WorldWideScience

Sample records for understand mathematics deeply

  1. The role of mathematics for physics teaching and understanding

    International Nuclear Information System (INIS)

    Pospiech, G; Geyer, M.A.; Eylon, B.; Bagno, E.; Lehavi, Y.

    2015-01-01

    That mathematics is the “language of physics” implies that both areas are deeply interconnected, such that often no separation between “pure” mathematics and “pure” physics is possible. To clarify their interplay a technical and a structural role of mathematics can be distinguished. A thorough understanding of this twofold role in physics is also important for shaping physics education especially with respect to teaching the nature of physics. Herewith the teachers and their pedagogical content knowledge play an important role. Therefore we develop a model of PCK concerning the interplay of mathematics and physics in order to provide a theoretical framework for the views and teaching strategies of teachers. In an exploratory study four teachers from Germany and four teachers from Israel have been interviewed concerning their views and its transfer to teaching physics. Here we describe the results from Germany. Besides general views and knowledge held by all or nearly all teachers we also observe specific individual focus depending on the teachers’ background and experiences. The results fit well into the derived model of PCK.

  2. The role of mathematics for physics teaching and understanding

    Science.gov (United States)

    Pospiech, Gesche; Eylon, BatSheva; Bagno, Esther; Lehavi, Yaron; Geyer, Marie-Annette

    2016-05-01

    -1That mathematics is the "language of physics" implies that both areas are deeply interconnected, such that often no separation between "pure" mathematics and "pure" physics is possible. To clarify their interplay a technical and a structural role of mathematics can be distinguished. A thorough understanding of this twofold role in physics is also important for shaping physics education especially with respect to teaching the nature of physics. Herewith the teachers and their pedagogical content knowledge play an important role. Therefore we develop a model of PCK concerning the interplay of mathematics and physics in order to provide a theoretical framework for the views and teaching strategies of teachers. In an exploratory study four teachers from Germany and four teachers from Israel have been interviewed concerning their views and its transfer to teaching physics. Here we describe the results from Germany. Besides general views and knowledge held by all or nearly all teachers we also observe specific individual focus depending on the teachers' background and experiences. The results fit well into the derived model of PCK.

  3. Understanding in mathematics

    CERN Document Server

    Sierpinska, Anna

    1994-01-01

    The concept of understanding in mathematics with regard to mathematics education is considered in this volume, the main problem for mathematics teachers being how to facilitate their students'' understanding of the mathematics being taught.

  4. On Mathematical Understanding: Perspectives of Experienced Chinese Mathematics Teachers

    Science.gov (United States)

    Cai, Jinfa; Ding, Meixia

    2017-01-01

    Researchers have long debated the meaning of mathematical understanding and ways to achieve mathematical understanding. This study investigated experienced Chinese mathematics teachers' views about mathematical understanding. It was found that these mathematics teachers embrace the view that understanding is a web of connections, which is a result…

  5. Understanding Understanding Mathematics. Artificial Intelligence Memo No. 488.

    Science.gov (United States)

    Michener, Edwina Rissland

    This document is concerned with the important extra-logical knowledge that is often outside of traditional discussions in mathematics, and looks at some of the ingredients and processes involved in the understanding of mathematics. The goal is to develop a conceptual framework in which to talk about mathematical knowledge and to understand the…

  6. Emotion and Disaffection with School Mathematics

    Science.gov (United States)

    Lewis, Gareth

    2013-01-01

    This paper reports some initial findings from research designed to understand more deeply the motivational and emotional landscape of disaffection with school mathematics. A context is described in which there has been significant concern expressed about a number of aspects of mathematics education, but where affect is seen as salient to these…

  7. Mathematics understanding and anxiety in collaborative teaching

    Science.gov (United States)

    Ansari, B. I.; Wahyu, N.

    2017-12-01

    This study aims to examine students’ mathematical understanding and anxiety using collaborative teaching. The sample consists of 51 students in the 7th-grade of MTs N Jeureula, one of the Islamic public junior high schools in Jeureula, Aceh, Indonesia. A test of mathematics understanding was administered to the students twice during the period of two months. The result suggests that there is a significant increase in mathematical understanding in the pre-test and post-test. We categorized the students into the high, intermediate, and low level of prior mathematics knowledge. In the high-level prior knowledge, there is no difference of mathematical understanding between the experiment and control group. Meanwhile, in the intermediate and low level of prior knowledge, there is a significant difference of mathematical understanding between the experiment and control group. The mathematics anxiety is at an intermediate level in the experiment class and at a high level in the control group. There is no interaction between the learning model and the students’ prior knowledge towards the mathematical understanding, but there are interactions towards the mathematics anxiety. It indicates that the collaborative teaching model and the students’ prior knowledge do not simultaneously impacts on the mathematics understanding but the mathematics anxiety.

  8. The influence of Missouri mathematics project on seventh grade students’ mathematical understanding ability

    Science.gov (United States)

    Rezeki, S.; Setyawan, A. A.; Amelia, S.

    2018-01-01

    Mathematical understanding ability is a primary goal of Indonesian national education goals. However, various sources has shown that Indonesian students’ mathematical understanding ability is still relatively low. This study used quasi-experimental research design to examine the effectiveness of the application of Missouri Mathematics Project (MMP) on students’ mathematical understanding ability. The participants of the study were seventh grade students in Pekanbaru, Riau Province, Indonesia. They were selected purposively and represented as high, medium, and low-quality schools. The result of this study indicated that there was a significant effect of MMP on the overall students’ mathematical understanding ability and in all categories, except for low school level.

  9. Improving students’ understanding of mathematical concept using maple

    Science.gov (United States)

    Ningsih, Y. L.; Paradesa, R.

    2018-01-01

    This study aimed to improve students’ understanding of mathematical concept ability through implementation of using Maple in learning and expository learning. This study used a quasi-experimental research with pretest-posttest control group design. The sample on this study was 61 students in the second semester of Mathematics Education of Universitas PGRI Palembang, South Sumatera in academic year 2016/2017. The sample was divided into two classes, one class as the experiment class who using Maple in learning and the other class as a control class who received expository learning. Data were collective through the test of mathematical initial ability and mathematical concept understanding ability. Data were analyzed by t-test and two ways ANOVA. The results of this study showed (1) the improvement of students’ mathematical concept understanding ability who using Maple in learning is better than those who using expository learning; (2) there is no interaction between learning model and students’ mathematical initial ability toward the improvement of students’ understanding of mathematical concept ability.

  10. Understanding Mathematics: Some Key Factors

    Science.gov (United States)

    Ali, Asma Amanat; Reid, Norman

    2012-01-01

    Mathematics is well known as a subject area where there can be problems in terms of understanding as well as retaining positive attitudes. In a large study involving 813 school students (ages approximately 10-12) drawn from two different school systems in Pakistan, the effect of limited working memory capacity on performance in mathematics was…

  11. Modelling Mathematical Reasoning in Physics Education

    Science.gov (United States)

    Uhden, Olaf; Karam, Ricardo; Pietrocola, Maurício; Pospiech, Gesche

    2012-04-01

    Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a tool for calculation which hinders a conceptual understanding of physical principles. However, the role of mathematics cannot be reduced to this technical aspect. Hence, instead of putting mathematics away we delve into the nature of physical science to reveal the strong conceptual relationship between mathematics and physics. Moreover, we suggest that, for both prospective teaching and further research, a focus on deeply exploring such interdependency can significantly improve the understanding of physics. To provide a suitable basis, we develop a new model which can be used for analysing different levels of mathematical reasoning within physics. It is also a guideline for shifting the attention from technical to structural mathematical skills while teaching physics. We demonstrate its applicability for analysing physical-mathematical reasoning processes with an example.

  12. Student’s mathematical understanding ability based on self-efficacy

    Science.gov (United States)

    Ramdhani, M. R.; Usodo, B.; Subanti, S.

    2017-11-01

    Materials in mathematics are provided not only as an ability to memorize, but also to train the ability of mathematical understanding. Students’ mathematical understanding ability is influenced by the students’ belief in solving the given problems. This research aim to determine the mathematical understanding ability of junior high school students. This research is descriptive qualitative research. Data collection was done through a test, questionnaire, and interview. The result showed that students with high self-efficacy category could master the three indicators of students’ mathematical understanding ability well, namely translation, interpretation, and exploration. Students with moderate self-efficacy category can master translation indicator and able to achieve interpretation indicator but they unable to reach exploration indicator. Students with low self-efficacy category only master the translation, but they cannot achieve the interpretation and exploration indicators. So, the students who have high, moderate or low self-efficacy master the indicator of mathematical understanding based on the level of understanding capabilities on each student.

  13. Profile of Metacognition of Mathematics and Mathematics Education Students in Understanding the Concept of Integral Calculus

    Science.gov (United States)

    Misu, La; Ketut Budayasa, I.; Lukito, Agung

    2018-03-01

    This study describes the metacognition profile of mathematics and mathematics education students in understanding the concept of integral calculus. The metacognition profile is a natural and intact description of a person’s cognition that involves his own thinking in terms of using his knowledge, planning and monitoring his thinking process, and evaluating his thinking results when understanding a concept. The purpose of this study was to produce the metacognition profile of mathematics and mathematics education students in understanding the concept of integral calculus. This research method is explorative method with the qualitative approach. The subjects of this study are mathematics and mathematics education students who have studied integral calculus. The results of this study are as follows: (1) the summarizing category, the mathematics and mathematics education students can use metacognition knowledge and metacognition skills in understanding the concept of indefinite integrals. While the definite integrals, only mathematics education students use metacognition skills; and (2) the explaining category, mathematics students can use knowledge and metacognition skills in understanding the concept of indefinite integrals, while the definite integrals only use metacognition skills. In addition, mathematics education students can use knowledge and metacognition skills in understanding the concept of both indefinite and definite integrals.

  14. Anticipation Guides: Reading for Mathematics Understanding

    Science.gov (United States)

    Adams, Anne E.; Pegg, Jerine; Case, Melissa

    2015-01-01

    With the acceptance by many states of the Common Core State Standards for Mathematics, new emphasis is being placed on students' ability to engage in mathematical practices such as understanding problems (including word problems), reading and critiquing arguments, and making explicit use of definitions (CCSSI 2010). Engaging students in…

  15. Understanding Mathematics-A Review

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 5. Understanding Mathematics – A Review. Shashidhar Jagadeeshan. Book Review Volume 6 Issue 5 May ... Author Affiliations. Shashidhar Jagadeeshan1. Centre for Learning, 469, 9th Cross, 1st Block, Jayanagar, Bangalore 560 011, India.

  16. Characterizing Preservice Teachers' Mathematical Understanding of Algebraic Relationships

    Science.gov (United States)

    Nillas, Leah A.

    2010-01-01

    Qualitative research methods were employed to investigate characterization of preservice teachers' mathematical understanding. Responses on test items involving algebraic relationships were analyzed using with-in case analysis (Miles and Huberman, 1994) and Pirie and Kieren's (1994) model of growth of mathematical understanding. Five elementary…

  17. Literature Review of Applying Visual Method to Understand Mathematics

    Directory of Open Access Journals (Sweden)

    Yu Xiaojuan

    2015-01-01

    Full Text Available As a new method to understand mathematics, visualization offers a new way of understanding mathematical principles and phenomena via image thinking and geometric explanation. It aims to deepen the understanding of the nature of concepts or phenomena and enhance the cognitive ability of learners. This paper collates and summarizes the application of this visual method in the understanding of mathematics. It also makes a literature review of the existing research, especially with a visual demonstration of Euler’s formula, introduces the application of this method in solving relevant mathematical problems, and points out the differences and similarities between the visualization method and the numerical-graphic combination method, as well as matters needing attention for its application.

  18. Understanding engineering mathematics

    CERN Document Server

    Cox, Bill

    2001-01-01

    * Unique interactive style enables students to diagnose their strengths and weaknesses and focus their efforts where needed* Ideal for self-study and tutorial work, building from an initially supportive approach to the development of independent learning skills * Free website includes solutions to all exercises, additional topics and applications, guide to learning mathematics, and practice materialStudents today enter engineering courses with a wide range of mathematical skills, due to the many different pre-university qualifications studied. Bill Cox''s aim is for students to gain a thorough understanding of the maths they are studying, by first strengthening their background in the essentials of each topic. His approach allows a unique self-paced study style, in which students Review their strengths and weaknesses through self-administered diagnostic tests, then focus on Revision where they need it, to finally Reinforce the skills required.The book is structured around a highly successful ''transition'' ma...

  19. Understanding Mathematics Classroom Instruction Through Students and Teachers

    OpenAIRE

    Schenke, Katerina

    2015-01-01

    High quality instruction is necessary for students of all ages to develop a deep understanding of mathematics. Value-added models, a common approach used to describe teachers and classroom practices, are defined by the student standardized achievement gains teachers elicit. They may, however, fail to account for the complexity of mathematics instruction as it actually occurs in the classroom. To truly understand both a teacher’s impact on his/her students and how best to improve student learn...

  20. Forms of Understanding in Mathematical Problem Solving.

    Science.gov (United States)

    1982-08-01

    mathematical concepts, but more recent studies (e.g., Gelman & Gallistel , 1978) indicate that significant understanding of those concepts should be...Beranek, & Newman, 1980. Gelman, R., & Gallistel , C. R. The child’s understanding of number. Cambridge, Mass.: Harvard University Press, 1978. 43 Greeno

  1. Deeply bound pionic atom

    International Nuclear Information System (INIS)

    Toki, Hiroshi; Yamazaki, Toshimitsu

    1989-01-01

    The standard method of pionic atom formation does not produce deeply bound pionic atoms. A study is made on the properties of deeply bound pionic atom states by using the standard pion-nucleus optical potential. Another study is made to estimate the cross sections of the formation of ls pionic atom states by various methods. The pion-nucleus optical potential is determined by weakly bound pionic atom states and pion nucleus scattering. Although this potential may not be valid for deeply bound pionic atoms, it should provide some hint on binding energies and level widths of deeply bound states. The width of the ls state comes out to be 0.3 MeV and is well separated from the rest. The charge dependence of the ls state is investigated. The binding energies and the widths increase linearly with Z azbove a Z of 30. The report then discusses various methods to populate deeply bound pionic atoms. In particular, 'pion exchange' reactions are proposed. (n, pπ) reaction is discussed first. The cross section is calculated by assuming the in- and out-going nucleons on-shell and the produced pion in (n1) pionic atom states. Then, (n, dπ - ) cross sections are estimated. (p, 2 Heπ - ) reaction would have cross sections similar to the cross section of (n, dπ - ) reaction. In conclusion, it seems best to do (n, p) experiment on heavy nuclei for deeply bound pionic atom. (Nogami, K.)

  2. Using Prediction to Promote Mathematical Understanding and Reasoning

    Science.gov (United States)

    Kasmer, Lisa; Kim, Ok-Kyeong

    2011-01-01

    Research has shown that prediction has the potential to promote the teaching and learning of mathematics because it can be used to enhance students' thinking and reasoning at all grade levels in various topics. This article addresses the effectiveness of using prediction on students' understanding and reasoning of mathematical concepts in a middle…

  3. Introduction of the Thematic Issue on the Interplay of Physics and Mathematics

    DEFF Research Database (Denmark)

    Avelar Sotomaior Karam, Ricardo

    2015-01-01

    for the students. They have a hard time understanding where mathematical concepts come from and why physics has little to do with their experiential world. This problem demands a systematic research effort from experts in different fields, especially the ones who aim at informing educational practices......Since their beginnings Physics (natural philosophy) and mathematics have been deeply interrelated, and this mutual influence has played an essential role in both their developments. However, the image typically found in educational contexts is often quite different. In physics education......, it is usual to find mathematics being seen as a mere tool to describe and calculate, whereas in mathematics education, physics is commonly viewed as a possible context for the application of mathematical concepts that were previously defined abstractly. This dichotomy creates significant learning problems...

  4. Factors That Influence the Understanding of Good Mathematics Teaching

    Science.gov (United States)

    Leong, Kwan Eu

    2013-01-01

    This study explored the factors that influenced the understanding of good mathematics teaching. A mixed methodology was used investigate the beliefs of beginning secondary teachers on good mathematics teaching. The two research instruments used in this study were the survey questionnaire and an interview. Beginning teachers selected Immediate…

  5. Developing Understanding of Mathematical Modeling in Secondary Teacher Preparation

    Science.gov (United States)

    Anhalt, Cynthia Oropesa; Cortez, Ricardo

    2016-01-01

    This study examines the evolution of 11 prospective teachers' understanding of mathematical modeling through the implementation of a modeling module within a curriculum course in a secondary teacher preparation program. While the prospective teachers had not previously taken a course on mathematical modeling, they will be expected to include…

  6. Mathematical and Statistical Opportunities in Cyber Security

    Energy Technology Data Exchange (ETDEWEB)

    Meza, Juan; Campbell, Scott; Bailey, David

    2009-03-23

    The role of mathematics in a complex system such as the Internet has yet to be deeply explored. In this paper, we summarize some of the important and pressing problems in cyber security from the viewpoint of open science environments. We start by posing the question 'What fundamental problems exist within cyber security research that can be helped by advanced mathematics and statistics'? Our first and most important assumption is that access to real-world data is necessary to understand large and complex systems like the Internet. Our second assumption is that many proposed cyber security solutions could critically damage both the openness and the productivity of scientific research. After examining a range of cyber security problems, we come to the conclusion that the field of cyber security poses a rich set of new and exciting research opportunities for the mathematical and statistical sciences.

  7. An Investigation of Secondary Teachers’ Understanding and Belief on Mathematical Problem Solving

    Science.gov (United States)

    Yuli Eko Siswono, Tatag; Wachidul Kohar, Ahmad; Kurniasari, Ika; Puji Astuti, Yuliani

    2016-02-01

    Weaknesses on problem solving of Indonesian students as reported by recent international surveys give rise to questions on how Indonesian teachers bring out idea of problem solving in mathematics lesson. An explorative study was undertaken to investigate how secondary teachers who teach mathematics at junior high school level understand and show belief toward mathematical problem solving. Participants were teachers from four cities in East Java province comprising 45 state teachers and 25 private teachers. Data was obtained through questionnaires and written test. The results of this study point out that the teachers understand pedagogical problem solving knowledge well as indicated by high score of observed teachers‘ responses showing understanding on problem solving as instruction as well as implementation of problem solving in teaching practice. However, they less understand on problem solving content knowledge such as problem solving strategies and meaning of problem itself. Regarding teacher's difficulties, teachers admitted to most frequently fail in (1) determining a precise mathematical model or strategies when carrying out problem solving steps which is supported by data of test result that revealed transformation error as the most frequently observed errors in teachers’ work and (2) choosing suitable real situation when designing context-based problem solving task. Meanwhile, analysis of teacher's beliefs on problem solving shows that teachers tend to view both mathematics and how students should learn mathematics as body static perspective, while they tend to believe to apply idea of problem solving as dynamic approach when teaching mathematics.

  8. Note-Taking in a Mathematics Classroom

    Science.gov (United States)

    Hoong, Leong Yew; Guan, Tay Eng; Seng, Quek Khiok; Fwe, Yap Sook; Luen, Tong Cherng; Toh, Wei Yeng Karen; Chia, Alexander; Teck, Ong Yao

    2014-01-01

    The authors are a team of teachers and teacher educators who are deeply interested in helping mathematically-challenged students improve in their learning of mathematics. In Singapore, depending on their performance at the end of a nationwide Year 6 examination, students are channelled into three ability streams for Years 7 to 10: Express (60%),…

  9. Upgrading geometry conceptual understanding and strategic competence through implementing rigorous mathematical thinking (RMT)

    Science.gov (United States)

    Nugraheni, Z.; Budiyono, B.; Slamet, I.

    2018-03-01

    To reach higher order thinking skill, needed to be mastered the conceptual understanding and strategic competence as they are two basic parts of high order thinking skill (HOTS). RMT is a unique realization of the cognitive conceptual construction approach based on Feurstein with his theory of Mediated Learning Experience (MLE) and Vygotsky’s sociocultural theory. This was quasi-experimental research which compared the experimental class that was given Rigorous Mathematical Thinking (RMT) as learning method and the control class that was given Direct Learning (DL) as the conventional learning activity. This study examined whether there was different effect of two learning model toward conceptual understanding and strategic competence of Junior High School Students. The data was analyzed by using Multivariate Analysis of Variance (MANOVA) and obtained a significant difference between experimental and control class when considered jointly on the mathematics conceptual understanding and strategic competence (shown by Wilk’s Λ = 0.84). Further, by independent t-test is known that there was significant difference between two classes both on mathematical conceptual understanding and strategic competence. By this result is known that Rigorous Mathematical Thinking (RMT) had positive impact toward Mathematics conceptual understanding and strategic competence.

  10. Mathematical Understanding and Proving Abilities: Experiment With Undergraduate Student By Using Modified Moore Learning Approach

    Directory of Open Access Journals (Sweden)

    Rippi Maya

    2011-07-01

    Full Text Available This paper reports findings of  a  post test experimental control group design conducted to investigate the role of modified Moore learning approach  on improving students’ mathematical understanding and proving abilities. Subject of study were 56 undergradute students of one state university in Bandung, who took advanced abstract algebra course. Instrument of study were a set test of mathematical understanding ability, a set test of mathematical proving ability, and a set of students’ opinion scale on modified Moore learning approach. Data were analyzed by using two path ANOVA. The study found that proof construction process was more difficult than mathematical understanding  task  for all students, and students still posed some difficulties on constructing mathematical proof task.  The study also found there were not differences  between students’  abilities on mathematical understanding and on proving abilities of  the both classes, and both abilities were classified as mediocre. However, in modified Moore learning approach class there were more students who got above average grades on mathematical understanding than those of conventional class. Moreover, students performed positive  opinion toward  modified Moore learning approach. They  were  active in questioning and solving problems, and in explaining their works in front of class as well, while students of conventional teaching prefered to listen to lecturer’s explanation. The study also found that there was no interaction between learning approach and students’ prior mathematics ability on mathematical understanding and proving abilities,  but  there were  quite strong  association between students’ mathematical understanding and proving abilities.Keywords:  modified Moore learning approach, mathematical understanding ability, mathematical proving ability. DOI: http://dx.doi.org/10.22342/jme.2.2.751.231-250

  11. Undergraduate Mathematics Students' Understanding of the Concept of Function

    Science.gov (United States)

    Bardini, Caroline; Pierce, Robyn; Vincent, Jill; King, Deborah

    2014-01-01

    Concern has been expressed that many commencing undergraduate mathematics students have mastered skills without conceptual understanding. A pilot study carried out at a leading Australian university indicates that a significant number of students, with high tertiary entrance ranks, have very limited understanding of the concept of function,…

  12. Promoting the Understanding of Mathematics in Physics at Secondary Level

    Science.gov (United States)

    Thompson, Alaric

    2016-01-01

    This article explores some of the common mathematical difficulties that 11- to 16-year-old students experience with respect to their learning of physics. The definition of "understanding" expressed in the article is in the sense of transferability of mathematical skills from topic to topic within physics as well as between the separate…

  13. Shifting Roles and Responsibilities to Support Mathematical Understanding

    Science.gov (United States)

    Hansen, Pia; Mathern, Donna

    2008-01-01

    This article describes the journey that one elementary school took in examining the roles and responsibilities of the principal, teachers, students, and school environment in supporting mathematical understanding as described by the NCTM Standards. (Contains 2 tables and a bibliography.)

  14. The Interaction of Procedural Skill, Conceptual Understanding and Working Memory in Early Mathematics Achievement

    Directory of Open Access Journals (Sweden)

    Camilla Gilmore

    2017-12-01

    Full Text Available Large individual differences in children’s mathematics achievement are observed from the start of schooling. Previous research has identified three cognitive skills that are independent predictors of mathematics achievement: procedural skill, conceptual understanding and working memory. However, most studies have only tested independent effects of these factors and failed to consider moderating effects. We explored the procedural skill, conceptual understanding and working memory capacity of 75 children aged 5 to 6 years as well as their overall mathematical achievement. We found that, not only were all three skills independently associated with mathematics achievement, but there was also a significant interaction between them. We found that levels of conceptual understanding and working memory moderated the relationship between procedural skill and mathematics achievement such that there was a greater benefit of good procedural skill when associated with good conceptual understanding and working memory. Cluster analysis also revealed that children with equivalent levels of overall mathematical achievement had differing strengths and weaknesses across these skills. This highlights the importance of considering children’s skill profile, rather than simply their overall achievement.

  15. Developing Essential Understanding of Rational Numbers for Teaching Mathematics in Grades 3-5. Essential Understandings

    Science.gov (United States)

    Clarke, Carne; Fisher, William; Marks, Rick; Ross, Sharon; Zbiek, Rose Mary

    2010-01-01

    This book focuses on essential knowledge for teachers about rational numbers. It is organized around four big ideas, supported by multiple smaller, interconnected ideas--essential understandings. Taking teachers beyond a simple introduction to rational numbers, the book will broaden and deepen their mathematical understanding of one of the most…

  16. Yes, but why? Teaching for understanding in mathematics

    OpenAIRE

    Southall, Edward

    2017-01-01

    Getting the right answers in maths is only half the problem. Understanding why what you’re doing works is the part that often stumps students and teachers alike. This book informs existing and trainee teachers how and why popular algorithms and mathematical properties work, and how they make sense.

  17. Understanding mathematical proof

    CERN Document Server

    Taylor, John

    2014-01-01

    Introduction The need for proof The language of mathematics Reasoning Deductive reasoning and truth Example proofs Logic and ReasoningIntroduction Propositions, connectives, and truth tables Logical equivalence and logical implication Predicates and quantification Logical reasoning Sets and Functions Introduction Sets and membership Operations on setsThe Cartesian product Functions and composite functions Properties of functions The Structure of Mathematical ProofsIntroduction Some proofs dissected An informal framework for proofs Direct proof A more formal framework Finding Proofs Direct proo

  18. Mathematics of large eddy simulation of turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Berselli, L.C. [Pisa Univ. (Italy). Dept. of Applied Mathematics ' ' U. Dini' ' ; Iliescu, T. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Mathematics; Layton, W.J. [Pittsburgh Univ., PA (United States). Dept. of Mathematics

    2006-07-01

    Large eddy simulation (LES) is a method of scientific computation seeking to predict the dynamics of organized structures in turbulent flows by approximating local, spatial averages of the flow. Since its birth in 1970, LES has undergone an explosive development and has matured into a highly-developed computational technology. It uses the tools of turbulence theory and the experience gained from practical computation. This book focuses on the mathematical foundations of LES and its models and provides a connection between the powerful tools of applied mathematics, partial differential equations and LES. Thus, it is concerned with fundamental aspects not treated so deeply in the other books in the field, aspects such as well-posedness of the models, their energy balance and the connection to the Leray theory of weak solutions of the Navier-Stokes equations. The authors give a mathematically informed and detailed treatment of an interesting selection of models, focusing on issues connected with understanding and expanding the correctness and universality of LES. This volume offers a useful entry point into the field for PhD students in applied mathematics, computational mathematics and partial differential equations. Non-mathematicians will appreciate it as a reference that introduces them to current tools and advances in the mathematical theory of LES. (orig.)

  19. Pluralism in mathematics a new position in philosophy of mathematics

    CERN Document Server

    Friend, Michèle

    2014-01-01

    This book is about philosophy, mathematics and logic, giving a philosophical account of Pluralism which is a family of positions in the philosophy of mathematics. There are four parts to this book, beginning with a look at motivations for Pluralism by way of Realism, Maddy's Naturalism, Shapiro's Structuralism and Formalism. In the second part of this book the author covers: the philosophical presentation of Pluralism; using a formal theory of logic metaphorically; rigour and proof for the Pluralist; and mathematical fixtures. In the third part the author goes on to focus on the transcendental presentation of Pluralism, and in part four looks at applications of Pluralism, such as a Pluralist approach to proof in mathematics and how Pluralism works in regard to together-inconsistent philosophies of mathematics. The book finishes with suggestions for further Pluralist enquiry. In this work the author takes a deeply radical approach in developing a new position that will either convert readers, or act as a stron...

  20. Deeply inelastic scattering at small x in 20 min

    International Nuclear Information System (INIS)

    Levin, E.M.

    1992-01-01

    A status report is presented on new phenomena that are anticipated in deeply inelastic scattering in the low x→0 region. A summary of the theoretical situation in the region of small x is given, including the importance for the understanding of high energy interaction in QCD, and the low x behaviour of deep inelastic structure function. This new area of physics will be studied experimentally at HERA. (R.P.) 16 refs.; 6 figs

  1. Earthquakes - a danger to deep-lying repositories?

    International Nuclear Information System (INIS)

    2012-03-01

    This booklet issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at geological factors concerning earthquakes and the safety of deep-lying repositories for nuclear waste. The geological processes involved in the occurrence of earthquakes are briefly looked at and the definitions for magnitude and intensity of earthquakes are discussed. Examples of damage caused by earthquakes are given. The earthquake situation in Switzerland is looked at and the effects of earthquakes on sub-surface structures and deep-lying repositories are discussed. Finally, the ideas proposed for deep-lying geological repositories for nuclear wastes are discussed

  2. [The discussion of the infiltrative model of mathematical knowledge to genetics teaching].

    Science.gov (United States)

    Liu, Jun; Luo, Pei-Gao

    2011-11-01

    Genetics, the core course of biological field, is an importance major-basic course in curriculum of many majors related with biology. Due to strong theoretical and practical as well as abstract of genetics, it is too difficult to study on genetics for many students. At the same time, mathematics is one of the basic courses in curriculum of the major related natural science, which has close relationship with the establishment, development and modification of genetics. In this paper, to establish the intrinsic logistic relationship and construct the integral knowledge network and to help students improving the analytic, comprehensive and logistic abilities, we applied some mathematical infiltrative model genetic knowledge in genetics teaching, which could help students more deeply learn and understand genetic knowledge.

  3. The unique and shared contributions of arithmetic operation understanding and numerical magnitude representation to children's mathematics achievement.

    Science.gov (United States)

    Wong, Terry Tin-Yau

    2017-12-01

    The current study examined the unique and shared contributions of arithmetic operation understanding and numerical magnitude representation to children's mathematics achievement. A sample of 124 fourth graders was tested on their arithmetic operation understanding (as reflected by their understanding of arithmetic principles and the knowledge about the application of arithmetic operations) and their precision of rational number magnitude representation. They were also tested on their mathematics achievement and arithmetic computation performance as well as the potential confounding factors. The findings suggested that both arithmetic operation understanding and numerical magnitude representation uniquely predicted children's mathematics achievement. The findings highlight the significance of arithmetic operation understanding in mathematics learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Using Science to Promote Preservice Teacher Understanding of Problem Solving in Mathematics

    Science.gov (United States)

    Tobias, Jennifer M.; Ortiz, Enrique

    2007-01-01

    Preservice elementary teachers need to be given the experiences of integrating mathematics with other subjects. They need to go into the classroom with the understanding that mathematics is not an isolated topic. This article describes a paper airplane activity that was presented in a class of preservice elementary education teachers to show how…

  5. Understanding Immunology via Engineering Design: The Role of Mathematical Prototyping

    Directory of Open Access Journals (Sweden)

    David J. Klinke

    2012-01-01

    type 1 diabetes and the dynamics of dendritic cells in the lung. This paper is intended to illustrate some of the nuances associated with applying mathematical modeling to improve understanding of the dynamics of disease progression in humans.

  6. The Effect of Constructivist Learning Using Scientific Approach on Mathematical Power and Conceptual Understanding of Students Grade IV

    Science.gov (United States)

    Kusmaryono, Imam; Suyitno, Hardi

    2016-02-01

    This study used a model of Concurrent Embedded with the aim of: (1) determine the difference between the conceptual understanding and mathematical power of students grade fourth who take the constructivist learning using scientific approach and direct learning, (2) determine the interaction between learning approaches and initial competence on the mathematical power and conceptual of understanding, and (3) describe the mathematical power of students grade fourth. This research was conducted in the fourth grade elementary school early 2015. Data initial competence and mathematical power obtained through tests, and analyzed using statistical tests multivariate and univariate. Statistical analysis of the results showed that: (1) There are differences in the concept of understanding and mathematical power among the students who follow the scientifically-based constructivist learning than students who take the Direct Learning in terms of students initial competency (F = 5.550; p = 0.007 problem solving and contributes tremendous increase students' math skills. Researcher suggested that the learning of mathematics in schools using scientifically- based constructivist approach to improve the mathematical power of students and conceptual understanding.

  7. Developing a Deeper Understanding of "Mathematics Teaching Expertise": An Examination of Three Chinese Mathematics Teachers' Resource Systems as Windows into Their Work and Expertise

    Science.gov (United States)

    Pepin, Birgit; Xu, Binyan; Trouche, Luc; Wang, Chongyang

    2017-01-01

    In order to develop a deeper understanding of mathematics teaching expertise, in this study we use the Documentational Approach to Didactics to explore the resource systems of three Chinese mathematics "expert" teachers. Exploiting the Western and Eastern literature we examine the notion of "mathematics teaching expertise", as…

  8. Grounded Blends and Mathematical Gesture Spaces: Developing Mathematical Understandings via Gestures

    Science.gov (United States)

    Yoon, Caroline; Thomas, Michael O. J.; Dreyfus, Tommy

    2011-01-01

    This paper examines how a person's gesture space can become endowed with mathematical meaning associated with mathematical spaces and how the resulting mathematical gesture space can be used to communicate and interpret mathematical features of gestures. We use the theory of grounded blends to analyse a case study of two teachers who used gestures…

  9. High profile students’ growth of mathematical understanding in solving linier programing problems

    Science.gov (United States)

    Utomo; Kusmayadi, TA; Pramudya, I.

    2018-04-01

    Linear program has an important role in human’s life. This linear program is learned in senior high school and college levels. This material is applied in economy, transportation, military and others. Therefore, mastering linear program is useful for provision of life. This research describes a growth of mathematical understanding in solving linear programming problems based on the growth of understanding by the Piere-Kieren model. Thus, this research used qualitative approach. The subjects were students of grade XI in Salatiga city. The subjects of this study were two students who had high profiles. The researcher generally chose the subjects based on the growth of understanding from a test result in the classroom; the mark from the prerequisite material was ≥ 75. Both of the subjects were interviewed by the researcher to know the students’ growth of mathematical understanding in solving linear programming problems. The finding of this research showed that the subjects often folding back to the primitive knowing level to go forward to the next level. It happened because the subjects’ primitive understanding was not comprehensive.

  10. "Bigger Number Means You Plus!"--Teachers Learning to Use Clinical Interviews to Understand Students' Mathematical Thinking

    Science.gov (United States)

    Heng, Mary Anne; Sudarshan, Akhila

    2013-01-01

    This paper examines the perceptions and understandings of ten grades 1 and 2 Singapore mathematics teachers as they learned to use clinical interviews (Ginsburg, "Human Development" 52:109-128, 2009) to understand students' mathematical thinking. This study challenged teachers' pedagogical assumptions about what it means to teach for…

  11. Contextual Perspectives of School Mathematics: What Determines Mathematical Understanding?

    Science.gov (United States)

    White, Loren; Frid, Sandra

    Results of a study into secondary school students' and teachers' conceptions of what mathematics is and the purposes of school mathematics are outlined. A total of about 220 first year engineering students and 600 high school students in Australia were involved in the surveys while 40 students, 19 teachers, 2 career counselors, and 2…

  12. Kinematics of current region fragmentation in semi-inclusive deeply inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Boglione, M., E-mail: elena.boglione@to.infn.it [Dipartimento di Fisica, Università di Torino, INFN - Sezione Torino, Via P. Giuria 1, 10125 Torino (Italy); Collins, J., E-mail: jcc8@psu.edu [Department of Physics, Penn State University, University Park, PA 16802 (United States); Gamberg, L., E-mail: lpg10@psu.edu [Science Division, Penn State University Berks, Reading, PA 19610 (United States); Gonzalez-Hernandez, J.O., E-mail: jogh@jlab.org [Department of Physics, Old Dominion University, Norfolk, VA 23529 (United States); Theory Center, Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Rogers, T.C., E-mail: trogers@odu.edu [Department of Physics, Old Dominion University, Norfolk, VA 23529 (United States); Theory Center, Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Sato, N., E-mail: nsato@jlab.org [Theory Center, Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)

    2017-03-10

    Different kinematical regions of semi-inclusive deeply inelastic scattering (SIDIS) processes correspond to different underlying partonic pictures, and it is important to understand the transition between them. We find criteria in semi-inclusive deeply inelastic scattering (SIDIS) for identifying the current fragmentation region — the kinematical region where a factorization picture with fragmentation functions is appropriate, especially for studies of transverse-momentum-dependent (TMD) functions. This region is distinguished from the central (soft) and target fragmentation regions. The basis of our argument is in the errors in approximations used in deriving factorization. As compared with previous work, we show that it is essential to take account of the transverse momentum of the detected hadron, and we find a much more restricted range for genuine current fragmentation. We show that it is important to develop an extended factorization formulation to treat hadronization in the central region, as well as the current and target fragmentation regions, and to obtain a unified formalism spanning all rapidities for the detected hadron.

  13. Classroom assessment in Chinese primary school mathematics education

    NARCIS (Netherlands)

    Zhao, X.

    2018-01-01

    In mainland China, where there exists a deeply-rooted examination culture, an assessment reform promoting the use of assessment to support teaching and learning has been carried out since 2001. After a decade, however, only a few studies have been done that focus on primary school mathematics

  14. Effectiveness of a Language Based Program in School Mathematics on Students' Understanding of Statistics

    Science.gov (United States)

    Wekesa, Duncan Wasike

    2006-01-01

    Mathematical knowledge and understanding is important not only for scientific progress and development but also for its day-to-day application in social sciences and arts, government, business and management studies and household chores. But the general performance in school mathematics in Kenya has been poor over the years. There is evidence that…

  15. Understanding Mathematic Concept in Relation and Function Method through Active Learning Type Group to Group Distributed LKS

    Science.gov (United States)

    Kudri, F.; Rahmi, R.; Haryono, Y.

    2018-04-01

    This research is motivated by the lack of understanding of mathematical concepts students and teachers have not familiarize students discussed in groups. This researchaims to determine whether an understanding of mathematical concepts junior class VIII SMPN 2 in Ranah Batahan Kabupaten Pasaman Barat by applying active learning strategy group to group types with LKS better than conventional learning. The type of research is experimental the design of randomized trials on the subject. The population in the study were all students VIII SMPN 2 Ranah Batahan Kabupaten Pasaman Barat in year 2012/2013 which consists of our class room experiment to determine the grade and control class with do nerandomly, so that classes VIII1 elected as a experiment class and class VIII4 as a control class. The instruments used in the test empirically understanding mathematical concepts are shaped by the essay with rt=0,82 greater than rt=0,468 means reliable tests used. The data analysis technique used is the test with the help of MINITAB. Based on the results of the data analisis known that both of the sample are normal and homogenity in real rate α = 0,05, so the hypothesis of this research is received. So, it can be concluded students’ understanding mathematical concept applied the active Group to Group learning strategy with LKS is better than the students’ understanding mathematical concept with Conventional Learning.

  16. Extreme Apprenticeship – Emphasising conceptual understanding in undergraduate mathematics

    OpenAIRE

    Rämö , Johanna; Oinonen , Lotta; Vikberg , Thomas

    2015-01-01

    International audience; Extreme Apprenticeship (XA) is an educational method that has been used in teaching undergraduate mathematics in the University of Helsinki. In this paper, we analyse the course assignments and exam questions of a certain lecture course that has recently been reformed to an XA-based course. The results show that the XA method has made it possible to move the emphasis from rote learning towards understanding the concepts behind the procedures.

  17. Understanding post-operative temperature drop in cardiac surgery: a mathematical model

    NARCIS (Netherlands)

    Tindall, M. J.; Peletier, M. A.; Severens, N. M. W.; Veldman, D. J.; de Mol, B. A. J. M.

    2008-01-01

    A mathematical model is presented to understand heat transfer processes during the cooling and re-warming of patients during cardiac surgery. Our compartmental model is able to account for many of the qualitative features observed in the cooling of various regions of the body including the central

  18. The effect of problem posing and problem solving with realistic mathematics education approach to the conceptual understanding and adaptive reasoning

    Science.gov (United States)

    Mahendra, Rengga; Slamet, Isnandar; Budiyono

    2017-12-01

    One of the difficulties of students in learning mathematics is on the subject of geometry that requires students to understand abstract things. The aim of this research is to determine the effect of learning model Problem Posing and Problem Solving with Realistic Mathematics Education Approach to conceptual understanding and students' adaptive reasoning in learning mathematics. This research uses a kind of quasi experimental research. The population of this research is all seventh grade students of Junior High School 1 Jaten, Indonesia. The sample was taken using stratified cluster random sampling technique. The test of the research hypothesis was analyzed by using t-test. The results of this study indicate that the model of Problem Posing learning with Realistic Mathematics Education Approach can improve students' conceptual understanding significantly in mathematics learning. In addition tu, the results also showed that the model of Problem Solving learning with Realistic Mathematics Education Approach can improve students' adaptive reasoning significantly in learning mathematics. Therefore, the model of Problem Posing and Problem Solving learning with Realistic Mathematics Education Approach is appropriately applied in mathematics learning especially on the subject of geometry so as to improve conceptual understanding and students' adaptive reasoning. Furthermore, the impact can improve student achievement.

