic elements and isotopes. (authors)

  8. The Molecular Mechanism of Alternative P450-Catalyzed Metabolism of Environmental Phenolic Endocrine-Disrupting Chemicals

    DEFF Research Database (Denmark)

    Ji, Li; Ji, Shujing; Wang, Chenchen

    2018-01-01

    Understanding the bioactivation mechanisms to predict toxic metabolites is critical for risk assessment of phenolic endocrine-disrupting chemicals (EDCs). One mechanism involves ipso-substitution, which may contribute to the total turnover of phenolic EDCs, yet the detailed mechanism and its rela...

  9. Mirror neurons and the understanding of behavioural symptoms in psychiatric disorders.

    Science.gov (United States)

    Buccino, Giovanni; Amore, Mario

    2008-05-01

    Recent findings show that we can understand other people's actions, intentions and emotions through a mirror mechanism as if we performed the same actions and felt the same intentions or emotions (embodied simulation). The present paper reviews experimental evidence that this mechanism may be broken in some psychiatric disorders. A mirror neuron system has been described in both monkeys and humans that allows one to map an observed action on a correspondent motor representation in the observer's brain. This mechanism has been involved in many higher motor functions ranging from action understanding to imitation and intention coding. A mirror mechanism has also been invoked in empathy, through an embodied simulation. A dysfunction of the mirror neuron system may be at the root of the inability to empathize in patients with autism and may play a role in some negative and positive symptoms found in patients with schizophrenia. This opens up new perspectives in the interpretation of psychotic symptoms and possibly in developing therapeutic strategies.

  10. New Drugs for Anemia Treatment Based on a New Understanding of the Mechanisms of Stress Erythropoiesis

    Science.gov (United States)

    2015-11-01

    Award Number: W81XWH-12-1-0449 TITLE: New Drugs for Anemia Treatment Based on a New Understanding of the Mechanisms of Stress Erythropoiesis...COVERED 1Sep2012 - 31Aug2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER New Drugs for Anemia Treatment Based on a New Understanding of the...cell formation in "Nan" (neonatal anemia ) mice, raising the level of red cells to almost normal. It also causes an increase in the numbers of splenic

  11. Placebo analgesia: understanding the mechanisms

    OpenAIRE

    Medoff, Zev M; Colloca, Luana

    2015-01-01

    Expectations of pain relief drive placebo analgesia. Understanding how expectations of improvement trigger distinct biological systems to shape therapeutic analgesic outcomes has been the focus of recent pharmacologic and neuroimaging studies in the field of pain. Recent findings indicate that placebo effects can imitate the actions of real painkillers and promote the endogenous release of opioids and nonopioids in humans. Social support and observational learning also contribute to placebo a...

  12. Understanding molecular structure from molecular mechanics.

    Science.gov (United States)

    Allinger, Norman L

    2011-04-01

    Molecular mechanics gives us a well known model of molecular structure. It is less widely recognized that valence bond theory gives us structures which offer a direct interpretation of molecular mechanics formulations and parameters. The electronic effects well-known in physical organic chemistry can be directly interpreted in terms of valence bond structures, and hence quantitatively calculated and understood. The basic theory is outlined in this paper, and examples of the effects, and their interpretation in illustrative examples is presented.

  13. Adventures in Celestial Mechanics

    CERN Document Server

    Szebehely, Victor G

    1998-01-01

    A fascinating introduction to the basic principles of orbital mechanics. It has been three hundred years since Isaac Newton first formulated laws to explain the orbits of the Moon and the planets of our solar system. In so doing he laid the groundwork for modern science's understanding of the workings of the cosmos and helped pave the way to the age of space exploration. Adventures in Celestial Mechanics offers students an enjoyable way to become acquainted with the basic principles involved in the motions of natural and human-made bodies in space. Packed with examples in which these principle

  14. Utilizing toxicogenomic data to understand chemical mechanism of action in risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Vickie S., E-mail: wilson.vickie@epa.gov [National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Keshava, Nagalakshmi [National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 1200 Pennsylvania Ave., NW, Washington, DC 20460 (United States); Hester, Susan [National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Segal, Deborah; Chiu, Weihsueh [National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 1200 Pennsylvania Ave., NW, Washington, DC 20460 (United States); Thompson, Chad M. [ToxStrategies, Inc., 23501 Cinco Ranch Blvd., Suite G265, Katy, TX 77494 (United States); Euling, Susan Y. [National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 1200 Pennsylvania Ave., NW, Washington, DC 20460 (United States)

    2013-09-15

    The predominant role of toxicogenomic data in risk assessment, thus far, has been one of augmentation of more traditional in vitro and in vivo toxicology data. This article focuses on the current available examples of instances where toxicogenomic data has been evaluated in human health risk assessment (e.g., acetochlor and arsenicals) which have been limited to the application of toxicogenomic data to inform mechanism of action. This article reviews the regulatory policy backdrop and highlights important efforts to ultimately achieve regulatory acceptance. A number of research efforts on specific chemicals that were designed for risk assessment purposes have employed mechanism or mode of action hypothesis testing and generating strategies. The strides made by large scale efforts to utilize toxicogenomic data in screening, testing, and risk assessment are also discussed. These efforts include both the refinement of methodologies for performing toxicogenomics studies and analysis of the resultant data sets. The current issues limiting the application of toxicogenomics to define mode or mechanism of action in risk assessment are discussed together with interrelated research needs. In summary, as chemical risk assessment moves away from a single mechanism of action approach toward a toxicity pathway-based paradigm, we envision that toxicogenomic data from multiple technologies (e.g., proteomics, metabolomics, transcriptomics, supportive RT-PCR studies) can be used in conjunction with one another to understand the complexities of multiple, and possibly interacting, pathways affected by chemicals which will impact human health risk assessment.

  15. Utilizing toxicogenomic data to understand chemical mechanism of action in risk assessment

    International Nuclear Information System (INIS)

    Wilson, Vickie S.; Keshava, Nagalakshmi; Hester, Susan; Segal, Deborah; Chiu, Weihsueh; Thompson, Chad M.; Euling, Susan Y.

    2013-01-01

    The predominant role of toxicogenomic data in risk assessment, thus far, has been one of augmentation of more traditional in vitro and in vivo toxicology data. This article focuses on the current available examples of instances where toxicogenomic data has been evaluated in human health risk assessment (e.g., acetochlor and arsenicals) which have been limited to the application of toxicogenomic data to inform mechanism of action. This article reviews the regulatory policy backdrop and highlights important efforts to ultimately achieve regulatory acceptance. A number of research efforts on specific chemicals that were designed for risk assessment purposes have employed mechanism or mode of action hypothesis testing and generating strategies. The strides made by large scale efforts to utilize toxicogenomic data in screening, testing, and risk assessment are also discussed. These efforts include both the refinement of methodologies for performing toxicogenomics studies and analysis of the resultant data sets. The current issues limiting the application of toxicogenomics to define mode or mechanism of action in risk assessment are discussed together with interrelated research needs. In summary, as chemical risk assessment moves away from a single mechanism of action approach toward a toxicity pathway-based paradigm, we envision that toxicogenomic data from multiple technologies (e.g., proteomics, metabolomics, transcriptomics, supportive RT-PCR studies) can be used in conjunction with one another to understand the complexities of multiple, and possibly interacting, pathways affected by chemicals which will impact human health risk assessment

  16. Streptomyces sporulation - Genes and regulators involved in bacterial cell differentiation

    OpenAIRE

    Larsson, Jessica

    2010-01-01

    Streptomycetes are Gram-positive bacteria with a complex developmental life cycle. They form spores on specialized cells called aerial hyphae, and this sporulation involves alterations in growth, morphogenesis and cell cycle processes like cell division and chromosome segregation. Understanding the developmental mechanisms that streptomycetes have evolved for regulating for example cell division is of general interest in bacterial cell biology. It can also be valuable in the design of new dru...

  17. Evidence that BDNF regulates heart rate by a mechanism involving increased brainstem parasympathetic neuron excitability

    OpenAIRE

    Wan, Ruiqian; Weigand, Letitia A.; Bateman, Ryan; Griffioen, Kathleen; Mendelowitz, David; Mattson, Mark P.

    2014-01-01

    Autonomic control of heart rate is mediated by cardioinhibitory parasympathetic cholinergic neurons located in the brainstem and stimulatory sympathetic noradrenergic neurons. During embryonic development the survival and cholinergic phenotype of brainstem autonomic neurons is promoted by brain-derived neurotrophic factor (BDNF). We now provide evidence that BDNF regulates heart rate by a mechanism involving increased brainstem cardioinhibitory parasympathetic activity. Mice with a BDNF haplo...

  18. Swarming mechanisms in the yellow fever mosquito: aggregation pheromones involved in the mating behavior of Aedes aegypti

    Science.gov (United States)

    Mosquitoes of various species mate in swarms comprised of tens to thousands flying males. Yet little information is known about mosquito swarming mechanism. Discovering chemical cues involved in mosquito biology leads to better adaptation of disease control interventions. In this study, we aimed ...

  19. Epigenetic mechanisms in the development of memory and their involvement in certain neurological diseases.

    Science.gov (United States)

    Rosales-Reynoso, M A; Ochoa-Hernández, A B; Juárez-Vázquez, C I; Barros-Núñez, P

    Today, scientists accept that the central nervous system of an adult possesses considerable morphological and functional flexibility, allowing it to perform structural remodelling processes even after the individual is fully developed and mature. In addition to the vast number of genes participating in the development of memory, different known epigenetic mechanisms are involved in normal and pathological modifications to neurons and therefore also affect the mechanisms of memory development. This study entailed a systematic review of biomedical article databases in search of genetic and epigenetic factors that participate in synaptic function and memory. The activation of gene expression in response to external stimuli also occurs in differentiated nerve cells. Neural activity induces specific forms of synaptic plasticity that permit the creation and storage of long-term memory. Epigenetic mechanisms play a key role in synaptic modification processes and in the creation and development of memory. Changes in these mechanisms result in the cognitive and memory impairment seen in neurodegenerative diseases (Alzheimer disease, Huntington disease) and in neurodevelopmental disorders (Rett syndrome, fragile X, and schizophrenia). Nevertheless, results obtained from different models are promising and point to potential treatments for some of these diseases. Copyright © 2013 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Mechanism of laser micro-adjustment

    International Nuclear Information System (INIS)

    Shen Hong

    2008-01-01

    Miniaturization is a requirement in engineering to produce competitive products in the field of optical and electronic industries. Laser micro-adjustment is a new and promising technology for sheet metal actuator systems. Efforts have been made to understand the mechanisms of metal plate forming using a laser heating source. Three mechanisms have been proposed for describing the laser forming processes in different scenarios, namely the temperature gradient mechanism (TGM), buckling mechanism and upsetting mechanism (UM). However, none of these mechanisms can fully describe the deformation mechanisms involved in laser micro-adjustment. Based on the thermal and elastoplastic analyses, a coupled TGM and UM are presented in this paper to illustrate the thermal mechanical behaviours of two-bridge actuators when applying a laser forming process. To validate the proposed coupling mechanism, numerical simulations are carried out and the corresponding results demonstrate the mechanism proposed. The mechanism of the micro-laser adjustment could be taken as a supplement to the laser forming process.

  1. Still "at risk": An examination of how street-involved young people understand, experience, and engage with "harm reduction" in Vancouver's inner city.

    Science.gov (United States)

    Bozinoff, Nikki; Small, Will; Long, Cathy; DeBeck, Kora; Fast, Danya

    2017-07-01

    Vancouver is an international leader in implementing interventions to reduce harms related to drug use. However, street-involved young people who use drugs continue to be vulnerable to overdose death, hepatitis C (HCV) infection, and high rates of syringe sharing. To better understand this in the context of the intensive public health response, we examined how young people, who are involved in the 'street drug scene', understood, experienced and engaged with harm reduction. Twelve semi-structured interviews were conducted in 2013 with 13 young people (ages 17-28) recruited from the At-Risk Youth Study, a prospective cohort of street-involved and drug-using young people. These interviews were embedded within a larger, eight-year program of ethnographic research and explored participants' understandings of harm reduction, their use of specific services, and their ideas about improving their day-to-day lives. Interviews were transcribed verbatim and a thematic analysis was performed. Young peoples' ideas about harm reduction were diverse and expansive. They articulated the limitations of existing programs, indicating that while they are positioned to reduce the risk of HIV and HCV transmission, they offer little meaningful support to improve young peoples' broader life chances. Young people described strategies to mitigate risk and harm in their own lives, including transitioning to drugs deemed less harmful and attempting to gain access to drug treatment. Finally, young people indicated that spatial considerations (e.g., distance from Vancouver's Downtown Eastside) strongly determined access to services. In Vancouver, a large, well established harm reduction infrastructure seeks to reduce HIV and HCV transmission among street-involved young people. However, young peoples' multiple understandings, experiences and engagements with harm reduction in this setting illustrate the limitations of the existing infrastructure in improving their broader life chances. Copyright

  2. Mechanisms and neuronal networks involved in reactive and proactive cognitive control of interference in working memory.

    Science.gov (United States)

    Irlbacher, Kerstin; Kraft, Antje; Kehrer, Stefanie; Brandt, Stephan A

    2014-10-01

    Cognitive control can be reactive or proactive in nature. Reactive control mechanisms, which support the resolution of interference, start after its onset. Conversely, proactive control involves the anticipation and prevention of interference prior to its occurrence. The interrelation of both types of cognitive control is currently under debate: Are they mediated by different neuronal networks? Or are there neuronal structures that have the potential to act in a proactive as well as in a reactive manner? This review illustrates the way in which integrating knowledge gathered from behavioral studies, functional imaging, and human electroencephalography proves useful in answering these questions. We focus on studies that investigate interference resolution at the level of working memory representations. In summary, different mechanisms are instrumental in supporting reactive and proactive control. Distinct neuronal networks are involved, though some brain regions, especially pre-SMA, possess functions that are relevant to both control modes. Therefore, activation of these brain areas could be observed in reactive, as well as proactive control, but at different times during information processing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A novel mechanism involved in the coupling of mitochondrial biogenesis to oxidative phosphorylation

    Directory of Open Access Journals (Sweden)

    Jelena Ostojić

    2014-01-01

    Full Text Available Mitochondria are essential organelles that are central to a multitude of cellular processes, including oxidative phosphorylation (OXPHOS, which produces most of the ATP in animal cells. Thus it is important to understand not only the mechanisms and biogenesis of this energy production machinery but also how it is regulated in both physiological and pathological contexts. A recent study by Ostojić et al. [Cell Metabolism (2013 18, 567-577] has uncovered a regulatory loop by which the biogenesis of a major enzyme of the OXPHOS pathway, the respiratory complex III, is coupled to the energy producing activity of the mitochondria.

  4. Understanding dental CAD/CAM for restorations--accuracy from a mechanical engineering viewpoint.

    Science.gov (United States)

    Tapie, Laurent; Lebon, Nicolas; Mawussi, Bernardin; Fron-Chabouis, Hélène; Duret, Francois; Attal, Jean-Pierre

    2015-01-01

    As is the case in the field of medicine, as well as in most areas of daily life, digital technology is increasingly being introduced into dental practice. Computer-aided design/ computer-aided manufacturing (CAD/CAM) solutions are available not only for chairside practice but also for creating inlays, crowns, fixed partial dentures (FPDs), implant abutments, and other dental prostheses. CAD/CAM dental practice can be considered as the handling of devices and software processing for the almost automatic design and creation of dental restorations. However, dentists who want to use dental CAD/CAM systems often do not have enough information to understand the variations offered by such technology practice. Knowledge of the random and systematic errors in accuracy with CAD/CAM systems can help to achieve successful restorations with this technology, and help with the purchasing of a CAD/CAM system that meets the clinical needs of restoration. This article provides a mechanical engineering viewpoint of the accuracy of CAD/ CAM systems, to help dentists understand the impact of this technology on restoration accuracy.

  5. Understanding Understanding Mathematics. Artificial Intelligence Memo No. 488.

    Science.gov (United States)

    Michener, Edwina Rissland

    This document is concerned with the important extra-logical knowledge that is often outside of traditional discussions in mathematics, and looks at some of the ingredients and processes involved in the understanding of mathematics. The goal is to develop a conceptual framework in which to talk about mathematical knowledge and to understand the…

  6. Features of Knowledge Building in Biology: Understanding Undergraduate Students’ Ideas about Molecular Mechanisms

    Science.gov (United States)

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S.

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning. PMID:26931398

  7. Text mining of rheumatoid arthritis and diabetes mellitus to understand the mechanisms of Chinese medicine in different diseases with same treatment.

    Science.gov (United States)

    Zhao, Ning; Zheng, Guang; Li, Jian; Zhao, Hong-Yan; Lu, Cheng; Jiang, Miao; Zhang, Chi; Guo, Hong-Tao; Lu, Ai-Ping

    2018-01-09

    To identify the commonalities between rheumatoid arthritis (RA) and diabetes mellitus (DM) to understand the mechanisms of Chinese medicine (CM) in different diseases with the same treatment. A text mining approach was adopted to analyze the commonalities between RA and DM according to CM and biological elements. The major commonalities were subsequently verifified in RA and DM rat models, in which herbal formula for the treatment of both RA and DM identifified via text mining was used as the intervention. Similarities were identifified between RA and DM regarding the CM approach used for diagnosis and treatment, as well as the networks of biological activities affected by each disease, including the involvement of adhesion molecules, oxidative stress, cytokines, T-lymphocytes, apoptosis, and inflfl ammation. The Ramulus Cinnamomi-Radix Paeoniae Alba-Rhizoma Anemarrhenae is an herbal combination used to treat RA and DM. This formula demonstrated similar effects on oxidative stress and inflfl ammation in rats with collagen-induced arthritis, which supports the text mining results regarding the commonalities between RA and DM. Commonalities between the biological activities involved in RA and DM were identifified through text mining, and both RA and DM might be responsive to the same intervention at a specifific stage.

  8. Developing improved MD codes for understanding processive cellulases

    International Nuclear Information System (INIS)

    Crowley, M F; Nimlos, M R; Himmel, M E; Uberbacher, E C; Iii, C L Brooks; Walker, R C

    2008-01-01

    The mechanism of action of cellulose-degrading enzymes is illuminated through a multidisciplinary collaboration that uses molecular dynamics (MD) simulations and expands the capabilities of MD codes to allow simulations of enzymes and substrates on petascale computational facilities. There is a class of glycoside hydrolase enzymes called cellulases that are thought to decrystallize and processively depolymerize cellulose using biochemical processes that are largely not understood. Understanding the mechanisms involved and improving the efficiency of this hydrolysis process through computational models and protein engineering presents a compelling grand challenge. A detailed understanding of cellulose structure, dynamics and enzyme function at the molecular level is required to direct protein engineers to the right modifications or to understand if natural thermodynamic or kinetic limits are in play. Much can be learned about processivity by conducting carefully designed molecular dynamics (MD) simulations of the binding and catalytic domains of cellulases with various substrate configurations, solvation models and thermodynamic protocols. Most of these numerical experiments, however, will require significant modification of existing code and algorithms in order to efficiently use current (terascale) and future (petascale) hardware to the degree of parallelism necessary to simulate a system of the size proposed here. This work will develop MD codes that can efficiently use terascale and petascale systems, not just for simple classical MD simulations, but also for more advanced methods, including umbrella sampling with complex restraints and reaction coordinates, transition path sampling, steered molecular dynamics, and quantum mechanical/molecular mechanical simulations of systems the size of cellulose degrading enzymes acting on cellulose

  9. Understanding the complex relationships among actors involved in the implementation of public-private mix (PPM) for TB control in India, using social theory.

    Science.gov (United States)

    Salve, Solomon; Harris, Kristine; Sheikh, Kabir; Porter, John D H

    2018-06-07

    Public Private Partnerships (PPP) are increasingly utilized as a public health strategy for strengthening health systems and have become a core component for the delivery of TB control services in India, as promoted through national policy. However, partnerships are complex systems that rely on relationships between a myriad of different actors with divergent agendas and backgrounds. Relationship is a crucial element of governance, and relationship building an important aspect of partnerships. To understand PPPs a multi-disciplinary perspective that draws on insights from social theory is needed. This paper demonstrates how social theory can aid the understanding of the complex relationships of actors involved in implementation of Public-Private Mix (PPM)-TB policy in India. Ethnographic research was conducted within a district in a Southern state of India over a 14 month period, combining participant observations, informal interactions and in-depth interviews with a wide range of respondents across public, private and non-government organisation (NGO) sectors. Drawing on the theoretical insights from Bourdieu's "theory of practice" this study explores the relationships between the different actors. The study found that programme managers, frontline TB workers, NGOs, and private practitioners all had a crucial role to play in TB partnerships. They were widely regarded as valued contributors with distinct social skills and capabilities within their organizations and professions. However, their potential contributions towards programme implementation tended to be unrecognized both at the top and bottom of the policy implementation chain. These actors constantly struggled for recognition and used different mechanisms to position themselves alongside other actors within the programme that further complicated the relationships between different actors. This paper demonstrates that applying social theory can enable a better understanding of the complex relationship

  10. Identity Theory as a Guide to Understanding Fathers' Involvement with Their Children.

    Science.gov (United States)

    Rane, Thomas R.; McBride, Brent A.

    2000-01-01

    Using identity theory to explore father's involvement with their children, 89 married couples with preschool children completed questionnaires and interviews on how involved they were in child-rearing activities. Results indicated that fathers did not differ on any involvement measures. However, fathers who considered the nurturing role highly…

  11. Understanding quantum physics

    International Nuclear Information System (INIS)

    Spillner, Vera

    2011-01-01

    This thesis presents a bundle definition for 'scientific understanding' through which the empirically equivalent interpretations of quantum mechanics can be evaluated with respect to the understanding they generate. The definition of understanding is based on a sufficient and necessary criterion, as well as a bundle of conditions - where a theory can be called most understandable whenever it fulfills the highest number of bundle criteria. Thereby the definition of understanding is based on the one hand on the objective number of criteria a theory fulfills, as well as, on the other hand, on the individual's preference of bundle criteria. Applying the definition onto three interpretations of quantum mechanics, the interpretation of David Bohm appears as most understandable, followed by the interpretation of Tim Maudlin and the Kopenhagen interpretation. These three interpretations are discussed in length in my thesis. (orig.)

  12. A non-cardiomyocyte autonomous mechanism of cardioprotection involving the SLO1 BK channel

    Directory of Open Access Journals (Sweden)

    Andrew P. Wojtovich

    2013-03-01

    Full Text Available Opening of BK-type Ca2+ activated K+ channels protects the heart against ischemia-reperfusion (IR injury. However, the location of BK channels responsible for cardioprotection is debated. Herein we confirmed that openers of the SLO1 BK channel, NS1619 and NS11021, were protective in a mouse perfused heart model of IR injury. As anticipated, deletion of the Slo1 gene blocked this protection. However, in an isolated cardiomyocyte model of IR injury, protection by NS1619 and NS11021 was insensitive to Slo1 deletion. These data suggest that protection in intact hearts occurs by a non-cardiomyocyte autonomous, SLO1-dependent, mechanism. In this regard, an in-situ assay of intrinsic cardiac neuronal function (tachycardic response to nicotine revealed that NS1619 preserved cardiac neurons following IR injury. Furthermore, blockade of synaptic transmission by hexamethonium suppressed cardioprotection by NS1619 in intact hearts. These results suggest that opening SLO1 protects the heart during IR injury, via a mechanism that involves intrinsic cardiac neurons. Cardiac neuronal ion channels may be useful therapeutic targets for eliciting cardioprotection.

  13. Possible mechanisms involved in the vasorelaxant effect produced by clobenzorex in aortic segments of rats.

    Science.gov (United States)

    Lozano-Cuenca, J; González-Hernández, A; López-Canales, O A; Villagrana-Zesati, J R; Rodríguez-Choreão, J D; Morín-Zaragoza, R; Castillo-Henkel, E F; López-Canales, J S

    2017-08-07

    Clobenzorex is a metabolic precursor of amphetamine indicated for the treatment of obesity. Amphetamines have been involved with cardiovascular side effects such as hypertension and pulmonary arterial hypertension. The aim of the present study was to investigate whether the direct application of 10-9-10-5 M clobenzorex on isolated phenylephrine-precontracted rat aortic rings produces vascular effects, and if so, what mechanisms may be involved. Clobenzorex produced an immediate concentration-dependent vasorelaxant effect at the higher concentrations (10-7.5-10-5 M). The present outcome was not modified by 10-6 M atropine (an antagonist of muscarinic acetylcholine receptors), 3.1×10-7 M glibenclamide (an ATP-sensitive K+ channel blocker), 10-3 M 4-aminopyridine (4-AP; a voltage-activated K+ channel blocker), 10-5 M indomethacin (a prostaglandin synthesis inhibitor), 10-5 M clotrimazole (a cytochrome P450 inhibitor) or 10-5 M cycloheximide (a general protein synthesis inhibitor). Contrarily, the clobenzorex-induced vasorelaxation was significantly attenuated (Pclobenzorex on phenylephrine-precontracted rat aortic rings involved stimulation of the NO/cGMP/PKG/Ca2+-activated K+ channel pathway.

  14. Quantum mechanics symmetries

    CERN Document Server

    Greiner, Walter

    1989-01-01

    "Quantum Dynamics" is a major survey of quantum theory based on Walter Greiner's long-running and highly successful courses at the University of Frankfurt. The key to understanding in quantum theory is to reinforce lecture attendance and textual study by working through plenty of representative and detailed examples. Firm belief in this principle led Greiner to develop his unique course and to transform it into a remarkable and comprehensive text. The text features a large number of examples and exercises involving many of the most advanced topics in quantum theory. These examples give practical and precise demonstrations of how to use the often subtle mathematics behind quantum theory. The text is divided into five volumes: Quantum Mechanics I - An Introduction, Quantum Mechanics II - Symmetries, Relativistic Quantum Mechanics, Quantum Electrodynamics, Gauge Theory of Weak Interactions. These five volumes take the reader from the fundamental postulates of quantum mechanics up to the latest research in partic...

  15. Understanding the mechanism of base development of HSQ

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jihoon; Chao, Weilun; Griedel, Brian; Liang, Xiaogan; Lewis, Mark; Hilken, Dawn; Olynick, Deirdre

    2009-06-16

    We study the dissolution mechanism of HSQ (hydrogen silsesquioxane) in base solutions with the addition of chloride salts to elucidate the development mechanism. Reaction mechanisms are proposed based on the dissolution mechanism of quartz. Development kinetics points to two dose-dependent development mechanisms. Considering ion sizes, both hydrated and non-hydrated, and ion exchange, we propose that a combination of a surface dominated reaction at higher doses and a matrix dominated reaction at lower doses accounts for the high development contrast with a NaOH base/NaCl salt mixture. The interplay between the hydrated and non-hydrated ion size leads to higher contrast developers, such as tetramethyl ammonium hydroxide (TMAH) with NaCl.

  16. Omics Approach to Identify Factors Involved in Brassica Disease Resistance.

    Science.gov (United States)

    Francisco, Marta; Soengas, Pilar; Velasco, Pablo; Bhadauria, Vijai; Cartea, Maria E; Rodríguez, Victor M

    2016-01-01

    Understanding plant's defense mechanisms and their response to biotic stresses is of fundamental meaning for the development of resistant crop varieties and more productive agriculture. The Brassica genus involves a large variety of economically important species and cultivars used as vegetable source, oilseeds, forage and ornamental. Damage caused by pathogens attack affects negatively various aspects of plant growth, development, and crop productivity. Over the last few decades, advances in plant physiology, genetics, and molecular biology have greatly improved our understanding of plant responses to biotic stress conditions. In this regard, various 'omics' technologies enable qualitative and quantitative monitoring of the abundance of various biological molecules in a high-throughput manner, and thus allow determination of their variation between different biological states on a genomic scale. In this review, we have described advances in 'omic' tools (genomics, transcriptomics, proteomics and metabolomics) in the view of conventional and modern approaches being used to elucidate the molecular mechanisms that underlie Brassica disease resistance.

  17. Parent Involvement in Education: Toward an Understanding of Parents' Decision Making

    Science.gov (United States)

    Anderson, Kellie J.; Minke, Kathleen M.

    2007-01-01

    Parent involvement (PI) in education is associated with positive outcomes for students; however, little is known about how parents decide to be involved in children's education. On the basis of the K. V. Hoover-Dempsey and H. M. Sandler (1995, 1997) model of parent decision making, the authors examined the relationship among 4 parent variables…

  18. Understanding physics

    CERN Document Server

    Cassidy, David; Rutherford, James

    2002-01-01

    Understanding Physics provides a thorough grounding in contemporary physics while placing physics into its social and historical context Based in large part on the highly respected Project Physics Course developed by two of the authors, it also integrates the results of recent pedagogical research The text thus - teaches about the basic phenomena in the physical world and the concepts developed to explain them - shows that science is a rational human endeavor with a long and continuing tradition, involving many different cultures and people - develops facility in critical thinking, reasoned argumentation, evaluation of evidence, mathematical modeling, and ethical values The treatment emphasizes not only what we know but also how we know it, why we believe it, and what effects that knowledge has - Why do we believe the Earth and planets revolve around the Sun? - Why do we believe that matter is made of atoms? - How do relativity theory and quantum mechanics alter our conception of Nature and in what ways do th...

  19. Mechanisms of traumatic shoulder injury in elite rugby players

    Science.gov (United States)

    Crichton, James; Jones, Doug R; Funk, Lennard

    2012-01-01

    Background Shoulder injuries in rugby players are common, but the mechanisms of injury are less well understood. This study aims to elucidate common mechanisms of injury and identify the patterns of injury they produce. Materials and methods Twenty-four elite rugby players, referred to the senior author for diagnosis and management of shoulder injuries, were selected. Videos of the injuries were independently reviewed by rugby-medical experts to describe the mechanisms of injury. The mechanisms reported were collated and analysed to determine the level of agreement between reviewers and conclude an overall description of injury mechanisms. Results The authors identified three mechanisms of shoulder injury from the video analysis. These are the ‘Try-Scorer’, characterised by hyperflexion of the outstretched arm such as when scoring a try; the ‘Tackler’, extension of the abducted arm behind the player while tackling; and the ‘Direct Impact’, a direct blow to the arm or shoulder when held by the side in neutral or slight adduction. The Try Scorer and Tackler mechanisms both involve a levering force on the glenohumeral joint (GHJ). These mechanisms predominantly cause GHJ dislocation, with Bankart, reverse Bankart and superior labrum anterior–posterior tears. The Try-Scorer Mechanism also caused the majority (83%) of rotator cuff tears. The Direct Hit mechanism resulted in GHJ dislocation and labral injury in 37.5% of players and was most likely to cause acromioclavicular joint dislocation and scapula fractures, injuries that were not seen with the other mechanisms. Conclusion Greater understanding of the mechanisms involved in rugby shoulder injury is useful in understanding the pathological injuries, guiding treatment and rehabilitation and aiding the development of injury-prevention methods. PMID:22510645

  20. Understanding the role consumer involvement plays in the effectiveness of hospital advertising.

    Science.gov (United States)

    McCullough, Tammy; Dodge, H Robert

    2002-01-01

    Both intensified competition and greater consumer participation in the choice process for healthcare has increased the importance of advertising for health care providers and seriously challenged many of the preconceptions regarding advertising. This study investigates the effectiveness of advertising under conditions of high and low involvement using the Elaboration Likelihood Model to develop hypotheses that are tested in a 2 x 2 x 2 experimental design. The study findings provide insights into the influence of message content and message source on consumers categorized as high or low involvement. It was found that consumers classified as high-involvement are more influenced by a core service-relevant message than those consumers classified as low-involvement. Moreover, a non-physician spokesperson was found to have as much or more influence as a physician spokesperson regardless of the consumers' involvement level.

  1. Antinociceptive Activity of Methanol Extract of Muntingia calabura Leaves and the Mechanisms of Action Involved

    Directory of Open Access Journals (Sweden)

    M. H. Mohd. Sani

    2012-01-01

    Full Text Available Muntingia calabura L. (family Elaeocarpaceae has been traditionally used to relieve various pain-related ailments. The present study aimed to determine the antinociceptive activity of methanol extract of M. calabura leaves (MEMC and to elucidate the possible mechanism of antinociception involved. The in vivo chemicals (acetic acid-induced abdominal constriction and formalin-, capsaicin-, glutamate-, serotonin-induced paw licking test and thermal (hot plate test models of nociception were used to evaluate the extract antinociceptive activity. The extract (100, 250, and 500 mg/kg was administered orally 60 min prior to subjection to the respective test. The results obtained demonstrated that MEMC produced significant (P<0.05 antinociceptive response in all the chemical- and thermal-induced nociception models, which was reversed after pretreatment with 5 mg/kg naloxone, a non-selective opioid antagonist. Furthermore, pretreatment with L-arginine (a nitric oxide (NO donor, NG-nitro-L-arginine methyl esters (L-NAME; an inhibitor of NO synthase (NOS, methylene blue (MB; an inhibitor of cyclic-guanosine monophosphate (cGMP pathway, or their combination also caused significant (P<0.05 change in the intensity of the MEMC antinociception. In conclusion, the MEMC antinociceptive activity involves activation of the peripheral and central mechanisms, and modulation via, partly, the opioid receptors and NO/cGMP pathway.

  2. Organizing Patient Involvement

    DEFF Research Database (Denmark)

    Brehm Johansen, Mette

    hospitals. During the last 25 years, patient involvement and quality improvement have become connected in Danish healthcare policy. However, the ideal of involving patients in quality improvement is described in very general terms and with only few specific expectations of how it is to be carried out...... in practice, as I show in the thesis. In the patient involvement literature, the difficulties of getting patient involvement in quality improvement to have in an impact on the planning and development of healthcare services is, for example, ascribed to conceptual vagueness of patient involvement, differences...... in perspectives, values and understandings between patients and healthcare professionals, or the lack of managerial attention and prioritization....

  3. Understanding "Understanding" Flow for Network-Centric Warfare: Military Knowledge-Flow Mechanics

    National Research Council Canada - National Science Library

    Nissen, Mark

    2002-01-01

    Network-centric warfare (NCW) emphasizes information superiority for battlespace efficacy, but it is clear that the mechanics of how knowledge flows are just as important as those pertaining to the networks and communication...

  4. Growth factor involvement in tension-induced skeletal muscle growth

    Science.gov (United States)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  5. Early Bilingualism Enhances Mechanisms of False-Belief Reasoning

    Science.gov (United States)

    Kovacs, Agnes Melinda

    2009-01-01

    In their first years, children's understanding of mental states seems to improve dramatically, but the mechanisms underlying these changes are still unclear. Such "theory of mind" (ToM) abilities may arise during development, or have an innate basis, developmental changes reflecting limitations of other abilities involved in ToM tasks (e.g.…

  6. Mechanical alloying in the Fe-Cu system

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Gente, C.; Bormann, R.

    1998-01-01

    The studies of mechanical alloying on the Fe-Cu system, as a model system for those with positive heats of mixing, are reviewed. Several problems involved in the mechanical alloying process are discussed. For example, (1) whether alloying occurs on an atomic level; (2) what the solid solubility...... in the Fe-Cu system is; (3) where the positive energy is stored in the alloys; (4) what the decomposition process of the supersaturated alloys is; and (5) what type of magnetic properties the new materials have. The elucidation of these problems will shed light on the understanding of the mechanisms...... for the preparation of materials under highly non-equilibrium conditions in systems with positive heats of mixing by mechanical alloying....

  7. Understanding dental CAD/CAM for restorations--the digital workflow from a mechanical engineering viewpoint.

    Science.gov (United States)

    Tapie, L; Lebon, N; Mawussi, B; Fron Chabouis, H; Duret, F; Attal, J-P

    2015-01-01

    As digital technology infiltrates every area of daily life, including the field of medicine, so it is increasingly being introduced into dental practice. Apart from chairside practice, computer-aided design/computer-aided manufacturing (CAD/CAM) solutions are available for creating inlays, crowns, fixed partial dentures (FPDs), implant abutments, and other dental prostheses. CAD/CAM dental solutions can be considered a chain of digital devices and software for the almost automatic design and creation of dental restorations. However, dentists who want to use the technology often do not have the time or knowledge to understand it. A basic knowledge of the CAD/CAM digital workflow for dental restorations can help dentists to grasp the technology and purchase a CAM/CAM system that meets the needs of their office. This article provides a computer-science and mechanical-engineering approach to the CAD/CAM digital workflow to help dentists understand the technology.

  8. A host defense mechanism involving CFTR-mediated bicarbonate secretion in bacterial prostatitis.

    Directory of Open Access Journals (Sweden)

    Chen Xie

    Full Text Available BACKGROUND: Prostatitis is associated with a characteristic increase in prostatic fluid pH; however, the underlying mechanism and its physiological significance have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: In this study a primary culture of rat prostatic epithelial cells and a rat prostatitis model were used. Here we reported the involvement of CFTR, a cAMP-activated anion channel conducting both Cl(- and HCO(3(-, in mediating prostate HCO(3(- secretion and its possible role in bacterial killing. Upon Escherichia coli (E. coli-LPS challenge, the expression of CFTR and carbonic anhydrase II (CA II, along with several pro-inflammatory cytokines was up-regulated in the primary culture of rat prostate epithelial cells. Inhibiting CFTR function in vitro or in vivo resulted in reduced bacterial killing by prostate epithelial cells or the prostate. High HCO(3(- content (>50 mM, rather than alkaline pH, was found to be responsible for bacterial killing. The direct action of HCO(3(- on bacterial killing was confirmed by its ability to increase cAMP production and suppress bacterial initiation factors in E. coli. The relevance of the CFTR-mediated HCO(3(- secretion in humans was demonstrated by the upregulated expression of CFTR and CAII in human prostatitis tissues. CONCLUSIONS/SIGNIFICANCE: The CFTR and its mediated HCO(3(- secretion may be up-regulated in prostatitis as a host defense mechanism.

  9. Chapter 8. Activation mechanisms of chemokine receptors

    DEFF Research Database (Denmark)

    Jensen, Pia C; Rosenkilde, Mette M

    2009-01-01

    binding. Attempts to unravel the activation mechanism of 7TM receptors have led to the conclusion that activation involves movements of the transmembrane segments VI and VII in particular, as recently gathered in the Global Toggle Switch Model. However, to understand the activation mechanism completely......, more research has to be done in this field. Chemokine receptors are interesting tools in this matter. First, the chemokine system has a high degree of promiscuity that allows several chemokines to target one receptor in different ways, as well as a single chemokine ligand to target several receptors...

  10. Energy transfer in a mechanically trapped exciplex.

    Science.gov (United States)

    Klosterman, Jeremy K; Iwamura, Munetaka; Tahara, Tahei; Fujita, Makoto

    2009-07-15

    Host-guest complexes involving M(6)L(4) coordination cages can display unusual photoreactivity, and enclathration of the very large fluorophore bisanthracene resulted in an emissive, mechanically trapped intramolecular exciplex. Mechanically linked intramolecular exciplexes are important for understanding the dependence of energy transfer on donor-acceptor distance, orientation, and electronic coupling but are relatively unexplored. Steady-state and picosecond time-resolved fluorescence measurements have revealed that selective excitation of the encapsulated guest fluorophore results in efficient energy transfer from the excited guest to an emissive host-guest exciplex state.

  11. Mechanisms of natural ventilation in livestock buildings

    DEFF Research Database (Denmark)

    Rong, Li; Bjerg, Bjarne; Batzanas, Thomas

    2016-01-01

    Studies on the mechanisms of natural ventilation in livestock buildings are reviewed and influences on discharge and pressure coefficients are discussed. Compared to studies conducted on buildings for human occupation and industrial buildings which focus on thermal comfort, ventilation systems......, indoor air quality, building physics and energy etc., our understanding of the mechanisms involved in natural ventilation of livestock buildings are still limited to the application of the orifice equation. It has been observed that the assumptions made for application of the orifice equation...... are not valid for wind-induced cross ventilation through large openings. This review identifies that the power balance model, the concept of stream tube and the local dynamic similarity model has helped in the fundamental understanding of wind-induced natural ventilation in buildings for human occupation...

  12. Reactive Molecular Dynamics Simulations to Understand Mechanical Response of Thaumasite under Temperature and Strain Rate Effects.

    Science.gov (United States)

    Hajilar, Shahin; Shafei, Behrouz; Cheng, Tao; Jaramillo-Botero, Andres

    2017-06-22

    Understanding the structural, thermal, and mechanical properties of thaumasite is of great interest to the cement industry, mainly because it is the phase responsible for the aging and deterioration of civil infrastructures made of cementitious materials attacked by external sources of sulfate. Despite the importance, effects of temperature and strain rate on the mechanical response of thaumasite had remained unexplored prior to the current study, in which the mechanical properties of thaumasite are fully characterized using the reactive molecular dynamics (RMD) method. With employing a first-principles based reactive force field, the RMD simulations enable the description of bond dissociation and formation under realistic conditions. From the stress-strain curves of thaumasite generated in the x, y, and z directions, the tensile strength, Young's modulus, and fracture strain are determined for the three orthogonal directions. During the course of each simulation, the chemical bonds undergoing tensile deformations are monitored to reveal the bonds responsible for the mechanical strength of thaumasite. The temperature increase is found to accelerate the bond breaking rate and consequently the degradation of mechanical properties of thaumasite, while the strain rate only leads to a slight enhancement of them for the ranges considered in this study.

  13. Natural language understanding

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, S

    1982-04-01

    Language understanding is essential for intelligent information processing. Processing of language itself involves configuration element analysis, syntactic analysis (parsing), and semantic analysis. They are not carried out in isolation. These are described for the Japanese language and their usage in understanding-systems is examined. 30 references.

  14. Brain Chemistry and Behaviour: An Update on Neuroscience Research and Its Implications for Understanding Drug Addiction

    Science.gov (United States)

    Robinson, Emma S. J.

    2011-01-01

    Psychiatric disorders such as drug addiction represent one of the biggest challenges to society. This article reviews clinical and basic science research to illustrate how developments in research methodology have enabled neuroscientists to understand more about the brain mechanisms involved in addiction biology. Treating addiction represents a…

  15. Involvement of endothelin and ET(A) endothelin receptor in mechanical allodynia in mice given orthotopic melanoma inoculation.

    Science.gov (United States)

    Fujita, Masahide; Andoh, Tsugunobu; Saiki, Ikuo; Kuraishi, Yasushi

    2008-02-01

    We investigated whether endothelin (ET) would be involved in skin cancer pain in mice. Orthotopic inoculation of B16-BL6 melanoma cells into the plantar region of the hind paw produced marked mechanical allodynia in C57BL/6 mice. Intraplantar injections of the ET(A)-receptor antagonist BQ-123 (0.3 - 3 nmol/site), but not the ET(B)-receptor antagonist BQ-788 (1 and 3 nmol/site), inhibited mechanical allodynia in mice with grown melanoma. In naive mice, an intraplantar injection of tumor extract (1 and 3 mg/site), which was prepared from the grown melanoma in the paw, produced mechanical allodynia, which was inhibited by BQ-123 and BQ-788 at doses of 3 and 10 nmol/site. An intraplantar injection of ET-1 (1 and 10 pmol/site) elicited licking behavior, which was increased in the melanoma-bearing hind paw. BQ-123 (3 and 10 nmol/site) inhibited licking induced by ET-1 (10 pmol/site). The level of mRNA of ET(A), but not ET(B), receptor, was significantly increased in the dorsal root ganglia on the inoculated side. Cultured B16-BL6 cells contained ET, and the melanoma mass increased the concentration of ET as it grew bigger. These results suggest that ET-1 and ET(A) receptor are at least partly involved in the induction of pain induced by melanoma cell inoculation.

  16. Endocytosis of HERG is clathrin-independent and involves arf6.

    Directory of Open Access Journals (Sweden)

    Rucha Karnik

    Full Text Available The hERG potassium channel is critical for repolarisation of the cardiac action potential. Reduced expression of hERG at the plasma membrane, whether caused by hereditary mutations or drugs, results in long QT syndrome and increases the risk of ventricular arrhythmias. Thus, it is of fundamental importance to understand how the density of this channel at the plasma membrane is regulated. We used antibodies to an extracellular native or engineered epitope, in conjunction with immunofluorescence and ELISA, to investigate the mechanism of hERG endocytosis in recombinant cells and validated the findings in rat neonatal cardiac myocytes. The data reveal that this channel undergoes rapid internalisation, which is inhibited by neither dynasore, an inhibitor of dynamin, nor a dominant negative construct of Rab5a, into endosomes that are largely devoid of the transferrin receptor. These results support a clathrin-independent mechanism of endocytosis and exclude involvement of dynamin-dependent caveolin and RhoA mechanisms. In agreement, internalised hERG displayed marked overlap with glycosylphosphatidylinositol-anchored GFP, a clathrin-independent cargo. Endocytosis was significantly affected by cholesterol extraction with methyl-β-cyclodextrin and inhibition of Arf6 function with dominant negative Arf6-T27N-eGFP. Taken together, we conclude that hERG undergoes clathrin-independent endocytosis via a mechanism involving Arf6.

  17. Mechanisms involved in regulation of osteoclastic differentiation by mechanical stress-loaded osteoblasts

    International Nuclear Information System (INIS)

    Kaneuji, Takeshi; Ariyoshi, Wataru; Okinaga, Toshinori; Toshinaga, Akihiro; Takahashi, Tetsu; Nishihara, Tatsuji

    2011-01-01

    Highlights: → Effect of compressive force on osteoblasts were examined. → Compressive force induced OPG expression and suppressed osteoclastogenesis. → This enhancement of OPG is dependent on Wnt/Ca2+ signal pathway. -- Abstract: Mechanical stress is known to be important for regulation of bone turnover, though the detailed mechanisms are not fully understood. In the present study, we examined the effect of mechanical stress on osteoblasts using a novel compression model. Mouse osteoblastic MC3T3-E1 cells were embedded in three-dimensional (3D) gels and cultured with continuous compressive force (0-10.0 g/cm 2 ) for 48 h, and the conditioned medium were collected. RAW264.7 cells were then incubated with the conditioned medium for various times in the presence of receptor activator of nuclear factor-κB ligand (RANKL). Conditioned medium was found to inhibit the differentiation of RAW264.7 cells into osteoclasts induced by RANKL via down-regulation of the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6), phosphorylation of IκBα, and nuclear translocation of p50 and p65. Interestingly, the conditioned medium also had a high level of binding activity to RANKL and blocked the binding of RANK to RANKL. Furthermore, the binding activity of conditioned medium to RANKL was reduced when the 3D gel was supplemented with KN-93, an inhibitor of non-canonical Wnt/Ca 2+ pathway. In addition, expression level of osteoprotegerin (OPG) mRNA was increased in time- and force-dependent manners, and remarkably suppressed by KN-93. These results indicate that osteoblastic cells subjected to mechanical stress produce OPG, which binds to RANKL. Furthermore, this binding activity strongly inhibited osteoclastogenesis through suppression of TRAF6 and the nuclear factor-kappa B (NF-κB) signaling pathway, suggesting that enhancement of OPG expression induced by mechanical stress is dependent on non-canonical Wnt/Ca 2+ pathway.

  18. Mechanisms involved in regulation of osteoclastic differentiation by mechanical stress-loaded osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Kaneuji, Takeshi [Division of Oral and Maxillofacial Reconstructive Surgery, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Ariyoshi, Wataru; Okinaga, Toshinori; Toshinaga, Akihiro [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Takahashi, Tetsu [Division of Oral and Maxillofacial Reconstructive Surgery, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Nishihara, Tatsuji, E-mail: tatsujin@kyu-dent.ac.jp [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan)

    2011-04-29

    Highlights: {yields} Effect of compressive force on osteoblasts were examined. {yields} Compressive force induced OPG expression and suppressed osteoclastogenesis. {yields} This enhancement of OPG is dependent on Wnt/Ca2+ signal pathway. -- Abstract: Mechanical stress is known to be important for regulation of bone turnover, though the detailed mechanisms are not fully understood. In the present study, we examined the effect of mechanical stress on osteoblasts using a novel compression model. Mouse osteoblastic MC3T3-E1 cells were embedded in three-dimensional (3D) gels and cultured with continuous compressive force (0-10.0 g/cm{sup 2}) for 48 h, and the conditioned medium were collected. RAW264.7 cells were then incubated with the conditioned medium for various times in the presence of receptor activator of nuclear factor-{kappa}B ligand (RANKL). Conditioned medium was found to inhibit the differentiation of RAW264.7 cells into osteoclasts induced by RANKL via down-regulation of the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6), phosphorylation of I{kappa}B{alpha}, and nuclear translocation of p50 and p65. Interestingly, the conditioned medium also had a high level of binding activity to RANKL and blocked the binding of RANK to RANKL. Furthermore, the binding activity of conditioned medium to RANKL was reduced when the 3D gel was supplemented with KN-93, an inhibitor of non-canonical Wnt/Ca{sup 2+} pathway. In addition, expression level of osteoprotegerin (OPG) mRNA was increased in time- and force-dependent manners, and remarkably suppressed by KN-93. These results indicate that osteoblastic cells subjected to mechanical stress produce OPG, which binds to RANKL. Furthermore, this binding activity strongly inhibited osteoclastogenesis through suppression of TRAF6 and the nuclear factor-kappa B (NF-{kappa}B) signaling pathway, suggesting that enhancement of OPG expression induced by mechanical stress is dependent on non-canonical Wnt

  19. Time Perception Mechanisms at Central Nervous System.

    Science.gov (United States)

    Fontes, Rhailana; Ribeiro, Jéssica; Gupta, Daya S; Machado, Dionis; Lopes-Júnior, Fernando; Magalhães, Francisco; Bastos, Victor Hugo; Rocha, Kaline; Marinho, Victor; Lima, Gildário; Velasques, Bruna; Ribeiro, Pedro; Orsini, Marco; Pessoa, Bruno; Leite, Marco Antonio Araujo; Teixeira, Silmar

    2016-04-01

    The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms involved the neurofunctional aspects, theories, executive functions and pathologies that contribute the understanding of temporal perception. Articles form 1980 to 2015 were searched by using the key themes: neuroanatomy, neurophysiology, theories, time cells, memory, schizophrenia, depression, attention-deficit hyperactivity disorder and Parkinson's disease combined with the term perception of time. We evaluated 158 articles within the inclusion criteria for the purpose of the study. We conclude that research about the holdings of the frontal cortex, parietal, basal ganglia, cerebellum and hippocampus have provided advances in the understanding of the regions related to the perception of time. In neurological and psychiatric disorders, the understanding of time depends on the severity of the diseases and the type of tasks.