  19. The role of mathematical models in understanding pattern formation in developmental biology.

    Science.gov (United States)

    Umulis, David M; Othmer, Hans G

    2015-05-01

    In a Wall Street Journal article published on April 5, 2013, E. O. Wilson attempted to make the case that biologists do not really need to learn any mathematics-whenever they run into difficulty with numerical issues, they can find a technician (aka mathematician) to help them out of their difficulty. He formalizes this in Wilsons Principle No. 1: "It is far easier for scientists to acquire needed collaboration from mathematicians and statisticians than it is for mathematicians and statisticians to find scientists able to make use of their equations." This reflects a complete misunderstanding of the role of mathematics in all sciences throughout history. To Wilson, mathematics is mere number crunching, but as Galileo said long ago, "The laws of Nature are written in the language of mathematics[Formula: see text] the symbols are triangles, circles and other geometrical figures, without whose help it is impossible to comprehend a single word." Mathematics has moved beyond the geometry-based model of Galileo's time, and in a rebuttal to Wilson, E. Frenkel has pointed out the role of mathematics in synthesizing the general principles in science (Both point and counter-point are available in Wilson and Frenkel in Notices Am Math Soc 60(7):837-838, 2013). We will take this a step further and show how mathematics has been used to make new and experimentally verified discoveries in developmental biology and how mathematics is essential for understanding a problem that has puzzled experimentalists for decades-that of how organisms can scale in size. Mathematical analysis alone cannot "solve" these problems since the validation lies at the molecular level, but conversely, a growing number of questions in biology cannot be solved without mathematical analysis and modeling. Herein, we discuss a few examples of the productive intercourse between mathematics and biology.

  20. Examining mathematical discourse to understand in-service teachers’ mathematical activities

    Directory of Open Access Journals (Sweden)

    Margot Berger

    2013-04-01

    Full Text Available In this article I use Sfard’s theory of commognition to examine the surprising activities of a pair of in-service mathematics teachers in South Africa as they engaged in a particular mathematical task which allowed for, but did not prescribe, the use of GeoGebra. The (pre-calculus task required students to examine a function at an undefined point and to decide whether a vertical asymptote is associated with this point or not. Using the different characteristics of mathematical discourse, I argue that the words that students use really matter and show how a change in one participant’s use of the term ‘vertical asymptote’ constituted and reflected her learning. I also show how the other participant used imitation in a ritualised routine to get through the task. Furthermore I demonstrate how digital immigrants may resist the use of technology as the generator of legitimate mathematical objects.

  1. Developing a deeper understanding of mathematics teaching expertise : an examination of three Chinese mathematics teachers’ resource systems as windows into their work and expertise

    NARCIS (Netherlands)

    Pepin, B.E.U.; Xu, B.; Trouche, L.; Wang, C.

    2017-01-01

    In order to develop a deeper understanding of mathematics teaching expertise, in this study we use the Documentational Approach to Didactics to explore the resource systems of three Chinese mathematics “expert” teachers. Exploiting the Western and Eastern literature we examine the notion of

  2. Reflective Learning and Prospective Teachers' Conceptual Understanding, Critical Thinking, Problem Solving, and Mathematical Communication Skills

    Science.gov (United States)

    Junsay, Merle L.

    2016-01-01

    This is a quasi-experimental study that explored the effects of reflective learning on prospective teachers' conceptual understanding, critical thinking, problem solving, and mathematical communication skills and the relationship of these variables. It involved 60 prospective teachers from two basic mathematics classes of an institution of higher…

  3. Life on the Number Line: Routes to Understanding Fraction Magnitude for Students With Difficulties Learning Mathematics.

    Science.gov (United States)

    Gersten, Russell; Schumacher, Robin F; Jordan, Nancy C

    Magnitude understanding is critical for students to develop a deep understanding of fractions and more advanced mathematics curriculum. The research reports in this special issue underscore magnitude understanding for fractions and emphasize number lines as both an assessment and an instructional tool. In this commentary, we discuss how number lines broaden the concept of fractions for students who are tied to the more general part-whole representations of area models. We also discuss how number lines, compared to other representations, are a superior and more mathematically correct way to explain fraction concepts.

  4. Understanding intratumor heterogeneity by combining genome analysis and mathematical modeling.

    Science.gov (United States)

    Niida, Atsushi; Nagayama, Satoshi; Miyano, Satoru; Mimori, Koshi

    2018-04-01

    Cancer is composed of multiple cell populations with different genomes. This phenomenon called intratumor heterogeneity (ITH) is supposed to be a fundamental cause of therapeutic failure. Therefore, its principle-level understanding is a clinically important issue. To achieve this goal, an interdisciplinary approach combining genome analysis and mathematical modeling is essential. For example, we have recently performed multiregion sequencing to unveil extensive ITH in colorectal cancer. Moreover, by employing mathematical modeling of cancer evolution, we demonstrated that it is possible that this ITH is generated by neutral evolution. In this review, we introduce recent advances in a research field related to ITH and also discuss strategies for exploiting novel findings on ITH in a clinical setting. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  5. Using Cooperative Teams-Game-Tournament in 11 Religious School to Improve Mathematics Understanding and Communication

    Science.gov (United States)

    Veloo, Arsaythamby; Md-Ali, Ruzlan; Chairany, Sitie

    2016-01-01

    Purpose: This paper was part of a larger study which looked into the effect of implementing Cooperative Teams-Games-Tournament (TGT) on understanding of and communication in mathematics. The study had identified the main and interaction effect of using Cooperative TGT for learning mathematics in religious secondary school classrooms. A…

  6. "Complicando Algo Tan Sencillo": Bridging Mathematical Understanding of Latino Immigrant Parents

    Science.gov (United States)

    Colegrove, Kiyomi Sánchez-Suzuki; Krause, Gladys

    2016-01-01

    The purpose of this paper is to demonstrate the mathematical understanding of Latino immigrant parents in curricular and pedagogical practices in elementary school. The paper seeks to counter widely spread deficit discourses about the parental involvement of Latinos in education. Using data from the Agency and Young Children project, a video-cued…

  7. An introduction to mathematical finance with applications understanding and building financial intuition

    CERN Document Server

    Petters, Arlie O

    2016-01-01

    This textbook aims to fill the gap between those that offer a theoretical treatment without many applications and those that present and apply formulas without appropriately deriving them. The balance achieved will give readers a fundamental understanding of key financial ideas and tools that form the basis for building realistic models, including those that may become proprietary. Numerous carefully chosen examples and exercises reinforce the student’s conceptual understanding and facility with applications. The exercises are divided into conceptual, application-based, and theoretical problems, which probe the material deeper. The book is aimed toward advanced undergraduates and first-year graduate students who are new to finance or want a more rigorous treatment of the mathematical models used within. While no background in finance is assumed, prerequisite math courses include multivariable calculus, probability, and linear algebra. The authors introduce additional mathematical tools as needed. The entire...

  8. Understanding Immunology via Engineering Design: The Role of Mathematical Prototyping

    Science.gov (United States)

    Klinke, David J.; Wang, Qing

    2012-01-01

    A major challenge in immunology is how to translate data into knowledge given the inherent complexity and dynamics of human physiology. Both the physiology and engineering communities have rich histories in applying computational approaches to translate data obtained from complex systems into knowledge of system behavior. However, there are some differences in how disciplines approach problems. By referring to mathematical models as mathematical prototypes, we aim to highlight aspects related to the process (i.e., prototyping) rather than the product (i.e., the model). The objective of this paper is to review how two related engineering concepts, specifically prototyping and “fitness for use,” can be applied to overcome the pressing challenge in translating data into improved knowledge of basic immunology that can be used to improve therapies for disease. These concepts are illustrated using two immunology-related examples. The prototypes presented focus on the beta cell mass at the onset of type 1 diabetes and the dynamics of dendritic cells in the lung. This paper is intended to illustrate some of the nuances associated with applying mathematical modeling to improve understanding of the dynamics of disease progression in humans. PMID:22973412

  9. A Mixed Methods Analysis of Students' Understanding of Slope and Derivative Concepts and Students' Mathematical Dispositions

    Science.gov (United States)

    Patel, Rita Manubhai

    2013-01-01

    This dissertation examined understanding of slope and derivative concepts and mathematical dispositions of first-semester college calculus students, who are recent high school graduates, transitioning to university mathematics. The present investigation extends existing research in the following ways. First, based on this investigation, the…

  10. Implementing Mathematics Teaching That Promotes Students' Understanding through Theory-Driven Lesson Study

    Science.gov (United States)

    Huang, Rongjin; Gong, Zikun; Han, Xue

    2016-01-01

    Lesson study (LS) has been practiced in China as an effective way to advance teachers' professional development for decades. This study explores how LS improves teaching that promotes students' understanding. A LS group including didacticians (practice-based teaching research specialist and University-based mathematics educators) and mathematics…

  11. How we understand mathematics conceptual integration in the language of mathematical description

    CERN Document Server

    Woźny, Jacek

    2018-01-01

    This volume examines mathematics as a product of the human mind and analyzes the language of "pure mathematics" from various advanced-level sources. Through analysis of the foundational texts of mathematics, it is demonstrated that math is a complex literary creation, containing objects, actors, actions, projection, prediction, planning, explanation, evaluation, roles, image schemas, metonymy, conceptual blending, and, of course, (natural) language. The book follows the narrative of mathematics in a typical order of presentation for a standard university-level algebra course, beginning with analysis of set theory and mappings and continuing along a path of increasing complexity. At each stage, primary concepts, axioms, definitions, and proofs will be examined in an effort to unfold the tell-tale traces of the basic human cognitive patterns of story and conceptual blending. This book will be of interest to mathematicians, teachers of mathematics, cognitive scientists, cognitive linguists, and anyone interested...

  12. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...

  13. Understanding Experimental LCMV Infection of Mice: The Role of Mathematical Models

    Directory of Open Access Journals (Sweden)

    Gennady Bocharov

    2015-01-01

    Full Text Available Virus infections represent complex biological systems governed by multiple-level regulatory processes of virus replication and host immune responses. Understanding of the infection means an ability to predict the systems behaviour under various conditions. Such predictions can only rely upon quantitative mathematical models. The model formulations should be tightly linked to a fundamental step called “coordinatization” (Hermann Weyl, that is, the definition of observables, parameters, and structures that enable the link with a biological phenotype. In this review, we analyse the mathematical modelling approaches to LCMV infection in mice that resulted in quantification of some fundamental parameters of the CTL-mediated virus control including the rates of T cell turnover, infected target cell elimination, and precursor frequencies. We show how the modelling approaches can be implemented to address diverse aspects of immune system functioning under normal conditions and in response to LCMV and, importantly, make quantitative predictions of the outcomes of immune system perturbations. This may highlight the notion that data-driven applications of meaningful mathematical models in infection biology remain a challenge.

  14. A cognitive framework for analyzing and describing introductory students' use and understanding of mathematics in physics

    Science.gov (United States)

    Tuminaro, Jonathan

    Many introductory, algebra-based physics students perform poorly on mathematical problem solving tasks in physics. There are at least two possible, distinct reasons for this poor performance: (1) students simply lack the mathematical skills needed to solve problems in physics, or (2) students do not know how to apply the mathematical skills they have to particular problem situations in physics. While many students do lack the requisite mathematical skills, a major finding from this work is that the majority of students possess the requisite mathematical skills, yet fail to use or interpret them in the context of physics. In this thesis I propose a theoretical framework to analyze and describe students' mathematical thinking in physics. In particular, I attempt to answer two questions. What are the cognitive tools involved in formal mathematical thinking in physics? And, why do students make the kinds of mistakes they do when using mathematics in physics? According to the proposed theoretical framework there are three major theoretical constructs: mathematical resources, which are the knowledge elements that are activated in mathematical thinking and problem solving; epistemic games, which are patterns of activities that use particular kinds of knowledge to create new knowledge or solve a problem; and frames, which are structures of expectations that determine how individuals interpret situations or events. The empirical basis for this study comes from videotaped sessions of college students solving homework problems. The students are enrolled in an algebra-based introductory physics course. The videotapes were transcribed and analyzed using the aforementioned theoretical framework. Two important results from this work are: (1) the construction of a theoretical framework that offers researchers a vocabulary (ontological classification of cognitive structures) and grammar (relationship between the cognitive structures) for understanding the nature and origin of

  15. Deeply Virtual Neutrino Scattering

    International Nuclear Information System (INIS)

    Ales Psaker

    2007-01-01

    We investigate the extension of the deeply virtual Compton scattering process into the weak interaction sector. Standard electromagnetic Compton scattering provides a unique tool for studying hadrons, which is one of the most fascinating frontiers of modern science. In this process the relevant Compton scattering amplitude probes the hadron structure by means of two quark electromagnetic currents. We argue that replacing one of the currents with the weak interaction current can promise a new insight. The paper is organized as follows. In Sec. II we briefly discuss the features of the handbag factorization scheme. We introduce a new set of phenomenological functions, known as generalized parton distributions (GPDs) [1-6], and discuss some of their basic properties in Sec. III. An application of the GPD formalism to the neutrino-induced deeply virtual Compton scattering in the kinematics relevant to future high-intensity neutrino experiments is given in Sec. IV. The cross section results are presented in Sec. V. Finally, in Sec. VI we draw some conclusions and discuss future prospects. Some of the formal results in this paper have appeared in preliminary reports in Refs. [7] and [8], whereas a comprehensive analysis of the weak neutral and weak charged current DVCS reactions in collaboration with W. Melnitchouk and A. Radyushkin has been presented in Ref. [9

  16. Some aspects of executive functions as predictors of understanding textual mathematical tasks in students with mild intellectual disability

    Directory of Open Access Journals (Sweden)

    Japundža-Milisavljević Mirjana

    2016-01-01

    Full Text Available The most significant segment during the process of solving mathematical tasks is translation from mathematical to native language, in the basis o which, among others, are the following factors: resistance to distraction and forming adequate verbal strategies. The goal of this research is to evaluate the contribution of some aspects of executive functions in explaining the variance of solving illustrative mathematical tasks in students with mild intellectual disability. The sample consists of 90 students with mild intellectual disability aged from 12 to 16 (M=14.7; SD=1.6, of both sexes (44.4% boys and 55.6% girls. The Twenty questions test and the Stroop test were used to estimate the executive functions. Verbal problem tasks were used for the purpose of understanding mathematical language The obtained results show that the estimated aspects of executive functions are significant predictors of understanding mathematical language in students with intellectual disabilities. The strongest predictor is distraction resistance (p=0.01.

  17. Deeply virtual Compton scattering. Results and future

    International Nuclear Information System (INIS)

    Nowak, W.D.

    2005-03-01

    Access to generalised parton distributions (GPDs) through deeply virtual Compton scattering (DVCS) is briefly described. Presently available experimental results on DVCS are summarized in conjunction with plans for future measurements. (orig.)

  18. Elementary Mathematics Teachers' Perceptions and Lived Experiences on Mathematical Communication

    Science.gov (United States)

    Kaya, Defne; Aydin, Hasan

    2016-01-01

    Mathematical thinking skills and meaningful mathematical understanding are among the goals of current mathematics education. There is a wide consensus among scholars about the purpose of developing mathematical understanding and higher order thinking skills in students. However, how to develop those skills in classroom settings is an area that…

  19. Working Memory in Students with Mathematical Difficulties

    Science.gov (United States)

    Nur, I. R. D.; Herman, T.; Ningsih, S.

    2018-04-01

    Learning process is the activities that has important role because this process is one of the all factors that establish students success in learning. oftentimes we find so many students get the difficulties when they study mathematics. This condition is not only because of the outside factor but also it comes from the inside. The purpose of this research is to analyze and give the representation how students working memory happened in physical education students for basic statistics subjects which have mathematical difficulties. The subjects are 4 students which have a mathematical difficulties. The research method is case study and when the describe about students working memory are explanated deeply with naturalistic observation. Based on this research, it was founded that 4 students have a working memory deficit in three components. The components are phonological loop, visuospatial sketchpad, dan episodic buffer.

  20. Developing a deeper understanding of mathematics teaching expertise : An examination of three Chinese mathematics teachers’ resource systems as windows into their work and expertise

    OpenAIRE

    Pepin , Birgit; Xu , Binyan; Trouche , Luc; Wang , Chongyang

    2017-01-01

    International audience; In order to develop a deeper understanding of mathematics teaching expertise, in this study we use the Documentational Approach to Didactics to explore the resource systems of three Chinese mathematics Bexpert^ teachers. Exploiting theWestern and Eastern literature we examine the notion of Bmathematics teaching expertise^, as it is perceived in the East and the West. The data consist of two rounds of in-depth interviews, observations and teachers’ representations of th...

  1. Shifting Preservice Teachers' Beliefs and Understandings to Support Pedagogical Change in Mathematics

    Science.gov (United States)

    Letwinsky, Karim Medico; Cavender, Monica

    2018-01-01

    Many preservice teacher (PST) programs throughout the world are preparing students to implement the Core Standards, which require deeper conceptual understandings of mathematics and an informed approach for teaching. In this qualitative multi-case study, researchers explored the teaching methods for two university instructors and changes in PSTs…

  2. Design and Development Computer-Based E-Learning Teaching Material for Improving Mathematical Understanding Ability and Spatial Sense of Junior High School Students

    Science.gov (United States)

    Nurjanah; Dahlan, J. A.; Wibisono, Y.

    2017-02-01

    This paper aims to make a design and development computer-based e-learning teaching material for improving mathematical understanding ability and spatial sense of junior high school students. Furthermore, the particular aims are (1) getting teaching material design, evaluation model, and intrument to measure mathematical understanding ability and spatial sense of junior high school students; (2) conducting trials computer-based e-learning teaching material model, asessment, and instrument to develop mathematical understanding ability and spatial sense of junior high school students; (3) completing teaching material models of computer-based e-learning, assessment, and develop mathematical understanding ability and spatial sense of junior high school students; (4) resulting research product is teaching materials of computer-based e-learning. Furthermore, the product is an interactive learning disc. The research method is used of this study is developmental research which is conducted by thought experiment and instruction experiment. The result showed that teaching materials could be used very well. This is based on the validation of computer-based e-learning teaching materials, which is validated by 5 multimedia experts. The judgement result of face and content validity of 5 validator shows that the same judgement result to the face and content validity of each item test of mathematical understanding ability and spatial sense. The reliability test of mathematical understanding ability and spatial sense are 0,929 and 0,939. This reliability test is very high. While the validity of both tests have a high and very high criteria.

  3. Beyond Motivation: Exploring Mathematical Modeling as a Context for Deepening Students' Understandings of Curricular Mathematics

    Science.gov (United States)

    Zbiek, Rose Mary; Conner, Annamarie

    2006-01-01

    Views of mathematical modeling in empirical, expository, and curricular references typically capture a relationship between real-world phenomena and mathematical ideas from the perspective that competence in mathematical modeling is a clear goal of the mathematics curriculum. However, we work within a curricular context in which mathematical…

  4. ASSESSING CONCEPTUAL UNDERSTANDING IN MATHEMATICS: Using Derivative Function to Solve Connected Problems

    Directory of Open Access Journals (Sweden)

    Nevin ORHUN

    2013-07-01

    Full Text Available Open and distance education plays an important role in the actualization of cultural goals as well as in societal developments. This is an independent teaching and learning method for mathematics which forms the dynamic of scientific thinking. Distance education is an important alternative to traditional teaching applications. These contributions brought by technology enable students to participate actively in having access to information and questioning it. Such an application increases students’ motivation and teaches how mathematics can be used in daily life. Derivative is a mathematical concept which can be used in many areas of daily life. The aim of this study is to enable the concept of derivatives to be understood well by using the derivative function in the solution of various problems. It also aims at interpreting difficulties theoretically in the solution of problems and determining mistakes in terms of teaching methods. In this study, how various aspects of derivatives are understood is emphasized. These aspects concern the explanation of concepts and process, and also their application to certain concepts in physics. Students’ depth of understanding of derivatives was analyzed based on two aspects of understanding; theoretical analysis and contextual application. Follow-up interviews were conducted with five students. The results show that the students preferred to apply an algebraic symbolic aspect instead of using logical meanings of function and its derivative. In addition, in relation to how the graph of the derivative function affects the aspect of function, it was determined that the students displayed low performance.

  5. The pragmatics of mathematics education vagueness and mathematical discourse

    CERN Document Server

    Rowland, Tim

    2003-01-01

    Drawing on philosophy of language and recent linguistic theory, Rowland surveys several approaches to classroom communication in mathematics. Are students intimidated by the nature of mathematics teaching? Many students appear fearful of voicing their understanding - is fear of error part of the linguistics of mathematics? The approaches explored here provide a rationale and a method for exploring and understanding speakers'' motives in classroom mathematics talk. Teacher-student interactions in mathematics are analysed, and this provides a toolkit that teachers can use to respond to the intellectual vulnerability of their students.

  6. On the Axiomatization of Mathematical Understanding: Continuous Functions in the Transition to Topology

    Science.gov (United States)

    Cheshire, Daniel C.

    2017-01-01

    The introduction to general topology represents a challenging transition for students of advanced mathematics. It requires the generalization of their previous understanding of ideas from fields like geometry, linear algebra, and real or complex analysis to fit within a more abstract conceptual system. Students must adopt a new lexicon of…

  7. Transitions between School and Work: Some New Understandings and Questions about Adult Mathematics.

    Science.gov (United States)

    Beach, King

    There is dissonance between the lives of adult students in rural Nepal in a subsistence-level agrarian community and their participation in school. The concept of "transfer" has several shortcomings from the standpoint of understanding relations between mathematical reasoning in the classroom and in the workplace. It is more helpful to…

  8. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    ; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics...... to new problems. Relations and functions: Define a product set; define and apply equivalence relations; construct and apply functions. Apply these concepts to new problems. Natural numbers and induction: Define the natural numbers; apply the principle of induction to verify a selection of properties...

  9. Weak Deeply Virtual Compton Scattering

    International Nuclear Information System (INIS)

    Ales Psaker; Wolodymyr Melnitchouk; Anatoly Radyushkin

    2006-01-01

    We extend the analysis of the deeply virtual Compton scattering process to the weak interaction sector in the generalized Bjorken limit. The virtual Compton scattering amplitudes for the weak neutral and charged currents are calculated at the leading twist within the framework of the nonlocal light-cone expansion via coordinate space QCD string operators. Using a simple model, we estimate cross sections for neutrino scattering off the nucleon, relevant for future high intensity neutrino beam facilities

  10. Earthquakes - a danger to deep-lying repositories?; erdbeben: eine gefahr fuer tiefenlager?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-03-15

    This booklet issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at geological factors concerning earthquakes and the safety of deep-lying repositories for nuclear waste. The geological processes involved in the occurrence of earthquakes are briefly looked at and the definitions for magnitude and intensity of earthquakes are discussed. Examples of damage caused by earthquakes are given. The earthquake situation in Switzerland is looked at and the effects of earthquakes on sub-surface structures and deep-lying repositories are discussed. Finally, the ideas proposed for deep-lying geological repositories for nuclear wastes are discussed.

  11. Mathematics Curriculum, the Philosophy of Mathematics and its ...

    African Journals Online (AJOL)

    It is my observation that the current school mathematics curriculum in Ethiopia is not producing competent mathematics students. Many mathematicians in Ethiopia and other part of the world have often expressed grief that the majority of students do not understand mathematical concepts, or do not see why mathematical ...

  12. Deeply bound pionic states and modifications of hadrons

    International Nuclear Information System (INIS)

    Hirenzaki, S.

    2000-01-01

    We have studied the structure and formation of mesic atoms and mesic nuclei theoretically. The latest results on the deeply bound pionic atoms, the kaonic atoms and the sigma states are reported. (author)

  13. Complex force network in marginally and deeply jammed solids

    International Nuclear Information System (INIS)

    Hu Mao-Bin; Jiang Rui; Wu Qing-Song

    2013-01-01

    This paper studies the force network properties of marginally and deeply jammed packings of frictionless soft particles from the perspective of complex network theory. We generate zero-temperature granular packings at different pressures by minimizing the inter-particle potential energy. The force networks are constructed as nodes representing particles and links representing normal forces between the particles. Deeply jammed solids show remarkably different behavior from marginally jammed solids in their degree distribution, strength distribution, degree correlation, and clustering coefficient. Bimodal and multi-modal distributions emerge when the system enters the deep jamming region. The results also show that small and large particles can show different correlation behavior in this simple system

  14. Determination of the rate of energy partition in deeply inelastic collisions

    International Nuclear Information System (INIS)

    Lazzarini, A.; Vandenbosch, R.

    1984-01-01

    We discuss how excitation energy is partitioned in a deeply inelastic collision. Using the nucleon exchange mechanism for the deep inelastic scattering process, it is possible to draw on existing information about the evolution of the charge and mass distributions with energy loss and combine this with recent information on the partition of excitation energy in deeply inelastic collisions to obtain rates of heating for the two reaction partners

  15. Learning mathematics for personal understanding  and productions: A viewpoint

    Directory of Open Access Journals (Sweden)

    David Mtetwa

    2010-09-01

    Full Text Available In this paper we reflect on what makes mathematics more meaningful and more easily understood and thus enabling the learner to apply it to everyday situations in his/her life world. We identify personal – in relation to ‘collective’ or ‘public’ – mathematising as one key component towards real understanding of mathematics. We observe that today’s mathematics learner is often typified by such orientations as approaching the subject with timidity and in a cookbook fashion, adopting a re‐productive rather than a productive mode, and showing lack of intrinsic interest in the subject. Debilitating effects of some of these characteristics in relation to learning mathematics for personal development, include learner’s failure to exploit the subject’s natural features for developing own mental orientations such as algorithmic, stochastic, reflective, and creative thinking so essential in coping with modern life environments. We propose that, for inspirational effects, learners should have closer contact with and appreciation for the activities and practices of the professional mathematician. The mathematics teacher could enhance the learner’s mathematical learning experience by orienting instructional designs in ways that make the learning processes and outcomes more personal to the learner.

  16. THE APPLICATION OF RECIPROCAL TEACHING METHOD FOR IMPROVING THE UNDERSTANDING OF MATHEMATICS CONCEPT OF 7TH GRADE STUDENTS SMP NEGERI 2 DEPOK.

    Directory of Open Access Journals (Sweden)

    Tatag Bagus Argikas

    2016-10-01

    Full Text Available This research aims to: (1 describe the implementation of learning mathematics with Reciprocal Teaching methods that is for improving the concept of learning understanding mathematic in class VIIA SMP Negeri 2 Depok. (2 Knowing the increased understanding of student learning in class VIIA SMP Negeri 2 Depok use Reciprocal Teaching methods. This research constitutes an action in class that is according along the teacher. The data of research was collated by sheet observations and each evaluation of cycles. That is done in two cycles. The first was retrieved the average value of student learning achievement of 70.96%. The second was retrieved achievement of 90.32%. Thus this learning model can increase student learning understanding.   Key word: The understanding of Mathematical Concept, Reciprocal Teaching Method.

  17. The Influence of Symbols and Equations on Understanding Mathematical Equivalence

    Science.gov (United States)

    Powell, Sarah R.

    2015-01-01

    Students with mathematics difficulty demonstrate lower mathematics performance than typical-performing peers. One contributing factor to lower mathematics performance may be misunderstanding of mathematics symbols. In several studies related to the equal sign (=), students who received explicit instruction on the relational definition (i.e.,…

  18. Understanding and quantifying cognitive complexity level in mathematical problem solving items

    Directory of Open Access Journals (Sweden)

    SUSAN E. EMBRETSON

    2008-09-01

    Full Text Available The linear logistic test model (LLTM; Fischer, 1973 has been applied to a wide variety of new tests. When the LLTM application involves item complexity variables that are both theoretically interesting and empirically supported, several advantages can result. These advantages include elaborating construct validity at the item level, defining variables for test design, predicting parameters of new items, item banking by sources of complexity and providing a basis for item design and item generation. However, despite the many advantages of applying LLTM to test items, it has been applied less often to understand the sources of complexity for large-scale operational test items. Instead, previously calibrated item parameters are modeled using regression techniques because raw item response data often cannot be made available. In the current study, both LLTM and regression modeling are applied to mathematical problem solving items from a widely used test. The findings from the two methods are compared and contrasted for their implications for continued development of ability and achievement tests based on mathematical problem solving items.

  19. DBAC: A simple prediction method for protein binding hot spots based on burial levels and deeply buried atomic contacts

    Science.gov (United States)

    2011-01-01

    Background A protein binding hot spot is a cluster of residues in the interface that are energetically important for the binding of the protein with its interaction partner. Identifying protein binding hot spots can give useful information to protein engineering and drug design, and can also deepen our understanding of protein-protein interaction. These residues are usually buried inside the interface with very low solvent accessible surface area (SASA). Thus SASA is widely used as an outstanding feature in hot spot prediction by many computational methods. However, SASA is not capable of distinguishing slightly buried residues, of which most are non hot spots, and deeply buried ones that are usually inside a hot spot. Results We propose a new descriptor called “burial level” for characterizing residues, atoms and atomic contacts. Specifically, burial level captures the depth the residues are buried. We identify different kinds of deeply buried atomic contacts (DBAC) at different burial levels that are directly broken in alanine substitution. We use their numbers as input for SVM to classify between hot spot or non hot spot residues. We achieve F measure of 0.6237 under the leave-one-out cross-validation on a data set containing 258 mutations. This performance is better than other computational methods. Conclusions Our results show that hot spot residues tend to be deeply buried in the interface, not just having a low SASA value. This indicates that a high burial level is not only a necessary but also a more sufficient condition than a low SASA for a residue to be a hot spot residue. We find that those deeply buried atoms become increasingly more important when their burial levels rise up. This work also confirms the contribution of deeply buried interfacial atomic contacts to the energy of protein binding hot spot. PMID:21689480

  20. Using Mathematical Software to Introduce Fourier Transforms in Physical Chemistry to Develop Improved Understanding of Their Applications in Analytical Chemistry

    Science.gov (United States)

    Miller, Tierney C.; Richardson, John N.; Kegerreis, Jeb S.

    2016-01-01

    This manuscript presents an exercise that utilizes mathematical software to explore Fourier transforms in the context of model quantum mechanical systems, thus providing a deeper mathematical understanding of relevant information often introduced and treated as a "black-box" in analytical chemistry courses. The exercise is given to…

  1. Understanding Prospective Teachers' Mathematical Modeling Processes in the Context of a Mathematical Modeling Course

    Science.gov (United States)

    Zeytun, Aysel Sen; Cetinkaya, Bulent; Erbas, Ayhan Kursat

    2017-01-01

    This paper investigates how prospective teachers develop mathematical models while they engage in modeling tasks. The study was conducted in an undergraduate elective course aiming to improve prospective teachers' mathematical modeling abilities, while enhancing their pedagogical knowledge for the integrating of modeling tasks into their future…

  2. Persistence of deeply sourced iron in the Pacific Ocean.

    Science.gov (United States)

    Horner, Tristan J; Williams, Helen M; Hein, James R; Saito, Mak A; Burton, Kevin W; Halliday, Alex N; Nielsen, Sune G

    2015-02-03

    Biological carbon fixation is limited by the supply of Fe in vast regions of the global ocean. Dissolved Fe in seawater is primarily sourced from continental mineral dust, submarine hydrothermalism, and sediment dissolution along continental margins. However, the relative contributions of these three sources to the Fe budget of the open ocean remains contentious. By exploiting the Fe stable isotopic fingerprints of these sources, it is possible to trace distinct Fe pools through marine environments, and through time using sedimentary records. We present a reconstruction of deep-sea Fe isotopic compositions from a Pacific Fe-Mn crust spanning the past 76 My. We find that there have been large and systematic changes in the Fe isotopic composition of seawater over the Cenozoic that reflect the influence of several, distinct Fe sources to the central Pacific Ocean. Given that deeply sourced Fe from hydrothermalism and marginal sediment dissolution exhibit the largest Fe isotopic variations in modern oceanic settings, the record requires that these deep Fe sources have exerted a major control over the Fe inventory of the Pacific for the past 76 My. The persistence of deeply sourced Fe in the Pacific Ocean illustrates that multiple sources contribute to the total Fe budget of the ocean and highlights the importance of oceanic circulation in determining if deeply sourced Fe is ever ventilated at the surface.

  3. 25 CFR 215.25 - Other minerals and deep-lying lead and zinc minerals.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Other minerals and deep-lying lead and zinc minerals. 215.25 Section 215.25 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.25 Other minerals and deep-lying lead...

  4. Understanding the Chinese Approach to Creative Teaching in Mathematics Classrooms

    Science.gov (United States)

    Niu, Weihua; Zhou, Zheng; Zhou, Xinlin

    2017-01-01

    Using Amabile's componential theory of creativity as a framework, this paper analyzes how Chinese mathematics teachers achieve creative teaching through acquiring in-depth domain-specific knowledge in mathematics, developing creativity-related skills, as well as stimulating student interest in learning mathematics, through well-crafted,…

  5. Towards Understanding the Origins of Children's Difficulties in Mathematics Learning

    Science.gov (United States)

    Mulligan, Joanne

    2011-01-01

    Contemporary research from a psychology of mathematics education perspective has turned increasing attention to the structural development of mathematics as an explanation for the wide differences in mathematical competence shown upon school entry and in the early school years. Patterning, multiplicative reasoning and spatial structuring are three…

  6. Implementation of cooperative learning model type STAD with RME approach to understanding of mathematical concept student state junior high school in Pekanbaru

    Science.gov (United States)

    Nurhayati, Dian Mita; Hartono

    2017-05-01

    This study aims to determine whether there is a difference in the ability of understanding the concept of mathematics between students who use cooperative learning model Student Teams Achievement Division type with Realistic Mathematic Education approach and students who use regular learning in seventh grade SMPN 35 Pekanbaru. This study was quasi experiments with Posttest-only Control Design. The populations in this research were all the seventh grade students in one of state junior high school in Pekanbaru. The samples were a class that is used as the experimental class and one other as the control class. The process of sampling is using purposive sampling technique. Retrieval of data in this study using the documentation, observation sheets, and test. The test use t-test formula to determine whether there is a difference in student's understanding of mathematical concepts. Before the t-test, should be used to test the homogeneity and normality. Based in the analysis of these data with t0 = 2.9 there is a difference in student's understanding of mathematical concepts between experimental and control class. Percentage of students experimental class with score more than 65 was 76.9% and 56.4% of students control class. Thus be concluded, the ability of understanding mathematical concepts students who use the cooperative learning model type STAD with RME approach better than students using the regular learning. So that cooperative learning model type STAD with RME approach is well used in learning process.

  7. Understanding the Gender Gap in Mathematics Achievement: The Role of Self-Efficacy and Stereotype Threat

    Science.gov (United States)

    Schwery, Denise; Hulac, David; Schweinle, Amy

    2016-01-01

    This literature review provides school psychologists with an understanding of the important issues related to the gender gap in mathematics achievement. The extant literature suggests that girls tend to receive lower scores than boys on standardized math tests, but in general these differences tend to be small. However, girls have better classroom…

  8. Future measurements of deeply virtual Compton scattering

    International Nuclear Information System (INIS)

    Korotkov, V.A.; Nowak, W.D.

    2001-09-01

    Prospects for future measurements of Deeply Virtual Compton Scattering are studied using different simple models for parameterizations of generalized parton distributions (GPDs). Measurements of the lepton charge and lepton beam helicity asymmetry will yield important input for theoretical models towards the future extraction of GPDs. The kinematics of the HERMES experiment, complemented with a recoil detector, was adopted to arrive at realistic projected statistical uncertainties. (orig.)

  9. Understanding the Problems of Learning Mathematics.

    Science.gov (United States)

    Semilla-Dube, Lilia

    1983-01-01

    A model is being developed to categorize problems in teaching and learning mathematics. Categories include problems due to language difficulties, lack of prerequisite knowledge, and those related to the affective domain. This paper calls on individuals to share teaching and learning episodes; those submitted will then be compiled and categorized.…

  10. A Fruitful Activity for Finding the Greatest Common Factor

    Science.gov (United States)

    Bell, Carol J.; Leisner, Heather J.; Shelley, Kristina

    2011-01-01

    Posing mathematics problems in different ways will raise students' level of cognitive demand because it will push them to think more deeply about mathematics. By engaging students in a task that requires them to determine their own solution strategies, students will gain a deeper understanding of the mathematical concept explored through the task.…

  11. An Investigation of Mathematical Modeling with Pre-Service Secondary Mathematics Teachers

    Science.gov (United States)

    Thrasher, Emily Plunkett

    2016-01-01

    The goal of this thesis was to investigate and enhance our understanding of what occurs while pre-service mathematics teachers engage in a mathematical modeling unit that is broadly based upon mathematical modeling as defined by the Common Core State Standards for Mathematics (National Governors Association Center for Best Practices & Council…

  12. Longitudinal Target-Spin Asymmetries for Deeply Virtual Compton Scattering

    Science.gov (United States)

    Seder, E.; Biselli, A.; Pisano, S.; Niccolai, S.; Smith, G. D.; Joo, K.; Adhikari, K.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Battaglieri, M.; Bedlinskiy, I.; Bono, J.; Boiarinov, S.; Bosted, P.; Briscoe, W.; Brock, J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Carlin, C.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crabb, D.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garillon, B.; Garçon, M.; Gevorgyan, N.; Ghandilyan, Y.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hirlinger Saylor, N.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joosten, S.; Keith, C. D.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Meekins, D. G.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R.; Moody, C. I.; Moutarde, H.; Movsisyan, A.; Munoz Camacho, C.; Nadel-Turonski, P.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Pappalardo, L. L.; Park, K.; Park, S.; Pasyuk, E.; Peng, P.; Phelps, W.; Pogorelko, O.; Price, J. W.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Senderovich, I.; Simonyan, A.; Skorodumina, I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tang, W.; Tian, Y.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zonta, I.; CLAS Collaboration

    2015-01-01

    A measurement of the electroproduction of photons off protons in the deeply inelastic regime was performed at Jefferson Lab using a nearly 6 GeV electron beam, a longitudinally polarized proton target, and the CEBAF Large Acceptance Spectrometer. Target-spin asymmetries for e p →e'p'γ events, which arise from the interference of the deeply virtual Compton scattering and the Bethe-Heitler processes, were extracted over the widest kinematics in Q2 , xB, t , and ϕ , for 166 four-dimensional bins. In the framework of generalized parton distributions, at leading twist the t dependence of these asymmetries provides insight into the spatial distribution of the axial charge of the proton, which appears to be concentrated in its center. These results also bring important and necessary constraints for the existing parametrizations of chiral-even generalized parton distributions.

  13. A Mathematical Model for the Hippocampus: Towards the Understanding of Episodic Memory and Imagination

    Science.gov (United States)

    Tsuda, I.; Yamaguti, Y.; Kuroda, S.; Fukushima, Y.; Tsukada, M.

    How does the brain encode episode? Based on the fact that the hippocampus is responsible for the formation of episodic memory, we have proposed a mathematical model for the hippocampus. Because episodic memory includes a time series of events, an underlying dynamics for the formation of episodic memory is considered to employ an association of memories. David Marr correctly pointed out in his theory of archecortex for a simple memory that the hippocampal CA3 is responsible for the formation of associative memories. However, a conventional mathematical model of associative memory simply guarantees a single association of memory unless a rule for an order of successive association of memories is given. The recent clinical studies in Maguire's group for the patients with the hippocampal lesion show that the patients cannot make a new story, because of the lack of ability of imagining new things. Both episodic memory and imagining things include various common characteristics: imagery, the sense of now, retrieval of semantic information, and narrative structures. Taking into account these findings, we propose a mathematical model of the hippocampus in order to understand the common mechanism of episodic memory and imagination.

  14. Changes in Elementary Mathematics Teachers' Understanding of Cognitive Demand: When Adapting, Creating, and Using Mathematical Performance Tasks

    Science.gov (United States)

    Jamieson, Thad Spencer

    2015-01-01

    The use of mathematics performance tasks can provide a window into how a student is applying mathematics to various situations, how they are reasoning mathematically and how they are applying conceptual knowledge through problem solving and critical thinking. The purpose of this study was to investigate, according to the elementary mathematics…

  15. Investigating Alignment between Elementary Mathematics Teacher Education and Graduates' Teaching of Mathematics for Conceptual Understanding

    Science.gov (United States)

    Jansen, Amanda; Berk, Dawn; Meikle, Erin

    2017-01-01

    In this article, Amanda Jansen, Dawn Berk, and Erin Meikle investigate the impact of mathematics teacher education on teaching practices. In their study they interviewed six first-year teachers who graduated from the same elementary teacher education program and who were oriented toward teaching mathematics conceptually. They observed each teacher…

  16. Non-Markovian features of deeply inelastic collisions

    International Nuclear Information System (INIS)

    Pal, D.; Chattopadhyay, S.; Kar, K.

    1988-01-01

    To study the effect of memory in the diffusion processes (of charge, mass etc) observed in deeply inelastic heavy-ion reactions, we derive non-Markovian transport equations for the exponential and Gaussian memory kernels. The centroid and the variance of the distribution are expressed in terms of the memory time, drift and diffusion coefficients. The predictions based on this theory show better agreement with the experimental data than the Markovian results. (author)

  17. On Engaging with Others: A Wittgensteinian Approach to (Some) Problems with Deeply Held Beliefs

    Science.gov (United States)

    Bowell, Tracy

    2018-01-01

    My starting point for this paper is a problem in critical thinking pedagogy--the difficult of bringing students to a point where they are able, and motivated, critically to evaluate their own deeply held beliefs. I first interrogate the very idea of a deeply held belief, drawing upon Wittgenstein's idea of a framework belief--a belief that forms…

  18. Fraction magnitude understanding and its unique role in predicting general mathematics achievement at two early stages of fraction instruction.

    Science.gov (United States)

    Liu, Yingyi

    2017-09-08

    Prior studies on fraction magnitude understanding focused mainly on students with relatively sufficient formal instruction on fractions whose fraction magnitude understanding is relatively mature. This study fills a research gap by investigating fraction magnitude understanding in the early stages of fraction instruction. It extends previous findings to children with limited and primary formal fraction instruction. Thirty-five fourth graders with limited fraction instruction and forty fourth graders with primary fraction instruction were recruited from a Chinese primary school. Children's fraction magnitude understanding was assessed with a fraction number line estimation task. Approximate number system (ANS) acuity was assessed with a dot discrimination task. Whole number knowledge was assessed with a whole number line estimation task. General reading and mathematics achievements were collected concurrently and 1 year later. In children with limited fraction instruction, fraction representation was linear and fraction magnitude understanding was concurrently related to both ANS and whole number knowledge. In children with primary fraction instruction, fraction magnitude understanding appeared to (marginally) significantly predict general mathematics achievement 1 year later. Fraction magnitude understanding emerged early during formal instruction of fractions. ANS and whole number knowledge were related to fraction magnitude understanding when children first began to learn about fractions in school. The predictive value of fraction magnitude understanding is likely constrained by its sophistication level. © 2017 The British Psychological Society.

  19. Essential Mathematics for the Physical Sciences; Volume I: Homogeneous boundary value problems, Fourier methods, and special functions

    Science.gov (United States)

    Borden, Brett; Luscombe, James

    2017-10-01

    Physics is expressed in the language of mathematics; it is deeply ingrained in how physics is taught and how it's practiced. A study of the mathematics used in science is thus a sound intellectual investment for training as scientists and engineers. This first volume of two is centered on methods of solving partial differential equations and the special functions introduced. This text is based on a course offered at the Naval Postgraduate School (NPS) and while produced for NPS needs, it will serve other universities well.

  20. Mathematical modelling

    DEFF Research Database (Denmark)

    Blomhøj, Morten

    2004-01-01

    Developing competences for setting up, analysing and criticising mathematical models are normally seen as relevant only from and above upper secondary level. The general belief among teachers is that modelling activities presuppose conceptual understanding of the mathematics involved. Mathematical...... roots for the construction of important mathematical concepts. In addition competences for setting up, analysing and criticising modelling processes and the possible use of models is a formative aim in this own right for mathematics teaching in general education. The paper presents a theoretical...... modelling, however, can be seen as a practice of teaching that place the relation between real life and mathematics into the centre of teaching and learning mathematics, and this is relevant at all levels. Modelling activities may motivate the learning process and help the learner to establish cognitive...

  1. Metaphors We Do Math By: A Comparative Case Study of Public and Catholic School Teachers’ Understanding of the Common Core State Standards in Mathematics

    OpenAIRE

    Branch, Jennifer Danielle

    2016-01-01

    The United States has undergone multiple mathematics reforms since the 1980s with each reform setting out to increase national test scores and improve mathematics education in the nation’s schools. The current reform, the Common Core State Standards for Mathematics (CCSSM), seeks to create mathematically proficient students through a more active and rigorous curriculum. The goal of this yearlong study was to examine the understanding that intermediate and middle school math teachers make of t...

  2. Description of Student’s Metacognitive Ability in Understanding and Solving Mathematics Problem

    Science.gov (United States)

    Ahmad, Herlina; Febryanti, Fatimah; Febryanti, Fatimah; Muthmainnah

    2018-01-01

    This research was conducted qualitative which was aim to describe metacognitive ability to understand and solve the problems of mathematics. The subject of the research was the first year students at computer and networking department of SMK Mega Link Majene. The sample was taken by purposive sampling technique. The data obtained used the research instrument based on the form of students achievements were collected by using test of student’s achievement and interview guidance. The technique of collecting data researcher had observation to ascertain the model that used by teacher was teaching model of developing metacognitive. The technique of data analysis in this research was reduction data, presentation and conclusion. Based on the whole findings in this study it was shown that student’s metacognitive ability generally not develops optimally. It was because of limited scope of the materials, and cognitive teaching strategy handled by verbal presentation and trained continuously in facing cognitive tasks, such as understanding and solving problem.

  3. Changing Students Minds and Achievement in Mathematics: The Impact of a Free Online Student Course

    Directory of Open Access Journals (Sweden)

    Jo Boaler

    2018-04-01

    Full Text Available This study reports on the impact of a “massive, open, online course” (MOOC designed to change students' ideas about mathematics and their own potential and improve their mathematics achievement. Many students hold damaging fixed mindsets, believing that their intelligence is unchangeable. When students shift to a growth mindset (believing that their intelligence is malleable, their achievement increases. This study of a MOOC intervention differs from previous mindset research in three ways (1 the intervention was delivered through a free online course with the advantage of being scalable nationwide (2 the intervention infused mindset messages into mathematics, specifically targeting students' beliefs about mathematics (3 the research was conducted with a teacher randomized controlled design to estimate its effects. Results show that the treatment group who took the MOOC reported more positive beliefs about math, engaged more deeply in math in class, and achieved at significantly higher levels on standardized mathematics assessments.

  4. Giving Reason to Prospective Mathematics Teachers

    Science.gov (United States)

    D'Ambrosio, Beatriz; Kastberg, Signe

    2012-01-01

    This article describes the development of the authors' understanding of the contradictions in their mathematics teacher education practice. This understanding emerged from contrasting analyses of the impact of the authors' practices in mathematics content courses versus mathematics methods courses. Examples of the authors' work with two students,…

  5. Making Sense of Mathematics

    Science.gov (United States)

    Umphrey, Jan

    2011-01-01

    The National Council of Teachers of Mathematics (NCTM) is a voice and advocate for mathematics educators, working to ensure that all students receive equitable mathematics learning of the highest quality. To help teachers and school leaders understand the Common Core State Standards for Mathematics (CCSSM) and to point out how the CCSSM can be…

  6. The Language of Mathematics: The Importance of Teaching and Learning Mathematical Vocabulary

    Science.gov (United States)

    Riccomini, Paul J.; Smith, Gregory W.; Hughes, Elizabeth M.; Fries, Karen M.

    2015-01-01

    Vocabulary understanding is a major contributor to overall comprehension in many content areas, including mathematics. Effective methods for teaching vocabulary in all content areas are diverse and long standing. Teaching and learning the language of mathematics is vital for the development of mathematical proficiency. Students' mathematical…

  7. Investigating a Link between Pre-Calculus Students' Uses of Graphing Calculators and Their Understanding of Mathematical Symbols

    Science.gov (United States)

    Kenney, Rachael H.

    2014-01-01

    This study examined ways in which students make use of a graphing calculator and how use relates to comfort and understanding with mathematical symbols. Analysis involved examining students' words and actions in problem solving to identify evidence of algebraic insight. Findings suggest that some symbols and symbolic structures had strong…

  8. Variation and Mathematics Pedagogy

    Science.gov (United States)

    Leung, Allen

    2012-01-01

    This discussion paper put forwards variation as a theme to structure mathematical experience and mathematics pedagogy. Patterns of variation from Marton's Theory of Variation are understood and developed as types of variation interaction that enhance mathematical understanding. An idea of a discernment unit comprising mutually supporting variation…

  9. Learning Environments in Mathematics

    Science.gov (United States)

    Turner, Vanshelle E.

    2017-01-01

    Learning mathematics is problematic for most primary school age children because mathematics is rote and the memorization of steps rather than an approach to seeing relationships that builds inquiry and understanding. Therefore, the traditional "algorithmic" way of teaching mathematics has not fully prepared students to be critical…

  10. Mathematical Gossip: Relevance and Context in the Mathematics Classroom

    Science.gov (United States)

    Callingham, Rosemary

    2004-01-01

    Using mathematical gossip in the classroom allows teachers to expand their students' horizons, and provide pathways to improvement of understanding. The expansion of a simple idea into another mathematical context can enrich a student's learning. In particular it may help to bridge the gap between purely procedural approaches and a conceptual…

  11. A readable introduction to real mathematics

    CERN Document Server

    Rosenthal, Daniel; Rosenthal, Peter

    2014-01-01

    Designed for an undergraduate course or for independent study, this text presents sophisticated mathematical ideas in an elementary and friendly fashion. The fundamental purpose of this book is to engage the reader and to teach a real understanding of mathematical thinking while conveying the beauty and elegance of mathematics. The text focuses on teaching the understanding of mathematical proofs. The material covered has applications both to mathematics and to other subjects. The book contains a large number of exercises of varying difficulty, designed to help reinforce basic concepts and to motivate and challenge the reader. The sole prerequisite for understanding the text is basic high school algebra; some trigonometry is needed for Chapters 9 and 12. Topics covered include: * mathematical induction * modular arithmetic * the fundamental theorem of arithmetic * Fermat's little theorem * RSA encryption * the Euclidean algorithm * rational and irrational numbers * complex numbers * cardinality * Euclidean pl...

  12. Panel Debate: Technics and technology in mathematics and mathematics education

    DEFF Research Database (Denmark)

    Misfeldt, Morten

    2015-01-01

    The use of computer technology for teaching and learning of mathematics has several consequences and does sometimes give rise to both controversies and misunderstandings. We address these problems by both a philosophical and a historical approach, investigating what it actually is that goes on when...... guidelines and conclusions regarding the use of computer technology in mathematics education....... new technologies enter mathematics as a discipline and mathematics education as a societal practice. Our analysis suggests a focus on continuities in time and place in the sense that it is necessary to understand the history of “tool use” in mathematics and the various ways that scholastic and non...

  13. Authority, Identity, and Collaborative Mathematics

    Science.gov (United States)

    Langer-Osuna, Jennifer M.

    2017-01-01

    The field of mathematics education research has seen a resurgence of interest in understanding collaborative learning because students in K-12 classrooms are increasingly expected to make sense of mathematics problems together. This Research Commentary argues for the importance of understanding student authority relations in collaborative…

  14. A Picture is Worth a Thousand Words: Examining learners’ illustrations to understand Attitudes towards Mathematics

    Directory of Open Access Journals (Sweden)

    Farhat Syyeda

    2015-04-01

    Full Text Available This article presents my experience of using pictures/images drawn by children as a form of data in research and discusses the merits and implications of employing this method. It comes from research of a mixed method exploratory case study to investigate the attitudes of 11 and 15 year old secondary school students (in the East Midlands towards Mathematics. The aim of this research was to gain an insight into the emotions, cognition, beliefs and behaviour of learners regarding Maths and the factors which influence their attitude. Besides using the tried and tested data collection tools such as focus groups and questionnaires, the children were asked to draw pictures illustrating their vision of Maths and its impact on their lives. The idea was to offer them an alternative medium of communication to exhibit their feelings and thoughts. Students used emoticons, numerals, figures, characters and mathematical symbols to show their favourable/unfavourable attitudes towards Maths and their understanding of the importance of Maths in future life. The results of visual data in this study conform to the findings of the other forms of data collected and show that boys and higher ability students have a more positive attitude towards Mathematics as compared to girls and low ability students.

  15. DOE Fundamentals Handbook: Mathematics, Volume 1

    International Nuclear Information System (INIS)

    1992-06-01

    The Mathematics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mathematics and its application to facility operation. The handbook includes a review of introductory mathematics and the concepts and functional use of algebra, geometry, trigonometry, and calculus. Word problems, equations, calculations, and practical exercises that require the use of each of the mathematical concepts are also presented. This information will provide personnel with a foundation for understanding and performing basic mathematical calculations that are associated with various DOE nuclear facility operations

  16. DOE Fundamentals Handbook: Mathematics, Volume 2

    International Nuclear Information System (INIS)

    1992-06-01

    The Mathematics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mathematics and its application to facility operation. The handbook includes a review of introductory mathematics and the concepts and functional use of algebra, geometry, trigonometry, and calculus. Word problems, equations, calculations, and practical exercises that require the use of each of the mathematical concepts are also presented. This information will provide personnel with a foundation for understanding and performing basic mathematical calculations that are associated with various DOE nuclear facility operations

  17. Mathematics and engineering in real life through mathematical competitions

    Science.gov (United States)

    More, M.

    2018-02-01

    We bring out an experience of organizing mathematical competitions that can be used as a medium to motivate the student and teacher minds in new directions of thinking. This can contribute to fostering research, innovation and provide a hands-on experience of mathematical concepts with the real world. Mathematical competitions can be used to build curiosity and give an understanding of mathematical applications in real life. Participation in the competition has been classified under four broad categories. Student can showcase their findings in various forms of expression like model, poster, soft presentation, animation, live performance, art and poetry. The basic focus of the competition is on using open source computation tools and modern technology, to emphasize the relationship of mathematical concepts with engineering applications in real life.

  18. [Bone Cell Biology Assessed by Microscopic Approach. A mathematical approach to understand bone remodeling].

    Science.gov (United States)

    Kameo, Yoshitaka; Adachi, Taiji

    2015-10-01

    It is well known that bone tissue can change its outer shape and internal structure by remodeling according to a changing mechanical environment. However, the mechanism of bone functional adaptation induced by the collaborative metabolic activities of bone cells in response to mechanical stimuli remains elusive. In this article, we focus on the hierarchy of bone structure and function from the microscopic cellular level to the macroscopic tissue level. We provide an overview of a mathematical approach to understand the adaptive changes in trabecular morphology under the application of mechanical stress.

  19. Speed mathematics

    CERN Document Server

    Handley, Bill

    2012-01-01

    This new, revised edition of the bestselling Speed Mathematics features new chapters on memorising numbers and general information, calculating statistics and compound interest, square roots, logarithms and easy trig calculations. Written so anyone can understand, this book teaches simple strategies that will enable readers to make lightning-quick calculations. People who excel at mathematics use better strategies than the rest of us; they are not necessarily more intelligent. With Speed Mathematics you'll discover methods to make maths easy and fun. This book is perfect for stud

  20. Utah's New Mathematics Core

    Science.gov (United States)

    Utah State Office of Education, 2011

    2011-01-01

    Utah has adopted more rigorous mathematics standards known as the Utah Mathematics Core Standards. They are the foundation of the mathematics curriculum for the State of Utah. The standards include the skills and understanding students need to succeed in college and careers. They include rigorous content and application of knowledge and reflect…

  1. Gender: Its relation to Mathematical Creative Thinking Skill

    Science.gov (United States)

    Permatasari, H. R.; Wahyudin, W.

    2017-09-01

    Mathematical creative thinking skill is one of the most important capabilities in the present century, both for men and women. One of the current issues is about gender and how gender mainstreaming can be realized optimally. The purpose of this study is to determine the comparison of the mathematical creative thinking skill increasing between male and female students after the application of Team Games Tournament (TGT) learning. This research was conducted at 28 students in the 4th grade of an elementary school in Bandung City. The research method used is quasi experiment because it is aimed to test wether there are differences in mathematical creative thinking skill improving between male and female students after being treatment in the form of learnig with TGT. The result of this research is that there is no difference in mathematical creative thinking skill improving between male and female students after the application of TGT learning. It is influenced by some factors such as how the teacher treats male and female with the same treatment in learning process. Recommendation of this research that can be done further research about this topic more deeply. Beside that, the teacher especially in elementary school can use the TGT learning application to reduce the gap between male and female students during the learning process.

  2. Research in collegiate mathematics education VI

    CERN Document Server

    Selden, Annie; Harel, Guershon; Hauk, Shandy

    2006-01-01

    The sixth volume of Research in Collegiate Mathematics Education presents state-of-the-art research on understanding, teaching, and learning mathematics at the postsecondary level. The articles advance our understanding of collegiate mathematics education while being readable by a wide audience of mathematicians interested in issues affecting their own students. This is a collection of useful and informative research regarding the ways our students think about and learn mathematics. The volume opens with studies on students' experiences with calculus reform and on the effects of concept-based

  3. Mathematical Modeling Using MATLAB

    National Research Council Canada - National Science Library

    Phillips, Donovan

    1998-01-01

    .... Mathematical Modeling Using MA MATLAB acts as a companion resource to A First Course in Mathematical Modeling with the goal of guiding the reader to a fuller understanding of the modeling process...

  4. Mastering mathematics for Edexcel GCSE

    CERN Document Server

    Davis, Heather; Liggett, Linda

    2015-01-01

    Help students to develop their knowledge, skills and understanding so that they can reason mathematically, communicate mathematical information and apply mathematical techniques in solving problems; with resources developed specifically for the Edexcel GCSE 2015 specification with leading Assessment Consultant Keith Pledger and a team of subject specialists. - Supports you and your students through the new specifications, with topic explanations and new exam-style questions, to support the new assessment objectives. - Builds understanding and measures progress throughout the course with plenty

  5. Improving Primary School Prospective Teachers' Understanding of the Mathematics Modeling Process

    Science.gov (United States)

    Bal, Aytgen Pinar; Doganay, Ahmet

    2014-01-01

    The development of mathematical thinking plays an important role on the solution of problems faced in daily life. Determining the relevant variables and necessary procedural steps in order to solve problems constitutes the essence of mathematical thinking. Mathematical modeling provides an opportunity for explaining thoughts in real life by making…

  6. Mathematics Teachers' Support and Retention: Using Maslow's Hierarchy to Understand Teachers' Needs

    Science.gov (United States)

    Fisher, Molly H.; Royster, David

    2016-01-01

    As part of a larger study, four mathematics teachers from diverse backgrounds and teaching situations report their ideas on teacher stress, mathematics teacher retention, and their feelings about the needs of mathematics teachers, as well as other information crucial to retaining quality teachers. The responses from the participants were used to…

  7. Research in collegiate mathematics education V

    CERN Document Server

    Selden, Annie; Harel, Guershon; Hitt, Fernando

    2003-01-01

    This fifth volume of Research in Collegiate Mathematics Education presents state-of-the-art research on understanding, teaching, and learning mathematics at the post-secondary level. The articles in RCME are peer-reviewed for two major features: (1) advancing our understanding of collegiate mathematics education, and (2) readability by a wide audience of practicing mathematicians interested in issues affecting their own students. This is not a collection of scholarly arcana, but a compilation of useful and informative research regarding the ways our students think about and learn mathematics.

  8. Mathematics for the imagination

    CERN Document Server

    Higgins, Peter

    2002-01-01

    Mathematics for the Imagination provides an accessible and entertaining investigation into mathematical problems in the world around us. From world navigation, family trees, and calendars to patterns, tessellations, and number tricks, this informative and fun new book helps you to understand the maths behind real-life questions and rediscover your arithmetical mind.This is a follow-up to the popular Mathematics for the Curious, Peter Higgins's first investigation into real-life mathematical problems.A highly involving book which encourages the reader to enter into the spirit of mathematical ex

  9. Deeply-etched DBR mirrors for photonic integrated circuits and tunable lasers

    NARCIS (Netherlands)

    Docter, B.

    2009-01-01

    Deeply-etched Distributed Bragg Reflector (DBR) mirrors are a new versatile building block for Photonic Integrated Circuits that allows us to create more complex circuits for optical telecommunication applications. The DBR mirrors increase the device design flexibility because the mirrors can be

  10. High school mathematics teachers' perspectives on the purposes of mathematical proof in school mathematics

    Science.gov (United States)

    Dickerson, David S.; Doerr, Helen M.

    2014-12-01

    Proof serves many purposes in mathematics. In this qualitative study of 17 high school mathematics teachers, we found that these teachers perceived that two of the most important purposes for proof in school mathematics were (a) to enhance students' mathematical understanding and (b) to develop generalized thinking skills that were transferable to other fields of endeavor. We found teachers were divided on the characteristics (or features) of proofs that would serve these purposes. Teachers with less experience tended to believe that proofs in the high school should adhere to strict standards of language and reasoning while teachers with more experience tended to believe that proofs based on concrete or visual features were well suited for high school mathematics. This study has implications for teacher preparation because it appears that there is a wide variation in how teachers think about proof. It seems likely that students would experience proof very differently merely because they were seated in different classrooms.

  11. STEM Gives Meaning to Mathematics

    Science.gov (United States)

    Hefty, Lukas J.

    2015-01-01

    The National Council of Teachers of Mathematics' (NCTM's) "Principles and Standards for School Mathematics" (2000) outlines fi ve Process Standards that are essential for developing deep understanding of mathematics: (1) Problem Solving; (2) Reasoning and Proof; (3) Communication; (4) Connections; and (5) Representation. The Common Core…

  12. Mathematical modeling

    CERN Document Server

    Eck, Christof; Knabner, Peter

    2017-01-01

    Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.

  13. Mathematics for computer graphics

    CERN Document Server

    Vince, John

    2006-01-01

    Helps you understand the mathematical ideas used in computer animation, virtual reality, CAD, and other areas of computer graphics. This work also helps you to rediscover the mathematical techniques required to solve problems and design computer programs for computer graphic applications

  14. Employment of an Informal Educational Mathematical Facility to Lower Math Anxiety and Improve Teacher and Student Attitudes Towards Understanding Mathematics

    Science.gov (United States)

    Adams, Vicki

    2012-01-01

    Students do not pursue careers in science, technology, engineering, or mathematics (STEM) because of a lack of ability, but rather a lack of positive experiences with mathematics. Research has concluded that attitudes in math directly influence success in mathematics. As many as 75% of high school graduates in the United States suffer from mild to…

  15. Teachers' Conceptions of Mathematical Modeling

    Science.gov (United States)

    Gould, Heather

    2013-01-01

    The release of the "Common Core State Standards for Mathematics" in 2010 resulted in a new focus on mathematical modeling in United States curricula. Mathematical modeling represents a way of doing and understanding mathematics new to most teachers. The purpose of this study was to determine the conceptions and misconceptions held by…

  16. Measurement of Deeply Virtual Compton Scattering at HERA

    CERN Document Server

    Adloff, C.; Andrieu, B.; Anthonis, T.; Arkadov, V.; Astvatsatourov, A.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bate, P.; Beglarian, A.; Behnke, O.; Beier, C.; Belousov, A.; Benisch, T.; Berger, Christoph; Berndt, T.; Bizot, J.C.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruckner, W.; Bruncko, D.; Burger, J.; Busser, F.W.; Bunyatyan, A.; Burrage, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cao, Jun; Caron, S.; Clarke, D.; Clerbaux, B.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Droutskoi, A.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Fleming, Y.H.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Foster, J.M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodwin, C.; Grab, C.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Hadig, T.; Haidt, D.; Hajduk, L.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hurling, S.; Ibbotson, M.; Issever, C .; Jacquet, M.; Jaffre, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kastli, H.K.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kermiche, S.; Kiesling, Christian M.; Kjellberg, P.; Klein, M.; Kleinwort, C.; Kluge, T.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Koutouev, R.; Koutov, A.; Krehbiel, H.; Kroseberg, J.; Kruger, K.; Kupper, A.; Kuhr, T.; Kurca, T.; Lahmann, R.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebailly, E.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindstroem, M.; List, B.; Lobodzinska, E.; Lobodzinski, B.; Loginov, A.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Mahlke-Kruger, H.; Malden, N.; Malinovski, E.; Malinovski, I.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Meyer, P.O.; Mikocki, S.; Milstead, D.; Mkrtchyan, T.; Mohr, R.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Nellen, G.; Newman, Paul R.; Nicholls, T.C.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Potachnikova, I.; Povh, B.; Rabbertz, K.; Radel, G.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schorner, T.; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Chekelian, V.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Solovev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Straumann, U.; Swart, M.; Tasevsky, M.; Chernyshov, V.; Chetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tobien, N.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Udluft, S.; Urban, Marcel; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vassilev, S.; Vazdik, Y.; Vichnevski, A.; Wacker, K.; Wallny, R.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Werner, C.; Werner, M.; Werner, N.; White, G.; Wiesand, S.; Wilksen, T.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; Zsembery, J.; zur Nedden, M.

    2001-01-01

    A measurement is presented of elastic Deeply Virtual Compton Scattering e^+ + p -> e^+ + photon + p at HERA using data taken with the H1 detector. The cross section is measured as a function of the photon virtuality, Q^2, and the invariant mass, W, of the gamma p system, in the kinematic range 2 < Q^2 < 20 GeV^2, 30 < W < 120 GeV and |t| < 1 GeV^2, where t is the squared momentum transfer to the proton. The measurement is compared to QCD based calculations.

  17. Deeply virtual Compton scattering: How to test handbag dominance?

    International Nuclear Information System (INIS)

    Gousset, T.; Gousset, T.; Diehl, M.; Pire, B.; Diehl, M.; Ralston, J.P.

    1998-01-01

    We propose detailed tests of the handbag approximation in exclusive deeply virtual Compton scattering. Those tests make no use of any prejudice about parton correlations in the proton which are basically unknown objects and beyond the scope of perturbative QCD. Since important information on the proton substructure can be gained in the regime of light cone dominance we consider that such a class of tests is of special relevance. copyright 1998 American Institute of Physics

  18. Exploring Effects of High School Students' Mathematical Processing Skills and Conceptual Understanding of Chemical Concepts on Algorithmic Problem Solving

    Science.gov (United States)

    Gultepe, Nejla; Yalcin Celik, Ayse; Kilic, Ziya

    2013-01-01

    The purpose of the study was to examine the effects of students' conceptual understanding of chemical concepts and mathematical processing skills on algorithmic problem-solving skills. The sample (N = 554) included grades 9, 10, and 11 students in Turkey. Data were collected using the instrument "MPC Test" and with interviews. The MPC…

  19. (Re)Envisioning Mathematics Education: Examining Equity and Social Justice in an Elementary Mathematics Methods Course

    Science.gov (United States)

    Koestler, Courtney

    2010-01-01

    In this dissertation, I present my attempts at designing an elementary mathematics methods course to support prospective teachers in developing an understanding of how to teach all students in learning powerful mathematics. To do this, I introduced them to teaching mathematics for equity and social justice by discussing ways to support students'…

  20. The Role of Reasoning in the Australian Curriculum: Mathematics

    Science.gov (United States)

    McCluskey, Catherine; Mulligan, Joanne; Mitchelmore, Mike

    2016-01-01

    The mathematical proficiencies in the "Australian Curriculum: Mathematics" of understanding, problem solving, reasoning, and fluency are intended to be entwined actions that work together to build generalised understandings of mathematical concepts. A content analysis identifying the incidence of key proficiency terms (KPTs) embedded in…

  1. Mathematics teachers' support and retention: using Maslow's hierarchy to understand teachers' needs

    Science.gov (United States)

    Fisher, Molly H.; Royster, David

    2016-10-01

    As part of a larger study, four mathematics teachers from diverse backgrounds and teaching situations report their ideas on teacher stress, mathematics teacher retention, and their feelings about the needs of mathematics teachers, as well as other information crucial to retaining quality teachers. The responses from the participants were used to develop a hierarchy of teachers' needs that resembles Maslow's hierarchy, which can be used to better support teachers in various stages of their careers. The interviews revealed both non content-specific and content-specific needs within the hierarchy. The responses show that teachers found different schools foster different stress levels and that as teachers they used a number of resources for reducing stress. Other mathematics-specific ideas are also discussed such as the amount of content and pedagogy courses required for certification.

  2. Understanding Mathematics and Culture in Rural Contexts. ERIC Digest.

    Science.gov (United States)

    Bush, William S.

    This ERIC Digest provides an overview of concepts, writers, and tenets associated with the study of mathematics and culture and offers researchers a framework for the field, particularly with regard to rural contexts. (Author)

  3. Use of a Piezosurgery Technique to Remove a Deeply Impacted Supernumerary Tooth in the Anterior Maxilla

    Science.gov (United States)

    Sukegawa, Shintaro; Kanno, Takahiro; Kawakami, Kiyokazu; Shibata, Akane; Takahashi, Yuka; Furuki, Yoshihiko

    2015-01-01

    Deeply impacted supernumerary teeth in the anterior maxillary cannot be generally removed by the conventional labial or palatal surgical approach because of the risk of damaging the surrounding soft tissues and the possibility of injuring the roots of adjacent permanent teeth. In piezosurgery, bony tissues are selectively cut, thereby avoiding the soft tissue damage caused by rotary cutting instruments. We report the case of a 15-year-old Japanese boy from whom a deeply impacted supernumerary tooth in the anterior maxillary was safely removed through the floor of the nasal cavity. The surgical extraction was performed without damaging the nasal mucosa or adjacent structures such as the roots of the adjacent permanent teeth. Considering that piezosurgery limits the extent of surgical invasion, this technique can be practiced as a minimally invasive and safe surgical procedure for treating suitably selected cases with a deeply impacted supernumerary tooth. PMID:26779355

  4. Use of a Piezosurgery Technique to Remove a Deeply Impacted Supernumerary Tooth in the Anterior Maxilla

    Directory of Open Access Journals (Sweden)

    Shintaro Sukegawa

    2015-01-01

    Full Text Available Deeply impacted supernumerary teeth in the anterior maxillary cannot be generally removed by the conventional labial or palatal surgical approach because of the risk of damaging the surrounding soft tissues and the possibility of injuring the roots of adjacent permanent teeth. In piezosurgery, bony tissues are selectively cut, thereby avoiding the soft tissue damage caused by rotary cutting instruments. We report the case of a 15-year-old Japanese boy from whom a deeply impacted supernumerary tooth in the anterior maxillary was safely removed through the floor of the nasal cavity. The surgical extraction was performed without damaging the nasal mucosa or adjacent structures such as the roots of the adjacent permanent teeth. Considering that piezosurgery limits the extent of surgical invasion, this technique can be practiced as a minimally invasive and safe surgical procedure for treating suitably selected cases with a deeply impacted supernumerary tooth.

  5. A discrete transition to advanced mathematics

    CERN Document Server

    Richmond, Bettina

    2009-01-01

    As the title indicates, this book is intended for courses aimed at bridging the gap between lower-level mathematics and advanced mathematics. The text provides a careful introduction to techniques for writing proofs and a logical development of topics based on intuitive understanding of concepts. The authors utilize a clear writing style and a wealth of examples to develop an understanding of discrete mathematics and critical thinking skills. While including many traditional topics, the text offers innovative material throughout. Surprising results are used to motivate the reader. The last thr

  6. 100 commonly asked questions in math class answers that promote mathematical understanding, grades 6-12

    CERN Document Server

    Posamentier, Alfred S (Steven); Germain-Williams, Terri L (Lynn); Paris, Elaine S; Lehmann, Ingmar H (Horst)

    2013-01-01

    100 ways to get students hooked on math! That one question got you stumped? Or maybe you have the answer, but it's not all that compelling. Al Posamentier and his coauthors to the rescue with this handy reference containing fun answers to students'100 most frequently asked math questions. Even if you already have the answers, Al's explanations are certain to keep kids hooked. The big benefits? You'll discover high-interest ways to Teach to the Common Core's math content standards Promote inquiry and process in mathematical thinking Build procedural skills and conceptual understanding Encourage

  7. Back in Time on a Mathematics Trail

    Science.gov (United States)

    Moffett, Pamela

    2010-01-01

    The recently revised "Northern Ireland Primary Curriculum" recommends that teachers make use of the environment to extend children's understanding of mathematics. One approach to using the environment in mathematics is to take children on a mathematics trail. A mathematics trail uses the resources and features within the environment as a…

  8. Basic mathematical cognition.

    Science.gov (United States)

    Gaber, David; Schlimm, Dirk

    2015-01-01

    Mathematics is a powerful tool for describing and developing our knowledge of the physical world. It informs our understanding of subjects as diverse as music, games, science, economics, communications protocols, and visual arts. Mathematical thinking has its roots in the adaptive behavior of living creatures: animals must employ judgments about quantities and magnitudes in the assessment of both threats (how many foes) and opportunities (how much food) in order to make effective decisions, and use geometric information in the environment for recognizing landmarks and navigating environments. Correspondingly, cognitive systems that are dedicated to the processing of distinctly mathematical information have developed. In particular, there is evidence that certain core systems for understanding different aspects of arithmetic as well as geometry are employed by humans and many other animals. They become active early in life and, particularly in the case of humans, develop through maturation. Although these core systems individually appear to be quite limited in application, in combination they allow for the recognition of mathematical properties and the formation of appropriate inferences based upon those properties. In this overview, the core systems, their roles, their limitations, and their interaction with external representations are discussed, as well as possibilities for how they can be employed together to allow us to reason about more complex mathematical domains. © 2015 John Wiley & Sons, Ltd.

  9. Understanding Islam: Perspectives of a Turkish Educator

    Science.gov (United States)

    Gunel, Elvan

    2008-01-01

    Students come from many different family, cultural, and religious backgrounds. Learning about Islam can help U.S. teachers to understand their students and their own society, as well as to more deeply comprehend history and better interpret current events. In this article, the author recommends some websites (and occasionally books) that can…

  10. Ideation in mathematical writing

    DEFF Research Database (Denmark)

    Misfeldt, Morten

    2007-01-01

    This paper considers idea generation during the mathematical writing process. Two contrasting explanations of the creative potential in connection to writing is presented; writing as a process of setting and obtaining rhetorical goals and writing as a process of discovery. These views...... are then related to two empirically found categories of functions that writing serves researchers in the field of mathematics, concluding that both views contributes to understanding the creative potential in relation to mathematical writing....

  11. Science + Maths = A Better Understanding of Science!

    Science.gov (United States)

    Markwick, Andy; Clark, Kris

    2016-01-01

    Science and mathematics share a common purpose: to explore, understand and explain the pure beauty of our universe and how it works. Using mathematics in science enquiry can enhance children's understanding of science and also provide opportunities for children to apply their mathematical knowledge to "real" contexts. The authors…

  12. Helping Early Childhood Educators to Understand and Assess Young Children's Mathematical Minds

    Science.gov (United States)

    Ginsburg, Herbert P.

    2016-01-01

    This issue of "ZDM Mathematics Education" focuses on the formative assessment of young children's mathematical thinking, with an emphasis on computer-based approaches drawing upon on cognitive and educational research. The authors discuss several different assessment methods, including clinical interviewing, observation, and testing,…

  13. Missing the Promise of Mathematical Modeling

    Science.gov (United States)

    Meyer, Dan

    2015-01-01

    The Common Core State Standards for Mathematics (CCSSM) have exerted enormous pressure on every participant in a child's education. Students are struggling to meet new standards for mathematics learning, and parents are struggling to understand how to help them. Teachers are growing in their capacity to develop new mathematical competencies, and…

  14. Mathematics, anxiety, and the brain.

    Science.gov (United States)

    Moustafa, Ahmed A; Tindle, Richard; Ansari, Zaheda; Doyle, Margery J; Hewedi, Doaa H; Eissa, Abeer

    2017-05-24

    Given that achievement in learning mathematics at school correlates with work and social achievements, it is important to understand the cognitive processes underlying abilities to learn mathematics efficiently as well as reasons underlying the occurrence of mathematics anxiety (i.e. feelings of tension and fear upon facing mathematical problems or numbers) among certain individuals. Over the last two decades, many studies have shown that learning mathematical and numerical concepts relies on many cognitive processes, including working memory, spatial skills, and linguistic abilities. In this review, we discuss the relationship between mathematical learning and cognitive processes as well as the neural substrates underlying successful mathematical learning and problem solving. More importantly, we also discuss the relationship between these cognitive processes, mathematics anxiety, and mathematics learning disabilities (dyscalculia). Our review shows that mathematical cognition relies on a complex brain network, and dysfunction to different segments of this network leads to varying manifestations of mathematical learning disabilities.

  15. Understanding the Influence of Two Mathematics Textbooks on Prospective Secondary Teachers' Knowledge

    Science.gov (United States)

    Davis, Jon D.

    2009-01-01

    This study examines the influence of reading and planning from two differently organized mathematics textbooks on prospective high school mathematics teachers' pedagogical content knowledge and content knowledge of exponential functions. The teachers completed a pretest and two posttests. On the pretest, the teachers possessed an incomplete…

  16. Handbook of mathematics

    CERN Document Server

    Bronshtein, I N; Musiol, Gerhard; Mühlig, Heiner

    2015-01-01

    This guide book to mathematics contains in handbook form the fundamental working knowledge of mathematics which is needed as an everyday guide for working scientists and engineers, as well as for students. Easy to understand, and convenient to use, this guide book gives concisely the information necessary to evaluate most problems which occur in concrete applications. In the newer editions emphasis was laid on those fields of mathematics that became more important for the formulation and modeling of technical and natural processes, namely Numerical Mathematics, Probability Theory and Statistics, as well as Information Processing. Besides many enhancements and  new paragraphs,  new sections on Geometric and Coordinate Transformations, Quaternions and Applications, and Lie Groups and Lie Algebras were added for the sixth edition.

  17. High-energy electroweak neutrino-nucleon deeply virtual Compton scattering

    International Nuclear Information System (INIS)

    Machado, Magno V. T.

    2007-01-01

    In this work we estimate the differential and total cross sections for the high-energy deeply virtual Compton scattering in the weak sector. In the weak neutral sector one considers neutrino scattering off an unpolarized proton target through the exchange of Z 0 . We numerically compute the process Z*p→γp within the QCD color dipole formalism, which successfully describes the current high-energy electromagnetic DVCS experimental data. We also discuss possible applications for the weak charged sector and perform predictions for scattering on nuclear targets

  18. Teachers' Understanding of the Role of Executive Functions in Mathematics Learning.

    Science.gov (United States)

    Gilmore, Camilla; Cragg, Lucy

    2014-09-01

    Cognitive psychology research has suggested an important role for executive functions, the set of skills that monitor and control thought and action, in learning mathematics. However, there is currently little evidence about whether teachers are aware of the importance of these skills and, if so, how they come by this information. We conducted an online survey of teachers' views on the importance of a range of skills for mathematics learning. Teachers rated executive function skills, and in particular inhibition and shifting, to be important for mathematics. The value placed on executive function skills increased with increasing teaching experience. Most teachers reported that they were aware of these skills, although few knew the term "executive functions." This awareness had come about through their teaching experience rather than from formal instruction. Researchers and teacher educators could do more to highlight the importance of these skills to trainee or new teachers.

  19. VEDIC MATHEMATICS

    Directory of Open Access Journals (Sweden)

    Sead Rešić

    2015-09-01

    Full Text Available It is very difficult to motivate students when it comes to a school subject like Mathematics. Teachers spend a lot of time trying to find something that will arouse interest in students. It is particularly difficult to find materials that are motivating enough for students that they eagerly wait for the next lesson. One of the solutions may be found in Vedic Mathematics. Traditional methods of teaching Mathematics create fear of this otherwise interesting subject in the majority of students. Fear increases failure. Often the traditional, conventional mathematical methods consist of very long lessons which are difficult to understand. Vedic Mathematics is an ancient system that is very flexible and encourages the development of intuition and innovation. It is a mental calculating tool that does not require a calculator because the calculator is embedded in each of us. Starting from the above problems of fear and failure in Mathematics, the goal of this paper is to do research with the control and the experimental group and to compare the test results. Two tests should be done for each of the groups. The control group would do the tests in the conventional way. The experimental group would do the first test in a conventional manner and then be subjected to different treatment, that is to say, be taught on the basis of Vedic Mathematics. After that, the second group would do the second test according to the principles of Vedic Mathematics. Expectations are that after short lectures on Vedic mathematics results of the experimental group would improve and that students will show greater interest in Mathematics.

  20. Cognitive correlates of performance in advanced mathematics.

    Science.gov (United States)

    Wei, Wei; Yuan, Hongbo; Chen, Chuansheng; Zhou, Xinlin

    2012-03-01

    Much research has been devoted to understanding cognitive correlates of elementary mathematics performance, but little such research has been done for advanced mathematics (e.g., modern algebra, statistics, and mathematical logic). To promote mathematical knowledge among college students, it is necessary to understand what factors (including cognitive factors) are important for acquiring advanced mathematics. We recruited 80 undergraduates from four universities in Beijing. The current study investigated the associations between students' performance on a test of advanced mathematics and a battery of 17 cognitive tasks on basic numerical processing, complex numerical processing, spatial abilities, language abilities, and general cognitive processing. The results showed that spatial abilities were significantly correlated with performance in advanced mathematics after controlling for other factors. In addition, certain language abilities (i.e., comprehension of words and sentences) also made unique contributions. In contrast, basic numerical processing and computation were generally not correlated with performance in advanced mathematics. Results suggest that spatial abilities and language comprehension, but not basic numerical processing, may play an important role in advanced mathematics. These results are discussed in terms of their theoretical significance and practical implications. ©2011 The British Psychological Society.

  1. Mathematics and linguistics

    Energy Technology Data Exchange (ETDEWEB)

    Landauer, C.; Bellman, K.L.

    1996-12-31

    In this paper, we study foundational issues that we believe will help us develop a theoretically sound approach to constructing complex systems. The two theoretical approaches that have helped us understand and develop computational systems in the past are mathematics and linguistics. We describe some differences and strengths of the approaches, and propose a research program to combine the richness of linguistic reasoning with the precision of mathematics.

  2. Meaning in mathematics education

    CERN Document Server

    Valero, Paola; Hoyles, Celia; Skovsmose, Ole

    2005-01-01

    What does it mean to know mathematics? How does meaning in mathematics education connect to common sense or to the meaning of mathematics itself? How are meanings constructed and communicated and what are the dilemmas related to these processes? There are many answers to these questions, some of which might appear to be contradictory. Thus understanding the complexity of meaning in mathematics education is a matter of huge importance. There are twin directions in which discussions have developed - theoretical and practical - and this book seeks to move the debate forward along both dimensions while seeking to relate them where appropriate. A discussion of meaning can start from a theoretical examination of mathematics and how mathematicians over time have made sense of their work. However, from a more practical perspective, anybody involved in teaching mathematics is faced with the need to orchestrate the myriad of meanings derived from multiple sources that students develop of mathematical knowledge.