  20. Time perception mechanisms at central nervous system

    Directory of Open Access Journals (Sweden)

    Rhailana Fontes

    2016-04-01

    Full Text Available The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms involved the neurofunctional aspects, theories, executive functions and pathologies that contribute the understanding of temporal perception. Articles form 1980 to 2015 were searched by using the key themes: neuroanatomy, neurophysiology, theories, time cells, memory, schizophrenia, depression, attention-deficit hyperactivity disorder and Parkinson’s disease combined with the term perception of time. We evaluated 158 articles within the inclusion criteria for the purpose of the study. We conclude that research about the holdings of the frontal cortex, parietal, basal ganglia, cerebellum and hippocampus have provided advances in the understanding of the regions related to the perception of time. In neurological and psychiatric disorders, the understanding of time depends on the severity of the diseases and the type of tasks.

  1. Understanding healthcare innovation systems: the Stockholm region case.

    Science.gov (United States)

    Larisch, Lisa-Marie; Amer-Wåhlin, Isis; Hidefjäll, Patrik

    2016-11-21

    Purpose There is an increasing interest in understanding how innovation processes can address current challenges in healthcare. The purpose of this paper is to analyze the wider socio-economic context and conditions for such innovation processes in the Stockholm region, using the functional dynamics approach to innovation systems (ISs). Design/methodology/approach The analysis is based on triangulation using data from 16 in-depth interviews, two workshops, and additional documents. Using the functional dynamics approach, critical structural and functional components of the healthcare IS were analyzed. Findings The analysis revealed several mechanisms blocking innovation processes such as fragmentation, lack of clear leadership, as well as insufficient involvement of patients and healthcare professionals. Furthermore, innovation is expected to occur linearly as a result of research. Restrictive rules for collaboration with industry, reimbursement, and procurement mechanisms limit entrepreneurial experimentation, commercialization, and spread of innovations. Research limitations/implications In this study, the authors analyzed how certain functions of the functional dynamics approach to ISs related to each other. The authors grouped knowledge creation, resource mobilization, and legitimacy as they jointly constitute conditions for needs articulation and entrepreneurial experimentation. The economic effects of entrepreneurial experimentation and needs articulation are mainly determined by the stage of market formation and existence of positive externalities. Social implications Stronger user involvement; a joint innovation strategy for healthcare, academia, and industry; and institutional reform are necessary to remove blocking mechanisms that today prevent innovation from occurring. Originality/value This study is the first to provide an analysis of the system of innovation in healthcare using a functional dynamics approach, which has evolved as a tool for public

  2. Quantum interactive learning tutorial on the double-slit experiment to improve student understanding of quantum mechanics

    Science.gov (United States)

    Sayer, Ryan; Maries, Alexandru; Singh, Chandralekha

    2017-06-01

    Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students' prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in various situations that appear to be counterintuitive and contradict classical notions of particles and waves. For example, if we send single electrons through the slits, they may behave as a "wave" in part of the experiment and as a "particle" in another part of the same experiment. Here we discuss the development and evaluation of a research-validated Quantum Interactive Learning Tutorial (QuILT) which makes use of an interactive simulation to improve student understanding of the double-slit experiment and strives to help students develop a good grasp of foundational issues in quantum mechanics. We discuss common student difficulties identified during the development and evaluation of the QuILT and analyze the data from the pretest and post test administered to the upper-level undergraduate and first-year physics graduate students before and after they worked on the QuILT to assess its effectiveness. These data suggest that on average, the QuILT was effective in helping students develop a more robust understanding of foundational concepts in quantum mechanics that defy classical intuition using the context of the double-slit experiment. Moreover, upper-level undergraduates outperformed physics graduate students on the post test. One possible reason for this difference in performance may be the level of student engagement with the QuILT due to the grade incentive. In the undergraduate course, the post test was graded for correctness while in the graduate course, it was only graded for completeness.

  3. Quantum interactive learning tutorial on the double-slit experiment to improve student understanding of quantum mechanics

    Directory of Open Access Journals (Sweden)

    Ryan Sayer

    2017-05-01

    Full Text Available Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students’ prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in various situations that appear to be counterintuitive and contradict classical notions of particles and waves. For example, if we send single electrons through the slits, they may behave as a “wave” in part of the experiment and as a “particle” in another part of the same experiment. Here we discuss the development and evaluation of a research-validated Quantum Interactive Learning Tutorial (QuILT which makes use of an interactive simulation to improve student understanding of the double-slit experiment and strives to help students develop a good grasp of foundational issues in quantum mechanics. We discuss common student difficulties identified during the development and evaluation of the QuILT and analyze the data from the pretest and post test administered to the upper-level undergraduate and first-year physics graduate students before and after they worked on the QuILT to assess its effectiveness. These data suggest that on average, the QuILT was effective in helping students develop a more robust understanding of foundational concepts in quantum mechanics that defy classical intuition using the context of the double-slit experiment. Moreover, upper-level undergraduates outperformed physics graduate students on the post test. One possible reason for this difference in performance may be the level of student engagement with the QuILT due to the grade incentive. In the undergraduate course, the post test was graded for correctness while in the graduate course, it was only graded for completeness.

  4. Facilitating Shared Understandings of Risk

    DEFF Research Database (Denmark)

    Mitchell, Robb

    This thesis contributes an identification of a key mechanism and its constituent qualities, for facilitating shared understandings of risk. Globalisation and the pace of technological change increases the uncertainties of decision making within many design and innovation practices. Accordingly......, the focus of participatory workshops has expanded towards addressing broader questions of strategy, business models and other organizational and inter-organisational issues. To develop effective partnerships across the boundaries separating companies, I argue that is necessary for those involved to gain...... or proxy for absent others, 4) an incomplete comic with which children could contribute sketched ideas to a design process 5) a table top tool kits for discussing business relationship issues and 5) a number of bespoke interactive sculpture-like artifacts for provoking insights concerning business dilemmas...

  5. Liver involvement in Gaucher disease - Review and clinical approach.

    Science.gov (United States)

    Adar, Tomer; Ilan, Yaron; Elstein, Deborah; Zimran, Ari

    2018-02-01

    Gaucher disease (GD), one of the most prevalent lysosomal storage diseases, is associated with glucocerebroside accumulation in cells of the monocyte-macrophage system in various organs, including the liver. Evaluating and managing liver disease in patients with Gaucher disease may be challenging. While hepatic involvement is common in Gaucher disease, its severity, and clinical significance span a wide spectrum, ranging from sub-clinical involvement to liver cirrhosis with its associated complications including portal hypertension. Apart from liver involvement in Gaucher disease, patients with may also suffer from other comorbidities involving the liver. That Gaucher disease itself can mimic hepatic lesions, affect laboratory tests used to characterize liver disease, and may be associated with non-cirrhotic portal hypertension, complicates the diagnostic approach even more. Better understanding of liver involvement in Gaucher disease can spare patients unnecessary invasive testing, and assist physicians in decision making when evaluating patients with Gaucher disease suspected for significant liver disease. This review describes the various clinical manifestations, laboratory and imaging abnormalities that may be encountered when following patients with Gaucher disease for liver involvement. The mechanism for liver disease are discussed, as well as the possible hepato-protective effect of glucocerebroside, and the a diagnostic and treatment approaches. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Understanding the Catalytic Mechanism and the Nature of the Transition State of an Attractive Drug-Target Enzyme (Shikimate Kinase) by Quantum Mechanical/Molecular Mechanical (QM/MM) Studies.

    Science.gov (United States)

    Yao, Jianzhuang; Wang, Xia; Luo, Haixia; Gu, Pengfei

    2017-11-16

    Shikimate kinase (SK) is the fifth bacterial enzyme involved in the shikimate pathway for biosynthesis of life-indispensable components, such as aromatic amino acids. The absence of the shikimate pathway in humans makes SK an attractive target for the rational design of drugs aimed at pathogenesis bacteria, such as Mycobacterium tuberculosis and Helicobacter pylori. However, an effective inhibitor of SK (e.g., a transition-state analogue) is still not available on the market due, at least in part, to a lack of knowledge on the catalytic mechanism and the nature of the rate-limiting transition state. Herein, quantum mechanical/molecular mechanical (QM/MM) reaction coordinate, molecular dynamics (MD), and free-energy simulations have been performed to answer these questions. The results presented herein demonstrate that the phosphoryl-transfer process, which is the rate-limiting step of SK-catalyzed phosphorylation of shikimic acid (SKM), is a concerted one-step reaction proceeding through a loose transition state. The computational results agree well with those of experimental studies, specifically NMR results, X-ray crystal structure observation, and activation free-energy barrier. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Thioridazine affects transcription of genes involved in cell wall biosynthesis in methicillin-resistant Staphylococcus aureus

    DEFF Research Database (Denmark)

    Bonde, Mette; Højland, Dorte Heidi; Kolmos, Hans Jørn

    2011-01-01

    have previously shown that the expression of some resistance genes is abolished after treatment with thioridazine and oxacillin. To further understand the mechanism underlying the reversal of resistance, we tested the expression of genes involved in antibiotic resistance and cell wall biosynthesis...... in response to thioridazine in combination with oxacillin. We observed that the oxacillin-induced expression of genes belonging to the VraSR regulon is reduced by the addition of thioridazine. The exclusion of such key factors involved in cell wall biosynthesis will most likely lead to a weakened cell wall...... reversal of resistance by thioridazine relies on decreased expression of specific genes involved in cell wall biosynthesis....

  8. Mechanisms Involved in Nematode Control by Endophytic Fungi.

    Science.gov (United States)

    Schouten, Alexander

    2016-08-04

    Colonization of plants by particular endophytic fungi can provide plants with improved defenses toward nematodes. Evidently, such endophytes can be important in developing more sustainable agricultural practices. The mechanisms playing a role in this quantitative antagonism are poorly understood but most likely multifactorial. This knowledge gap obstructs the progress regarding the development of endophytes or endophyte-derived constituents into biocontrol agents. In part, this may be caused by the fact that endophytic fungi form a rather heterogeneous group. By combining the knowledge of the currently characterized antagonistic endophytic fungi and their effects on nematode behavior and biology with the knowledge of microbial competition and induced plant defenses, the various mechanisms by which this nematode antagonism operates or may operate are discussed. Now that new technologies are becoming available and more accessible, the currently unresolved mechanisms can be studied in greater detail than ever before.

  9. General mechanism involved in subwavelength optics of conducting microstructures: charge-oscillation-induced light emission and interference.

    Science.gov (United States)

    Huang, Xian-Rong; Peng, Ru-Wen

    2010-04-01

    Interactions between light and conducting microstructures or nanostructures can result in a variety of novel phenomena, but their underlying mechanisms have not been completely understood. From calculations of surface charge density waves on conducting gratings and by comparing them with classical surface plasmons, we revealed a general yet concrete picture regarding the coupling of light to free electron oscillation on structured conducting surfaces that can lead to oscillating subwavelength charge patterns (i.e., structured surface plasmons). New wavelets emitted from these light sources then destructively interfere to form evanescent waves. This principle, usually combined with other mechanisms, is mainly a geometrical effect that can be universally involved in light scattering from all periodic and non-periodic structures containing free electrons. This picture may provide clear guidelines for developing conductor-based nano-optical devices.

  10. Enterobacter gergoviae membrane modifications are involved in the adaptive response to preservatives used in cosmetic industry.

    Science.gov (United States)

    Périamé, Marina; Pagès, Jean-Marie; Davin-Regli, Anne

    2015-01-01

    The objective of this study was to understand the adaptive mechanisms in Enterobacter gergoviae which are involved in recurrent contaminations in cosmetic products that are incorporated with preservatives. Bacterial strains from two backgrounds were examined for a profound understanding of the mechanisms of adaptation against preservatives. It included a series of Ent. gergoviae strain-ATCC 33028 derivatives, isolated using increasing methylisothiazolinone-chloromethylisothiazolinone (MIT-CMIT) and triclosan concentrations. The other series was of Ent. gergoviae isolates from cosmetic products exhibiting MIT-CMIT and triclosan resistance. We evaluated the outer membrane protein modifications and efflux mechanisms activities responsible for the resistant trait via immunoblotting assays. Additionally, for understanding the efflux activity real-time efflux, experiments were performed. A cross-insusceptibility between preservatives and some disinfectants was observed in MIT-CMIT-resistant derivative isolates, but antibiotics susceptibility was not altered. Resistance to EDTA was significant in all preservatives insusceptible derivative strains, indicating modifications in the LPS layer. Furthermore, an array of real-time efflux assays indicated different activity levels while no variations were detected in porins and AcrAB-TolC pumps production. Overexpression of a specific flagellin-type protein was observed in one of the MIT-CMIT- and triclosan-resistant strains. Another candidate, a 25-kDa peroxiredoxin enzyme involved in oxidative detoxification, was identified to be overexpressed in MIT-CMIT derivative. A similar profile was also observed among strains isolated from cosmetic products. Our study highlights the existence of adaptive mechanisms such as overexpression of detoxifying enzymes, flagellin, modification of membrane structure/function in Ent. gergoviae. They might be involved in recurrent episodes of contaminations occurring in the cosmetic production

  11. Simulation with quantum mechanics/molecular mechanics for drug discovery.

    Science.gov (United States)

    Barbault, Florent; Maurel, François

    2015-10-01

    Biological macromolecules, such as proteins or nucleic acids, are (still) molecules and thus they follow the same chemical rules that any simple molecule follows, even if their size generally renders accurate studies unhelpful. However, in the context of drug discovery, a detailed analysis of ligand association is required for understanding or predicting their interactions and hybrid quantum mechanics/molecular mechanics (QM/MM) computations are relevant tools to help elucidate this process. In this review, the authors explore the use of QM/MM for drug discovery. After a brief description of the molecular mechanics (MM) technique, the authors describe the subtractive and additive techniques for QM/MM computations. The authors then present several application cases in topics involved in drug discovery. QM/MM have been widely employed during the last decades to study chemical processes such as enzyme-inhibitor interactions. However, despite the enthusiasm around this area, plain MM simulations may be more meaningful than QM/MM. To obtain reliable results, the authors suggest fixing several keystone parameters according to the underlying chemistry of each studied system.

  12. Understanding the mechanisms behind coking pressure: Relationship to pore structure

    Energy Technology Data Exchange (ETDEWEB)

    John J. Duffy; M. Castro Diaz; Colin E. Snape; Karen M. Steel; Merrick R. Mahoney [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

    2007-09-15

    Three low volatile coals A, B and C with oven wall pressures of 100 kPa, 60 kPa and 20 kPa respectively were investigated using high-temperature rheometry, {sup 1}H NMR, thermogravimetric analysis and SEM, with the primary aim to better understand the mechanisms behind the coking pressure phenomenon. Rheometer plate displacement measurements ({Delta}L) have shown differences in the expansion and contraction behaviour of the three coals, which seem to correlate with changes in rheological properties; while SEM images have shown that the expansion process coincides with development of pore structure. It is considered that the point of maximum plate height ({Delta}L{sub max}) prior to contraction may be indicative of a cell opening or pore network forming process, based on analogies with other foam systems. Such a process may be considered important for coking pressure since it provides a potential mechanism for volatile escape, relieving internal gas pressure and inducing charge contraction. For coal C, which has the highest fluidity {delta}L{sub max} occurs quite early in the softening process and consequently a large degree of contraction is observed; while for the lower fluidity coal B, the process is delayed since pore development and consequently wall thinning progress at a slower rate. When {Delta}L{sub max} is attained, a lower degree of contraction is observed because the event occurs closer to resolidification where the increasing viscosity/elasticity can stabilise the expanded pore structure. For coal A which is relatively high fluidity, but also high coking pressure, a greater degree of swelling is observed prior to cell rupture, which may be due to greater fluid elasticity during the expansion process. This excessive expansion is considered to be a potential reason for its high coking pressure. 58 refs., 15 figs., 1 tab.

  13. RI: Rheology as a Tool for Understanding the Mechanics of Live Ant Aggregations, Part 2

    Science.gov (United States)

    2016-11-04

    earwax of pigs, dogs , cows, and humans. We find that earwax is shear-thinning for all these animals. This ability enables it to cling to the ear in low...self-cleaning.” Society for Integrative and Comparative Biology annual meeting, 2017.  P. Yang, D. Dao, R. Lehner, D. Hu, “ The hydrodynamics of...RI: Rheology as a Tool for Understanding the Mechanics of Live Ant Aggregations, Part 2 An Anton Paarr MCR 501 rheometer was purchased in order to

  14. Bell trajectories for revealing quantum control mechanisms

    International Nuclear Information System (INIS)

    Dennis, Eric; Rabitz, Herschel

    2003-01-01

    The dynamics induced while controlling quantum systems by optimally shaped laser pulses have often been difficult to understand in detail. A method is presented for quantifying the importance of specific sequences of quantum transitions involved in the control process. The method is based on a ''beable'' formulation of quantum mechanics due to John Bell that rigorously maps the quantum evolution onto an ensemble of stochastic trajectories over a classical state space. Detailed mechanism identification is illustrated with a model seven-level system. A general procedure is presented to extract mechanism information directly from closed-loop control experiments. Application to simulated experimental data for the model system proves robust with up to 25% noise

  15. Mechanisms involved in the development of diabetic retinopathy induced by oxidative stress.

    Science.gov (United States)

    Guzman, David Calderón; Olguín, Hugo Juárez; García, Ernestina Hernández; Peraza, Armando Valenzuela; de la Cruz, Diego Zamora; Soto, Monica Punzo

    2017-01-01

    Diabetic retinopathy (DR) is one of the main complications in patients with diabetes and has been the leading cause of visual loss since 1990. Oxidative stress is a biological process resulting from excessive production of reactive oxygen species (ROS). This process contributes to the development of many diseases and disease complications. ROS interact with various cellular components to induce cell injury. Fortunately, there is an antioxidan t system that protects organisms against ROS. Indeed, when ROS exceed antioxidant capacity, the resulting cell injury can cause diverse physiological and pathological changes that could lead to a disease like DR. This paper reviews the possible mechanisms of common and novel biomarkers involved in the development of DR and explores how these biomarkers could be used to monitor the damage induced by oxidative stress in DR, which is a significant complication in people with diabetes. The poor control of glucemy in pacients with DB has been shown contribute to the development of complications in eyes as DR.

  16. Patients subject to high levels of coercion: staff's understanding.

    Science.gov (United States)

    Bowers, Len; Wright, Steve; Stewart, Duncan

    2014-05-01

    Measures to keep staff and patients safe (containment) frequently involve coercion. A small proportion of patients is subject to a large proportion of containment use. To reduce the use of containment, we need a better understanding of the circumstances in which it is used and the understandings of patients and staff. Two sweeps were made of all the wards, spread over four hospital sites, in one large London mental health organization to identify patients who had been subject to high levels of containment in the previous two weeks. Data were then extracted from their case notes about their past history, current problem behaviours, and how they were understood by the patients involved and the staff. Nurses and consultant psychiatrists were interviewed to supplement the information from the case records. Twenty-six heterogeneous patients were identified, with many ages, genders, diagnoses, and psychiatric specialities represented. The main problem behaviours giving rise to containment use were violence and self-harm. The roots of the problem behaviours were to be found in severe psychiatric symptoms, cognitive difficulties, personality traits, and the implementation of the internal structure of the ward by staff. Staff's range and depth of understandings was limited and did not include functional analysis, defence mechanisms, specific cognitive assessment, and other potential frameworks. There is a need for more in-depth assessment and understanding of patients' problems, which may lead to additional ways to reduce containment use.

  17. Towards understanding the mechanisms and the kinetics of nanoparticle penetration through protective gloves

    International Nuclear Information System (INIS)

    Vinches, L; Boutrigue, N; Zemzem, M; Hallé, S; Peyrot, C; Lemarchand, L; Wilkinson, K J; Tufenkji, N

    2015-01-01

    Parallel to the increased use of engineered nanoparticles (ENP) in the formulation of commercial products or in medicine, numerous health and safety agencies have recommended the application of the precautionary principle to handle ENP; namely, the recommendation to use protective gloves against chemicals. However, recent studies reveal the penetration of titanium dioxide nanoparticles through nitrile rubber protective gloves in conditions simulating occupational use. This project is designed to understand the links between the penetration of gold nanoparticles (nAu) through nitrile rubber protective gloves and the mechanical and physical behaviour of the elastomer material subjected to conditions simulating occupational use (i.e., mechanical deformations (MD) and sweat). Preliminary analyses show that nAu suspensions penetrate selected glove materials after exposure to prolonged (3 hours) dynamic deformations. Significant morphological changes are observed on the outer surface of the glove sample; namely, the number and the surface of the micropores on the surface increase. Moreover, nitrile rubber protective gloves are also shown to be sensitive to the action of nAu suspension and to the action of the saline solution used to simulate sweat (swelling). (paper)

  18. A devolved model for public involvement in the field of mental health research: case study learning.

    Science.gov (United States)

    Moule, Pam; Davies, Rosie

    2016-12-01

    Patient and public involvement in all aspects of research is espoused and there is a continued interest in understanding its wider impact. Existing investigations have identified both beneficial outcomes and remaining issues. This paper presents the impact of public involvement in one case study led by a mental health charity conducted as part of a larger research project. The case study used a devolved model of working, contracting with service user-led organizations to maximize the benefits of local knowledge on the implementation of personalized budgets, support recruitment and local user-led organizations. To understand the processes and impact of public involvement in a devolved model of working with user-led organizations. Multiple data collection methods were employed throughout 2012. These included interviews with the researchers (n = 10) and research partners (n = 5), observation of two case study meetings and the review of key case study documentation. Analysis was conducted in NVivo10 using a coding framework developed following a literature review. Five key themes emerged from the data; Devolved model, Nature of involvement, Enabling factors, Implementation challenges and Impact. While there were some challenges of implementing the devolved model it is clear that our findings add to the growing understanding of the positive benefits research partners can bring to complex research. A devolved model can support the involvement of user-led organizations in research if there is a clear understanding of the underpinning philosophy and support mechanisms are in place. © 2015 The Authors. Health Expectations Published by John Wiley & Sons Ltd.

  19. Understanding gene functions and disease mechanisms

    DEFF Research Database (Denmark)

    Fuchs, Helmut; Aguilar-Pimentel, Juan Antonio; Amarie, Oana V.

    2018-01-01

    Since decades, model organisms have provided an important approach for understanding the mechanistic basis of human diseases. The German Mouse Clinic (GMC) was the first phenotyping facility that established a collaboration-based platform for phenotype characterization of mouse lines. In order...... to address individual projects by a tailor-made phenotyping strategy, the GMC advanced in developing a series of pipelines with tests for the analysis of specific disease areas. For a general broad analysis, there is a screening pipeline that covers the key parameters for the most relevant disease areas...

  20. MYC translocation-negative classical Burkitt lymphoma cases: an alternative pathogenetic mechanism involving miRNA deregulation

    DEFF Research Database (Denmark)

    Leucci, E; Cocco, M; Onnis, A

    2008-01-01

    at the standardization of FISH procedures in lymphoma diagnosis, we found that five cases out of 35 classic endemic BLs were negative for MYC translocations by using a split-signal as well as a dual-fusion probe. Here we investigated the expression pattern of miRNAs predicted to target c-Myc, in BL cases, to clarify...... whether alternative pathogenetic mechanisms may be responsible for lymphomagenesis in cases lacking the MYC translocation. miRNAs are a class of small RNAs that are able to regulate gene expression at the post-transcriptional level. Several studies have reported their involvement in cancer...

  1. Understanding the degradation of ascorbic acid and glutathione in relation to the levels of oxidative stress biomarkers in broccoli (Brassica oleracea L. italica cv. Bellstar) during storage and mechanical processing.

    Science.gov (United States)

    Raseetha, Siva; Leong, Sze Ying; Burritt, David John; Oey, Indrawati

    2013-06-01

    The purpose of this research was to understand the degradation of ascorbic acid and glutathione content in broccoli florets (Brassica oleracea L. italica cv. Bellstar) during prolonged storage and subsequent mechanical processing. The initial content of total ascorbic acid and glutathione in broccoli florets averaged at 5.18 ± 0.23 and 0.70 ± 0.03 μmol/g fresh weight, respectively. Results showed that the content of ascorbic acid and glutathione in broccoli degraded during storage at 23°C, for at least 4.5-fold after 6 days of storage. On each day of storage, broccoli florets were mechanically processed, but the content of total ascorbic acid and glutathione was not significantly affected. When the mechanically processed broccoli florets were further incubated for up to 6h, the amount of ascorbic acid was greatly reduced as compared to glutathione. To obtain an in-depth understanding on the degradation of ascorbic acid and glutathione, the activity of enzymes involved in plant antioxidative system via ascorbate-glutathione cycle, as a response towards oxidative stress that took place during storage was determined in this study. The content of total ascorbic acid and glutathione in broccoli florets before and after mechanical processing were found to decrease concurrently with the activity of ascorbic acid peroxidase and glutathione reductase over the experimental storage duration. Meanwhile, the effect of oxidative stress on the content of ascorbic acid and glutathione was apparent during the 6h of incubation after mechanical processing. This phenomenon was demonstrated by the level of oxidative stress biomarkers examined, in which the formation of lipid peroxides, protein carbonyls and DNA oxidised products was positively associated with the degradation of total ascorbic acid and glutathione. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. New elements to understand hydrogen diffusion and trapping mechanisms in quenched and tempered HSLA martensitic steels

    International Nuclear Information System (INIS)

    Frappart, S.

    2011-01-01

    Hydrogen Embrittlement is a complex phenomenon responsible of metal degradation. It mainly depends on the material (chemical composition, heat treatment), the environment or the mechanical state. The main goal of this study is to give new elements to understand hydrogen diffusion and trapping mechanisms in High Strength Low Alloy martensitic steels used in the field of 'Oil and Gas' applications and nuclear industry. In this way, the purpose is to identify hydrogen trapping sites related to microstructural features as a basis for a better knowledge concerning hydrogen embrittlement. Thus, accurate electrochemical permeation set-up (with or without a mechanical state) were developed as well as a procedure to thoroughly analyze experimental data. An original approach on how to interpret electrochemical permeation results has been therefore performed. Afterward, the effect of different critical parameters has been assessed i.e. the membrane thickness, the surface state of the detection side as well as the microstructure and the mechanical state. The relationship between physical parameters associated to diffusion and trapping with the microstructure evolution will give rise to a first thought 'toward the embrittlement'

  3. Mechanisms involved in the p62-73 idiopeptide-modulated delay of lupus nephritis in SNF(1) mice.

    Science.gov (United States)

    Nyland, J F; Stoll, M L; Jiang, F; Feng, F; Gavalchin, J

    2012-12-01

    The F(1) progeny of the (SWR × NZB) cross develop a lupus-like disease with high serum titers of autoantibodies, and increased frequency and severity of immune complex-mediated glomerulonephritis in females. In previous work, we found that an idiotypic peptide corresponding to aa62-73 (p62-73) of the heavy chain variable region of autoantibody 540 (Id(LN)F(1)) induced the proliferation of p62-73 idiotype-reactive T cell clones. Further, monthly immunization of pre-nephritic SNF(1) female mice with p62-73 resulted in decreased nephritis and prolonged life spans. Here we show that this treatment modulated proliferative responses to Id(LN)F(1) antigen, including a reduction in the population of idiopeptide-presenting antigen-presenting cells (APCs), as early as two weeks after immunization (10 weeks of age). Th1-type cytokine production was increased at 12 weeks of age. The incidence and severity of nephritis was reduced by 14 weeks compared to controls. Clinical indicators of nephritis, specifically histological evidence of glomerulonephritis and urine protein levels, were reduced by 20 weeks. Together these data suggest that events involved in the mechanism(s) whereby p62-73 immunization delayed nephritis occurred early after immunization, and involved modulation of APCs, B and T cell populations.

  4. Teachers' Beliefs about the Role of Interaction in Teaching Newtonian Mechanics and Its Influence on Students' Conceptual Understanding of Newton's Third Law

    Science.gov (United States)

    Jauhiainen, Johanna; Koponen, Ismo T.; Lavonen, Jari

    2006-01-01

    Students' conceptual understanding of Newton's third law has been the subject of numerous studies. These studies have often pointed out the importance of addressing the concept of interaction in teaching Newtonian mechanics. In this study, teachers were interviewed in order to examine how they understand interaction and use it in their…

  5. Understanding the mechanisms of familiar voice-identity recognition in the human brain.

    Science.gov (United States)

    Maguinness, Corrina; Roswandowitz, Claudia; von Kriegstein, Katharina

    2018-03-31

    Humans have a remarkable skill for voice-identity recognition: most of us can remember many voices that surround us as 'unique'. In this review, we explore the computational and neural mechanisms which may support our ability to represent and recognise a unique voice-identity. We examine the functional architecture of voice-sensitive regions in the superior temporal gyrus/sulcus, and bring together findings on how these regions may interact with each other, and additional face-sensitive regions, to support voice-identity processing. We also contrast findings from studies on neurotypicals and clinical populations which have examined the processing of familiar and unfamiliar voices. Taken together, the findings suggest that representations of familiar and unfamiliar voices might dissociate in the human brain. Such an observation does not fit well with current models for voice-identity processing, which by-and-large assume a common sequential analysis of the incoming voice signal, regardless of voice familiarity. We provide a revised audio-visual integrative model of voice-identity processing which brings together traditional and prototype models of identity processing. This revised model includes a mechanism of how voice-identity representations are established and provides a novel framework for understanding and examining the potential differences in familiar and unfamiliar voice processing in the human brain. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Understanding human action: integrating meanings, mechanisms, causes, and contexts

    NARCIS (Netherlands)

    Keestra, M.; Repko, A.F.; Newell, W.H.; Szostak, R.

    2012-01-01

    Humans are capable of understanding an incredible variety of actions performed by other humans. Even though these range from primary biological actions like eating and fleeing, to acts in parliament or in poetry, humans generally can make sense of each other’s actions. Understanding other people’s

  7. Endocytosis of hERG Is Clathrin-Independent and Involves Arf6

    Science.gov (United States)

    Abuarab, Nada; Smith, Andrew J.; Hardy, Matthew E. L.; Elliott, David J. S.; Sivaprasadarao, Asipu

    2013-01-01

    The hERG potassium channel is critical for repolarisation of the cardiac action potential. Reduced expression of hERG at the plasma membrane, whether caused by hereditary mutations or drugs, results in long QT syndrome and increases the risk of ventricular arrhythmias. Thus, it is of fundamental importance to understand how the density of this channel at the plasma membrane is regulated. We used antibodies to an extracellular native or engineered epitope, in conjunction with immunofluorescence and ELISA, to investigate the mechanism of hERG endocytosis in recombinant cells and validated the findings in rat neonatal cardiac myocytes. The data reveal that this channel undergoes rapid internalisation, which is inhibited by neither dynasore, an inhibitor of dynamin, nor a dominant negative construct of Rab5a, into endosomes that are largely devoid of the transferrin receptor. These results support a clathrin-independent mechanism of endocytosis and exclude involvement of dynamin-dependent caveolin and RhoA mechanisms. In agreement, internalised hERG displayed marked overlap with glycosylphosphatidylinositol-anchored GFP, a clathrin-independent cargo. Endocytosis was significantly affected by cholesterol extraction with methyl-β-cyclodextrin and inhibition of Arf6 function with dominant negative Arf6-T27N-eGFP. Taken together, we conclude that hERG undergoes clathrin-independent endocytosis via a mechanism involving Arf6. PMID:24392021

  8. Circuit mechanisms of sensorimotor learning

    Science.gov (United States)

    Makino, Hiroshi; Hwang, Eun Jung; Hedrick, Nathan G.; Komiyama, Takaki

    2016-01-01

    SUMMARY The relationship between the brain and the environment is flexible, forming the foundation for our ability to learn. Here we review the current state of our understanding of the modifications in the sensorimotor pathway related to sensorimotor learning. We divide the process in three hierarchical levels with distinct goals: 1) sensory perceptual learning, 2) sensorimotor associative learning, and 3) motor skill learning. Perceptual learning optimizes the representations of important sensory stimuli. Associative learning and the initial phase of motor skill learning are ensured by feedback-based mechanisms that permit trial-and-error learning. The later phase of motor skill learning may primarily involve feedback-independent mechanisms operating under the classic Hebbian rule. With these changes under distinct constraints and mechanisms, sensorimotor learning establishes dedicated circuitry for the reproduction of stereotyped neural activity patterns and behavior. PMID:27883902

  9. Getting on the same page: Communication, patient involvement and shared understanding of "decisions" in oncology.

    Science.gov (United States)

    Leppin, Aaron L; Kunneman, Marleen; Hathaway, Julie; Fernandez, Cara; Montori, Victor M; Tilburt, Jon C

    2018-02-01

    Patients and clinicians do not often agree on whether a decision has been made about cancer care. This could be explained by factors related to communication quality and/or the type of decision being made. We used a self-developed coding scheme to code a random sample of 128 encounters in which patients and clinicians either agreed (n=64) or disagreed (n=64) that a cancer care decision was made and tested for associations between concordance and key communication behaviours. We also identified and characterized cancer care decisions by topic and level of patient involvement and looked for trends. We identified 378 cancer care decisions across 128 encounters. Explicit decisions were most commonly made about topics wherein decision control could be easily delegated to a clear and present expert (eg either the patient or the clinician). Related to this, level of patient involvement varied significantly by decision topic. Explicit decisions were rarely made in an observable way about social, non-clinical or self-management related topics, although patients and clinicians both reported having made a cancer care decision in encounters where no decisions were observed. We found no association between communication behaviours and concordance in our sample. What counts as a "decision" in cancer care may be constructed within disparate social roles that leave many agendas unaddressed and decisions unmade. Changing the content of conversations to encourage explicit decisions about self-management and life context-related topics may have greater value in enabling shared understanding than promoting communication behaviours among already high-performing communicators. © 2017 The Authors Health Expectations Published by John Wiley & Sons Ltd.

  10. Numerical modelling of hydrologically-driven slope instability by means of porous media mechanics

    Science.gov (United States)

    Kakogiannou, Evanthia; Sanavia, Lorenzo; Lora, Marco; Schrefler, Bernhard

    2015-04-01

    Heavy rainfall can trigger slope failure which generally involves shallow soil deposit of different grading and origin usually in a state of partial saturation. In this case of slope instability, the behaviour of the soil slope is closely related not only to the distribution of pore-water pressure but also to the stress state during rainfall infiltration involving both mechanical and hydrological processes. In order to understand better these physical key processes, in this research work, the modelling of rainfall induced slope failure is considered as a coupled variably saturated hydro-mechanical problem. Therefore, the geometrically linear finite element code Comes-Geo for non-isothermal elasto-plastic multiphase solid porous materials is used, as developed by B.A. Schrefler and his co-workers. In this context, a detailed numerical analysis of an experimental slope stability test due to rainfall infiltration is presented. The main goals of this work are to understand the triggering mechanisms during the progressive failure, the effect of using different constitutive models of the mechanical soil behavior on the numerical results and the use of the second order work criterion on the detection of slope instability.

  11. From observation to understanding: Approach to analysis of wear mechanisms, Case of RCCAs and CRDM latch arms

    International Nuclear Information System (INIS)

    Hertz, D.

    2004-01-01

    Component wear can affect the ability of a component to fulfill its required function. For a designer or user, it is reasonable to expect possible wear occurrence as soon as parts are in relative motion. It is less obvious to extend this possibility to motions with small or very small amplitudes and loads. However, it has to be admitted that such cases exist. It then becomes imperative to determine the wear mechanisms so that the lifetime of the components and the optimum date of their replacement can be predicted or the degradation can be remedied. For this purpose, standard and widely accepted practice is to carry out simulator tests. Through examples of wear from nuclear reactor components such as the RCCAs (Rod Cluster Control Assembly) and the CRDM (Control Rod Drive Mechanism) latch arms, an approach for understanding the wear mechanisms and controlling their effects can be undertaken. Cases of wear have been observed on real-life parts, but the first simulator tests have shown deviations from in-reactor behaviour. Comparative examination of the wear facies of actual parts which have operated in reactor or simulators, both control rods and CRDM latch arms, was the key starting point for a new analytical approach, incorporating the formulation of wear mechanism hypotheses which can account for the observed facies. Expert assessment thus highlighted the importance of the environment by revealing that the wear featured a large component linked to friction-assisted corrosion. By including this tribo-corrosion aspect, it became possible to reach understanding of the mechanisms and account for the wear observed in reactor and on simulators. Further well-controlled simulator tests then made it possible to verify the importance of the tribo-corrosion processes in a pressurized water medium. Analysis of the physical chemical behaviour of the original materials (austenitic stainless steel) also explains why these surface modifications limit or remedy wear

  12. The underlying mechanism of action for various medicinal properties of Piper betle (betel).

    Science.gov (United States)

    Haslan, H; Suhaimi, F H; Thent, Zar Chi; Das, S

    2015-01-01

    Piper betle (betel) plant belongs to the Piperaceae family. Piper. betle is widely known for its potent medicinal properties. Various active compounds are present in Piper. betle such as allylpyrocatechol, hydroxychavicol, piperbetol, ethylpiperbetol, piperol A, piperol B, chavibetol, and alkaloids which account for these beneficial medicinal properties. In the present narrative review, we looked into the various active compounds present in the Piper betle and attempted to understand their underlying mechanism of action. Proper understanding of the molecular biology involving the mechanism of action may help in better drug formulation and provide better therapeutic actions in the field of alternative and complementary medicine.

  13. Arbuscular Mycorrhizal Fungi for the Biocontrol of Plant-Parasitic Nematodes: A Review of the Mechanisms Involved.

    Science.gov (United States)

    Schouteden, Nele; De Waele, Dirk; Panis, Bart; Vos, Christine M

    2015-01-01

    Arbuscular mycorrhizal fungi (AMF) are obligate root symbionts that can protect their host plant against biotic stress factors such as plant-parasitic nematode (PPN) infection. PPN consist of a wide range of species with different life styles that can cause major damage in many important crops worldwide. Various mechanisms have been proposed to play a role in the biocontrol effect of AMF against PPN. This review presents an overview of the different mechanisms that have been proposed, and discusses into more detail the plausibility of their involvement in the biocontrol against PPN specifically. The proposed mechanisms include enhanced plant tolerance, direct competition for nutrients and space, induced systemic resistance (ISR) and altered rhizosphere interactions. Recent studies have emphasized the importance of ISR in biocontrol and are increasingly placing rhizosphere effects on the foreground as well, both of which will be the focal point of this review. Though AMF are not yet widely used in conventional agriculture, recent data help to develop a better insight into the modes of action, which will eventually lead toward future field applications of AMF against PPN. The scientific community has entered an exciting era that provides the tools to actually unravel the underlying molecular mechanisms, making this a timely opportunity for a review of our current knowledge and the challenges ahead.

  14. Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved

    Directory of Open Access Journals (Sweden)

    Nele eSchouteden

    2015-11-01

    Full Text Available Arbuscular mycorrhizal fungi (AMF are obligate root symbionts that can protect their host plant against biotic stress factors such as plant parasitic nematode (PPN infection. PPN consist of a wide range of species with different life styles that can cause major damage in many important crops worldwide. Various mechanisms have been proposed to play a role in the biocontrol effect of AMF against PPN. This review presents an overview of the different mechanisms that have been proposed, and discusses into more detail the plausibility of their involvement in the biocontrol against PPN specifically. The proposed mechanisms include enhanced plant tolerance, direct competition for nutrients and space, induced systemic resistance (ISR and altered rhizosphere interactions. Recent studies have emphasized the importance of ISR in biocontrol and are increasingly placing rhizosphere effects on the foreground as well, both of which will be the focal point of this review. Though AMF are not yet widely used in conventional agriculture, recent data help to develop a better insight into the modes of action, which will eventually lead towards future field applications of AMF against PPN. The scientific community has entered an exciting era that provide the tools to actually unravel the underlying molecular mechanisms, making this a timely opportunity for a review of our current knowledge and the challenges ahead.

  15. Arbuscular Mycorrhizal Fungi for the Biocontrol of Plant-Parasitic Nematodes: A Review of the Mechanisms Involved

    Science.gov (United States)

    Schouteden, Nele; De Waele, Dirk; Panis, Bart; Vos, Christine M.

    2015-01-01

    Arbuscular mycorrhizal fungi (AMF) are obligate root symbionts that can protect their host plant against biotic stress factors such as plant-parasitic nematode (PPN) infection. PPN consist of a wide range of species with different life styles that can cause major damage in many important crops worldwide. Various mechanisms have been proposed to play a role in the biocontrol effect of AMF against PPN. This review presents an overview of the different mechanisms that have been proposed, and discusses into more detail the plausibility of their involvement in the biocontrol against PPN specifically. The proposed mechanisms include enhanced plant tolerance, direct competition for nutrients and space, induced systemic resistance (ISR) and altered rhizosphere interactions. Recent studies have emphasized the importance of ISR in biocontrol and are increasingly placing rhizosphere effects on the foreground as well, both of which will be the focal point of this review. Though AMF are not yet widely used in conventional agriculture, recent data help to develop a better insight into the modes of action, which will eventually lead toward future field applications of AMF against PPN. The scientific community has entered an exciting era that provides the tools to actually unravel the underlying molecular mechanisms, making this a timely opportunity for a review of our current knowledge and the challenges ahead. PMID:26635750

  16. Features of Knowledge Building in Biology: Understanding Undergraduate Students' Ideas about Molecular Mechanisms.

    Science.gov (United States)

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning. © 2016 K. Southard et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. Neural mechanisms of emotional regulation and decision making

    OpenAIRE

    Gospic, Katarina

    2011-01-01

    Emotions influence our perception and decision making. It is of great importance to understand the neurophysiology behind these processes as they influence human core functions. Moreover, knowledge within this field is required in order to develop new medical therapies for pathological conditions that involve dysregulation of emotions. In this thesis the neural mechanisms of emotional regulation and decision making were investigated using different pharmacological manipul...

  18. Understanding comorbidity among internalizing problems: Integrating latent structural models of psychopathology and risk mechanisms

    Science.gov (United States)

    Hankin, Benjamin L.; Snyder, Hannah R.; Gulley, Lauren D.; Schweizer, Tina H.; Bijttebier, Patricia; Nelis, Sabine; Toh, Gim; Vasey, Michael W.

    2016-01-01

    It is well known that comorbidity is the rule, not the exception, for categorically defined psychiatric disorders, and this is also the case for internalizing disorders of depression and anxiety. This theoretical review paper addresses the ubiquity of comorbidity among internalizing disorders. Our central thesis is that progress in understanding this co-occurrence can be made by employing latent dimensional structural models that organize both psychopathology as well as vulnerabilities and risk mechanisms and by connecting the multiple levels of risk and psychopathology outcomes together. Different vulnerabilities and risk mechanisms are hypothesized to predict different levels of the structural model of psychopathology. We review the present state of knowledge based on concurrent and developmental sequential comorbidity patterns among common discrete psychiatric disorders in youth, and then we advocate for the use of more recent bifactor dimensional models of psychopathology (e.g., p factor, Caspi et al., 2014) that can help to explain the co-occurrence among internalizing symptoms. In support of this relatively novel conceptual perspective, we review six exemplar vulnerabilities and risk mechanisms, including executive function, information processing biases, cognitive vulnerabilities, positive and negative affectivity aspects of temperament, and autonomic dysregulation, along with the developmental occurrence of stressors in different domains, to show how these vulnerabilities can predict the general latent psychopathology factor, a unique latent internalizing dimension, as well as specific symptom syndrome manifestations. PMID:27739389

  19. Understanding Brand Evangelism and the Dimensions Involved in a Consumer Becoming Brand Evangelist

    Directory of Open Access Journals (Sweden)

    Lina Anggraini

    2018-03-01

    Full Text Available Smartphone market is rapidly changing and facing a highly competitive environment, with constant product introductions. It is characterized by quickly evolving technology and designs, aggressive pricing, short product life cycles, and rapid imitation. Thus, the players in smartphone industry need to invent a major breakthrough in their marketing strategy. Consider a large company like Apple. Apple loyalists are some of the most recognized product evangelists in the market, sharing their experiences with emerging technology in enthusiastic ways. Apple as the pioneer of Brand Evangelism in 1984, the company relies on customers to communicate marketing messages to other potential customers. It can be an alternative marketing tool for organizations that want to achieve their sustainable competitiveness as brand evangelists will deliver positive information, ideas, and feelings toward a specific brand to others voluntarily in order to influence consumption behaviour. This study aims to examine the phenomenon of brand evangelism and understand the dimensions involved in a consumer becoming brand evangelist. The research method of this study is based on the implementation of quantitative survey research design. The data used in this study were obtained by administering online questionnaires to 468 respondents who have used Apple iPhone for at least 6 months in Indonesia. The data analysis method used in this study is multiple regression analysis. The findings show that brand satisfaction, consumer-brand identification, brand salience, brand trust and opinion leadership have positive influence towards brand evangelism.

  20. Kinetic Analysis for Macrocyclizations Involving Anionic Template at the Transition State

    Directory of Open Access Journals (Sweden)

    Vicente Martí-Centelles

    2012-01-01

    competitive oligomerization/polymerization processes yielding undesired oligomeric/polymeric byproducts. The effect of anions has also been included in the kinetic models, as they can act as catalytic templates in the transition state reducing and stabilizing the transition state. The corresponding differential equation systems for each kinetic model can be solved numerically. Through a comprehensive analysis of these results, it is possible to obtain a better understanding of the different parameters that are involved in the macrocyclization reaction mechanism and to develop strategies for the optimization of the desired processes.

  1. Quantum mechanics - a key to understanding magnetism

    International Nuclear Information System (INIS)

    Van Vleck, J.H.

    1978-01-01

    A translation is presented of J.H. van Vleck's lecture read at the 1977 Nobel Prize avarding ceremony. The basic results obtained using quantum mechanics in solving the problems of magnetism and especially paramagnetism are chronologically arranged. (Z.J.)

  2. Emerging understanding of multiscale tumor heterogeneity

    Directory of Open Access Journals (Sweden)

    Michael J Gerdes

    2014-12-01

    Full Text Available Cancer is a multifaceted disease characterized by heterogeneous genetic alterations and cellular metabolism, at the organ, tissue, and cellular level. Key features of cancer heterogeneity are summarized by ten acquired capabilities, which govern malignant transformation and progression of invasive tumors. The relative contribution of these hallmark features to the disease process varies between cancers. At the DNA and cellular level, germ-line and somatic gene mutations are found across all cancer types, causing abnormal protein production, cell behavior, and growth. The tumor microenvironment and its individual components (immune cells, fibroblasts, collagen, and blood vessels can also facilitate or restrict tumor growth and metastasis. Oncology research is currently in the midst of a tremendous surge of comprehension of these disease mechanisms. This will lead not only to novel drug targets, but also to new challenges in drug discovery. Integrated, multi-omic, multiplexed technologies are essential tools in the quest to understand all of the various cellular changes involved in tumorigenesis. This review examines features of cancer heterogeneity and discusses how multiplexed technologies can facilitate a more comprehensive understanding of these features.

  3. Epidemiological and genetic clues for molecular mechanisms involved in uterine leiomyoma development and growth.

    Science.gov (United States)

    Commandeur, Arno E; Styer, Aaron K; Teixeira, Jose M

    2015-01-01

    Uterine leiomyomas (fibroids) are highly prevalent benign smooth muscle tumors of the uterus. In the USA, the lifetime risk for women developing uterine leiomyomas is estimated as up to 75%. Except for hysterectomy, most therapies or treatments often provide only partial or temporary relief and are not successful in every patient. There is a clear racial disparity in the disease; African-American women are estimated to be three times more likely to develop uterine leiomyomas and generally develop more severe symptoms. There is also familial clustering between first-degree relatives and twins, and multiple inherited syndromes in which fibroid development occurs. Leiomyomas have been described as clonal and hormonally regulated, but despite the healthcare burden imposed by the disease, the etiology of uterine leiomyomas remains largely unknown. The mechanisms involved in their growth are also essentially unknown, which has contributed to the slow progress in development of effective treatment options. A comprehensive PubMed search for and critical assessment of articles related to the epidemiological, biological and genetic clues for uterine leiomyoma development was performed. The individual functions of some of the best candidate genes are explained to provide more insight into their biological function and to interconnect and organize genes and pathways in one overarching figure that represents the current state of knowledge about uterine leiomyoma development and growth. In this review, the widely recognized roles of estrogen and progesterone in uterine leiomyoma pathobiology on the basis of clinical and experimental data are presented. This is followed by fundamental aspects and concepts including the possible cellular origin of uterine fibroids. The central themes in the subsequent parts are cytogenetic aberrations in leiomyomas and the racial/ethnic disparities in uterine fibroid biology. Then, the attributes of various in vitro and in vivo, human syndrome

  4. Forever Young: Mechanisms of Natural Anoxia Tolerance and Potential Links to Longevity

    Directory of Open Access Journals (Sweden)

    Anastasia Krivoruchko

    2010-01-01

    Full Text Available While mammals cannot survive oxygen deprivation for more than a few minutes without sustaining severe organ damage, some animals have mastered anaerobic life. Freshwater turtles belonging to the Trachemys and Chrysemys genera are the champion facultative anaerobes of the vertebrate world, often surviving without oxygen for many weeks at a time. The physiological and biochemical mechanisms that underlie anoxia tolerance in turtles include profound metabolic rate depression, post-translational modification of proteins, strong antioxidant defenses, activation of specific stress-responsive transcription factors, and enhanced expression of cyto-protective proteins. Turtles are also known for their incredible longevity and display characteristics of “negligible senescence.” We propose that the robust stress-tolerance mechanisms that permit long term anaerobiosis by turtles may also support the longevity of these animals. Many of the mechanisms involved in natural anoxia tolerance, such as hypometabolism or the induction of various protective proteins/pathways, have been shown to play important roles in mammalian oxygen-related diseases and improved understanding of how cells survive without oxygen could aid in the understanding and treatment of various pathological conditions that involve hypoxia or oxidative stress. In the present review we discuss the recent advances made in understanding the molecular nature of anoxia tolerance in turtles and the potential links between this tolerance and longevity.

  5. Forever young: Mechanisms of natural anoxia tolerance and potential links to longevity

    Science.gov (United States)

    Krivoruchko, Anastasia

    2010-01-01

    While mammals cannot survive oxygen deprivation for more than a few minutes without sustaining severe organ damage, some animals have mastered anaerobic life. Freshwater turtles belonging to the Trachemys and Chrysemys genera are the champion facultative anaerobes of the vertebrate world, often surviving without oxygen for many weeks at a time. The physiological and biochemical mechanisms that underlie anoxia tolerance in turtles include profound metabolic rate depression, post-translational modification of proteins, strong antioxidant defenses, activation of specific stress-responsive transcription factors, and enhanced expression of cyto-protective proteins. Turtles are also known for their incredible longevity and display characteristics of “negligible senescence.” We propose that the robust stress-tolerance mechanisms that permit long term anaerobiosis by turtles may also support the longevity of these animals. Many of the mechanisms involved in natural anoxia tolerance, such as hypometabolism or the induction of various protective proteins/pathways, have been shown to play important roles in mammalian oxygen-related diseases and improved understanding of how cells survive without oxygen could aid in the understanding and treatment of various pathological conditions that involve hypoxia or oxidative stress. In the present review we discuss the recent advances made in understanding the molecular nature of anoxia tolerance in turtles and the potential links between this tolerance and longevity. PMID:20716943

  6. Understanding deformation mechanisms during powder compaction using principal component analysis of compression data.

    Science.gov (United States)

    Roopwani, Rahul; Buckner, Ira S

    2011-10-14

    Principal component analysis (PCA) was applied to pharmaceutical powder compaction. A solid fraction parameter (SF(c/d)) and a mechanical work parameter (W(c/d)) representing irreversible compression behavior were determined as functions of applied load. Multivariate analysis of the compression data was carried out using PCA. The first principal component (PC1) showed loadings for the solid fraction and work values that agreed with changes in the relative significance of plastic deformation to consolidation at different pressures. The PC1 scores showed the same rank order as the relative plasticity ranking derived from the literature for common pharmaceutical materials. The utility of PC1 in understanding deformation was extended to binary mixtures using a subset of the original materials. Combinations of brittle and plastic materials were characterized using the PCA method. The relationships between PC1 scores and the weight fractions of the mixtures were typically linear showing ideal mixing in their deformation behaviors. The mixture consisting of two plastic materials was the only combination to show a consistent positive deviation from ideality. The application of PCA to solid fraction and mechanical work data appears to be an effective means of predicting deformation behavior during compaction of simple powder mixtures. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Opioid receptor desensitization: mechanisms and its link to tolerance

    Directory of Open Access Journals (Sweden)

    Stéphane eAllouche

    2014-12-01

    Full Text Available Opioid receptors are part of the class A of G-protein coupled receptors and the target of the opiates, the most powerful analgesic molecules used in clinic. During a protracted use, a tolerance to analgesic effect develops resulting in a reduction of the effectiveness. So understanding mechanisms of tolerance is a great challenge and may help to find new strategies to tackle this side effect. This review will summarize receptor-related mechanisms that could underlie tolerance especially receptor desensitization. We will focus on the latest data obtained on molecular mechanisms involved in opioid receptor desensitization: phosphorylation, receptor uncoupling, internalization and post-endocytic fate of the receptor.

  8. Biomineralization of gold by Mucor plumbeus: The progress in understanding the mechanism of nanoparticles' formation.

    Science.gov (United States)

    Maliszewska, Irena; Tylus, Włodzimierz; Chęcmanowski, Jacek; Szczygieł, Bogdan; Pawlaczyk-Graja, Izabela; Pusz, Wojciech; Baturo-Cieśniewska, Anna

    2017-09-01

    This contribution describes the deposition of gold nanoparticles by microbial reduction of Au(III) ions using the mycelium of Mucor plumbeus. Biosorption as the major mechanism of Au(III) ions binding by the fungal cells and the reduction of them to the form of Au(0) on/in the cell wall, followed by the transportation of the synthesized gold nanoparticles to the cytoplasm, is postulated. The probable mechanism behind the reduction of Au(III) ions is discussed, leading to the conclusion that this process is nonenzymatic one. Chitosan of the fungal cell wall is most likely to be the major molecule involved in biomineralization of gold by the mycelium of M. plumbeus. Separation of gold nanoparticles from the cells has been carried out by the ultrasonic disintegration and the obtained nanostructures were characterized by UV-vis spectroscopy and transmission electron micrograph analysis. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1381-1392, 2017. © 2017 American Institute of Chemical Engineers.

  9. The Potential Mechanism of ZFX Involvement in the Cell Growth

    Directory of Open Access Journals (Sweden)

    Mahboube Ganji arjenaki

    2016-04-01

    Full Text Available Background:The zinc-finger X linked (ZFX gene encodes a transcription factor that acts as a regulator of self-renewal of stem cells. Due to the role of ZFX in cell growth, understanding ZFX protein-protein interactions helps to clarify its proper biological functions in signaling pathways. The aim of this study is to define ZFX protein-protein interactions and the role of ZFX in cell growth. Materials and Methods: The PIPs output includes three interacting proteins with ZFX: eukaryotic translation initiation factor 3 subunit I(EIF3I, eukaryotic translation initiation factor 3 subunit G(EIF3G and protein nuclear pore and COPII coat complex component homolog isoform 3 (SEC13L1. Results: As a cargo and transmembrane protein interacting with Sec13,eIF3I and eIF3G, ZFX mediates cargo sorting in COPII vesicles at ER exit sites. While traveling to cis-Golgi, eIF3I is phosphorylated by the mechanistic target of rapamycin (mTOR. Proteins transport by COPI vesicles to the nucleusouter site layer containing SEC13 via the contribution of microtubules. EIF3G and eIF3I interact with coatomer protein complex subunit beta 2 (COPB2 that helps to enclose ZFX in COPI vesicle. ZFX and eIF3G enter nucleolus where activation of transcription from pre rDNA genes occurs. Conclusion:We proposed a model in which ZFX is involved in cell growth by promoting the transcription of rDNA genes.

  10. Chemotherapeutics-resistance "arms" race: An update on mechanisms involved in resistance limiting EGFR inhibitors in lung cancer.

    Science.gov (United States)

    Singh, Pankaj Kumar; Silakari, Om

    2017-10-01

    Clinical reports suggest that EGFR-mutated lung cancer usually respond significantly towards small molecule tyrosine kinase inhibitors. Same studies also report the eventual development of acquired resistance within a median time interval of 9 to 14months. One of the major mechanisms involved in this acquired resistance was found to be a secondary point mutation at gate-keeper residue, EGFR T790M. However, there are other recent studies which disclose the role of few other novel key players such as, ZEB1, TOPK etc., in the development of tolerance towards the EGFR TKI's, along with other commonly known mechanisms, such as amplification of signalling pathways such as, c-MET, Erbb2, AXL, additional acquired secondary mutations (PIK3CA, BRAF), or phenotypic transformation (small cell or epithelial to mesenchymal transitions). Interestingly, a recent study showed development of resistance via another point mutation, C797S, in case of tumors which were previously resistant and were administered agents capable of overcoming T790M gatekeeper mutation based resistance. Thus, raising serious concern over the direction of drug development involving tyrosine kinases such as EGFR. Current approaches focussing on development of third generation inhibitors, dual inhibitors or inhibitors of HSP90 have shown significant activity but do not answer the long term question of resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Elucidating the molecular mechanisms underlying cellular response to biophysical cues using synthetic biology approaches

    NARCIS (Netherlands)

    Denning, Denise; Roos, Wouter H

    2016-01-01

    The use of synthetic surfaces and materials to influence and study cell behavior has vastly progressed our understanding of the underlying molecular mechanisms involved in cellular response to physicochemical and biophysical cues. Reconstituting cytoskeletal proteins and interfacing them with a

  12. Involvement of protein kinase C in the mechanism of action of Escherichia coli heat-stable enterotoxin (STa) in a human colonic carcinoma cell line, COLO-205

    International Nuclear Information System (INIS)

    Gupta, Dyuti Datta; Saha, Subhrajit; Chakrabarti, Manoj K.

    2005-01-01

    The present study was undertaken to determine the involvement of calcium-protein kinase C pathway in the mechanism of action of Escherichia coli heat stable enterotoxin (STa) apart from STa-induced activation of guanylate cyclase in human colonic carcinoma cell line COLO-205, which was used as a model cultured cell line to study the mechanism of action of E. coli STa. In response to E. coli STa, protein kinase C (PKC) activity was increased in a time-dependent manner with its physical translocation from cytosol to membrane. Inhibition of the PKC activity in membrane fraction and inhibition of its physical translocation in response to IP 3 -mediated calcium release inhibitor dantrolene suggested the involvement of intracellular store depletion in the regulation of PKC activity. Among different PKC isoforms, predominant involvement of calcium-dependent protein kinase C (PKCα) was specified using isotype-specific pseudosubstrate, which showed pronounce enzyme activity. Inhibition of enzyme activity by PKCα-specific inhibitor Goe6976 and immunoblott study employing isotype-specific antibody further demonstrated the involvement of calcium-dependent isoform of PKC in the mechanism of action of E. coli STa. Moreover, inhibition of guanylate cyclase activity by PKCα-specific inhibitor Goe6976 suggested the involvement of PKCα in the regulation of guanylate cyclase activity

  13. Transcriptome and secretome analyses of the wood decay fungus Wolfiporia cocos support alternative mechanisms of lignocellulose conversion

    Science.gov (United States)

    Jill Gaskell; Robert A. Blanchette; Philip E. Stewart; Sandra Splinter BonDurant; Marie Adams; Grzegorz Sabat; Philip Kersten; Daniel Cullen

    2016-01-01

    Certain wood decay basidiomycetes, collectively referred to as brown rot fungi, rapidly depolymerize cellulose while leaving behind the bulk of cell wall lignin as a modified residue. The mechanism(s) employed is unclear, but considerable evidence implicates the involvement of diffusible oxidants generated via Fenton-like chemistry. Toward a better understanding of...

  14. A Research Framework for Understanding the Practical Impact of Family Involvement in the Juvenile Justice System: The Juvenile Justice Family Involvement Model.

    Science.gov (United States)

    Walker, Sarah Cusworth; Bishop, Asia S; Pullmann, Michael D; Bauer, Grace

    2015-12-01

    Family involvement is recognized as a critical element of service planning for children's mental health, welfare and education. For the juvenile justice system, however, parents' roles in this system are complex due to youths' legal rights, public safety, a process which can legally position parents as plaintiffs, and a historical legacy of blaming parents for youth indiscretions. Three recent national surveys of juvenile justice-involved parents reveal that the current paradigm elicits feelings of stress, shame and distrust among parents and is likely leading to worse outcomes for youth, families and communities. While research on the impact of family involvement in the justice system is starting to emerge, the field currently has no organizing framework to guide a research agenda, interpret outcomes or translate findings for practitioners. We propose a research framework for family involvement that is informed by a comprehensive review and content analysis of current, published arguments for family involvement in juvenile justice along with a synthesis of family involvement efforts in other child-serving systems. In this model, family involvement is presented as an ascending, ordinal concept beginning with (1) exclusion, and moving toward climates characterized by (2) information-giving, (3) information-eliciting and (4) full, decision-making partnerships. Specific examples of how courts and facilities might align with these levels are described. Further, the model makes predictions for how involvement will impact outcomes at multiple levels with applications for other child-serving systems.

  15. Understanding the visual resource

    Science.gov (United States)

    Floyd L. Newby

    1971-01-01

    Understanding our visual resources involves a complex interweaving of motivation and cognitive recesses; but, more important, it requires that we understand and can identify those characteristics of a landscape that influence the image formation process. From research conducted in Florida, three major variables were identified that appear to have significant effect...

  16. Investigating and improving student understanding of the expectation values of observables in quantum mechanics

    International Nuclear Information System (INIS)

    Marshman, Emily; Singh, Chandralekha

    2017-01-01

    The expectation value of an observable is an important concept in quantum mechanics since measurement outcomes are, in general, probabilistic and we only have information about the probability distribution of measurement outcomes in a given quantum state of a system. However, we find that upper-level undergraduate and PhD students in physics have both conceptual and procedural difficulties when determining the expectation value of a physical observable in a given quantum state in terms of the eigenstates and eigenvalues of the corresponding operator, especially when using Dirac notation. Here we first describe the difficulties that these students have with determining the expectation value of an observable in Dirac notation. We then discuss how the difficulties found via student responses to written surveys and individual interviews were used as a guide in the development of a quantum interactive learning tutorial (QuILT) to help students develop a good grasp of the expectation value. The QuILT strives to help students integrate conceptual understanding and procedural skills to develop a coherent understanding of the expectation value. We discuss the effectiveness of the QuILT in helping students learn this concept from in-class evaluations. (paper)

  17. Autophagy as a Possible Underlying Mechanism of Nanomaterial Toxicity

    Directory of Open Access Journals (Sweden)

    Vanessa Cohignac

    2014-07-01

    Full Text Available The rapid development of nanotechnologies is raising safety concerns because of the potential effects of engineered nanomaterials on human health, particularly at the respiratory level. Since the last decades, many in vivo studies have been interested in the pulmonary effects of different classes of nanomaterials. It has been shown that some of them can induce toxic effects, essentially depending on their physico-chemical characteristics, but other studies did not identify such effects. Inflammation and oxidative stress are currently the two main mechanisms described to explain the observed toxicity. However, the exact underlying mechanism(s still remain(s unknown and autophagy could represent an interesting candidate. Autophagy is a physiological process in which cytoplasmic components are digested via a lysosomal pathway. It has been shown that autophagy is involved in the pathogenesis and the progression of human diseases, and is able to modulate the oxidative stress and pro-inflammatory responses. A growing amount of literature suggests that a link between nanomaterial toxicity and autophagy impairment could exist. In this review, we will first summarize what is known about the respiratory effects of nanomaterials and we will then discuss the possible involvement of autophagy in this toxicity. This review should help understand why autophagy impairment could be taken as a promising candidate to fully understand nanomaterials toxicity.

  18. Education and parental involvement in decision-making about newborn screening: understanding goals to clarify content.

    Science.gov (United States)

    Potter, Beth K; Etchegary, Holly; Nicholls, Stuart G; Wilson, Brenda J; Craigie, Samantha M; Araia, Makda H

    2015-06-01

    A challenge in designing effective education for parents about newborn screening (NBS) has been uncertainty about appropriate content. Arguing that the goals of education may be usefully tied to parental decision-making, we sought to: (1) explore how different ways of implementing NBS differ in their approaches to parental engagement in decision-making; (2) map the potential goals of education onto these "implementation models"; and (3) consider the content that may be needed to support these goals. The resulting conceptual framework supports the availability of comprehensive information about NBS for parents, irrespective of the model of implementation. This is largely because we argue that meeting parental expectations and preferences for communication is an important goal regardless of whether or notparents are actively involved in making a decision. Our analysis supports a flexible approach, in which some educational messages are emphasized as important for all parents to understand while others are made available depending on parents' preferences. We have begun to define the content of NBS education for parents needed to support specific goals. Further research and discussion is important to determine the most appropriate strategies for delivering the tailored approach to education that emerged from our analysis.

  19. Involvement of adrenergic and serotonergic nervous mechanisms in allethrin-induced tremors in mice.

    Science.gov (United States)

    Nishimura, M; Obana, N; Yagasaki, O; Yanagiya, I

    1984-05-01

    Oral or intravenous administration of allethrin, a synthetic derivative of the pirethrin-based insecticides, produces neurotoxic symptoms consisting of mild salivation, hyperexcitability, tremors and convulsions which result in death. Intracerebroventricular injection of allethrin to mouse at about one-nineth the dose of intravenous administration, produced qualitatively identical but less prominent symptoms, indicating that at least some of the symptoms may be originated in the central nervous system. To investigate the mechanism of action of the compound, we studied the ability of agents which alter neurotransmission to prevent or potentiate the effect of convulsive doses of technical grade (15.5% cis, 84.5% trans) allethrin. Intraperitoneal pretreatment with drugs which block noradrenergic receptors or norepinephrine synthesis, such as pentobarbital, chlorpromazine, phentolamine, phenoxybenzamine and reserpine, depressed the tremor induced by allethrin. The inhibitory effect of reserpine was reversed by phenylephrine. Both the serotonergic blocker, methysergide, and the serotonin depletor, rho-chlorphenylalanine, potentiated the effect of allethrin. The potentiating effect of methysergide was antagonized by 5-hydroxytryptamine. However, intracerebroventricular administration of methysergide was ineffective in potentiating the effect of allethrin. alpha 2- and beta-adrenoceptor blockers, muscarinic antagonists, GABA mimenergics and morphine had no effect. These results suggest that allethrin produces its neurotoxic responses in mice by acting on the brain and spinal levels. Furthermore, adrenergic excitatory and serotonergic inhibitory mechanisms may be involved in the neural pathway through which the allethrin-induced tremor is evoked.

  20. Compilation of information on uncertainties involved in deposition modeling

    International Nuclear Information System (INIS)

    Lewellen, W.S.; Varma, A.K.; Sheng, Y.P.

    1985-04-01

    The current generation of dispersion models contains very simple parameterizations of deposition processes. The analysis here looks at the physical mechanisms governing these processes in an attempt to see if more valid parameterizations are available and what level of uncertainty is involved in either these simple parameterizations or any more advanced parameterization. The report is composed of three parts. The first, on dry deposition model sensitivity, provides an estimate of the uncertainty existing in current estimates of the deposition velocity due to uncertainties in independent variables such as meteorological stability, particle size, surface chemical reactivity and canopy structure. The range of uncertainty estimated for an appropriate dry deposition velocity for a plume generated by a nuclear power plant accident is three orders of magnitude. The second part discusses the uncertainties involved in precipitation scavenging rates for effluents resulting from a nuclear reactor accident. The conclusion is that major uncertainties are involved both as a result of the natural variability of the atmospheric precipitation process and due to our incomplete understanding of the underlying process. The third part involves a review of the important problems associated with modeling the interaction between the atmosphere and a forest. It gives an indication of the magnitude of the problem involved in modeling dry deposition in such environments. Separate analytics have been done for each section and are contained in the EDB

  1. Springer handbook of mechanical engineering

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Karl-Heinrich [Magdeburg Univ. (Germany). Dept. of Mechanical Engineering; Antonsson, Erik K. (eds.) [California Inst. of Technology (CALTEC), Pasadena, CA (United States). Dept. of Mechanical Engineering

    2009-07-01

    Mechanical Engineering is a professional engineering discipline which involves the application of principles of physics, design, manufacturing and maintenance of mechanical systems. It requires a solid understanding of the key concepts including mechanics, kinematics, thermodynamics and energy. Mechanical engineers use these principles and others in the design and analysis of automobiles, aircrafts, heating and cooling systems, industrial equipment and machinery. In addition to these main areas, specialized fields are necessary to prepare future engineers for their positions in industry, such as mechatronics and robotics, transportation and logistics, fuel technology, automotive engineering, biomechanics, vibration, optics and others. Accordingly, the Springer Handbook of Mechanical Engineering devotes its contents to all areas of interest for the practicing engineer as well as for the student at various levels and educational institutions. Authors from all over the world have contributed with their expertise and support the globally working engineer in finding a solution for today's mechanical engineering problems. Each subject is discussed in detail and supported by numerous figures and tables. DIN standards are retained throughout and ISO equivalents are given where possible. The text offers a concise but detailed and authoritative treatment of the topics with full references. (orig.)

  2. Understanding the Relation between Attitude Involvement and Response Latitude Using Item Response Theory

    Science.gov (United States)

    Lake, Christopher J.; Withrow, Scott; Zickar, Michael J.; Wood, Nicole L.; Dalal, Dev K.; Bochinski, Joseph

    2013-01-01

    Adapting the original latitude of acceptance concept to Likert-type surveys, response latitudes are defined as the range of graded response options a person is willing to endorse. Response latitudes were expected to relate to attitude involvement such that high involvement was linked to narrow latitudes (the result of selective, careful…

  3. A Mechanism for Land-Atmosphere Feedback Involving Planetary Wave Structures

    Science.gov (United States)

    Koster, Randal D.; Chang, Yehui; Schubert, Siegfried D.

    2014-01-01

    While the ability of land surface conditions to influence the atmosphere has been demonstrated in various modeling and observational studies, the precise mechanisms by which land-atmosphere feedback occurs are still largely unknown particularly the mechanisms that allow land moisture state in one region to affect atmospheric conditions in another. Such remote impacts are examined here in the context of atmospheric general circulation model (AGCM) simulations, leading to the identification of one potential mechanism: the phase-locking and amplification of a planetary wave through the imposition of a spatial pattern of soil moisture at the land surface. This mechanism, shown here to be relevant in the AGCM, apparently also operates in nature, as suggested by supporting evidence found in reanalysis data.

  4. Mental Models for Mechanical Comprehension. A Review of Literature.

    Science.gov (United States)

    1986-06-01

    models, constructionism , infinirm t - ,’a f.mrfn.~ gl 19 ABSTRACT (Continue on reverse if necessary and identify by block number) 4 This literature...review describes the recent research on mental models of mechanical comprehension. Three methodological approaches ( constructionism , information...things for a teacher to do to aid students’ attempts at understanding the forces involved: 1. Prepare an engaging social context. 2. Juxtapose several

  5. Next Steps Toward Understanding Human Habitation of Space: Environmental Impacts and Mechanisms

    Science.gov (United States)

    Globus, Ruth

    2016-01-01

    factor alone implying at least some shared underlying mechanisms. Thus, both ground based and spaceflight research utilizing model organisms provide the opportunity to better understand environmental factors and biological mechanisms that contribute to human health and survival in space.

  6. Understanding communicative actions: a repetitive TMS study.

    Science.gov (United States)

    Stolk, Arjen; Noordzij, Matthijs L; Volman, Inge; Verhagen, Lennart; Overeem, Sebastiaan; van Elswijk, Gijs; Bloem, Bas; Hagoort, Peter; Toni, Ivan

    2014-02-01

    Despite the ambiguity inherent in human communication, people are remarkably efficient in establishing mutual understanding. Studying how people communicate in novel settings provides a window into the mechanisms supporting the human competence to rapidly generate and understand novel shared symbols, a fundamental property of human communication. Previous work indicates that the right posterior superior temporal sulcus (pSTS) is involved when people understand the intended meaning of novel communicative actions. Here, we set out to test whether normal functioning of this cerebral structure is required for understanding novel communicative actions using inhibitory low-frequency repetitive transcranial magnetic stimulation (rTMS). A factorial experimental design contrasted two tightly matched stimulation sites (right pSTS vs left MT+, i.e., a contiguous homotopic task-relevant region) and tasks (a communicative task vs a visual tracking task that used the same sequences of stimuli). Overall task performance was not affected by rTMS, whereas changes in task performance over time were disrupted according to TMS site and task combinations. Namely, rTMS over pSTS led to a diminished ability to improve action understanding on the basis of recent communicative history, while rTMS over MT+ perturbed improvement in visual tracking over trials. These findings qualify the contributions of the right pSTS to human communicative abilities, showing that this region might be necessary for incorporating previous knowledge, accumulated during interactions with a communicative partner, to constrain the inferential process that leads to action understanding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Ferrous archaeological analogues for the understanding of the multi-secular corrosion mechanisms in an anoxic environment

    International Nuclear Information System (INIS)

    Saheb-Djahromi, M.

    2009-12-01

    Understanding the long term corrosion mechanisms of iron in an anoxic environment is essential in the field of the radioactive waste storage. In France, it is planned to store high level nuclear wastes in a multi-barrier system containing a glassy matrix surrounded by a stainless steel container, embedded in a low-carbon steel over-container. This system would be placed in a deep geological repository, which would impose anoxic conditions. As it must be efficient for a period of several thousands of years, one should understand the alteration mechanisms that are expected to occur in such a long time. To this purpose, a specific approach is developed on ferrous archaeological analogues with thick corrosion layer formed in natural conditions. In this study, the corrosion mechanisms have been assessed by examining nails aged of 400 years coming from the archaeological site of Glinet, selected as a reference site. The first point was a fine characterisation of the entire corrosion system metal / corrosion products / medium, through the use of coupled multi-scale analytical tools. The first results showed that the samples were corroded in an anoxic calco-carbonated environment. Moreover, the coupling of X-ray micro-diffraction, Raman microspectroscopy and dispersive energy spectroscopy has enabled to identify three corrosion systems composed of iron carbonates, siderite and chukanovite, and magnetite. Depending on the phase's layout in the system, the electronic resistance of the corrosion layers has been established, from resistive to conductive. In a second stage, re-corroding experiments in laboratory were performed. Firstly, the electrochemical behaviour of the corrosion system has shown that water reduction at the metallic interface is negligible. Furthermore, reaction tracing with copper and deuterium has allowed identifying the electron consumptions sites mainly localised on the external part, and the precipitation sites on the internal part of the corrosion

  8. Understanding Autoimmune Mechanisms in Multiple Sclerosis Using Gene Expression Microarrays: Treatment Effect and Cytokine-related Pathways

    Directory of Open Access Journals (Sweden)

    A. Achiron

    2004-01-01

    Full Text Available Multiple sclerosis (MS is a central nervous system disease in which activated autoreactive T-cells invade the blood brain barrier and initiate an inflammatory response that leads to myelin destruction and axonal loss. The etiology of MS, as well as the mechanisms associated with its unexpected onset, the unpredictable clinical course spanning decades, and the different rates of progression leading to disability over time, remains an enigma. We have applied gene expression microarrays technology in peripheral blood mononuclear cells (PBMC to better understand MS pathogenesis and better target treatment approaches. A signature of 535 genes were found to distinguish immunomodulatory treatment effects between 13 treated and 13 untreated MS patients. In addition, the expression pattern of 1109 gene transcripts that were previously reported to significantly differentiate between MS patients and healthy subjects were further analyzed to study the effect of cytokine-related pathways on disease pathogenesis. When relative gene expression for 26 MS patients was compared to 18 healthy controls, 30 genes related to various cytokine-associated pathways were identified. These genes belong to a variety of families such as interleukins, small inducible cytokine subfamily and tumor necrosis factor ligand and receptor. Further analysis disclosed seven cytokine-associated genes within the immunomodulatory treatment signature, and two cytokine-associated genes SCYA4 (small inducible cytokine A4 and FCAR (Fc fragment of IgA, CD89 that were common to both the MS gene expression signature and the immunomodulatory treatment gene expression signature. Our results indicate that cytokine-associated genes are involved in various pathogenic pathways in MS and also related to immunomodulatory treatment effects.

  9. Mechanisms Involved in Nematode Control by Endophytic Fungi

    NARCIS (Netherlands)

    Schouten, Sander

    2016-01-01

    Colonization of plants by particular endophytic fungi can provide plants with improved defenses toward nematodes. Evidently, such endophytes can be important in developing more sustainable agricultural practices. The mechanisms playing a role in this quantitative antagonism are poorly understood

  10. A Multiscale Understanding of the Thermodynamic and Kinetic Mechanisms of Laser Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Dongdong Gu

    2017-10-01

    Full Text Available Selective laser melting (SLM additive manufacturing (AM technology has become an important option for the precise manufacturing of complex-shaped metallic parts with high performance. The SLM AM process involves complicated physicochemical phenomena, thermodynamic behavior, and phase transformation as a high-energy laser beam melts loose powder particles. This paper provides multiscale modeling and coordinated control for the SLM of metallic materials including an aluminum (Al-based alloy (AlSi10Mg, a nickel (Ni-based super-alloy (Inconel 718, and ceramic particle-reinforced Al-based and Ni-based composites. The migration and distribution mechanisms of aluminium nitride (AlN particles in SLM-processed Al-based nanocomposites and the in situ formation of a gradient interface between the reinforcement and the matrix in SLM-processed tungsten carbide (WC/Inconel 718 composites were studied in the microscale. The laser absorption and melting/densification behaviors of AlSi10Mg and Inconel 718 alloy powder were disclosed in the mesoscale. Finally, the stress development during line-by-line localized laser scanning and the parameter-dependent control methods for the deformation of SLM-processed composites were proposed in the macroscale. Multiscale numerical simulation and experimental verification methods are beneficial in monitoring the complicated powder-laser interaction, heat and mass transfer behavior, and microstructural and mechanical properties development during the SLM AM process.

  11. Cognitive neuroepigenetics: the next evolution in our understanding of the molecular mechanisms underlying learning and memory?

    Science.gov (United States)

    Marshall, Paul; Bredy, Timothy W.

    2016-07-01

    A complete understanding of the fundamental mechanisms of learning and memory continues to elude neuroscientists. Although many important discoveries have been made, the question of how memories are encoded and maintained at the molecular level remains. So far, this issue has been framed within the context of one of the most dominant concepts in molecular biology, the central dogma, and the result has been a protein-centric view of memory. Here, we discuss the evidence supporting a role for neuroepigenetic mechanisms, which constitute dynamic and reversible, state-dependent modifications at all levels of control over cellular function, and their role in learning and memory. This neuroepigenetic view suggests that DNA, RNA and protein each influence one another to produce a holistic cellular state that contributes to the formation and maintenance of memory, and predicts a parallel and distributed system for the consolidation, storage and retrieval of the engram.

  12. Micro electromechanical systems (MEMS) for mechanical engineers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A. P., LLNL

    1996-11-18

    The ongoing advances in Microelectromechanical Systems (MEMS) are providing man-kind the freedom to travel to dimensional spaces never before conceivable. Advances include new fabrication processes, new materials, tailored modeling tools, new fabrication machines, systems integration, and more detailed studies of physics and surface chemistry as applied to the micro scale. In the ten years since its inauguration, MEMS technology is penetrating industries of automobile, healthcare, biotechnology, sports/entertainment, measurement systems, data storage, photonics/optics, computer, aerospace, precision instruments/robotics, and environment monitoring. It is projected that by the turn of the century, MEMS will impact every individual in the industrial world, totaling sales up to $14 billion (source: System Planning Corp.). MEMS programs in major universities have spawned up all over the United States, preparing the brain-power and expertise for the next wave of MEMS breakthroughs. It should be pointed out that although MEMS has been initiated by electrical engineering researchers through the involvement of IC fabrication techniques, today it has evolved such that it requires a totally multi-disciplinary team to develop useful devices. Mechanical engineers are especially crucial to the success of MEMS development, since 90% of the physical realm involved is mechanical. Mechanical engineers are needed for the design of MEMS, the analysis of the mechanical system, the design of testing apparatus, the implementation of analytical tools, and the packaging process. Every single aspect of mechanical engineering is being utilized in the MEMS field today, however, the impact could be more substantial if more mechanical engineers are involved in the systems level designing. In this paper, an attempt is made to create the pathways for a mechanical engineer to enter in the MEMS field. Examples of application in optics and medical devices will be used to illustrate how mechanical

  13. Stress analysis of fatigue cracks in mechanically fastened joints : An analytical and experimental investigation

    NARCIS (Netherlands)

    De Rijck, J.J.M.

    2005-01-01

    The two historical fuselage failures, Comet in 1954 and Aloha in 1988, illustrate that similar accidents must be avoided which requires a profound understanding of the fatigue mechanisms involved, including analytical models to predict the fatigue behavior of riveted joints of a fuselage structure.

  14. Towards an understanding of the mechanisms of weak central coherence effects: experiments in visual configural learning and auditory perception.

    Science.gov (United States)

    Plaisted, Kate; Saksida, Lisa; Alcántara, José; Weisblatt, Emma

    2003-01-01

    The weak central coherence hypothesis of Frith is one of the most prominent theories concerning the abnormal performance of individuals with autism on tasks that involve local and global processing. Individuals with autism often outperform matched nonautistic individuals on tasks in which success depends upon processing of local features, and underperform on tasks that require global processing. We review those studies that have been unable to identify the locus of the mechanisms that may be responsible for weak central coherence effects and those that show that local processing is enhanced in autism but not at the expense of global processing. In the light of these studies, we propose that the mechanisms which can give rise to 'weak central coherence' effects may be perceptual. More specifically, we propose that perception operates to enhance the representation of individual perceptual features but that this does not impact adversely on representations that involve integration of features. This proposal was supported in the two experiments we report on configural and feature discrimination learning in high-functioning children with autism. We also examined processes of perception directly, in an auditory filtering task which measured the width of auditory filters in individuals with autism and found that the width of auditory filters in autism were abnormally broad. We consider the implications of these findings for perceptual theories of the mechanisms underpinning weak central coherence effects. PMID:12639334

  15. Understanding the crystallization mechanism of delafossite CuGaO2 for controlled hydrothermal synthesis of nanoparticles and nanoplates.

    Science.gov (United States)

    Yu, Mingzhe; Draskovic, Thomas I; Wu, Yiying

    2014-06-02

    The delafossite CuGaO2 is an important p-type transparent conducting oxide for both fundamental science and industrial applications. An emerging application is for p-type dye-sensitized solar cells. Obtaining delafossite CuGaO2 nanoparticles is challenging but desirable for efficient dye loading. In this work, the phase formation and crystal growth mechanism of delafossite CuGaO2 under low-temperature (mechanism to explain the formation of large CuGaO2 nanoplates. Importantly, by suppressing this OA process, delafossite CuGaO2 nanoparticles that are 20 nm in size were successfully synthesized for the first time. Moreover, considering the structural and chemical similarities between the Cu-based delafossite series compounds, the understanding of the hydrothermal chemistry and crystallization mechanism of CuGaO2 should also benefit syntheses of other similar delafossites such as CuAlO2 and CuScO2.

  16. Mechanisms of chemotherapy-induced behavioral toxicities

    Directory of Open Access Journals (Sweden)

    Elisabeth G Vichaya

    2015-04-01

    Full Text Available While chemotherapeutic agents have yielded relative success in the treatment of cancer, patients are often plagued with unwanted and even debilitating side-effects from the treatment which can lead to dose reduction or even cessation of treatment. Common side effects (symptoms of chemotherapy include (i cognitive deficiencies such as problems with attention, memory and executive functioning; (ii fatigue and motivational deficit; and (iii neuropathy. These symptoms often develop during treatment but can remain even after cessation of chemotherapy, severely impacting long-term quality of life. Little is known about the underlying mechanisms responsible for the development of these behavioral toxicities, however, neuroinflammation is widely considered to be one of the major mechanisms responsible for chemotherapy-induced symptoms. Here, we critically assess what is known in regards to the role of neuroinflammation in chemotherapy-induced symptoms. We also argue that, based on the available evidence neuroinflammation is unlikely the only mechanism involved in the pathogenesis of chemotherapy-induced behavioral toxicities. We evaluate two other putative candidate mechanisms. To this end we discuss the mediating role of damage-associated molecular patterns (DAMPs activated in response to chemotherapy-induced cellular damage. We also review the literature with respect to possible alternative mechanisms such as a chemotherapy-induced change in the bioenergetic status of the tissue involving changes in mitochondrial function in relation to chemotherapy-induced behavioral toxicities. Understanding the mechanisms that underlie the emergence of fatigue, neuropathy, and cognitive difficulties is vital to better treatment and long-term survival of cancer patients.

  17. Understanding dental CAD/CAM for restorations--dental milling machines from a mechanical engineering viewpoint. Part B: labside milling machines.

    Science.gov (United States)

    Lebon, Nicolas; Tapie, Laurent; Duret, Francois; Attal, Jean-Pierre

    2016-01-01

    Nowadays, dental numerical controlled (NC) milling machines are available for dental laboratories (labside solution) and dental production centers. This article provides a mechanical engineering approach to NC milling machines to help dental technicians understand the involvement of technology in digital dentistry practice. The technical and economic criteria are described for four labside and two production center dental NC milling machines available on the market. The technical criteria are focused on the capacities of the embedded technologies of milling machines to mill prosthetic materials and various restoration shapes. The economic criteria are focused on investment cost and interoperability with third-party software. The clinical relevance of the technology is discussed through the accuracy and integrity of the restoration. It can be asserted that dental production center milling machines offer a wider range of materials and types of restoration shapes than labside solutions, while labside solutions offer a wider range than chairside solutions. The accuracy and integrity of restorations may be improved as a function of the embedded technologies provided. However, the more complex the technical solutions available, the more skilled the user must be. Investment cost and interoperability with third-party software increase according to the quality of the embedded technologies implemented. Each private dental practice may decide which fabrication option to use depending on the scope of the practice.

  18. Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, E., E-mail: eva.schreck@ensat.fr [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France); Foucault, Y. [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France); STCM, Societe de Traitements Chimiques des Metaux, 30 Avenue de Fondeyre 31200 Toulouse (France); Sarret, G. [ISTerre (UMR 5275), Universite J. Fourier and CNRS, BP 53, 38041 Grenoble cedex 9 (France); Sobanska, S. [LASIR (UMR CNRS 8516), Universite de Lille 1, Bat. C5, 59655 Villeneuve d' Ascq cedex (France); Cecillon, L. [ISTerre (UMR 5275), Universite J. Fourier and CNRS, BP 53, 38041 Grenoble cedex 9 (France); Castrec-Rouelle, M. [Universite Pierre and Marie Curie (UPMC-Paris 6), Bioemco (Biogeochimie et Ecologie des Milieux Continentaux), Site Jussieu, Tour 56, 4 Place Jussieu, 75252 Paris cedex 05 (France); Uzu, G. [Laboratoire d' Aerologie (UMR 5560), OMP, UPS 14, Avenue Edouard Belin, 31400 Toulouse (France); GET (UMR 5563), IRD, 14, Avenue Edouard Belin, 31400 Toulouse (France); Dumat, C. [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France)

    2012-06-15

    Fine and ultrafine metallic particulate matters (PMs) are emitted from metallurgic activities in peri-urban zones into the atmosphere and can be deposited in terrestrial ecosystems. The foliar transfer of metals and metalloids and their fate in plant leaves remain unclear, although this way of penetration may be a major contributor to the transfer of metals into plants. This study focused on the foliar uptake of various metals and metalloids from enriched PM (Cu, Zn, Cd, Sn, Sb, As, and especially lead (Pb)) resulting from the emissions of a battery-recycling factory. Metal and metalloid foliar uptake by various vegetable species, exhibiting different morphologies, use (food or fodder) and life-cycle (lettuce, parsley and rye-grass) were studied. The mechanisms involved in foliar metal transfer from atmospheric particulate matter fallout, using lead (Pb) as a model element was also investigated. Several complementary techniques (micro-X-ray fluorescence, scanning electron microscopy coupled with energy dispersive X-ray microanalysis and time-of-flight secondary ion mass spectrometry) were used to investigate the localization and the speciation of lead in their edible parts, i.e. leaves. The results showed lead-enriched PM on the surface of plant leaves. Biogeochemical transformations occurred on the leaf surfaces with the formation of lead secondary species (PbCO{sub 3} and organic Pb). Some compounds were internalized in their primary form (PbSO{sub 4}) underneath an organic layer. Internalization through the cuticle or penetration through stomata openings are proposed as two major mechanisms involved in foliar uptake of particulate matter. - Graphical abstract: Overall picture of performed observations and mechanisms potentially involved in lead foliar uptake. Highlights: Black-Right-Pointing-Pointer Foliar uptake of metallic particulate matter (PM) is of environmental and health concerns. Black-Right-Pointing-Pointer The leaf morphology influences the adsorption

  19. Iron-Induced Damage in Cardiomyopathy: Oxidative-Dependent and Independent Mechanisms

    Directory of Open Access Journals (Sweden)

    Elena Gammella

    2015-01-01

    Full Text Available The high incidence of cardiomyopathy in patients with hemosiderosis, particularly in transfusional iron overload, strongly indicates that iron accumulation in the heart plays a major role in the process leading to heart failure. In this context, iron-mediated generation of noxious reactive oxygen species is believed to be the most important pathogenetic mechanism determining cardiomyocyte damage, the initiating event of a pathologic progression involving apoptosis, fibrosis, and ultimately cardiac dysfunction. However, recent findings suggest that additional mechanisms involving subcellular organelles and inflammatory mediators are important factors in the development of this disease. Moreover, excess iron can amplify the cardiotoxic effect of other agents or events. Finally, subcellular misdistribution of iron within cardiomyocytes may represent an additional pathway leading to cardiac injury. Recent advances in imaging techniques and chelators development remarkably improved cardiac iron overload detection and treatment, respectively. However, increased understanding of the pathogenic mechanisms of iron overload cardiomyopathy is needed to pave the way for the development of improved therapeutic strategies.

  20. Mechanisms of allergen-specific immunotherapy

    Directory of Open Access Journals (Sweden)

    Fujita Hiroyuki

    2012-01-01

    Full Text Available Abstract Allergen-specific immunotherapy (allergen-SIT is a potentially curative treatment approach in allergic diseases. It has been used for almost 100 years as a desensitizing therapy. The induction of peripheral T cell tolerance and promotion of the formation of regulatory T-cells are key mechanisms in allergen-SIT. Both FOXP3+CD4+CD25+ regulatory T (Treg cells and inducible IL-10- and TGF-β-producing type 1 Treg (Tr1 cells may prevent the development of allergic diseases and play a role in successful allergen-SIT and healthy immune response via several mechanisms. The mechanisms of suppression of different pro-inflammatory cells, such as eosinophils, mast cells and basophils and the development of allergen tolerance also directly or indirectly involves Treg cells. Furthermore, the formation of non-inflammatory antibodies particularly IgG4 is induced by IL-10. Knowledge of these molecular basis is crucial in the understanding the regulation of immune responses and their possible therapeutic targets in allergic diseases.

  1. Does knowledge of seat design and whiplash injury mechanisms translate to understanding outcomes?

    Science.gov (United States)

    Ivancic, Paul C

    2011-12-01

    Review of whiplash injury mechanisms and effects of anti-whiplash systems including active head restraint (AHR) and Whiplash Protection System (WHIPS). This article provides an overview of previous biomechanical and epidemiological studies of AHR and WHIPS and investigates whether seat design and biomechanical knowledge of proposed whiplash injury mechanisms translates to understanding outcomes of rear crash occupants. In attempt to reduce whiplash injuries, some newer automobiles incorporate anti-whiplash systems such as AHR or WHIPS. During a rear crash, mechanically based systems activate by occupant momentum pressing into the seatback whereas electronically based systems activate using crash sensors and an electronic control unit linked to the head restraint. To investigate the effects of AHR and WHIPS on occupant responses including head and neck loads and motions, biomechanical studies of simulated rear crashes have been performed using human volunteers, mathematical models, crash dummies, whole cadavers, and hybrid cadaveric/surrogate models. Epidemiological studies have evaluated the effects of AHR and WHIPS on reducing whiplash injury claims and lessening subjective complaints of neck pain after rear crashes. RESULTS.: Biomechanical studies indicate that AHR and WHIPS reduced the potential for some whiplash injuries but did not completely eliminate the injury risk. Epidemiological outcomes indicate reduced whiplash injury claims or subjective complaints of crash-related neck pain between 43 and 75% due to AHR and between 21% and 49% due to WHIPS as compared to conventional seats and head restraints. Yielding energy-absorbing seats aim to reduce occupant loads and accelerations whereas AHRs aim to provide early head support to minimize head and neck motions. Continued objective biomechanical and epidemiological studies of anti-whiplash systems together with industry, governmental, and clinical initiatives will ultimately lead to reduced whiplash injuries

  2. The formalisms of quantum mechanics an introduction

    CERN Document Server

    David, Francois

    2015-01-01

    These lecture notes present a concise and introductory, yet as far as possible coherent, view of the main formalizations of quantum mechanics and of quantum field theories, their interrelations and their theoretical foundations. The “standard” formulation of quantum mechanics (involving the Hilbert space of pure states, self-adjoint operators as physical observables, and the probabilistic interpretation given by the Born rule) on one hand, and the path integral and functional integral representations of probabilities amplitudes on the other, are the standard tools used in most applications of quantum theory in physics and chemistry. Yet, other mathematical representations of quantum mechanics sometimes allow better comprehension and justification of quantum theory. This text focuses on two of such representations: the algebraic formulation of quantum mechanics and the “quantum logic” approach. Last but not least, some emphasis will also be put on understanding the relation between quantum physics and ...

  3. Satellite glial cell P2Y12 receptor in the trigeminal ganglion is involved in lingual neuropathic pain mechanisms in rats

    Directory of Open Access Journals (Sweden)

    Katagiri Ayano

    2012-03-01

    Full Text Available Abstract Background It has been reported that the P2Y12 receptor (P2Y12R is involved in satellite glial cells (SGCs activation, indicating that P2Y12R expressed in SGCs may play functional roles in orofacial neuropathic pain mechanisms. However, the involvement of P2Y12R in orofacial neuropathic pain mechanisms is still unknown. We therefore studied the reflex to noxious mechanical or heat stimulation of the tongue, P2Y12R and glial fibrillary acidic protein (GFAP immunohistochemistries in the trigeminal ganglion (TG in a rat model of unilateral lingual nerve crush (LNC to evaluate role of P2Y12R in SGC in lingual neuropathic pain. Results The head-withdrawal reflex thresholds to mechanical and heat stimulation of the lateral tongue were significantly decreased in LNC-rats compared to sham-rats. These nocifensive effects were apparent on day 1 after LNC and lasted for 17 days. On days 3, 9, 15 and 21 after LNC, the mean relative number of TG neurons encircled with GFAP-immunoreactive (IR cells significantly increased in the ophthalmic, maxillary and mandibular branch regions of TG. On day 3 after LNC, P2Y12R expression occurred in GFAP-IR cells but not neuronal nuclei (NeuN-IR cells (i.e. neurons in TG. After 3 days of successive administration of the P2Y12R antagonist MRS2395 into TG in LNC-rats, the mean relative number of TG neurons encircled with GFAP-IR cells was significantly decreased coincident with a significant reversal of the lowered head-withdrawal reflex thresholds to mechanical and heat stimulation of the tongue compared to vehicle-injected rats. Furthermore, after 3 days of successive administration of the P2YR agonist 2-MeSADP into the TG in naïve rats, the mean relative number of TG neurons encircled with GFAP-IR cells was significantly increased and head-withdrawal reflex thresholds to mechanical and heat stimulation of the tongue were significantly decreased in a dose-dependent manner compared to vehicle-injected rats

  4. Understanding immunology: fun at an intersection of the physical, life, and clinical sciences

    Science.gov (United States)

    Chakraborty, Arup K.

    2014-10-01

    Understanding how the immune system works is a grand challenge in science with myriad direct implications for improving human health. The immune system protects us from infectious pathogens and cancer, and maintains a harmonious steady state with essential microbiota in our gut. Vaccination, the medical procedure that has saved more lives than any other, involves manipulating the immune system. Unfortunately, the immune system can also go awry to cause autoimmune diseases. Immune responses are the product of stochastic collective dynamic processes involving many interacting components. These processes span multiple scales of length and time. Thus, statistical mechanics has much to contribute to immunology, and the oeuvre of biological physics will be further enriched if the number of physical scientists interested in immunology continues to increase. I describe how I got interested in immunology and provide a glimpse of my experiences working on immunology using approaches from statistical mechanics and collaborating closely with immunologists.

  5. Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms

    Science.gov (United States)

    Gao, Connie W.; Allen, Joshua W.; Green, William H.; West, Richard H.

    2016-06-01

    Reaction Mechanism Generator (RMG) constructs kinetic models composed of elementary chemical reaction steps using a general understanding of how molecules react. Species thermochemistry is estimated through Benson group additivity and reaction rate coefficients are estimated using a database of known rate rules and reaction templates. At its core, RMG relies on two fundamental data structures: graphs and trees. Graphs are used to represent chemical structures, and trees are used to represent thermodynamic and kinetic data. Models are generated using a rate-based algorithm which excludes species from the model based on reaction fluxes. RMG can generate reaction mechanisms for species involving carbon, hydrogen, oxygen, sulfur, and nitrogen. It also has capabilities for estimating transport and solvation properties, and it automatically computes pressure-dependent rate coefficients and identifies chemically-activated reaction paths. RMG is an object-oriented program written in Python, which provides a stable, robust programming architecture for developing an extensible and modular code base with a large suite of unit tests. Computationally intensive functions are cythonized for speed improvements.