  3. Deeply virtual Compton scattering off unpolarised deuterium at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Gordon D.

    2008-10-15

    The HERMES experiment was a forward angle spectrometer on the HERA storage ring at DESY, Hamburg, Germany. HERMES successfully increased understanding of the ''spin puzzle'', the spin structure of the nucleon, by providing high precision measurements of {delta}{sigma} in the Quark Parton Model, the fraction of the spin carried by the current quarks. Following the link of another piece of the puzzle, the orbital angular momentum of quarks and gluons, to the Generalised Parton Distribution (GPD) theoretical framework, HERMES focused on measurements of the Deeply Virtual Compton Scattering (DVCS) process. These measurements are sensitive to GPDs, allowing further experimental constraints to be made on the components of nucleon spin. In the Winter shutdown period 2005-2006 HERMES was upgraded with a Recoil Detector in the target region. This allowed the experiment to make exclusive measurements of the DVCS process for the rst time, reducing background and increasing the resolution of various kinematic variables. The method for reconstructing particle tracks in the inhomogeneous magnetic eld is investigated here. DVCS o a deuterium target is measured with all available data prior to the installation of the Recoil Detector. A comparison is made to currently available models of spin-(1)/(2) GPDs. This analysis has been approved for publication by the HERMES collaboration. The data is further employed in an investigation of a model dependent constraint of the total angular momentum of up and down quarks in the nucleon. (orig.)

  4. Deeply virtual Compton scattering off unpolarised deuterium at HERMES

    International Nuclear Information System (INIS)

    Hill, Gordon D.

    2008-08-01

    The HERMES experiment was a forward angle spectrometer on the HERA storage ring at DESY, Hamburg, Germany. HERMES successfully increased understanding of the ''spin puzzle'', the spin structure of the nucleon, by providing high precision measurements of ΔΣ in the Quark Parton Model, the fraction of the spin carried by the current quarks. Following the link of another piece of the puzzle, the orbital angular momentum of quarks and gluons, to the Generalised Parton Distribution (GPD) theoretical framework, HERMES focused on measurements of the Deeply Virtual Compton Scattering (DVCS) process. These measurements are sensitive to GPDs, allowing further experimental constraints to be made on the components of nucleon spin. In the Winter shutdown period 2005-2006 HERMES was upgraded with a Recoil Detector in the target region. This allowed the experiment to make exclusive measurements of the DVCS process for the rst time, reducing background and increasing the resolution of various kinematic variables. The method for reconstructing particle tracks in the inhomogeneous magnetic eld is investigated here. DVCS o a deuterium target is measured with all available data prior to the installation of the Recoil Detector. A comparison is made to currently available models of spin-(1)/(2) GPDs. This analysis has been approved for publication by the HERMES collaboration. The data is further employed in an investigation of a model dependent constraint of the total angular momentum of up and down quarks in the nucleon. (orig.)

  5. Deeply virtual Compton scattering off unpolarised deuterium at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Gordon D

    2008-10-15

    The HERMES experiment was a forward angle spectrometer on the HERA storage ring at DESY, Hamburg, Germany. HERMES successfully increased understanding of the ''spin puzzle'', the spin structure of the nucleon, by providing high precision measurements of {delta}{sigma} in the Quark Parton Model, the fraction of the spin carried by the current quarks. Following the link of another piece of the puzzle, the orbital angular momentum of quarks and gluons, to the Generalised Parton Distribution (GPD) theoretical framework, HERMES focused on measurements of the Deeply Virtual Compton Scattering (DVCS) process. These measurements are sensitive to GPDs, allowing further experimental constraints to be made on the components of nucleon spin. In the Winter shutdown period 2005-2006 HERMES was upgraded with a Recoil Detector in the target region. This allowed the experiment to make exclusive measurements of the DVCS process for the rst time, reducing background and increasing the resolution of various kinematic variables. The method for reconstructing particle tracks in the inhomogeneous magnetic eld is investigated here. DVCS o a deuterium target is measured with all available data prior to the installation of the Recoil Detector. A comparison is made to currently available models of spin-(1)/(2) GPDs. This analysis has been approved for publication by the HERMES collaboration. The data is further employed in an investigation of a model dependent constraint of the total angular momentum of up and down quarks in the nucleon. (orig.)

  6. A Pathway for Mathematical Practices

    Science.gov (United States)

    Wenrick, Melanie; Behrend, Jean L.; Mohs, Laura C.

    2013-01-01

    How can teachers engage students in learning essential mathematics? The National Council of Teachers of Mathematics recommends using "contexts that promote problem solving, reasoning, communication, making connections, and designing and analyzing representations" (NCTM 2006, p. 11). Understanding the Process Standards (NCTM 2000) enables teachers…

  7. Description of deeply inelastic collisions in terms of a transport equation

    International Nuclear Information System (INIS)

    Weidenmueller, H.A.

    1977-01-01

    A transport equation for deeply inelastic collisions is derived from a random-matrix model for the form factors for inelastic scattering and transfer reactions. The parametrization of these form factors is discussed. Results in one dimension indicate the importance of quantum fluctuations, and limitations of other approaches to the same problem. Results of three dimensions are compared with the data

  8. Teachers' Understanding of the Role of Executive Functions in Mathematics Learning

    Science.gov (United States)

    Gilmore, Camilla; Cragg, Lucy

    2014-01-01

    Cognitive psychology research has suggested an important role for executive functions, the set of skills that monitor and control thought and action, in learning mathematics. However, there is currently little evidence about whether teachers are aware of the importance of these skills and, if so, how they come by this information. We conducted an online survey of teachers' views on the importance of a range of skills for mathematics learning. Teachers rated executive function skills, and in particular inhibition and shifting, to be important for mathematics. The value placed on executive function skills increased with increasing teaching experience. Most teachers reported that they were aware of these skills, although few knew the term “executive functions.” This awareness had come about through their teaching experience rather than from formal instruction. Researchers and teacher educators could do more to highlight the importance of these skills to trainee or new teachers. PMID:25674156

  9. The mathematics of various entertaining subjects

    CERN Document Server

    Rosenhouse, Jason

    Volume 1 : The history of mathematics is filled with major breakthroughs resulting from solutions to recreational problems. Problems of interest to gamblers led to the modern theory of probability, for example, and surreal numbers were inspired by the game of Go. Yet even with such groundbreaking findings and a wealth of popular-level books exploring puzzles and brainteasers, research in recreational mathematics has often been neglected. The Mathematics of Various Entertaining Subjects brings together authors from a variety of specialties to present fascinating problems and solutions in recreational mathematics. Contributors to the book show how sophisticated mathematics can help construct mazes that look like famous people, how the analysis of crossword puzzles has much in common with understanding epidemics, and how the theory of electrical circuits is useful in understanding the classic Towers of Hanoi puzzle. The card game SET is related to the theory of error-correcting codes, and simple tic-tac-toe tak...

  10. Understanding student use of mathematics in IPLS with the Math Epistemic Games Survey

    Science.gov (United States)

    Eichenlaub, Mark; Hemingway, Deborah; Redish, Edward F.

    2017-01-01

    We present the Math Epistemic Games Survey (MEGS), a new concept inventory on the use of mathematics in introductory physics for the life sciences. The survey asks questions that are often best-answered via techniques commonly-valued in physics instruction, including dimensional analysis, checking special or extreme cases, understanding scaling relationships, interpreting graphical representations, estimation, and mapping symbols onto physical meaning. MEGS questions are often rooted in quantitative biology. We present preliminary data on the validation and administration of the MEGS in a large, introductory physics for the life sciences course at the University of Maryland, as well as preliminary results on the clustering of questions and responses as a guide to student resource activation in problem solving. This material is based upon work supported by the US National Science Foundation under Award No. 15-04366.

  11. Mathematics year 5 answers

    CERN Document Server

    Alexander, Serena; Poggo, Tammy

    2014-01-01

    Features the complete set of answers to the exercises in Mathematics Year 5, to save you time marking work and enable you to identify areas requiring further attention. The book includes diagrams and workings where necessary, to ensure pupils understand how to present their answers. Also available from Galore Park www.galorepark.co.uk :. - Mathematics Year 5. - Mathematics Year 6. - 11+ Maths Practice Exercises. - 11+ Maths Revision Guide. - 10-Minute Maths Tests Workbook Age 8-10. - 10-Minute Maths Tests Workbook Age 9-11. - Mental Arithmetic Workbook Age 8-10. - Mental Arithmetic Workbook Ag

  12. First aid in mathematics

    CERN Document Server

    Sulley, Robert

    2014-01-01

    Achieve the best possible standard with this bestselling book of traditional practice and guidance - now in colour!. First Aid in Mathematics provides all the help and support needed for learning and practising Mathematics. It offers comprehensive coverage of core mathematical topics in clear and accessible language. It is suitable for both native English speakers and students of English as a second language and can be used in class, or as a reference and revision book. - Develops a strong basis of understanding with core topics covered in clear and accessible language. - Improves student's ab

  13. Research Mathematicians' Practices in Selecting Mathematical Problems

    Science.gov (United States)

    Misfeldt, Morten; Johansen, Mikkel Willum

    2015-01-01

    Developing abilities to create, inquire into, qualify, and choose among mathematical problems is an important educational goal. In this paper, we elucidate how mathematicians work with mathematical problems in order to understand this mathematical process. More specifically, we investigate how mathematicians select and pose problems and discuss to…

  14. Science, technology, engineering, mathematics (STEM) as mathematics learning approach in 21st century

    Science.gov (United States)

    Milaturrahmah, Naila; Mardiyana, Pramudya, Ikrar

    2017-08-01

    This 21st century demands competent human resources in science, technology, engineering design and mathematics so that education is expected to integrate the four disciplines. This paper aims to describe the importance of STEM as mathematics learning approach in Indonesia in the 21st century. This paper uses a descriptive analysis research method, and the method reveals that STEM education growing in developed countries today can be a framework for innovation mathematics in Indonesia in the 21st century. STEM education integrate understanding of science, math skills, and the available technology with the ability to perform engineering design process. Implementation of mathematics learning with STEM approach makes graduates trained in using of mathematics knowledge that they have to create innovative products that are able to solve the problems that exist in society.

  15. National Center for Mathematics and Science - teacher resources

    Science.gov (United States)

    Mathematics and Science (NCISLA) HOME | PROGRAM OVERVIEW | RESEARCH AND PROFESSIONAL DEVELOPMENT support and improve student understanding of mathematics and science. The instructional resources listed Resources (CD)Powerful Practices in Mathematics and Science A multimedia product for educators, professional

  16. Task Modification and Knowledge Utilization by Korean Prospective Mathematics Teachers.

    Directory of Open Access Journals (Sweden)

    Kyeong-Hwa Lee

    2016-11-01

    Full Text Available It has been asserted that mathematical tasks play a critical role in the teaching and learning of mathematics. Modification of tasks included in intended curriculum materials, such as textbooks, can be an effective activity for prospective teachers to understand the role of mathematical tasks in the teaching and learning of mathematics; designing of new tasks requires more knowledge and experience. This study aims to identify the patterns that Korean prospective mathematics teachers seem to follow when they modify the mathematical tasks in textbooks. Knowledge utilized by prospective teachers while they modify textbook tasks is identified and characterized in order to understand the possible factors that have an impact on Korean prospective mathematics teachers' modification of tasks.

  17. Prospective Mathematics Teachers' Understanding of the Base Concept

    Science.gov (United States)

    Horzum, Tugba; Ertekin, Erhan

    2018-01-01

    The purpose of this study is to analyze what kind of conceptions prospective mathematics teachers (PMTs) have about the base concept (BC). One-hundred and thirty-nine PMTs participated in the study. In this qualitative research, data were obtained through open-ended questions, the semi-structured interviews and pictures of geometric figures drawn…

  18. Deeply virtual Compton scattering from gauge/gravity duality

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Miguel S.; Djuric, Marko [University of Porto (Portugal)

    2013-04-15

    We use gauge/gravity duality to study deeply virtual Compton scattering (DVCS) in the limit of high center of mass energy at fixed momentum transfer, corresponding to the limit of low Bjorken x, where the process is dominated by the exchange of the pomeron. At strong coupling, the pomeron is described as the graviton Regge trajectory in AdS space, with a hard wall to mimic confinement effects. This model agrees with HERA data in a large kinematical range. The behavior of the DVCS cross section for very high energies, inside saturation, can be explained by a simple AdS black disk model. In a restricted kinematical window, this model agrees with HERA data as well.

  19. Deeply virtual Compton scattering from gauge/gravity duality

    International Nuclear Information System (INIS)

    Costa, Miguel S.; Djurić, Marko

    2013-01-01

    We use gauge/gravity duality to study deeply virtual Compton scattering (DVCS) in the limit of high center of mass energy at fixed momentum transfer, corresponding to the limit of low Bjorken x, where the process is dominated by the exchange of the pomeron. At strong coupling, the pomeron is described as the graviton Regge trajectory in AdS space, with a hard wall to mimic confinement effects. This model agrees with HERA data in a large kinematical range. The behavior of the DVCS cross section for very high energies, inside saturation, can be explained by a simple AdS black disk model. In a restricted kinematical window, this model agrees with HERA data as well.

  20. Problem posing as a didactic resource in formal mathematics courses to train future secondary school mathematics teachers

    Directory of Open Access Journals (Sweden)

    Lorena Salazar Solórzano

    2015-06-01

    Full Text Available Beginning university training programs must focus on different competencies for mathematics teachers, i.e., not only on solving problems, but also on posing them and analyzing the mathematical activity. This paper reports the results of an exploratory study conducted with future secondary school mathematics teachers on the introduction of problem-posing tasks in formal mathematics courses, specifically in abstract algebra and real analysis courses. Evidence was found that training which includes problem-posing tasks has a positive impact on the students’ understanding of definitions, theorems and exercises within formal mathematics, as well as on their competency in reflecting on the mathematical activity. 

  1. Working with Functions without Understanding: An Assessment of the Perceptions of Basotho College Mathematics Specialists on the Idea of Function

    Science.gov (United States)

    Polaki, Mokaeane Victor

    2005-01-01

    It is a well-known fact that the idea of function plays a unifying role in the development of mathematical concepts. Yet research has shown that many students do not understand it adequately even though they have experienced a great deal of success in performing a plethora of operations on function, and on using functions to solve various types of…

  2. University Science and Mathematics Education in Transition

    DEFF Research Database (Denmark)

    Skovsmose, Ole; Valero, Paola; Christensen, Ole Ravn

    configuration poses to scientific knowledge, to universities and especially to education in mathematics and science. Traditionally, educational studies in mathematics and science education have looked at change in education from within the scientific disciplines and in the closed context of the classroom....... Although educational change is ultimately implemented in everyday teaching and learning situations, other parallel dimensions influencing these situations cannot be forgotten. An understanding of the actual potentialities and limitations of educational transformations are highly dependent on the network...... of educational, cultural, administrative and ideological views and practices that permeate and constitute science and mathematics education in universities today. University Science and Mathematics Education in Transition contributes to an understanding of the multiple aspects and dimensions of the transition...

  3. Discrete mathematics using a computer

    CERN Document Server

    Hall, Cordelia

    2000-01-01

    Several areas of mathematics find application throughout computer science, and all students of computer science need a practical working understanding of them. These core subjects are centred on logic, sets, recursion, induction, relations and functions. The material is often called discrete mathematics, to distinguish it from the traditional topics of continuous mathematics such as integration and differential equations. The central theme of this book is the connection between computing and discrete mathematics. This connection is useful in both directions: • Mathematics is used in many branches of computer science, in applica­ tions including program specification, datastructures,design and analysis of algorithms, database systems, hardware design, reasoning about the correctness of implementations, and much more; • Computers can help to make the mathematics easier to learn and use, by making mathematical terms executable, making abstract concepts more concrete, and through the use of software tools su...

  4. The reality of Mathematics

    Science.gov (United States)

    Ligomenides, Panos A.

    2009-05-01

    The power of mathematics is discussed as a way of expressing reasoning, aesthetics and insight in symbolic non-verbal communication. The human culture of discovering mathematical ways of thinking in the enterprise of exploring the understanding of the nature and the evolution of our world through hypotheses, theories and experimental affirmation of the scientific notion of algorithmic and non-algorithmic [`]computation', is examined and commended upon.

  5. Rethinking the Tertiary Mathematics Curriculum

    Science.gov (United States)

    Petocz, Peter; Reid, Anna

    2005-01-01

    Mathematics curriculum at the tertiary level is located within a range of social and cultural theories, and is often constructed by academics seeking to promulgate a particular view of mathematics. We argue that such a curriculum should incorporate a real acknowledgement of the different ways in which students understand the nature of mathematics…

  6. Novice Mathematics Teachers Create Themselves

    Science.gov (United States)

    Schatz Oppenheimer, Orna; Dvir, Nurit

    2018-01-01

    This study presents a qualitative research based on three narratives written by novice mathematics teachers. We examine their unique professional world during their first year of work. The methodology of narrative framework, on which this article is based, helps to gain better understanding of the need for novice mathematics teachers to have…

  7. The written mathematical communication profile of prospective math teacher in mathematical proving

    Science.gov (United States)

    Pantaleon, K. V.; Juniati, D.; Lukito, A.; Mandur, K.

    2018-01-01

    Written mathematical communication is the process of expressing mathematical ideas and understanding in writing. It is one of the important aspects that must be mastered by the prospective math teacher as tool of knowledge transfer. This research was a qualitative research that aimed to describe the mathematical communication profile of the prospective mathematics teacher in mathematical proving. This research involved 48 students of Mathematics Education Study Program; one of them with moderate math skills was chosen as the main subject. Data were collected through tests, assignments, and task-based interviews. The results of this study point out that in the proof of geometry, the subject explains what is understood, presents the idea in the form of drawing and symbols, and explains the content/meaning of a representation accurately and clearly, but the subject can not convey the argument systematically and logically. Whereas in the proof of algebra, the subject describes what is understood, explains the method used, and describes the content/meaning of a symbolic representation accurately, systematically, logically, but the argument presented is not clear because it is insufficient detailed and complete.

  8. Principles of mathematical modeling

    CERN Document Server

    Dym, Clive

    2004-01-01

    Science and engineering students depend heavily on concepts of mathematical modeling. In an age where almost everything is done on a computer, author Clive Dym believes that students need to understand and "own" the underlying mathematics that computers are doing on their behalf. His goal for Principles of Mathematical Modeling, Second Edition, is to engage the student reader in developing a foundational understanding of the subject that will serve them well into their careers. The first half of the book begins with a clearly defined set of modeling principles, and then introduces a set of foundational tools including dimensional analysis, scaling techniques, and approximation and validation techniques. The second half demonstrates the latest applications for these tools to a broad variety of subjects, including exponential growth and decay in fields ranging from biology to economics, traffic flow, free and forced vibration of mechanical and other systems, and optimization problems in biology, structures, an...

  9. The Language of Mathematics Utilizing Math in Practice

    CERN Document Server

    Baber, Robert L

    2011-01-01

    A new and unique way of understanding the translation of concepts and natural language into mathematical expressions Transforming a body of text into corresponding mathematical expressions and models is traditionally viewed and taught as a mathematical problem; it is also a task that most find difficult. The Language of Mathematics: Utilizing Math in Practice reveals a new way to view this process-not as a mathematical problem, but as a translation, or language, problem. By presenting the language of mathematics explicitly and systematically, this book helps readers to learn mathematics¿and i

  10. Deeply Virtual Compton scattering at CERN. What is the size of the proton?

    Energy Technology Data Exchange (ETDEWEB)

    Joerg, Philipp

    2017-04-27

    Tremendous efforts have been made to understand the Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism, which led to the successful discovery of the Higgs Boson and the clarification of the origin of the mass of fundamental particles. However, it is often forgotten that the vast majority of visible matter is given by baryons, which gain most of their mass dynamically within poorly known non-perturbative quantum chromodynamics processes. The best laboratory to study the underlying mechanisms of non-perturbative quantum chromodynamics is still given by the nucleon and the central question of how the macroscopic properties of a nucleon like its mass, spin and size can be comprehensively decomposed into the microscopic description in terms of quarks, antiquarks and gluons remains still open. A major part of the COMPASS-II program is dedicated to the investigation of Generalized Parton Distributions (GPDs), which aim for the most complete description of the partonic structure of the nucleon, comprising both, spacial and kinematic distributions. By including transverse degrees of freedom, a three dimensional picture of baryonic matter is created, which will revolutionise our understanding of what comprises 99 percent of the visible matter. GPDs are experimentally accessible via lepton-induced exclusive reactions, in particular the Deeply Virtual Compton Scattering (DVCS) and Deeply Virtual Meson Production (DVMP). At COMPASS, those processes are investigated using a high intensity muon beam of 160 GeV/c together with a 2.5 m-long liquid hydrogen target and an open field two stage spectrometer, to detect and identify charged and neutral particles. In order to optimize the selection of exclusive reactions at those energies, the target is surrounded by a new barrel-shaped time-of-flight system, which detects the recoiling target particles. A pilot run dedicated to the measurement of Generalized Parton distributions performed in 2012 allows for detailed performance studies

  11. Understanding Magnitudes to Understand Fractions

    Science.gov (United States)

    Gabriel, Florence

    2016-01-01

    Fractions are known to be difficult to learn and difficult to teach, yet they are vital for students to have access to further mathematical concepts. This article uses evidence to support teachers employing teaching methods that focus on the conceptual understanding of the magnitude of fractions.

  12. Solving for Irrational Zeros: Whiteness in Mathematics Teacher Education

    Science.gov (United States)

    Warburton, Trevor Thayne

    2015-01-01

    For many, mathematics and social justice are perceived as incompatible. Several mathematics education researchers have noted resistance to social justice among mathematics teachers. However, mathematics education has a consistently negative impact on the education of students of color. This study seeks to better understand the nature of this…

  13. Measurement of Deeply Virtual Compton Scattering at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Brown, D.P.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; de Boer, Y.; Delcourt, B.; Demirchyan, R.; De Roeck, A.; Desch, K.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Elsen, E.; Erdmann, W.; Essenov, S.; Falkewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Finke, L.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flucke, G.; Fomenko, A.; Foresti, I.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Goyon, C.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B.R.; Grindhammer, Guenter; Gwilliam, C.; Haidt, D.; Hajduk, L.; Haller, J.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Henshaw, O.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, H.; Kapichine, M.; Katzy, J.; Keller, N.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Koutouev, R.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kuckens, J.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leiner, B.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Luke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxeld, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Portheault, B.; Povh, B.; Prideaux, P.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Schilling, F.-P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schroder, V.; Schultz-Coulon, H.-C.; Sedlak, K.; Sefkow, F.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchoulakov, V.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, Marcel; Usik, A.; Utkin, D.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Van Remortel, N.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vest, A.; Vinokurova, S.; Volchinski, V.; Vujicic, B.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Wigmore, C.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2005-01-01

    A measurement is presented of elastic deeply virtual Compton scattering \\gamma* p \\to \\gamma p made using e^+ p collision data corresponding to a luminosity of 46.5 pb^{-1}, taken with the H1 detector at HERA. The cross section is measured as a function of the photon virtuality, Q^2, the invariant mass of the \\gamma* p system, W, and for the first time, differentially in the squared momentum transfer at the proton vertex, t, in the kinematic range 2 < Q^2 < 80 GeV^2, 30 < W < 140 GeV and |t| < 1 GeV^2. QCD based calculations at next-to-leading order using generalized parton distributions can describe the data, as can colour dipole model predictions.

  14. A versatile curve-fit model for linear to deeply concave rank abundance curves

    NARCIS (Netherlands)

    Neuteboom, J.H.; Struik, P.C.

    2005-01-01

    A new, flexible curve-fit model for linear to concave rank abundance curves was conceptualized and validated using observational data. The model links the geometric-series model and log-series model and can also fit deeply concave rank abundance curves. The model is based ¿ in an unconventional way

  15. New Technologies in Mathematics.

    Science.gov (United States)

    Sarmiento, Jorge

    An understanding of past technological advancements can help educators understand the influence of new technologies in education. Inventions such as the abacus, logarithms, the slide rule, the calculating machine, computers, and electronic calculators have all found their place in mathematics education. While new technologies can be very useful,…

  16. Teaching Statistics in Middle School Mathematics Classrooms: Making Links with Mathematics but Avoiding Statistical Reasoning

    Science.gov (United States)

    Savard, Annie; Manuel, Dominic

    2015-01-01

    Statistics is a domain that is taught in Mathematics in all school levels. We suggest a potential in using an interdisciplinary approach with this concept. Thus the development of the understanding of a situation might mean to use both mathematical and statistical reasoning. In this paper, we present two case studies where two middle school…

  17. [Building mathematics in imagination].

    Science.gov (United States)

    Patras, Frédéric

    2015-01-01

    The extraordinary quantitative achievements of contemporary science often hide their qualitative dimension. In mathematics, the understanding of fundamental theoretical phenomena we have got today goes much beyond that achieved in previous periods. This also holds when it comes to the theorisation of mathematical practice.Philosophically, these changes remain largely to be properly analyzed. The present article will address this issue from the point of view of Bachelard's epistemology.

  18. Research in collegiate mathematics education III

    CERN Document Server

    Arcavi, A; Kaput, Jim; Dubinsky, Ed; Dick, Thomas

    1998-01-01

    Volume III of Research in Collegiate Mathematics Education (RCME) presents state-of-the-art research on understanding, teaching, and learning mathematics at the post-secondary level. This volume contains information on methodology and research concentrating on these areas of student learning: Problem solving. Included here are three different articles analyzing aspects of Schoenfeld's undergraduate problem-solving instruction. The articles provide new detail and insight on a well-known and widely discussed course taught by Schoenfeld for many years. Understanding concepts. These articles fe

  19. Review on mathematical basis for thermal conduction equation

    Energy Technology Data Exchange (ETDEWEB)

    Park, D. G.; Kim, H. M

    2007-10-15

    In the view point of thermal conductivity measurement technology, It is very useful to understand mathematical theory of thermal conduction equation in order to evaluation of measurement data and to solve diverse technical problem in measurement. To approach this mathematical theory, thermal conduction equation is derived by Fourier thermal conduction law. Since thermal conduction equation depends on the Lapacian operator basically, mathematical meaning of Lapalacian and various diffusion equation including Laplacian have been studied. Stum-Liouville problem and Bessel function were studied in this report to understand analytical solution of various diffusion equation.

  20. Review on mathematical basis for thermal conduction equation

    International Nuclear Information System (INIS)

    Park, D. G.; Kim, H. M.

    2007-10-01

    In the view point of thermal conductivity measurement technology, It is very useful to understand mathematical theory of thermal conduction equation in order to evaluation of measurement data and to solve diverse technical problem in measurement. To approach this mathematical theory, thermal conduction equation is derived by Fourier thermal conduction law. Since thermal conduction equation depends on the Lapacian operator basically, mathematical meaning of Lapalacian and various diffusion equation including Laplacian have been studied. Stum-Liouville problem and Bessel function were studied in this report to understand analytical solution of various diffusion equation

  1. Lectures on constructive mathematical analysis

    CERN Document Server

    Kushner, B A

    1984-01-01

    The basis of this book was a special course given by the author at the Mechanics-Mathematics Faculty of Moscow University. The material presumes almost no previous knowledge and is completely understandable to a reader who is in command of a standard course of mathematical analysis. There are an extensive bibliography and indexes which will be helpful to students.

  2. Effective medium approximation for deeply subwavelength all-dielectric multilayers: when does it break down?

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Zhukovsky, Sergei; Andryieuski, Andrei

    2016-01-01

    with different layers ordering and different but still deeply subwavelength thicknesses. Such big reflectance difference values resulted from the special geometrical configuration with an additional resonator layer underneath the multilayers employed for the enhancement of the effect. Our results are important...

  3. Applying an alternative mathematics pedagogy for students with weak mathematics: meta-analysis of alternative pedagogies

    Science.gov (United States)

    Lake, Warren; Wallin, Margie; Woolcott, Geoff; Boyd, Wendy; Foster, Alan; Markopoulos, Christos; Boyd, William

    2017-02-01

    Student mathematics performance and the need for work-ready graduates to be mathematics-competent is a core issue for many universities. While both student and teacher are responsible for learning outcomes, there is a need to explicitly acknowledge the weak mathematics foundation of many university students. A systematic literature review was undertaken of identified innovations and/or interventions that may lead to improvement in student outcomes for university mathematics-based units of study. The review revealed the importance of understanding the foundations of student performance in higher education mathematics learning, especially in first year. Pre-university mathematics skills were identified as significant in student retention and mathematics success at university, and a specific focus on student pre-university mathematics skill level was found to be more effective in providing help, rather than simply focusing on a particular at-risk group. Diagnostics tools were found to be important in identifying (1) student background and (2) appropriate intervention. The studies highlighted the importance of appropriate and validated interventions in mathematics teaching and learning, and the need to improve the learning model for mathematics-based subjects, communication and technology innovations.

  4. Understanding Informal and Formal Mathematical Abilities in Mainland Chinese and Chinese-American Children.

    Science.gov (United States)

    Zhou, Zheng; Cheng, Christine; Mottram, Lisa; Rosenblum, Stacey

    Informal and formal mathematical abilities were studied in the preschool, kindergarten, and first grade children in Beijing, China and Chinese-American children in New York City. Test of Early Mathematical Abilities-2nd Edition (TEMA-2) was administered to the three groups of children (children from Beijing, Chinese-American from lower-class, and…

  5. Mathematics for physicists

    CERN Document Server

    Dennery, Philippe

    1967-01-01

    ""A fine example of how to present 'classical' physical mathematics."" - American ScientistWritten for advanced undergraduate and graduate students, this volume provides a thorough background in the mathematics needed to understand today's more advanced topics in physics and engineering. Without sacrificing rigor, the authors develop the theoretical material at length, in a highly readable, and, wherever possible, in an intuitive manner. Each abstract idea is accompanied by a very simple, concrete example, showing the student that the abstraction is merely a generalization from easily understo

  6. Mathematical Rigor in Introductory Physics

    Science.gov (United States)

    Vandyke, Michael; Bassichis, William

    2011-10-01

    Calculus-based introductory physics courses intended for future engineers and physicists are often designed and taught in the same fashion as those intended for students of other disciplines. A more mathematically rigorous curriculum should be more appropriate and, ultimately, more beneficial for the student in his or her future coursework. This work investigates the effects of mathematical rigor on student understanding of introductory mechanics. Using a series of diagnostic tools in conjunction with individual student course performance, a statistical analysis will be performed to examine student learning of introductory mechanics and its relation to student understanding of the underlying calculus.

  7. Deeply virtual Compton scattering off longitudinally polarised protons at HERMES

    International Nuclear Information System (INIS)

    Mahon, David Francis

    2010-03-01

    This thesis details the simultaneous extraction of three polarisation-dependent asymmetries in the distribution of real photons from the ep→epγ interaction and its indistinguishable deeply virtual Compton scattering and Bethe-Heitler processes at the HERMES fixed-target experiment at Desy. The data analysed were taken using a longitudinally polarised 27.57 GeV positron beam incident on a longitudinally polarised hydrogen gas target. The extracted asymmetries include two single-spin asymmetries A UL and A LU which depend on the polarisation of the target and beam respectively, averaged over all other polarisation states. The double-spin asymmetry A LL dependent on the product of the beam and target polarisations is extracted for the first time. The asymmetry amplitudes extracted relate to combinations of Generalised Parton Distributions (GPDs), predominantly H and H. The extracted amplitudes are presented across the HERMES kinematic range alongside theoretical predictions from a GPD model based on double distributions. Large sin φ and cos(0φ) amplitudes are observed for A UL and A LL respectively, with an unexpectedly large sin(2φ) amplitude for A UL . The results for the A UL and A LL asymmetries are broadly compatible with theory predictions, and the extracted A LU amplitudes are compatible with HERMES results extracted from a significantly larger data set. It is foreseen that these results will form input to future global data-based GPD models which aim to provide a better understanding of GPDs. (orig.)

  8. Creators of mathematical and computational sciences

    CERN Document Server

    Agarwal, Ravi P

    2014-01-01

    The book records the essential discoveries of mathematical and computational scientists in chronological order, following the birth of ideas on the basis of prior ideas ad infinitum. The authors document the winding path of mathematical scholarship throughout history, and most importantly, the thought process of each individual that resulted in the mastery of their subject. The book implicitly addresses the nature and character of every scientist as one tries to understand their visible actions in both adverse and congenial environments. The authors hope that this will enable the reader to understand their mode of thinking, and perhaps even to emulate their virtues in life. … presents a picture of mathematics as a creation of the human imagination. … brings the history of mathematics to life by describing the contributions of the world’s greatest mathematicians. —Rex F. Gandy, Provost and Vice President for Academic Affairs, TAMUK   It starts with the explanation and history of numbers, arithmetic, ...

  9. COLLEGE STUDENTS’ PERCEPTIONS OF LEARNING MATHEMATICS AND USING COMPUTERS

    OpenAIRE

    Gok, Tolga

    2016-01-01

    Mathematics isthe key course to interpret the science and nature. A positive attitude shouldbe improved by learners to comprehend the logic of mathematics. However, mostof the research indicated that they were not interested in learning andstudying mathematics. Instead of understanding the basic principles, manystudents preferred to use sophisticated software packages or graphingcalculators for solving mathematics problems. Thus, these tools prevent theimprovement of their mathematical skills...

  10. Mathematics for multimedia

    CERN Document Server

    Wickerhauser, Mladen Victor

    2003-01-01

    Mathematics and Multimedia focuses on the mathematics behind multimedia applications. This timely and thoroughly modern text is a rigorous survey of selected results from algebra and analysis, requiring only undergraduate math skills.The topics are `gems' chosen for their usefulness in understanding and creating application software for multimedia signal processing and communication.The book is aimed at a wide audience, including computer science and mathematics majors and those interested in employing mathematics in multimedia design and implementation. For the instructor, the material is divided into six chapters that may be presented in six lecture hours each. Thus, the entire text may be covered in one semester, with time left for examinations and student projects. For the student,there are more than 100 exercises with complete solutions, and numerous example programs in Standard C. Each chapter ends with suggestions for further reading. A companion website provides more insight for both instructors and s...

  11. Understanding Maple

    CERN Document Server

    Thompson, Ian

    2016-01-01

    Maple is a powerful symbolic computation system that is widely used in universities around the world. This short introduction gives readers an insight into the rules that control how the system works, and how to understand, fix, and avoid common problems. Topics covered include algebra, calculus, linear algebra, graphics, programming, and procedures. Each chapter contains numerous illustrative examples, using mathematics that does not extend beyond first-year undergraduate material. Maple worksheets containing these examples are available for download from the author's personal website. The book is suitable for new users, but where advanced topics are central to understanding Maple they are tackled head-on. Many concepts which are absent from introductory books and manuals are described in detail. With this book, students, teachers and researchers will gain a solid understanding of Maple and how to use it to solve complex mathematical problems in a simple and efficient way.

  12. Construction and reconstruction concept in mathematics instruction

    Science.gov (United States)

    Mumu, Jeinne; Charitas Indra Prahmana, Rully; Tanujaya, Benidiktus

    2017-12-01

    The purpose of this paper is to describe two learning activities undertaken by lecturers, so that students can understand a mathematical concept. The mathematical concept studied in this research is the Vector Space in Linear Algebra instruction. Classroom Action Research used as a research method with pre-service mathematics teacher at University of Papua as the research subject. Student participants are divided into two parallel classes, 24 students in regular class, and remedial class consist of 18 students. Both approaches, construct and reconstruction concept, are implemented on both classes. The result shows that concept construction can only be done in regular class while in remedial class, learning with concept construction approach is not able to increase students' understanding on the concept taught. Understanding the concept of a student in a remedial class can only be carried out using the concept reconstruction approach.

  13. Reflective Awareness in Mathematics Teachers' Learning and Teaching

    Science.gov (United States)

    Chapman, Olive

    2015-01-01

    The nature of mathematics teachers' knowledge specific to teaching mathematics [MTK] is of ongoing concern in mathematics education research. This article contributes to our under-standing of this knowledge with particular focus on reflective awareness. It discusses MTK based on ways it has been used in research. It highlights reflective awareness…

  14. Scaling limit of deeply virtual Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    A. Radyushkin

    2000-07-01

    The author outlines a perturbative QCD approach to the analysis of the deeply virtual Compton scattering process {gamma}{sup *}p {r_arrow} {gamma}p{prime} in the limit of vanishing momentum transfer t=(p{prime}{minus}p){sup 2}. The DVCS amplitude in this limit exhibits a scaling behavior described by a two-argument distributions F(x,y) which specify the fractions of the initial momentum p and the momentum transfer r {equivalent_to} p{prime}{minus}p carried by the constituents of the nucleon. The kernel R(x,y;{xi},{eta}) governing the evolution of the non-forward distributions F(x,y) has a remarkable property: it produces the GLAPD evolution kernel P(x/{xi}) when integrated over y and reduces to the Brodsky-Lepage evolution kernel V(y,{eta}) after the x-integration. This property is used to construct the solution of the one-loop evolution equation for the flavor non-singlet part of the non-forward quark distribution.

  15. Deeply virtual compton scattering in color dipole formalism

    International Nuclear Information System (INIS)

    Machado, Magno V.T.

    2007-01-01

    In this contribution we summarize recent investigations on the Deeply Virtual Compton Scattering (DVCS) within the color dipole approach. The color dipole cross section is implemented through the phenomenological saturation model. The role played by its QCD evolution and skewedness effects in the DVCS cross section are discussed. The results are compared with the recent H1 and ZEUS Collaborations data. The skewing factor, defined as the ratio of the imaginary parts of the amplitudes Im A(γ* p → γ* p)/ Im A(γ* p → γ p) can be extracted from the data using recent DVCS and the inclusive inelastic cross section measurements at DESY-HERA. We report on this experimental extraction and compare the results to the theoretical predictions for NLO QCD and the color dipole approach. (author)

  16. Deeply infiltrating endometriosis: Evaluation of retro-cervical space on MRI after vaginal opacification

    International Nuclear Information System (INIS)

    Fiaschetti, Valeria; Crusco, Sonia; Meschini, Alessandro; Cama, Valentina; Di Vito, Livio; Marziali, Massimiliano; Piccione, Emilio; Calabria, Ferdinando; Simonetti, Giovanni

    2012-01-01

    Objectives: To prospectively investigate diagnostic value and tolerability of MRI after intra-vaginal gel opacification for diagnosis and preoperative assessment of deeply infiltrating endometriosis. Methods: Sixty-three women with clinical suspicion of deeply infiltrating endometriosis were previously examined with trans-vaginal ultrasonography and then with MRI pre and post administration of vaginal gel. We evaluated the tolerability of this procedure with a scoring scale from 0 to 3. We also assessed with a score from 1 to 4 the visibility of four regions: Douglas-pouch, utero-sacral-ligaments, posterior-vaginal-fornix and recto-vaginal-septum. All patients underwent laparoscopic surgery after MRI. Results: Five patients considered procedure intolerable. Visibility of utero-sacral-ligaments and posterior-vaginal-fornix showed to be increased with gel (p < 0.001). In 57 out of 80 patients the MRI has allowed us to diagnose deeply infiltrating endometriosis. Overall, the percentages of MRI-sensitivity, specificity, positive predictive value and negative predictive value were respectively 67.8%, 95.3%, 89.4 and 83.5% without gel, and 90.8%, 94.6%, 90.8% and 94.6% with gel; trans-vaginal ultrasonography sensitivity, specificity, positive predictive value and negative predictive value were 57.5%, 96.6%, 90.9% and 79.5%. In evaluation of utero-sacral-ligaments trans-vaginal ultrasonography, MRI without gel and with gel sensitivity was respectively 61.9%, 47.6% and 81%; for recto-vaginal-septum these values were 12.5%, 68.7% and 93.7%; for pouch of Douglas 82%, 87% and 97.4%; finally for posterior-vaginal-fornix 27.3%, 36.4% and 81.8%. Conclusions: MRI with gel opacification of vagina should be recommended for suspicion of deep infiltrating endometriosis, in particular for the added value in evaluation of recto-vaginal septum, utero-sacral ligaments and posterior vaginal fornix.