  6. Grounded understanding of abstract concepts: The case of STEM learning.

    Science.gov (United States)

    Hayes, Justin C; Kraemer, David J M

    2017-01-01

    Characterizing the neural implementation of abstract conceptual representations has long been a contentious topic in cognitive science. At the heart of the debate is whether the "sensorimotor" machinery of the brain plays a central role in representing concepts, or whether the involvement of these perceptual and motor regions is merely peripheral or epiphenomenal. The domain of science, technology, engineering, and mathematics (STEM) learning provides an important proving ground for sensorimotor (or grounded) theories of cognition, as concepts in science and engineering courses are often taught through laboratory-based and other hands-on methodologies. In this review of the literature, we examine evidence suggesting that sensorimotor processes strengthen learning associated with the abstract concepts central to STEM pedagogy. After considering how contemporary theories have defined abstraction in the context of semantic knowledge, we propose our own explanation for how body-centered information, as computed in sensorimotor brain regions and visuomotor association cortex, can form a useful foundation upon which to build an understanding of abstract scientific concepts, such as mechanical force. Drawing from theories in cognitive neuroscience, we then explore models elucidating the neural mechanisms involved in grounding intangible concepts, including Hebbian learning, predictive coding, and neuronal recycling. Empirical data on STEM learning through hands-on instruction are considered in light of these neural models. We conclude the review by proposing three distinct ways in which the field of cognitive neuroscience can contribute to STEM learning by bolstering our understanding of how the brain instantiates abstract concepts in an embodied fashion.

  7. Transport mechanisms in Schottky diodes realized on GaN

    Science.gov (United States)

    Amor, Sarrah; Ahaitouf, Ali; Ahaitouf, Abdelaziz; Salvestrini, Jean Paul; Ougazzaden, Abdellah

    2017-03-01

    This work is focused on the conducted transport mechanisms involved on devices based in gallium nitride GaN and its alloys. With considering all conduction mechanisms of current, its possible to understanded these transport phenomena. Thanks to this methodology the current-voltage characteristics of structures with unusual behaviour are further understood and explain. Actually, the barrier height (SBH) is a complex problem since it depends on several parameters like the quality of the metal-semiconductor interface. This study is particularly interesting as solar cells are made on this material and their qualification is closely linked to their transport properties.

  8. Similar verbal memory impairments in schizophrenia and healthy aging. Implications for understanding of neural mechanisms.

    Science.gov (United States)

    Silver, Henry; Bilker, Warren B

    2015-03-30

    Memory is impaired in schizophrenia patients but it is not clear whether this is specific to the illness and whether different types of memory (verbal and nonverbal) or memories in different cognitive domains (executive, object recognition) are similarly affected. To study relationships between memory impairments and schizophrenia we compared memory functions in 77 schizophrenia patients, 58 elderly healthy individuals and 41 young healthy individuals. Tests included verbal associative and logical memory and memory in executive and object recognition domains. We compared relationships of memory functions to each other and to other cognitive functions including psychomotor speed and verbal and spatial working memory. Compared to the young healthy group, schizophrenia patients and elderly healthy individuals showed similar severe impairment in logical memory and in the ability to learn new associations (NAL), and similar but less severe impairment in spatial working memory and executive and object memory. Verbal working memory was significantly more impaired in schizophrenia patients than in the healthy elderly. Verbal episodic memory impairment in schizophrenia may share common mechanisms with similar impairment in healthy aging. Impairment in verbal working memory in contrast may reflect mechanisms specific to schizophrenia. Study of verbal explicit memory impairment tapped by the NAL index may advance understanding of abnormal hippocampus dependent mechanisms common to schizophrenia and aging. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Survival in amyotrophic lateral sclerosis with home mechanical ventilation: the impact of systematic respiratory assessment and bulbar involvement.

    Science.gov (United States)

    Farrero, Eva; Prats, Enric; Povedano, Mónica; Martinez-Matos, J Antonio; Manresa, Frederic; Escarrabill, Joan

    2005-06-01

    To analyze (1) the impact of a protocol of early respiratory evaluation of the indications for home mechanical ventilation (HMV) in patients with amyotrophic lateral sclerosis (ALS), and (2) the effects of the protocol and of bulbar involvement on the survival of patients receiving noninvasive ventilation (NIV). Retrospective study in a tertiary care referral center. HMV was indicated in 86 patients with ALS, with 22 patients (25%) presenting with intolerance to treatment associated with bulbar involvement. Treatment with HMV had been initiated in 15 of 64 patients prior to initiating the protocol (group A) and in the remaining 49 patients after protocol initiation (group B). In group A, the majority of patients began treatment with HMV during an acute episode requiring ICU admission (p = 0.001) and tracheal ventilation (p = 0.025), with a lower percentage of patients beginning HMV treatment without respiratory insufficiency (p = 0.013). No significant differences in survival rates were found between groups A and B among patients treated with NIV. Greater survival was observed in group B (p = 0.03) when patients with bulbar involvement were excluded (96%). Patients without bulbar involvement at the start of therapy with NIV presented a significantly better survival rate (p = 0.03). Multivariate analysis showed bulbar involvement to be an independent prognostic factor for survival (relative risk, 1.6; 95% confidence interval, 1.01 to 2.54; p = 0.04). No significant differences in survival were observed between patients with bulbar involvement following treatment with NIV and those with intolerance, except for the subgroup of patients who began NIV treatment with hypercapnia (p = 0.0002). Early systematic respiratory evaluation in patients with ALS is necessary to improve the results of HMV. Further studies are required to confirm the benefits of NIV treatment in patients with bulbar involvement, especially in the early stages.

  10. Study of alloy 600'S stress corrosion cracking mechanisms in high temperature water

    International Nuclear Information System (INIS)

    Rios, R.

    1994-06-01

    In order to better understand the mechanisms involved in Alloy 600's stress corrosion cracking in PWR environment, laboratory tests were performed. The influence of parameters pertinent to the mechanisms was studies : hydrogen and oxygen overpressures, local chemical composition, microstructure. The results show that neither hydrogen nor dissolution/oxidation, despite their respective roles in the process, are sufficient to account for experimental facts. SEM observation of micro-cleavage facets on specimens' fracture surfaces leads to pay attention to a new mechanism of corrosion/plasticity interactions. (author). 113 refs., 73 figs., 15 tabs., 4 annexes

  11. Molecular mechanisms in radiation damage to DNA

    International Nuclear Information System (INIS)

    Osman, R.

    1991-01-01

    The objectives of this work are to elucidate the molecular mechanisms that are responsible for radiation-induced DNA damage. The overall goal is to understand the relationship between the chemical and structural changes produced by ionizing radiation in DNA and the resulting impairment of biological function expressed as carcinogenesis or cell death. The studies are based on theoretical explorations of possible mechanisms that link initial radiation damage in the form of base and sugar damage to conformational changes in DNA. These mechanistic explorations should lead to the formulation of testable hypothesis regarding the processes of impairment of regulation of gene expression, alternation in DNA repair, and damage to DNA structure involved in cell death or cancer

  12. Advances in understanding the pathogenesis of HLH.

    Science.gov (United States)

    Usmani, G Naheed; Woda, Bruce A; Newburger, Peter E

    2013-06-01

    Haemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory disorder resulting from immune dysfunction reflecting either primary immune deficiency or acquired failure of normal immune homeostasis. Familial HLH includes autosomal recessive and X-linked disorders characterized by uncontrolled activation of T cells and macrophages and overproduction of inflammatory cytokines, secondary to defects in genes encoding proteins involved in granule-dependent cytolytic pathways. In older children and adults, HLH is associated more often with infections, malignancies, autoimmune diseases, and acquired immune deficiencies. HLH, macrophage activation syndrome, sepsis, and systemic inflammatory response syndrome are different clinical entities that probably represent a common immunopathological state, termed cytokine storm. These conditions may be clinically indistinguishable; all include massive inflammatory response, elevated serum cytokine levels, multi-organ involvement, haemophagocytic macrophages, and often death. Tissues of haematopoietic and lymphoid function are directly involved; other organs are secondarily damaged by circulating cytokines and chemokines. Haemophagocytic disorders are now increasingly diagnosed in the context of severe inflammatory reactions to viruses, malignancies and systemic connective tissue diseases. Many of these cases may reflect underlying genetic predispositions to HLH. The detection of gene defects has contributed considerably to our understanding of HLH, but the mechanisms leading to acquired HLH have yet to be fully determined. © 2013 John Wiley & Sons Ltd.

  13. Toward understanding dynamic annealing processes in irradiated ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Michael Thomas [Texas A & M Univ., College Station, TX (United States)

    2013-05-01

    High energy particle irradiation inevitably generates defects in solids. The ballistic formation and thermalization of the defect creation process occur rapidly, and are believed to be reasonably well understood. However, knowledge of the evolution of defects after damage cascade thermalization, referred to as dynamic annealing, is quite limited. Unraveling the mechanisms associated with dynamic annealing is crucial since such processes play an important role in the formation of stable postirradiation disorder in ion-beam-processing of semiconductors, and determines the “radiation tolerance” of many nuclear materials. The purpose of this dissertation is to further our understanding of the processes involved in dynamic annealing. In order to achieve this, two main tasks are undertaken.

  14. Study of the Genes and Mechanism Involved in the Radioadaptive Response

    Science.gov (United States)

    Dasgupta, Pushan R.

    2009-01-01

    The radioadaptive response is a phenomenon where exposure to a prior low dose of radiation reduces the level of damage induced by a subsequent high radiation dose. The molecular mechanism behind this is still not well understood. Learning more about the radioadaptive response is critical for long duration spaceflight since astronauts are exposed to low levels of cosmic radiation. The micronucleus assay was used to measure the level of damage caused by radiation. Although cells which were not washed with phosphate buffered saline (PBS) after a low priming dose of 5cGy did not show adaptation to the challenge dose, washing the cells with PBS and giving the cells fresh media after the low dose did allow radioadaptation to occur. This is consistent with the results of a previous publication by another research group. In the present study, genes involved in DNA damage signaling and the oxidative stress response were studied using RT PCR techniques in order to look at changes in expression level after the low dose with or without washing. Our preliminary results indicate that upregulation of oxidative stress response genes ANGPTL7, NCF2, TTN, and SRXN1 may be involved in the radioadaptive response. The low dose of radiation alone was found to activate the oxidative stress response genes GPR156 and MTL5, whereas, washing the cells alone caused relatively robust upregulation of the oxidative stress response genes DUSP1 and PTGS2. Washing after the priming dose showed some changes in the expression level of several DNA damage signaling genes. In addition, we studied whether washing the cells after the priming dose has an effect on the level of nitric oxide in both the media and cells, since nitric oxide levels are known to increase in the media of the cells after a high dose of radiation only if the cells were already exposed to a low priming dose. Based on this preliminary study, we propose that washing the cells after priming exposure actually eliminates some factor

  15. Gender differences in conceptual understanding of Newtonian mechanics: a UK cross-institution comparison

    International Nuclear Information System (INIS)

    Bates, Simon; Donnelly, Robyn; MacPhee, Cait; Sands, David; Birch, Marion; Walet, Niels R

    2013-01-01

    We present the results of a combined study from three UK universities where we investigate the existence and persistence of a performance gender gap in conceptual understanding of Newtonian mechanics. Using the Force Concept Inventory, we find that students at all three universities exhibit a statistically significant gender gap, with males outperforming females. This gap is narrowed but not eliminated after instruction, using a variety of instructional approaches. Furthermore, we find that before instruction the quartile with the lowest performance on the diagnostic instrument comprises a disproportionately high fraction (∼50%) of the total female cohort. The majority of these students remain in the lowest-performing quartile post-instruction. Analysis of responses to individual items shows that male students outperform female students on practically all items on the instrument. Comparing the performance of the same group of students on end-of-course examinations, we find no statistically significant gender gaps. (paper)

  16. Fetal and neonatal brain injury: mechanisms, management, and the risks of practice

    National Research Council Canada - National Science Library

    Stevenson, David K; Benitz, William E; Sunshine, Philip

    2003-01-01

    ..., imaging studies, and laboratory measurements can identify the timing and severity of the injury event. Despite these advances, fetal and neonatal brain injury remains a major concern with devastating consequences. It is hoped that this definitive account will provide the clinician not only with a better understanding of the mechanisms involved but also with...

  17. Embodied artificial agents for understanding human social cognition.

    Science.gov (United States)

    Wykowska, Agnieszka; Chaminade, Thierry; Cheng, Gordon

    2016-05-05

    In this paper, we propose that experimental protocols involving artificial agents, in particular the embodied humanoid robots, provide insightful information regarding social cognitive mechanisms in the human brain. Using artificial agents allows for manipulation and control of various parameters of behaviour, appearance and expressiveness in one of the interaction partners (the artificial agent), and for examining effect of these parameters on the other interaction partner (the human). At the same time, using artificial agents means introducing the presence of artificial, yet human-like, systems into the human social sphere. This allows for testing in a controlled, but ecologically valid, manner human fundamental mechanisms of social cognition both at the behavioural and at the neural level. This paper will review existing literature that reports studies in which artificial embodied agents have been used to study social cognition and will address the question of whether various mechanisms of social cognition (ranging from lower- to higher-order cognitive processes) are evoked by artificial agents to the same extent as by natural agents, humans in particular. Increasing the understanding of how behavioural and neural mechanisms of social cognition respond to artificial anthropomorphic agents provides empirical answers to the conundrum 'What is a social agent?' © 2016 The Authors.

  18. Understanding the effects of the core on the nutation of the Earth

    Directory of Open Access Journals (Sweden)

    Véronique Dehant

    2017-11-01

    Full Text Available In this review paper, we examine the changes in the Earth orientation in space and focus on the nutation (shorter-term periodic variations, which is superimposed on precession (long-term trend on a timescale of years. We review the nutation modelling involving several coupling mechanisms at the core-mantle boundary using the Liouville angular momentum equations for a two-layered Earth with a liquid flattened core. The classical approach considers a Poincaré fluid for the core with an inertial pressure coupling mechanism at the core-mantle boundary. We examine possible additional coupling mechanisms to explain the observations. In particular, we examine how we can determine the flattening of the core as well as information on the magnetic field and the core flow from the nutation observations. The precision of the observations is shown to be high enough to increase our understanding on the coupling mechanisms at the core-mantle boundary.

  19. Communication and Stakeholder Involvement in Environmental Remediation Projects

    International Nuclear Information System (INIS)

    2014-01-01

    The way in which members of the public perceive a contamination situation and an approach to the remediation of contaminated land will influence the decision making process in a variety of ways. Through communication between experts, decision makers and members of stakeholder communities, participatory processes and negotiation between different interest groups can sometimes be used effectively as mechanisms for improving the overall decision making process. The intention is to ensure a technically sound and socially acceptable decision that meets norms of adequacy or satisfactory performance in relation to a whole range of different concerns. Good communication strategies will encourage cooperation and understanding between different interested parties in remediation projects. Involvement of affected or interested persons can prevent fear driven reactions, which potentially damage public response and create undue expectations or unnecessary anxiety. For all environmental remediation (ER) cases, there is a risk that the process will fail if it does not respect social, environmental, political and economic dimensions. This requires open, clear and mutually agreed lines of communication among stakeholders within a well defined legal framework. A general recommendation is to involve them from a very early point in the process. This publication presents ER in plain language in such a way that implementers and regulators can communicate the motives and objectives of remediation projects to a variety of stakeholder communities in order to improve mutual understanding and facilitate dialogue between interested parties. ER is considered from two perspectives: technical and non-technical. A section that gives general ideas on the strategies to deal with stakeholder involvement and which discusses different aspects of the communication approaches in ER is then included. It is recognized that social, cultural and political situations are very diverse in different countries in

  20. Communication and Stakeholder Involvement in Environmental Remediation Projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-05-15

    The way in which members of the public perceive a contamination situation and an approach to the remediation of contaminated land will influence the decision making process in a variety of ways. Through communication between experts, decision makers and members of stakeholder communities, participatory processes and negotiation between different interest groups can sometimes be used effectively as mechanisms for improving the overall decision making process. The intention is to ensure a technically sound and socially acceptable decision that meets norms of adequacy or satisfactory performance in relation to a whole range of different concerns. Good communication strategies will encourage cooperation and understanding between different interested parties in remediation projects. Involvement of affected or interested persons can prevent fear driven reactions, which potentially damage public response and create undue expectations or unnecessary anxiety. For all environmental remediation (ER) cases, there is a risk that the process will fail if it does not respect social, environmental, political and economic dimensions. This requires open, clear and mutually agreed lines of communication among stakeholders within a well defined legal framework. A general recommendation is to involve them from a very early point in the process. This publication presents ER in plain language in such a way that implementers and regulators can communicate the motives and objectives of remediation projects to a variety of stakeholder communities in order to improve mutual understanding and facilitate dialogue between interested parties. ER is considered from two perspectives: technical and non-technical. A section that gives general ideas on the strategies to deal with stakeholder involvement and which discusses different aspects of the communication approaches in ER is then included. It is recognized that social, cultural and political situations are very diverse in different countries in

  1. Talker-specific learning in amnesia: Insight into mechanisms of adaptive speech perception.

    Science.gov (United States)

    Trude, Alison M; Duff, Melissa C; Brown-Schmidt, Sarah

    2014-05-01

    A hallmark of human speech perception is the ability to comprehend speech quickly and effortlessly despite enormous variability across talkers. However, current theories of speech perception do not make specific claims about the memory mechanisms involved in this process. To examine whether declarative memory is necessary for talker-specific learning, we tested the ability of amnesic patients with severe declarative memory deficits to learn and distinguish the accents of two unfamiliar talkers by monitoring their eye-gaze as they followed spoken instructions. Analyses of the time-course of eye fixations showed that amnesic patients rapidly learned to distinguish these accents and tailored perceptual processes to the voice of each talker. These results demonstrate that declarative memory is not necessary for this ability and points to the involvement of non-declarative memory mechanisms. These results are consistent with findings that other social and accommodative behaviors are preserved in amnesia and contribute to our understanding of the interactions of multiple memory systems in the use and understanding of spoken language. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Functions and Mechanisms of Sleep

    Directory of Open Access Journals (Sweden)

    Mark R. Zielinski

    2016-04-01

    Full Text Available Sleep is a complex physiological process that is regulated globally, regionally, and locally by both cellular and molecular mechanisms. It occurs to some extent in all animals, although sleep expression in lower animals may be co-extensive with rest. Sleep regulation plays an intrinsic part in many behavioral and physiological functions. Currently, all researchers agree there is no single physiological role sleep serves. Nevertheless, it is quite evident that sleep is essential for many vital functions including development, energy conservation, brain waste clearance, modulation of immune responses, cognition, performance, vigilance, disease, and psychological state. This review details the physiological processes involved in sleep regulation and the possible functions that sleep may serve. This description of the brain circuitry, cell types, and molecules involved in sleep regulation is intended to further the reader’s understanding of the functions of sleep.

  3. Understanding the Increase in Parents' Involvement in Organized Youth Sports

    Science.gov (United States)

    Stefansen, Kari; Smette, Ingrid; Strandbu, Åse

    2018-01-01

    As part of an ethnographic study on young people and learning (the knowledge in motion across contexts of learning project, set in Norway), we interviewed a diverse sample of parents of young teenagers, many of whom were active in organized sports. The parents described their level of involvement in sport in a way that contrasted sharply to our…

  4. Functioning and nonfunctioning thyroid adenomas involve different molecular pathogenetic mechanisms.

    Science.gov (United States)

    Tonacchera, M; Vitti, P; Agretti, P; Ceccarini, G; Perri, A; Cavaliere, R; Mazzi, B; Naccarato, A G; Viacava, P; Miccoli, P; Pinchera, A; Chiovato, L

    1999-11-01

    The molecular biology of follicular cell growth in thyroid nodules is still poorly understood. Because gain-of-function (activating) mutations of the thyroid-stimulating hormone receptor (TShR) and/or Gs alpha genes may confer TSh-independent growth advantage to neoplastic thyroid cells, we searched for somatic mutations of these genes in a series of hyperfunctioning and nonfunctioning follicular thyroid adenomas specifically selected for their homogeneous gross anatomy (single nodule in an otherwise normal thyroid gland). TShR gene mutations were identified by direct sequencing of exons 9 and 10 of the TShR gene in genomic DNA obtained from surgical specimens. Codons 201 and 227 of the Gs alpha gene were also analyzed. At histology, all hyperfunctioning nodules and 13 of 15 nonfunctioning nodules were diagnosed as follicular adenomas. Two nonfunctioning thyroid nodules, although showing a prevalent microfollicular pattern of growth, had histological features indicating malignant transformation (a minimally invasive follicular carcinoma and a focal papillary carcinoma). Activating mutations of the TShR gene were found in 12 of 15 hyperfunctioning follicular thyroid adenomas. In one hyperfunctioning adenoma, which was negative for TShR mutations, a mutation in codon 227 of the Gs alpha gene was identified. At variance with hyperfunctioning thyroid adenomas, no mutation of the TShR or Gs alpha genes was detected in nonfunctioning thyroid nodules. In conclusion, our findings clearly define a different molecular pathogenetic mechanism in hyperfunctioning and nonfunctioning follicular thyroid adenomas. Activation of the cAMP cascade, which leads to proliferation but maintains differentiation of follicular thyroid cells, typically occurs in hyperfunctioning thyroid adenomas. Oncogenes other than the TShR and Gs alpha genes are probably involved in nonfunctioning follicular adenomas.

  5. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency.

    Science.gov (United States)

    Kant, Surya; Bi, Yong-Mei; Rothstein, Steven J

    2011-02-01

    Development of genetic varieties with improved nitrogen use efficiency (NUE) is essential for sustainable agriculture. Generally, NUE can be divided into two parts. First, assimilation efficiency involves nitrogen (N) uptake and assimilation and second utilization efficiency involves N remobilization. Understanding the mechanisms regulating these processes is crucial for the improvement of NUE in crop plants. One important approach is to develop an understanding of the plant response to different N regimes, especially to N limitation, using various methods including transcription profiling, analysing mutants defective in their normal response to N limitation, and studying plants that show better growth under N-limiting conditions. One can then attempt to improve NUE in crop plants using the knowledge gained from these studies. There are several potential genetic and molecular approaches for the improvement of crop NUE discussed in this review. Increased knowledge of how plants respond to different N levels as well as to other environmental conditions is required to achieve this.

  6. Tension (re)builds: Biophysical mechanisms of embryonic wound repair.

    Science.gov (United States)

    Zulueta-Coarasa, Teresa; Fernandez-Gonzalez, Rodrigo

    2017-04-01

    Embryonic tissues display an outstanding ability to rapidly repair wounds. Epithelia, in particular, serve as protective layers that line internal organs and form the skin. Thus, maintenance of epithelial integrity is of utmost importance for animal survival, particularly at embryonic stages, when an immune system has not yet fully developed. Rapid embryonic repair of epithelial tissues is conserved across species, and involves the collective migration of the cells around the wound. The migratory cell behaviours associated with wound repair require the generation and transmission of mechanical forces, not only for the cells to move, but also to coordinate their movements. Here, we review the forces involved in embryonic wound repair. We discuss how different force-generating structures are assembled at the molecular level, and the mechanisms that maintain the balance between force-generating structures as wounds close. Finally, we describe the mechanisms that cells use to coordinate the generation of mechanical forces around the wound. Collective cell movements and their misregulation have been associated with defective tissue repair, developmental abnormalities and cancer metastasis. Thus, we propose that understanding the role of mechanical forces during embryonic wound closure will be crucial to develop therapeutic interventions that promote or prevent collective cell movements under pathological conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Life and Understanding: The Origins of "Understanding" in Self-Organizing Nervous Systems.

    Science.gov (United States)

    Yufik, Yan M; Friston, Karl

    2016-01-01

    This article is motivated by a formulation of biotic self-organization in Friston (2013), where the emergence of "life" in coupled material entities (e.g., macromolecules) was predicated on bounded subsets that maintain a degree of statistical independence from the rest of the network. Boundary elements in such systems constitute a Markov blanket ; separating the internal states of a system from its surrounding states. In this article, we ask whether Markov blankets operate in the nervous system and underlie the development of intelligence, enabling a progression from the ability to sense the environment to the ability to understand it. Markov blankets have been previously hypothesized to form in neuronal networks as a result of phase transitions that cause network subsets to fold into bounded assemblies, or packets (Yufik and Sheridan, 1997; Yufik, 1998a). The ensuing neuronal packets hypothesis builds on the notion of neuronal assemblies (Hebb, 1949, 1980), treating such assemblies as flexible but stable biophysical structures capable of withstanding entropic erosion. In other words, structures that maintain their integrity under changing conditions. In this treatment, neuronal packets give rise to perception of "objects"; i.e., quasi-stable (stimulus bound) feature groupings that are conserved over multiple presentations (e.g., the experience of perceiving "apple" can be interrupted and resumed many times). Monitoring the variations in such groups enables the apprehension of behavior; i.e., attributing to objects the ability to undergo changes without loss of self-identity. Ultimately, "understanding" involves self-directed composition and manipulation of the ensuing "mental models" that are constituted by neuronal packets, whose dynamics capture relationships among objects: that is, dependencies in the behavior of objects under varying conditions. For example, movement is known to involve rotation of population vectors in the motor cortex (Georgopoulos et al

  8. Understanding the Growth Mechanism of GaN Epitaxial Layers on Mechanically Exfoliated Graphite.

    Science.gov (United States)

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Gan, Lin; Xu, Bingshe; Jiang, Haiwei

    2018-04-27

    The growth mechanism of GaN epitaxial layers on mechanically exfoliated graphite is explained in detail based on classic nucleation theory. The number of defects on the graphite surface can be increased via O-plasma treatment, leading to increased nucleation density on the graphite surface. The addition of elemental Al can effectively improve the nucleation rate, which can promote the formation of dense nucleation layers and the lateral growth of GaN epitaxial layers. The surface morphologies of the nucleation layers, annealed layers and epitaxial layers were characterized by field-emission scanning electron microscopy, where the evolution of the surface morphology coincided with a 3D-to-2D growth mechanism. High-resolution transmission electron microscopy was used to characterize the microstructure of GaN. Fast Fourier transform diffraction patterns showed that cubic phase (zinc-blend structure) GaN grains were obtained using conventional GaN nucleation layers, while the hexagonal phase (wurtzite structure) GaN films were formed using AlGaN nucleation layers. Our work opens new avenues for using highly oriented pyrolytic graphite as a substrate to fabricate transferable optoelectronic devices.

  9. Mechanisms underlying the neurotoxicity induced by glyphosate-based herbicide in immature rat hippocampus: Involvement of glutamate excitotoxicity

    International Nuclear Information System (INIS)

    Cattani, Daiane; Oliveira Cavalli, Liz Vera Lúcia de; Heinz Rieg, Carla Elise; Domingues, Juliana Tonietto; Dal-Cim, Tharine; Tasca, Carla Inês; Mena Barreto Silva, Fátima Regina; Zamoner, Ariane

    2014-01-01

    Graphical abstract: - Highlights: • Roundup ® induces Ca 2+ influx through L-VDCC and NMDA receptor activation. • The mechanisms underlying Roundup ® neurotoxicity involve glutamatergic excitotoxicity. • Kinase pathways participate in Roundup ® -induced neural toxicity. • Roundup ® alters glutamate uptake, release and metabolism in hippocampal cells. - Abstract: Previous studies demonstrate that glyphosate exposure is associated with oxidative damage and neurotoxicity. Therefore, the mechanism of glyphosate-induced neurotoxic effects needs to be determined. The aim of this study was to investigate whether Roundup ® (a glyphosate-based herbicide) leads to neurotoxicity in hippocampus of immature rats following acute (30 min) and chronic (pregnancy and lactation) pesticide exposure. Maternal exposure to pesticide was undertaken by treating dams orally with 1% Roundup ® (0.38% glyphosate) during pregnancy and lactation (till 15-day-old). Hippocampal slices from 15 day old rats were acutely exposed to Roundup ® (0.00005–0.1%) during 30 min and experiments were carried out to determine whether glyphosate affects 45 Ca 2+ influx and cell viability. Moreover, we investigated the pesticide effects on oxidative stress parameters, 14 C-α-methyl-amino-isobutyric acid ( 14 C-MeAIB) accumulation, as well as glutamate uptake, release and metabolism. Results showed that acute exposure to Roundup ® (30 min) increases 45 Ca 2+ influx by activating NMDA receptors and voltage-dependent Ca 2+ channels, leading to oxidative stress and neural cell death. The mechanisms underlying Roundup ® -induced neurotoxicity also involve the activation of CaMKII and ERK. Moreover, acute exposure to Roundup ® increased 3 H-glutamate released into the synaptic cleft, decreased GSH content and increased the lipoperoxidation, characterizing excitotoxicity and oxidative damage. We also observed that both acute and chronic exposure to Roundup ® decreased 3 H-glutamate uptake and

  10. Involvement of apoptosis in host-parasite interactions in the zebra mussel.

    Directory of Open Access Journals (Sweden)

    Laëtitia Minguez

    Full Text Available The question of whether cell death by apoptosis plays a biological function during infection is key to understanding host-parasite interactions. We investigated the involvement of apoptosis in several host-parasite systems, using zebra mussels Dreissena polymorpha as test organisms and their micro- and macroparasites. As a stress response associated with parasitism, heat shock proteins (Hsp can be induced. In this protein family, Hsp70 are known to be apoptosis inhibitors. Mussels were diagnosed for their respective infections by standard histological methods; apoptosis was detected using the TUNEL methods on paraffin sections and Hsp70 by immunohistochemistry on cryosections. Circulating hemocytes were the main cells observed in apoptosis whereas infected tissues displayed no or few apoptotic cells. Parasitism by intracellular bacteria Rickettsiales-like and the trematode Bucephalus polymorphus were associated with the inhibition of apoptosis whereas ciliates Ophryoglena spp. or the trematode Phyllodistomum folium did not involve significant differences in apoptosis. Even if some parasites were able to modulate apoptosis in zebra mussels, we did not see evidence of any involvement of Hsp70 on this mechanism.

  11. Involvement of Apoptosis in Host-Parasite Interactions in the Zebra Mussel

    Science.gov (United States)

    Minguez, Laëtitia; Brulé, Nelly; Sohm, Bénédicte; Devin, Simon; Giambérini, Laure

    2013-01-01

    The question of whether cell death by apoptosis plays a biological function during infection is key to understanding host-parasite interactions. We investigated the involvement of apoptosis in several host-parasite systems, using zebra mussels Dreissena polymorpha as test organisms and their micro- and macroparasites. As a stress response associated with parasitism, heat shock proteins (Hsp) can be induced. In this protein family, Hsp70 are known to be apoptosis inhibitors. Mussels were diagnosed for their respective infections by standard histological methods; apoptosis was detected using the TUNEL methods on paraffin sections and Hsp70 by immunohistochemistry on cryosections. Circulating hemocytes were the main cells observed in apoptosis whereas infected tissues displayed no or few apoptotic cells. Parasitism by intracellular bacteria Rickettsiales-like and the trematode Bucephalus polymorphus were associated with the inhibition of apoptosis whereas ciliates Ophryoglena spp. or the trematode Phyllodistomum folium did not involve significant differences in apoptosis. Even if some parasites were able to modulate apoptosis in zebra mussels, we did not see evidence of any involvement of Hsp70 on this mechanism. PMID:23785455

  12. Mechanisms of Intrinsic Tumor Resistance to Immunotherapy

    Directory of Open Access Journals (Sweden)

    John Rieth

    2018-05-01

    Full Text Available An increased understanding of the interactions between the immune system and tumors has opened the door to immunotherapy for cancer patients. Despite some success with checkpoint inhibitors including ipilimumab, pembrolizumab, and nivolumab, most cancer patients remain unresponsive to such immunotherapy, likely due to intrinsic tumor resistance. The mechanisms most likely involve reducing the quantity and/or quality of antitumor lymphocytes, which ultimately are driven by any number of developments: tumor mutations and adaptations, reduced neoantigen generation or expression, indoleamine 2,3-dioxygenase (IDO overexpression, loss of phosphatase and tensin homologue (PTEN expression, and overexpression of the Wnt–β-catenin pathway. Current work in immunotherapy continues to identify various tumor resistance mechanisms; future work is needed to develop adjuvant treatments that target those mechanisms, in order to improve the efficacy of immunotherapy and to expand its scope.

  13. A toolbox to explore the mechanics of living embryonic tissues

    Science.gov (United States)

    Campàs, Otger

    2016-01-01

    The sculpting of embryonic tissues and organs into their functional morphologies involves the spatial and temporal regulation of mechanics at cell and tissue scales. Decades of in vitro work, complemented by some in vivo studies, have shown the relevance of mechanical cues in the control of cell behaviors that are central to developmental processes, but the lack of methodologies enabling precise, quantitative measurements of mechanical cues in vivo have hindered our understanding of the role of mechanics in embryonic development. Several methodologies are starting to enable quantitative studies of mechanics in vivo and in situ, opening new avenues to explore how mechanics contributes to shaping embryonic tissues and how it affects cell behavior within developing embryos. Here we review the present methodologies to study the role of mechanics in living embryonic tissues, considering their strengths and drawbacks as well as the conditions in which they are most suitable. PMID:27061360

  14. Involving patients with E-health

    DEFF Research Database (Denmark)

    Nielsen, Karen Dam

    2015-01-01

    With e-health technologies, patients are invited as co-producers of data and information. The invitation sparks new expectations, yet often results in disappointments. With persistent ambitions to involve patients by means of e-health, it seems crucial to gain a better understanding of the nature......, sources and workings of the expectations that come with being invited. I analyse the use of an e-health system for ICD-patients, focusing on how patients sought to serve as information providers. Continuing STS-research on invisible work in technology use, I show how using the system involved complex work...... that understanding the dialogic dynamics and ‘overflows’ of information filtration work can help unpack the challenges of facilitating (patient) participation with e-health and other filtration devices....

  15. Understanding Yugoslavia's Killing Fields

    National Research Council Canada - National Science Library

    Swigert, James W

    1994-01-01

    Since Yugoslavia disintegrated in violence 3 years ago, observers have struggled to understand why the Yugoslav conflict has been so brutal and has involved such extensive violence against civilian populations...

  16. Meiotic restitution mechanisms involved in the formation of 2n pollen in Agave tequilana Weber and Agave angustifolia Haw.

    Science.gov (United States)

    Gómez-Rodríguez, Víctor Manuel; Rodríguez-Garay, Benjamín; Barba-Gonzalez, Rodrigo

    2012-01-01

    A cytological analysis of the microsporogenesis was carried out in the Agave tequilana and A. angustifolia species. Several abnormalities such as chromosomal bridges, lagging chromosomes, micronuclei, monads, dyads and triads were found. The morphological analysis of the pollen, together with the above-mentioned 2n microspores, allowed us to confirm the presence of 2n pollen as well as its frequency. In both A. tequilana and A. angustifolia two different mechanisms were observed: the first mechanism, a failure in the cytokinesis in meiosis II caused the formation of dyads with two 2n cells and triads containing two n cells and one 2n cell; the second mechanism, involves an abnormal spindle, which caused the formation of triads with two n cells and one 2n cell. Likewise, the presence of monads was detected in both species, these, might be caused by a failure of the cytokinesis in both meiotic divisions. This is the first report about the presence of a Second Division Restitution mechanism (SDR) which causes the formation of 2n pollen in the genus Agave. The genetic implications of the presence of 2n pollen in the genus Agave are discussed.

  17. An Introduction to the Mechanical Properties of Ceramics

    Science.gov (United States)

    Green, David J.

    1998-09-01

    Over the past twenty-five years ceramics have become key materials in the development of many new technologies as scientists have been able to design these materials with new structures and properties. An understanding of the factors that influence their mechanical behavior and reliability is essential. This book will introduce the reader to current concepts in the field. It contains problems and exercises to help readers develop their skills. This is a comprehensive introduction to the mechanical properties of ceramics, and is designed primarily as a textbook for advanced undergraduates in materials science and engineering. It will also be of value as a supplementary text for more general courses and to industrial scientists and engineers involved in the development of ceramic-based products, materials selection and mechanical design.

  18. Molecular mechanisms involved in convergent crop domestication.

    Science.gov (United States)

    Lenser, Teresa; Theißen, Günter

    2013-12-01

    Domestication has helped to understand evolution. We argue that, vice versa, novel insights into evolutionary principles could provide deeper insights into domestication. Molecular analyses have demonstrated that convergent phenotypic evolution is often based on molecular changes in orthologous genes or pathways. Recent studies have revealed that during plant domestication the causal mutations for convergent changes in key traits are likely to be located in particular genes. These insights may contribute to defining candidate genes for genetic improvement during the domestication of new plant species. Such efforts may help to increase the range of arable crops available, thus increasing crop biodiversity and food security to help meet the predicted demands of the continually growing global population under rapidly changing environmental conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    International Nuclear Information System (INIS)

    Massi, Paola; Valenti, Marta; Solinas, Marta; Parolaro, Daniela

    2010-01-01

    Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells

  20. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Energy Technology Data Exchange (ETDEWEB)

    Massi, Paola [Department of Pharmacology, Chemotherapy and Toxicology, University of Milan, Via Vanvitelli 32, 20129 Milan (Italy); Valenti, Marta; Solinas, Marta; Parolaro, Daniela [Department of Structural and Functional Biology, Section of Pharmacology, Center of Neuroscience, University of Insubria, Via A. da Giussano 10, 20152 Busto Arsizio, Varese (Italy)

    2010-05-26

    Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  1. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Paola Massi

    2010-05-01

    Full Text Available Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  2. Understanding pea resistance mechanisms in response to Fusarium oxysporum through proteomic analysis.

    Science.gov (United States)

    Castillejo, María Ángeles; Bani, Moustafa; Rubiales, Diego

    2015-07-01

    Fusarium oxysporum f. sp. pisi (Fop) is an important and destructive pathogen affecting pea crop (Pisum sativum) throughout the world. Control of this disease is achieved mainly by integration of different disease management procedures. However, the constant evolution of the pathogen drives the necessity to broaden the molecular basis of resistance to Fop. Our proteomic study was performed on pea with the aim of identifying proteins involved in different resistance mechanisms operating during F. oxysporum infection. For such purpose, we used a two-dimensional electrophoresis (2-DE) coupled to mass spectrometry (MALDI-TOF/TOF) analysis to study the root proteome of three pea genotypes showing different resistance response to Fop race 2. Multivariate statistical analysis identified 132 differential protein spots under the experimental conditions (genotypes/treatments). All of these protein spots were subjected to mass spectrometry analysis to deduce their possible functions. A total of 53 proteins were identified using a combination of peptide mass fingerprinting (PMF) and MSMS fragmentation. The following main functional categories were assigned to the identified proteins: carbohydrate and energy metabolism, nucleotides and aminoacid metabolism, signal transduction and cellular process, folding and degradation, redox and homeostasis, defense, biosynthetic process and transcription/translation. Results obtained in this work suggest that the most susceptible genotypes have increased levels of enzymes involved in the production of reducing power which could then be used as cofactor for enzymes of the redox reactions. This is in concordance with the fact that a ROS burst occurred in the same genotypes, as well as an increase of PR proteins. Conversely, in the resistant genotype proteins responsible to induce changes in the membrane and cell wall composition related to reinforcement were identified. Results are discussed in terms of the differential response to Fop

  3. Metabolic Mechanisms in Obesity and Type 2 Diabetes: Insights from Bariatric/Metabolic Surgery

    Directory of Open Access Journals (Sweden)

    Adriana Florinela Cătoi

    2015-11-01

    Full Text Available Obesity and the related diabetes epidemics represent a real concern worldwide. Bariatric/metabolic surgery emerged in last years as a valuable therapeutic option for obesity and related diseases, including type 2 diabetes mellitus (T2DM. The complicated network of mechanisms involved in obesity and T2DM have not completely defined yet. There is still a debate on which would be the first metabolic defect leading to metabolic deterioration: insulin resistance or hyperinsulinemia? Insight into the metabolic effects of bariatric/metabolic surgery has revealed that, beyond weight loss and food restriction, other mechanisms can be activated by the rearrangements of the gastrointestinal tract, such as the incretinic/anti-incretinic system, changes in bile acid composition and flow, and modifications of gut microbiota; all of them possibly involved in the remission of T2DM. The complete elucidation of these mechanisms will lead to a better understanding of the pathogenesis of this disease. Our aim was to review some of the metabolic mechanisms involved in the development of T2DM in obese patients as well as in the remission of this condition in patients submitted to bariatric/metabolic surgery.

  4. From genomes to metabolomes: Understanding mechanisms of symbiosis and cell-cell signaling using the archaeal system Ignicoccus-Nanoarchaeum

    Energy Technology Data Exchange (ETDEWEB)

    Podar, Mircea [Univ. of Tennessee, Knoxville, TN (United States). Biosciences Division; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hettich, Robert [Univ. of Tennessee, Knoxville, TN (United States). Biosciences Division; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Copie, Valerie [Montana State Univ., Bozeman, MT (United States). Dept. of Chemistry and Biochemistry; Bothner, Brian [Montana State Univ., Bozeman, MT (United States). Dept. of Chemistry and Biochemistry

    2016-12-16

    The main objective of this project was to use symbiotic Nanoarchaeaota, a group of thermophilic Archaea that are obligate symbionts/parasites on other Archaea, to develop an integrated multi-omic approach to study inter-species interactions as well as to understand fundamental mechanism that enable such relationships. As part of this grant we have achieved a number of important milestone on both technical and scientific levels. On the technical side, we developed immunofluorescence labeling and tracking methods to follow Nanoarchaeota in cultures and in environmental samples, we applied such methods in conjunction with flow cytometry to quantify and isolate uncultured representatives from the environment and characterized them by single cell genomics. On the proteomics side, we developed a more efficient and sensitive method to recover and semi-quantitatively measure membrane proteins, while achieving high total cellular proteome coverage (70-80% of the predicted proteome). Metabolomic analyses used complementary NMR and LC/GC mass spectrometry and led to the identification of novel lipids in these organisms as well as quantification of some of the major metabolites. Importantly, using several informatics approaches we were also able to integrate the transcriptomic, proteomic and metabolomic datasets, revealing aspects of the interspecies interaction that were not evident in the single omic analyses (manuscript in review). On the science side we determined that N. equitans and I. hospitalis are metabolically coupled and that N. equitans is strictly dependent on its host both for metabolic precursors and energetic needs. The actual mechanism by which small molecules move across the cell membrane remains unknown. The Ignicoccus host responds to the metabolic and energetic burned by upregulating of key primary metabolism steps and ATP synthesis. The two species have co-evolved, aspect that we determined by comparative genomics with other species of Ignicoccus

  5. New mechanism of spiral wave initiation in a reaction-diffusion-mechanics system.

    Science.gov (United States)

    Weise, Louis D; Panfilov, Alexander V

    2011-01-01

    Spiral wave initiation in the heart muscle is a mechanism for the onset of dangerous cardiac arrhythmias. A standard protocol for spiral wave initiation is the application of a stimulus in the refractory tail of a propagating excitation wave, a region that we call the "classical vulnerable zone." Previous studies of vulnerability to spiral wave initiation did not take the influence of deformation into account, which has been shown to have a substantial effect on the excitation process of cardiomyocytes via the mechano-electrical feedback phenomenon. In this work we study the effect of deformation on the vulnerability of excitable media in a discrete reaction-diffusion-mechanics (dRDM) model. The dRDM model combines FitzHugh-Nagumo type equations for cardiac excitation with a discrete mechanical description of a finite-elastic isotropic material (Seth material) to model cardiac excitation-contraction coupling and stretch activated depolarizing current. We show that deformation alters the "classical," and forms a new vulnerable zone at longer coupling intervals. This mechanically caused vulnerable zone results in a new mechanism of spiral wave initiation, where unidirectional conduction block and rotation directions of the consequently initiated spiral waves are opposite compared to the mechanism of spiral wave initiation due to the "classical vulnerable zone." We show that this new mechanism of spiral wave initiation can naturally occur in situations that involve wave fronts with curvature, and discuss its relation to supernormal excitability of cardiac tissue. The concept of mechanically induced vulnerability may lead to a better understanding about the onset of dangerous heart arrhythmias via mechano-electrical feedback.

  6. Thermodynamic secrets of multidrug resistance: A new take on transport mechanisms of secondary active antiporters.

    Science.gov (United States)

    Zhang, Xuejun C; Liu, Min; Lu, Guangyuan; Heng, Jie

    2018-03-01

    Multidrug resistance (MDR) presents a growing challenge to global public health. Drug extrusion transporters play a critical part in MDR; thus, their mechanisms of substrate recognition are being studied in great detail. In this work, we review common structural features of key transporters involved in MDR. Based on our membrane potential-driving hypothesis, we propose a general energy-coupling mechanism for secondary-active antiporters. This putative mechanism provides a common framework for understanding poly-specificity of most-if not all-MDR transporters. © 2017 The Protein Society.

  7. The Prelude on Novel Receptor and Ligand Targets Involved in the Treatment of Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Venu Gopal Jonnalagadda

    2014-05-01

    Full Text Available Metabolic disorders are a group of disorders, due to the disruption of the normal metabolic process at a cellular level. Diabetes Mellitus and Tyrosinaemia are the majorly reported metabolic disorders. Among them, Diabetes Mellitus is a one of the leading metabolic syndrome, affecting 5 to 7 % of the population worldwide and mainly characterised by elevated levels of glucose and is associated with two types of physiological event disturbances such as impaired insulin secretion and insulin resistance. Up to now, various treatment strategies are like insulin, alphaglucosidase inhibitors, biguanides, incretins were being followed. Concurrently, various novel therapeutic strategies are required to advance the therapy of Diabetes mellitus. For the last few decades, there has been an extensive research in understanding the metabolic pathways involved in Diabetes Mellitus at the cellular level and having the profound knowledge on cell-growth, cell-cycle, and apoptosis at a molecular level provides new targets for the treatment of Diabetes Mellitus. Receptor signalling has been involved in these mechanisms, to translate the information coming from outside. To understand the various receptors involved in these pathways, we must have a sound knowledge on receptors and ligands involved in it. This review mainly summarises the receptors and ligands which are involved the Diabetes Mellitus. Finally, researchers have to develop the alternative chemical moieties that retain their affinity to receptors and efficacy. Diabetes Mellitus being a metabolic disorder due to the glucose surfeit, demands the need for regular exercise along with dietary changes.

  8. Understanding spermatogenesis is a prerequisite for treatment

    Directory of Open Access Journals (Sweden)

    Schulze Wolfgang

    2003-11-01

    Full Text Available Abstract Throughout spermatogenesis multiplication, maturation and differentiation of germ cells results in the formation of the male gamete. The understanding of spermatogenesis needs detailed informations about the organization of the germinal epithelium, the structure and function of different types of germ cells, endocrine and paracrine cells and mechanisms, intratesticular and extratesticular regulation of spermatogenesis. Normal germ cells must be discriminated from malformed, apoptotic and degenerating germ cells and tumor cells. Identification of the border line between normal and disturbed spermatogenesis substantiate the diagnosis of impaired male fertility. The profound knowledge of the complicate process of spermatogenesis and all cells or cell systems involved with is the prerequisite to develop concepts for therapy of male infertility or to handle germ cells in the management of assisted reproduction.

  9. Scrambled eggs: mechanical forces as ecological factors in early development.

    Science.gov (United States)

    Moore, Steven W

    2003-01-01

    Many ecological interactions involve, at some level, mechanical forces and the movements or structural deformations they produce. Although the most familiar examples involve the functional morphology of adult structures, all life history stages (not just the adults) are subject to the laws of physics. Moreover, the success of every lineage depends on the success of every life history stage (again, not just the adults). Therefore, insights gained by using mechanical engineering principles and techniques to study ecological interactions between gametes, embryos, larvae, and their environment are essential to a well-rounded understanding of development, ecology, and evolution. Here I draw on examples from the literature and my own research to illustrate ways in which mechanical forces in the environment shape development. These include mechanical forces acting as selective factors (e.g., when coral gamete size and shape interact with turbulent water flow to determine fertilization success) and as developmental cues (e.g., when plant growth responds to gravity or bone growth responds to mechanical loading). I also examine the opposite cause-and-effect relationship by considering examples in which the development of organisms impacts ecologically relevant mechanical forces. Finally, I discuss the potential for ecological pattern formation as a result of feedback loops created by such bidirectional interactions between developmental processes and mechanical forces in the environment.

  10. Third-order differential ladder operators and supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Mateo, J; Negro, J

    2008-01-01

    Hierarchies of one-dimensional Hamiltonians in quantum mechanics admitting third-order differential ladder operators are studied. Each Hamiltonian has associated three-step Darboux (pseudo)-cycles and Painleve IV equations as a closure condition. The whole hierarchy is generated applying some operations on the cycles. These operations are investigated in the frame of supersymmetric quantum mechanics and mainly involve algebraic manipulations. A consistent geometric representation for the hierarchy and cycles is built that also helps in understanding the operations. Three kinds of hierarchies are distinguished and a realization based on the harmonic oscillator Hamiltonian is supplied, giving an interpretation for the spectral properties of the Hamiltonians of each hierarchy

  11. Epigenetic Mechanisms in Bone Biology and Osteoporosis: Can They Drive Therapeutic Choices?

    Directory of Open Access Journals (Sweden)

    Francesca Marini

    2016-08-01

    Full Text Available Osteoporosis is a complex multifactorial disorder of the skeleton. Genetic factors are important in determining peak bone mass and structure, as well as the predisposition to bone deterioration and fragility fractures. Nonetheless, genetic factors alone are not sufficient to explain osteoporosis development and fragility fracture occurrence. Indeed, epigenetic factors, representing a link between individual genetic aspects and environmental influences, are also strongly suspected to be involved in bone biology and osteoporosis. Recently, alterations in epigenetic mechanisms and their activity have been associated with aging. Also, bone metabolism has been demonstrated to be under the control of epigenetic mechanisms. Runt-related transcription factor 2 (RUNX2, the master transcription factor of osteoblast differentiation, has been shown to be regulated by histone deacetylases and microRNAs (miRNAs. Some miRNAs were also proven to have key roles in the regulation of Wnt signalling in osteoblastogenesis, and to be important for the positive or negative regulation of both osteoblast and osteoclast differentiation. Exogenous and environmental stimuli, influencing the functionality of epigenetic mechanisms involved in the regulation of bone metabolism, may contribute to the development of osteoporosis and other bone disorders, in synergy with genetic determinants. The progressive understanding of roles of epigenetic mechanisms in normal bone metabolism and in multifactorial bone disorders will be very helpful for a better comprehension of disease pathogenesis and translation of this information into clinical practice. A deep understanding of these mechanisms could help in the future tailoring of proper individual treatments, according to precision medicine’s principles.

  12. Epigenetic Mechanisms in Bone Biology and Osteoporosis: Can They Drive Therapeutic Choices?

    Science.gov (United States)

    Marini, Francesca; Cianferotti, Luisella; Brandi, Maria Luisa

    2016-08-12

    Osteoporosis is a complex multifactorial disorder of the skeleton. Genetic factors are important in determining peak bone mass and structure, as well as the predisposition to bone deterioration and fragility fractures. Nonetheless, genetic factors alone are not sufficient to explain osteoporosis development and fragility fracture occurrence. Indeed, epigenetic factors, representing a link between individual genetic aspects and environmental influences, are also strongly suspected to be involved in bone biology and osteoporosis. Recently, alterations in epigenetic mechanisms and their activity have been associated with aging. Also, bone metabolism has been demonstrated to be under the control of epigenetic mechanisms. Runt-related transcription factor 2 (RUNX2), the master transcription factor of osteoblast differentiation, has been shown to be regulated by histone deacetylases and microRNAs (miRNAs). Some miRNAs were also proven to have key roles in the regulation of Wnt signalling in osteoblastogenesis, and to be important for the positive or negative regulation of both osteoblast and osteoclast differentiation. Exogenous and environmental stimuli, influencing the functionality of epigenetic mechanisms involved in the regulation of bone metabolism, may contribute to the development of osteoporosis and other bone disorders, in synergy with genetic determinants. The progressive understanding of roles of epigenetic mechanisms in normal bone metabolism and in multifactorial bone disorders will be very helpful for a better comprehension of disease pathogenesis and translation of this information into clinical practice. A deep understanding of these mechanisms could help in the future tailoring of proper individual treatments, according to precision medicine's principles.

  13. Interfacial Mechanics Analysis of a Brittle Coating–Ductile Substrate System Involved in Thermoelastic Contact

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2017-02-01

    Full Text Available In this paper, interfacial stress analysis for a brittle coating/ductile substrate system, which is involved in a sliding contact with a rigid ball, is presented. By combining interface mechanics theory and the image point method, stress and displacement responses within a coated material for normal load, tangential load, and thermal load are obtained; further, the Green’s functions are established. The effects of coating thickness, friction coefficient, and a coating’s thermoelastic properties on the interfacial shear stress, τxz, and transverse stress, σxx, distributions are discussed in detail. A phenomenon, where interfacial shear stress tends to be relieved by frictional heating, is found in the case of a coating material’s thermal expansion coefficient being less than a substrate material’s thermal expansion coefficient. Additionally, numerical results show that distribution of interfacial stress can be altered and, therefore, interfacial damage can be modified by adjusting a coating’s structural parameters and thermoelastic properties.

  14. Insertion of molecular oxygen into a palladium(II) methyl bond: a radical chain mechanism involving palladium(III) intermediates.

    Science.gov (United States)

    Boisvert, Luc; Denney, Melanie C; Hanson, Susan Kloek; Goldberg, Karen I

    2009-11-04

    The reaction of (bipy)PdMe(2) (1) (bipy = 2,2'-bipyridine) with molecular oxygen results in the formation of the palladium(II) methylperoxide complex (bipy)PdMe(OOMe) (2). The identity of the product 2 has been confirmed by independent synthesis. Results of kinetic studies of this unprecedented oxygen insertion reaction into a palladium alkyl bond support the involvement of a radical chain mechanism. Reproducible rates, attained in the presence of the radical initiator 2,2'-azobis(2-methylpropionitrile) (AIBN), reveal that the reaction is overall first-order (one-half-order in both [1] and [AIBN], and zero-order in [O(2)]). The unusual rate law (half-order in [1]) implies that the reaction proceeds by a mechanism that differs significantly from those for organic autoxidations and for the recently reported examples of insertion of O(2) into Pd(II) hydride bonds. The mechanism for the autoxidation of 1 is more closely related to that found for the autoxidation of main group and early transition metal alkyl complexes. Notably, the chain propagation is proposed to proceed via a stepwise associative homolytic substitution at the Pd center of 1 with formation of a pentacoordinate Pd(III) intermediate.

  15. Drugs Involved in Dyslipidemia and Obesity Treatment: Focus on Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Sofia Dias

    2018-01-01

    Full Text Available Metabolic syndrome can be defined as a state of disturbed metabolic homeostasis characterized by visceral obesity, atherogenic dyslipidemia, arterial hypertension, and insulin resistance. The growing prevalence of metabolic syndrome will certainly contribute to the burden of cardiovascular disease. Obesity and dyslipidemia are main features of metabolic syndrome, and both can present with adipose tissue dysfunction, involved in the pathogenic mechanisms underlying this syndrome. We revised the effects, and underlying mechanisms, of the current approved drugs for dyslipidemia and obesity (fibrates, statins, niacin, resins, ezetimibe, and orlistat; sibutramine; and diethylpropion, phentermine/topiramate, bupropion and naltrexone, and liraglutide on adipose tissue. Specifically, we explored how these drugs can modulate the complex pathways involved in metabolism, inflammation, atherogenesis, insulin sensitivity, and adipogenesis. The clinical outcomes of adipose tissue modulation by these drugs, as well as differences of major importance for clinical practice between drugs of the same class, were identified. Whether solutions to these issues will be found in further adjustments and combinations between drugs already in use or necessarily in new advances in pharmacology is not known. To better understand the effect of drugs used in dyslipidemia and obesity on adipose tissue not only is challenging for physicians but could also be the next step to tackle cardiovascular disease.

  16. Radiation-induced genomic instability: Are epigenetic mechanisms the missing link?

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-02-01

    Purpose: This review examines the evidence for the hypothesis that epigenetics are involved in the initiation and perpetuation of radiation-induced genomic instability (RIGI). Conclusion: In addition to the extensively studied targeted effects of radiation, it is now apparent that non-targeted delayed effects such as RIGI are also important post-irradiation outcomes. In RIGI, unirradiated progeny cells display phenotypic changes at delayed times after radiation of the parental cell. RIGI is thought to be important in the process of carcinogenesis, however, the mechanism by which this occurs remains to be elucidated. In the genomically unstable clones developed by Morgan and colleagues, radiation-induced mutations, double-strand breaks, or changes in mRNA levels alone could not account for the initiation or perpetuation of RIGI. Since changes in the DNA sequence could not fully explain the mechanism of RIGI, inherited epigenetic changes may be involved. Epigenetics are known to play an important role in many cellular processes and epigenetic aberrations can lead to carcinogenesis. Recent studies in the field of radiation biology suggest that the changes in methylation patterns may be involved in RIGI. Together these clues have led us to hypothesize that epigenetics may be the missing link in understanding the mechanism behind RIGI.

  17. Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries

    Science.gov (United States)

    Li, Qi; Tan, Shen; Li, Linlin; Lu, Yingying; He, Yi

    2017-01-01

    High energy and safe electrochemical storage are critical components in multiple emerging fields of technologies. Rechargeable lithium-metal batteries are considered to be promising alternatives for current lithium-ion batteries, leading to as much as a 10-fold improvement in anode storage capacity (from 372 to 3860 mAh g−1). One of the major challenges for commercializing lithium-metal batteries is the reliability and safety issue, which is often associated with uneven lithium electrodeposition (lithium dendrites) during the charging stage of the battery cycling process. We report that stable lithium-metal batteries can be achieved by simply charging cells with square-wave pulse current. We investigated the effects of charging period and frequency as well as the mechanisms that govern this process at the molecular level. Molecular simulations were performed to study the diffusion and the solvation structure of lithium cations (Li+) in bulk electrolyte. The model predicts that loose association between cations and anions can enhance the transport of Li+ and eventually stabilize the lithium electrodeposition. We also performed galvanostatic measurements to evaluate the cycling behavior and cell lifetime under pulsed electric field and found that the cell lifetime can be more than doubled using certain pulse current waveforms. Both experimental and simulation results demonstrate that the effectiveness of pulse current charging on dendrite suppression can be optimized by choosing proper time- and frequency-dependent pulses. This work provides a molecular basis for understanding the mechanisms of pulse current charging to mitigating lithium dendrites and designing pulse current waveforms for stable lithium-metal batteries. PMID:28776039

  18. Understanding Mechanisms of Radiological Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Rick Demmer; John Drake; Ryan James, PhD

    2014-03-01

    Over the last 50 years, the study of radiological contamination and decontamination has expanded significantly. This paper addresses the mechanisms of radiological contamination that have been reported and then discusses which methods have recently been used during performance testing of several different decontamination technologies. About twenty years ago the Idaho Nuclear Technology Engineering Center (INTEC) at the INL began a search for decontamination processes which could minimize secondary waste. In order to test the effectiveness of these decontamination technologies, a new simulated contamination, termed SIMCON, was developed. SIMCON was designed to replicate the types of contamination found on stainless steel, spent fuel processing equipment. Ten years later, the INL began research into methods for simulating urban contamination resulting from a radiological dispersal device (RDD). This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and included the initial development an aqueous application of contaminant to substrate. Since 2007, research sponsored by the US Environmental Protection Agency (EPA) has advanced that effort and led to the development of a contamination method that simulates particulate fallout from an Improvised Nuclear Device (IND). The IND method diverges from previous efforts to create tenacious contamination by simulating a reproducible “loose” contamination. Examining these different types of contamination (and subsequent decontamination processes), which have included several different radionuclides and substrates, sheds light on contamination processes that occur throughout the nuclear industry and in the urban environment.

  19. Understanding structural conservation through materials science:

    DEFF Research Database (Denmark)

    Fuster-López, Laura; Krarup Andersen, Cecil

    2014-01-01

    with tools to avoid future problems, it should be present in all conservation-restoration training programs to help promote students’ understanding of the degradation mechanisms in cultural materials (and their correlation with chemical and biological degradation) as well as the implications behind......Mechanical properties and the structure of materials are key elements in understanding how structural interventions in conservation treatments affect cultural heritage objects. In this context, engineering mechanics can help determine the strength and stability found in art objects as it can...... provide both explanation and prediction of failure in materials. It has therefore shown to be an effective method for developing useful solutions to conservation problems. Since materials science and mechanics can help conservators predict the long term consequences of their treatments and provide them...

  20. Measures and mechanisms of common ground: backchannels, conversational repair, and interactive alignmentin free and task-oriented social interactions

    DEFF Research Database (Denmark)

    Fusaroli, Riccardo; Tylén, Kristian; Madsen, Katrine Garly

    A crucial aspect of everyday conversational interactions is our ability to establish and maintain common ground. Understanding the relevant mechanisms involved in such social coordination remains an important challenge for cognitive science. While common ground is often discussed in very general ...

  1. Mechanism of freeze-thaw injury and recovery: A cool retrospective and warming up to new ideas.

    Science.gov (United States)

    Arora, Rajeev

    2018-05-01

    Understanding cellular mechanism(s) of freeze-thaw injury (FTI) is key to the efforts for improving plant freeze-tolerance by cultural methods or molecular/genetic approaches. However, not much work has been done in the last 25+ years to advance our understanding of the nature and cellular loci of FTI. Currently, two FTI lesions are predominantly implicated: 1) structural and functional perturbations in plasma membrane; 2) ROS-induced oxidative damage. While both have stood the test of time, many questions remain unresolved and other potentially significant lesions need to be investigated. Additionally, molecular mechanism of post-thaw recovery (PTR), a critical component of frost-survival, has not been well investigated. Mechanistic understanding of repair after reversible injury could expand the options for strategies to improve frost-hardiness. In this review, without claiming to be exhaustive, I have attempted to synthesize major discoveries from last several decades on the mechanisms of FTI and the relatively little research conducted thus far on PTR mechanisms. It is followed by proposing of hypotheses for mechanism(s) for irreversible FTI or PTR involving cytosolic calcium and ROS signaling. Perspective is presented on some unresolved questions and research on new ideas to fill the knowledge gaps and advance the field. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Study of alloy 600 (NC15Fe) stress corrosion cracking mechanisms in high temperature water

    International Nuclear Information System (INIS)

    Rios, Richard

    1993-01-01

    In order to better understand the mechanisms involved in Alloy 600's stress corrosion cracking in PWR environment, laboratory tests were performed. The influence of parameters pertinent to the mechanisms was studies: hydrogen and oxygen overpressures, local chemical composition, microstructure. The results show that neither hydrogen nor dissolution/oxidation, despite their respective roles in the process, are sufficient to account for experimental facts. SEM observation of micro-cleavage facets on specimens' fracture surfaces leads to pay attention to a new mechanism of corrosion/plasticity interactions. (author) [fr

  3. Multiple mechanisms involved in diabetes protection by lipopolysaccharide in non-obese diabetic mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan (China); Cao, Hui [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Wang, Hongjie [Section of Neurobiology, Torrey Pines Institute for Molecular Studies, Port Saint Lucie, FL (United States); Yin, Guoxiao; Du, Jiao; Xia, Fei; Lu, Jingli [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Xiang, Ming, E-mail: xiangming@mails.tjmu.edu.cn [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China)

    2015-06-15

    Toll-like receptor 4 (TLR4) activation has been proposed to be important for islet cell inflammation and eventually β cell loss in the course of type 1 diabetes (T1D) development. However, according to the “hygiene hypothesis”, bacterial endotoxin lipopolysaccharide (LPS), an agonist on TLR4, inhibits T1D progression. Here we investigated possible mechanisms for the protective effect of LPS on T1D development in non-obese diabetic (NOD) mice. We found that LPS administration to NOD mice during the prediabetic state neither prevented nor reversed insulitis, but delayed the onset and decreased the incidence of diabetes, and that a multiple-injection protocol is more effective than a single LPS intervention. Further, LPS administration suppressed spleen T lymphocyte proliferation, increased the generation of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T cells (Tregs), reduced the synthesis of strong Th1 proinflammatory cytokines, and downregulated TLR4 and its downstream MyD88-dependent signaling pathway. Most importantly, multiple injections of LPS induced a potential tolerogenic dendritic cell (DC) subset with low TLR4 expression without influencing the DC phenotype. Explanting DCs from repeated LPS-treated NOD mice into NOD/SCID diabetic mice conferred sustained protective effects against the progression of diabetes in the recipients. Overall, these results suggest that multiple mechanisms are involved in the protective effects of LPS against the development of diabetes in NOD diabetic mice. These include Treg induction, down-regulation of TLR4 and its downstream MyD88-dependent signaling pathway, and the emergence of a potential tolerogenic DC subset. - Highlights: • Administration of lipopolysaccharide (LPS) prevented type 1 diabetes in NOD mice. • Downregulating TLR4 level and MyD88-dependent pathway contributed to protection of LPS. • LPS administration also hampered DC maturation and promoted Treg differentiation.

  4. Multiple mechanisms involved in diabetes protection by lipopolysaccharide in non-obese diabetic mice

    International Nuclear Information System (INIS)

    Wang, Jun; Cao, Hui; Wang, Hongjie; Yin, Guoxiao; Du, Jiao; Xia, Fei; Lu, Jingli; Xiang, Ming

    2015-01-01

    Toll-like receptor 4 (TLR4) activation has been proposed to be important for islet cell inflammation and eventually β cell loss in the course of type 1 diabetes (T1D) development. However, according to the “hygiene hypothesis”, bacterial endotoxin lipopolysaccharide (LPS), an agonist on TLR4, inhibits T1D progression. Here we investigated possible mechanisms for the protective effect of LPS on T1D development in non-obese diabetic (NOD) mice. We found that LPS administration to NOD mice during the prediabetic state neither prevented nor reversed insulitis, but delayed the onset and decreased the incidence of diabetes, and that a multiple-injection protocol is more effective than a single LPS intervention. Further, LPS administration suppressed spleen T lymphocyte proliferation, increased the generation of CD4 + CD25 + Foxp3 + regulatory T cells (Tregs), reduced the synthesis of strong Th1 proinflammatory cytokines, and downregulated TLR4 and its downstream MyD88-dependent signaling pathway. Most importantly, multiple injections of LPS induced a potential tolerogenic dendritic cell (DC) subset with low TLR4 expression without influencing the DC phenotype. Explanting DCs from repeated LPS-treated NOD mice into NOD/SCID diabetic mice conferred sustained protective effects against the progression of diabetes in the recipients. Overall, these results suggest that multiple mechanisms are involved in the protective effects of LPS against the development of diabetes in NOD diabetic mice. These include Treg induction, down-regulation of TLR4 and its downstream MyD88-dependent signaling pathway, and the emergence of a potential tolerogenic DC subset. - Highlights: • Administration of lipopolysaccharide (LPS) prevented type 1 diabetes in NOD mice. • Downregulating TLR4 level and MyD88-dependent pathway contributed to protection of LPS. • LPS administration also hampered DC maturation and promoted Treg differentiation

  5. Review on Synthesis, Thermo-Physical Property, and Heat Transfer Mechanism of Nanofluids

    Directory of Open Access Journals (Sweden)

    Mahesh Suresh Patil

    2016-10-01

    Full Text Available Nanofluids are suspended nano-sized particles in a base fluid. With increasing demand for more high efficiency thermal systems, nanofluids seem to be a promising option for researchers. As a result, numerous investigations have been undertaken to understand the behaviors of nanofluids. Since their discovery, the thermo-physical properties of nanofluids have been under intense research. Inadequate understanding of the mechanisms involved in the heat transfer of nanofluids has been the major obstacle for the development of sophisticated nanofluids with the desired properties. In this comprehensive review paper, investigations on synthesis, thermo-physical properties, and heat transfer mechanisms of nanofluids have been reviewed and presented. Results show that the thermal conductivity of nanofluids increases with the increase of the operating temperature. This can potentially be used for the efficiency enhancement of thermal systems under higher operating temperatures. In addition, this paper also provides details concerning dependency of the thermo-physical properties as well as synthesis and the heat transfer mechanism of the nanofluids.

  6. Growth Mechanism of Microbial Colonies

    Science.gov (United States)

    Zhu, Minhui; Martini, K. Michael; Kim, Neil H.; Sherer, Nicholas; Lee, Jia Gloria; Kuhlman, Thomas; Goldenfeld, Nigel

    Experiments on nutrient-limited E. coli colonies, growing on agar gel from single cells reveal a power-law distribution of sizes, both during the growth process and in the final stage when growth has ceased. We developed a Python simulation to study the growth mechanism of the bacterial population and thus understand the broad details of the experimental findings. The simulation takes into account nutrient uptake, metabolic function, growth and cell division. Bacteria are modeled in two dimensions as hard circle-capped cylinders with steric interactions and elastic stress dependent growth characteristics. Nutrient is able to diffuse within and between the colonies. The mechanism of microbial colony growth involves reproduction of cells within the colonies and the merging of different colonies. We report results on the dynamic scaling laws and final state size distribution, that capture in semi-quantitative detail the trends observed in experiment. Supported by NSF Grant 0822613.

  7. Microarray Analysis of the Molecular Mechanism Involved in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Cheng Tan

    2018-01-01

    Full Text Available Purpose. This study aimed to investigate the underlying molecular mechanisms of Parkinson’s disease (PD by bioinformatics. Methods. Using the microarray dataset GSE72267 from the Gene Expression Omnibus database, which included 40 blood samples from PD patients and 19 matched controls, differentially expressed genes (DEGs were identified after data preprocessing, followed by Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG pathway enrichment analyses. Protein-protein interaction (PPI network, microRNA- (miRNA- target regulatory network, and transcription factor- (TF- target regulatory networks were constructed. Results. Of 819 DEGs obtained, 359 were upregulated and 460 were downregulated. Two GO terms, “rRNA processing” and “cytoplasm,” and two KEGG pathways, “metabolic pathways” and “TNF signaling pathway,” played roles in PD development. Intercellular adhesion molecule 1 (ICAM1 was the hub node in the PPI network; hsa-miR-7-5p, hsa-miR-433-3p, and hsa-miR-133b participated in PD pathogenesis. Six TFs, including zinc finger and BTB domain-containing 7A, ovo-like transcriptional repressor 1, GATA-binding protein 3, transcription factor dp-1, SMAD family member 1, and quiescin sulfhydryl oxidase 1, were related to PD. Conclusions. “rRNA processing,” “cytoplasm,” “metabolic pathways,” and “TNF signaling pathway” were key pathways involved in PD. ICAM1, hsa-miR-7-5p, hsa-miR-433-3p, hsa-miR-133b, and the abovementioned six TFs might play important roles in PD development.

  8. Centenarian offspring: a model for understanding longevity.

    Science.gov (United States)

    Balistreri, Carmela Rita; Candore, Giuseppina; Accardi, Giulia; Buffa, Silvio; Bulati, Matteo; Martorana, Adriana; Colonna-Romano, Giuseppina; Lio, Domenico; Caruso, Calogero

    2014-01-01

    A main objective of current medical research is to improve the life quality of elderly people as priority of the continuous increase of ageing population. This phenomenon implies several medical, economic and social problems because of dramatic increase in number of non autonomous individuals affected by various pathologies. Accordingly, the research interest is focused on understanding the biological mechanisms involved in determining the positive ageing phenotype, i.e. the centenarian phenotype. In achieving this goal the choice of an appropriate study models is fundamental. Centenarians have been used as an optimal model for successful ageing. However, this model shows several limitations, i.e. the selection of appropriate controls and the use itself of the centenarians as a suitable model for healthy ageing. Thus, the interest has been centered on centenarian offspring, healthy elderly people. They may represent a model for understanding exceptional longevity for the following reasons: they exhibit a protective genetic background, cardiovascular and immunological profile, as well as a reduced rate of cognitive decline than age-matched people without centenarian relatives. Several of these aspects are summarized in this review based on the literature and the results of our studies.

  9. Understanding quantum physics; Verstehen in der Quantenphysik

    Energy Technology Data Exchange (ETDEWEB)

    Spillner, Vera

    2011-07-01

    This thesis presents a bundle definition for 'scientific understanding' through which the empirically equivalent interpretations of quantum mechanics can be evaluated with respect to the understanding they generate. The definition of understanding is based on a sufficient and necessary criterion, as well as a bundle of conditions - where a theory can be called most understandable whenever it fulfills the highest number of bundle criteria. Thereby the definition of understanding is based on the one hand on the objective number of criteria a theory fulfills, as well as, on the other hand, on the individual's preference of bundle criteria. Applying the definition onto three interpretations of quantum mechanics, the interpretation of David Bohm appears as most understandable, followed by the interpretation of Tim Maudlin and the Kopenhagen interpretation. These three interpretations are discussed in length in my thesis. (orig.)

  10. Biomechanics and mechanical signaling in the ovary: a systematic review.

    Science.gov (United States)

    Shah, Jaimin S; Sabouni, Reem; Cayton Vaught, Kamaria C; Owen, Carter M; Albertini, David F; Segars, James H

    2018-04-24

    Mammalian oogenesis and folliculogenesis share a dynamic connection that is critical for gamete development. For maintenance of quiescence or follicular activation, follicles must respond to soluble signals (growth factors and hormones) and physical stresses, including mechanical forces and osmotic shifts. Likewise, mechanical processes are involved in cortical tension and cell polarity in oocytes. Our objective was to examine the contribution and influence of biomechanical signaling in female mammalian gametogenesis. We performed a systematic review to assess and summarize the effects of mechanical signaling and mechanotransduction in oocyte maturation and folliculogenesis and to explore possible clinical applications. The review identified 2568 publications of which 122 met the inclusion criteria. The integration of mechanical and cell signaling pathways in gametogenesis is complex. Follicular activation or quiescence are influenced by mechanical signaling through the Hippo and Akt pathways involving the yes-associated protein (YAP), transcriptional coactivator with PDZ-binding motif (TAZ), phosphatase and tensin homolog deleted from chromosome 10 (PTEN) gene, the mammalian target of rapamycin (mTOR), and forkhead box O3 (FOXO3) gene. There is overwhelming evidence that mechanical signaling plays a crucial role in development of the ovary, follicle, and oocyte throughout gametogenesis. Emerging data suggest the complexities of mechanotransduction and the biomechanics of oocytes and follicles are integral to understanding of primary ovarian insufficiency, ovarian aging, polycystic ovary syndrome, and applications of fertility preservation.

  11. Understanding the biological mechanisms of Zika virus disease ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project will use advanced biomolecular, genomics and proteomics techniques to explain the molecular mechanisms by which the Zika virus infects and persists in the human body, how it affects the human reproductive and central nervous system, and how the risk of fetal abnormalities can be better predicted in infected ...

  12. In search of mitochondrial mechanisms: interfield excursions between cell biology and biochemistry.

    Science.gov (United States)

    Bechtel, William; Abrahamsen, Adele

    2007-01-01

    Developing models of biological mechanisms, such as those involved in respiration in cells, often requires collaborative effort drawing upon techniques developed and information generated in different disciplines. Biochemists in the early decades of the 20th century uncovered all but the most elusive chemical operations involved in cellular respiration, but were unable to align the reaction pathways with particular structures in the cell. During the period 1940-1965 cell biology was emerging as a new discipline and made distinctive contributions to understanding the role of the mitochondrion and its component parts in cellular respiration. In particular, by developing techniques for localizing enzymes or enzyme systems in specific cellular components, cell biologists provided crucial information about the organized structures in which the biochemical reactions occurred. Although the idea that biochemical operations are intimately related to and depend on cell structures was at odds with the then-dominant emphasis on systems of soluble enzymes in biochemistry, a reconceptualization of energetic processes in the 1960s and 1970s made it clear why cell structure was critical to the biochemical account. This paper examines how numerous excursions between biochemistry and cell biology contributed a new understanding of the mechanism of cellular respiration.

  13. Mechanisms involved in alleviation of intestinal inflammation by bifidobacterium breve soluble factors.

    Directory of Open Access Journals (Sweden)

    Elise Heuvelin

    Full Text Available OBJECTIVES: Soluble factors released by Bifidobacterium breve C50 (Bb alleviate the secretion of pro-inflammatory cytokines by immune cells, but their effect on intestinal epithelium remains elusive. To decipher the mechanisms accounting for the cross-talk between bacteria/soluble factors and intestinal epithelium, we measured the capacity of the bacteria, its conditioned medium (Bb-CM and other Gram(+ commensal bacteria to dampen inflammatory chemokine secretion. METHODS: TNFalpha-induced chemokine (CXCL8 secretion and alteration of NF-kappaB and AP-1 signalling pathways by Bb were studied by EMSA, confocal microscopy and western blotting. Anti-inflammatory capacity was also tested in vivo in a model of TNBS-induced colitis in mice. RESULTS: Bb and Bb-CM, but not other commensal bacteria, induced a time and dose-dependent inhibition of CXCL8 secretion by epithelial cells driven by both AP-1 and NF-kappaB transcription pathways and implying decreased phosphorylation of p38-MAPK and IkappaB-alpha molecules. In TNBS-induced colitis in mice, Bb-CM decreased the colitis score and inflammatory cytokine expression, an effect reproduced by dendritic cell conditioning with Bb-CM. CONCLUSIONS: Bb and secreted soluble factors contribute positively to intestinal homeostasis by attenuating chemokine production. The results indicate that Bb down regulate inflammation at the epithelial level by inhibiting phosphorylations involved in inflammatory processes and by protective conditioning of dendritic cells.

  14. Deoxyribonucleic Acid Damage and Repair: Capitalizing on Our Understanding of the Mechanisms of Maintaining Genomic Integrity for Therapeutic Purposes

    Directory of Open Access Journals (Sweden)

    Jolene Michelle Helena

    2018-04-01

    Full Text Available Deoxyribonucleic acid (DNA is the self-replicating hereditary material that provides a blueprint which, in collaboration with environmental influences, produces a structural and functional phenotype. As DNA coordinates and directs differentiation, growth, survival, and reproduction, it is responsible for life and the continuation of our species. Genome integrity requires the maintenance of DNA stability for the correct preservation of genetic information. This is facilitated by accurate DNA replication and precise DNA repair. DNA damage may arise from a wide range of both endogenous and exogenous sources but may be repaired through highly specific mechanisms. The most common mechanisms include mismatch, base excision, nucleotide excision, and double-strand DNA (dsDNA break repair. Concurrent with regulation of the cell cycle, these mechanisms are precisely executed to ensure full restoration of damaged DNA. Failure or inaccuracy in DNA repair contributes to genome instability and loss of genetic information which may lead to mutations resulting in disease or loss of life. A detailed understanding of the mechanisms of DNA damage and its repair provides insight into disease pathogeneses and may facilitate diagnosis and the development of targeted therapies.

  15. New mechanism of spiral wave initiation in a reaction-diffusion-mechanics system.

    Directory of Open Access Journals (Sweden)

    Louis D Weise

    Full Text Available Spiral wave initiation in the heart muscle is a mechanism for the onset of dangerous cardiac arrhythmias. A standard protocol for spiral wave initiation is the application of a stimulus in the refractory tail of a propagating excitation wave, a region that we call the "classical vulnerable zone." Previous studies of vulnerability to spiral wave initiation did not take the influence of deformation into account, which has been shown to have a substantial effect on the excitation process of cardiomyocytes via the mechano-electrical feedback phenomenon. In this work we study the effect of deformation on the vulnerability of excitable media in a discrete reaction-diffusion-mechanics (dRDM model. The dRDM model combines FitzHugh-Nagumo type equations for cardiac excitation with a discrete mechanical description of a finite-elastic isotropic material (Seth material to model cardiac excitation-contraction coupling and stretch activated depolarizing current. We show that deformation alters the "classical," and forms a new vulnerable zone at longer coupling intervals. This mechanically caused vulnerable zone results in a new mechanism of spiral wave initiation, where unidirectional conduction block and rotation directions of the consequently initiated spiral waves are opposite compared to the mechanism of spiral wave initiation due to the "classical vulnerable zone." We show that this new mechanism of spiral wave initiation can naturally occur in situations that involve wave fronts with curvature, and discuss its relation to supernormal excitability of cardiac tissue. The concept of mechanically induced vulnerability may lead to a better understanding about the onset of dangerous heart arrhythmias via mechano-electrical feedback.

  16. Mechanical characterization of porcine abdominal organs.

    Science.gov (United States)

    Tamura, Atsutaka; Omori, Kiyoshi; Miki, Kazuo; Lee, Jong B; Yang, King H; King, Albert I

    2002-11-01

    Typical automotive related abdominal injuries occur due to contact with the rim of the steering wheel, seatbelt and armrest, however, the rate is less than in other body regions. When solid abdominal organs, such as the liver, kidneys and spleen are involved, the injury severity tends to be higher. Although sled and pendulum impact tests have been conducted using cadavers and animals, the mechanical properties and the tissue level injury tolerance of abdominal solid organs are not well characterized. These data are needed in the development of computer models, the improvement of current anthropometric test devices and the enhancement of our understanding of abdominal injury mechanisms. In this study, a series of experimental tests on solid abdominal organs was conducted using porcine liver, kidney and spleen specimens. Additionally, the injury tolerance of the solid organs was deduced from the experimental data.

  17. Involvement of thiol-based mechanisms in plant development.

    Science.gov (United States)

    Rouhier, Nicolas; Cerveau, Delphine; Couturier, Jérémy; Reichheld, Jean-Philippe; Rey, Pascal

    2015-08-01

    Increasing knowledge has been recently gained regarding the redox regulation of plant developmental stages. The current state of knowledge concerning the involvement of glutathione, glutaredoxins and thioredoxins in plant development is reviewed. The control of the thiol redox status is mainly ensured by glutathione (GSH), a cysteine-containing tripeptide and by reductases sharing redox-active cysteines, glutaredoxins (GRXs) and thioredoxins (TRXs). Indeed, thiol groups present in many regulatory proteins and metabolic enzymes are prone to oxidation, ultimately leading to post-translational modifications such as disulfide bond formation or glutathionylation. This review focuses on the involvement of GSH, GRXs and TRXs in plant development. Recent studies showed that the proper functioning of root and shoot apical meristems depends on glutathione content and redox status, which regulate, among others, cell cycle and hormone-related processes. A critical role of GRXs in the formation of floral organs has been uncovered, likely through the redox regulation of TGA transcription factor activity. TRXs fulfill many functions in plant development via the regulation of embryo formation, the control of cell-to-cell communication, the mobilization of seed reserves, the biogenesis of chloroplastic structures, the metabolism of carbon and the maintenance of cell redox homeostasis. This review also highlights the tight relationships between thiols, hormones and carbon metabolism, allowing a proper development of plants in relation with the varying environment and the energy availability. GSH, GRXs and TRXs play key roles during the whole plant developmental cycle via their antioxidant functions and the redox-regulation of signaling pathways. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A Review on the Study of the Generation of (Nanoparticles Aerosols during the Mechanical Solicitation of Materials

    Directory of Open Access Journals (Sweden)

    Neeraj Shandilya

    2014-01-01

    Full Text Available This paper focuses on presenting the forefront of the interdisciplinary studies conceived towards the generation of the wear particles aerosol when materials are subjected to mechanical stresses. Various wear mechanisms and instrumentation involved during stress application and aerosolization of wear particles, as well as particles characterization, measurement, and modeling techniques are presented through the investigation of a series of contextual works which are emphasized on the identification of these aspects. The review is motivated from the fact that understanding mechanisms involved in wear-induced particle generation, both at nano- and at microscale, is important for many applications that involve surfaces sliding over each other due to various potential health aspects. An attempt has been made to explain how the information based on this broad spectrum of subjects discovered in this contribution can be used and improved in order to produce a more resilient, rational, and versatile knowledge base which has been found lacking in the present literature during its survey. The area of study is highly multidisciplinary since it involves aerosol, particle, and material sciences.

  19. Involvement of delta opioid receptors in alcohol withdrawal-induced mechanical allodynia in male C57BL/6 mice.

    Science.gov (United States)

    Alongkronrusmee, Doungkamol; Chiang, Terrance; van Rijn, Richard M

    2016-10-01

    As a legal drug, alcohol is commonly abused and it is estimated that 17 million adults in the United States suffer from alcohol use disorder. Heavy alcoholics can experience withdrawal symptoms including anxiety and mechanical allodynia that can facilitate relapse. The molecular mechanisms underlying this phenomenon are not well understood, which stifles development of new therapeutics. Here we investigate whether delta opioid receptors (DORs) play an active role in alcohol withdrawal-induced mechanical allodynia (AWiMA) and if DOR agonists may provide analgesic relief from AWiMA. To study AWiMA, adult male wild-type and DOR knockout C57BL/6 mice were exposed to alcohol by a voluntary drinking model or oral gavage exposure model, which we developed and validated here. We also used the DOR-selective agonist TAN-67 and antagonist naltrindole to examine the involvement of DORs in AWiMA, which was measured using a von Frey model of mechanical allodynia. We created a robust model of alcohol withdrawal-induced anxiety and mechanical allodynia by orally gavaging mice with 3g/kg alcohol for three weeks. AWiMA was exacerbated and prolonged in DOR knockout mice as well as by pharmacological blockade of DORs compared to control mice. However, analgesia induced by TAN-67 was attenuated during withdrawal in alcohol-gavaged mice. DORs appear to play a protective role in the establishment of AWiMA. Our current results indicate that DORs could be targeted to prevent or reduce the development of AWiMA during alcohol use; however, DORs may be a less suitable target to treat AWiMA during active withdrawal. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Experimental study on tissue phantoms to understand the effect of injury and suturing on human skin mechanical properties.

    Science.gov (United States)

    Chanda, Arnab; Unnikrishnan, Vinu; Flynn, Zachary; Lackey, Kim

    2017-01-01

    Skin injuries are the most common type of injuries occurring in day-to-day life. A skin injury usually manifests itself in the form of a wound or a cut. While a shallow wound may heal by itself within a short time, deep wounds require surgical interventions such as suturing for timely healing. To date, suturing practices are based on a surgeon's experience and may vary widely from one situation to another. Understanding the mechanics of wound closure and suturing of the skin is crucial to improve clinical suturing practices and also to plan automated robotic surgeries. In the literature, phenomenological two-dimensional computational skin models have been developed to study the mechanics of wound closure. Additionally, the effect of skin pre-stress (due to the natural tension of the skin) on wound closure mechanics has been studied. However, in most of these analyses, idealistic two-dimensional skin geometries, materials and loads have been assumed, which are far from reality, and would clearly generate inaccurate quantitative results. In this work, for the first time, a biofidelic human skin tissue phantom was developed using a two-part silicone material. A wound was created on the phantom material and sutures were placed to close the wound. Uniaxial mechanical tests were carried out on the phantom specimens to study the effect of varying wound size, quantity, suture and pre-stress on the mechanical behavior of human skin. Also, the average mechanical behavior of the human skin surrogate was characterized using hyperelastic material models, in the presence of a wound and sutures. To date, such a robust experimental study on the effect of injury and sutures on human skin mechanics has not been attempted. The results of this novel investigation will provide important guidelines for surgical planning and validation of results from computational models in the future.

  1. Study of the Chemical Mechanism Involved in the Formation of Tungstite in Benzyl Alcohol by the Advanced QEXAFS Technique

    DEFF Research Database (Denmark)

    Olliges‐Stadler, Inga; Stötzel, Jan; Koziej, Dorota

    2012-01-01

    Insight into the complex chemical mechanism for the formation of tungstite nanoparticles obtained by the reaction of tungsten hexachloride with benzyl alcohol is presented herein. The organic and inorganic species involved in the formation of the nanoparticles were studied by time‐dependent gas......‐scanning extended X‐ray absorption fine structure spectroscopy enabled the time‐dependent evolution of the starting compound, the intermediates and the product to be monitored over the full reaction period. The reaction starts with fast chlorine substitution and partial reduction during the dissolution...

  2. The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry

    DEFF Research Database (Denmark)

    Rineau, Francois; Roth, Doris; Shah, Firoz

    2012-01-01

    chemistry similar to that of brown-rot fungi. The set of enzymes expressed by Pa. involutus during the degradation of the organic matter was similar to the set of enzymes involved in the oxidative degradation of wood by brown-rot fungi. However, Pa. involutus lacked transcripts encoding extracellular...... the mycorrhizal fungi. To capture the nitrogen, the fungi must at least partly disrupt the recalcitrant organic matterprotein complexes within which the nitrogen is embedded. This disruption process is poorly characterized. We used spectroscopic analyses and transcriptome profiling to examine the mechanism...... by which the ectomycorrhizal fungus Paxillus involutus degrades organic matter when acquiring nitrogen from plant litter. The fungus partially degraded polysaccharides and modified the structure of polyphenols. The observed chemical changes were consistent with a hydroxyl radical attack, involving Fenton...

  3. Understanding understanding in secondary school science: An interpretive study

    Science.gov (United States)

    O'Neill, Maureen Gail

    This study investigated the teaching of secondary school science with an emphasis on promoting student understanding. In particular, I focused on two research questions: What are the possible meanings of teaching for understanding? And, how might one teach secondary school science for understanding? After semi-structured interviews were conducted with 13 secondary school science teachers, grounded theory methodology was used to interpret the data. As a result of the selective coding process, I was able to identify 14 connected components of teaching for understanding (TfU). The process of TfU involves: puzzle-solving, a specific pedagogy and a conscious decision. The teacher must be a reflective practitioner who has some knowledge of the facets of understanding. The teacher comes to a critical incident or crisis in his or her pedagogy and adopts a mindset which highlights TfU as a personal problematic. Teachers operate with student-centred rather than teacher-centred metaphors. TfU requires a firm belief in and passion for the process, a positive attitude and excellent pedagogical content knowledge. It hinges on a performance view of understanding and demands risk-taking in the science classroom. Abstracting these ideas to a theory led me to the notion of Purposive Teaching . In their purposive-driven role as pedagogues, these teachers have placed TfU at the core of their daily practice. Constraints and challenges facing TfU as well as implications of the findings are discussed. Keywords. science teaching, teaching for understanding, purposive teaching, constructivism, understanding, pedagogy, pedagogical content knowledge, memorization, meaningful learning, reflective practice.

  4. Molecular mechanisms in radiation damage to DNA. Progress report

    International Nuclear Information System (INIS)

    Osman, R.

    1994-01-01

    The objectives of this work are to elucidate the molecular mechanisms that are responsible for radiation-induced DNA damage. The overall goal is to understand the relationship between the chemical and structural changes produced by ionizing radiation in DNA and the resulting impairment of biological function expressed as carcinogenesis or cell death. The studies are based on theoretical explorations of possible mechanisms that link initial radiation damage in the form of base and sugar damage to conformational changes in DNA. These mechanistic explorations should lead to the formulation of testable hypotheses regarding the processes of impairment of regulation of gene expression, alteration in DNA repair, and damage to DNA structure involved in cell death or cancer

  5. Mechanism involved in trichloroethylene-induced liver cancer: Importance to environmental cleanup. 1998 annual progress report

    International Nuclear Information System (INIS)

    Bull, R.J.; Miller, J.H.; Sasser, L.B.; Schultz, I.R.; Thrall, B.D.

    1998-01-01

    'The objective of this project is to develop critical data for changing risk-based clean-up standards for trichloroethylene (TCE). The project is organized around two interrelated tasks: Task 1 addresses the tumorigenic and dosimetry issues for the metabolites of TCE that produce liver cancer in mice, dichloroacetate (DCA) and trichloroacetate (TCA). Early work had suggested that TCA was primarily responsible for TCE-induced liver tumors, but several, more mechanistic observations suggest that DCA may play a prominent role. This task is aimed at determining the basis for the selection hypothesis and seeks to prove that this mode of action is responsible for TCE-induced tumors. This project will supply the basic dose-response data from which low-dose extrapolations would be made. Task 2 seeks specific evidence that TCA and DCA are capable of promoting the growth of spontaneously initiated cells from mouse liver, in vitro. The data provide the clearest evidence that both metabolites act by a mechanism of selection rather than mutation. These data are necessary to select between a linear (i.e. no threshold) and non-linear low-dose extrapolation model. As of May of 1998, this research has identified two plausible modes of action by which TCE produces liver tumors in mice. These modes of action do not require the compounds to be mutagenic. The bulk of the experimental evidence suggests that neither TCE nor the two hepatocarcinogenic metabolites of TCE are mutagenic. The results from the colony formation assay clearly establish that both of these metabolites cause colony growth from initiated cells that occur spontaneously in the liver of B 6 C 3 F 1 mice, although the phenotypes of the colonies differ in the same manner as tumors differ, in vivo. In the case of DCA, a second mechanism may occur at a lower dose involving the release of insulin. This observation is timely as it was recently reported that occupational exposures to trichloroethylene results in 2 to 4-fold

  6. IUTAM Symposium on progress in the theory and numerics of configurational mechanics

    CERN Document Server

    2009-01-01

    Configurational mechanics has attracted much attention from various research fields over the recent years/decades and has developed into a versatile tool that can be applied to a variety of problems. Since Eshelby's seminal works a general notion of configurational mechanics has evolved and has successfully been applied to many problems involving various types of defects in continuous media. The most prominent application is the use of configurational forces in fracture mechanics. However, as configurational mechanics is related to arbitrary material inhomogeneities it has also very successfully been applied to many materials science and engineering problems such as phase transitions and inelastic deformations. Also, the modeling of materials with micro-structure evolution is an important field, in which configurational mechanics can provide a better understanding of processes going on within the material. Besides these mechanical, physical, and chemical applications, ideas from configurational mechanics are ...

  7. Parental Involvement in Children's Education : A Gendered Perspective

    OpenAIRE

    Stanikzai, Razia

    2013-01-01

    The importance of parental involvement as an enabling factor in children’s education is well evidenced. Teachers have a critical role in facilitating or hindering parents’ involvement in their children’s learning. The research project provides an analysis of what teachers view as parents’ role in their children’s education with an emphasis on gender-differentiated involvement. It also discusses the barriers to parents’ involvement as well as explores whether teachers understand the importance...

  8. Current Understanding of Physicochemical Mechanisms for Cell Membrane Penetration of Arginine-rich Cell Penetrating Peptides: Role of Glycosaminoglycan Interactions.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Saito, Hiroyuki

    2018-01-01

    Arginine-rich cell penetrating peptides (CPPs) are very promising drug carriers to deliver membrane-impermeable pharmaceuticals, such as siRNA, bioactive peptides and proteins. CPPs directly penetrate into cells across cell membranes via a spontaneous energy-independent process, in which CPPs appear to interact with acidic lipids in the outer leaflet of the cell membrane. However, acidic lipids represent only 10 to 20% of the total membrane lipid content and in mammalian cell membranes they are predominantly located in the inner leaflet. Alternatively, CPPs favorably bind in a charge density- dependent manner to negatively charged, sulfated glycosaminoglycans (GAGs), such as heparan sulfate and chondroitin sulfate, which are abundant on the cell surface and are involved in many biological functions. We have recently demonstrated that the interaction of CPPs with sulfated GAGs plays a critical role in their direct cell membrane penetration: the favorable enthalpy contribution drives the high-affinity binding of arginine-rich CPPs to sulfated GAGs, initiating an efficient cell membrane penetration. The favorable enthalpy gain is presumably mainly derived from a unique property of the guanidino group of arginine residues forming multidentate hydrogen bonding with sulfate and carboxylate groups in GAGs. Such interactions can be accompanied with charge neutralization of arginine-rich CPPs, promoting their partition into cell membranes. This review summarizes the current understanding of the physicochemical mechanism for lipid membrane penetration of CPPs, and discusses the role of the GAG interactions on the cell membrane penetration of CPPs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Ego involvement increases doping likelihood.

    Science.gov (United States)

    Ring, Christopher; Kavussanu, Maria

    2018-08-01

    Achievement goal theory provides a framework to help understand how individuals behave in achievement contexts, such as sport. Evidence concerning the role of motivation in the decision to use banned performance enhancing substances (i.e., doping) is equivocal on this issue. The extant literature shows that dispositional goal orientation has been weakly and inconsistently associated with doping intention and use. It is possible that goal involvement, which describes the situational motivational state, is a stronger determinant of doping intention. Accordingly, the current study used an experimental design to examine the effects of goal involvement, manipulated using direct instructions and reflective writing, on doping likelihood in hypothetical situations in college athletes. The ego-involving goal increased doping likelihood compared to no goal and a task-involving goal. The present findings provide the first evidence that ego involvement can sway the decision to use doping to improve athletic performance.