  17. Deeply infiltrating endometriosis: Evaluation of retro-cervical space on MRI after vaginal opacification

    Energy Technology Data Exchange (ETDEWEB)

    Fiaschetti, Valeria; Crusco, Sonia [Department of Diagnostic and Molecular Imaging, Interventional Radiology and Radiotherapy, Fondazione Policlinico ' Tor Vergata' , Viale Oxford 81, Rome (Italy); Meschini, Alessandro, E-mail: a.mesko@libero.it [Department of Diagnostic and Molecular Imaging, Interventional Radiology and Radiotherapy, Fondazione Policlinico ' Tor Vergata' , Viale Oxford 81, Rome (Italy); Cama, Valentina; Di Vito, Livio [Department of Diagnostic and Molecular Imaging, Interventional Radiology and Radiotherapy, Fondazione Policlinico ' Tor Vergata' , Viale Oxford 81, Rome (Italy); Marziali, Massimiliano; Piccione, Emilio [Department of Gynecology and Obstetrics, Fondazione Policlinico ' Tor Vergata' , Viale Oxford 81, Rome (Italy); Calabria, Ferdinando [Department of Nuclear Medicine and Diagnostic Imaging, IRCCS Neuromed, Pozzilli (Italy); Simonetti, Giovanni [Department of Diagnostic and Molecular Imaging, Interventional Radiology and Radiotherapy, Fondazione Policlinico ' Tor Vergata' , Viale Oxford 81, Rome (Italy)

    2012-11-15

    Objectives: To prospectively investigate diagnostic value and tolerability of MRI after intra-vaginal gel opacification for diagnosis and preoperative assessment of deeply infiltrating endometriosis. Methods: Sixty-three women with clinical suspicion of deeply infiltrating endometriosis were previously examined with trans-vaginal ultrasonography and then with MRI pre and post administration of vaginal gel. We evaluated the tolerability of this procedure with a scoring scale from 0 to 3. We also assessed with a score from 1 to 4 the visibility of four regions: Douglas-pouch, utero-sacral-ligaments, posterior-vaginal-fornix and recto-vaginal-septum. All patients underwent laparoscopic surgery after MRI. Results: Five patients considered procedure intolerable. Visibility of utero-sacral-ligaments and posterior-vaginal-fornix showed to be increased with gel (p < 0.001). In 57 out of 80 patients the MRI has allowed us to diagnose deeply infiltrating endometriosis. Overall, the percentages of MRI-sensitivity, specificity, positive predictive value and negative predictive value were respectively 67.8%, 95.3%, 89.4 and 83.5% without gel, and 90.8%, 94.6%, 90.8% and 94.6% with gel; trans-vaginal ultrasonography sensitivity, specificity, positive predictive value and negative predictive value were 57.5%, 96.6%, 90.9% and 79.5%. In evaluation of utero-sacral-ligaments trans-vaginal ultrasonography, MRI without gel and with gel sensitivity was respectively 61.9%, 47.6% and 81%; for recto-vaginal-septum these values were 12.5%, 68.7% and 93.7%; for pouch of Douglas 82%, 87% and 97.4%; finally for posterior-vaginal-fornix 27.3%, 36.4% and 81.8%. Conclusions: MRI with gel opacification of vagina should be recommended for suspicion of deep infiltrating endometriosis, in particular for the added value in evaluation of recto-vaginal septum, utero-sacral ligaments and posterior vaginal fornix.

  18. Developing Mathematical Practices through Reflection Cycles

    Science.gov (United States)

    Reinholz, Daniel L.

    2016-01-01

    This paper focuses on reflection in learning mathematical practices. While there is a long history of research on reflection in mathematics, it has focused primarily on the development of conceptual understanding. Building on notion of learning as participation in social practices, this paper broadens the theory of reflection in mathematics…

  19. Ethnomathematics: the cultural aspects of mathematics

    Directory of Open Access Journals (Sweden)

    Milton Rosa

    2011-01-01

    Full Text Available Ethnomathematics studies the cultural aspects of mathematics. It presents mathematical concepts of the school curriculum in a way in which these concepts are related to the students¿ cultural and daily experiences, thereby enhancing their abilities to elaborate meaningful connections and deepening their understanding of mathematics. Ethnomathematical approaches to mathematics curriculum are intended to make school mathematics more relevant and meaningful for students and to promote the overall quality of their education. In this context, the implementation of an ethnomathematical perspective in the school mathematics curriculum helps to develop students' intellectual, social, emotional, and political learning by using their own unique cultural referents to impart their knowledge, skills, and attitudes. This kind of curriculum provides ways for students to maintain their identity while succeeding academically.

  20. Testing Understanding and Understanding Testing.

    Science.gov (United States)

    Pedersen, Jean; Ross, Peter

    1985-01-01

    Provides examples in which graphs are used in the statements of problems or in their solutions as a means of testing understanding of mathematical concepts. Examples (appropriate for a beginning course in calculus and analytic geometry) include slopes of lines and curves, quadratic formula, properties of the definite integral, and others. (JN)

  1. Maximum Correntropy Unscented Kalman Filter for Ballistic Missile Navigation System based on SINS/CNS Deeply Integrated Mode.

    Science.gov (United States)

    Hou, Bowen; He, Zhangming; Li, Dong; Zhou, Haiyin; Wang, Jiongqi

    2018-05-27

    Strap-down inertial navigation system/celestial navigation system ( SINS/CNS) integrated navigation is a high precision navigation technique for ballistic missiles. The traditional navigation method has a divergence in the position error. A deeply integrated mode for SINS/CNS navigation system is proposed to improve the navigation accuracy of ballistic missile. The deeply integrated navigation principle is described and the observability of the navigation system is analyzed. The nonlinearity, as well as the large outliers and the Gaussian mixture noises, often exists during the actual navigation process, leading to the divergence phenomenon of the navigation filter. The new nonlinear Kalman filter on the basis of the maximum correntropy theory and unscented transformation, named the maximum correntropy unscented Kalman filter, is deduced, and the computational complexity is analyzed. The unscented transformation is used for restricting the nonlinearity of the system equation, and the maximum correntropy theory is used to deal with the non-Gaussian noises. Finally, numerical simulation illustrates the superiority of the proposed filter compared with the traditional unscented Kalman filter. The comparison results show that the large outliers and the influence of non-Gaussian noises for SINS/CNS deeply integrated navigation is significantly reduced through the proposed filter.

  2. Epistemological bases OF THE RELATIONSHIP between culture and mathematics education

    Directory of Open Access Journals (Sweden)

    Neivaldo Oliveira Silva

    2011-06-01

    Full Text Available Our main intention with this theoretical construct is to understand the mathematics education embedded in the social context to which it belongs and where different groups are present with their beliefs, knowledge, practices that, in turn, are the result of a historical process, in which changes occur and affect most of the different fields ofIcnowledge.In the theoretical construction, we start from a more general picture of the world and society, focusing on the historical and social changes and, at the same time, in changes in the scope of mathematical knowledge. We do this through a historical analysis and, along the way, we seek to understand culture, Mathematics and Mathematics Education, as fields or dimensions present in this broader context of historical changes, and seek to establish relationships between thesefields or areas of knowledge, in the context of their productions. ln seeking to understand "culture", we try not to lose sight of the social dynamics that are established in the contacts between different groups, each with characteristics that involve traditions, artistic manifestations, culinary language, but surrounded by a society that results from a globalization process getting stronger. It is in this broader context that we seek to understand mathematics, as a field of knowledge, making an analysis that goes from its origin as well as its implications with reality and society, so that to the end, we present and discuss the Ethnomathematics as a possible alternative to do or to understand the articulation pointed out. Finally, we extend the discussion to understand the mathematics education, in view of its social integration, and the socialization perspective of the mathematical knowledge. We realized that mathematics education, seen as a field of knowledge and considering the need for socialization of this knowledge, is also the result of practices developed and a comprehensive process of change that has been occurring in

  3. ASSESSMENT OF SEISMIC ANALYSIS METHODOLOGIES FOR DEEPLY EMBEDDED NPP STRUCTURES

    International Nuclear Information System (INIS)

    XU, J.; MILLER, C.; COSTANTINO, C.; HOFMAYER, C.; GRAVES, H. NRC.

    2005-01-01

    Several of the new generation nuclear power plant designs have structural configurations which are proposed to be deeply embedded. Since current seismic analysis methodologies have been applied to shallow embedded structures (e.g., ASCE 4 suggest that simple formulations may be used to model embedment effect when the depth of embedment is less than 30% of its foundation radius), the US Nuclear Regulatory Commission is sponsoring a program at the Brookhaven National Laboratory with the objective of investigating the extent to which procedures acceptable for shallow embedment depths are adequate for larger embedment depths. This paper presents the results of a study comparing the response spectra obtained from two of the more popular analysis methods for structural configurations varying from shallow embedment to complete embedment. A typical safety related structure embedded in a soil profile representative of a typical nuclear power plant site was utilized in the study and the depths of burial (DOB) considered range from 25-100% the height of the structure. Included in the paper are: (1) the description of a simplified analysis and a detailed approach for the SSI analyses of a structure with various DOB, (2) the comparison of the analysis results for the different DOBs between the two methods, and (3) the performance assessment of the analysis methodologies for SSI analyses of deeply embedded structures. The resulting assessment from this study has indicated that simplified methods may be capable of capturing the seismic response for much deeper embedded structures than would be normally allowed by the standard practice

  4. The Effect of Brain Based Learning on Second Grade Junior Students’ Mathematics Conceptual Understanding on Polyhedron

    Directory of Open Access Journals (Sweden)

    I Made Suarsana

    2017-06-01

    Full Text Available The aim of this study is to examine the effect of Brain Based Learning on second grade junior high school students’ conceptual understanding on polyhedron. This study was conducted by using post-test only control group quasi-experimental design. The subjects of this study were 148 students that divided into three classes. Two classes were taken as sample by using cluster random sampling technique. One of the classes was randomly selected as an experimental group and the other as control group. There were 48 students in experimental group and 51 students in control group. The data were collected with post-test which contained mathematical conceptual understanding on fractions. The post-test consisted of 8 essay question types.  The normality and variance homogeny test result showed that the scores are normally distributed and have no difference in variance. The data were analyzed by using one tailed t-test with significance level of 5%. The result of data analysis revealed that the value of t-test = 6,7096 greater than t-table = 1,987, therefore; the null hypothesis is rejected. There is positive effect of of Brain Based Learning on second grade junior students’ conceptual understanding in polyhedron.

  5. Mathematics Audit of the DoDEA Schools: 2014-2015

    Science.gov (United States)

    2016-01-01

    39 The Role of the Mathematics Instructional Support Specialist ... mathematics Instructional Support Specialists (ISSs) and school principals. We also interviewed administrative staff at DoDEA headquarters (HQ) and at the...Resources for High-Quality Professional Development for Mathematics Instructional Support Specialists , Principals, and Teachers DoDEA understands

  6. AI and Mathematical Education

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2012-01-01

    Full Text Available From ancient times, the history of human beings has developed by a succession of steps and sometimes jumps, until reaching the relative sophistication of the modern brain and culture. Researchers are attempting to create systems that mimic human thinking, understand speech, or beat the best human chess player. Understanding the mechanisms of intelligence, and creating intelligent artifacts are the twin goals of Artificial Intelligence (AI. Great mathematical minds have played a key role in AI in recent years; to name only a few: Janos Neumann (also known as John von Neumann, Konrad Zuse, Norbert Wiener, Claude E. Shannon, Alan M. Turing, Grigore Moisil, Lofti A. Zadeh, Ronald R. Yager, Michio Sugeno, Solomon Marcus, or Lászlo A. Barabási. Introducing the study of AI is not merely useful because of its capability for solving difficult problems, but also because of its mathematical nature. It prepares us to understand the current world, enabling us to act on the challenges of the future.

  7. Ethnomathematics: the cultural aspects of mathematics

    Directory of Open Access Journals (Sweden)

    Milton Rosa

    2011-09-01

    Full Text Available Ethnomathematics studies the cultural aspects of mathematics. It presents mathematical concepts of the school curriculum in a way in which these concepts are related to the students’ cultural and daily experiences, thereby enhancing their abilities to elaborate meaningful connections and deepening their understanding ofmathematics. Ethnomathematical approaches to mathematics curriculum are intended to make school mathematics more relevant and meaningful for students and to promote the overall quality of their education.In this context, the implementation of an ethnomathematical perspective in the school mathematics curriculum helps to develop students’ intellectual, social, emotional, and political learning by using their own unique cultural referents to impart their knowledge, skills, and attitudes. This kind of curriculum providesways for students to maintain their identity while succeeding academically.

  8. Understanding technology use and constructivist strategies when addressing Saudi primary students' mathematics difficulties.

    OpenAIRE

    Alabdulaziz, M.; Higgins, S.

    2017-01-01

    This paper will investigate the relationship between technology use and the use of constructivist strategies when addressing Saudi primary students' mathematics difficulties. Semi-structured interviews and observations were used for the purpose of this research, which were undertaken with three mathematics teachers from school A which used technology, and the other three from school B, which did not use technology. We found that technology can support constructivist approach when teaching and...

  9. System Design as a Creative Mathematical Activity

    NARCIS (Netherlands)

    Wupper, Hanno; Mader, Angelika H.

    1999-01-01

    This paper contributes to the understanding of rational systems design and verification. We give evidence that the rôle of mathematics in development and verification is not limited to useful calculations: Ideally, designing is a creative mathematical activity, which comprises finding a theorem, if

  10. Discrete mathematics in the high school curriculum

    NARCIS (Netherlands)

    Anderson, I.; Asch, van A.G.; van Lint, J.H.

    2004-01-01

    In this paper we present some topics from the field of discrete mathematics which might be suitable for the high school curriculum. These topics yield both easy to understand challenging problems and important applications of discrete mathematics. We choose elements from number theory and various

  11. Early predictors of high school mathematics achievement.

    Science.gov (United States)

    Siegler, Robert S; Duncan, Greg J; Davis-Kean, Pamela E; Duckworth, Kathryn; Claessens, Amy; Engel, Mimi; Susperreguy, Maria Ines; Chen, Meichu

    2012-07-01

    Identifying the types of mathematics content knowledge that are most predictive of students' long-term learning is essential for improving both theories of mathematical development and mathematics education. To identify these types of knowledge, we examined long-term predictors of high school students' knowledge of algebra and overall mathematics achievement. Analyses of large, nationally representative, longitudinal data sets from the United States and the United Kingdom revealed that elementary school students' knowledge of fractions and of division uniquely predicts those students' knowledge of algebra and overall mathematics achievement in high school, 5 or 6 years later, even after statistically controlling for other types of mathematical knowledge, general intellectual ability, working memory, and family income and education. Implications of these findings for understanding and improving mathematics learning are discussed.

  12. The Importance of Dialogic Processes to Conceptual Development in Mathematics

    Science.gov (United States)

    Kazak, Sibel; Wegerif, Rupert; Fujita, Taro

    2015-01-01

    We argue that dialogic theory, inspired by the Russian scholar Mikhail Bakhtin, has a distinct contribution to the analysis of the genesis of understanding in the mathematics classroom. We begin by contrasting dialogic theory to other leading theoretical approaches to understanding conceptual development in mathematics influenced by Jean Piaget…

  13. Professional Learning in Mathematical Reasoning: Reflections of a Primary Teacher

    Science.gov (United States)

    Herbert, Sandra; Widjaja, Wanty; Bragg, Leicha A.; Loong, Esther; Vale, Colleen

    2016-01-01

    Reasoning is an important aspect in the understanding and learning of mathematics. This paper reports on a case study presenting one Australian primary teacher's reflections regarding the role played by a professional learning program in her developing understanding of mathematical reasoning. Examination of the transcripts of two interviews…

  14. The history of mathematics a brief course

    CERN Document Server

    Cooke, Roger

    2005-01-01

    This new edition brings the fascinating and intriguing history of mathematics to life. The Second Edition of this internationally acclaimed text has been thoroughly revised, updated, and reorganized to give readers a fresh perspective on the evolution of mathematics. Written by one of the world's leading experts on the history of mathematics, the book details the key historical developments in the field, providing an understanding and appreciation of how mathematics influences today's science, art, music, literature, and society. In the first edition, each chapter was devoted to a single cultu

  15. Task Modification and Knowledge Utilization by Korean Prospective Mathematics Teachers

    Science.gov (United States)

    Lee, Kyeong-Hwa; Lee, Eun-Jung; Park, Min-Sun

    2016-01-01

    It has been asserted that mathematical tasks play a critical role in the teaching and learning of mathematics. Modification of tasks included in intended curriculum materials, such as textbooks, can be an effective activity for prospective teachers to understand the role of mathematical tasks in the teaching and learning of mathematics; designing…

  16. Unexpected Expectations The Curiosities of a Mathematical Crystal Ball

    CERN Document Server

    Wapner, Leonard M

    2012-01-01

    Unexpected Expectations: The Curiosities of a Mathematical Crystal Ball explores how paradoxical challenges involving mathematical expectation often necessitate a reexamination of basic premises. The author takes you through mathematical paradoxes associated with seemingly straightforward applications of mathematical expectation and shows how these unexpected contradictions may push you to reconsider the legitimacy of the applications. The book requires only an understanding of basic algebraic operations and includes supplemental mathematical background in chapter appendices. After a history o

  17. Deeply virtual Compton scattering off longitudinally polarised protons at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Mahon, David Francis

    2010-06-15

    This thesis details the simultaneous extraction of three polarisation-dependent asymmetries in the distribution of real photons from the ep{yields}ep{gamma} interaction and its indistinguishable deeply virtual Compton scattering and Bethe-Heitler processes at the HERMES fixed-target experiment at Desy. The data analysed were taken using a longitudinally polarised 27.57 GeV positron beam incident on a longitudinally polarised hydrogen gas target. The extracted asymmetries include two single-spin asymmetries A{sub UL} and A{sub LU} which depend on the polarisation of the target and beam respectively, averaged over all other polarisation states. The double-spin asymmetry A{sub LL} dependent on the product of the beam and target polarisations is extracted for the first time. The asymmetry amplitudes extracted relate to combinations of Generalised Parton Distributions (GPDs), predominantly H and H. The extracted amplitudes are presented across the HERMES kinematic range alongside theoretical predictions from a GPD model based on double distributions. Large sin {phi} and cos(0{phi}) amplitudes are observed for A{sub UL} and A{sub LL} respectively, with an unexpectedly large sin(2{phi}) amplitude for A{sub UL}. The results for the A{sub UL} and A{sub LL} asymmetries are broadly compatible with theory predictions, and the extracted A{sub LU} amplitudes are compatible with HERMES results extracted from a significantly larger data set. It is foreseen that these results will form input to future global data-based GPD models which aim to provide a better understanding of GPDs. (orig.)

  18. Critical relationships between teachers and learners of school mathematics

    OpenAIRE

    Wright, P.

    2017-01-01

    This article draws on critical theories and perspectives on mathematics education to explain the tendency of mathematics teaching worldwide to remain focused on developing procedural understanding, despite repeated calls from the mathematics education community for a more relevant and engaging curriculum. It highlights how conventional approaches to teaching mathematics contribute towards alienating a high proportion of learners and reproducing inequities within society. The article reports o...

  19. Noncommutative mathematics for quantum systems

    CERN Document Server

    Franz, Uwe

    2016-01-01

    Noncommutative mathematics is a significant new trend of mathematics. Initially motivated by the development of quantum physics, the idea of 'making theory noncommutative' has been extended to many areas of pure and applied mathematics. This book is divided into two parts. The first part provides an introduction to quantum probability, focusing on the notion of independence in quantum probability and on the theory of quantum stochastic processes with independent and stationary increments. The second part provides an introduction to quantum dynamical systems, discussing analogies with fundamental problems studied in classical dynamics. The desire to build an extension of the classical theory provides new, original ways to understand well-known 'commutative' results. On the other hand the richness of the quantum mathematical world presents completely novel phenomena, never encountered in the classical setting. This book will be useful to students and researchers in noncommutative probability, mathematical physi...

  20. Designing a Deeply Digital Science Curriculum: Supporting Teacher Learning and Implementation with Organizing Technologies

    Science.gov (United States)

    Leary, Heather; Severance, Samuel; Penuel, William R.; Quigley, David; Sumner, Tamara; Devaul, Holly

    2016-01-01

    This paper examines the impacts of technology (e.g., Chromebooks, Google Drive) on teacher learning and student activity in the development and implementation of a deeply digital high school biology unit. Using design-based implementation research, teachers co-designed with researchers and curriculum specialists a student-centered unit aligned to…

  1. Understanding and responding the students in learning mathematics through the differentiated instruction

    Science.gov (United States)

    Hapsari, T.; Darhim; Dahlan, J. A.

    2018-05-01

    This research discusses the differentiated instruction, a mathematic learning which is as expected by the students in connection with the differentiated instruction itself, its implementation, and the students’ responses. This research employs a survey method which involves 62 students as the research respondents. The mathematics learning types required by the students and their responses to the differentiated instruction are examined through questionnaire and interview. The mathematics learning types in orderly required by the students, from the highest frequency cover the easily understood instructions, slowly/not rushing teaching, fun, not complicated, interspersed with humour, various question practices, not too serious, and conducive class atmosphere for the instructions. Implementing the differentiated instruction is not easy. The teacher should be able to constantly assess the students, s/he should have good knowledge of relevant materials and instructions, and properly prepare the instructions, although it is time-consuming. The differentiated instruction is implemented on the instructions of numerical pattern materials. The strategies implemented are flexible grouping, tiered assignment, and compacting. The students positively respond the differentiated learning instruction that they become more motivated and involved in the instruction.

  2. Elementary Mathematics Teachers' Beliefs and Practices: Understanding the Influence of Teaching in a STEAM Setting

    Science.gov (United States)

    Negreiros, Melissa

    2017-01-01

    Many elementary mathematics teachers hold beliefs about the teaching and learning of mathematics and enact practices that are not aligned with the recommendations of reform efforts in the field of mathematics education (Stigler & Hiebert, 2009). For standards-based reform to gain any significant success, many teachers will have to alter the…

  3. Making mathematics with needlework ten papers and ten projects

    CERN Document Server

    belcastro, sarah-marie

    2007-01-01

    Mathematical craftwork has become extremely popular, and mathematicians and crafters alike are fascinated by the relationship between their crafts. The focus of this book, written for mathematicians, needleworkers, and teachers of mathematics, is on the relationship between mathematics and the fiber arts (including knitting, crocheting, cross-stitch, and quilting). Each chapter starts with an overview of the mathematics and the needlework at a level understandable to both mathematicians and needleworkers, followed by more technical sections discussing the mathematics, how to introduce the math

  4. Developing mathematics edutainment media for Android based on students’ understanding and interest: a teachers’ review

    Science.gov (United States)

    Setyaningrum, W.; Waryanto, N. H.

    2018-03-01

    This paper aimed to describe the development of interactive edutainment mathematics media using Construct 2 software for grade 7 Junior High School, and to determine the quality of the interactive edutainment media developed in regards to improve students’ understanding and interest. This research employs Research and Development design, which media was developed using ADDIE model consisting of analysing, designing, developing, implementing and evaluating. This paper focuses on the steps of development and validity of the interactive media from teachers’ point of view. The teachers review focuses on three aspects – instructional, audio-visual and operational design. The review suggested that the media was very good in regard to the three aspects, with the average score was 144.55 from the maximum score of 175. Several contexts used in the game, however, need to be adjusted to students age.

  5. Maximum Correntropy Unscented Kalman Filter for Ballistic Missile Navigation System based on SINS/CNS Deeply Integrated Mode

    Directory of Open Access Journals (Sweden)

    Bowen Hou

    2018-05-01

    Full Text Available Strap-down inertial navigation system/celestial navigation system ( SINS/CNS integrated navigation is a high precision navigation technique for ballistic missiles. The traditional navigation method has a divergence in the position error. A deeply integrated mode for SINS/CNS navigation system is proposed to improve the navigation accuracy of ballistic missile. The deeply integrated navigation principle is described and the observability of the navigation system is analyzed. The nonlinearity, as well as the large outliers and the Gaussian mixture noises, often exists during the actual navigation process, leading to the divergence phenomenon of the navigation filter. The new nonlinear Kalman filter on the basis of the maximum correntropy theory and unscented transformation, named the maximum correntropy unscented Kalman filter, is deduced, and the computational complexity is analyzed. The unscented transformation is used for restricting the nonlinearity of the system equation, and the maximum correntropy theory is used to deal with the non-Gaussian noises. Finally, numerical simulation illustrates the superiority of the proposed filter compared with the traditional unscented Kalman filter. The comparison results show that the large outliers and the influence of non-Gaussian noises for SINS/CNS deeply integrated navigation is significantly reduced through the proposed filter.

  6. Deeply virtual compton scattering on a virtual pion target

    International Nuclear Information System (INIS)

    Amrath, D.; Diehl, M.; Lansberg, J.P.; Heidelberg Univ.

    2008-07-01

    We study deeply virtual Compton scattering on a virtual pion that is emitted by a proton. Using a range of models for the generalized parton distributions of the pion, we evaluate the cross section, as well as the beam spin and beam charge asymmetries in the leading-twist approximation. Studying Compton scattering on the pion in suitable kinematics puts high demands on both beam energy and luminosity, and we find that the corresponding requirements will first be met after the energy upgrade at Jefferson Laboratory. As a by-product of our study, we construct a parameterization of pion generalized parton distributions that has a non-trivial interplay between the x and t dependence and is in good agreement with form factor data and lattice calculations. (orig.)

  7. Turning Origami into the Language of Mathematics

    Science.gov (United States)

    Cipoletti, Beth; Wilson, Nancy

    2004-01-01

    The National Council of Teachers of Mathematics (1989) proposes using everyday objects, such as paper, to enable students to explore geometric relationships and vocabulary. Paper-folding and other types of hands-on activities have been found to increase students' ability to communicate mathematically and foster their understanding of mathematical…

  8. Noticing Young Children's Mathematical Strengths and Agency

    Science.gov (United States)

    Dockett, Sue; Goff, Wendy

    2013-01-01

    This paper promotes the importance of noticing young children's mathematical strengths. It draws on the philosophical positions of children's rights and competence to propose a shift in the ways in which all involved might notice the mathematical engagement, understandings, experiences and practices of young children. Noticing children's…

  9. Perception of mathematics teachers on cooperative learning method in the 21st century

    Science.gov (United States)

    Taufik, Nurshahira Alwani Mohd; Maat, Siti Mistima

    2017-05-01

    Mathematics education is one of the branches to be mastered by students to help them compete with the upcoming challenges that are very challenging. As such, all parties should work together to help increase student achievement in Mathematics education in line with the Malaysian Education Blueprint (MEB) 2010-2025. Teaching methods play a very important role in attracting and fostering student understanding and interested in learning Mathematics. Therefore, this study was conducted to identify the perceptions of teachers in carrying out cooperative methods in the teaching and learning of mathematics. Participants of this study involving 4 teachers who teach Mathematics in primary schools around the state of Negeri Sembilan. Interviews are used as a method for gathering data. The findings indicate that cooperative methods help increasing interest and understanding in the teaching and learning of mathematics. In conclusion, the teaching methods affect the interest and understanding of students in the learning of Mathematics in the classroom.

  10. Students’ logical-mathematical intelligence profile

    Science.gov (United States)

    Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.

    2018-04-01

    One of students’ characteristics which play an important role in learning mathematics is logical-mathematical intelligence. This present study aims to identify profile of students’ logical-mathematical intelligence in general and specifically in each indicator. It is also analyzed and described based on students’ sex. This research used qualitative method with case study strategy. The subjects involve 29 students of 9th grade that were selected by purposive sampling. Data in this research involve students’ logical-mathematical intelligence result and interview. The results show that students’ logical-mathematical intelligence was identified in the moderate level with the average score is 11.17 and 51.7% students in the range of the level. In addition, the level of both male and female students are also mostly in the moderate level. On the other hand, both male and female students’ logical-mathematical intelligence is strongly influenced by the indicator of ability to classify and understand patterns and relationships. Furthermore, the ability of comparison is the weakest indicator. It seems that students’ logical-mathematical intelligence is still not optimal because more than 50% students are identified in moderate and low level. Therefore, teachers need to design a lesson that can improve students’ logical-mathematical intelligence level, both in general and on each indicator.

  11. The mathematics behind biological invasions

    CERN Document Server

    Lewis, Mark A; Potts, Jonathan R

    2016-01-01

    This book investigates the mathematical analysis of biological invasions. Unlike purely qualitative treatments of ecology, it draws on mathematical theory and methods, equipping the reader with sharp tools and rigorous methodology. Subjects include invasion dynamics, species interactions, population spread, long-distance dispersal, stochastic effects, risk analysis, and optimal responses to invaders. While based on the theory of dynamical systems, including partial differential equations and integrodifference equations, the book also draws on information theory, machine learning, Monte Carlo methods, optimal control, statistics, and stochastic processes. Applications to real biological invasions are included throughout. Ultimately, the book imparts a powerful principle: that by bringing ecology and mathematics together, researchers can uncover new understanding of, and effective response strategies to, biological invasions. It is suitable for graduate students and established researchers in mathematical ecolo...

  12. Problem Posing with Realistic Mathematics Education Approach in Geometry Learning

    Science.gov (United States)

    Mahendra, R.; Slamet, I.; Budiyono

    2017-09-01

    One of the difficulties of students in the learning of geometry is on the subject of plane that requires students to understand the abstract matter. The aim of this research is to determine the effect of Problem Posing learning model with Realistic Mathematics Education Approach in geometry learning. This quasi experimental research was conducted in one of the junior high schools in Karanganyar, Indonesia. The sample was taken using stratified cluster random sampling technique. The results of this research indicate that the model of Problem Posing learning with Realistic Mathematics Education Approach can improve students’ conceptual understanding significantly in geometry learning especially on plane topics. It is because students on the application of Problem Posing with Realistic Mathematics Education Approach are become to be active in constructing their knowledge, proposing, and problem solving in realistic, so it easier for students to understand concepts and solve the problems. Therefore, the model of Problem Posing learning with Realistic Mathematics Education Approach is appropriately applied in mathematics learning especially on geometry material. Furthermore, the impact can improve student achievement.

  13. Characteristics of manipulative in mathematics laboratory

    Science.gov (United States)

    Istiandaru, A.; Istihapsari, V.; Prahmana, R. C. I.; Setyawan, F.; Hendroanto, A.

    2017-12-01

    A manipulative is a teaching aid designed such that students could understand mathematical concepts by manipulating it. This article aims to provide an insight to the characteristics of manipulatives produced in the mathematics laboratory of Universitas Ahmad Dahlan, Indonesia. A case study was conducted to observe the existing manipulatives produced during the latest three years and classified the manipulatives based on the characteristics found. There are four kinds of manipulatives: constructivism manipulative, virtual manipulative, informative manipulative, and game-based manipulative. Each kinds of manipulative has different characteristics and impact towards the mathematics learning.

  14. Identity as an Analytical Tool to Explore Students’ Mathematical Writing

    DEFF Research Database (Denmark)

    Iversen, Steffen Møllegaard

    Learning to communicate in, with and about mathematics is a key part of learning mathematics (Niss & Højgaard, 2011). Therefore, understanding how students’ mathematical writing is shaped is important to mathematics education research. In this paper the notion of ‘writer identity’ (Ivanič, 1998; ......; Burgess & Ivanič, 2010) is introduced and operationalised in relation to students’ mathematical writing and through a case study it is illustrated how this analytic tool can facilitate valuable insights when exploring students’ mathematical writing....

  15. Seismic response analysis for a deeply embedded nuclear power plant

    International Nuclear Information System (INIS)

    Chen, W.W.H.; Chatterjee, M.; Day, S.M.

    1979-01-01

    One of the important aspect of the aseimic design of nuclear power plants is the evaluation of the seismic soil-structure interaction effect due to design earthquakes. The soil-structure interaction effect can initiate rocking and result in different soil motions compared to the free field motions, thus significantly affecting the structural response. Two methods are generally used to solve the seismic soil-structure interaction problems: the direct finite element method (FLUSH) and the substructure or impedance approach. This paper presents the results of the horizontal seismic soil-structure interaction analysis using the impedance aproach and the direct finite element method for a deeply embedded nuclear power plant. (orig.)

  16. Deep-lying hole states in the optical model

    International Nuclear Information System (INIS)

    Klevansky, S.P.; Lemmer, R.H.

    1982-01-01

    The strength function for deep-lying hole states in an optical potential is studied by the method of Green's functions. The role of isospin is emphasized. It is shown that, while the main trends of the experimental data on hole states in isotopes of Sn and Pd can be described by an energy independent optical potential, intermediate structures in these data indicate the specific nuclear polarization effects have to be included. This is done by introducing doorway states of good isospin into the optical model potential. Such states consist of neutron hole plus proton core vibrations as well as more complicated excitations that are analog states of proton hole plus neutron core vibrations of the parent nuclear system. Specific calculations for 115 Sn and 103 Pd give satisfactory fits to the strength function data using optical model and doorway state parameters that are reasonable on physical grounds

  17. Mathematical modeling of physiological systems: an essential tool for discovery.

    Science.gov (United States)

    Glynn, Patric; Unudurthi, Sathya D; Hund, Thomas J

    2014-08-28

    Mathematical models are invaluable tools for understanding the relationships between components of a complex system. In the biological context, mathematical models help us understand the complex web of interrelations between various components (DNA, proteins, enzymes, signaling molecules etc.) in a biological system, gain better understanding of the system as a whole, and in turn predict its behavior in an altered state (e.g. disease). Mathematical modeling has enhanced our understanding of multiple complex biological processes like enzyme kinetics, metabolic networks, signal transduction pathways, gene regulatory networks, and electrophysiology. With recent advances in high throughput data generation methods, computational techniques and mathematical modeling have become even more central to the study of biological systems. In this review, we provide a brief history and highlight some of the important applications of modeling in biological systems with an emphasis on the study of excitable cells. We conclude with a discussion about opportunities and challenges for mathematical modeling going forward. In a larger sense, the review is designed to help answer a simple but important question that theoreticians frequently face from interested but skeptical colleagues on the experimental side: "What is the value of a model?" Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Written feedback to mathematics homework

    OpenAIRE

    Žitko, Urša

    2017-01-01

    This diploma thesis is about teachers’ feedback to students’ mathematics homework. In the theoretical part I present the purpose and history of homework assignments as well as various classifications of types of homework. In general, homework assignments are intended for students to learn and refresh the subject matter they have learnt in class, to gain further understanding, to practice various mathematical processes, and to prepare the student for a forthcoming subject matter. By doing home...

  19. The Multicultural Mathematics Classroom: Culturally Aware Teaching through Cooperative Learning & Multiple Representations

    Science.gov (United States)

    Jao, Limin

    2012-01-01

    The National Council of Teachers of Mathematics (NCTM, 2000) has created a set of standards to reform mathematics teaching procedures to ensure that all students understand mathematics and learn to think mathematically. The standards also require teachers to use strategies that allow all students to reason and communicate mathematically and…

  20. Visual Representations in Mathematics Teaching: An Experiment with Students

    Science.gov (United States)

    Debrenti, Edith

    2015-01-01

    General problem-solving skills are of central importance in school mathematics achievement. Word problems play an important role not just in mathematical education, but in general education as well. Meaningful learning and understanding are basic aspects of all kinds of learning and it is even more important in the case of learning mathematics. In…

  1. Mathematics for sustainability

    CERN Document Server

    Roe, John; Jamshidi, Sara

    2018-01-01

    Designed for the 21st century classroom, this textbook poses, refines, and analyzes questions of sustainability in a quantitative environment. Building mathematical knowledge in the context of issues relevant to every global citizen today, this text takes an approach that empowers students of all disciplines to understand and reason with quantitative information. Whatever conclusions may be reached on a given topic, this book will prepare the reader to think critically about their own and other people’s arguments and to support them with careful, mathematical reasoning. Topics are grouped in themes of measurement, flow, connectivity, change, risk, and decision-making. Mathematical thinking is at the fore throughout, as students learn to model sustainability on local, regional, and global scales. Exercises emphasize concepts, while projects build and challenge communication skills. With no prerequisites beyond high school algebra, instructors will find this book a rich resource for engaging all majors in the...

  2. A Framework for Teachers' Knowledge of Mathematical Reasoning

    Science.gov (United States)

    Herbert, Sandra

    2014-01-01

    Exploring and developing primary teachers' understanding of mathematical reasoning was the focus of the "Mathematical Reasoning Professional Learning Research Program." Twenty-four primary teachers were interviewed after engagement in the first stage of the program incorporating demonstration lessons focused on reasoning conducted in…

  3. 9th International Congress on Mathematical Education

    CERN Document Server

    Hashimoto, Yoshihiko; Hodgson, Bernard; Lee, Peng; Lerman, Stephen; Sawada, Toshio

    2004-01-01

    Mathematics as a discipline has a long history, emerging from many cultures, with a truly universal character. Mathematicians throughout the world have a fundamentally common understanding of the nature of mathematics and of its central problems and methods. Research mathematicians in any part of the world are part of a cohesive intellectual community that communicates fluently. Mathematics education in contrast has a variable and culturally based character, and this is certainly true of educational organization and practice. Educational research is both an applied social science and a multidisciplinary domain of theoretical scholarship. Among organizations devoted to mathematics education, The International Commission on Mathematical Instruction (ICMI) is distinctive because of its close ties to the mathematics community. The great challenges now facing mathematics education around the world demand a deeper and more sensitive involvement of disciplinary mathematicians than we now have, both in the work of ed...

  4. Mathematics and art a cultural history

    CERN Document Server

    Gamwell, Lynn

    2016-01-01

    This is a cultural history of mathematics and art, from antiquity to the present. Mathematicians and artists have long been on a quest to understand the physical world they see before them and the abstract objects they know by thought alone. Taking readers on a tour of the practice of mathematics and the philosophical ideas that drive the discipline, Lynn Gamwell points out the important ways mathematical concepts have been expressed by artists. Sumptuous illustrations of artworks and cogent math diagrams are featured in Gamwell’s comprehensive exploration. Gamwell begins by describing mathematics from antiquity to the Enlightenment, including Greek, Islamic, and Asian mathematics. Then focusing on modern culture, Gamwell traces mathematicians’ search for the foundations of their science, such as David Hilbert’s conception of mathematics as an arrangement of meaning-free signs, as well as artists’ search for the essence of their craft, such as Aleksandr Rodchenko’s monochrome paintings. She shows t...

  5. Content Area Literacy in the Mathematics Classroom

    Science.gov (United States)

    Armstrong, Abbigail; Ming, Kavin; Helf, Shawnna

    2018-01-01

    Content area literacy has an important role in helping students understand content in specific disciplines, such as mathematics. Although the strategies are not unique to each individual content area, they are often adapted for use in a specific discipline. For example, mathematicians use mathematical language to make sense of new ideas and…

  6. Gestures and Insight in Advanced Mathematical Thinking

    Science.gov (United States)

    Yoon, Caroline; Thomas, Michael O. J.; Dreyfus, Tommy

    2011-01-01

    What role do gestures play in advanced mathematical thinking? We argue that the role of gestures goes beyond merely communicating thought and supporting understanding--in some cases, gestures can help generate new mathematical insights. Gestures feature prominently in a case study of two participants working on a sequence of calculus activities.…

  7. Lectures in Advanced Mathematics: Why Students Might Not Understand What the Mathematics Professor Is Trying to Convey

    Science.gov (United States)

    Lew, Kristen; Fukawa-Connelly, Timothy Patrick; Mejía-Ramos , Juan Pablo; Weber, Keith

    2016-01-01

    We describe a case study in which we investigate the effectiveness of a lecture in advanced mathematics. We first videorecorded a lecture delivered by an experienced professor who had a reputation for being an outstanding instructor. Using video recall, we then interviewed the professor to determine the ideas that he intended to convey and how he…

  8. Proportional Reasoning: An Essential Component of Scientific Understanding

    Science.gov (United States)

    Hilton, Annette; Hilton, Geoff

    2016-01-01

    In many scientific contexts, students need to be able to use mathematical knowledge in order to engage in scientific reasoning and problem-solving, and their understanding of scientific concepts relies heavily on their ability to understand and use mathematics in often new or unfamiliar contexts. Not only do science students need high levels of…

  9. Mathematization in introductory physics

    Science.gov (United States)

    Brahmia, Suzanne M.

    Mathematization is central to STEM disciplines as a cornerstone of the quantitative reasoning that characterizes these fields. Introductory physics is required for most STEM majors in part so that students develop expert-like mathematization. This dissertation describes coordinated research and curriculum development for strengthening mathematization in introductory physics; it blends scholarship in physics and mathematics education in the form of three papers. The first paper explores mathematization in the context of physics, and makes an original contribution to the measurement of physics students' struggle to mathematize. Instructors naturally assume students have a conceptual mastery of algebra before embarking on a college physics course because these students are enrolled in math courses beyond algebra. This paper provides evidence that refutes the validity of this assumption and categorizes some of the barriers students commonly encounter with quantification and representing ideas symbolically. The second paper develops a model of instruction that can help students progress from their starting points to their instructor's desired endpoints. Instructors recognize that the introductory physics course introduces new ideas at an astonishing rate. More than most physicists realize, however, the way that mathematics is used in the course is foreign to a large portion of class. This paper puts forth an instructional model that can move all students toward better quantitative and physical reasoning, despite the substantial variability of those students' initial states. The third paper describes the design and testing of curricular materials that foster mathematical creativity to prepare students to better understand physics reasoning. Few students enter introductory physics with experience generating equations in response to specific challenges involving unfamiliar quantities and units, yet this generative use of mathematics is typical of the thinking involved in

  10. Mathematics++ selected topics beyond the basic courses

    CERN Document Server

    Kantor, Ida; Šámal, Robert

    2015-01-01

    Mathematics++ is a concise introduction to six selected areas of 20th century mathematics providing numerous modern mathematical tools used in contemporary research in computer science, engineering, and other fields. The areas are: measure theory, high-dimensional geometry, Fourier analysis, representations of groups, multivariate polynomials, and topology. For each of the areas, the authors introduce basic notions, examples, and results. The presentation is clear and accessible, stressing intuitive understanding, and it includes carefully selected exercises as an integral part. Theory is comp

  11. The search for deeply bound kaonic states with FOPI

    International Nuclear Information System (INIS)

    Schmid, P.; Buehler, P.; Cargnelli, M.; Marton, J.; Widmann, E.; Zmeskal, J.

    2006-01-01

    Full text: New formation mechanisms for the creation of dense, exotic nuclear systems involving strangeness were recently proposed by Y. Akaishi and T. Yamazaki. Their calculations show that a K - might form deeply bound states in light nuclei - so called kaonic clusters - with central densities of several times the normal nuclear density. In the presentation a short overview of these exotic nuclear systems will be given and a new experiment with FOPI at GSI will be discussed. The aim of this experiment was to search for the simplest cluster - a ppK - state. This state is produced at GSI in the following high energy reaction: p + ''d'' → ppK - + K + + n'' with incident energies of 3.5 GeV. The experimental set-up will be presented in detail. (author)

  12. The reasonable effectiveness of mathematics in the natural sciences

    Science.gov (United States)

    Harvey, Alex

    2011-12-01

    Mathematics and its relation to the physical universe have been the topic of speculation since the days of Pythagoras. Several different views of the nature of mathematics have been considered: Realism—mathematics exists and is discovered; Logicism—all mathematics may be deduced through pure logic; Formalism—mathematics is just the manipulation of formulas and rules invented for the purpose; Intuitionism—mathematics comprises mental constructs governed by self evident rules. The debate among the several schools has major importance in understanding what Eugene Wigner called, The Unreasonable Effectiveness of Mathematics in the Natural Sciences. In return, this `Unreasonable Effectiveness' suggests a possible resolution of the debate in favor of Realism. The crucial element is the extraordinary predictive capacity of mathematical structures descriptive of physical theories.

  13. A course in mathematical methods for physicists

    CERN Document Server

    Herman, Russell L

    2014-01-01

    Based on the author’s junior-level undergraduate course, this introductory textbook is designed for a course in mathematical physics. Focusing on the physics of oscillations and waves, A Course in Mathematical Methods for Physicists helps students understand the mathematical techniques needed for their future studies in physics. It takes a bottom-up approach that emphasizes physical applications of the mathematics. The book offers: •A quick review of mathematical prerequisites, proceeding to applications of differential equations and linear algebra •Classroom-tested explanations of complex and Fourier analysis for trigonometric and special functions •Coverage of vector analysis and curvilinear coordinates for solving higher dimensional problems •Sections on nonlinear dynamics, variational calculus, numerical solutions of differential equations, and Green's functions

  14. Towards a simple mathematical theory of citation distributions.

    Science.gov (United States)

    Katchanov, Yurij L

    2015-01-01

    The paper is written with the assumption that the purpose of a mathematical theory of citation is to explain bibliometric regularities at the level of mathematical formalism. A mathematical formalism is proposed for the appearance of power law distributions in social citation systems. The principal contributions of this paper are an axiomatic characterization of citation distributions in terms of the Ekeland variational principle and a mathematical exploration of the power law nature of citation distributions. Apart from its inherent value in providing a better understanding of the mathematical underpinnings of bibliometric models, such an approach can be used to derive a citation distribution from first principles.

  15. Further development of thermal neutron capture therapy for metastatic and deeply-invasive human malignant melanoma

    International Nuclear Information System (INIS)

    Mishima, Yutaka

    1995-03-01

    This issue is the collection of the papers presented thermal neutron capture therapy for metastatic and deeply-invasive human malignant melanoma. Separate abstracts were prepared for 2 of the papers in this report. The remaining 32 papers were considered outside the subject scope of INIS. (J.P.N.)

  16. Containerless Heating Process of a Deeply Undercooled Metal Droplet by Electrostatic Levitation

    International Nuclear Information System (INIS)

    Wang Fei-Long; Dai Bin; Liu Xue-Feng; Sun Yi-Ning; Sun Zhi-Bin; Yu Qiang; Zhai Guang-Jie

    2015-01-01

    We present the containerless heating process of a deeply undercooled metal droplet by electrostatic levitation. The problem of surface charge loss in the heating process is discussed and specific formulas are given to describe the basic process of charge supplement by the photoelectric and thermoelectric effects. The pure metal zirconium is used to be melted and solidified to analyze the heating process. The temperature-time curve clearly shows the features including melting, undercooling, recalescence and solid-state phase transformation. (paper)

  17. A Glimpse of Gluons through Deeply Virtual Compton Scattering on the Proton

    OpenAIRE

    Defurne, M.; Jiménez-Argüello, A. Martì; Ahmed, Z.; Albataineh, H.; Allada, K.; Aniol, K. A.; Bellini, V.; Benali, M.; Boeglin, W.; Bertin, P.; Brossard, M.; Camsonne, A.; Canan, M.; Chandavar, S.; Chen, C.

    2017-01-01

    The proton is composed of quarks and gluons, bound by the most elusive mechanism of strong interaction called confinement. In this work, the dynamics of quarks and gluons are investigated using deeply virtual Compton scattering (DVCS): produced by a multi-GeV electron, a highly virtual photon scatters off the proton which subsequently radiates a high energy photon. Similarly to holography, measuring not only the magnitude but also the phase of the DVCS amplitude allows to perform 3D images of...

  18. Mathematics as verbal behavior.

    Science.gov (United States)

    Marr, M Jackson

    2015-04-01

    "Behavior which is effective only through the mediation of other persons has so many distinguishing dynamic and topographical properties that a special treatment is justified and indeed demanded" (Skinner, 1957, p. 2). Skinner's demand for a special treatment of verbal behavior can be extended within that field to domains such as music, poetry, drama, and the topic of this paper: mathematics. For centuries, mathematics has been of special concern to philosophers who have continually argued to the present day about what some deem its "special nature." Two interrelated principal questions have been: (1) Are the subjects of mathematical interest pre-existing in some transcendental realm and thus are "discovered" as one might discover a new planet; and (2) Why is mathematics so effective in the practices of science and engineering even though originally such mathematics was "pure" with applications neither contemplated or even desired? I argue that considering the actual practice of mathematics in its history and in the context of acquired verbal behavior one can address at least some of its apparent mysteries. To this end, I discuss some of the structural and functional features of mathematics including verbal operants, rule-and contingency-modulated behavior, relational frames, the shaping of abstraction, and the development of intuition. How is it possible to understand Nature by properly talking about it? Essentially, it is because nature taught us how to talk. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Mathematical analysis of complex cellular activity

    CERN Document Server

    Bertram, Richard; Teka, Wondimu; Vo, Theodore; Wechselberger, Martin; Kirk, Vivien; Sneyd, James

    2015-01-01

    This book contains two review articles on mathematical physiology that deal with closely related topics but were written and can be read independently. The first article reviews the basic theory of calcium oscillations (common to almost all cell types), including spatio-temporal behaviors such as waves. The second article uses, and expands on, much of this basic theory to show how the interaction of cytosolic calcium oscillators with membrane ion channels can result in highly complex patterns of electrical spiking. Through these examples one can see clearly how multiple oscillatory processes interact within a cell, and how mathematical methods can be used to understand such interactions better. The two reviews provide excellent examples of how mathematics and physiology can learn from each other, and work jointly towards a better understanding of complex cellular processes. Review 1: Richard Bertram, Joel Tabak, Wondimu Teka, Theodore Vo, Martin Wechselberger: Geometric Singular Perturbation Analysis of Burst...

  20. Using Mathematics, Mathematical Applications, Mathematical Modelling, and Mathematical Literacy: A Theoretical Study

    Science.gov (United States)

    Mumcu, Hayal Yavuz

    2016-01-01

    The purpose of this theoretical study is to explore the relationships between the concepts of using mathematics in the daily life, mathematical applications, mathematical modelling, and mathematical literacy. As these concepts are generally taken as independent concepts in the related literature, they are confused with each other and it becomes…

  1. Deeply Virtual Compton Scattering Studies at Jefferson Lab

    International Nuclear Information System (INIS)

    Sabatie, F.

    2010-11-01

    This document describes the early experimental effort at Jefferson Lab to unravel the Generalized Parton Distributions (GPD), using the Deeply Virtual Compton Scattering (DVCS) process. The GPDs contain the usual form factors and parton distribution functions, but in addition, they include correlations between states of different longitudinal and transverse momenta. They therefore give access to a three-dimensional picture of the nucleon. DVCS is the cleanest process allowing to extract GPDs, and as early as 2000, a number of experiments were proposed for this purpose. The results of the first exploratory experiments are presented as well as the first measurements of linear combinations of GPDs. In addition, a thorough discussion on the insights gained from these early experiments is proposed, linked with the theoretical tools used to extract GPDs from DVCS data. Finally, improvements on what was done for this first experimental phase are proposed and discussed, and new proposals and measurements are described. (author)

  2. Mathematical aspects of quantum field theory

    CERN Document Server

    de Faria, Edson

    2010-01-01

    Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations.

  3. National Center for Mathematics and Science - who we are

    Science.gov (United States)

    Massachusetts-Dartmouth Expertise Areas Classroom discourse Sociocultural theory in mathematics teacher education The learnability of new ideas, such as complexity, chaos and nonlinear systems Center Research students' mathematical understanding Program evaluation Curriculum theory and reform Center Research

  4. Parent-Child Mathematical Interactions: Examining Self-Report and Direct Observation

    Science.gov (United States)

    Missall, Kristen N.; Hojnoski, Robin L.; Moreano, Ginna

    2017-01-01

    Variability in children's early-learning home environments points to the need to better understand specific mechanisms of early mathematical development. We used a sample of 66 parent-preschool child dyads to describe parent-reported mathematical activities in the home and observed parent-child mathematical activities in a semi-structured play…

  5. Computers as medium for mathematical writing

    DEFF Research Database (Denmark)

    Misfeldt, Morten

    2011-01-01

    The production of mathematical formalism on state of the art computers is quite different than by pen and paper.  In this paper I examine the question of how different media influence the writing of mathematical signs. The examination is based on an investigation of professional mathematicians' use...... of various media for their writing. A model for describing mathematical writing through turntakings is proposed. The model is applied to the ways mathematicians use computers for writing, and especially it is used to understand how interaction with the computer system LaTeX is different in the case...

  6. Developing a model of pedagogical content knowledge for secondary and post-secondary mathematics instruction

    Directory of Open Access Journals (Sweden)

    Shandy Hauk

    2014-07-01

    Full Text Available The accepted framing of mathematics pedagogical content knowledge (PCK as part of mathematical knowledge for teaching has centered on the question: What mathematical reasoning, insight, understanding, and skills are required for a person to teach elementary mathematics? Many have worked to address this question in K-8 teaching. Yet, there remains a call for examples and theory in the context of teachers with greater mathematical preparation and older students with varied and complex experiences in learning mathematics. In this theory development report we offer background and examples for an extended model of PCK – as the interplay among conceptually-rich mathematical understandings, experience in and of teaching, and multiple culturally-mediated classroom interactions.

  7. Cognitive Psychology and Mathematical Thinking.

    Science.gov (United States)

    Greer, Brian

    1981-01-01

    This review illustrates aspects of cognitive psychology relevant to the understanding of how people think mathematically. Developments in memory research, artificial intelligence, visually mediated processes, and problem-solving research are discussed. (MP)

  8. Teachers' Explanations of a Key Developmental Understanding of Multiplicative Reasoning

    Science.gov (United States)

    Rhee, Katherine L.

    2012-01-01

    This qualitative research study explores teachers' understandings of multiplicative reasoning as a key developmental understanding (KDU). A KDU entails knowingly applying the same mathematical concepts within different contexts. A KDU supports an individual to build a connected understanding of mathematics as opposed to only understanding…

  9. Mathematical Footprints Discovering Mathematics Everywhere

    CERN Document Server

    Pappas, Theoni

    1999-01-01

    MATHEMATICAL FOOTPRINTS takes a creative look at the role mathematics has played since prehistoric times, and will play in the future, and uncovers mathematics where you least expect to find it from its many uses in medicine, the sciences, and its appearance in art to its patterns in nature and its central role in the development of computers. Pappas presents mathematical ideas in a readable non-threatening manner. MATHEMATICAL FOOTPRINTS is another gem by the creator of THE MATHEMATICS CALENDAR and author of THE JOY OF MATHEMATICS. "Pappas's books have been gold mines of mathematical ent

  10. What does understanding mathematics mean for teachers? relationship as a metaphor for knowing

    CERN Document Server

    Handa, Yuichi

    2011-01-01

    This book opens up alternative ways of thinking and talking about ways in which a person can "know" a subject (in this case, mathematics), leading to a reconsideration of what it may mean to be a teacher of that subject. In a number of European languages, a distinction is made in ways of knowing that in the English language is collapsed into the singular word know. In French, for example, to know in the savoir sense is to know things, facts, names, how and why things work, and so on, whereas to know in the connaître sense is to know a person, a place, or even a thing-namely, an other- in such a way that one is familiar with, or in relationship with this other. Primarily through phenomenological reflection with a touch of empirical input, this book fleshes out an image for what a person's connaître knowing of mathematics might mean, turning to mathematics teachers and teacher educators to help clarify this image.

  11. The philosophical aspect of learning inverse problems of mathematical physics

    Directory of Open Access Journals (Sweden)

    Виктор Семенович Корнилов

    2018-12-01

    Full Text Available The article describes specific questions student learning inverse problems of mathematical physics. When teaching inverse problems of mathematical physics to the understanding of the students brought the information that the inverse problems of mathematical physics with a philosophical point of view are the problems of determining the unknown causes of known consequences, and the search for their solutions have great scientific and educational potential. The reasons are specified in the form of unknown coefficients, right side, initial conditions of the mathematical model of inverse problems, and as a consequence are functionals of the solution of this mathematical model. In the process of learning the inverse problems of mathematical physics focuses on the philosophical aspects of the phenomenon of information and identify cause-effect relations. It is emphasized that in the process of logical analysis applied and humanitarian character, students realize that information is always related to the fundamental philosophical questions that the analysis applied and the humanitarian aspects of the obtained results the inverse problem of mathematical physics allows students to make appropriate inferences about the studied process and to, ultimately, new information, to study its properties and understand its value. Philosophical understanding of the notion of information opens up to students a new methodological opportunities to comprehend the world and helps us to reinterpret existing science and philosophy of the theory related to the disclosure of the interrelationship of all phenomena of reality.

  12. Examining the Relationship between Secondary Mathematics Teachers' Self-Efficacy, Attitudes, and Use of Technology to Support Communication and Mathematics Literacy

    Science.gov (United States)

    Letwinsky, Karim Medico

    2017-01-01

    The rich language surrounding mathematical concepts often is reduced in many classrooms to a narrow process of memorizing isolated procedures with little context. This approach has proven to be detrimental to students' ability to understand mathematics at deeper levels and remain engaged with this content. The current generation of students values…

  13. Mesopotamian Mathematics, Seen “from the Inside” (by Assyriologists) and “from the Outside” (by Historians of Mathematics)

    DEFF Research Database (Denmark)

    Høyrup, Jens

    2016-01-01

    Since the 1950s, “Babylonian mathematics” has often served to open expositions of the general history of mathematics. Since it is written in a language and a script which only specialists understand, it has always been dealt with differently by the “insiders”, the Assyriologists who approached...... the texts where it manifests itself as philologists and historians of Mesopotamian culture, and by “outsiders”, historians of mathematics who had to rely on second-hand understanding of the material (actually, of as much of this material as they wanted to take into account), but who saw it as a constituent...... of the history of mathematics. The article deals with how these different approaches have looked in various periods: pre-decipherment speculations; the early period of deciphering, 1847–1929; the “golden decade”, 1929–1938, where workers with double competence (primarily Neugebauer and Thureau-Dangin) attacked...

  14. Vision in elementary mathematics

    CERN Document Server

    Sawyer, W W

    2003-01-01

    Sure-fire techniques of visualizing, dramatizing, and analyzing numbers promise to attract and retain students' attention and understanding. Topics include basic multiplication and division, algebra, word problems, graphs, negative numbers, fractions, many other practical applications of elementary mathematics. 1964 ed. Answers to Problems.

  15. Machine Learning via Mathematical Programming

    National Research Council Canada - National Science Library

    Mamgasarian, Olivi

    1999-01-01

    Mathematical programming approaches were applied to a variety of problems in machine learning in order to gain deeper understanding of the problems and to come up with new and more efficient computational algorithms...

  16. The challenge of inadequate achievement in mathematics: Focus on a meta-approach

    Directory of Open Access Journals (Sweden)

    Kobus Maree

    2009-09-01

    Full Text Available As is the case elsewhere in the world, all stakeholders in South Africa are deeply concerned about the level and scope of underachievement in mathematics, not only at Grade 12 level, but, indeed, at University, University of Technology and Further Education and Training levels. These concerns assume a deeper dimension in light of the fact that inadequate achievement in mathematics inevitably will have a ripple effect on the academic situation in any country: inadequate achievement in mathematics precludes learners from applying for admission to sought-after fi elds of study, which, in turn, prevents numerous learners from realising their true potential and, eventually, from being happy and successful in careers that they might otherwise have been able to execute successfully. It goes without saying that inadequate achievement in mathematics will impact negatively on the overall economic situation in any country (even more so in a developing country such as South Africa. Truth being, achievement in mathematics amounts to equipping oneself with survival skills. In this article, the spotlight shifts from a narrow and outdated focus on problems that are associated with inadequate achievement in mathematics to possible solutions for this disconcerting situation and the implied challenge it raises. The focus is thus on three levels that collectively underpin and impact on achievement in mathematics, viz. the macro level, the meso level and the micro level. The macro level refers mainly to the input by the national government (and, by default, the National Department of Education. In the fi rst instance, it is the responsibility of the state to provide adequate schooling facilities for all learners, irrespective of where they fi nd themselves. Furthermore, it is the duty of the state to ensure that every learner has access to basic facilities, including food, water, sanitation and housing. The state (via the National Department of Education is also

  17. Deeply virtual Compton scattering at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Biselli, Angela S. [Fairfield University - Department of Physics 1073 North Benson Road, Fairfield, CT 06430, USA; Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-08-01

    The generalized parton distributions (GPDs) have emerged as a universal tool to describe hadrons in terms of their elementary constituents, the quarks and the gluons. Deeply virtual Compton scattering (DVCS) on a proton or neutron ($N$), $e N \\rightarrow e' N' \\gamma$, is the process more directly interpretable in terms of GPDs. The amplitudes of DVCS and Bethe-Heitler, the process where a photon is emitted by either the incident or scattered electron, can be accessed via cross-section measurements or exploiting their interference which gives rise to spin asymmetries. Spin asymmetries, cross sections and cross-section differences can be connected to different combinations of the four leading-twist GPDs (${H}$, ${E}$, ${\\tilde{H}}$, ${\\tilde{E}}$) for each quark flavors, depending on the observable and on the type of target. This paper gives an overview of recent experimental results obtained for DVCS at Jefferson Laboratory in the halls A and B. Several experiments have been done extracting DVCS observables over large kinematics regions. Multiple measurements with overlapping kinematic regions allow to perform a quasi-model independent extraction of the Compton form factors, which are GPDs integrals, revealing a 3D image of the nucleon.

  18. Intangible heritage for sustainable future: mathematics in the paddy field

    Science.gov (United States)

    Dewanto, Stanley P.; Kusuma, Dianne A.; Nurani Ruchjana, Budi; Setiawan Abdullah, Atje

    2017-10-01

    Mathematics, as the only general language, can describe all phenomena on earth. Mathematics not only helps us to understand these phenomena, but it also can sustain human activities, consequently ensure that the future development is sustainable. Indonesia, with high cultural diversity, should aware to have its understanding, skills, and philosophies developed by certain societies, with long histories of interaction with their natural surroundings, which will provide a foundation for locally appropriate sustainable development. This paper discussed the condition and situation on certain area in Cigugur, Indonesia, and what skills, knowledge, and concept can be transmitted, regarding simple mathematics (arithmetic). Some examples are provided.

  19. Old Habits Die Hard: An Uphill Struggle against Rules without Reason in Mathematics Teacher Education

    Science.gov (United States)

    O'Meara, Niamh; Fitzmaurice, Olivia; Johnson, Patrick

    2017-01-01

    Mathematics teacher educators in the University of Limerick became aware of a lack of conceptual understanding of key mathematics concepts of prospective secondary mathematics teachers through observation on teaching placement and in pedagogy lectures. A pilot study to enhance the conceptual understanding of prospective teachers was carried out…

  20. On Automatic Assessment and Conceptual Understanding

    Science.gov (United States)

    Rasila, Antti; Malinen, Jarmo; Tiitu, Hannu

    2015-01-01

    We consider two complementary aspects of mathematical skills, i.e. "procedural fluency" and "conceptual understanding," from a point of view that is related to modern e-learning environments and computer-based assessment. Pedagogical background of teaching mathematics is discussed, and it is proposed that the traditional book…

  1. Mathematical foundation of computer science

    CERN Document Server

    Singh, YN

    2005-01-01

    The interesting feature of this book is its organization and structure. That consists of systematizing of the definitions, methods, and results that something resembling a theory. Simplicity, clarity, and precision of mathematical language makes theoretical topics more appealing to the readers who are of mathematical or non-mathematical background. For quick references and immediate attentions¾concepts and definitions, methods and theorems, and key notes are presented through highlighted points from beginning to end. Whenever, necessary and probable a visual approach of presentation is used. The amalgamation of text and figures make mathematical rigors easier to understand. Each chapter begins with the detailed contents, which are discussed inside the chapter and conclude with a summary of the material covered in the chapter. Summary provides a brief overview of all the topics covered in the chapter. To demonstrate the principles better, the applicability of the concepts discussed in each topic are illustrat...

  2. Understanding the Program Effectiveness of Early Mathematics Interventions for Prekindergarten and Kindergarten Environments: A Meta-Analytic Review

    Science.gov (United States)

    Wang, Aubrey H.; Firmender, Janine M.; Power, Joshua R.; Byrnes, James P.

    2016-01-01

    Research Findings: The early childhood years are critical in developing early mathematics skills, but the opportunities one has to learn mathematics tend to be limited, preventing the development of significant mathematics learning. By conducting a meta-analysis of 29 experimental and quasi-experimental studies that have been published since 2000,…

  3. Exploring ESL Students' Understanding of Mathematics in the Early Years: Factors That Make a Difference

    Science.gov (United States)

    Miller, Jodie; Warren, Elizabeth

    2014-01-01

    Students living in disadvantaged contexts and whose second language is English (ESL) are at risk of not succeeding in school mathematics. It has been internationally recognised that students' socioeconomic background and their achievements in mathematics is more pronounced for Australian students (Thomson et al. 2011). This gap is even more…

  4. Using the Construct of the Didactic Contract to Understand Student Transition into University Mathematics Education

    Science.gov (United States)

    Pepin, Birgit

    2014-01-01

    In this article the concept of the Didactic Contract is used to investigate student "transition" from upper secondary into university mathematics education. The findings are anchored in data from the TransMaths project, more particularly the case of an ethnic minority student's journey from his school to a university mathematics course…

  5. Family Mathematics Nights: An Opportunity to Improve Preservice Teachers' Understanding of Parents' Roles and Expectations

    Science.gov (United States)

    Bofferding, Laura; Kastberg, Signe; Hoffman, Andrew

    2016-01-01

    Providing preservice teachers with opportunities to engage with parents and begin to see them as collaborators in their children's education is a persistent challenge in mathematics methods courses and teacher preparation programs more broadly. We describe the use of family mathematics nights as a model for engaging parents and preservice…

  6. High abundance of JS-1- and Chloroflexi-related Bacteria in deeply buried marine sediments revealed by quantitative, real-time PCR.

    Science.gov (United States)

    Blazejak, Anna; Schippers, Axel

    2010-05-01

    Sequences of members of the bacterial candidate division JS-1 and the classes Anaerolineae and Caldilineae of the phylum Chloroflexi are frequently found in 16S rRNA gene clone libraries obtained from marine sediments. Using a newly designed quantitative, real-time PCR assay, these bacterial groups were jointly quantified in samples from near-surface and deeply buried marine sediments from the Peru margin, the Black Sea, and a forearc basin off the island of Sumatra. In near-surface sediments, sequences of the JS-1 as well as Anaerolineae- and Caldilineae-related Bacteria were quantified with significantly lower 16S rRNA gene copy numbers than the sequences of total Bacteria. In contrast, in deeply buried sediments below approximately 1 m depth, similar quantities of the 16S rRNA gene copies of these specific groups and Bacteria were found. This finding indicates that JS-1 and Anaerolineae- and Caldilineae-related Bacteria might dominate the bacterial community in deeply buried marine sediments and thus seem to play an important ecological role in the deep biosphere.

  7. From everyday problem to a mathematical solution - understanding student reasoning by identifying their chain of reference

    DEFF Research Database (Denmark)

    Dreyøe, Jonas; Larsen, Dorte Moeskær; Misfeldt, Morten

    2018-01-01

    This paper investigates a group of students’ reasoning in an inquiry-oriented and open mathematical investigation developed as a part of a large-scale intervention. We focus on the role of manipulatives, articulations, and representations in collaborative mathematical reasoning among grade 5......, manipulatives, and reasoning in a way that allows us to follow the material traces of students’ mathematical reasoning and hence discuss the possibilities, limitations, and pedagogical consequences of the application of Latour’s (1999) framework....

  8. Science and Mathematics in Astronomy

    Science.gov (United States)

    Woolack, Edward

    2009-01-01

    A brief historical introduction to the development of observational astronomy will be presented. The close historical relationship between the successful application of mathematical concepts and advances in astronomy will be presented. A variety of simple physical demonstrations, hands-on group activities, and puzzles will be used to understand how the properties of light can be used to understand the contents of our universe.

  9. Computational mathematics in China

    CERN Document Server

    Shi, Zhong-Ci

    1994-01-01

    This volume describes the most significant contributions made by Chinese mathematicians over the past decades in various areas of computational mathematics. Some of the results are quite important and complement Western developments in the field. The contributors to the volume range from noted senior mathematicians to promising young researchers. The topics include finite element methods, computational fluid mechanics, numerical solutions of differential equations, computational methods in dynamical systems, numerical algebra, approximation, and optimization. Containing a number of survey articles, the book provides an excellent way for Western readers to gain an understanding of the status and trends of computational mathematics in China.

  10. [Mathematics - astronomy - astrology special library].

    Science.gov (United States)

    Gluch, Sibylle

    2011-01-01

    About 1560 Elector August of Saxony created an unusual library--one distinguished within its period by both its specialization and location. Situated within the Kunstkammer this library was mostly dedicated to the mathematical sciences and related disciplines. It contained works by the most important authors on mathematics, astronomy, and astrology from the classical, medieval, and early modern periods. This essay traces the formation and composition of August's library, and examines its function: What kind of relationship existed between the library and the Kunstkammer? In what way did the library mirror the interests of the Elector, and to what extend does it permit inferences regarding the Elector's knowledge of mathematics? From the analysis August emerges not as a specialist with a deep understanding of mathematics, but as a particular aficionado of mathematical applications. As a practitioner and general follower of the mathematical arts he took part in a far-reaching intellectual network the center of which lay in the University of Wittenberg. Here, Melanchthon had effectively strengthened the importance of the mathematical disciplines within the university curriculum. He regarded mathematics as the foremost science, arguing that before all other disciplines its method enabled man to recognize the harmonic order of the world, and to discern divine providence. Thus, mathematics offered consoling stability and support in an often seemingly chaotic world torn by religious controversies. This kind of esteem for the mathematical sciences did not presuppose expert knowledge. Hence, the fact that August does not appear to have read the mathematical books he collected does not come as a contradiction. On the contrary, for August it sufficed to recognize the potential of the mathematical sciences, which he brought into life through the creation of a specialized library that developed a rhetoric of its own. The collection of his Kunstkammer library spoke of a

  11. Information Literacy in Mathematics Undergraduate Education: Where Does It Stand Today?

    Science.gov (United States)

    Bussmann, Jeffra Diane; Bond, Jeffrey D.

    2015-01-01

    The published literature on information literacy in mathematics is relatively sparse. This article explores the current state of information literacy initiatives in undergraduate mathematics. The authors survey academic librarians (n = 118) who liaise with mathematics departments in order to gain an understanding of their practices and attitudes…

  12. Number sense how the mind creates mathematics

    CERN Document Server

    Dehaene, Stanislas

    2011-01-01

    Our understanding of how the human brain performs mathematical calculations is far from complete, but in recent years there have been many exciting breakthroughs by scientists all over the world. Now, in The Number Sense, Stanislas Dehaene offers a fascinating look at this recent research, in an enlightening exploration of the mathematical mind. Dehaene begins with the eye-opening discovery that animals--including rats, pigeons, raccoons, and chimpanzees--can perform simple mathematical calculations, and that human infants also have a rudimentary number sense. Dehaene suggests that this rudime

  13. Mathematical analysis, approximation theory and their applications

    CERN Document Server

    Gupta, Vijay

    2016-01-01

    Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory. Specific topics include: approximation of functions by linear positive operators with applications to computer aided geometric design, numerical analysis, optimization theory, and solutions of differential equations. Recent and significant developments in approximation theory, special functions and q-calculus along with their applications to mathematics, engineering, and social sciences are discussed and analyzed. Each chapter enriches the understanding of current research problems and theories in pure and applied research.

  14. Deeply Virtual Compton Scattering off a deuterium target at the HERMES experiment

    International Nuclear Information System (INIS)

    Movsisyan, Aram

    2011-05-01

    Deeply virtual Compton scattering is studied in this report, using all data collected at the HERMES experiment from 1996 to 2005. Azimuthal asymmetries with respect to beam-helicity, beam-charge and target polarization alone and also to their different combinations for hard exclusive electroproduction of real photons in deep-inelastic scattering from a both unpolarized and longitudinally polarized deuterium targets are measured. The asymmetries are attributed to the interference between the deeply virtual Compton scattering and Bethe-Heitler processes. The asymmetries are observed in the exclusive region -(1.5) 2 GeV 2 2 X 2 GeV 2 of the squared missing mass. The dependences of these asymmetries on -t, x N , or Q 2 are investigated. The results include the coherent process ed→edγ and the incoherent process ed→epnγ where in addition a nucleon may be excited to a resonance. For an unpolarized deuterium target, the leading Fourier amplitude of the beam-helicity asymmetry that is sensitive to the interference term is found to be substantial, but no significant t dependence is observed. The leading amplitude of the beam-charge asymmetry is substantial at large -t, but becomes small at small values of -t. The amplitudes of the beam-helicity asymmetry that are sensitive to the squared DVCS term are found to be consistent with zero. The deuteron Compton form factor H 1 appears to have a similar behavior as H of the proton. (orig.)

  15. Technology-integrated Mathematics Education at the Secondary School Level

    Directory of Open Access Journals (Sweden)

    Hamdi Serin

    2017-06-01

    Full Text Available The potential of technological devices to enrich learning and teaching of Mathematics has been widely recognized recently. This study is founded on a case study that investigates how technology-related Mathematics teaching can enhance learning of Mathematical topics. The findings indicate that when teachers integrate technology into their teaching practices, students’ learning of Mathematics is significantly promoted. It was seen that the use of effective presentations through technological devices highly motivated the students and improved their mathematics achievement. This highlights that the availability of technological devices, teacher beliefs, easy access to resources and most importantly teacher skills of using technological devices effectively are decisive factors that can provide learners better understanding of mathematical concepts.

  16. Students' Thinking and the Depth of the Mathematics Curriculum

    Science.gov (United States)

    Kent, Laura B.

    2014-01-01

    This article explores the impact of students' thinking centered professional development on mathematics teaching and learning. Purposeful pedagogy and problem posing are examined as mechanisms by which teachers can potentially deepen students' understanding of mathematics. A classroom example comparing student generated strategies versus…

  17. Creating opportunities to learn in mathematics education: a sociocultural perspective

    Science.gov (United States)

    Goos, Merrilyn

    2014-09-01

    The notion of `opportunities to learn in mathematics education' is open to interpretation from multiple theoretical perspectives, where the focus may be on cognitive, social or affective dimensions of learning, curriculum and assessment design, issues of equity and access, or the broad policy and political contexts of learning and teaching. In this paper, I conceptualise opportunities to learn from a sociocultural perspective. Beginning with my own research on the learning of students and teachers of mathematics, I sketch out two theoretical frameworks for understanding this learning. One framework extends Valsiner's zone theory of child development, and the other draws on Wenger's ideas about communities of practice. My aim is then to suggest how these two frameworks might help us understand the learning of others who have an interest in mathematics education, such as mathematics teacher educator-researchers and mathematicians. In doing so, I attempt to move towards a synthesis of ideas to inform mathematics education research and development.

  18. The social competence of Latino kindergartners and growth in mathematical understanding.

    Science.gov (United States)

    Galindo, Claudia; Fuller, Bruce

    2010-05-01

    We know that social competence contributes to young children's adaptation to, and cognitive learning within, classroom settings. Yet initial evidence is mixed on the social competencies that Latino children bring to kindergarten and the extent to which these skills advance cognitive growth. Building from ecocultural and developmental-risk theory, this paper shows children's social competence to be adaptive to the normative expectations and cognitive requirements of culturally bounded settings in both the home and classroom. Latino socialization in the home may yield social competencies that teachers value rather than reflect "risk factors" that constrain children's school readiness. We draw on the Early Childhood Longitudinal Study, kindergarten cohort (N = 19,590) to detail 5 social competencies at entry to school--self-control, interpersonal skills, approaches to learning, internalizing and externalizing problem behaviors--and to examine variability among Latino subgroups. We then test the extent to which baseline variation in social competence accounts for children's cognitive growth during the kindergarten year. We find that Latino children from poor, but not middle-class, families display weaker social competencies vis-à-vis White children (all relationships p cognitive growth, which is shaped most strongly by positive approaches to learning. The disparities in competencies observed for Latino children from poor families, relative to White children, are significant yet much smaller than gaps in baseline levels of mathematical understanding. We discuss how the consonance or mismatch between competencies acquired at home and those valued by teachers must consider cultural differences, social-class position, and variation among diverse Latino subgroups. 2010 APA, all rights reserved

  19. Gamma-ray multiplicity moments from deeply inelastic collisions of 86Kr and 144Sm

    International Nuclear Information System (INIS)

    Christensen, P.R.; Folkmann, F.; Hansen, O.; Nathan, O.; Trautner, N.; Videlbaek, F.; Werf, S.Y.v.d.; Britt, H.C.; Chestnut, R.P.; Freiesleben, H.; Puehlhofer, F.

    1978-01-01

    First, second, and third moments of gamma-ray multiplicity distributions from deeply inelastic collisions have been measured for the system 8 6Kr on 1 44Sm at 490-MeV Kr energy. The average gamma-ray multiplicities are approx. = 21, independent of reaction angle and fragment charge. The multiplicity distributions are broad, with standard deviations of ν approx. = 10, and they have a negative skewness

  20. Improving Student Teachers' Attitudes to Mathematics

    Science.gov (United States)

    Amato, Solange Amorim

    2004-01-01

    The research results presented in this paper were part of an action research performed with the aims of improving primary school student teachers (STs)' understanding of, and attitudes to, mathematics. The teaching strategies used to help STs' improve their understanding and attitudes were similar to the ones suggested for their future use in…

  1. Measurement of deeply virtual Compton scattering using the ZEUS detector at HERA

    International Nuclear Information System (INIS)

    Grabowska-Bold, I.

    2004-08-01

    The cross sections for deeply virtual compton scattering in the reaction ep → e'γp' has been measured with the ZEUS detector at HERA using integrated luminosities of 95 pb -1 of e + p and 17 pb -1 of e - p collisions. Cross sections are presented as a function of the exchanged photon virtuality, Q 2 , and the centre-of-mass energy, W, of the γ * p system in the region 5 2 2 and 40 < W < 140 GeV. The obtained results are compared to QCD-based calculations. (orig.)

  2. A Special Assignment from NASA: Understanding Earth's Atmosphere through the Integration of Science and Mathematics

    Science.gov (United States)

    Fox, Justine E.; Glen, Nicole J.

    2012-01-01

    Have your students ever wondered what NASA scientists do? Have they asked you what their science and mathematics lessons have to do with the real world? This unit about Earth's atmosphere can help to answer both of those questions. The unit described here showcases "content specific integration" of science and mathematics in that the lessons meet…

  3. A synthesis of mathematics writing: Assessments, interventions, and surveys

    Directory of Open Access Journals (Sweden)

    Sarah R. Powell

    2017-02-01

    Full Text Available Mathematics standards in the United States describe communication as an essential part of mathematics. One outlet for communication is writing. To understand the mathematics writing of students, we conducted a synthesis to evaluate empirical research about mathematics writing. We identified 29 studies that included a mathematics-writing assessment, intervention, or survey for students in 1st through 12th grade. All studies were published between 1991 and 2015. The majority of assessments required students to write explanations to mathematical problems, and fewer than half scored student responses according to a rubric. Approximately half of the interventions involved the use of mathematics journals as an outlet for mathematics writing. Few intervention studies provided explicit direction on how to write in mathematics, and a small number of investigations provided statistical evidence of intervention efficacy. From the surveys, the majority of students expressed enjoyment when writing in mathematics settings but teachers reported using mathematics writing rarely. Across studies, findings indicate mathematics writing is used for a variety of purposes, but the quality of the studies is variable and more empirical research is needed.

  4. Using mathematical models to understand the effect of nanoscale roughness on protein adsorption for improving medical devices

    Directory of Open Access Journals (Sweden)

    Ercan B

    2013-09-01

    Full Text Available Batur Ercan,1 Dongwoo Khang,2 Joseph Carpenter,3 Thomas J Webster1 1Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 2School of Materials Science and Engineering and Center for PRC and RIGET, Gyeongsang National University, Jinju, South Korea; 3School of Medicine, Stanford University, Stanford, CA, USA Abstract: Surface roughness and energy significantly influence protein adsorption on to biomaterials, which, in turn, controls select cellular adhesion to determine the success and longevity of an implant. To understand these relationships at a fundamental level, a model was originally proposed by Khang et al to correlate nanoscale surface properties (specifically, nanoscale roughness and energy to protein adsorption, which explained the greater cellular responses on nanostructured surfaces commonly reported in the literature today. To test this model for different surfaces from what was previously used to develop that model, in this study we synthesized highly ordered poly(lactic-co-glycolic acid surfaces of identical chemistry but altered nanoscale surface roughness and energy using poly(dimethylsiloxane molds of polystyrene beads. Fibronectin and collagen type IV adsorption studies showed a linear adsorption behavior as the surface nanoroughness increased. This supported the general trends observed by Khang et al. However, when fitting such data to the mathematical model established by Khang et al, a strong correlation did not result. Thus, this study demonstrated that the equation proposed by Khang et al to predict protein adsorption should be modified to accommodate for additional nanoscale surface property contributions (ie, surface charge to make the model more accurate. In summary, results from this study provided an important step in developing future mathematical models that can correlate surface properties (such as nanoscale roughness and surface energy to initial protein adsorption events important to

  5. Mathematics in Student-­Centred Inquiry Learning: Student Engagement

    Science.gov (United States)

    Calder, Nigel

    2013-01-01

    This paper examines how mathematical understandings might be facilitated through student-centred inquiry. Data is drawn from a research project on student-centred inquiry learning that situated mathematics within authentic problem-solving contexts and involved students in a collaboratively constructed curriculum. A contemporary interpretive frame…

  6. Computer-Based Mathematics Instructions for Engineering Students

    Science.gov (United States)

    Khan, Mustaq A.; Wall, Curtiss E.

    1996-01-01

    Almost every engineering course involves mathematics in one form or another. The analytical process of developing mathematical models is very important for engineering students. However, the computational process involved in the solution of some mathematical problems may be very tedious and time consuming. There is a significant amount of mathematical software such as Mathematica, Mathcad, and Maple designed to aid in the solution of these instructional problems. The use of these packages in classroom teaching can greatly enhance understanding, and save time. Integration of computer technology in mathematics classes, without de-emphasizing the traditional analytical aspects of teaching, has proven very successful and is becoming almost essential. Sample computer laboratory modules are developed for presentation in the classroom setting. This is accomplished through the use of overhead projectors linked to graphing calculators and computers. Model problems are carefully selected from different areas.

  7. Enabling collaboration on semiformal mathematical knowledge by semantic web integration

    CERN Document Server

    Lange, C

    2011-01-01

    Mathematics is becoming increasingly collaborative, but software does not sufficiently support that: Social Web applications do not currently make mathematical knowledge accessible to automated agents that have a deeper understanding of mathematical structures. Such agents exist but focus on individual research tasks, such as authoring, publishing, peer-review, or verification, instead of complex collaboration workflows. This work effectively enables their integration by bridging the document-oriented perspective of mathematical authoring and publishing, and the network perspective of threaded

  8. Math Autobiographies: A Window into Teachers' Identities as Mathematics Learners

    Science.gov (United States)

    McCulloch, Allison W.; Marshall, Patricia L.; DeCuir-Gunby, Jessica T.; Caldwell, Ticola S.

    2013-01-01

    Mathematics autobiographies have the potential to help teachers reflect on their identities as mathematics learners and to understand their role in the development of their students' mathematics identities. This paper reports on a professional development project for K-2 teachers (n = 41), in which participants were asked to write mathematics…

  9. Mathematical foundations of time series analysis a concise introduction

    CERN Document Server

    Beran, Jan

    2017-01-01

    This book provides a concise introduction to the mathematical foundations of time series analysis, with an emphasis on mathematical clarity. The text is reduced to the essential logical core, mostly using the symbolic language of mathematics, thus enabling readers to very quickly grasp the essential reasoning behind time series analysis. It appeals to anybody wanting to understand time series in a precise, mathematical manner. It is suitable for graduate courses in time series analysis but is equally useful as a reference work for students and researchers alike.