  10. A theoretical model investigation of peptide bond formation involving two water molecules in ribosome supports the two-step and eight membered ring mechanism

    International Nuclear Information System (INIS)

    Wang, Qiang; Gao, Jun; Zhang, Dongju; Liu, Chengbu

    2015-01-01

    Highlights: • We theoretical studied peptide bond formation reaction mechanism with two water molecules. • The first water molecule can decrease the reaction barriers by forming hydrogen bonds. • The water molecule mediated three-proton transfer mechanism is the favorable mechanism. • Our calculation supports the two-step and eight membered ring mechanism. - Abstract: The ribosome is the macromolecular machine that catalyzes protein synthesis. The kinetic isotope effect analysis reported by Strobel group supports the two-step mechanism. However, the destination of the proton originating from the nucleophilic amine is uncertain. A computational simulation of different mechanisms including water molecules is carried out using the same reaction model and theoretical level. Formation the tetrahedral intermediate with proton transfer from nucleophilic nitrogen, is the rate-limiting step when two water molecules participate in peptide bond formation. The first water molecule forming hydrogen bonds with O9′ and H15′ in the A site can decrease the reaction barriers. Combined with results of the solvent isotope effects analysis, we conclude that the three-proton transfer mechanism in which water molecule mediate the proton shuttle between amino and carbon oxygen in rate-limiting step is the favorable mechanism. Our results will shield light on a better understand the reaction mechanism of ribosome

  11. Fragile X-associated tremor/ataxia syndrome (FXTAS): Pathology and mechanisms

    Science.gov (United States)

    Hagerman, Paul

    2013-01-01

    Since its discovery in 2001, our understanding of fragile X-associated tremor/ataxia syndrome (FXTAS) has undergone a remarkable transformation. Initially characterized rather narrowly as an adult-onset movement disorder, the definition of FXTAS is broadening; moreover, the disorder is now recognized as only one facet of a much broader clinical pleiotropy among children and adults who carry premutation alleles of the FMR1 gene. Furthermore, the intranuclear inclusions of FXTAS, once thought to be a CNS-specific marker of the disorder, are now known to be widely distributed in multiple non-CNS tissues; this observation fundamentally changes our concept of the disease, and may provide the basis for understanding the diverse medical problems associated with the premutation. Recent work on the pathogenic mechanisms underlying FXTAS indicates that the origins of the late-onset neurodegenerative disorder actually lie in early development, raising the likelihood that all forms of clinical involvement among premutation carriers have a common underlying mechanistic basis. There has also been great progress in our understanding of the triggering event(s) in FXTAS pathogenesis, which is now thought to involve sequestration of one or more nuclear proteins involved with microRNA biogenesis. Moreover, there is mounting evidence that mitochondrial dysregulation contributes to the decreased cell function and loss of viability, evident in mice even during the neonatal period. Taken together, these recent findings offer hope for early interventions for FXTAS, well before the onset of overt disease, and for the treatment of other forms of clinical involvement among premutation carriers. PMID:23793382

  12. Advances in mechanisms of asthma, allergy, and immunology in 2010.

    Science.gov (United States)

    Broide, David H; Finkelman, Fred; Bochner, Bruce S; Rothenberg, Marc E

    2011-03-01

    2010 was marked by rapid progress in our understanding of the cellular and molecular mechanisms involved in the pathogenesis of allergic inflammation and asthma. Studies published in the Journal of Allergy and Clinical Immunology described advances in our knowledge of cells associated with allergic inflammation (mast cells, eosinophils, dendritic cells, and T cells), as well as IgE, cytokines, receptors, signaling molecules, and pathways. Studies used animal models, as well as human cells and tissues, to advance our understanding of mechanisms of asthma, eosinophilic esophagitis, food allergy, anaphylaxis and immediate hypersensitivity, mast cells and their disorders, atopic dermatitis, nasal polyposis, and hypereosinophilic syndromes. Additional studies provided novel information about the induction and regulation of allergic inflammation and the genetic contribution to allergic inflammation. Critical features of these studies and their potential effects on human atopic disorders are summarized here. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  13. QTL analysis of frost damage in pea suggests different mechanisms involved in frost tolerance.

    Science.gov (United States)

    Klein, Anthony; Houtin, Hervé; Rond, Céline; Marget, Pascal; Jacquin, Françoise; Boucherot, Karen; Huart, Myriam; Rivière, Nathalie; Boutet, Gilles; Lejeune-Hénaut, Isabelle; Burstin, Judith

    2014-06-01

    Avoidance mechanisms and intrinsic resistance are complementary strategies to improve winter frost tolerance and yield potential in field pea. The development of the winter pea crop represents a major challenge to expand plant protein production in temperate areas. Breeding winter cultivars requires the combination of freezing tolerance as well as high seed productivity and quality. In this context, we investigated the genetic determinism of winter frost tolerance and assessed its genetic relationship with yield and developmental traits. Using a newly identified source of frost resistance, we developed a population of recombinant inbred lines and evaluated it in six environments in Dijon and Clermont-Ferrand between 2005 and 2010. We developed a genetic map comprising 679 markers distributed over seven linkage groups and covering 947.1 cM. One hundred sixty-one quantitative trait loci (QTL) explaining 9-71 % of the phenotypic variation were detected across the six environments for all traits measured. Two clusters of QTL mapped on the linkage groups III and one cluster on LGVI reveal the genetic links between phenology, morphology, yield-related traits and frost tolerance in winter pea. QTL clusters on LGIII highlighted major developmental gene loci (Hr and Le) and the QTL cluster on LGVI explained up to 71 % of the winter frost damage variation. This suggests that a specific architecture and flowering ideotype defines frost tolerance in winter pea. However, two consistent frost tolerance QTL on LGV were independent of phenology and morphology traits, showing that different protective mechanisms are involved in frost tolerance. Finally, these results suggest that frost tolerance can be bred independently to seed productivity and quality.

  14. On the Mechanical Behavior of Advanced Composite Material Structures

    Science.gov (United States)

    Vinson, Jack

    During the period between 1993 and 2004, the author, as well as some colleagues and graduate students, had the honor to be supported by the Office of Naval Research to conduct research in several aspects of the behavior of structures composed of composite materials. The topics involved in this research program were numerous, but all contributed to increasing the understanding of how various structures that are useful for marine applications behaved. More specifically, the research topics focused on the reaction of structures that were made of fiber reinforced polymer matrix composites when subjected to various loads and environmental conditions. This included the behavior of beam, plate/panel and shell structures. It involved studies that are applicable to fiberglass, graphite/carbon and Kevlar fibers imbedded in epoxy, polyester and other polymeric matrices. Unidirectional, cross-ply, angle ply, and woven composites were involved, both in laminated, monocoque as well as in sandwich constructions. Mid-plane symmetric as well as asymmetric laminates were studied, the latter involving bending-stretching coupling and other couplings that only can be achieved with advanced composite materials. The composite structures studied involved static loads, dynamic loading, shock loading as well as thermal and hygrothermal environments. One major consideration was determining the mechanical properties of composite materials subjected to high strain rates because the mechanical properties vary so significantly as the strain rate increases. A considerable number of references are cited for further reading and study for those interested.

  15. Possible mechanisms involved in the vasorelaxant effect produced by clobenzorex in aortic segments of rats

    Directory of Open Access Journals (Sweden)

    J. Lozano-Cuenca

    Full Text Available Clobenzorex is a metabolic precursor of amphetamine indicated for the treatment of obesity. Amphetamines have been involved with cardiovascular side effects such as hypertension and pulmonary arterial hypertension. The aim of the present study was to investigate whether the direct application of 10–9–10–5 M clobenzorex on isolated phenylephrine-precontracted rat aortic rings produces vascular effects, and if so, what mechanisms may be involved. Clobenzorex produced an immediate concentration-dependent vasorelaxant effect at the higher concentrations (10–7.5–10–5 M. The present outcome was not modified by 10–6 M atropine (an antagonist of muscarinic acetylcholine receptors, 3.1×10–7 M glibenclamide (an ATP-sensitive K+ channel blocker, 10–3 M 4-aminopyridine (4-AP; a voltage-activated K+ channel blocker, 10–5 M indomethacin (a prostaglandin synthesis inhibitor, 10–5 M clotrimazole (a cytochrome P450 inhibitor or 10–5 M cycloheximide (a general protein synthesis inhibitor. Contrarily, the clobenzorex-induced vasorelaxation was significantly attenuated (P<0.05 by 10–5 M L-NAME (a direct inhibitor of nitric oxide synthase, 10–7 M ODQ (an inhibitor of nitric oxide-sensitive guanylyl cyclase, 10–6 M KT 5823 (an inhibitor of protein kinase G, 10–2 M TEA (a Ca2+-activated K+ channel blocker and non-specific voltage-activated K+ channel blocker and 10–7 M apamin plus 10–7 M charybdotoxin (blockers of small- and large-conductance Ca2+-activated K+ channels, respectively, and was blocked by 8×10–2 M potassium (a high concentration and removal of the vascular endothelium. These results suggest that the direct vasorelaxant effect by clobenzorex on phenylephrine-precontracted rat aortic rings involved stimulation of the NO/cGMP/PKG/Ca2+-activated K+ channel pathway.

  16. Microorganisms involved in MIC

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, K. [Danish Technological Institute (Denmark)

    2011-07-01

    Microbiologically influenced corrosion (MIC) is a widespread problem that is difficult to detect and assess because of its complex mechanism. This paper presents the involvement of microorganisms in MIC. Some of the mechanisms that cause MIC include hydrogen consumption, production of acids, anode-cathode formation and electron shuttling. A classic bio-corrosive microorganism in the oil and gas industry is sulphate-reducing prokaryotes (SRP). Methanogens also increase corrosion rates in metals. Some of the phylogenetic orders detected while studying SRP and methanogens are archaeoglobales, clostridiales, methanosarcinales and methanothermococcus. There were some implications, such as growth of SRP not being correlated with growth of methanogens; methanogens were included in MIC risk assessment. A few examples are used to display how microorganisms are involved in topside corrosion and microbial community in producing wells. From the study, it can be concluded that, MIC risk assessment includes system data and empirical knowledge of the distribution and number of microorganisms in the system.

  17. Dinitrosopiperazine-Mediated Phosphorylated-Proteins Are Involved in Nasopharyngeal Carcinoma Metastasis

    Directory of Open Access Journals (Sweden)

    Gongjun Tan

    2014-11-01

    Full Text Available N,N'-dinitrosopiperazine (DNP with organ specificity for nasopharyngeal epithelium, is involved in nasopharyngeal carcinoma (NPC metastasis, though its mechanism is unclear. To reveal the pathogenesis of DNP-induced metastasis, immunoprecipitation was used to identify DNP-mediated phosphoproteins. DNP-mediated NPC cell line (6-10B motility and invasion was confirmed. Twenty-six phosphoproteins were increased at least 1.5-fold following DNP exposure. Changes in the expression levels of selected phosphoproteins were verified by Western-blotting analysis. DNP treatment altered the phosphorylation of ezrin (threonine 567, vimentin (serine 55, stathmin (serine 25 and STAT3 (serine 727. Furthermore, it was shown that DNP-dependent metastasis is mediated in part through ezrin at threonine 567, as DNP-mediated metastasis was decreased when threonine 567 of ezrin was mutated. Strikingly, NPC metastatic tumors exhibited a higher expression of phosphorylated-ezrin at threonine 567 than the primary tumors. These findings provide novel insight into DNP-induced NPC metastasis and may contribute to a better understanding of the metastatic mechanisms of NPC tumors.

  18. An integrative process model of leadership: examining loci, mechanisms, and event cycles.

    Science.gov (United States)

    Eberly, Marion B; Johnson, Michael D; Hernandez, Morela; Avolio, Bruce J

    2013-09-01

    Utilizing the locus (source) and mechanism (transmission) of leadership framework (Hernandez, Eberly, Avolio, & Johnson, 2011), we propose and examine the application of an integrative process model of leadership to help determine the psychological interactive processes that constitute leadership. In particular, we identify the various dynamics involved in generating leadership processes by modeling how the loci and mechanisms interact through a series of leadership event cycles. We discuss the major implications of this model for advancing an integrative understanding of what constitutes leadership and its current and future impact on the field of psychological theory, research, and practice. © 2013 APA, all rights reserved.

  19. Understanding Core-Collapse Supernovae

    Science.gov (United States)

    Hix, W. R.; Lentz, E. J.; Baird, M.; Messer, O. E. B.; Mezzacappa, A.; Lee, C.-T.; Bruenn, S. W.; Blondin, J. M.; Marronetti, P.

    2010-03-01

    Our understanding of core-collapse supernovae continues to improve as better microphysics is included in increasingly realistic neutrino-radiationhydrodynamic simulations. Recent multi-dimensional models with spectral neutrino transport, which slowly develop successful explosions for a range of progenitors between 12 and 25 solar mass, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progresses on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

  20. Improved mechanical properties of retorted carrots by ultrasonic pre-treatments.

    Science.gov (United States)

    Day, Li; Xu, Mi; Øiseth, Sofia K; Mawson, Raymond

    2012-05-01

    The use of ultrasound pre-processing treatment, compared to blanching, to enhance mechanical properties of non-starchy cell wall materials was investigated using carrot as an example. The mechanical properties of carrot tissues were measured by compression and tensile testing after the pre-processing treatment prior to and after retorting. Carrot samples ultrasound treated for 10 min at 60 °C provided a higher mechanical strength (P<0.05) to the cell wall structure than blanching for the same time period. With the addition of 0.5% CaCl(2) in the pre-treatment solution, both blanching and ultrasound treatment showed synergistic effect on enhancing the mechanical properties of retorted carrot pieces. At a relatively short treatment time (10 min at 60 °C) with the use of 0.5% CaCl(2), ultrasound treatment achieved similar enhancement to the mechanical strength of retorted carrots to blanching for a much longer time period (i.e. 40 min). The mechanism involved appears to be related to the stress responses present in all living plant matter. However, there is a need to clarify the relative importance of the potential stress mechanisms in order to get a better understanding of the processing conditions likely to be most effective. The amount of ultrasound treatment required is likely to involve low treatment intensities and there are indications from the structural characterisation and mechanical property analyses that the plant cell wall tissues were more elastic than that accomplished using low temperature long time blanching. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  1. Mechanics/heat-transfer relation for particulate materials

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, C.S.; Wang, D.G.; Rahman, K.

    1991-11-01

    The original goal of this study was to try and understand the relationship between the thermal and mechanical properties of particulate flows. Two situations were examined. The first is a study of the effects of simple shear flows, as a embryonic flow type on the apparent thermal conductivity and apparent viscosity of a dry granular flow. The second study involved fluidized beds. The original idea was to try and relate the heat transfer behavior of a fluidized bed to the particle pressure,'' the forces by only the particle phase of the two-phase mixture. (VC)

  2. The contributions of cognitive neuroscience and neuroimaging to understanding mechanisms of behavior change in addiction.

    Science.gov (United States)

    Morgenstern, Jon; Naqvi, Nasir H; Debellis, Robert; Breiter, Hans C

    2013-06-01

    In the last decade, there has been an upsurge of interest in understanding the mechanisms of behavior change (MOBC) and effective behavioral interventions as a strategy to improve addiction-treatment efficacy. However, there remains considerable uncertainty about how treatment research should proceed to address the MOBC issue. In this article, we argue that limitations in the underlying models of addiction that inform behavioral treatment pose an obstacle to elucidating MOBC. We consider how advances in the cognitive neuroscience of addiction offer an alternative conceptual and methodological approach to studying the psychological processes that characterize addiction, and how such advances could inform treatment process research. In addition, we review neuroimaging studies that have tested aspects of neurocognitive theories as a strategy to inform addiction therapies and discuss future directions for transdisciplinary collaborations across cognitive neuroscience and MOBC research. 2013 APA, all rights reserved

  3. Understanding ozone mechanisms to alleviate ceramic membrane fouling

    Science.gov (United States)

    Chu, Irma Giovanna Llamosas

    Ceramic membranes are a strong prospect as an advanced treatment in the drinking water domain. But their high capital cost and the lack of specific research on their performance still discourage their application in this field. Thus, knowing that fouling is the main drawback experienced in filtration processes, this bench-scale study was aimed to assess the impact of an ozonation pre-treatment on the alleviation of the fouling of UF ceramic membranes. Preozonation and filtration steps were performed under two different pH and ozone doses. Chosen pH values were at the limits of natural surface waters range (6.5 and 8.5) to keep practicability. Raw water from the Thousand Isle's river at Quebec-Canada was used for the tests. The filtration setup involved an unstirred dead-end filtration cell operated at constant flux. Results showed that pre-oxidation by ozone indeed reduced the fouling degree of the membranes according to the dose applied (up to 60 and 85% for membranes 8 and 50 kDa, respectively). Direct NOM oxidation was found responsible for this effect as the presence of molecular ozone was not essential to achieve these results. In the context of this experiment, however, pH showed to be more effective than the ozonation pre-treatment to keep fouling at low levels: 70% lower at pH 6.5 than at pH 8.5 for un-ozonated waters, which was contrary to most of the literature found on the topic (Changwon, 2013; De Angelis & Fidalgo, 2013; Karnik et al., 2005; S. Lee & Kim, 2014). This behaviour results mainly from the operation mode used in the experiment, the electrical repulsions between MON molecules at basic pH that led to the accumulation of material on the feed side of the membranes (concentration polarisation) and ulterior cake formation. In addition, solution pH showed an influence in the definition of fouling mechanisms. At solution pH 6.5, which was precisely the isoelectric point of the membranes (+/-6.5), the blocking fouling mode was frequently detected

  4. The involvement of audio-motor coupling in the music-supported therapy applied to stroke patients.

    Science.gov (United States)

    Rodriguez-Fornells, Antoni; Rojo, Nuria; Amengual, Julià L; Ripollés, Pablo; Altenmüller, Eckart; Münte, Thomas F

    2012-04-01

    Music-supported therapy (MST) has been developed recently to improve the use of the affected upper extremity after stroke. MST uses musical instruments, an electronic piano and an electronic drum set emitting piano sounds, to retrain fine and gross movements of the paretic upper extremity. In this paper, we first describe the rationale underlying MST, and we review the previous studies conducted on acute and chronic stroke patients using this new neurorehabilitation approach. Second, we address the neural mechanisms involved in the motor movement improvements observed in acute and chronic stroke patients. Third, we provide some recent studies on the involvement of auditory-motor coupling in the MST in chronic stroke patients using functional neuroimaging. Finally, these ideas are discussed and focused on understanding the dynamics involved in the neural circuit underlying audio-motor coupling and how functional connectivity could help to explain the neuroplastic changes observed after therapy in stroke patients. © 2012 New York Academy of Sciences.

  5. Insecticide Resistance and Metabolic Mechanisms Involved in Larval and Adult Stages of Aedes aegypti Insecticide-Resistant Reference Strains from Cuba.

    Science.gov (United States)

    Bisset, Juan Andrés; Rodríguez, María Magdalena; French, Leydis; Severson, David W; Gutiérrez, Gladys; Hurtado, Daymi; Fuentes, Ilario

    2014-12-01

    Studies were conducted to compare levels of insecticide resistance and to determine the metabolic resistance mechanisms in larval and adult stages of Aedes aegypti from Cuba. Three insecticide-resistant reference strains of Ae. aegypti from Cuba were examined. These strains were derived from a Santiago de Cuba strain isolated in 1997; it was previously subjected to a strong selection for resistance to temephos (SAN-F6), deltamethrin (SAN-F12), and propoxur (SAN-F13) and routinely maintained in the laboratory under selection pressure up to the present time, when the study was carried out. In addition, an insecticide-susceptible strain was used for comparison. The insecticide resistance in larvae and adults was determined using standard World Health Organization methodologies. Insecticide resistance mechanisms were determined by biochemical assays. The esterases (α EST and β EST) and mixed function oxidase (MFO) activities were significantly higher in adults than in the larvae of the three resistant strains studied. The association of resistance level with the biochemical mechanism for each insecticide was established for each stage. The observed differences between larval and adult stages of Ae. aegypti in their levels of insecticide resistance and the biochemical mechanisms involved should be included as part of monitoring and surveillance activities in Ae. aegypti vector control programs.

  6. Understanding the cognitive processes involved in writing to learn.

    Science.gov (United States)

    Arnold, Kathleen M; Umanath, Sharda; Thio, Kara; Reilly, Walter B; McDaniel, Mark A; Marsh, Elizabeth J

    2017-06-01

    Writing is often used as a tool for learning. However, empirical support for the benefits of writing-to-learn is mixed, likely because the literature conflates diverse activities (e.g., summaries, term papers) under the single umbrella of writing-to-learn. Following recent trends in the writing-to-learn literature, the authors focus on the underlying cognitive processes. They draw on the largely independent writing-to-learn and cognitive psychology learning literatures to identify important cognitive processes. The current experiment examines learning from 3 writing tasks (and 1 nonwriting control), with an emphasis on whether or not the tasks engaged retrieval. Tasks that engaged retrieval (essay writing and free recall) led to better final test performance than those that did not (note taking and highlighting). Individual differences in structure building (the ability to construct mental representations of narratives; Gernsbacher, Varner, & Faust, 1990) modified this effect; skilled structure builders benefited more from essay writing and free recall than did less skilled structure builders. Further, more essay-like responses led to better performance, implicating the importance of additional cognitive processes such as reorganization and elaboration. The results highlight how both task instructions and individual differences affect the cognitive processes involved when writing-to-learn, with consequences for the effectiveness of the learning strategy. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. An Experimental Test of the Roles of Audience Involvement and Message Frame in Shaping Public Reactions to Celebrity Illness Disclosures.

    Science.gov (United States)

    Myrick, Jessica Gall

    2018-04-13

    Much research has investigated what happens when celebrities disclose an illness (via media) to the public. While audience involvement (i.e., identification and parasocial relationships) is often the proposed mechanism linking illness disclosures with audience behavior change, survey designs have prevented researchers from understanding if audience involvement prior to the illness disclosure actually predicts post-disclosure emotions, cognitions, and behaviors. Rooted in previous work on audience involvement as well as the Extended Parallel Process Model, the present study uses a national online experiment (N = 1,068) to test how pre-disclosure audience involvement may initiate post-disclosure effects for the message context of skin cancer. The data demonstrate that pre-disclosure audience involvement as well as the celebrity's framing of the disclosure can shape emotional responses (i.e., fear and hope), and that cognitive perceptions of the illness itself also influence behavioral intentions.

  8. The use of micro-/milli-fluidics to better understand the mechanisms behind deep venous thrombosis

    Science.gov (United States)

    Schofield, Zoe; Alexiadis, Alessio; Brill, Alexander; Nash, Gerard; Vigolo, Daniele

    2016-11-01

    Deep venous thrombosis (DVT) is a dangerous and painful condition in which blood clots form in deep veins (e.g., femoral vein). If these clots become unstable and detach from the thrombus they can be delivered to the lungs resulting in a life threatening complication called pulmonary embolism (PE). Mechanisms of clot development in veins remain unclear but researchers suspect that the specific flow patterns in veins, especially around the valve flaps, play a fundamental role. Here we show how it is now possible to mimic the current murine model by developing micro-/milli-fluidic experiments. We exploited a novel detection technique, ghost particle velocimetry (GPV), to analyse the velocity profiles for various geometries. These vary from regular microfluidics with a rectangular cross section with a range of geometries (mimicking the presence of side and back branches in veins, closed side branch and flexible valves) to a more accurate venous representation with a 3D cylindrical geometry obtained by 3D printing. In addition to the GPV experiments, we analysed the flow field developing in these geometries by using computational fluid dynamic simulations to develop a better understanding of the mechanisms behind DVT. ZS gratefully acknowledges financial support from the EPSRC through a studentship from the Sci-Phy-4-Health Centre for Doctoral Training (EP/L016346/1).

  9. Polypyrrole for Artificial Muscles: Ionic Mechanisms

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2006-01-01

    the matrix of a polymer electrode – thereby causing volume expansion which can be converted into work. Solvent molecules are able to penetrate the polymer too. A precise description of the nature of these ionic and solvent movements is therefore important for understanding and improving the performance....... This work examines the influence of solvent, ionic species and electrolyte concentration on the fundamental question about the ionic mechanism involved: Is the actuation process driven by anion motion, cation motion, or a mixture of the two? In addition: What is the extent of solvent motion? The discussion...... is centered on polypyrrole (PPy), which is the material most used and studied. The tetraethyl ammonium cation (TEA) is shown to be able to move in and out of PPy(DBS) polymer films, in contrast to expectations. There is a switching between ionic mechanisms during cycling in TEACl electrolyte....

  10. Understanding Teachers' Perspectives of Factors That Influence Parental Involvement Practices in Special Education in Barbados

    Science.gov (United States)

    Blackman, Stacey; Mahon, Erin

    2016-01-01

    Parental involvement has been defined in various ways by researchers and is reported to have many advantages for children's education. The research utilises a case study strategy to investigate teachers' perspectives of parental involvement at four case sites in Barbados. In-depth interviews were done with teachers and analysis utilised content…

  11. Homework Involvement among Hong Kong Primary School Students

    Science.gov (United States)

    Tam, Vicky C. W.

    2009-01-01

    One component of the curriculum reform in Hong Kong focuses on the use of homework in consolidating learning, deepening understanding and constructing knowledge. This study examines the profile of Hong Kong primary school students' homework involvement, and investigates the relationships between time involvement and academic attributes, namely…

  12. Parental Involvement in Mathematics: Giving Parents a Voice

    Science.gov (United States)

    Wilder, S.

    2017-01-01

    Understanding why parents become involved in their children's education is crucial in strengthening the relationship between parental involvement and academic achievement. The present study focuses on the parental role construction and parental self-efficacy. The resulting trends suggest that parents, regardless of their self-efficacy, may assume…

  13. User involvement in the innovation process

    DEFF Research Database (Denmark)

    Christensen, Dan Saugstrup

    2008-01-01

    User involvement in the innovation process is not a new phenomenon. However, combined with the growing individualisation of demand and with highly competitive and dynamic environments, user involvement in the innovation process and thereby in the design, development, and manufacturing process, can...... nevertheless provide a competitive advantage. This is the case as an intensified user involvement in the innovation process potentially results in a more comprehensive understanding of the user needs and requirements and the context within which these are required, and thereby provides the possibility...... of developing better and more suitable products. The theoretical framework of this thesis is based on user involvement in the innovation process and how user involvement in the innovation process can be deployed in relation to deriving and colleting user needs and requirements, and thereby serves...

  14. Bifidobacterium breve MCC-117 Induces Tolerance in Porcine Intestinal Epithelial Cells: Study of the Mechanisms Involved in the Immunoregulatory Effect

    Science.gov (United States)

    MURATA, Kozue; TOMOSADA, Yohsuke; VILLENA, Julio; CHIBA, Eriko; SHIMAZU, Tomoyuki; ASO, Hisashi; IWABUCHI, Noriyuki; XIAO, Jin-zhong; SAITO, Tadao; KITAZAWA, Haruki

    2014-01-01

    Bifidobacterium breve MCC-117 is able to significantly reduce the expression of inflammatory cytokines in porcine intestinal epithelial (PIE) cells and to improve IL-10 levels in CD4+CD25high Foxp3+ lymphocytes in response to heat-stable enterotoxigenic Escherichia coli (ETEC) pathogen-associated molecular patterns (PAMPs), while the immunoregulatory effect of B. adolescentis ATCC15705 was significantly lower than that observed for the MCC-117 strain. Considering the different capacities of the two bifidobacterium strains to activate toll-like receptor (TLR)-2 and their differential immunoregulatory activities in PIE and immune cells, we hypothesized that comparative studies with both strains could provide important information regarding the molecular mechanism(s) involved in the anti-inflammatory activity of bifidobacteria. In this work, we demonstrated that the anti-inflammatory effect of B. breve MCC-117 was achieved by a complex interaction of multiple negative regulators of TLRs as well as inhibition of multiple signaling pathways. We showed that B. breve MCC-117 reduced heat-stable ETEC PAMP-induced NF-κB, p38 MAPK and PI3 K activation and expression of pro-inflammatory cytokines in PIE cells. In addition, we demonstrated that B. breve MCC-117 may activate TLR2 synergistically and cooperatively with one or more other pattern recognition receptors (PRRs), and that interactions may result in a coordinated sum of signals that induce the upregulation of A20, Bcl-3, Tollip and SIGIRR. Upregulation of these negative regulators could have an important physiological impact on maintaining or reestablishing homeostatic TLR signals in PIE cells. Therefore, in the present study, we gained insight into the molecular mechanisms involved in the immunoregulatory effect of B. breve MCC-117. PMID:24936377

  15. Effect of food azo dye tartrazine on learning and memory functions in mice and rats, and the possible mechanisms involved.

    Science.gov (United States)

    Gao, Yonglin; Li, Chunmei; Shen, Jingyu; Yin, Huaxian; An, Xiulin; Jin, Haizhu

    2011-08-01

    Tartrazine is an artificial azo dye commonly used in human food and pharmaceutical products. The present study was conducted to evaluate the toxic effect of tartrazine on the learning and memory functions in mice and rats. Animals were administered different doses of tartrazine for a period of 30 d and were evaluated by open-field test, step-through test, and Morris water maze test, respectively. Furthermore, the biomarkers of the oxidative stress and pathohistology were also measured to explore the possible mechanisms involved. The results indicated that tartrazine extract significantly enhanced active behavioral response to the open field, increased the escape latency in Morris water maze test and decreased the retention latency in step-through tests. The decline in the activities of catalase, glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) as well as a rise in the level of malonaldehyde (MDA) were observed in the brain of tartrazine-treated rats, and these changes were associated with the brain from oxidative damage. The dose levels of tartrazine in the present study produced a few adverse effects in learning and memory functions in animals. The mechanisms might be attributed to promoting lipid peroxidation products and reactive oxygen species, inhibiting endogenous antioxidant defense enzymes and the brain tissue damage. Tartrazine is an artificial azo dye commonly used in human food and pharmaceutical products. Since the last assessment carried out by the Joint FAO/WHO Expert Committee on Food Additives in 1964, many new studies have been conducted. However, there is a little information about the effects on learning and memory performance. The present study was conducted to evaluate the toxic effect of tartrazine on the learning and memory functions in animals and its possible mechanism involved. Based on our results, we believe that more extensive assessment of food additives in current use is warranted. © 2011 Institute of Food

  16. Understanding Pregnancy and Birth Issues

    Science.gov (United States)

    ... Navigation Bar Home Current Issue Past Issues Understanding Pregnancy and Birth Issues Past Issues / Winter 2008 Table ... turn Javascript on. What is a High-Risk Pregnancy? All pregnancies involve a certain degree of risk ...

  17. Mechanisms of otoconia and otolith development.

    Science.gov (United States)

    Lundberg, Yunxia Wang; Xu, Yinfang; Thiessen, Kevin D; Kramer, Kenneth L

    2015-03-01

    Otoconia are bio-crystals that couple mechanic forces to the sensory hair cells in the utricle and saccule, a process essential for us to sense linear acceleration and gravity for the purpose of maintaining bodily balance. In fish, structurally similar bio-crystals called otoliths mediate both balance and hearing. Otoconia abnormalities are common and can cause vertigo and imbalance in humans. However, the molecular etiology of these illnesses is unknown, as investigators have only begun to identify genes important for otoconia formation in recent years. To date, in-depth studies of selected mouse otoconial proteins have been performed, and about 75 zebrafish genes have been identified to be important for otolith development. This review will summarize recent findings as well as compare otoconia and otolith development. It will provide an updated brief review of otoconial proteins along with an overview of the cells and cellular processes involved. While continued efforts are needed to thoroughly understand the molecular mechanisms underlying otoconia and otolith development, it is clear that the process involves a series of temporally and spatially specific events that are tightly coordinated by numerous proteins. Such knowledge will serve as the foundation to uncover the molecular causes of human otoconia-related disorders. © 2014 Wiley Periodicals, Inc.

  18. Gouty involvement of the patella and extensor mechanism of the knee mimicking aggressive neoplasm. A case series.

    Science.gov (United States)

    Kester, Christopher; Wallace, Matthew T; Jelinek, James; Aboulafia, Albert

    2018-06-01

    Gout is a common inflammatory crystal deposition disease that occurs in many joints throughout the body. Active gout is most often associated with painful synovitis causing searing joint pains, but gout can also produce large masses of space-occupying deposits called tophi. Tophi are most frequently seen in juxta-articular locations with or without bony erosion and are often misdiagnosed as degenerative joint disease. Soft tissue deposits and tendon involvement are also known manifestations of gout, but can present with indeterminate and alarming findings on imaging. We present three cases of tophaceous gout mimicking aggressive neoplasms in the extensor mechanism of the knee. All cases presented as extensor tendon masses eroding into the patella, with imaging findings initially concerning for primary musculoskeletal malignancy.

  19. A theoretical understanding on the CO-tolerance mechanism of the WC(0001) supported Pt monolayer: Some improvement strategies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xilin [College of Physics and Materials Science, Henan Normal University, Xinxiang, 453007 (China); Lu, Zhansheng [College of Physics and Materials Science, Henan Normal University, Xinxiang, 453007 (China); Collaborative Innovation Center of Nano Functional Materials and Applications, Henan Province (China); Yang, Zongxian, E-mail: yzx@henannu.edu.cn [College of Physics and Materials Science, Henan Normal University, Xinxiang, 453007 (China); Collaborative Innovation Center of Nano Functional Materials and Applications, Henan Province (China)

    2016-12-15

    Highlights: • The mechanism of CO tolerance and oxidation on Pt{sub ML}/WC(0001) is clarified. • The high tolerance of Pt{sub ML}/WC(0001) to CO originate from the weak adsorption. • The minimum energy path and the rate-determining step are identified. • The activity of Pt{sub ML}/WC(0001) to CO oxidation is comparable to that of Pt(111). • Some probable strategies are proposed to improve the activity of Pt{sub ML}/WC(0001). - Abstract: The deposition of platinum on the tungsten carbide (Pt/WC) have been achieved and proved with high stability, activity and CO-tolerance toward some reactions in experiments. Although a lot of experimental efforts have been focused on understanding the activity, stability and CO-tolerance of Pt/WC, the relevant theoretical works related to the CO-tolerance mechanism are still scarce. In current study, the adsorption and oxidation of CO on the Pt monolayer supported on WC(0001) surface (Pt{sub ML}/WC(0001)) are investigated using density functional theory calculations. It is found that the oxidation of CO on Pt{sub ML}/WC(0001) proceeds preferably along the Langmuir-Hinshelwood mechanism. The energy barrier of 1.06 eV for the rate-determining step of OOCO formation is almost equal to that (1.05 eV) for CO oxidation by atomic O on Pt(111), while the adsorption energy of 1.59 eV for CO on Pt{sub ML}/WC(0001) is smaller than that on Pt(111) (1.85 eV), indicating that the high resistance to CO poisoning of Pt{sub ML}/WC(0001) may originate from the weak interaction between them. To further improve the CO tolerance, some probable strategies are proposed based on the relevant kinetics results. The current results are helpful to understanding the origin of the highly resistant to CO poisoning of Pt{sub ML}/WC(0001) and rationally designing catalysts to improve the CO oxidation activity.

  20. The progestin etonogestrel enhances the respiratory response to metabolic acidosis in newborn rats. Evidence for a mechanism involving supramedullary structures.

    Science.gov (United States)

    Loiseau, Camille; Osinski, Diane; Joubert, Fanny; Straus, Christian; Similowski, Thomas; Bodineau, Laurence

    2014-05-01

    Central congenital hypoventilation syndrome is a neuro-respiratory disease characterized by the dysfunction of the CO2/H(+) chemosensitive neurons of the retrotrapezoid nucleus/parafacial respiratory group. A recovery of CO2/H(+) chemosensitivity has been observed in some central congenital hypoventilation syndrome patients coincidental with contraceptive treatment by a potent progestin, desogestrel (Straus et al., 2010). The mechanisms of this progestin effect remain unknown, although structures of medulla oblongata, midbrain or diencephalon are known to be targets for progesterone. In the present study, on ex vivo preparations of central nervous system of newborn rats, we show that acute exposure to etonogestrel (active metabolite of desogestrel) enhanced the increased respiratory frequency induced by metabolic acidosis via a mechanism involving supramedullary structures located in pontine, mesencephalic or diencephalic regions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Endoplasmic reticulum quality control is involved in the mechanism of endoglin-mediated hereditary haemorrhagic telangiectasia.

    Directory of Open Access Journals (Sweden)

    Bassam R Ali

    Full Text Available Hereditary haemorrhagic telangiectasia (HHT is an autosomal dominant genetic condition affecting the vascular system and is characterised by epistaxis, arteriovenous malformations and mucocutaneous and gastrointestinal telangiectases. This disorder affects approximately 1 in 8,000 people worldwide. Significant morbidity is associated with this condition in affected individuals, and anaemia can be a consequence of repeated haemorrhages from telangiectasia in the gut and nose. In the majority of the cases reported, the condition is caused by mutations in either ACVRL1 or endoglin genes, which encode components of the TGF-beta signalling pathway. Numerous missense mutations in endoglin have been reported as causative defects for HHT but the exact underlying cellular mechanisms caused by these mutations have not been fully established despite data supporting a role for the endoplasmic reticulum (ER quality control machinery. For this reason, we examined the subcellular trafficking of twenty-five endoglin disease-causing missense mutations. The mutant proteins were expressed in HeLa and HEK293 cell lines, and their subcellular localizations were established by confocal fluorescence microscopy alongside the analysis of their N-glycosylation profiles. ER quality control was found to be responsible in eight (L32R, V49F, C53R, V125D, A160D, P165L, I271N and A308D out of eleven mutants located on the orphan extracellular domain in addition to two (C363Y and C382W out of thirteen mutants in the Zona Pellucida (ZP domain. In addition, a single intracellular domain missense mutant was examined and found to traffic predominantly to the plasma membrane. These findings support the notion of the involvement of the ER's quality control in the mechanism of a significant number, but not all, missense endoglin mutants found in HHT type 1 patients. Other mechanisms including loss of interactions with signalling partners as well as adverse effects on functional

  2. Mitochondrion-mediated cell death: dissecting yeast apoptosis for a better understanding of neurodegeneration

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Ralf J., E-mail: ralf.braun@uni-bayreuth.de [Institut für Zellbiologie, Universität Bayreuth, Bayreuth (Germany)

    2012-11-28

    Mitochondrial damage and dysfunction are common hallmarks for neurodegenerative disorders, including Alzheimer, Parkinson, Huntington diseases, and the motor neuron disorder amyotrophic lateral sclerosis. Damaged mitochondria pivotally contribute to neurotoxicity and neuronal cell death in these disorders, e.g., due to their inability to provide the high energy requirements for neurons, their generation of reactive oxygen species (ROS), and their induction of mitochondrion-mediated cell death pathways. Therefore, in-depth analyses of the underlying molecular pathways, including cellular mechanisms controlling the maintenance of mitochondrial function, is a prerequisite for a better understanding of neurodegenerative disorders. The yeast Saccharomyces cerevisiae is an established model for deciphering mitochondrial quality control mechanisms and the distinct mitochondrial roles during apoptosis and programmed cell death. Cell death upon expression of various human neurotoxic proteins has been characterized in yeast, revealing neurotoxic protein-specific differences. This review summarizes how mitochondria are affected in these neurotoxic yeast models, and how they are involved in the execution and prevention of cell death. I will discuss to which extent this mimics the situation in other neurotoxic model systems, and how this may contribute to a better understanding of the mitochondrial roles in the human disorders.

  3. Mitochondrion-mediated cell death: dissecting yeast apoptosis for a better understanding of neurodegeneration

    International Nuclear Information System (INIS)

    Braun, Ralf J.

    2012-01-01

    Mitochondrial damage and dysfunction are common hallmarks for neurodegenerative disorders, including Alzheimer, Parkinson, Huntington diseases, and the motor neuron disorder amyotrophic lateral sclerosis. Damaged mitochondria pivotally contribute to neurotoxicity and neuronal cell death in these disorders, e.g., due to their inability to provide the high energy requirements for neurons, their generation of reactive oxygen species (ROS), and their induction of mitochondrion-mediated cell death pathways. Therefore, in-depth analyses of the underlying molecular pathways, including cellular mechanisms controlling the maintenance of mitochondrial function, is a prerequisite for a better understanding of neurodegenerative disorders. The yeast Saccharomyces cerevisiae is an established model for deciphering mitochondrial quality control mechanisms and the distinct mitochondrial roles during apoptosis and programmed cell death. Cell death upon expression of various human neurotoxic proteins has been characterized in yeast, revealing neurotoxic protein-specific differences. This review summarizes how mitochondria are affected in these neurotoxic yeast models, and how they are involved in the execution and prevention of cell death. I will discuss to which extent this mimics the situation in other neurotoxic model systems, and how this may contribute to a better understanding of the mitochondrial roles in the human disorders.

  4. Verifiably Truthful Mechanisms

    DEFF Research Database (Denmark)

    Branzei, Simina; Procaccia, Ariel D.

    2015-01-01

    the computational sense). Our approach involves three steps: (i) specifying the structure of mechanisms, (ii) constructing a verification algorithm, and (iii) measuring the quality of verifiably truthful mechanisms. We demonstrate this approach using a case study: approximate mechanism design without money...

  5. Molecular Mechanisms of Liver Fibrosis in HIV/HCV Coinfection

    Directory of Open Access Journals (Sweden)

    Claudio M. Mastroianni

    2014-05-01

    Full Text Available Chronic hepatitis C virus (HCV infection is an important cause of morbidity and mortality in people coinfected with human immunodeficiency virus (HIV. Several studies have shown that HIV infection promotes accelerated HCV hepatic fibrosis progression, even with HIV replication under full antiretroviral control. The pathogenesis of accelerated hepatic fibrosis among HIV/HCV coinfected individuals is complex and multifactorial. The most relevant mechanisms involved include direct viral effects, immune/cytokine dysregulation, altered levels of matrix metalloproteinases and fibrosis biomarkers, increased oxidative stress and hepatocyte apoptosis, HIV-associated gut depletion of CD4 cells, and microbial translocation. In addition, metabolic alterations, heavy alcohol use, as well drug use, may have a potential role in liver disease progression. Understanding the pathophysiology and regulation of liver fibrosis in HIV/HCV co-infection may lead to the development of therapeutic strategies for the management of all patients with ongoing liver disease. In this review, we therefore discuss the evidence and potential molecular mechanisms involved in the accelerated liver fibrosis seen in patients coinfected with HIV and HCV.

  6. Understanding and Observing Subglacial Friction Using Seismology

    Science.gov (United States)

    Tsai, V. C.

    2017-12-01

    Glaciology began with a focus on understanding basic mechanical processes and producing physical models that could explain the principal observations. Recently, however, more attention has been paid to the wealth of recent observations, with many modeling efforts relying on data assimilation and empirical scalings, rather than being based on first-principles physics. Notably, ice sheet models commonly assume that subglacial friction is characterized by a "slipperiness" coefficient that is determined by inverting surface velocity observations. Predictions are usually then made by assuming these slipperiness coefficients are spatially and temporally fixed. However, this is only valid if slipperiness is an unchanging material property of the bed and, despite decades of work on subglacial friction, it has remained unclear how to best account for such subglacial physics in ice sheet models. Here, we describe how basic seismological concepts and observations can be used to improve our understanding and determination of subglacial friction. First, we discuss how standard models of granular friction can and should be used in basal friction laws for marine ice sheets, where very low effective pressures exist. We show that under realistic West Antarctic Ice Sheet conditions, standard Coulomb friction should apply in a relatively narrow zone near the grounding line and that this should transition abruptly as one moves inland to a different, perhaps Weertman-style, dependence of subglacial stress on velocity. We show that this subglacial friction law predicts significantly different ice sheet behavior even as compared with other friction laws that include effective pressure. Secondly, we explain how seismological observations of water flow noise and basal icequakes constrain subglacial physics in important ways. Seismically observed water flow noise can provide constraints on water pressures and channel sizes and geometry, leading to important data on subglacial friction

  7. Glucan: mechanisms involved in its radioprotective effect

    International Nuclear Information System (INIS)

    Patchen, M.L.; D'Alesandro, M.M.; Brook, I.; Blakely, W.F.; MacVittie, T.J.

    1987-01-01

    It has generally been accepted that most biologically derived agents that are radioprotective in the hemopoietic-syndrome dose range (eg, endotoxin, Bacillus Calmette Guerin, Corynebacterium parvum, etc) exert their beneficial properties by enhancing hemopoietic recovery and hence, by regenerating the host's ability to resist life-threatening opportunistic infections. However, using glucan as a hemopoietic stimulant/radioprotectant, we have demonstrated that host resistance to opportunistic infection is enhanced in these mice even prior to the detection of significant hemopoietic regeneration. This early enhanced resistance to microbial invasion in glucan-treated irradiated mice could be correlated with enhanced and/or prolonged macrophage (but not granulocyte) function. These results suggest that early after irradiation glucan may mediate its radioprotection by enhancing resistance to microbial invasion via mechanisms not necessarily predicated on hemopoietic recovery. In addition, preliminary evidence suggests that glucan can also function as an effective free-radical scavenger. Because macrophages have been shown to selectively phagocytize and sequester glucan, the possibility that these specific cells may be protected by virtue of glucan's scavenging ability is also suggested

  8. Theoretical physics. Quantum mechanics

    International Nuclear Information System (INIS)

    Rebhan, Eckhard

    2008-01-01

    From the first in two comprehensive volumes appeared Theoretical Physics of the author by this after Mechanics and Electrodynamics also Quantum mechanics appears as thinner single volume. First the illustrative approach via wave mechanics is reproduced. The more abstract Hilbert-space formulation introduces the author later by postulates, which are because of the preceding wave mechanics sufficiently plausible. All concepts of quantum mechanics, which contradict often to the intuitive understanding formed by macroscopic experiences, are extensively discussed and made by means of many examples as well as problems - in the largest part provided with solutions - understandable. To the interpretation of quantum mechanics an extensive special chapter is dedicated. this book arose from courses on theoretical physics, which the author has held at the Heinrich-Heine University in Duesseldorf, and was in numerous repetitions fitted to the requirement of the studyings. it is so designed that it is also after the study suited as reference book or for the renewing. All problems are very thoroughly and such extensively studied that each step is separately reproducible. About motivation and good understandability is cared much

  9. Modelling Joint Decision Making Processes Involving Emotion-Related Valuing and Mutual Empathic Understanding

    NARCIS (Netherlands)

    Treur, J.

    2011-01-01

    In this paper a social agent model for joint decision making is presented addressing the role of mutually acknowledged empathic understanding in the decision making. The model is based on principles from recent neurological theories on mirror neurons, internal simulation, and emotion-related

  10. Understanding Key Mechanisms of Exercise-Induced Cardiac Protection to Mitigate Disease: Current Knowledge and Emerging Concepts.

    Science.gov (United States)

    Bernardo, Bianca C; Ooi, Jenny Y Y; Weeks, Kate L; Patterson, Natalie L; McMullen, Julie R

    2018-01-01

    The benefits of exercise on the heart are well recognized, and clinical studies have demonstrated that exercise is an intervention that can improve cardiac function in heart failure patients. This has led to significant research into understanding the key mechanisms responsible for exercise-induced cardiac protection. Here, we summarize molecular mechanisms that regulate exercise-induced cardiac myocyte growth and proliferation. We discuss in detail the effects of exercise on other cardiac cells, organelles, and systems that have received less or little attention and require further investigation. This includes cardiac excitation and contraction, mitochondrial adaptations, cellular stress responses to promote survival (heat shock response, ubiquitin-proteasome system, autophagy-lysosomal system, endoplasmic reticulum unfolded protein response, DNA damage response), extracellular matrix, inflammatory response, and organ-to-organ crosstalk. We summarize therapeutic strategies targeting known regulators of exercise-induced protection and the challenges translating findings from bench to bedside. We conclude that technological advancements that allow for in-depth profiling of the genome, transcriptome, proteome and metabolome, combined with animal and human studies, provide new opportunities for comprehensively defining the signaling and regulatory aspects of cell/organelle functions that underpin the protective properties of exercise. This is likely to lead to the identification of novel biomarkers and therapeutic targets for heart disease.

  11. Transcriptome Sequence Analysis of an Ornamental Plant, Ananas comosus var. bracteatus, Revealed the Potential Unigenes Involved in Terpenoid and Phenylpropanoid Biosynthesis

    OpenAIRE

    Ma, Jun; Kanakala, S.; He, Yehua; Zhang, Junli; Zhong, Xiaolan

    2015-01-01

    Background Ananas comosus var. bracteatus (Red Pineapple) is an important ornamental plant for its colorful leaves and decorative red fruits. Because of its complex genome, it is difficult to understand the molecular mechanisms involved in the growth and development. Thus high-throughput transcriptome sequencing of Ananas comosus var. bracteatus is necessary to generate large quantities of transcript sequences for the purpose of gene discovery and functional genomic studies. Results The Anana...

  12. Pathogenesis of myasthenia gravis: update on disease types, models, and mechanisms

    Science.gov (United States)

    Phillips, William D.; Vincent, Angela

    2016-01-01

    Myasthenia gravis is an autoimmune disease of the neuromuscular junction (NMJ) caused by antibodies that attack components of the postsynaptic membrane, impair neuromuscular transmission, and lead to weakness and fatigue of skeletal muscle. This can be generalised or localised to certain muscle groups, and involvement of the bulbar and respiratory muscles can be life threatening. The pathogenesis of myasthenia gravis depends upon the target and isotype of the autoantibodies. Most cases are caused by immunoglobulin (Ig)G1 and IgG3 antibodies to the acetylcholine receptor (AChR). They produce complement-mediated damage and increase the rate of AChR turnover, both mechanisms causing loss of AChR from the postsynaptic membrane. The thymus gland is involved in many patients, and there are experimental and genetic approaches to understand the failure of immune tolerance to the AChR. In a proportion of those patients without AChR antibodies, antibodies to muscle-specific kinase (MuSK), or related proteins such as agrin and low-density lipoprotein receptor-related protein 4 (LRP4), are present. MuSK antibodies are predominantly IgG4 and cause disassembly of the neuromuscular junction by disrupting the physiological function of MuSK in synapse maintenance and adaptation. Here we discuss how knowledge of neuromuscular junction structure and function has fed into understanding the mechanisms of AChR and MuSK antibodies. Myasthenia gravis remains a paradigm for autoantibody-mediated conditions and these observations show how much there is still to learn about synaptic function and pathological mechanisms. PMID:27408701

  13. Pathogenesis of myasthenia gravis: update on disease types, models, and mechanisms.

    Science.gov (United States)

    Phillips, William D; Vincent, Angela

    2016-01-01

    Myasthenia gravis is an autoimmune disease of the neuromuscular junction (NMJ) caused by antibodies that attack components of the postsynaptic membrane, impair neuromuscular transmission, and lead to weakness and fatigue of skeletal muscle. This can be generalised or localised to certain muscle groups, and involvement of the bulbar and respiratory muscles can be life threatening. The pathogenesis of myasthenia gravis depends upon the target and isotype of the autoantibodies. Most cases are caused by immunoglobulin (Ig)G1 and IgG3 antibodies to the acetylcholine receptor (AChR). They produce complement-mediated damage and increase the rate of AChR turnover, both mechanisms causing loss of AChR from the postsynaptic membrane. The thymus gland is involved in many patients, and there are experimental and genetic approaches to understand the failure of immune tolerance to the AChR. In a proportion of those patients without AChR antibodies, antibodies to muscle-specific kinase (MuSK), or related proteins such as agrin and low-density lipoprotein receptor-related protein 4 (LRP4), are present. MuSK antibodies are predominantly IgG4 and cause disassembly of the neuromuscular junction by disrupting the physiological function of MuSK in synapse maintenance and adaptation. Here we discuss how knowledge of neuromuscular junction structure and function has fed into understanding the mechanisms of AChR and MuSK antibodies. Myasthenia gravis remains a paradigm for autoantibody-mediated conditions and these observations show how much there is still to learn about synaptic function and pathological mechanisms.