  10. Concurrent 5-fluorouracil and radiotherapy in radical treatment of frail patients with deeply invasive bladder cancer

    Energy Technology Data Exchange (ETDEWEB)

    Fellin, G.; Mussari, S.; Graffer, U.; Caffo, O.; Valduga, F.; Tomio, L.; Luciani, L. [S. Chiara Hospital, Trento (Italy)

    2004-11-01

    The radical treatment of deeply invasive bladder cancer with full dose radiotherapy and concomitant 5- fluorouracil continuous infusion is feasible even in frail patients, with an acceptable toxicity and a response rate comparable to that obtained using radiotherapy and simultaneous cisplatin. Many patients can retain a functioning bladder. (author)

  11. Rival approaches to mathematical modelling in immunology

    Science.gov (United States)

    Andrew, Sarah M.; Baker, Christopher T. H.; Bocharov, Gennady A.

    2007-08-01

    In order to formulate quantitatively correct mathematical models of the immune system, one requires an understanding of immune processes and familiarity with a range of mathematical techniques. Selection of an appropriate model requires a number of decisions to be made, including a choice of the modelling objectives, strategies and techniques and the types of model considered as candidate models. The authors adopt a multidisciplinary perspective.

  12. A history of Japanese mathematics

    CERN Document Server

    Smith, David E

    2004-01-01

    One of the first books to show Westerners the nature of Japanese mathematics, this survey highlights the leading features in the development of the wasan, the Japanese system of mathematics. Topics include the use of the soroban, or abacus; the application of sangi, or counting rods, to algebra; the discoveries of the 17th-century sage Seki Kowa; the yenri, or circle principle; the work of 18th-century geometer Ajima Chokuyen; and Wada Nei's contributions to the understanding of hypotrochoids. Unabridged republication of the classic 1914 edition. 74 figures. Index.

  13. Enhancing Students’ Interest through Mathematics Learning

    Science.gov (United States)

    Azmidar, A.; Darhim, D.; Dahlan, J. A.

    2017-09-01

    A number of previous researchers indicated that students’ mathematics interest still low because most of them have perceived that mathematics is very difficult, boring, not very practical, and have many abstract theorems that were very hard to understand. Another cause is the teaching and learning process used, which is mechanistic without considering students’ needs. Learning is more known as the process of transferring the knowledge to the students. Let students construct their own knowledge with the physical and mental reflection that is done by activity in the new knowledge. This article is literature study. The purpose of this article is to examine the Concrete-Pictorial-Abstract approach in theoretically to improve students’ mathematics interest. The conclusion of this literature study is the Concrete-Pictorial-Abstract approach can be used as an alternative to improve students’ mathematics interest.

  14. Crystal growth velocity in deeply undercooled Ni-Si alloys

    Science.gov (United States)

    Lü, Y. J.

    2012-02-01

    The crystal growth velocity of Ni95Si5 and Ni90Si10 alloys as a function of undercooling is investigated using molecular dynamics simulations. The modified imbedded atom method potential yields the equilibrium liquidus temperatures T L ≈ 1505 and 1387 K for Ni95Si5 and Ni90Si10 alloys, respectively. From the liquidus temperatures down to the deeply undercooled region, the crystal growth velocities of both the alloys rise to the maximum with increasing undercooling and then drop slowly, whereas the athermal growth process presented in elemental Ni is not observed in Ni-Si alloys. Instead, the undercooling dependence of the growth velocity can be well-described by the diffusion-limited model, furthermore, the activation energy associated with the diffusion from melt to interface increases as the concentration increases from 5 to 10 at.% Si, resulting in the remarkable decrease of growth velocity.

  15. Processes of Learning with Regard to Students’ Learning Difficulties in Mathematics

    Directory of Open Access Journals (Sweden)

    Amalija Zakelj

    2014-06-01

    Full Text Available In the introduction, we write about the process of learning mathematics: the development of mathematical concepts, numerical and spatial imagery on reading and understanding of texts, etc. The central part of the paper is devoted to the study, in which we find that identifying the learning processes associated with learning difficulties of students in mathematics, is not statistically significantly different between primary school teachers and teachers of mathematics. Both groups expose the development of numerical concepts, logical reasoning, and reading and understanding the text as the ones with which difficulties in learning mathematics appear the most frequently. All the processes of learning that the teachers assessed as the ones that represent the greatest barriers to learning have a fairly uniform average estimates of the degree of complexity, ranging from 2.6 to 2.8, which is very close to the estimate makes learning very difficult.

  16. Exploring an Integrative Lens of Identity for a High School Mathematics Teacher

    Science.gov (United States)

    Wilson, Kimi

    2016-01-01

    Driven largely by societal discourse regarding the underrepresentation of African American males pursuing science, technology, engineering and mathematics (STEM) majors, careers and professions, it becomes salient to understand how African American males experience mathematics in K-12 public schools in relation to their mathematics identity…

  17. Mathematical Modeling with Middle School Students: The Robot Art Model-Eliciting Activity

    Science.gov (United States)

    Stohlmann, Micah S.

    2017-01-01

    Internationally mathematical modeling is garnering more attention for the benefits associated with it. Mathematical modeling can develop students' communication skills and the ability to demonstrate understanding through different representations. With the increased attention on mathematical modeling, there is a need for more curricula to be…

  18. Mathematics education practice in Nigeria: Its impact in a post-colonial era

    Science.gov (United States)

    Enime, Noble O. J.

    This qualitative research method of study examined the impacts of the Nigerian pre-independence era Mathematics Education Practice on the Post-Colonial era Mathematics Education Practice. The study was designed to gather qualitative information related to Pre-independence and Postcolonial era data related to Mathematics Education Practice in Nigeria (Western, Eastern and the Middle Belt) using interview questions. Data was collected through face to face interviews. Over ten themes emerged from these qualitative interview questions when data was analyzed. Some of the themes emerging from the sub questions were as follows. "Mentally mature to understand the mathematics" and "Not mentally mature to understand the mathematics", "mentally mature to understand the mathematics, with the help of others" and "Not Sure". Others were "Contented with Age of Enrollment" and "Not contented with Age of Enrollment". From the questions of type of school attended and liking of mathematics the following themes emerged: "Attended UPE (Universal Primary Education) and understood Mathematics", and "Attended Standard Education System and did not like Mathematics". Connections between the liking of mathematics and the respondents' eventual careers were seen through the following themes that emerged. "Biological Sciences based career and enjoyed High School Mathematics Experience", "Economics and Business Education based career and enjoyed High School Mathematics Experience" and five more themes. The themes, "Very helpful" and "Unhelpful" emerged from the question concerning parents and students' homework. Some of the themes emerging from the interviews were as follows: "Awesome because of method of Instruction of Mathematics", "Awesome because Mathematics was easy", "Awesome because I had a Good Teacher or Teachers" and four other themes, "Like and dislike of Mathematics", "Heavy work load", "Subject matter content" and "Rigor of instruction". More emerging themes are presented in this

  19. Advanced mathematics communication beyond modality of sight

    Science.gov (United States)

    Sedaghatjou, Mina

    2018-01-01

    This study illustrates how mathematical communication and learning are inherently multimodal and embodied; hence, sight-disabled students are also able to conceptualize visuospatial information and mathematical concepts through tactile and auditory activities. Adapting a perceptuomotor integration approach, the study shows that the lack of access to visual fields in an advanced mathematics course does not obstruct a blind student's ability to visualize, but transforms it. The goal of this study is not to compare the visually impaired student with non-visually impaired students to address the 'differences' in understanding; instead, I discuss the challenges that a blind student, named Anthony, has encountered and the ways that we tackled those problems. I also demonstrate how the proper and precisely crafted tactile materials empowered Anthony to learn mathematical functions.

  20. Learning to Calculate and Learning Mathematics.

    Science.gov (United States)

    Fearnley-Sander, Desmond

    1980-01-01

    A calculator solution of a simple computational problem is discussed with emphasis on its ramifications for the understanding of some fundamental theorems of pure mathematics and techniques of computing. (Author/MK)

  1. The motivation of lifelong mathematics learning

    Science.gov (United States)

    Hashim Ali, Siti Aishah

    2013-04-01

    As adults, we have always learned throughout our life, but this learning is informal. Now, more career-switchers and career-upgraders who are joining universities for further training are becoming the major group of adult learners. This current situation requires formal education in courses with controlled output. Hence, lifelong learning is seen as a necessity and an opportunity for these adult learners. One characteristic of adult education is that the learners tend to bring with them life experience from their past, especially when learning mathematics. Most of them associate mathematics with the school subjects and unable to recognize the mathematics in their daily practice as mathematics. They normally place a high value on learning mathematics because of its prominent role in their prospective careers, but their learning often requires overcoming personal experience and motivating themselves to learn mathematics again. This paper reports on the study conducted on a group of adult learners currently pursuing their study. The aim of this study is to explore (i) the motivation of the adult learners continuing their study; and (ii) the perception and motivation of these learners in learning mathematics. This paper will take this into account when we discuss learners' perception and motivation to learning mathematics, as interrelated phenomena. Finding from this study will provide helpful insights in understanding the learning process and adaption of adult learners to formal education.

  2. Didactital design of mathematics teaching in primary school

    Science.gov (United States)

    Nur’aeni, E.; Muharram, M. R. W.

    2018-05-01

    The fact that the low ability of geometrical understanding of primary school students is what triggers this study to be conducted. Thus, this research aimed to find out how to create a didactical design of students' mathematical understanding, particularly on one of geometry materials that is unit of length. A qualitative approach promoting Didactical Design Research (DDR) was administered in this study. Participants of the study were primary school students in Tasikmalaya, an city in West Java Province, Indonesia. The results show that there was a learning design based on learning obstacles found in the mathematics teaching and learning processes. The learning obstacles comprised students' difficulties in memorizing, relating, and operating the standards of unit of lengths. It has been proven that the most influential factor in the success of mathematics teaching and learning processes is the use of creative media.

  3. Socio-functional dynamics of the mathematical contents

    Directory of Open Access Journals (Sweden)

    Isabel Alonso-Berenguer

    2018-01-01

    Full Text Available The article presents a model of the socio-functional dynamics of the mathematical contents that offers a novel theoretical-methodological basement for the development of the process of teaching-learning of the mathematical one. The investigation, of theoretical character, used the methods of analysis-synthesis, inductive-deductive and historical-logical to elaborate the one mentioned model that leaves of considering that the future professors have appropriated previously of the mathematical contents, foreseen in the curriculum, and they are, therefore, under conditions of understanding the potentialities of the same ones to facilitate the formation of socio-functional values.   

  4. Mathematics education and students with learning disabilities: introduction to the special series.

    Science.gov (United States)

    Rivera, D P

    1997-01-01

    The prevalence of students with mathematics learning disabilities has triggered an interest among special education researchers and practitioners in developing an understanding of the needs of this group of students, and in identifying effective instructional programming to foster their mathematical performance during the school years and into adulthood. Research into the characteristics of students with mathematics learning disabilities is being approached from different perspectives, including developmental, neurological and neuropsychological, and educational. This diversity helps us develop a broader understanding of students' learning needs and difficulties. Special education assessment practices encompass a variety of approaches, including norm-referenced, criterion-referenced, and nonstandardized procedures, depending on the specific assessment questions professionals seek to answer. Students' mathematical knowledge and conceptual understanding must be examined to determine their strengths and weaknesses, curriculum-based progress, and use of cognitive strategies to arrive at mathematical solutions. Research findings have identified empirically validated interventions for teaching mathematics curricula to students with mathematics learning disabilities. Research studies have been grounded in behavioral theory and cognitive psychology, with an emergent interest in the constructivist approach. Although research studies have focused primarily on computational performance, more work is being conducted in the areas of story-problem solving and technology. These areas as well as other math curricular skills require further study. Additionally, the needs of adults with math LD have spurred educators to examine the elementary and secondary math curricula and determine ways to infuse them with life skills instruction accordingly. As the field of mathematics special education continues to evolve, special educators must remain cognizant of the developments in and

  5. Interactive Whiteboards in Mathematics Teaching: A Literature Review

    Directory of Open Access Journals (Sweden)

    Mauro De Vita

    2014-01-01

    Full Text Available An interactive whiteboard (IWB is a relatively new tool that provides interesting affordances in the classroom environment, such as multiple visualization and multimedia presentation and ability for movement and animation. These affordances make IWBs an innovative tool with high potential for mathematics instructional environments. IWBs can be used to focus on the development of specific mathematical concepts and to improve mathematical knowledge and understanding. The aim of this paper is to review the existing literature upon the use of interactive whiteboards (IWBs in mathematics classrooms. The reviewed studies offer a wide view of IWBs’ affordances, of the more interesting didactic practices, and of the difficulties of embedding this new technology in the classroom. The capabilities of IWBs to enhance the quality of interaction, and, consequently, to improve conceptual mathematical understanding are broadly recognized. Despite these capabilities, evidence from the studies points to a certain inertia on the part of many teachers to do anything else than use IWBs as large-scale visual blackboards or presentation tools. The emerging view of how to attempt to overcome these obstacles is that there is need for greater attention to the pedagogy associated with IWB use and, more specifically, to stimulate the design of new kinds of learning environments.

  6. Some Applications of Mathematics for the Biology Classroom

    Science.gov (United States)

    Horton, Robert M.; Leonard, William H.

    2013-01-01

    Biology and mathematics are inextricably linked. In this article, we show a few of the many areas in which this linkage might be made explicit. By doing so, teachers can deepen students' understanding and appreciation of both subjects. In this article, we explore some of these areas, providing brief explanations of the mathematics and some of the…

  7. A Multifaceted Mathematical Approach for Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, F.; Anitescu, M.; Bell, J.; Brown, D.; Ferris, M.; Luskin, M.; Mehrotra, S.; Moser, B.; Pinar, A.; Tartakovsky, A.; Willcox, K.; Wright, S.; Zavala, V.

    2012-03-07

    Applied mathematics has an important role to play in developing the tools needed for the analysis, simulation, and optimization of complex problems. These efforts require the development of the mathematical foundations for scientific discovery, engineering design, and risk analysis based on a sound integrated approach for the understanding of complex systems. However, maximizing the impact of applied mathematics on these challenges requires a novel perspective on approaching the mathematical enterprise. Previous reports that have surveyed the DOE's research needs in applied mathematics have played a key role in defining research directions with the community. Although these reports have had significant impact, accurately assessing current research needs requires an evaluation of today's challenges against the backdrop of recent advances in applied mathematics and computing. To address these needs, the DOE Applied Mathematics Program sponsored a Workshop for Mathematics for the Analysis, Simulation and Optimization of Complex Systems on September 13-14, 2011. The workshop had approximately 50 participants from both the national labs and academia. The goal of the workshop was to identify new research areas in applied mathematics that will complement and enhance the existing DOE ASCR Applied Mathematics Program efforts that are needed to address problems associated with complex systems. This report describes recommendations from the workshop and subsequent analysis of the workshop findings by the organizing committee.

  8. Mathematics and the laws of nature

    CERN Document Server

    Tabak, John

    2004-01-01

    Examining the pioneering ideas, works, and applications that have made math the language of science, Mathematics and the Laws of Nature looks at the many ways in which so-called ''''pure'''' math has been used in the applied sciences. For example, the volume explores how mathematical theories contributed to the development of Kepler''s laws of planetary motion, as well as to that of combustion modeling and hydrodynamics. Offering many examples showing how nature can be described mathematically and how the physical sciences and math are connected, this attention-holding and easy-to-understand volume gives students an insight into the ways that math is used to explain the world around them.

  9. An Integrated Approach to Mathematical Modeling: A Classroom Study.

    Science.gov (United States)

    Doerr, Helen M.

    Modeling, simulation, and discrete mathematics have all been identified by professional mathematics education organizations as important areas for secondary school study. This classroom study focused on the components and tools for modeling and how students use these tools to construct their understanding of contextual problems in the content area…

  10. The Process of Student Cognition in Constructing Mathematical Conjecture

    Science.gov (United States)

    Astawa, I. Wayan Puja; Budayasa, I. Ketut; Juniati, Dwi

    2018-01-01

    This research aims to describe the process of student cognition in constructing mathematical conjecture. Many researchers have studied this process but without giving a detailed explanation of how students understand the information to construct a mathematical conjecture. The researchers focus their analysis on how to construct and prove the…

  11. Deeply Virtual Compton Scattering off a deuterium target at the HERMES experiment

    Energy Technology Data Exchange (ETDEWEB)

    Movsisyan, Aram

    2011-05-15

    Deeply virtual Compton scattering is studied in this report, using all data collected at the HERMES experiment from 1996 to 2005. Azimuthal asymmetries with respect to beam-helicity, beam-charge and target polarization alone and also to their different combinations for hard exclusive electroproduction of real photons in deep-inelastic scattering from a both unpolarized and longitudinally polarized deuterium targets are measured. The asymmetries are attributed to the interference between the deeply virtual Compton scattering and Bethe-Heitler processes. The asymmetries are observed in the exclusive region -(1.5){sup 2} GeV{sup 2}

  12. Prospective Teachers' Understandings: Function and Composite Function.

    Science.gov (United States)

    Meel, David E.

    2003-01-01

    The current education reform efforts place greater emphasis on conceptual understanding and focus attention on teacher preparation, especially on the adequacy of teachers' mathematical knowledge of the material they will be teaching. This paper discusses the responses of 20 prospective elementary and special education mathematics specialists to…

  13. The use of mathematical models in teaching wastewater treatment engineering

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Arvin, Erik; Vanrolleghem, P.

    2002-01-01

    Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models...... efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available....

  14. Understanding geometric algebra for electromagnetic theory

    CERN Document Server

    Arthur, John W

    2011-01-01

    "This book aims to disseminate geometric algebra as a straightforward mathematical tool set for working with and understanding classical electromagnetic theory. It's target readership is anyone who has some knowledge of electromagnetic theory, predominantly ordinary scientists and engineers who use it in the course of their work, or postgraduate students and senior undergraduates who are seeking to broaden their knowledge and increase their understanding of the subject. It is assumed that the reader is not a mathematical specialist and is neither familiar with geometric algebra or its application to electromagnetic theory. The modern approach, geometric algebra, is the mathematical tool set we should all have started out with and once the reader has a grasp of the subject, he or she cannot fail to realize that traditional vector analysis is really awkward and even misleading by comparison"--Provided by publisher.

  15. Improving of Junior High School Visual Thinking Representation Ability in Mathematical Problem Solving by CTL

    Science.gov (United States)

    Surya, Edy; Sabandar, Jozua; Kusumah, Yaya S.; Darhim

    2013-01-01

    The students' difficulty which was found is in the problem of understanding, drawing diagrams, reading the charts correctly, conceptual formal mathematical understanding, and mathematical problem solving. The appropriate problem representation is the basic way in order to understand the problem itself and make a plan to solve it. This research was…

  16. Earthquake response of nuclear reactor buildings deeply embedded in soil

    International Nuclear Information System (INIS)

    Masao, T.; Takasaki, Y.; Hirasawa, M.; Okajima, M.; Yamamoto, S.; Kawata, E.; Koori, Y.; Ochiai, S.; Shimizu, N.

    1980-01-01

    This paper is concerned with experimental and analytical studies to investigate dynamic behavior of deeply embedded structures such as nuclear reactor buildings. The principal points studied are as follows: (1) Examination of stiffness and radiation damping effects according to embedded depth, (2) verification for distributions of earth pressure according to embedded depth, (3) differences of response characteristics during oscillation according to embedded depth, and (4) proposal of an analytical method for seismic design. Experimental studies were performed by two ways: forced vibration test, and earthquake observation against a rigid body model embedded in soil. Three analytical procedures were performed to compare experimental results and to examine the relation between each procedure. Finally, the dynamic behavior for nuclear reactor buildings with different embedded depths were evaluated by an analytical method. (orig.)

  17. Jet shapes in charm photoproduction and deeply inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Grell, Brian Rosenvold

    2010-09-01

    This analysis investigates charm production processes in photoproduction and deeply inelastic scattering. The analysed data was collected with the H1 detector at the HERA accelerator in the years 1999-2000 for photoproduction and 2004-2007 for deeply inelastic scattering, corresponding to integrated luminosities of 83 pb -1 , respectively 348 pb -1 . Dijet events are selected with jet transverse momenta of at least 5 GeV, respectively 4 GeV, in the central rapidity region. One jet is tagged by a D * meson to be initiated by a charm quark. The other is studied with respect to its mean integrated jet shape in order to deduce to which fraction it is initiated by a quark or a gluon. The jet shape is described by the fraction ψ(r) of the jet energy inside a cone of radius r around the jet axis; it is found that for r=0:6, ψ(r) is most sensitive to differences between charm and light quark or gluon jets. The shape is measured as a function of various kinematic variables such as the jet energy and pseudorapidity, photon virtuality and x γ obs , the fraction of the photon momentum entering the hard interaction. The photoproduction data is compared to Pythia, the DIS data to RapGap Monte Carlo simulations. In the Monte Carlo calculation, direct and resolved photon processes are simulated separately to compare samples with an enriched fraction of quark, respectively gluon initiated jets. Deviations at low x γ obs are observed for higher values of Q 2 , where direct and resolved expectations are nearly identical, hinting at an overestimation of gluon initiated jets. In most regions of phase space though, the resolution of the measurement excels the difference between direct and resolved predictions, allowing a distinction of such event samples. (orig.)

  18. Jet shapes in charm photoproduction and deeply inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Grell, Brian Rosenvold

    2010-09-15

    This analysis investigates charm production processes in photoproduction and deeply inelastic scattering. The analysed data was collected with the H1 detector at the HERA accelerator in the years 1999-2000 for photoproduction and 2004-2007 for deeply inelastic scattering, corresponding to integrated luminosities of 83 pb{sup -1}, respectively 348 pb{sup -1}. Dijet events are selected with jet transverse momenta of at least 5 GeV, respectively 4 GeV, in the central rapidity region. One jet is tagged by a D{sup *} meson to be initiated by a charm quark. The other is studied with respect to its mean integrated jet shape in order to deduce to which fraction it is initiated by a quark or a gluon. The jet shape is described by the fraction {psi}(r) of the jet energy inside a cone of radius r around the jet axis; it is found that for r=0:6, {psi}(r) is most sensitive to differences between charm and light quark or gluon jets. The shape is measured as a function of various kinematic variables such as the jet energy and pseudorapidity, photon virtuality and x{sub {gamma}}{sup obs}, the fraction of the photon momentum entering the hard interaction. The photoproduction data is compared to Pythia, the DIS data to RapGap Monte Carlo simulations. In the Monte Carlo calculation, direct and resolved photon processes are simulated separately to compare samples with an enriched fraction of quark, respectively gluon initiated jets. Deviations at low x{sub {gamma}}{sup obs} are observed for higher values of Q{sup 2}, where direct and resolved expectations are nearly identical, hinting at an overestimation of gluon initiated jets. In most regions of phase space though, the resolution of the measurement excels the difference between direct and resolved predictions, allowing a distinction of such event samples. (orig.)

  19. Predicting Relationships between Mathematics Anxiety, Mathematics Teaching Anxiety, Self-efficacy Beliefs towards Mathematics and Mathematics Teaching

    OpenAIRE

    Unlu, Melihan; Ertekin, Erhan; Dilmac, Bulent

    2017-01-01

    The purpose of the research is to investigate the relationships betweenself-efficacy beliefs toward mathematics, mathematics anxiety and self-efficacybeliefs toward mathematics teaching, mathematics teaching anxiety variables andtesting the relationships between these variables with structural equationmodel. The sample of the research, which was conducted in accordance withrelational survey model, consists of 380 university students, who studied atthe department of Elementary Mathematics Educ...

  20. Mathematics learning on geometry for children with autism

    Science.gov (United States)

    Widayati, F. E.; Usodo, B.; Pamudya, I.

    2017-12-01

    The purpose of this research is to describe: (1) the mathematics learning process in an inclusion class and (2) the obstacle during the process of mathematics learning in the inclusion class. This research is a descriptive qualitative research. The subjects were a mathematics teacher, children with autism, and a teacher assistant. Method of collecting data was observation and interview. Data validation technique is triangulation technique. The results of this research are : (1) There is a modification of lesson plan for children with autism. This modification such as the indicator of success, material, time, and assessment. Lesson plan for children with autism is arranged by mathematics teacher and teacher assistant. There is no special media for children with autism used by mathematics teacher. (2) The obstacle of children with autism is that they are difficult to understand mathematics concept. Besides, children with autism are easy to lose their focus.

  1. Emphasis on Conceptual Knowledge and Its Impact on Mathematics Anxiety for Community College Students

    Science.gov (United States)

    Khoule, Alioune

    2013-01-01

    The study investigated the relationship between conceptual knowledge and mathematics anxiety of remedial mathematics students in an urban community college. The impact that conceptual understanding has on mathematics achievement was also examined. The study sample consisted of 105 remedial mathematics students from four elementary algebra courses.…

  2. Public Conceptions of Algorithms and Representations in the Common Core State Standards for Mathematics

    Science.gov (United States)

    Nanna, Robert J.

    2016-01-01

    Algorithms and representations have been an important aspect of the work of mathematics, especially for understanding concepts and communicating ideas about concepts and mathematical relationships. They have played a key role in various mathematics standards documents, including the Common Core State Standards for Mathematics. However, there have…

  3. Transport theory for deeply inelastic heavy-ion collisions within the statistical model

    International Nuclear Information System (INIS)

    Shlomo, S.

    1978-01-01

    The theory I am going to describe has been developed recently by Agassi, Ko and Weidenmueller. It is based on a random-matrix model for the form factor (FF) which couples a collective degree of freedom, taken to be the distance anti r between the two ions, with the intrinsic degrees of freedom. This study of dissipative phenomena in a microsystem was triggered by the success of the simple friction and diffusion models in describing experimental data on deeply inelastic collisions. I plan to describe the underlying physical assumptions, to outline the theoretical developments and to show some very recent results. (orig.) [de

  4. Students’ mathematical learning in modelling activities

    DEFF Research Database (Denmark)

    Kjeldsen, Tinne Hoff; Blomhøj, Morten

    2013-01-01

    Ten years of experience with analyses of students’ learning in a modelling course for first year university students, led us to see modelling as a didactical activity with the dual goal of developing students’ modelling competency and enhancing their conceptual learning of mathematical concepts i...... create and help overcome hidden cognitive conflicts in students’ understanding; that reflections within modelling can play an important role for the students’ learning of mathematics. These findings are illustrated with a modelling project concerning the world population....

  5. Playing with Mathematics: Play in Early Childhood as a Context for Mathematical Learning

    Science.gov (United States)

    Mathematics Education Research Group of Australasia, 2010

    2010-01-01

    Play is an essential part of young children's lives. This symposium highlights the integral role of play in young children's mathematics learning and examines the teacher's role in facilitating and extending this. Papers examine key tenets of play, contributing to theoretical understandings and presenting data on teacher's perceptions of play and…

  6. Analyzing the Teaching of Advanced Mathematics Courses via the Enacted Example Space

    Science.gov (United States)

    Fukawa-Connelly, Timothy Patrick; Newton, Charlene

    2014-01-01

    Examples are believed to be very important in developing conceptual understanding of mathematical ideas, useful both in mathematics research and instruction (Bills & Watson in "Educational Studies in Mathematics" 69:77-79, 2008; Mason & Watson, 2008; Bills & Tall, 1998; Tall & Vinner, 1981). In this study, we draw on the…

  7. Basic mathematics for biochemists

    CERN Document Server

    Cornish-Bowden, Athel

    1981-01-01

    Some teachers of biochemistry think it positively beneficial for students to struggle with difficult mathematics. I do not number myself among these people, although I have derived much personal pleasure from the study of mathematics and from applying it to problems that interest me in biochemistry. On the contrary, I think that students choose courses in biochemistry out of interest in biochemistry and that they should not be encumbered with more mathematics than is absolutely required for a proper understanding of biochemistry. This of course includes physical chemistry, because a biochemist ignorant of physical chemistry is no biochemist. I have been guided by these beliefs in writing this book. I have laid heavy emphasis on those topics, such as the use of logarithms, that play an important role in biochemistry and often cause problems in teaching; I have ignored others, such as trigonometry, that one can manage without. The proper treatment of statistics has been more difficult to decide. Although it cle...

  8. There is More to the Teaching and Learning of Mathematics Than the Use of Local Languages: Mathematics Teacher Practices

    Directory of Open Access Journals (Sweden)

    Nancy Chitera

    2016-11-01

    Full Text Available In this article, we present a discussion about the type of mathematical discourse that is being produced in classrooms where the language of learning and teaching is local languages.  We also further explore the tensions in the mathematical discourse being produced. The study sample was 4 mathematics teachers from a semi-urban primary school in Malawi. The methods of data collection included classroom observations, pre-observation focus group discussions and reflective interviews. The results show that even though both students and teachers were able to communicate freely in local languages in the mathematics classroom, the mathematical discourse that came was distorted. This is mainly caused by lack of a well-developed mathematical discourse in local languages, which in turn takes away the confidence of mathematics teachers in the classroom. As a result, the mathematics classrooms are still being characterized by teachers not being creative, use of word by word from books, focus more on procedural than conceptual and thus teacher centered is still dominant in these classrooms. Furthermore, it is found that there are tensions between the formal and informal mathematical language in local languages. These results in turn have promoted a more in-depth understanding to the teaching and learning of mathematics when local language is the language of learning and teaching. Therefore, this article argues for a well-balanced approach when it comes to teaching and learning of mathematics rather than just focusing on the use of local languages.

  9. Nominalism and constructivism in seventeenth-century mathematical philosophy

    CERN Document Server

    Sepkoski, David

    2013-01-01

    What was the basis for the adoption of mathematics as the primary mode of discourse for describing natural events by a large segment of the philosophical community in the seventeenth century? In answering this question, this book demonstrates that a significant group of philosophers shared the belief that there is no necessary correspondence between external reality and objects of human understanding, which they held to include the objects of mathematical and linguistic discourse. The result is a scholarly reliable, but accessible, account of the role of mathematics in the works of (

  10. Students' Understanding of Exponential and Logarithmic Functions.

    Science.gov (United States)

    Weber, Keith

    Exponential, and logarithmic functions are pivotal mathematical concepts that play central roles in advanced mathematics. Unfortunately, these are also concepts that give students serious difficulty. This report describe a theory of how students acquire an understanding of these functions by prescribing a set of mental constructions that a student…

  11. Improving of Junior High School Visual Thinking Representation Ability in Mathematical Problem Solving by CTL

    Directory of Open Access Journals (Sweden)

    Edy Surya

    2013-01-01

    Full Text Available The students’  difficulty which was found is in the problem of understanding, drawing diagrams, reading the charts correctly, conceptual formal  mathematical understanding, and  mathematical problem solving. The appropriate problem representation is the basic way in order to understand the problem itself and make a plan to solve it. This research was the experimental classroom design with a pretest-posttest control in order to increase the representation of visual thinking ability on mathematical problem solving approach  with  contextual learning. The research instrument was a test, observation and interviews. Contextual approach increases of mathematical representations ability increases in students with high initial category, medium, and low compared to conventional approaches. Keywords: Visual Thinking Representation, Mathematical  Problem Solving, Contextual Teaching Learning Approach DOI: http://dx.doi.org/10.22342/jme.4.1.568.113-126

  12. Undergraduate Students' Perceptions of the Mathematics Courses Included in the Primary School Teacher Education Program

    Science.gov (United States)

    Serin, Mehmet Koray; Incikabi, Semahat

    2017-01-01

    Mathematics educators have reported on many issues regarding students' mathematical education, particularly students who received mathematics education at different departments such as engineering, science or primary school, including their difficulties with mathematical concepts, their understanding of and preferences for mathematical concepts.…

  13. Investigating Students' Mathematical Difficulties with Quadratic Equations

    Science.gov (United States)

    O'Connor, Bronwyn Reid; Norton, Stephen

    2016-01-01

    This paper examines the factors that hinder students' success in working with and understanding the mathematics of quadratic equations using a case study analysis of student error patterns. Twenty-five Year 11 students were administered a written test to examine their understanding of concepts and procedures associated with this topic. The…

  14. A Cross-Layer Framework for Designing and Optimizing Deeply-Scaled FinFET-Based Cache Memories

    Directory of Open Access Journals (Sweden)

    Alireza Shafaei

    2015-08-01

    Full Text Available This paper presents a cross-layer framework in order to design and optimize energy-efficient cache memories made of deeply-scaled FinFET devices. The proposed design framework spans device, circuit and architecture levels and considers both super- and near-threshold modes of operation. Initially, at the device-level, seven FinFET devices on a 7-nm process technology are designed in which only one geometry-related parameter (e.g., fin width, gate length, gate underlap is changed per device. Next, at the circuit-level, standard 6T and 8T SRAM cells made of these 7-nm FinFET devices are characterized and compared in terms of static noise margin, access latency, leakage power consumption, etc. Finally, cache memories with all different combinations of devices and SRAM cells are evaluated at the architecture-level using a modified version of the CACTI tool with FinFET support and other considerations for deeply-scaled technologies. Using this design framework, it is observed that L1 cache memory made of longer channel FinFET devices operating at the near-threshold regime achieves the minimum energy operation point.

  15. History of mathematics and history of science reunited?

    Science.gov (United States)

    Gray, Jeremy

    2011-09-01

    For some years now, the history of modern mathematics and the history of modern science have developed independently. A step toward a reunification that would benefit both disciplines could come about through a revived appreciation of mathematical practice. Detailed studies of what mathematicians actually do, whether local or broadly based, have often led in recent work to examinations of the social, cultural, and national contexts, and more can be done. Another recent approach toward a historical understanding of the abstractness of modern mathematics has been to see it as a species of modernism, and this thesis will be tested by the raft of works on the history of modern applied mathematics currently under way.

  16. Towards a Culturally Sensitive and Deeper Understanding of "Rote Learning" and Memorisation of Adult Learners

    Science.gov (United States)

    Tan, Po-Li

    2011-01-01

    This article aims to provide evidence that "rote learning" or "memorisation" is a complex construct and is deeply embedded in the East Asian culture. An in-depth understanding of this learning approach is increasingly crucial considering the complex demography of contemporary higher education nowadays. Not only is there a rise…

  17. Deeply Virtual Compton Scattering and its Beam Charge Asymmetry in $e^{\\pm} p$ Collisions at HERA

    CERN Document Server

    Aaron, F.D.; Alexa, C.; Alimujiang, K.; Andreev, V.; Antunovic, B.; Backovic, S.; Baghdasaryan, A.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Belousov, A.; Bizot, J.C.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eliseev, A.; Elsen, E.; Falkiewicz, A.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.-J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Glazov, A.; Glushkov, I.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jonsson, L.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kluge, T.; Knutsson, A.; Kogler, R.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kutak, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Mudrinic, M.; Muller, K.; Murin, P.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nowak, K.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Pejchal, O.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Povh, B.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rurikova, Z.; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, Ivan; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, Arnd E.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; von den Driesch, M.; Wegener, D.; Wissing, Ch.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.; Zus, R.

    2009-01-01

    A measurement of elastic deeply virtual Compton scattering gamma* p -> gamma p using e^+ p and e^- p collision data recorded with the H1 detector at HERA is presented. The analysed data sample corresponds to an integrated luminosity of 306 pb^-1, almost equally shared between both beam charges. The cross section is measured as a function of the virtuality Q^2 of the exchanged photon and the centre-of-mass energy W of the gamma* p system in the kinematic domain 6.5 < Q^2 < 80 GeV^2, 30 < W < 140 GeV and |t| < 1 GeV^2, where t denotes the squared momentum transfer at the proton vertex. The cross section is determined differentially in t for different Q^2 and W values and exponential t-slope parameters are derived. Using e^+ p and e^- p data samples, a beam charge asymmetry is extracted for the first time in the low Bjorken x kinematic domain. The observed asymmetry is attributed to the interference between Bethe-Heitler and deeply virtual Compton scattering processes. Experimental results are dis...

  18. Mathematics education and the dignity of being

    Directory of Open Access Journals (Sweden)

    Paola Valero

    2012-11-01

    Full Text Available On the grounds of our work as researchers, teacher educators and teachers engaging with a socio-political approach in mathematics education in Colombia, we propose to understand democracy in terms of the possibility of constructing a social subjectivity for the dignity of being. We address the dilemma of how the historical insertion of school mathematics in relation to the Colonial project of assimilation of Latin American indigenous peoples into the episteme of the Enlightenment and Modernity is in conflict with the possibility of the promotion of a social subjectivity in mathematics classrooms. We illustrate a pedagogical possibility to move towards a mathematics education for social subjectivity with our work in reassembling the notion of geometrical space in the Colombian secondary school mathematics curriculum with notions of space from critical geography and the problem of territorialisation, and Latin American epistemology with the notion of intimate space as an important element of social subjectivity.

  19. Wittgenstein, finitism, and the foundations of mathematics

    CERN Document Server

    Marion, Mathieu

    2008-01-01

    Mathieu Marion traces the development of Wittgenstein''s thinking from the 1920s through to the 1950s, in the context of the mathematical and philosophical work of the time, making sense of ideas that have often been misunderstood. He shows that study of Wittgenstein''s writings on mathematics is essential to a proper understanding of his philosophy. - ;Mathieu Marion offers a careful, historically informed study of Wittgenstein''s philosophy of mathematics. This area of his work has frequently been undervalued by Wittgenstein specialists and by philosophers of mathematics alike; but the surprising fact that he wrote more on this subject than on any other indicates its centrality in his thought. Marion traces the development of Wittgenstein''s thinking in the context of the mathematical and philosophical work of the times, to make. coherent sense of ideas that have too often been misunderstood because they have been presented in a disjointed and incomplete way. In particular, he illuminates the work of the ne...

  20. International Conference on Applied Mathematics and Informatics

    CERN Document Server

    Vasilieva, Olga

    2015-01-01

    This book highlights recent compelling research results and trends in various aspects of contemporary mathematics, emphasizing applications to real-world situations. The chapters present exciting new findings and developments in situations where mathematical rigor is combined with common sense. A multi-disciplinary approach, both within each chapter and in the volume as a whole, leads to practical insights that may result in a more synthetic understanding of specific global issues—as well as their possible solutions. The volume will be of interest not only to experts in mathematics, but also to graduate students, scientists, and practitioners from other fields including physics, biology, geology, management, and medicine.

  1. CULTUROLOGICAL APPROACH AS METHODOLOGICAL BASIS OF MATHEMATICAL EDUCATION

    Directory of Open Access Journals (Sweden)

    Ye. A. Perminov

    2017-01-01

    Full Text Available Introduction. Today, in the era of a mathematization of science and total expansion of digital technologies, mass mathematical education becomes a necessary part of culture of every person. However, there are some serious obstacles to formation and development of general mathematical culture: insufficient understanding of its importance by society and the state; fragmentary-clipconsciousness, emerging among representatives of the younger generation under the influence of the Internet, and preventing formation of a complete picture of the modern world; traditional system of disjointed subjects and courses in school, secondary vocational and high school mathematics education; non-cognitive (automatic transferring of the approaches, principles, technologies and techniques into training which are not specific in order to master a course. Development of sociological, axiological and especially culturological aspects of mathematical methodology is required for the solution of the urgent problems of methodology in mathematical education.The aim of the publication is to discuss methodological aspects of culturological approach realization in mathematical education.Methodology and research methods. The theoretical scientific methods of the present article involve analysis and synthesis of the content of philosophical, mathematical, pedagogical, methodological literature and normative documents; comparative, culturological and logical types of analysis of mathematical education; systematic, competence-based, practice-oriented and personal-activity metho-dological approaches were used to understand the concept of mathematical education.Results and scientific novelty. The practicability and leading role of culturological approach to promoting mathematical knowledge is proved from historical, philosophical and pedagogical positions. It is stated that objective conceptualization of progressive ideas and new methods of mathematical science and mathematical

  2. Math in plain english literacy strategies for the mathematics classroom

    CERN Document Server

    Benjamin, Amy

    2013-01-01

    Do word problems and math vocabulary confuse students in your mathematics classes? Do simple keywords like ""value"" and ""portion"" seem to mislead them? Many words that students already know can have a different meaning in mathematics. To grasp that difference, students need to connect English literacy skills to math. Successful students speak, read, write, and listen to each other so they can understand, retain, and apply mathematics concepts. This book explains how to use 10 classroom-ready literacy strategies in concert with your mathematics instruction. You'll learn how to develop stude

  3. Predicting Relationships between Mathematics Anxiety, Mathematics Teaching Anxiety, Self-Efficacy Beliefs towards Mathematics and Mathematics Teaching

    Science.gov (United States)

    Unlu, Melihan; Ertekin, Erhan; Dilmac, Bulent

    2017-01-01

    The purpose of the research is to investigate the relationships between self-efficacy beliefs toward mathematics, mathematics anxiety and self-efficacy beliefs toward mathematics teaching, mathematics teaching anxiety variables and testing the relationships between these variables with structural equation model. The sample of the research, which…

  4. Mathematical modelling of metabolism

    DEFF Research Database (Denmark)

    Gombert, Andreas Karoly; Nielsen, Jens

    2000-01-01

    Mathematical models of the cellular metabolism have a special interest within biotechnology. Many different kinds of commercially important products are derived from the cell factory, and metabolic engineering can be applied to improve existing production processes, as well as to make new processes...... availability of genomic information and powerful analytical techniques, mathematical models also serve as a tool for understanding the cellular metabolism and physiology....... available. Both stoichiometric and kinetic models have been used to investigate the metabolism, which has resulted in defining the optimal fermentation conditions, as well as in directing the genetic changes to be introduced in order to obtain a good producer strain or cell line. With the increasing...