  14. Disturbed hypoxic responses as a pathogenic mechanism of diabetic foot ulcers.

    Science.gov (United States)

    Catrina, Sergiu-Bogdan; Zheng, Xiaowei

    2016-01-01

    Diabetic foot ulceration (DFU) is a chronic complication of diabetes that is characterized by impaired wound healing in the lower extremities. DFU remains a major clinical challenge because of poor understanding of its pathogenic mechanisms. Impaired wound healing in diabetes is characterized by decreased angiogenesis, reduced bone marrow-derived endothelial progenitor cell (EPC) recruitment, and decreased fibroblast and keratinocyte proliferation and migration. Recently, increasing evidence has suggested that increased hypoxic conditions and impaired cellular responses to hypoxia are essential pathogenic factors of delayed wound healing in DFU. Hypoxia-inducible factor-1 (HIF-1, a heterodimer of HIF-1α and HIF-1β) is a master regulator of oxygen homeostasis that mediates the adaptive cellular responses to hypoxia by regulating the expression of genes involved in angiogenesis, metabolic changes, proliferation, migration, and cell survival. However, HIF-1 signalling is inhibited in diabetes as a result of hyperglycaemia-induced HIF-1α destabilization and functional repression. Increasing HIF-1α expression and activity using various approaches promotes angiogenesis, EPC recruitment, and granulation, thereby improving wound healing in experimental diabetes. The mechanisms underlying HIF-1α regulation in diabetes and the therapeutic strategies targeting HIF-1 signalling for the treatment of diabetic wounds are discussed in this review. Further investigations of the pathways involved in HIF-1α regulation in diabetes are required to advance our understanding of the mechanisms underlying impaired wound healing in diabetes and to provide a foundation for developing novel therapeutic approaches to treat DFU. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Underlying Mechanisms of Tinnitus: Review and Clinical Implications

    Science.gov (United States)

    Henry, James A.; Roberts, Larry E.; Caspary, Donald M.; Theodoroff, Sarah M.; Salvi, Richard J.

    2016-01-01

    Background The study of tinnitus mechanisms has increased tenfold in the last decade. The common denominator for all of these studies is the goal of elucidating the underlying neural mechanisms of tinnitus with the ultimate purpose of finding a cure. While these basic science findings may not be immediately applicable to the clinician who works directly with patients to assist them in managing their reactions to tinnitus, a clear understanding of these findings is needed to develop the most effective procedures for alleviating tinnitus. Purpose The goal of this review is to provide audiologists and other health-care professionals with a basic understanding of the neurophysiological changes in the auditory system likely to be responsible for tinnitus. Results It is increasingly clear that tinnitus is a pathology involving neuroplastic changes in central auditory structures that take place when the brain is deprived of its normal input by pathology in the cochlea. Cochlear pathology is not always expressed in the audiogram but may be detected by more sensitive measures. Neural changes can occur at the level of synapses between inner hair cells and the auditory nerve and within multiple levels of the central auditory pathway. Long-term maintenance of tinnitus is likely a function of a complex network of structures involving central auditory and nonauditory systems. Conclusions Patients often have expectations that a treatment exists to cure their tinnitus. They should be made aware that research is increasing to discover such a cure and that their reactions to tinnitus can be mitigated through the use of evidence-based behavioral interventions. PMID:24622858

  16. Mecanismos envolvidos na cicatrização: uma revisão Mechanisms involved in wound healing: a revision

    Directory of Open Access Journals (Sweden)

    Carlos Aberto Balbino

    2005-03-01

    Full Text Available Os mecanismos envolvidos no processo de reparo de tecidos estão revisados nesse trabalho. O processo de cicatrização ocorre fundamentalmente em três fases: inflamação, formação de tecido de granulação e deposição de matriz extracelular e remodelação. Os eventos celulares e tissulares de cada uma dessas fases estão descritos e discutidos. Os mediadores químicos estão correlacionados com os eventos do processo de cicatrização e as células envolvidas. Especial ênfase é dada à participação dos fatores de crescimento.The mechanisms involved in tissue repair are revised. The wound healing process occurs basically in three phases: inflammation, formation of granulating tissue and extracellular tissue deposition, and tissue remodeling. The cellular and tissue events of each phase are described and discussed. The chemical mediators and their interplay with the wound healing events and cells involved are also discussed. However, especial attention was given to the role played by the growth factors in the tissue repair process.

  17. Microscopic Mechanism of Doping-Induced Kinetically Constrained Crystallization in Phase-Change Materials.

    Science.gov (United States)

    Lee, Tae Hoon; Loke, Desmond; Elliott, Stephen R

    2015-10-07

    A comprehensive microscopic mechanism of doping-induced kinetically constrained crystallization in phase-change materials is provided by investigating structural and dynamical dopant characteristics via ab initio molecular dynamics simulations. The information gained from this study may provide a basis for a fast screening of dopant species for electronic memory devices, or for understanding the general physics involved in the crystallization of doped glasses. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Mechanics/heat-transfer relation for particulate materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, C.S.; Wang, D.G.; Rahman, K.

    1991-11-01

    The original goal of this study was to try and understand the relationship between the thermal and mechanical properties of particulate flows. Two situations were examined. The first is a study of the effects of simple shear flows, as a embryonic flow type on the apparent thermal conductivity and apparent viscosity of a dry granular flow. The second study involved fluidized beds. The original idea was to try and relate the heat transfer behavior of a fluidized bed to the ``particle pressure,`` the forces by only the particle phase of the two-phase mixture. (VC)

  19. Memory, imprinting, and the brain: an inquiry into mechanisms

    National Research Council Canada - National Science Library

    Horn, Gabriel

    1985-01-01

    ... process, and advances in our understanding of the mechanisms by which information is stored in the brain are recent and have been made on a limited front. The purpose of writing this book is to say something about these advances. The book is not, nor is it intended to be, a general review of this field, but gives an account of work in which I have been involved, over the past two decades or so, on habituation and imprinting. During that time modest success has been achieved in analysing habituation- a common change...

  20. Mechanisms and secondary factors involved in the induction of radiation transformation in vitro

    International Nuclear Information System (INIS)

    Little, J.B.

    1983-01-01

    The long term of this research program was to gain information concerning the mechanisms that determine the carcinogenic effects of ionizing radiation, particularly high LET radiation exposure. The experimental approach involves parallel studies of the induction of malignant transformation in BALB/3T3 cells and of specific gene mutations in human lymphoblastoid cells. Emphasis was on the biologic effects of internally incorporated Auger electron emitting radionuclides and the initiation of studies to determine the effects of low dose-rate neutron exposure. Auger electron irradiation sever as a model for high LET-type radiation effects and as an experimental tool for studying the effects of radiation at specific sites within the cell. Auger-emitting radiosotopes are commonly used in clinical nuclear medicine, rendering them a potential hazard to human populations. We examined the influence of cellular localization of Auger-emitting radionuclides and the spectrum of energy distribution in DNA on their mutagenic, cytogenetic, and transformational effects. The effects of 125 I (an energetic beta emitter) were compared. We studied the induction of cytogenetic changes by 125 I exposure of the cell membrane, as well as its potential to promote (enhance) transformation initiated by low dose external x-ray exposure. We will investigate the Relative Biological Effectiveness for mutagenesis and transformation of low doses of fast neutrons delivered continuously at variable low dose-rates. 34 refs., 1 tab

  1. Understanding communicative actions : A repetitive TMS study

    NARCIS (Netherlands)

    Stolk, Arjen; Noordzij, Matthijs Leendert; Volman, Inge; Verhagen, Lennart; Overeem, Sebastiaan; van Elswijk, Gijs; Bloem, Bas; Hagoort, Peter; Toni, Ivan

    2014-01-01

    Despite the ambiguity inherent in human communication, people are remarkably efficient in establishing mutual understanding. Studying how people communicate in novel settings provides a window into the mechanisms supporting the human competence to rapidly generate and understand novel shared

  2. Understanding communicative actions: A repetitive TMS study

    NARCIS (Netherlands)

    Stolk, A.; Noordzij, M.L.; Volman, I.A.C.; Verhagen, L.; Overeem, S.; Elswijk, G.A.F. van; Bloem, B.R.; Hagoort, P.; Toni, I.

    2014-01-01

    Despite the ambiguity inherent in human communication, people are remarkably efficient in establishing mutual understanding. Studying how people communicate in novel settings provides a window into the mechanisms supporting the human competence to rapidly generate and understand novel shared

  3. Understanding communicative actions: A repetitive TMS study

    NARCIS (Netherlands)

    Stolk, A.; Noordzij, M.L.; Volman, I.A.C.; Verhagen, L.; Overeem, S.; Elswijk, G.A.F. van; Bloem, B.R.; Hagoort, Peter; Toni, I.

    2013-01-01

    Despite the ambiguity inherent in human communication, people are remarkably efficient in establishing mutual understanding. Studying how people communicate in novel settings provides a window into the mechanisms supporting the human competence to rapidly generate and understand novel shared

  4. Portraying mechanics of plant growth promoting rhizobacteria (PGPR: A review

    Directory of Open Access Journals (Sweden)

    Dweipayan Goswami

    2016-12-01

    Full Text Available Population growth and increase in food requirement is the global problem. It is inevitable to introduce new practices that help to increase agricultural productivity. Use of plant growth promoting rhizobacteria (PGPR has shown potentials to be a promising technique in the practice of sustainable agriculture. A group of natural soil microbial flora acquire dwelling in the rhizosphere and on the surface of the plant roots which impose beneficial effect on the overall well-being of the plant are categorized as PGPR. Researchers are actively involved in understanding plant growth promoting mechanics employed by PGPR. Broadly, these are divided into direct and indirect mechanics. Any mechanism that directly enhances plant growth either by providing nutrients or by producing growth regulators are portrayed as direct mechanics. Whereas, any mechanisms that protects plant from acquiring infections (biotic stress or helps plant to grow healthily under environmental stresses (abiotic stress are considered indirect mechanics. This review is focused to describe cogent mechanics employed by PGPR that assists plant to sustain healthy growth. Also, we emphasized on the PGPR-based products which have been commercially developed exploiting these mechanics of PGPR.

  5. Multiscale modelling of DNA mechanics

    International Nuclear Information System (INIS)

    Dršata, Tomáš; Lankaš, Filip

    2015-01-01

    Mechanical properties of DNA are important not only in a wide range of biological processes but also in the emerging field of DNA nanotechnology. We review some of the recent developments in modeling these properties, emphasizing the multiscale nature of the problem. Modern atomic resolution, explicit solvent molecular dynamics simulations have contributed to our understanding of DNA fine structure and conformational polymorphism. These simulations may serve as data sources to parameterize rigid base models which themselves have undergone major development. A consistent buildup of larger entities involving multiple rigid bases enables us to describe DNA at more global scales. Free energy methods to impose large strains on DNA, as well as bead models and other approaches, are also briefly discussed. (topical review)

  6. A full understanding of oxygen reduction reaction mechanism on Au(1 1 1) surface

    Science.gov (United States)

    Yang, Yang; Dai, Changqing; Fisher, Adrian; Shen, Yanchun; Cheng, Daojian

    2017-09-01

    Oxygen reduction and hydrogen peroxide reduction are technologically important reactions in energy-conversion devices. In this work, a full understanding of oxygen reduction reaction (ORR) mechanism on Au(1 1 1) surface is investigated by density functional theory (DFT) calculations, including the reaction mechanisms of O2 dissociation, OOH dissociation, and H2O2 dissociation. Among these ORR mechanisms on Au(1 1 1), the activation energy of \\text{O}2* hydrogenation reaction is much lower than that of \\text{O}2* dissociation, indicating that \\text{O}2* hydrogenation reaction is more appropriate at the first step than \\text{O}2* dissociation. In the following, H2O2 can be formed with the lower activation energy compared with the OOH dissociation reaction, and finally H2O2 could be generated as a detectable product due to the high activation energy of H2O2 dissociation reaction. Furthermore, the potential dependent free energy study suggests that the H2O2 formation is thermodynamically favorable up to 0.4 V on Au(1 1 1), reducing the overpotential for 2e - ORR process. And the elementary step of first H2O formation becomes non-spontaneous at 0.4 V, indicating the difficulty of 4e - reduction pathway. Our DFT calculations show that H2O2 can be generated on Au(1 1 1) and the first electron transfer is the rate determining step. Our results show that gold surface could be used as a good catalyst for small-scale manufacture and on-site production of H2O2.

  7. Respiratory muscle involvement in sarcoidosis.

    Science.gov (United States)

    Schreiber, Tina; Windisch, Wolfram

    2018-07-01

    In sarcoidosis, muscle involvement is common, but mostly asymptomatic. Currently, little is known about respiratory muscle and diaphragm involvement and function in patients with sarcoidosis. Reduced inspiratory muscle strength and/or a reduced diaphragm function may contribute to exertional dyspnea, fatigue and reduced health-related quality of life. Previous studies using volitional and non-volitional tests demonstrated a reduced inspiratory muscle strength in sarcoidosis compared to control subjects, and also showed that respiratory muscle function may even be significantly impaired in a subset of patients. Areas covered: This review examines the evidence on respiratory muscle involvement and its implications in sarcoidosis with emphasis on pathogenesis, diagnosis and treatment of respiratory muscle dysfunction. The presented evidence was identified by a literature search performed in PubMed and Medline for articles about respiratory and skeletal muscle function in sarcoidosis through to January 2018. Expert commentary: Respiratory muscle involvement in sarcoidosis is an underdiagnosed condition, which may have an important impact on dyspnea and health-related quality of life. Further studies are needed to understand the etiology, pathogenesis and extent of respiratory muscle involvement in sarcoidosis.

  8. Stages of Immigrant Parent Involvement--Survivors to Leaders

    Science.gov (United States)

    Han, Young-chan; Love, Jennifer

    2016-01-01

    Immigrant parents are not all alike. They vary in language skills as well as their understanding of U.S. culture. All of this affects their ability, if not inclination, to become engaged in their children's education. Educators can assist families by understanding the stages of immigrant parent involvement, which identifies parents' needs, skills,…

  9. Self-awareness, self-regulation, and self-transcendence (S-ART): a framework for understanding the neurobiological mechanisms of mindfulness.

    Science.gov (United States)

    Vago, David R; Silbersweig, David A

    2012-01-01

    Mindfulness-as a state, trait, process, type of meditation, and intervention has proven to be beneficial across a diverse group of psychological disorders as well as for general stress reduction. Yet, there remains a lack of clarity in the operationalization of this construct, and underlying mechanisms. Here, we provide an integrative theoretical framework and systems-based neurobiological model that explains the mechanisms by which mindfulness reduces biases related to self-processing and creates a sustainable healthy mind. Mindfulness is described through systematic mental training that develops meta-awareness (self-awareness), an ability to effectively modulate one's behavior (self-regulation), and a positive relationship between self and other that transcends self-focused needs and increases prosocial characteristics (self-transcendence). This framework of self-awareness, -regulation, and -transcendence (S-ART) illustrates a method for becoming aware of the conditions that cause (and remove) distortions or biases. The development of S-ART through meditation is proposed to modulate self-specifying and narrative self-networks through an integrative fronto-parietal control network. Relevant perceptual, cognitive, emotional, and behavioral neuropsychological processes are highlighted as supporting mechanisms for S-ART, including intention and motivation, attention regulation, emotion regulation, extinction and reconsolidation, prosociality, non-attachment, and decentering. The S-ART framework and neurobiological model is based on our growing understanding of the mechanisms for neurocognition, empirical literature, and through dismantling the specific meditation practices thought to cultivate mindfulness. The proposed framework will inform future research in the contemplative sciences and target specific areas for development in the treatment of psychological disorders.

  10. Molecular mechanism of Danshensu on platelet antiaggregation

    Science.gov (United States)

    Yu, Chen; Geng, Feng; Fan, Hua-Ying; Luan, Hai-Yun; Liu, Yue; Ji, Kai; Fu, Feng-Hua

    2018-04-01

    In this study, we detected the effect of Danshensu on PARs-PLCβsignaling pathway to elucidate molecular mechanism of Danshensu on platelet anti-aggregation. Our results demonstrate that Danshensu is able to decrease the levels of IP3, Ca2+ and AA secretion, which indicate that Danshensu may involve in PARs-PLCβ signaling pathways. Molecular docking study shows that Danshesu has similar polar interactions with PAR1 receptors as BMS200261 at the same position. The findings from our study enable a better understanding of Danshensu biological properties, which could ultimately lead to the development of multi-target antiplatelet natural medicine for the treatment and/or prevention of some thrombotic diseases.

  11. Mechanisms involved in the evasion of the host defence by Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Kharazmi, A

    1991-01-01

    Pseudomonas aeruginosa, an extracellular opportunistic pathogen, utilizes two major mechanisms to evade the host defence system. One of these mechanisms is the production of a large number of extracellular products, such as proteases, toxins, and lipases. The two proteases, alkaline protease and ...

  12. Stress biology and aging mechanisms: toward understanding the deep connection between adaptation to stress and longevity.

    Science.gov (United States)

    Epel, Elissa S; Lithgow, Gordon J

    2014-06-01

    The rate of biological aging is modulated in part by genes interacting with stressor exposures. Basic research has shown that exposure to short-term stress can strengthen cellular responses to stress ("hormetic stress"). Hormetic stress promotes longevity in part through enhanced activity of molecular chaperones and other defense mechanisms. In contrast, prolonged exposure to stress can overwhelm compensatory responses ("toxic stress") and shorten lifespan. One key question is whether the stressors that are well understood in basic models of aging can help us understand psychological stressors and human health. The psychological stress response promotes regulatory changes important in aging (e.g., increases in stress hormones, inflammation, oxidative stress, insulin). The negative effects of severe stress are well documented in humans. Potential positive effects of acute stress (stress resistance) are less studied, especially at the cellular level. Can stress resistance slow the rate of aging in humans, as it does in model organisms? If so, how can we promote stress resistance in humans? We urge a new research agenda embracing the continuum from cellular stress to psychological stress, using basic and human research in tandem. This will require interdisciplinary novel approaches that hold much promise for understanding and intervening in human chronic disease. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Mechanical engineering education

    CERN Document Server

    Davim, J Paulo

    2012-01-01

    Mechanical Engineering is defined nowadays as a discipline "which involves the application of principles of physics, design, manufacturing and maintenance of mechanical systems". Recently, mechanical engineering has also focused on some cutting-edge subjects such as nanomechanics and nanotechnology, mechatronics and robotics, computational mechanics, biomechanics, alternative energies, as well as aspects related to sustainable mechanical engineering.This book covers mechanical engineering higher education with a particular emphasis on quality assurance and the improvement of academic

  14. Laboratory Studies of Hydrocarbon Oxidation Mechanisms

    Science.gov (United States)

    Orlando, J. J.; Tyndall, G. S.; Wallington, T. J.; Burkholder, J. B.; Bertman, S. B.; Chen, W.

    2001-12-01

    The oxidation of hydrocarbon species (alkanes, alkenes, halogenated species, and oxygenates of both natural and anthropogenic origin) in the troposphere leads to the generation of numerous potentially harmful secondary pollutants, such as ozone, organic nitrates and acids, and aerosols. These oxidations proceed via the formation of alkoxy radicals, whose complex chemistry controls the ultimate product distributions obtained. Studies of hydrocarbon oxidation mechanisms are ongoing at NCAR and Ford, using environmental chamber / FTIR absorption systems. The focus of these studies is often on the product distributions obtained at low temperature; these studies not only provide data of direct relevance to the free/upper troposphere, but also allow for a more fundamental understanding of the alkoxy radical chemistry (eg., from the determination of the Arrhenius parameters for unimolecular processes, and the quantification of the extent of the involvement of chemical activation in the alkoxy radical chemistry). In this paper, data will be presented on some or all of the following topics: kinetics/mechanisms for the reactions of OH with the unsaturated species MPAN, acrolein, and crotonaldehyde; the mechanism for the oxidation of ethyl chloride and ethyl bromide; and the mechanism for the reaction of OH with acetone and acetaldehyde at low temperature. The relevance of the data to various aspects of tropospheric chemistry will be discussed.

  15. Understanding jet noise.

    Science.gov (United States)

    Karabasov, S A

    2010-08-13

    Jets are one of the most fascinating topics in fluid mechanics. For aeronautics, turbulent jet-noise modelling is particularly challenging, not only because of the poor understanding of high Reynolds number turbulence, but also because of the extremely low acoustic efficiency of high-speed jets. Turbulent jet-noise models starting from the classical Lighthill acoustic analogy to state-of-the art models were considered. No attempt was made to present any complete overview of jet-noise theories. Instead, the aim was to emphasize the importance of sound generation and mean-flow propagation effects, as well as their interference, for the understanding and prediction of jet noise.

  16. Toward an understanding of the neural mechanisms underlying dual-task performance: Contribution of comparative approaches using animal models.

    Science.gov (United States)

    Watanabe, Kei; Funahashi, Shintaro

    2018-01-01

    The study of dual-task performance in human subjects has received considerable interest in cognitive neuroscience because it can provide detailed insights into the neural mechanisms underlying higher-order cognitive control. Despite many decades of research, our understanding of the neurobiological basis of dual-task performance is still limited, and some critical questions are still under debate. Recently, behavioral and neurophysiological studies of dual-task performance in animals have begun to provide intriguing evidence regarding how dual-task information is processed in the brain. In this review, we first summarize key evidence in neuroimaging and neuropsychological studies in humans and discuss possible reasons for discrepancies across studies. We then provide a comprehensive review of the literature on dual-task studies in animals and provide a novel working hypothesis that may reconcile the divergent results in human studies toward a unified view of the mechanisms underlying dual-task processing. Finally, we propose possible directions for future dual-task experiments in the framework of comparative cognitive neuroscience. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Biophysical and biochemical strategies to understand membrane binding and pore formation by sticholysins, pore-forming proteins from a sea anemone.

    Science.gov (United States)

    Alvarez, Carlos; Ros, Uris; Valle, Aisel; Pedrera, Lohans; Soto, Carmen; Hervis, Yadira P; Cabezas, Sheila; Valiente, Pedro A; Pazos, Fabiola; Lanio, Maria E

    2017-10-01

    Actinoporins constitute a unique class of pore-forming toxins found in sea anemones that are able to bind and oligomerize in membranes, leading to cell swelling, impairment of ionic gradients and, eventually, to cell death. In this review we summarize the knowledge generated from the combination of biochemical and biophysical approaches to the study of sticholysins I and II (Sts, StI/II), two actinoporins largely characterized by the Center of Protein Studies at the University of Havana during the last 20 years. These approaches include strategies for understanding the toxin structure-function relationship, the protein-membrane association process leading to pore formation and the interaction of toxin with cells. The rational combination of experimental and theoretical tools have allowed unraveling, at least partially, of the complex mechanisms involved in toxin-membrane interaction and of the molecular pathways triggered upon this interaction. The study of actinoporins is important not only to gain an understanding of their biological roles in anemone venom but also to investigate basic molecular mechanisms of protein insertion into membranes, protein-lipid interactions and the modulation of protein conformation by lipid binding. A deeper knowledge of the basic molecular mechanisms involved in Sts-cell interaction, as described in this review, will support the current investigations conducted by our group which focus on the design of immunotoxins against tumor cells and antigen-releasing systems to cell cytosol as Sts-based vaccine platforms.

  18. Understanding Bullying through the Eyes of Youth

    Science.gov (United States)

    Pister, Rebecca

    2014-01-01

    As reports of bullying continue to make headlines, the push to understand the processes behind bullying behaviors continues to rise. While a great deal of research has been conducted to better understand the processes behind and the outcomes of bullying, the majority of these studies are quantitative in nature and very few involve qualitative…

  19. Understanding the mechanical properties of DNA origami tiles and controlling the kinetics of their folding and unfolding reconfiguration.

    Science.gov (United States)

    Chen, Haorong; Weng, Te-Wei; Riccitelli, Molly M; Cui, Yi; Irudayaraj, Joseph; Choi, Jong Hyun

    2014-05-14

    DNA origami represents a class of highly programmable macromolecules that can go through conformational changes in response to external signals. Here we show that a two-dimensional origami rectangle can be effectively folded into a short, cylindrical tube by connecting the two opposite edges through the hybridization of linker strands and that this process can be efficiently reversed via toehold-mediated strand displacement. The reconfiguration kinetics was experimentally studied as a function of incubation temperature, initial origami concentration, missing staples, and origami geometry. A kinetic model was developed by introducing the j factor to describe the reaction rates in the cyclization process. We found that the cyclization efficiency (j factor) increases sharply with temperature and depends strongly on the structural flexibility and geometry. A simple mechanical model was used to correlate the observed cyclization efficiency with origami structure details. The mechanical analysis suggests two sources of the energy barrier for DNA origami folding: overcoming global twisting and bending the structure into a circular conformation. It also provides the first semiquantitative estimation of the rigidity of DNA interhelix crossovers, an essential element in structural DNA nanotechnology. This work demonstrates efficient DNA origami reconfiguration, advances our understanding of the dynamics and mechanical properties of self-assembled DNA structures, and should be valuable to the field of DNA nanotechnology.

  20. Stereochemistry of 1,2-elimination and proton-transfer reactions: toward a unified understanding.

    Science.gov (United States)

    Mohrig, Jerry R

    2013-07-16

    Many mechanistic and stereochemical studies have focused on the breaking of the C-H bond through base-catalyzed elimination reactions. When we began our research, however, chemists knew almost nothing about the stereospecificity of addition-elimination reactions involving conjugated acyclic carbonyl compounds, even though the carbonyl group is a pivotal functional group in organic chemistry. Over the last 25 years, we have studied the addition-elimination reactions of β-substituted acyclic esters, thioesters, and ketones in order to reach a comprehensive understanding of how electronic effects influence their stereochemistry. This Account brings together our understanding of the stereochemistry of 1,2-elimination and proton-transfer reactions, describing how each study has built upon previous work and contributed to our understanding of this field. When we began, chemists thought that anti stereospecificity in base-catalyzed 1,2-elimination reactions occurred via concerted E2 mechanisms, which provide a smooth path for anti elimination. Unexpectedly, we discovered that some E1cBirrev reactions produce the same anti stereospecificity as E2 reactions even though they proceed through diffusionally equilibrated, "free" enolate-anion intermediates. This result calls into question the conventional wisdom that anti stereochemistry must result from a concerted mechanism. While carrying out our research, we developed insights ranging from the role of historical contingency in the evolution of hydratase-dehydratase enzymes to the influence of buffers on the stereochemistry of H/D exchange in D2O. Negative hyperconjugation is the most important concept for understanding our results. This idea provides a unifying view for the largely anti stereochemistry in E1cBirrev elimination reactions and a basis for understanding the stereoelectronic influence of electron-withdrawing β-substituents on proton-transfer reactions.

  1. Anatomy of Sodium Hypochlorite Accidents Involving Facial Ecchymosis – A Review

    Science.gov (United States)

    Zhu, Wan-chun; Gyamfi, Jacqueline; Niu, Li-na; Schoeffel, G. John; Liu, Si-ying; Santarcangelo, Filippo; Khan, Sara; Tay, Kelvin C-Y.; Pashley, David H.; Tay, Franklin R.

    2013-01-01

    Objectives Root canal treatment forms an essential part of general dental practice. Sodium hypochlorite (NaOCl) is the most commonly used irrigant in endodontics due to its ability to dissolve organic soft tissues in the root canal system and its action as a potent antimicrobial agent. Although NaOCl accidents created by extrusion of the irrigant through root apices are relatively rare and are seldom life-threatening, they do create substantial morbidity when they occur. Methods To date, NaOCl accidents have only been published as isolated case reports. Although previous studies have attempted to summarise the symptoms involved in these case reports, there was no endeavor to analyse the distribution of soft tissue distribution in those reports. In this review, the anatomy of a classical NaOCl accident that involves facial swelling and ecchymosis is discussed. Results By summarising the facial manifestations presented in previous case reports, a novel hypothesis that involves intravenous infusion of extruded NaOCl into the facial vein via non-collapsible venous sinusoids within the cancellous bone is presented. Conclusions Understanding the mechanism involved in precipitating a classic NaOCl accident will enable the profession to make the best decision regarding the choice of irrigant delivery techniques in root canal débridement, and for manufacturers to design and improve their irrigation systems to achieve maximum safety and efficient cleanliness of the root canal system. PMID:23994710

  2. Involvement Without Participation?

    DEFF Research Database (Denmark)

    Olsén, Peter

    2012-01-01

    The article presents a case study of a knowledge-intensive company that launched a 2-year project to improve their psychosocial working environment. All parties agreed on the project, and the methods used aimed to promote the involvement of the employees. Surprisingly, the psychosocial working...... environment did not improve; on the contrary, it deteriorated. The article highlights cultural and structural obstacles to the process, including an inadequate understanding of organisational learning and a narrow focus on market and competition. The endeavours did not consistently increase delegation...

  3. Mechanism of nuclear dissipation in fission and heavy-ion reactions

    International Nuclear Information System (INIS)

    Nix, J.R.; Sierk, A.J.

    1986-01-01

    Recent advances in the theoretical understanding of nuclear dissipation at intermediate excitation energies are reviewed, with particular emphasis on a new surface-plus-window mechanism that involves interactions of either one or two nucleons with the moving nuclear surface and also, for dumbbell-like shapes encountered in fission and heavy-ion reactions, the transfer of nucleons through the window separating the two portions of the system. This novel dissipation mechanism provides a unified macroscopic description of such diverse phenomena as widths of isoscalar giant quadrupole and giant octupole resonances, mean fission-fragment kinetic energies and excitation energies, dynamical thresholds for compound-nucleus formation, enhancement in neutron emission prior to fission, and widths of mass and charge distributions in deep-inelastic heavy-ion reactions. 41 refs., 8 figs

  4. A first insight into the involvement of phytohormones pathways in coffee resistance and susceptibility to Colletotrichum kahawae.

    Directory of Open Access Journals (Sweden)

    Inês Diniz

    Full Text Available Understanding the molecular mechanisms underlying coffee-pathogen interactions are of key importance to aid disease resistance breeding efforts. In this work the expression of genes involved in salicylic acid (SA, jasmonic acid (JA and ethylene (ET pathways were studied in hypocotyls of two coffee varieties challenged with the hemibiotrophic fungus Colletotrichum kahawae, the causal agent of Coffee Berry Disease. Based on a cytological analysis, key time-points of the infection process were selected and qPCR was used to evaluate the expression of phytohormones biosynthesis, reception and responsive-related genes. The resistance to C. kahawae was characterized by restricted fungal growth associated with early accumulation of phenolic compounds in the cell walls and cytoplasmic contents, and deployment of hypersensitive reaction. Similar responses were detected in the susceptible variety, but in a significantly lower percentage of infection sites and with no apparent effect on disease development. Gene expression analysis suggests a more relevant involvement of JA and ET phytohormones than SA in this pathosystem. An earlier and stronger activation of the JA pathway observed in the resistant variety, when compared with the susceptible one, seems to be responsible for the successful activation of defense responses and inhibition of fungal growth. For the ET pathway, the down or non-regulation of ET receptors in the resistant variety, together with a moderate expression of the responsive-related gene ERF1, indicates that this phytohormone may be related with other functions besides the resistance response. However, in the susceptible variety, the stronger activation of ERF1 gene at the beginning of the necrotrophic phase, suggests the involvement of ET in tissue senescence. As far as we know, this is the first attempt to unveil the role of phytohormones in coffee-C. kahawae interactions, thus contributing to deepen our understanding on the complex

  5. Characterizing Preservice Teachers' Mathematical Understanding of Algebraic Relationships

    Science.gov (United States)

    Nillas, Leah A.

    2010-01-01

    Qualitative research methods were employed to investigate characterization of preservice teachers' mathematical understanding. Responses on test items involving algebraic relationships were analyzed using with-in case analysis (Miles and Huberman, 1994) and Pirie and Kieren's (1994) model of growth of mathematical understanding. Five elementary…

  6. Molecular mechanisms involved in Bacillus subtilis biofilm formation

    Science.gov (United States)

    Mielich-Süss, Benjamin; Lopez, Daniel

    2014-01-01

    Summary Biofilms are the predominant lifestyle of bacteria in natural environments, and they severely impact our societies in many different fashions. Therefore, biofilm formation is a topic of growing interest in microbiology, and different bacterial models are currently studied to better understand the molecular strategies that bacteria undergo to build biofilms. Among those, biofilms of the soil-dwelling bacterium Bacillus subtilis are commonly used for this purpose. Bacillus subtilis biofilms show remarkable architectural features that are a consequence of sophisticated programs of cellular specialization and cell-cell communication within the community. Many laboratories are trying to unravel the biological role of the morphological features of biofilms, as well as exploring the molecular basis underlying cellular differentiation. In this review, we present a general perspective of the current state of knowledge of biofilm formation in B. subtilis. In particular, a special emphasis is placed on summarizing the most recent discoveries in the field and integrating them into the general view of these truly sophisticated microbial communities. PMID:24909922

  7. Understanding the benefits of product-service system for involved parties in remanufacturing

    International Nuclear Information System (INIS)

    Priyono, A.

    2017-01-01

    This study aims to analyse the benefit provided by interested parties in remanufacturing including manufacturing companies, original equipment manufacturers and customers. Existing studies examining Produc-Service System (PSS) focus on relationship between two parties, either between OEMs and customers or between remanufacturers with customers. This study attempts to fill the gap by investigating how the PSS offers benefit to OEMs, remanufacturers and customers. Methodology: This research used case study method to examine the practice of PSS in remanufacturing companies. Qualitative approach was employed to analyse emerging problems in the case companies and the researcher collaborate with the involved parties to create new knowledge. Thus, this process can offer theoretical insights as well as practical insights. Findings: All parties involved in PSS consistently gain benefit from adopting the practice. From the perspective of remanufacturers, the major benefit of remanufacturers adopting PSS is that it can help reduce the uncertainties regarding time, quantity and quality of returned cores. Due to reduced uncertainties, remanufacturers gain benefit from higher profitability and more environmental friendly products. These benefits provide multiplier effects to both customers and OEMs. Practical implications: This study offers benefits to managers in the sense that it provides guidance for managers of remanufacturers to better manage remanufacturing operation so that it becomes more environmentally friendly and economically profitable. Originality/value: It is the first time that the benefits of PSS to support remanufacturing are viewed from integrative perspective – i.e. manufacturers, remanufacturers, and customers.

  8. Understanding the benefits of product-service system for involved parties in remanufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Priyono, A.

    2017-07-01

    This study aims to analyse the benefit provided by interested parties in remanufacturing including manufacturing companies, original equipment manufacturers and customers. Existing studies examining Produc-Service System (PSS) focus on relationship between two parties, either between OEMs and customers or between remanufacturers with customers. This study attempts to fill the gap by investigating how the PSS offers benefit to OEMs, remanufacturers and customers. Methodology: This research used case study method to examine the practice of PSS in remanufacturing companies. Qualitative approach was employed to analyse emerging problems in the case companies and the researcher collaborate with the involved parties to create new knowledge. Thus, this process can offer theoretical insights as well as practical insights. Findings: All parties involved in PSS consistently gain benefit from adopting the practice. From the perspective of remanufacturers, the major benefit of remanufacturers adopting PSS is that it can help reduce the uncertainties regarding time, quantity and quality of returned cores. Due to reduced uncertainties, remanufacturers gain benefit from higher profitability and more environmental friendly products. These benefits provide multiplier effects to both customers and OEMs. Practical implications: This study offers benefits to managers in the sense that it provides guidance for managers of remanufacturers to better manage remanufacturing operation so that it becomes more environmentally friendly and economically profitable. Originality/value: It is the first time that the benefits of PSS to support remanufacturing are viewed from integrative perspective – i.e. manufacturers, remanufacturers, and customers.

  9. Shell and membrane theories in mechanics and biology from macro- to nanoscale structures

    CERN Document Server

    Mikhasev, Gennadi

    2015-01-01

    This book presents the latest results related to shells  characterize and design shells, plates, membranes and other thin-walled structures, a multidisciplinary approach from macro- to nanoscale is required which involves the classical disciplines of mechanical/civil/materials engineering (design, analysis, and properties) and physics/biology/medicine among others. The book contains contributions of a meeting of specialists (mechanical engineers, mathematicians, physicists and others) in such areas as classical and non-classical shell theories. New trends with respect to applications in mechanical, civil and aero-space engineering, as well as in new branches like medicine and biology are presented which demand improvements of the theoretical foundations of these theories and a deeper understanding of the material behavior used in such structures.

  10. Emerging systems biology approaches in nanotoxicology: Towards a mechanism-based understanding of nanomaterial hazard and risk

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Pedro M.; Fadeel, Bengt, E-mail: Bengt.Fadeel@ki.se

    2016-05-15

    Engineered nanomaterials are being developed for a variety of technological applications. However, the increasing use of nanomaterials in society has led to concerns about their potential adverse effects on human health and the environment. During the first decade of nanotoxicological research, the realization has emerged that effective risk assessment of the multitudes of new nanomaterials would benefit from a comprehensive understanding of their toxicological mechanisms, which is difficult to achieve with traditional, low-throughput, single end-point oriented approaches. Therefore, systems biology approaches are being progressively applied within the nano(eco)toxicological sciences. This novel paradigm implies that the study of biological systems should be integrative resulting in quantitative and predictive models of nanomaterial behaviour in a biological system. To this end, global ‘omics’ approaches with which to assess changes in genes, proteins, metabolites, etc. are deployed allowing for computational modelling of the biological effects of nanomaterials. Here, we highlight omics and systems biology studies in nanotoxicology, aiming towards the implementation of a systems nanotoxicology and mechanism-based risk assessment of nanomaterials. - Highlights: • Systems nanotoxicology is a multi-disciplinary approach to quantitative modelling. • Transcriptomics, proteomics and metabolomics remain the most common methods. • Global “omics” techniques should be coupled to computational modelling approaches. • The discovery of nano-specific toxicity pathways and biomarkers is a prioritized goal. • Overall, experimental nanosafety research must endeavour reproducibility and relevance.

  11. Emerging systems biology approaches in nanotoxicology: Towards a mechanism-based understanding of nanomaterial hazard and risk

    International Nuclear Information System (INIS)

    Costa, Pedro M.; Fadeel, Bengt

    2016-01-01

    Engineered nanomaterials are being developed for a variety of technological applications. However, the increasing use of nanomaterials in society has led to concerns about their potential adverse effects on human health and the environment. During the first decade of nanotoxicological research, the realization has emerged that effective risk assessment of the multitudes of new nanomaterials would benefit from a comprehensive understanding of their toxicological mechanisms, which is difficult to achieve with traditional, low-throughput, single end-point oriented approaches. Therefore, systems biology approaches are being progressively applied within the nano(eco)toxicological sciences. This novel paradigm implies that the study of biological systems should be integrative resulting in quantitative and predictive models of nanomaterial behaviour in a biological system. To this end, global ‘omics’ approaches with which to assess changes in genes, proteins, metabolites, etc. are deployed allowing for computational modelling of the biological effects of nanomaterials. Here, we highlight omics and systems biology studies in nanotoxicology, aiming towards the implementation of a systems nanotoxicology and mechanism-based risk assessment of nanomaterials. - Highlights: • Systems nanotoxicology is a multi-disciplinary approach to quantitative modelling. • Transcriptomics, proteomics and metabolomics remain the most common methods. • Global “omics” techniques should be coupled to computational modelling approaches. • The discovery of nano-specific toxicity pathways and biomarkers is a prioritized goal. • Overall, experimental nanosafety research must endeavour reproducibility and relevance.

  12. Similarities and differences in neuroplasticity mechanisms between brain gliomas and nonlesional epilepsy.

    Science.gov (United States)

    Bourdillon, Pierre; Apra, Caroline; Guénot, Marc; Duffau, Hugues

    2017-12-01

    To analyze the conceptual and practical implications of a hodotopic approach in neurosurgery, and to compare the similarities and the differences in neuroplasticity mechanisms between low-grade gliomas and nonlesional epilepsy. We review the recent data about the hodotopic organization of the brain connectome, alongside the organization of epileptic networks, and analyze how these two structures interact, suggesting therapeutic prospects. Then we focus on the mechanisms of neuroplasticity involved in glioma natural course and after glioma surgery. Comparing these mechanisms with those in action in an epileptic brain highlights their differences, but more importantly, gives an original perspective to the consequences of surgery on an epileptic brain and what could be expected after pathologic white matter removal. The organization of the brain connectome and the neuroplasticity is the same in all humans, but different pathologic mechanisms are involved, and specific therapeutic approaches have been developed in epilepsy and glioma surgery. We demonstrate that the "connectome" point of view can enrich epilepsy care. We also underscore how theoretical and practical tools commonly used in epilepsy investigations, such as invasive electroencephalography, can be of great help in awake surgery in general. Putting together advances in understanding of connectomics and neuroplasticity, leads to significant conceptual improvements in epilepsy surgery. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  13. Understanding dynamics using sensitivity analysis: caveat and solution

    Science.gov (United States)

    2011-01-01

    Background Parametric sensitivity analysis (PSA) has become one of the most commonly used tools in computational systems biology, in which the sensitivity coefficients are used to study the parametric dependence of biological models. As many of these models describe dynamical behaviour of biological systems, the PSA has subsequently been used to elucidate important cellular processes that regulate this dynamics. However, in this paper, we show that the PSA coefficients are not suitable in inferring the mechanisms by which dynamical behaviour arises and in fact it can even lead to incorrect conclusions. Results A careful interpretation of parametric perturbations used in the PSA is presented here to explain the issue of using this analysis in inferring dynamics. In short, the PSA coefficients quantify the integrated change in the system behaviour due to persistent parametric perturbations, and thus the dynamical information of when a parameter perturbation matters is lost. To get around this issue, we present a new sensitivity analysis based on impulse perturbations on system parameters, which is named impulse parametric sensitivity analysis (iPSA). The inability of PSA and the efficacy of iPSA in revealing mechanistic information of a dynamical system are illustrated using two examples involving switch activation. Conclusions The interpretation of the PSA coefficients of dynamical systems should take into account the persistent nature of parametric perturbations involved in the derivation of this analysis. The application of PSA to identify the controlling mechanism of dynamical behaviour can be misleading. By using impulse perturbations, introduced at different times, the iPSA provides the necessary information to understand how dynamics is achieved, i.e. which parameters are essential and when they become important. PMID:21406095

  14. Cancer cachexia, mechanism and treatment

    Science.gov (United States)

    Aoyagi, Tomoyoshi; Terracina, Krista P; Raza, Ali; Matsubara, Hisahiro; Takabe, Kazuaki

    2015-01-01

    It is estimated that half of all patients with cancer eventually develop a syndrome of cachexia, with anorexia and a progressive loss of adipose tissue and skeletal muscle mass. Cancer cachexia is characterized by systemic inflammation, negative protein and energy balance, and an involuntary loss of lean body mass. It is an insidious syndrome that not only has a dramatic impact on patient quality of life, but also is associated with poor responses to chemotherapy and decreased survival. Cachexia is still largely an underestimated and untreated condition, despite the fact that multiple mechanisms are reported to be involved in its development, with a number of cytokines postulated to play a role in the etiology of the persistent catabolic state. Existing therapies for cachexia, including orexigenic appetite stimulants, focus on palliation of symptoms and reduction of the distress of patients and families rather than prolongation of life. Recent therapies for the cachectic syndrome involve a multidisciplinary approach. Combination therapy with diet modification and/or exercise has been added to novel pharmaceutical agents, such as Megestrol acetate, medroxyprogesterone, ghrelin, omega-3-fatty acid among others. These agents are reported to have improved survival rates as well as quality of life. In this review, we will discuss the emerging understanding of the mechanisms of cancer cachexia, the current treatment options including multidisciplinary combination therapies, as well an update on new and ongoing clinical trials. PMID:25897346

  15. Characterization of the anisotropic mechanical behavior of human abdominal wall connective tissues.

    Science.gov (United States)

    Astruc, Laure; De Meulaere, Maurice; Witz, Jean-François; Nováček, Vit; Turquier, Frédéric; Hoc, Thierry; Brieu, Mathias

    2018-06-01

    Abdominal wall sheathing tissues are commonly involved in hernia formation. However, there is very limited work studying mechanics of all tissues from the same donor which prevents a complete understanding of the abdominal wall behavior and the differences in these tissues. The aim of this study was to investigate the differences between the mechanical properties of the linea alba and the anterior and posterior rectus sheaths from a macroscopic point of view. Eight full-thickness human anterior abdominal walls of both genders were collected and longitudinal and transverse samples were harvested from the three sheathing connective tissues. The total of 398 uniaxial tensile tests was conducted and the mechanical characteristics of the behavior (tangent rigidities for small and large deformations) were determined. Statistical comparisons highlighted heterogeneity and non-linearity in behavior of the three tissues under both small and large deformations. High anisotropy was observed under small and large deformations with higher stress in the transverse direction. Variabilities in the mechanical properties of the linea alba according to the gender and location were also identified. Finally, data dispersion correlated with microstructure revealed that macroscopic characterization is not sufficient to fully describe behavior. Microstructure consideration is needed. These results provide a better understanding of the mechanical behavior of the abdominal wall sheathing tissues as well as the directions for microstructure-based constitutive model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Current understanding of mdig/MINA in human cancers.

    Science.gov (United States)

    Thakur, Chitra; Chen, Fei

    2015-07-01

    Mineral dust-induced gene, mdig has recently been identified and is known to be overexpressed in a majority of human cancers and holds predictive power in the poor prognosis of the disease. Mdig is an environmentally expressed gene that is involved in cell proliferation, neoplastic transformation and immune regulation. With the advancement in deciphering the prognostic role of mdig in human cancers, our understanding on how mdig renders a normal cell to undergo malignant transformation is still very limited. This article reviews the current knowledge of the mdig gene in context to human neoplasias and its relation to the clinico-pathologic factors predicting the outcome of the disease in patients. It also emphasizes on the promising role of mdig that can serve as a potential candidate for biomarker discovery and as a therapeutic target in inflammation and cancers. Considering the recent advances in understanding the underlying mechanisms of tumor formation, more preclinical and clinical research is required to validate the potential of using mdig as a novel biological target of therapeutic and diagnostic value. Expression level of mdig influences the prognosis of several human cancers especially cancers of the breast and lung. Evaluation of mdig in cancers can offer novel biomarker with potential therapeutic interventions for the early assessment of cancer development in patients.

  17. d-Lysergic Acid Diethylamide (LSD) as a Model of Psychosis: Mechanism of Action and Pharmacology.

    Science.gov (United States)

    De Gregorio, Danilo; Comai, Stefano; Posa, Luca; Gobbi, Gabriella

    2016-11-23

    d-Lysergic Acid Diethylamide (LSD) is known for its hallucinogenic properties and psychotic-like symptoms, especially at high doses. It is indeed used as a pharmacological model of psychosis in preclinical research. The goal of this review was to understand the mechanism of action of psychotic-like effects of LSD. We searched Pubmed, Web of Science, Scopus, Google Scholar and articles' reference lists for preclinical studies regarding the mechanism of action involved in the psychotic-like effects induced by LSD. LSD's mechanism of action is pleiotropic, primarily mediated by the serotonergic system in the Dorsal Raphe, binding the 5-HT 2A receptor as a partial agonist and 5-HT 1A as an agonist. LSD also modulates the Ventral Tegmental Area, at higher doses, by stimulating dopamine D₂, Trace Amine Associate receptor 1 (TAAR₁) and 5-HT 2A . More studies clarifying the mechanism of action of the psychotic-like symptoms or psychosis induced by LSD in humans are needed. LSD's effects are mediated by a pleiotropic mechanism involving serotonergic, dopaminergic, and glutamatergic neurotransmission. Thus, the LSD-induced psychosis is a useful model to test the therapeutic efficacy of potential novel antipsychotic drugs, particularly drugs with dual serotonergic and dopaminergic (DA) mechanism or acting on TAAR₁ receptors.

  18. Classical mechanics

    CERN Document Server

    Benacquista, Matthew J

    2018-01-01

    This textbook provides an introduction to classical mechanics at a level intermediate between the typical undergraduate and advanced graduate level. This text describes the background and tools for use in the fields of modern physics, such as quantum mechanics, astrophysics, particle physics, and relativity. Students who have had basic undergraduate classical mechanics or who have a good understanding of the mathematical methods of physics will benefit from this book.

  19. Systematic Understanding of Mechanisms of a Chinese Herbal Formula in Treatment of Metabolic Syndrome by an Integrated Pharmacology Approach.

    Science.gov (United States)

    Chen, Meimei; Yang, Fafu; Yang, Xuemei; Lai, Xinmei; Gao, Yuxing

    2016-12-16

    Metabolic syndrome (MS) is becoming a worldwide health problem. Wendan decoction (WDD)-a famous traditional Chinese medicine formula-has been extensively employed to relieve syndromes related to MS in clinical practice in China. However, its pharmacological mechanisms still remain vague. In this study, a comprehensive approach that integrated chemomics, principal component analysis, molecular docking simulation, and network analysis was established to elucidate the multi-component and multi-target mechanism of action of WDD in treatment of MS. The compounds in WDD were found to possess chemical diversity, complexity and drug-likeness compared to MS drugs. Six nuclear receptors were obtained to have strong binding affinity with 217 compounds of five herbs in WDD. The importance roles of targets and herbs were also identified due to network parameters. Five compounds from Radix Glycyrrhizae Preparata can hit all six targets, which can assist in screening new MS drugs. The pathway network analysis demonstrated that the main pharmacological effects of WDD might lie in maintaining lipid and glucose metabolisms and anticancer activities as well as immunomodulatory and hepatoprotective effects. This study provided a comprehensive system approach for understanding the multi-component, multi-target and multi-pathway mechanisms of WDD during the treatment of MS.

  20. Systematic Understanding of Mechanisms of a Chinese Herbal Formula in Treatment of Metabolic Syndrome by an Integrated Pharmacology Approach

    Directory of Open Access Journals (Sweden)

    Meimei Chen

    2016-12-01

    Full Text Available Metabolic syndrome (MS is becoming a worldwide health problem. Wendan decoction (WDD—a famous traditional Chinese medicine formula—has been extensively employed to relieve syndromes related to MS in clinical practice in China. However, its pharmacological mechanisms still remain vague. In this study, a comprehensive approach that integrated chemomics, principal component analysis, molecular docking simulation, and network analysis was established to elucidate the multi-component and multi-target mechanism of action of WDD in treatment of MS. The compounds in WDD were found to possess chemical diversity, complexity and drug-likeness compared to MS drugs. Six nuclear receptors were obtained to have strong binding affinity with 217 compounds of five herbs in WDD. The importance roles of targets and herbs were also identified due to network parameters. Five compounds from Radix Glycyrrhizae Preparata can hit all six targets, which can assist in screening new MS drugs. The pathway network analysis demonstrated that the main pharmacological effects of WDD might lie in maintaining lipid and glucose metabolisms and anticancer activities as well as immunomodulatory and hepatoprotective effects. This study provided a comprehensive system approach for understanding the multi-component, multi-target and multi-pathway mechanisms of WDD during the treatment of MS.

  1. Review of thermodinamic and mechanical properties of hydrogen-transition metal systems

    International Nuclear Information System (INIS)

    Mathias, H.; Katz, Y.

    1978-04-01

    A large body of fundamental and empirical knowledge has been acquired during many years of research concerning the interactions between hydrogen and metals, the location of hydrogen in metal structures, its mobility in metals and its influence on mechanical properties of metals. Much progress has been made in the understanding of related phenomena, and various theories have been proposed, but considerable disagreement still exist about basic mechanisms involved. The growing interest in these subjects and their important role in science and technology are well documented by many reviews and symposia. A general survey of these topics with reference to experimental results and theories related to thermodynamic and mechanical properties of hydrogen-transition metal systems, such as H-Pd, H-Ti, H-Fe etc. is given in the present review. Special emphasis is given to hydrogen embrittlement of metals

  2. Structure-function relations in physiology education: Where's the mechanism?

    Science.gov (United States)

    Lira, Matthew E; Gardner, Stephanie M

    2017-06-01

    Physiology demands systems thinking: reasoning within and between levels of biological organization and across different organ systems. Many physiological mechanisms explain how structures and their properties interact at one level of organization to produce emergent functions at a higher level of organization. Current physiology principles, such as structure-function relations, selectively neglect mechanisms by not mentioning this term explicitly. We explored how students characterized mechanisms and functions to shed light on how students make sense of these terms. Students characterized mechanisms as 1 ) processes that occur at levels of organization lower than that of functions; and 2 ) as detailed events with many steps involved. We also found that students produced more variability in how they characterized functions compared with mechanisms: students characterized functions in relation to multiple levels of organization and multiple definitions. We interpret these results as evidence that students see mechanisms as holding a more narrow definition than used in the biological sciences, and that students struggle to coordinate and distinguish mechanisms from functions due to cognitive processes germane to learning in many domains. We offer the instructional suggestion that we scaffold student learning by affording students opportunities to relate and also distinguish between these terms so central to understanding physiology. Copyright © 2017 the American Physiological Society.

  3. Redundant mechanisms are involved in suppression of default cell fates during embryonic mesenchyme and notochord induction in ascidians.

    Science.gov (United States)

    Kodama, Hitoshi; Miyata, Yoshimasa; Kuwajima, Mami; Izuchi, Ryoichi; Kobayashi, Ayumi; Gyoja, Fuki; Onuma, Takeshi A; Kumano, Gaku; Nishida, Hiroki

    2016-08-01

    During embryonic induction, the responding cells invoke an induced developmental program, whereas in the absence of an inducing signal, they assume a default uninduced cell fate. Suppression of the default fate during the inductive event is crucial for choice of the binary cell fate. In contrast to the mechanisms that promote an induced cell fate, those that suppress the default fate have been overlooked. Upon induction, intracellular signal transduction results in activation of genes encoding key transcription factors for induced tissue differentiation. It is elusive whether an induced key transcription factor has dual functions involving suppression of the default fates and promotion of the induced fate, or whether suppression of the default fate is independently regulated by other factors that are also downstream of the signaling cascade. We show that during ascidian embryonic induction, default fates were suppressed by multifold redundant mechanisms. The key transcription factor, Twist-related.a, which is required for mesenchyme differentiation, and another independent transcription factor, Lhx3, which is dispensable for mesenchyme differentiation, sequentially and redundantly suppress the default muscle fate in induced mesenchyme cells. Similarly in notochord induction, Brachyury, which is required for notochord differentiation, and other factors, Lhx3 and Mnx, are likely to suppress the default nerve cord fate redundantly. Lhx3 commonly suppresses the default fates in two kinds of induction. Mis-activation of the autonomously executed default program in induced cells is detrimental to choice of the binary cell fate. Multifold redundant mechanisms would be required for suppression of the default fate to be secure. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Tokamak engineering mechanics

    CERN Document Server

    Song, Yuntao; Du, Shijun

    2013-01-01

    Tokamak Engineering Mechanics offers concise and thorough coverage of engineering mechanics theory and application for tokamaks, and the material is reinforced by numerous examples. Chapter topics include general principles, static mechanics, dynamic mechanics, thermal fluid mechanics and multiphysics structural mechanics of tokamak structure analysis. The theoretical principle of the design and the methods of the analysis for various components and load conditions are presented, while the latest engineering technologies are also introduced. The book will provide readers involved in the study

  5. The power of belief and expectancy in understanding and management of depression.

    Science.gov (United States)

    Alladin, Assen

    2013-01-01

    This article examines how beliefs can influence the definition, classification, understanding, and treatment of depression. It is organized in five parts: The first part critically reviews the definition of depression; the second part explores the medicalization of depression; the third part examines the role of the pharmaceutical industry in the promotion and marketing of antidepressant medications; the fourth part surveys the psychological therapies for depression and examines the role of expectancy in outcome; and the last part looks at the mechanisms involved in the placebo effect. A list of evidence-based strategies, including hypnosis, are discussed in the context of cognitive hypnotherapy for depression to illustrate how expectancy effect can be maximized in psychotherapy.

  6. Students' understandings of electrochemistry

    Science.gov (United States)

    O'Grady-Morris, Kathryn

    Electrochemistry is considered by students to be a difficult topic in chemistry. This research was a mixed methods study guided by the research question: At the end of a unit of study, what are students' understandings of electrochemistry? The framework of analysis used for the qualitative and quantitative data collected in this study was comprised of three categories: types of knowledge used in problem solving, levels of representation of knowledge in chemistry (macroscopic, symbolic, and particulate), and alternative conceptions. Although individually each of the three categories has been reported in previous studies, the contribution of this study is the inter-relationships among them. Semi-structured, task-based interviews were conducted while students were setting up and operating electrochemical cells in the laboratory, and a two-tiered, multiple-choice diagnostic instrument was designed to identify alternative conceptions that students held at the end of the unit. For familiar problems, those involving routine voltaic cells, students used a working-forwards problem-solving strategy, two or three levels of representation of knowledge during explanations, scored higher on both procedural and conceptual knowledge questions in the diagnostic instrument, and held fewer alternative conceptions related to the operation of these cells. For less familiar problems, those involving non-routine voltaic cells and electrolytic cells, students approached problem-solving with procedural knowledge, used only one level of representation of knowledge when explaining the operation of these cells, scored higher on procedural knowledge than conceptual knowledge questions in the diagnostic instrument, and held a greater number of alternative conceptions. Decision routines that involved memorized formulas and procedures were used to solve both quantitative and qualitative problems and the main source of alternative conceptions in this study was the overgeneralization of theory

  7. Exploring the genetics and non-cell autonomous mechanisms underlying ALS/FTLD.

    Science.gov (United States)

    Chen, Hongbo; Kankel, Mark W; Su, Susan C; Han, Steve W S; Ofengeim, Dimitry

    2018-03-01

    Although amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, was first described in 1874, a flurry of genetic discoveries in the last 10 years has markedly increased our understanding of this disease. These findings have not only enhanced our knowledge of mechanisms leading to ALS, but also have revealed that ALS shares many genetic causes with another neurodegenerative disease, frontotemporal lobar dementia (FTLD). In this review, we survey how recent genetic studies have bridged our mechanistic understanding of these two related diseases and how the genetics behind ALS and FTLD point to complex disorders, implicating non-neuronal cell types in disease pathophysiology. The involvement of non-neuronal cell types is consistent with a non-cell autonomous component in these diseases. This is further supported by studies that identified a critical role of immune-associated genes within ALS/FTLD and other neurodegenerative disorders. The molecular functions of these genes support an emerging concept that various non-autonomous functions are involved in neurodegeneration. Further insights into such a mechanism(s) will ultimately lead to a better understanding of potential routes of therapeutic intervention. Facts ALS and FTLD are severe neurodegenerative disorders on the same disease spectrum. Multiple cellular processes including dysregulation of RNA homeostasis, imbalance of proteostasis, contribute to ALS/FTLD pathogenesis. Aberrant function in non-neuronal cell types, including microglia, contributes to ALS/FTLD. Strong neuroimmune and neuroinflammatory components are associated with ALS/FTLD patients. Open Questions Why can patients with similar mutations have different disease manifestations, i.e., why do C9ORF72 mutations lead to motor neuron loss in some patients while others exhibit loss of neurons in the frontotemporal lobe? Do ALS causal mutations result in microglial dysfunction and contribute to ALS/FTLD pathology? How do microglia

  8. Probing the role of HDACs and mechanisms of chromatin-mediated neuroplasticity.

    Science.gov (United States)

    Haggarty, Stephen J; Tsai, Li-Huei

    2011-07-01

    Advancing our understanding of neuroplasticity and the development of novel therapeutics based upon this knowledge is critical in order to improve the treatment and prevention of a myriad of nervous system disorders. Epigenetic mechanisms of neuroplasticity involve the post-translational modification of chromatin and the recruitment or loss of macromolecular complexes that control neuronal activity-dependent gene expression. While over a century after Ramón y Cajal first described nuclear subcompartments and foci that we now know correspond to sites of active transcription with acetylated histones that are under epigenetic control, the rate and extent to which epigenetic processes act in a dynamic and combinatorial fashion to shape experience-dependent phenotypic and behavioral plasticity in response to various types of neuronal stimuli over a range of time scales is only now coming into focus. With growing recognition that a subset of human diseases involving cognitive dysfunction can be classified as 'chromatinopathies', in which aberrant chromatin-mediated neuroplasticity plays a causal role in the underlying disease pathophysiology, understanding the molecular nature of epigenetic mechanisms in the nervous system may provide important new avenues for the development of novel therapeutics. In this review, we discuss the chemistry and neurobiology of the histone deacetylase (HDAC) family of chromatin-modifying enzymes, outline the role of HDACs in the epigenetic control of neuronal function, and discuss the potential relevance of these epigenetic mechanisms to the development of therapeutics aiming to enhance memory and neuroplasticity. Finally, open questions, challenges, and critical needs for the field of 'neuroepigenetics' in the years to come will be summarized. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Understanding the benefits of product-service system for involved parties in remanufacturing

    Directory of Open Access Journals (Sweden)

    Anjar Priyono

    2017-05-01

    Full Text Available Purpose: This study aims to analyse the benefit provided by interested parties in remanufacturing including manufacturing companies, original equipment manufacturers and customers. Existing studies examining Produc-Service System (PSS focus on relationship between two parties, either between OEMs and customers or between remanufacturers with customers. This study attempts to fill the gap by investigating how the PSS offers benefit to OEMs, remanufacturers and customers. Methodology: This research used case study method to examine the practice of PSS in remanufacturing companies. Qualitative approach was employed to analyse emerging problems in the case companies and the researcher collaborate with the involved parties to create new knowledge. Thus, this process can offer theoretical insights as well as practical insights. Findings: All parties involved in PSS consistently gain benefit from adopting the practice. From the perspective of remanufacturers, the major benefit of remanufacturers adopting PSS is that it can help reduce the uncertainties regarding time, quantity and quality of returned cores. Due to reduced uncertainties, remanufacturers gain benefit from higher profitability and more environmental friendly products. These benefits provide multiplier effects to both customers and OEMs. Practical implications: This study offers benefits to managers in the sense that it provides guidance for managers of remanufacturers to better manage remanufacturing operation so that it becomes more environmentally friendly and economically profitable. Originality/value: It is the first time that the benefits of PSS to support remanufacturing are viewed from integrative perspective – i.e. manufacturers, remanufacturers, and customers.

  10. Understanding Activation Patterns in Shared Circuits: Toward a Value Driven Model

    Directory of Open Access Journals (Sweden)

    Lisa Aziz-Zadeh

    2018-05-01

    Full Text Available Over the past decade many studies indicate that we utilize our own motor system to understand the actions of other people. This mirror neuron system (MNS has been proposed to be involved in social cognition and motor learning. However, conflicting findings regarding the underlying mechanisms that drive these shared circuits make it difficult to decipher a common model of their function. Here we propose adapting a “value-driven” model to explain discrepancies in the human mirror system literature and to incorporate this model with existing models. We will use this model to explain discrepant activation patterns in multiple shared circuits in the human data, such that a unified model may explain reported activation patterns from previous studies as a function of value.

  11. Identification of a transporter Slr0982 involved in ethanol tolerance in cyanobacterium Synechocystis sp. PCC 6803

    Directory of Open Access Journals (Sweden)

    Yanan eZhang

    2015-05-01

    Full Text Available Cyanobacteria have been engineered to produce ethanol through recent synthetic biology efforts. However, one major challenge to the cyanobacterial systems for high-efficiency ethanol production is their low tolerance to the ethanol toxicity. With a major goal to identify novel transporters involved in ethanol tolerance, we constructed gene knockout mutants for 58 transporter-encoding genes of Synechocystis sp. PCC 6803 and screened their tolerance change under ethanol stress. The efforts allowed discovery of a mutant of slr0982 gene encoding an ATP-binding cassette transporter which grew poorly in BG11 medium supplemented with 1.5% (v/v ethanol when compared with the wild type, and the growth loss could be recovered by complementing slr0982 in the ∆slr0982 mutant, suggesting that slr0982 is involved in ethanol tolerance in Synechocystis. To decipher the tolerance mechanism involved, a comparative metabolomic and network-based analysis of the wild type and the ethanol-sensitive ∆slr0982 mutant was performed. The analysis allowed the identification of four metabolic modules related to slr0982 deletion in the ∆slr0982 mutant, among which metabolites like sucrose and L-pyroglutamic acid which might be involved in ethanol tolerance, were found important for slr0982 deletion in the ∆slr0982 mutant. This study reports on the first transporter related to ethanol tolerance in Synechocystis, which could be a useful target for further tolerance engineering. In addition, metabolomic and network analysis provides important findings for better understanding of the tolerance mechanism to ethanol stress in Synechocystis.

  12. Molecular mechanisms of induced-mutations

    International Nuclear Information System (INIS)

    Kato, Takeshi

    1985-01-01

    The outcome of recent studies on mechanisms of induced-mutations is outlined with particular emphasis on the dependence of recA gene function in Escherichia coli. Genes involved in spontaneous mutation and x-ray- and chemical-induced mutation and genes involved in adaptive response are presented. As for SOS mutagenesis, SOS-induced regulation mechanisms and mutagenic routes are described. Furthermore, specificity of mutagens themselves are discussed in relation to mechanisms of base substitution, frameshift, and deletion mutagenesis. (Namekawa, K.)

  13. Targeting GLI by GANT61 involves mechanisms dependent on inhibition of both transcription and DNA licensing.

    Science.gov (United States)

    Zhang, Ruowen; Wu, Jiahui; Ferrandon, Sylvain; Glowacki, Katie J; Houghton, Janet A

    2016-12-06

    The GLI genes are transcription factors and in cancers are oncogenes, aberrantly and constitutively activated. GANT61, a specific GLI inhibitor, has induced extensive cytotoxicity in human models of colon cancer. The FOXM1 promoter was determined to be a transcriptional target of GLI1. In HT29 cells, inhibition of GLI1 binding at the GLI consensus sequence by GANT61 led to inhibited binding of Pol II, the pause-release factors DSIF, NELF and p-TEFb. The formation of R-loops (RNA:DNA hybrids, ssDNA), were reduced by GANT61 at the FOXM1 promoter. Pretreatment of HT29 cells with α-amanitin reduced GANT61-induced γH2AX foci. Co-localization of GLI1 and BrdU foci, inhibited by GANT61, indicated GLI1 and DNA replication to be linked. By co-immunoprecipitation and confocal microscopy, GLI1 co-localized with the DNA licensing factors ORC4, CDT1, and MCM2. Significant co-localization of GLI1 and ORC4 was inhibited by GANT61, and enrichment of ORC4 occurred at the GLI binding site in the FOXM1 promoter. CDT1 was found to be a transcription target of GLI1. Overexpression of CDT1 in HT29 and SW480 cells reduced GANT61-induced cell death, gH2AX foci, and cleavage of caspase-3. Data demonstrate involvement of transcription and of DNA replication licensing factors by non-transcriptional and transcriptional mechanisms in the GLI-dependent mechanism of action of GANT61.

  14. Molecular Mechanisms of Cannabis Signaling in the Brain.

    Science.gov (United States)

    Ronan, Patrick J; Wongngamnit, Narin; Beresford, Thomas P

    2016-01-01

    Cannabis has been cultivated and used by humans for thousands of years. Research for decades was focused on understanding the mechanisms of an illegal/addictive drug. This led to the discovery of the vast endocannabinoid system. Research has now shifted to understanding fundamental biological questions related to one of the most widespread signaling systems in both the brain and the body. Our understanding of cannabinoid signaling has advanced significantly in the last two decades. In this review, we discuss the state of knowledge on mechanisms of Cannabis signaling in the brain and the modulation of key brain neurotransmitter systems involved in both brain reward/addiction and psychiatric disorders. It is highly probable that various cannabinoids will be found to be efficacious in the treatment of a number of psychiatric disorders. However, while there is clearly much potential, marijuana has not been properly vetted by the medical-scientific evaluation process and there are clearly a range of potentially adverse side-effects-including addiction. We are at crossroads for research on endocannabinoid function and therapeutics (including the use of exogenous treatments such as Cannabis). With over 100 cannabinoid constituents, the majority of which have not been studied, there is much Cannabis research yet to be done. With more states legalizing both the medicinal and recreational use of marijuana the rigorous scientific investigation into cannabinoid signaling is imperative. Copyright © 2016. Published by Elsevier Inc.

  15. Mechanisms involved in the vasorelaxant effects produced by the acute application of amfepramone in vitro to rat aortic rings

    Energy Technology Data Exchange (ETDEWEB)

    López-Canales, J.S. [Section of Postgraduate Studies and Investigation, Higher School of Medicine from the National Polytechnic Institute, Mexico City (Mexico); Department of Cellular Biology, National Institute of Perinatology, Mexico City (Mexico); Lozano-Cuenca, J.; Muãoz-Islas, E.; Aguilar-Carrasco, J.C. [Department of Cellular Biology, National Institute of Perinatology, Mexico City (Mexico); López-Canales, O.A.; López-Mayorga, R.M.; Castillo-Henkel, E.F.; Valencia-Hernández, I.; Castillo-Henkel, C. [Section of Postgraduate Studies and Investigation, Higher School of Medicine from the National Polytechnic Institute, Mexico City (Mexico)

    2015-03-27

    Amfepramone (diethylpropion) is an appetite-suppressant drug used for the treatment of overweight and obesity. It has been suggested that the systemic and central activity of amfepramone produces cardiovascular effects such as transient ischemic attacks and primary pulmonary hypertension. However, it is not known whether amfepramone produces immediate vascular effects when applied in vitro to rat aortic rings and, if so, what mechanisms may be involved. We analyzed the effect of amfepramone on phenylephrine-precontracted rat aortic rings with or without endothelium and the influence of inhibitors or blockers on this effect. Amfepramone produced a concentration-dependent vasorelaxation in phenylephrine-precontracted rat aortic rings that was not affected by the vehicle, atropine, 4-AP, glibenclamide, indomethacin, clotrimazole, or cycloheximide. The vasorelaxant effect of amfepramone was significantly attenuated by NG-nitro-L-arginine methyl ester (L-NAME) and tetraethylammonium (TEA), and was blocked by removal of the vascular endothelium. These results suggest that amfepramone had a direct vasorelaxant effect on phenylephrine-precontracted rat aortic rings, and that inhibition of endothelial nitric oxide synthase and the opening of Ca{sup 2+}-activated K{sup +} channels were involved in this effect.

  16. Mechanisms involved in the vasorelaxant effects produced by the acute application of amfepramone in vitro to rat aortic rings

    International Nuclear Information System (INIS)

    López-Canales, J.S.; Lozano-Cuenca, J.; Muãoz-Islas, E.; Aguilar-Carrasco, J.C.; López-Canales, O.A.; López-Mayorga, R.M.; Castillo-Henkel, E.F.; Valencia-Hernández, I.; Castillo-Henkel, C.

    2015-01-01

    Amfepramone (diethylpropion) is an appetite-suppressant drug used for the treatment of overweight and obesity. It has been suggested that the systemic and central activity of amfepramone produces cardiovascular effects such as transient ischemic attacks and primary pulmonary hypertension. However, it is not known whether amfepramone produces immediate vascular effects when applied in vitro to rat aortic rings and, if so, what mechanisms may be involved. We analyzed the effect of amfepramone on phenylephrine-precontracted rat aortic rings with or without endothelium and the influence of inhibitors or blockers on this effect. Amfepramone produced a concentration-dependent vasorelaxation in phenylephrine-precontracted rat aortic rings that was not affected by the vehicle, atropine, 4-AP, glibenclamide, indomethacin, clotrimazole, or cycloheximide. The vasorelaxant effect of amfepramone was significantly attenuated by NG-nitro-L-arginine methyl ester (L-NAME) and tetraethylammonium (TEA), and was blocked by removal of the vascular endothelium. These results suggest that amfepramone had a direct vasorelaxant effect on phenylephrine-precontracted rat aortic rings, and that inhibition of endothelial nitric oxide synthase and the opening of Ca 2+ -activated K + channels were involved in this effect

  17. Understanding Resilience

    Directory of Open Access Journals (Sweden)

    Gang eWu

    2013-02-01

    Full Text Available Resilience is the ability to adapt successfully in the face of stress and adversity. Stressful life events, trauma and chronic adversity can have a substantial impact on brain function and structure, and can result in the development of PTSD, depression and other psychiatric disorders. However, most individuals do not develop such illnesses after experiencing stressful life events, and are thus thought to be resilient. Resilience as successful adaptation relies on effective responses to environmental challenges and ultimate resistance to the deleterious effects of stress, therefore a greater understanding of the factors that promote such effects is of great relevance. This review focuses on recent findings regarding genetic, epigenetic, developmental, psychosocial and neurochemical factors that are considered essential contributors to the development of resilience. Neural circuits and pathways involved in mediating resilience are also discussed. The growing understanding of resilience factors will hopefully lead to the development of new pharmacological and psychological interventions for enhancing resilience and mitigating the untoward consequences.

  18. Understanding the hydrolysis mechanism of ethyl acetate catalyzed by an aqueous molybdocene: a computational chemistry investigation.

    Science.gov (United States)

    Tílvez, Elkin; Cárdenas-Jirón, Gloria I; Menéndez, María I; López, Ramón

    2015-02-16

    , in general, the information reported here could be of interest in designing new catalysts and understanding the reaction mechanism of these and other metal-catalyzed hydrolysis reactions.

  19. Revelations from the Nematode Caenorhabditis elegans on the Complex Interplay of Metal Toxicological Mechanisms

    Directory of Open Access Journals (Sweden)

    Ebany J. Martinez-Finley

    2011-01-01

    Full Text Available Metals have been definitively linked to a number of disease states. Due to the widespread existence of metals in our environment from both natural and anthropogenic sources, understanding the mechanisms of their cellular detoxification is of upmost importance. Organisms have evolved cellular detoxification systems including glutathione, metallothioneins, pumps and transporters, and heat shock proteins to regulate intracellular metal levels. The model organism, Caenorhabditis elegans (C. elegans, contains these systems and provides several advantages for deciphering the mechanisms of metal detoxification. This review provides a brief summary of contemporary literature on the various mechanisms involved in the cellular detoxification of metals, specifically, antimony, arsenic, cadmium, copper, manganese, mercury, and depleted uranium using the C. elegans model system for investigation and analysis.

  20. A critical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata.

    Science.gov (United States)

    Danh, Luu Thai; Truong, Paul; Mammucari, Raffaella; Foster, Neil

    2014-01-01

    The discovery of the arsenic hyperaccumulator, Pteris vittata (Chinese brake fern), has contributed to the promotion of its application as a means of phytoremediation for arsenic removal from contaminated soils and water. Understanding the mechanisms involved in arsenic tolerance and accumulation of this plant provides valuable tools to improve the phytoremediation efficiency. In this review, the current knowledge about the physiological and molecular mechanisms of arsenic tolerance and accumulation in P. vittata is summarized, and an attempt has been made to clarify some of the unresolved questions related to these mechanisms. In addition, the capacity of P. vittata for remediation of arsenic-contaminated soils is evaluated under field conditions for the first time, and possible solutions to improve the remediation capacity of Pteris vittata are also discussed.

  1. Molecular mechanisms of drug resistance and tumor promotion involving mammalian ribonucleotide reductase

    Energy Technology Data Exchange (ETDEWEB)

    Choy, B.B.K.

    1991-01-01

    Mammalian ribonucleotide reductase is a highly regulated, rate-limiting activity responsible for converting ribonucleoside diphosphates to the deoxyribonucleotide precursors of DNA. The enzyme consists of two nonidentical proteins called M1 and M2, both of which are required for activity. Hydroxyurea is an antitumor agent which inhibits ribonucleotide reductase by interacting with the M2 component specifically at a unique tyrosyl free radical. Studies were conducted on a series of drug resistant mouse cell lines, selected by a step-wise procedure for increasing levels of resistance to the cytotoxic effects of hydroxyurea. Each successive drug selection step leading to the isolation of highly resistant cells was accompanied by stable elevations in cellular resistance and ribonucleotide reductase activity. The drug resistant cell lines exhibited gene amplification of the M2 gene, elevated M2 mRNA, and M2 protein. In addition to M2 gene amplification, posttranscriptional modulation also occurred during the drug selection. Studies of the biosynthesis rates with exogenously added iron suggest a role for iron in regulating the level of M2 protein when cells are cultured in the presence of hydroxyurea. The hydroxyurea-inactivated ribonucleotide reductase protein M2 has a destabilized iron centre, which readily releases iron. Altered expression of ferritin appears to be required for the development of hydroxyurea resistance in nammalian cells. The results show an interesting relationship between the expressions of ribonucleotide reductase and ferritin. The phorbol ester tumor promoter, TPA, is also able to alter the expression of M2. TPA was able to induce M2 mRNA levels transiently up to 18-fold within 1/2 hour. This rapid and large elevation of ribonucleotide reductase suggests that the enzyme may play a role in tumor promotion. Studies of the M2 promoter region were undertaken to better understand the mechanism of TPA induction of M2.

  2. Toward Understanding Mechanisms Controlling Urea Delivery in a Coastal Plain Watershed

    Science.gov (United States)

    Tzilkowski, S. S.; Buda, A. R.; Boyer, E. W.; Bryant, R. B.; May, E. B.

    2012-12-01

    Improved understanding of nutrient mobilization and delivery to surface waters is critical to protecting water quality in agricultural watersheds. Urea, a form of organic nitrogen, is a common nutrient found in fertilizers, manures, and human waste, and is gaining recognition as an important driver of coastal eutrophication, particularly through the development of harmful algal blooms. While several studies have documented elevated urea concentrations in tributaries draining to the Chesapeake Bay, little is known about the potential sources and flow pathways responsible for urea delivery from the landscape to surface waters, as well as how these sources and pathways might vary with changing seasons, antecedent conditions, and storm types. In this study, we investigated hydrologic controls on urea delivery in the Manokin River watershed through the analysis of urea concentration dynamics and hysteresis patterns during seven storm events that occurred in 2010 and 2011. The Manokin River is a Coastal Plain watershed (11.1 km2) on the Delmarva Peninsula that drains directly to the Chesapeake Bay and is characterized by extensive rural development coupled with intensive agriculture, particularly poultry production. Sampling was conducted through monthly grab sampling at baseflow conditions and by time-weighted, automated (Sigma) samplers during stormflow events. Monitored storms were chosen to represent a spectrum of antecedent conditions based on precipitation and groundwater levels in the area. Flushing from the landscape during events was found to be the predominant urea delivery mechanism, as urea concentrations increased 3-9 times above baseflow concentrations during storms. The timing and number of flushes, as well as the degree of increased concentrations were dependent on antecedent conditions and the characteristics of the storm event. For instance, during an intense (13.7 mm hr-1), short-duration (4 hrs) storm in August of 2010 when antecedent conditions were

  3. Understanding the Mind or Predicting Signal-Dependent Action? Performance of Children With and Without Autism on Analogues of the False-Belief Task

    OpenAIRE

    Bowler, D. M.; Briskman, J.; Gurvidi, N.; Fornells-Ambrojo, M.

    2005-01-01

    To evaluate the claim that correct performance on unexpected transfer false-belief tasks specifically involves mental-state understanding, two experiments were carried out with children with autism, intellectual disabilities, and typical development. In both experiments, children were given a standard unexpected transfer false-belief task and a mental-state-free, mechanical analogue task in which participants had to predict the destination of a train based on true or false signal information....

  4. Patient empowerment and involvement in telemedicine

    DEFF Research Database (Denmark)

    Konge Nielsen, Marie; Johannessen, Helle

    2018-01-01

    Basic ideas of empowerment and user involvement in relation to telemedicine are presented, as is a case implying user resistance to telemedicine. Four logics of empowerment are employed to identify the underlying rationale of specific cases of telemedicine. The article concludes, that although...... telemedicine is acknowledged as relevant, the approach to it is often too mechanical to imply empowerment of the patient. Some patient groups may not feel safe by using telemedicine, and user involvement and empowerment will not be possible....

  5. Involvement of Programmed Cell Death in Neurotoxicity of Metallic Nanoparticles: Recent Advances and Future Perspectives

    Science.gov (United States)

    Song, Bin; Zhou, Ting; Liu, Jia; Shao, LongQuan

    2016-11-01

    The widespread application of metallic nanoparticles (NPs) or NP-based products has increased the risk of exposure to NPs in humans. The brain is an important organ that is more susceptible to exogenous stimuli. Moreover, any impairment to the brain is irreversible. Recently, several in vivo studies have found that metallic NPs can be absorbed into the animal body and then translocated into the brain, mainly through the blood-brain barrier and olfactory pathway after systemic administration. Furthermore, metallic NPs can cross the placental barrier to accumulate in the fetal brain, causing developmental neurotoxicity on exposure during pregnancy. Therefore, metallic NPs become a big threat to the brain. However, the mechanisms underlying the neurotoxicity of metallic NPs remain unclear. Programmed cell death (PCD), which is different from necrosis, is defined as active cell death and is regulated by certain genes. PCD can be mainly classified into apoptosis, autophagy, necroptosis, and pyroptosis. It is involved in brain development, neurodegenerative disorders, psychiatric disorders, and brain injury. Given the pivotal role of PCD in neurological functions, we reviewed relevant articles and tried to summarize the recent advances and future perspectives of PCD involvement in the neurotoxicity of metallic NPs, with the purpose of comprehensively understanding the neurotoxic mechanisms of NPs.

  6. Rheology and Fracture Mechanics of Foods

    NARCIS (Netherlands)

    Vliet, van T.

    2013-01-01

    The mechanical properties of food play an important role during manufacturing, storage, handling, and last but not least, during consumption. For an adequate understanding of the mechanical properties of liquid, liquid-like, soft solid, and solid foods, a basic understanding of relevant aspects of

  7. Does an Emphasis on the Concept of Quantum States Enhance Students' Understanding of Quantum Mechanics?

    Science.gov (United States)

    Greca, Ileana Maria; Freire, Olival

    Teaching physics implies making choices. In the case of teaching quantum physics, besides an educational choice - the didactic strategy - another choice must be made, an epistemological one, concerning the interpretation of quantum theory itself. These two choices are closely connected. We have chosen a didactic strategy that privileges the phenomenological-conceptual approach, with emphasis upon quantum features of the systems, instead of searching for classical analogies. This choice has led us to present quantum theory associated with an orthodox, yet realistic, interpretation of the concept of quantum state, considered as the key concept of quantum theory, representing the physical reality of a system, independent of measurement processes. The results of the mplementation of this strategy, with three groups of engineering students, showed that more than a half of them attained a reasonable understanding of the basics of quantum mechanics (QM) for this level. In addition, a high degree of satisfaction was attained with the classes as 80% of the students of the experimental groups claimed to have liked it and to be interested in learning more about QM.

  8. Progressive multiple sclerosis: from pathogenic mechanisms to treatment.

    Science.gov (United States)

    Correale, Jorge; Gaitán, María I; Ysrraelit, María C; Fiol, Marcela P

    2017-03-01

    During the past decades, better understanding of relapsing-remitting multiple sclerosis disease mechanisms have led to the development of several disease-modifying therapies, reducing relapse rates and severity, through immune system modulation or suppression. In contrast, current therapeutic options for progressive multiple sclerosis remain comparatively disappointing and challenging. One possible explanation is a lack of understanding of pathogenic mechanisms driving progressive multiple sclerosis. Furthermore, diagnosis is usually retrospective, based on history of gradual neurological worsening with or without occasional relapses, minor remissions or plateaus. In addition, imaging methods as well as biomarkers are not well established. Magnetic resonance imaging studies in progressive multiple sclerosis show decreased blood-brain barrier permeability, probably reflecting compartmentalization of inflammation behind a relatively intact blood-brain barrier. Interestingly, a spectrum of inflammatory cell types infiltrates the leptomeninges during subpial cortical demyelination. Indeed, recent magnetic resonance imaging studies show leptomeningeal contrast enhancement in subjects with progressive multiple sclerosis, possibly representing an in vivo marker of inflammation associated to subpial demyelination. Treatments for progressive disease depend on underlying mechanisms causing central nervous system damage. Immunity sheltered behind an intact blood-brain barrier, energy failure, and membrane channel dysfunction may be key processes in progressive disease. Interfering with these mechanisms may provide neuroprotection and prevent disability progression, while potentially restoring activity and conduction along damaged axons by repairing myelin. Although most previous clinical trials in progressive multiple sclerosis have yielded disappointing results, important lessons have been learnt, improving the design of novel ones. This review discusses mechanisms involved

  9. Molecular analysis of Hsp70 mechanisms in plants and their function in response to stress.

    Science.gov (United States)

    Usman, Magaji G; Rafii, Mohd Y; Martini, Mohammad Y; Yusuff, Oladosu A; Ismail, Mohd R; Miah, Gous

    2017-04-01

    Studying the strategies of improving abiotic stress tolerance is quite imperative and research under this field will increase our understanding of response mechanisms to abiotic stress such as heat. The Hsp70 is an essential regulator of protein having the tendency to maintain internal cell stability like proper folding protein and breakdown of unfolded proteins. Hsp70 holds together protein substrates to help in movement, regulation, and prevent aggregation under physical and or chemical pressure. However, this review reports the molecular mechanism of heat shock protein 70 kDa (Hsp70) action and its structural and functional analysis, research progress on the interaction of Hsp70 with other proteins and their interaction mechanisms as well as the involvement of Hsp70 in abiotic stress responses as an adaptive defense mechanism.

  10. A paracrine mechanism involving renal tubular cells, adipocytes and macrophages promotes kidney stone formation in a simulated metabolic syndrome environment.

    Science.gov (United States)

    Zuo, Li; Tozawa, Keiichi; Okada, Atsushi; Yasui, Takahiro; Taguchi, Kazumi; Ito, Yasuhiko; Hirose, Yasuhiko; Fujii, Yasuhiro; Niimi, Kazuhiro; Hamamoto, Shuzo; Ando, Ryosuke; Itoh, Yasunori; Zou, Jiangang; Kohri, Kenjiro

    2014-06-01

    We developed an in vitro system composed of renal tubular cells, adipocytes and macrophages to simulate metabolic syndrome conditions. We investigated the molecular communication mechanism of these cells and their involvement in kidney stone formation. Mouse renal tubular cells (M-1) were cocultured with adipocytes (3T3-L1) and/or macrophages (RAW264.7). Calcium oxalate monohydrate crystals were exposed to M-1 cells after 48-hour coculture and the number of calcium oxalate monohydrate crystals adherent to the cells was quantified. The expression of cocultured medium and M-1 cell inflammatory factors was analyzed by enzyme-linked immunosorbent assay and quantitative polymerase chain reaction, respectively. The inflammatory markers MCP-1, OPN and TNF-α were markedly up-regulated in cocultured M-1 cells. OPN expression increased in M-1 cells cocultured with RAW264.7 cells while MCP-1 and TNF-α were over expressed in M-1 cells cocultured with 3T3-L1 cells. Coculturing M-1 cells simultaneously with 3T3-L1 and RAW264.7 cells resulted in a significant increase in calcium oxalate monohydrate crystal adherence to M-1 cells. Inflammatory cytokine changes were induced by coculturing renal tubular cells with adipocytes and/or macrophages without direct contact, indicating that crosstalk between adipocytes/macrophages and renal tubular cells was mediated by soluble factors. The susceptibility to urolithiasis of patients with metabolic syndrome might be due to aggravated inflammation of renal tubular cells triggered by a paracrine mechanism involving these 3 cell types. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  11. Understanding of Leaf Development—the Science of Complexity

    Directory of Open Access Journals (Sweden)

    Robert Malinowski

    2013-06-01

    Full Text Available The leaf is the major organ involved in light perception and conversion of solar energy into organic carbon. In order to adapt to different natural habitats, plants have developed a variety of leaf forms, ranging from simple to compound, with various forms of dissection. Due to the enormous cellular complexity of leaves, understanding the mechanisms regulating development of these organs is difficult. In recent years there has been a dramatic increase in the use of technically advanced imaging techniques and computational modeling in studies of leaf development. Additionally, molecular tools for manipulation of morphogenesis were successfully used for in planta verification of developmental models. Results of these interdisciplinary studies show that global growth patterns influencing final leaf form are generated by cooperative action of genetic, biochemical, and biomechanical inputs. This review summarizes recent progress in integrative studies on leaf development and illustrates how intrinsic features of leaves (including their cellular complexity influence the choice of experimental approach.

  12. Beyond the therapeutic shackles of the monoamines: New mechanisms in bipolar disorder biology.

    Science.gov (United States)

    Data-Franco, João; Singh, Ajeet; Popovic, Dina; Ashton, Melanie; Berk, Michael; Vieta, Eduard; Figueira, M L; Dean, Olivia M

    2017-01-04

    Multiple novel biological mechanisms putatively involved in the etiology of bipolar disorders are being explored. These include oxidative stress, altered glutamatergic neurotransmission, mitochondrial dysfunction, inflammation, cell signaling, apoptosis and impaired neurogenesis. Important clinical translational potential exists for such mechanisms to help underpin development of novel therapeutics - much needed given limitations of current therapies. These new mechanisms also help improve our understanding of how current therapeutics might exert their effects. Lithium, for example, appears to have antioxidant, immunomodulatory, signaling, anti-apoptotic and neuroprotective properties. Similar properties have been attributed to other mood stabilizers such as valproate, lamotrigine, and quetiapine. Perhaps of greatest translational value has been the recognition of such mechanisms leading to the emergence of novel therapeutics for bipolar disorders. These include the antioxidant N-acetylcysteine, the anti-inflammatory celecoxib, and ketamine - with effects on the glutamatergic system and microglial inhibition. We review these novel mechanisms and emerging therapeutics, and comment on next steps in this space. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. THE EFFECT OF BRAND LOYALTY OF INVOLVEMENT TO PRODUCTS: THE SAMPLE OF MOBILE PHONE

    OpenAIRE

    Armagan, Ece; Akel, Gokhan

    2017-01-01

    Brands in a highly competitive environment is consideredas the main assets of businesses, businesses that create brand loyalty ensuresthat there is a long period of time. In order to ensure brand loyalty alsoconsumers’ involvement need to be investigated. Brand loyalty is also a greatbenefit in understanding consumers' level of involvement on the brand. Theproduct involvement required to understand consumer behavior is an importantfactor on brand loyalty. In this study, the effect of the...

  14. Cosmosiin Increases ADAM10 Expression via Mechanisms Involving 5’UTR and PI3K Signaling

    Directory of Open Access Journals (Sweden)

    Zhuo Min

    2018-06-01

    Full Text Available The α-secretase “a disintegrin and metalloproteinase domain-containing protein” (ADAM10 is involved in the processing of amyloid precursor protein (APP. Upregulation of ADAM10 precludes the generation of neurotoxic β-amyloid protein (Aβ and represents a plausible therapeutic strategy for Alzheimer’s disease (AD. In this study, we explored compounds that can potentially promote the expression of ADAM10. Therefore, we performed high-throughput small-molecule screening in SH-SY5Y (human neuroblastoma cells that stably express a luciferase reporter gene driven by the ADAM10 promoter, including a portion of its 5’-untranslated region (5’UTR. This has led to the discovery of cosmosiin (apigenin 7-O-β-glucoside. Here, we report that in human cell lines (SH-SY5Y and HEK293, cosmosiin proportionally increased the levels of the immature and mature forms of the ADAM10 protein without altering its mRNA level. This effect was attenuated by translation inhibitors or by deleting the 5’UTR of ADAM10, suggesting that a translational mechanism was responsible for the increased levels of ADAM10. Luciferase deletion assays revealed that the first 144 nucleotides of the 5’UTR were necessary for mediating the cosmosiin-induced enhancement of ADAM10 expression in SH-SY5Y cells. Cosmosiin failed to increase the levels of the ADAM10 protein in murine cells, which lack native expression of the ADAM10 transcript containing the identified 5’UTR element. The potential signaling pathway may involve phosphatidylinositide 3-kinase (PI3K because pharmacological inhibition of PI3K attenuated the effect of cosmosiin on the expression of the ADAM10 protein. Finally, cosmosiin attenuated Aβ generation because the levels of Aβ40/42 in HEK-APP cells were significantly reduced after cosmosiin treatment. Collectively, we found that the first 144 nucleotides of the ADAM10 5’UTR, and PI3K signaling, are involved in cosmosiin-induced enhancement of the expression

  15. The role of the active site Zn in the catalytic mechanism of the GH38 Golgi alpha-mannosidase II: Implications from noeuromycin inhibition

    DEFF Research Database (Denmark)

    Bols, Mikael; Kuntz, Douglas A.; Rose, David R.

    2006-01-01

    Golgi alpha-mannosidase II (GMII) is a Family 38 glycosyl hydrolase involved in the eukaryotic N-glycosylation pathway in protein synthesis. Understanding of its catalytic mechanism has been of interest for the development of specific inhibitors that could lead to novel anti-metastatic or anti-in...

  16. Understanding Plant Nitrogen Metabolism through Metabolomics and Computational Approaches

    Directory of Open Access Journals (Sweden)

    Perrin H. Beatty

    2016-10-01

    Full Text Available A comprehensive understanding of plant metabolism could provide a direct mechanism for improving nitrogen use efficiency (NUE in crops. One of the major barriers to achieving this outcome is our poor understanding of the complex metabolic networks, physiological factors, and signaling mechanisms that affect NUE in agricultural settings. However, an exciting collection of computational and experimental approaches has begun to elucidate whole-plant nitrogen usage and provides an avenue for connecting nitrogen-related phenotypes to genes. Herein, we describe how metabolomics, computational models of metabolism, and flux balance analysis have been harnessed to advance our understanding of plant nitrogen metabolism. We introduce a model describing the complex flow of nitrogen through crops in a real-world agricultural setting and describe how experimental metabolomics data, such as isotope labeling rates and analyses of nutrient uptake, can be used to refine these models. In summary, the metabolomics/computational approach offers an exciting mechanism for understanding NUE that may ultimately lead to more effective crop management and engineered plants with higher yields.

  17. Microstructures and mechanical properties of two-phase alloys based on NbCr{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K.C.; Kotula, P.G.; Cady, C.M.; Mauro, M.E.; Thoma, D.J.

    1999-07-01

    A two-phase, NbCrTi alloy (bcc + C15 Laves phase) has been developed using several alloy design methodologies. In efforts to understand processing-microstructure-property relationships, different processing routes were employed. The resulting microstructures and mechanical properties are discussed and compared. Plasma arc melted (PAM) samples served to establish baseline, as-cast properties. In addition, a novel processing technique, involving decomposition of a supersaturated and metastable precursor phase during hot isostatic pressing (HIP), was used to produce a refined, equilibrium two-phase microstructure. Quasi-static compression tests as a function of temperature were performed on both alloy types. Different deformation mechanisms were encountered based upon temperature and microstructure.

  18. Gut microbiota-involved mechanisms in enhancing systemic exposure of ginsenosides by coexisting polysaccharides in ginseng decoction

    Science.gov (United States)

    Zhou, Shan-Shan; Xu, Jun; Zhu, He; Wu, Jie; Xu, Jin-Di; Yan, Ru; Li, Xiu-Yang; Liu, Huan-Huan; Duan, Su-Min; Wang, Zhuo; Chen, Hu-Biao; Shen, Hong; Li, Song-Lin

    2016-03-01

    Oral decoctions of traditional Chinese medicines (TCMs) serve for therapeutic and prophylactic management of diseases for centuries. Small molecules and polysaccharides are the dominant chemicals co-occurred in the TCM decoction. Small molecules are well-studied by multidisciplinary elaborations, whereas the role of polysaccharides remains largely elusive. Here we explore a gut microbiota-involved mechanism by which TCM polysaccharides restore the homeostasis of gut microbiota and consequently promote the systemic exposure of concomitant small molecules in the decoction. As a case study, ginseng polysaccharides and ginsenosides in Du-Shen-Tang, the decoction of ginseng, were investigated on an over-fatigue and acute cold stress model. The results indicated that ginseng polysaccharides improved intestinal metabolism and absorption of certain ginsenosides, meanwhile reinstated the perturbed holistic gut microbiota, and particularly enhanced the growth of Lactobacillus spp. and Bacteroides spp., two major metabolic bacteria of ginsenosides. By exploring the synergistic actions of polysaccharides with small molecules, these findings shed new light on scientization and rationalization of the classic TCM decoctions in human health care.

  19. Fluid mechanics

    International Nuclear Information System (INIS)

    Granger, R.A.

    1985-01-01

    This text offers the most comprehensive approach available to fluid mechanics. The author takes great care to insure a physical understanding of concepts grounded in applied mathematics. The presentation of theory is followed by engineering applications, helping students develop problem-solving skills from the perspective of a professional engineer. Extensive use of detailed examples reinforces the understanding of theoretical concepts

  20. Understanding Irreversible Degradation of Nb3Sn Wires with Fundamental Fracture Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yuhu [PPPL; Calzolaio, Ciro [Univ of Geneva; Senatore, Carmine [Univ of Geneva

    2014-08-01

    Irreversible performance degradation of advanced Nb3Sn superconducting wires subjected to transverse or axial mechanical loading is a critical issue for the design of large-scale fusion and accelerator magnets such as ITER and LHC. Recent SULTAN tests indicate that most cable-in-conduit conductors for ITER coils made of Nb3Sn wires processed by various fabrication techniques show similar performance degradation under cyclic loading. The irreversible degradation due to filament fracture and local strain accumulation in Nb3Sn wires cannot be described by the existing strand scaling law. Fracture mechanic modeling combined with X-ray diffraction imaging of filament micro-crack formation inside the wires under mechanical loading may reveal exciting insights to the wire degradation mechanisms. We apply fundamental fracture mechanics with a singularity approach to study influence of wire filament microstructure of initial void size and distribution to local stress concentration and potential crack propagation. We report impact of the scale and density of the void structure on stress concentration in the composite wire materials for crack initiation. These initial defects result in an irreversible degradation of the critical current beyond certain applied stress. We also discuss options to minimize stress concentration in the design of the material microstructure for enhanced wire performance for future applications.