  5. Earthquake response characteristics of large structure 'JOYO' deeply embedded in quaternary ground, (3)

    International Nuclear Information System (INIS)

    Yajima, Hiroshi; Sawada, Yoshihiro; Hanada, Kazutake; Sawada, Makoto.

    1987-01-01

    In order to examine aseismicity of embedded structure and to clarify embedment effect, earthquake observations of the large structure 'JOYO' are carried out which is deeply embedded in quaternary ground, and the results are summarized as follows. (1) Amplification factors of horizontal component in ground surface is about 3 to 4 times against the bedrock. Contrastively on the structure, any amplification is not observed at the underground portion, however, little amplification exists at the ground portion of structure. (2) Transfer function of structure has several predominant peaks at frequencies of 4.3 Hz and 8.0 Hz which are well coincided with values obtained from force excitation tests. It is shown that transfer function between basement and ground surface is similar to that between ground of same level to basement and ground surface, suggesting the behavior of basement to be able to estimate by these under ground earthquake motion. (3) According to earthquake motion analysis using S-R models, without regard to consider or not the side ground stiffness, the calculated response values do not so much differ in each model and mostly correspond with observation data, provided that the underground earthquake motion at same level to basement is used as a input wave. Consequently, the behavior of these deeply embedded structure is subject to setting method of input wave rather than modeling method, and it is very useful in design that the most simple model without side ground stiffness can roughly represent the embedment effect. (author)

  6. Discrete thoughts essays on mathematics, science, and philosophy

    CERN Document Server

    Kac, Mark; Schwartz, Jacob T

    1992-01-01

    This is a volume of essays and reviews that delightfully explore mathematics in all its moods — from the light and the witty, and humorous to serious, rational, and cerebral. Topics include: logic, combinatorics, statistics, economics, artificial intelligence, computer science, and applications of mathematics broadly. You will also find history and philosophy covered, including discussion of the work of Ulam, Kant, Heidegger among others. "...these papers reflect on mathematics and its influence on human society. They can help the specialist to notice what is going on around him, and they may lead educated people from other domains to a better understanding of mathematics. Many of these papers can advise educators how to form a modern mathematics education, which develops approved ideas and institutions...I admire the stimulating perspectives of the authors."---American Mathematical Society "‘Mathematicians, like Proust and everyone else, are at their best when writing about their first love’ … They a...

  7. Prospective mathematics teachers' understanding of the base concept

    Science.gov (United States)

    Horzum, Tuğba; Ertekin, Erhan

    2018-02-01

    The purpose of this study is to analyze what kind of conceptions prospective mathematics teachers(PMTs) have about the base concept(BC). One-hundred and thirty-nine PMTs participated in the study. In this qualitative research, data were obtained through open-ended questions, the semi-structured interviews and pictures of geometric figures drawn by PMTs. As a result, it was determined that PMTs dealt with the BC in a broad range of seven different images. It was also determined that the base perception of PMTs was limited mostly to their usage in daily life and in this context, they have position-dependent and word-dependent images. It was also determined that PMTs named the base to explain the BC or paid attention to the naming of three-dimensional geometric figures through the statement: 'objects are named according to their bases'. At the same time, it was also determined that PMTs had more than one concept imageswhich were contradicting with each other. According to these findings, potential explanations and advices were given.

  8. An introduction to mathematical modeling a course in mechanics

    CERN Document Server

    Oden, Tinsley J

    2011-01-01

    A modern approach to mathematical modeling, featuring unique applications from the field of mechanics An Introduction to Mathematical Modeling: A Course in Mechanics is designed to survey the mathematical models that form the foundations of modern science and incorporates examples that illustrate how the most successful models arise from basic principles in modern and classical mathematical physics. Written by a world authority on mathematical theory and computational mechanics, the book presents an account of continuum mechanics, electromagnetic field theory, quantum mechanics, and statistical mechanics for readers with varied backgrounds in engineering, computer science, mathematics, and physics. The author streamlines a comprehensive understanding of the topic in three clearly organized sections: Nonlinear Continuum Mechanics introduces kinematics as well as force and stress in deformable bodies; mass and momentum; balance of linear and angular momentum; conservation of energy; and constitutive equation...

  9. Experimental Demonstration of Effective Medium Approximation Breakdown in Deeply Subwavelength All-Dielectric Multilayers

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Andryieuski, Andrei; Takayama, Osamu

    2015-01-01

    We report the first experimental demonstration of anomalous breakdown of the effective medium approximation in all-dielectric deeply subwavelength thickness (d∼λ/160-λ/30) multilayers, as recently predicted theoretically [H. H. Sheinfux et al., Phys. Rev. Lett. 113, 243901 (2014)]. Multilayer...... stacks are composed of alternating alumina and titania layers fabricated using atomic layer deposition. For light incident on such multilayers at angles near the total internal reflection, we observe pronounced differences in the reflectance spectra for structures with 10- vs 20-nm thick layers, as well...

  10. Classroom Assessment in Malawi: Teachersâ Perceptions and Practices in Mathematics

    OpenAIRE

    Susuwele-Banda, William John

    2005-01-01

    This study investigated teachersâ perceptions of classroom assessment in mathematics and their current classroom assessments practices. Specifically, the study sought to gain an understanding of the extent to which teachers use different classroom assessment methods and tools to understand and to support both the learning and teaching processes. The following three questions guided the study: 1) How do primary school teachers perceive classroom assessment in mathematics? 2) What kinds of a...

  11. Students' Understandings and Misconceptions of Algebraic Inequalities

    Science.gov (United States)

    Rowntree, Rebecca V.

    2009-01-01

    The National Council of Teachers of Mathematics [NCTM] requires students in grades nine through 12 to be able to explain inequalities using mathematical relational symbols and be able to understand the meaning of inequalities and their solutions (NCTM, 2000). Studies have shown that not only middle and high school students have difficulties with…

  12. Brain stimulation, mathematical, and numerical training: Contribution of core and noncore skills.

    Science.gov (United States)

    Looi, C Y; Cohen Kadosh, R

    2016-01-01

    Mathematical abilities that are correlated with various life outcomes vary across individuals. One approach to improve mathematical abilities is by understanding the underlying cognitive functions. Theoretical and experimental evidence suggest that mathematical abilities are subserved by "core" and "noncore" skills. Core skills are commonly regarded as the "innate" capacity to attend to and process numerical information, while noncore skills are those that are important for mathematical cognition, but are not exclusive to the mathematical domain such as executive functions, spatial skills, and attention. In recent years, mathematical training has been combined with the application of noninvasive brain stimulation to further enhance training outcomes. However, the development of more strategic training paradigms is hindered by the lack of understanding on the contributory nature of core and noncore skills and their neural underpinnings. In the current review, we will examine the effects of brain stimulation with focus on transcranial electrical stimulation on core and noncore skills, and its impact on mathematical and numerical training. We will conclude with a discussion on the theoretical and experimental implications of these studies and directions for further research. © 2016 Elsevier B.V. All rights reserved.

  13. Teachers\\' practical rationality of mathematics teaching and ...

    African Journals Online (AJOL)

    mathematics teaching as a practice and the way that teachers learn in such a practice. Conversations during interviews with the teachers in the sample indicate that SchoÈn\\'s notion of reflection-in-action is a key to understanding how teachers use their practical rationality as they try to understand nuanced meanings of the

  14. The role of mathematics in physical sciences interdisciplinary and philosophical aspects

    CERN Document Server

    Boniolo, Giovanni; Trobok, Majda

    2005-01-01

    Even though mathematics and physics have been related for centuries and this relation appears to be unproblematic, there are many questions still open: Is mathematics really necessary for physics, or could physics exist without mathematics? Should we think physically and then add the mathematics apt to formalise our physical intuition, or should we think mathematically and then interpret physically the obtained results? Do we get mathematical objects by abstraction from real objects, or vice versa? Why is mathematics effective into physics? These are all relevant questions, whose answers are necessary to fully understand the status of physics, particularly of contemporary physics. The aim of this book is to offer plausible answers to such questions through both historical analyses of relevant cases, and philosophical analyses of the relations between mathematics and physics.

  15. Interactions Between Mathematics and Physics: The History of the Concept of Function—Teaching with and About Nature of Mathematics

    Science.gov (United States)

    Kjeldsen, Tinne Hoff; Lützen, Jesper

    2015-07-01

    In this paper, we discuss the history of the concept of function and emphasize in particular how problems in physics have led to essential changes in its definition and application in mathematical practices. Euler defined a function as an analytic expression, whereas Dirichlet defined it as a variable that depends in an arbitrary manner on another variable. The change was required when mathematicians discovered that analytic expressions were not sufficient to represent physical phenomena such as the vibration of a string (Euler) and heat conduction (Fourier and Dirichlet). The introduction of generalized functions or distributions is shown to stem partly from the development of new theories of physics such as electrical engineering and quantum mechanics that led to the use of improper functions such as the delta function that demanded a proper foundation. We argue that the development of student understanding of mathematics and its nature is enhanced by embedding mathematical concepts and theories, within an explicit-reflective framework, into a rich historical context emphasizing its interaction with other disciplines such as physics. Students recognize and become engaged with meta-discursive rules governing mathematics. Mathematics teachers can thereby teach inquiry in mathematics as it occurs in the sciences, as mathematical practice aimed at obtaining new mathematical knowledge. We illustrate such a historical teaching and learning of mathematics within an explicit and reflective framework by two examples of student-directed, problem-oriented project work following the Roskilde Model, in which the connection to physics is explicit and provides a learning space where the nature of mathematics and mathematical practices are linked to natural science.

  16. Taking the mystery out of mathematical model applications to karst aquifers—A primer

    Science.gov (United States)

    Kuniansky, Eve L.

    2014-01-01

    Advances in mathematical model applications toward the understanding of the complex flow, characterization, and water-supply management issues for karst aquifers have occurred in recent years. Different types of mathematical models can be applied successfully if appropriate information is available and the problems are adequately identified. The mathematical approaches discussed in this paper are divided into three major categories: 1) distributed parameter models, 2) lumped parameter models, and 3) fitting models. The modeling approaches are described conceptually with examples (but without equations) to help non-mathematicians understand the applications.

  17. Refining teacher design capacity: mathematics teachers' interactions with digital curriculum resources

    NARCIS (Netherlands)

    Pepin, B.; Gueudet, G.; Trouche, L.

    2017-01-01

    The goal of this conceptual paper is to develop enhanced understandings of mathematics teacher design and design capacity when interacting with digital curriculum resources. We argue that digital resources in particular offer incentives and increasing opportunities for mathematics teachers’ design,

  18. Mathematics related anxiety: Mathematics bogeyman or not?

    Directory of Open Access Journals (Sweden)

    Videnović Marina

    2011-01-01

    Full Text Available Data of the PISA 2003 survey indicate high levels of mathematics anxiety of students in Serbia. More than half of our students worry whether they will have difficulties in mathematics class or whether they will earn poor marks. Aims of this study therefore are: examining relationship between math anxiety and achievement at mathematics literacy scale; establishing possible predictors of math anxiety and identification of students' groups in relations to their relationship towards mathematics as a subject. Mathematics anxiety is statistically negatively correlated with school achievement and achievement at mathematics literacy scale. Socio-demographic factors, motivational and cognitive aspects related to learning mathematics, perception of school and classroom climate explain 40% variance of mathematics anxiety. Based on students' relationship towards mathematics they cam be divided into three groups; while dimensions that apart them are uninterested-interested in mathematics and presence-absence of anxiety. The group displaying anxiety scores lowest among the three. Applying qualitative analysis students' and teachers' attitudes on specific issues related to teaching and learning mathematics was examined.

  19. Sapphire implant based neuro-complex for deep-lying brain tumors phototheranostics

    Science.gov (United States)

    Sharova, A. S.; Maklygina, YU S.; Yusubalieva, G. M.; Shikunova, I. A.; Kurlov, V. N.; Loschenov, V. B.

    2018-01-01

    The neuro-complex as a combination of sapphire implant optical port and osteoplastic biomaterial "Collapan" as an Aluminum phthalocyanine nanoform photosensitizer (PS) depot was developed within the framework of this study. The main goals of such neuro-complex are to provide direct access of laser radiation to the brain tissue depth and to transfer PS directly to the pathological tissue location that will allow multiple optical phototheranostics of the deep-lying tumor region without repeated surgical intervention. The developed complex spectral-optical properties research was carried out by photodiagnostics method using the model sample: a brain tissue phantom. The optical transparency of sapphire implant allows obtaining a fluorescent signal with high accuracy, comparable to direct measurement "in contact" with the tissue.

  20. Study on vertical seismic response characteristics of deeply embedded reactor building

    International Nuclear Information System (INIS)

    Morishita, H.; Nakamura, N.; Uchiyama, S.; Fukuoka, A.; Ishizaki, M.

    1993-01-01

    This paper describes vertical response characteristics, especially effects of embedment, and analytical methods for seismic design of a deeply embedded reactor building. The influence of embedment on vertical response was found to be minimal by evaluating results of forced vibration tests of a reactor building model and performing simplified analyses. Subsequently, simulation analyses of the forced vibration test and actual earthquake induced response were performed using both the axisymmetric FEM model and the simplified mass and spring model. It was concluded that the analytical models taking the embedment into the consideration closely simulated the observation records, and the omission of embedment in the analyses tended to increase the predicted response which was conservative in respect an actual design consideration. (author)

  1. Mathematics Education as a Proving-Ground for Information-Processing Theories.

    Science.gov (United States)

    Greer, Brian, Ed.; Verschaffel, Lieven, Ed.

    1990-01-01

    Five papers discuss the current and potential contributions of information-processing theory to our understanding of mathematical thinking as those contributions affect the practice of mathematics education. It is concluded that information-processing theories need to be supplemented in various ways to more adequately reflect the complexity of…

  2. Research Commentary: The Promise of Qualitative Metasynthesis for Mathematics Education

    Science.gov (United States)

    Thunder, Kateri; Berry, Robert Q., III.

    2016-01-01

    Mathematics education has benefited from qualitative methodological approaches over the past 40 years across diverse topics. Although the number, type, and quality of qualitative research studies in mathematics education has changed, little is known about how a collective body of qualitative research findings contributes to our understanding of a…

  3. Diffusion, quantum theory, and radically elementary mathematics (MN-47)

    CERN Document Server

    Faris, William G

    2014-01-01

    Diffusive motion--displacement due to the cumulative effect of irregular fluctuations--has been a fundamental concept in mathematics and physics since Einstein''s work on Brownian motion. It is also relevant to understanding various aspects of quantum theory. This book explains diffusive motion and its relation to both nonrelativistic quantum theory and quantum field theory. It shows how diffusive motion concepts lead to a radical reexamination of the structure of mathematical analysis. The book''s inspiration is Princeton University mathematics professor Edward Nelson''s influential work in

  4. Teachers' Mathematics as Mathematics-at-Work

    Science.gov (United States)

    Bednarz, Nadine; Proulx, Jérôme

    2017-01-01

    Through recognising mathematics teachers as professionals who use mathematics in their workplace, this article traces a parallel between the mathematics enacted by teachers in their practice and the mathematics used in workplaces found in studies of professionals (e.g. nurses, engineers, bankers). This parallel is developed through the five…

  5. Role of Feshbach resonances in enhancing the production of deeply bound ultracold LiRb molecules with laser pulses

    Science.gov (United States)

    Gacesa, Marko; Ghosal, Subhas; Côté, Robin

    2010-03-01

    We investigate the possibility of forming deeply bound LiRb molecules in a two-color photoassociation experiment. Ultracold ^6Li and ^87Rb atoms colliding in the vicinity of a magnetic Feshbach resonance are photoassociated into an excited electronic state. A wavepacket is then formed by exciting a few vibrational levels of the excited state and allowed to propagate. We calculate the time-dependent overlaps between the wave packet and the lowest vibrational levels of the ground state. After the optimal overlap is obtained we use the second laser pulse to dump the wave packet and efficiently populate the deeply bound ro-vibrational levels of ^6Li^87Rb in the ground state. The resulting combination of Feshbach-optimized photoassociation (FOPA) with the time-dependent pump-dump approach will produce a large number of stable ultracold molecules in the ground state. This technique is general and applicable to other systems.

  6. On Doing Mathematics: Why We Should Not Encourage "Feeling," "Believing," or "Interpreting" Mathematics

    Science.gov (United States)

    McLoughlin, M. Padraig M. M.

    2012-01-01

    P. R. Halmos recalled a conversation with R. L. Moore where Moore quoted a Chinese proverb. That proverb provides a summation of the justification of the methods employed in teaching students to do mathematics with a modified Moore method (MMM). It states, "I see, I forget; I hear, I remember; I do, I understand." In this paper we build…

  7. Motivation in Mathematics: Goals Reflected in Emotions

    Science.gov (United States)

    Hannula, Markku S.

    2006-01-01

    Students in a mathematics classroom are motivated to do many things, not only the ones we expect them to do. In order to understand student behaviour in classrooms we need to increase our understanding of what motivation is and how it is regulated. Two issues relevant to a critique of mainstream motivation research need consideration: (a) the…

  8. Mathematics textbooks and their use in English, French and German classrooms : a way to understand teaching and learning cultures

    NARCIS (Netherlands)

    Pepin, B.; Haggarty, L.

    2001-01-01

    After a through review of the relevant literature in terms of textbook analysis and mathematics teachers' user of textbooks in school contexts, this paper reports on selected and early findings from a study of mathematics textbooks and their use in English, French and German mathematics classrooms

  9. The Whole Story: Understanding Fraction Computation

    Science.gov (United States)

    Dixon, Juli K.; Tobias, Jennifer M.

    2013-01-01

    What does it look like to "understand" operations with fractions? The Common Core State Standards for Mathematics (CCSSM) uses the term "understand" when describing expectations for students' knowledge related to each of the fraction operations within grades 4 through 6 (CCSSI 2010). Furthermore, CCSSM elaborates that…

  10. Cognitive and Emotional Math Problems Largely Dissociate: Prevalence of Developmental Dyscalculia and Mathematics Anxiety

    OpenAIRE

    Devine, A; Hill, F; Carey, E; Szucs, Denes

    2017-01-01

    © 2017 APA, all rights reserved). A negative correlation between math anxiety and mathematics performance is frequently reported. Thus, some may assume that high levels of mathematics anxiety are associated with poor mathematical understanding. However, no previous research has clearly measured the association between mathematics anxiety and mathematical learning disability. To fill this gap, here we investigated the comorbidity of developmental dyscalculia (a selective, serious deficit in ma...

  11. Succeeding at teaching secondary mathematics your first year

    CERN Document Server

    Roddick, Cheryl D

    2010-01-01

    This practical resource helps beginning secondary mathematics teachers design a curriculum that is meaningful, differentiate instruction, engage students, meet standards, assess student understanding, and more.

  12. Role Playing Based on Multicultural for Understanding Fraction in Primary School

    Science.gov (United States)

    Aryanto, S.; Budiarti, T.; Rahmatullah, R.; Utami, S. R.; Jupri, A.

    2017-09-01

    Multicultural serve as a reference in the development of innovative mathematical learning materials and is expected to be a solution in improving the ability of students in understanding the fraction matter based on social and mathematical approach, so this study aims to determine the improvement of students’ understanding in fraction matter through role playing by integrating multicultural concepts as development learning content. Classroom Action Research conducted on 34 students in elementary school class proves that students’ understanding in fraction matter shows improvement in cycle II as much as 67% of students are able to apply the concept or formula exactly when compared with the result of cycles I of 33%. This research is expected to be the reference of teachers in developing innovative mathematical learning, let alone explicitly, this concept not only emphasizes the cognitive abilities of students, but implicitly can develop their social skills in mathematical perspective.

  13. Deeply inelastic collisions as a source of intermediate mass fragments at E/A = 27 MeV

    International Nuclear Information System (INIS)

    Borderie, B.; Montoya, M.; Rivet, M.F.; Jouan, D.; Cabot, C.; Fuchs, H.; Gardes, D.; Gauvin, H.; Jacquet, D.; Monnet, F.

    1988-01-01

    Intermediate-mass fragments detected in coincidence with heavy residues were measured in 40 Ar induced reactions on Ag at E/A = 27 MeV. From the observed characteristics, it is inferred that intermediate-mass fragments associated with the so-called intermediate-velocity source come mainly from deeply inelastic collisions occurring after or at the same time as preequilibrium particle emission. (orig.)

  14. Examining Fourth-Grade Mathematics Writing: Features of Organization, Mathematics Vocabulary, and Mathematical Representations

    Science.gov (United States)

    Hebert, Michael A.; Powell, Sarah R.

    2016-01-01

    Increasingly, students are expected to write about mathematics. Mathematics writing may be informal (e.g., journals, exit slips) or formal (e.g., writing prompts on high-stakes mathematics assessments). In order to develop an effective mathematics-writing intervention, research needs to be conducted on how students organize mathematics writing and…

  15. Socially Response-Able Mathematics Education: Implications of an Ethical Approach

    Science.gov (United States)

    Atweh, Bill; Brady, Kate

    2009-01-01

    This paper discusses an approach to mathematics education based on the concept of ethical responsibility. It argues that an ethical approach to mathematics teaching lays the theoretical foundations for social justice concerns in the discipline. The paper develops a particular understanding of ethical responsibility based on the writings of Emanuel…

  16. Focus on the use of language in the multicultural mathematics classroom

    DEFF Research Database (Denmark)

    Johansen, Lene Østergaard

    . understanding the meaning of the words "in front of") when they enter first grade in primary school (Nyborg and Nyborg, 1990). Students who lack these abilities either with regard to mathematics or language are from the beginning of schooling limited in their mathematical performance and in a "risk zone......" of developing learning difficulties in mathematics. Teaching the teachers a consciousness for the use of language in mathematics teaching as well as educating them to have a special focus on developing the vocabulary of the students can render the mathematics teaching more inclusive. Furthermore, it may help......Learning mathematics can be seen as learning a foreign language or learning a particular mathematical discourse.  Nolte (2004) calls mathematics the students' first second language. The use of language in mathematics teaching, hence the way we talk and the way we write, differ from the way the same...

  17. Mathematical models of soft tissue injury repair : towards understanding musculoskeletal disorders

    OpenAIRE

    Dunster, Joanne L.

    2012-01-01

    The process of soft tissue injury repair at the cellular lew I can be decomposed into three phases: acute inflammation including coagulation, proliferation and remodelling. While the later phases are well understood the early phase is less so. We produce a series of new mathematical models for the early phases coagulation and inflammation. The models produced are relevant not only to soft tissue injury repair but also to the many disease states in which coagulation and inflammation play a rol...

  18. Reprint of "Mathematics as verbal behavior".

    Science.gov (United States)

    Marr, M Jackson

    2015-05-01

    "Behavior which is effective only through the mediation of other persons has so many distinguishing dynamic and topographical properties that a special treatment is justified and indeed demanded" (Skinner, 1957, p. 2). Skinner's demand for a special treatment of verbal behavior can be extended within that field to domains such as music, poetry, drama, and the topic of this paper: mathematics. For centuries, mathematics has been of special concern to philosophers who have continually argued to the present day about what some deem its "special nature." Two interrelated principal questions have been: (1) Are the subjects of mathematical interest pre-existing in some transcendental realm and thus are "discovered" as one might discover a new planet; and (2) Why is mathematics so effective in the practices of science and engineering even though originally such mathematics was "pure" with applications neither contemplated or even desired? I argue that considering the actual practice of mathematics in its history and in the context of acquired verbal behavior one can address at least some of its apparent mysteries. To this end, I discuss some of the structural and functional features of mathematics including verbal operants, rule-and contingency-modulated behavior, relational frames, the shaping of abstraction, and the development of intuition. How is it possible to understand Nature by properly talking about it? Essentially, it is because nature taught us how to talk. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Think Pair Share Using Realistic Mathematics Education Approach in Geometry Learning

    Science.gov (United States)

    Afthina, H.; Mardiyana; Pramudya, I.

    2017-09-01

    This research aims to determine the impact of mathematics learning applying Think Pair Share (TPS) using Realistic Mathematics Education (RME) viewed from mathematical-logical intelligence in geometry learning. Method that used in this research is quasi experimental research The result of this research shows that (1) mathematics achievement applying TPS using RME approach gives a better result than those applying direct learning model; (2) students with high mathematical-logical intelligence can reach a better mathematics achievement than those with average and low one, whereas students with average mathematical-logical intelligence can reach a better achievement than those with low one; (3) there is no interaction between learning model and the level of students’ mathematical-logical intelligence in giving a mathematics achievement. The impact of this research is that TPS model using RME approach can be applied in mathematics learning so that students can learn more actively and understand the material more, and mathematics learning become more meaningful. On the other hand, internal factors of students must become a consideration toward the success of students’ mathematical achievement particularly in geometry material.

  20. Teaching Mathematical Modeling in Mathematics Education

    Science.gov (United States)

    Saxena, Ritu; Shrivastava, Keerty; Bhardwaj, Ramakant

    2016-01-01

    Mathematics is not only a subject but it is also a language consisting of many different symbols and relations. Taught as a compulsory subject up the 10th class, students are then able to choose whether or not to study mathematics as a main subject. The present paper discusses mathematical modeling in mathematics education. The article provides…

  1. the roles of games in teaching and learning of mathematics in junior ...

    African Journals Online (AJOL)

    users

    The research seeks to enhance the status of games in teaching mathematics in ... that the use of games and activities can make the mathematics enjoyable. ... motivation, understanding and suppression of anxiety are some of the reasons ...

  2. Numerical simulations of generalized Langevin equations with deeply asymptotic parameters

    International Nuclear Information System (INIS)

    Bao Jingdong; Li Rongwu; Wu Wei

    2004-01-01

    A unified algorithm for solving Langevin equations with deeply asymptotic parameters is proposed and tested. The method consists of identifying solvable linear friction and implementing the force evaluations by use of the Runge-Kutta method. We apply the present scheme to the periodic motion of an overdamped particle subjected to a multiplicative white noise. The accurate calculations for the temporal velocity of the particle and its correlation function can be realized by introducing an inertial term. It is shown that the fluctuation around the steady quantity increases with decreasing time step in the overdamped white-noise algorithm, however, a massive white-noise technique greatly reduces this spurious drift, and the result can converge to the correct value if the added inertia approaches zero. The other application is the simulation of generalized Langevin equation with an exponential memory friction, this allows us to treat a weak non-Markovian process

  3. One-particle inclusive processes in deeply inelastic lepton-nucleon scattering

    CERN Document Server

    Graudenz, Dirk

    1994-01-01

    Abstract: The one-particle inclusive cross section in deeply inelastic lepton--nucleon scattering, expressed in terms of parton densities and fragmentation functions being differential in the invariant mass of the observed hadron and of the incoming nucleon, diverges if this invariant mass vanishes. This divergence can be traced back to the kinematical configuration where the parent parton of the observed hadron is emitted collinearly from the incoming parton of the QCD subprocess. By using the concept of ``fracture functions'', which has recently been introduced by Trentadue and Veneziano, it is possible to absorb this divergence in these new distribution functions as long as the observed hadron is not soft. This procedure allows the determination of a finite one-particle inclusive cross section in next-to-leading order QCD perturbation theory. We give details of the calculation and the explicit form of the bare fracture functions in terms of the renormalized ones.

  4. Virtual Manipulatives: Tools for Teaching Mathematics to Students with Learning Disabilities

    Science.gov (United States)

    Shin, Mikyung; Bryant, Diane P.; Bryant, Brian R.; McKenna, John W.; Hou, Fangjuan; Ok, Min Wook

    2017-01-01

    Many students with learning disabilities demonstrate difficulty in developing a conceptual understanding of mathematical topics. Researchers recommend using visual models to support student learning of the concepts and skills necessary to complete abstract and symbolic mathematical problems. Virtual manipulatives (i.e., interactive visual models)…

  5. Mathematical Modeling and Pure Mathematics

    Science.gov (United States)

    Usiskin, Zalman

    2015-01-01

    Common situations, like planning air travel, can become grist for mathematical modeling and can promote the mathematical ideas of variables, formulas, algebraic expressions, functions, and statistics. The purpose of this article is to illustrate how the mathematical modeling that is present in everyday situations can be naturally embedded in…

  6. Mathematical methods in medicine: neuroscience, cardiology and pathology

    Science.gov (United States)

    Amigó, José M.

    2017-01-01

    The application of mathematics, natural sciences and engineering to medicine is gaining momentum as the mutual benefits of this collaboration become increasingly obvious. This theme issue is intended to highlight the trend in the case of mathematics. Specifically, the scope of this theme issue is to give a general view of the current research in the application of mathematical methods to medicine, as well as to show how mathematics can help in such important aspects as understanding, prediction, treatment and data processing. To this end, three representative specialties have been selected: neuroscience, cardiology and pathology. Concerning the topics, the 12 research papers and one review included in this issue cover biofluids, cardiac and virus dynamics, computational neuroscience, functional magnetic resonance imaging data processing, neural networks, optimization of treatment strategies, time-series analysis and tumour growth. In conclusion, this theme issue contains a collection of fine contributions at the intersection of mathematics and medicine, not as an exercise in applied mathematics but as a multidisciplinary research effort that interests both communities and our society in general. This article is part of the themed issue ‘Mathematical methods in medicine: neuroscience, cardiology and pathology’. PMID:28507240

  7. Mathematical methods in medicine: neuroscience, cardiology and pathology.

    Science.gov (United States)

    Amigó, José M; Small, Michael

    2017-06-28

    The application of mathematics, natural sciences and engineering to medicine is gaining momentum as the mutual benefits of this collaboration become increasingly obvious. This theme issue is intended to highlight the trend in the case of mathematics. Specifically, the scope of this theme issue is to give a general view of the current research in the application of mathematical methods to medicine, as well as to show how mathematics can help in such important aspects as understanding, prediction, treatment and data processing. To this end, three representative specialties have been selected: neuroscience, cardiology and pathology. Concerning the topics, the 12 research papers and one review included in this issue cover biofluids, cardiac and virus dynamics, computational neuroscience, functional magnetic resonance imaging data processing, neural networks, optimization of treatment strategies, time-series analysis and tumour growth. In conclusion, this theme issue contains a collection of fine contributions at the intersection of mathematics and medicine, not as an exercise in applied mathematics but as a multidisciplinary research effort that interests both communities and our society in general.This article is part of the themed issue 'Mathematical methods in medicine: neuroscience, cardiology and pathology'. © 2017 The Author(s).

  8. Correlation of Numerical Anxiety and Mathematics Performance

    Directory of Open Access Journals (Sweden)

    Michael Howard D. Morada

    2015-12-01

    Full Text Available It has been observed that most students had negative view towards mathematics and as a result, they also performed poorly.As such, it is imperative for every math teacher to understand the reasons behind this negative view to improve their student’s performance. This observation led the researcher to conduct a study on Correlation of Mathematics Performance and Anxiety of third and fourth year students for school year 2012-2013 across the different programs.This study determined the numerical anxiety level and mathematics performance of the respondents along age, gender and programs. The study revealed that students, regardless of age had passing performance. However, female and male students had fair and passing mathematics performance, respectively. Students from College of Business Education, Teacher Education and Computer Studies had fair performance while those from Marine Transportation, Criminal Justice Education and Engineering had passing performance. The study also revealed that students across different variables had moderate numerical anxiety level. Furthermore, it was found out that mathematics performance is significantly related to numerical anxiety. However, the relationship was inverse and small.

  9. Early numerical foundations of young children's mathematical development.

    Science.gov (United States)

    Chu, Felicia W; vanMarle, Kristy; Geary, David C

    2015-04-01

    This study focused on the relative contributions of the acuity of the approximate number system (ANS) and knowledge of quantitative symbols to young children's early mathematical learning. At the beginning of preschool, 191 children (Mage=46 months) were administered tasks that assessed ANS acuity and explicit knowledge of the cardinal values represented by number words, and their mathematics achievement was assessed at the end of the school year. Children's executive functions, intelligence, and preliteracy skills and their parents' educational levels were also assessed and served as covariates. Both the ANS and cardinality tasks were significant predictors of end-of-year mathematics achievement with and without control of the covariates. As simultaneous predictors and with control of the covariates, cardinality remained significantly related to mathematics achievement, but ANS acuity did not. Mediation analyses revealed that the relation between ANS acuity and mathematics achievement was fully mediated by cardinality, suggesting that the ANS may facilitate children's explicit understanding of cardinal value and in this way may indirectly influence early mathematical learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Deeply discounted medications: Implications of generic prescription drug wars.

    Science.gov (United States)

    Czechowski, Jessica L; Tjia, Jennifer; Triller, Darren M

    2010-01-01

    To describe the history of generic prescription pricing programs at major pharmacy chains and their potential implications on prescribing, quality of care, and patient safety. Publicly available generic prescription discount program drug lists as of May 1, 2009. Fierce competition among major pharmacy chains such as Walgreens, CVS, and Walmart has led to a generic prescription pricing war with unclear public health implications. Introduced in 2006, currently 7 of the 10 largest pharmacy chains advertise a version of a deeply discounted medication (DDM) program, accounting for more than 25,000 locations nationally. By early 2008, almost 70 million Americans had used these programs. Although DDM programs lower drug costs for many patients, DDM formularies include potentially ineffective or harmful medications, have the potential to influence physician prescribing behavior, and may impair pharmacists' ability to review complete drug-dispensing records. DDMs are widespread but have the potential for unintended consequences on patients, providers, and the health care system. A systematic review of DDMs needs to evaluate the clinical, economic, and system-level implications of such programs.

  11. Mathematical modeling of laser lipolysis

    Directory of Open Access Journals (Sweden)

    Reynaud Jean

    2008-02-01

    Full Text Available Abstract Background and Objectives Liposuction continues to be one of the most popular procedures performed in cosmetic surgery. As the public's demand for body contouring continues, laser lipolysis has been proposed to improve results, minimize risk, optimize patient comfort, and reduce the recovery period. Mathematical modeling of laser lipolysis could provide a better understanding of the laser lipolysis process and could determine the optimal dosage as a function of fat volume to be removed. Study design/Materials and Methods An Optical-Thermal-Damage Model was formulated using finite-element modeling software (Femlab 3.1, Comsol Inc. The general model simulated light distribution using the diffusion approximation of the transport theory, temperature rise using the bioheat equation and laser-induced injury using the Arrhenius damage model. Biological tissue was represented by two homogenous regions (dermis and fat layer with a nonlinear air-tissue boundary condition including free convection. Video recordings were used to gain a better understanding of the back and forth movement of the cannula during laser lipolysis in order to consider them in our mathematical model. Infrared video recordings were also performed in order to compare the actual surface temperatures to our calculations. The reduction in fat volume was determined as a function of the total applied energy and subsequently compared to clinical data reported in the literature. Results In patients, when using cooled tumescent anesthesia, 1064 nm Nd:YAG laser or 980 nm diode laser: (6 W, back and forth motion: 100 mm/s give similar skin surface temperature (max: 41°C. These measurements are in accordance with those obtained by mathematical modeling performed with a 1 mm cannula inserted inside the hypodermis layer at 0.8 cm below the surface. Similarly, the fat volume reduction observed in patients at 6-month follow up can be determined by mathematical modeling. This fat reduction

  12. Linking Preservice Teachers' Mathematics Self-Efficacy and Mathematics Teaching Efficacy to Their Mathematical Performance

    Science.gov (United States)

    Bates, Alan B.; Latham, Nancy; Kim, Jin-ah

    2011-01-01

    This study examined preservice teachers' mathematics self-efficacy and mathematics teaching efficacy and compared them to their mathematical performance. Participants included 89 early childhood preservice teachers at a Midwestern university. Instruments included the Mathematics Self-Efficacy Scale (MSES), Mathematics Teaching Efficacy Beliefs…

  13. Development and Validation of the Mathematics Teachers' Beliefs about English Language Learners Survey (MTBELL)

    Science.gov (United States)

    Gann, Linda; Bonner, Emily P.; Moseley, Christine

    2016-01-01

    Given the increasing number of English Language Learners (ELLs) in secondary mathematics classrooms, it is imperative that mathematics teacher educators develop measures for determining how and why secondary mathematics teachers (SMTs) understand and respond instructionally to these students. This paper reports on the initial development and…

  14. Pre-Service Teachers' Linear and Quadratic Inequalities Understandings

    Science.gov (United States)

    Bicer, Ali; Capraro, Robert M.; Capraro, Mary M.

    2014-01-01

    The National Council of Teachers of Mathematics [NCTM] noted that middle and high school students are expected to be able to both explain inequalities by using mathematical symbols and understand meanings by interpreting the solutions of inequalities. Unfortunately, research has revealed that not only do middle and high school students hold…

  15. Teachers' Understanding of Algebraic Generalization

    Science.gov (United States)

    Hawthorne, Casey Wayne

    Generalization has been identified as a cornerstone of algebraic thinking (e.g., Lee, 1996; Sfard, 1995) and is at the center of a rich conceptualization of K-8 algebra (Kaput, 2008; Smith, 2003). Moreover, mathematics teachers are being encouraged to use figural-pattern generalizing tasks as a basis of student-centered instruction, whereby teachers respond to and build upon the ideas that arise from students' explorations of these activities. Although more and more teachers are engaging their students in such generalizing tasks, little is known about teachers' understanding of generalization and their understanding of students' mathematical thinking in this domain. In this work, I addressed this gap, exploring the understanding of algebraic generalization of 4 exemplary 8th-grade teachers from multiple perspectives. A significant feature of this investigation is an examination of teachers' understanding of the generalization process, including the use of algebraic symbols. The research consisted of two phases. Phase I was an examination of the teachers' understandings of the underlying quantities and quantitative relationships represented by algebraic notation. In Phase II, I observed the instruction of 2 of these teachers. Using the lens of professional noticing of students' mathematical thinking, I explored the teachers' enacted knowledge of algebraic generalization, characterizing how it supported them to effectively respond to the needs and queries of their students. Results indicated that teachers predominantly see these figural patterns as enrichment activities, disconnected from course content. Furthermore, in my analysis, I identified conceptual difficulties teachers experienced when solving generalization tasks, in particular, connecting multiple symbolic representations with the quantities in the figures. Moreover, while the teachers strived to overcome the challenges of connecting different representations, they invoked both productive and unproductive

  16. Student comprehension of mathematics through astronomy

    Science.gov (United States)

    Search, Robert

    The purpose of this study is to examine how knowledge of astronomy can enhance college-level learning situations involving mathematics. The fundamental symbiosis between mathematics and astronomy was established early in the 17th century when Johannes Kepler deduced the 3 basic laws of planetary motion. This mutually harmonious relationship between these sciences has been reinforced repeatedly in history. In the early 20th century, for example, astronomer Arthur Eddington used photographic evidence from a 1919 solar eclipse to verify Einstein's mathematical theory of relativity. This study was conducted in 5 undergraduate mathematics classes over the course of 2 years. An introductory course in ordinary differential equations, taught in Spring Semester 2013, involved 4 students. A similar course in Spring Semester 2014 involved 6 students, a Summer Semester 2014 Calculus II course involved 2 students, and a Summer 2015 Astronomy course involved 8 students. The students were asked to use Kepler's astronomical evidence to deduce mathematical laws normally encountered on an undergraduate level. They were also asked to examine the elementary mathematical aspects involved in a theoretical trajectory to the planet Neptune. The summer astronomy class was asked to draw mathematical conclusions about large numbers from the recent discoveries concerning the dwarf planet Pluto. The evidence consists primarily of videotaped PowerPoint presentations conducted by the students in both differential equations classes, along with interviews and tests given in all the classes. All presentations were transcribed and examined to determine the effect of astronomy as a generator of student understanding of mathematics. An analysis of the data indicated two findings: definite student interest in a subject previously unknown to most of them and a desire to make the mathematical connection to celestial phenomena.

  17. Statistical Mechanics of Disordered Systems - Series: Cambridge Series in Statistical and Probabilistic Mathematics (No. 18)

    Science.gov (United States)

    Bovier, Anton

    2006-06-01

    Our mathematical understanding of the statistical mechanics of disordered systems is going through a period of stunning progress. This self-contained book is a graduate-level introduction for mathematicians and for physicists interested in the mathematical foundations of the field, and can be used as a textbook for a two-semester course on mathematical statistical mechanics. It assumes only basic knowledge of classical physics and, on the mathematics side, a good working knowledge of graduate-level probability theory. The book starts with a concise introduction to statistical mechanics, proceeds to disordered lattice spin systems, and concludes with a presentation of the latest developments in the mathematical understanding of mean-field spin glass models. In particular, recent progress towards a rigorous understanding of the replica symmetry-breaking solutions of the Sherrington-Kirkpatrick spin glass models, due to Guerra, Aizenman-Sims-Starr and Talagrand, is reviewed in some detail. Comprehensive introduction to an active and fascinating area of research Clear exposition that builds to the state of the art in the mathematics of spin glasses Written by a well-known and active researcher in the field

  18. Contrasts in Mathematical Challenges in A-Level Mathematics and Further Mathematics, and Undergraduate Mathematics Examinations

    Science.gov (United States)

    Darlington, Ellie

    2014-01-01

    This article describes part of a study which investigated the role of questions in students' approaches to learning mathematics at the secondary-tertiary interface, focussing on the enculturation of students at the University of Oxford. Use of the Mathematical Assessment Task Hierarchy taxonomy revealed A-level Mathematics and Further Mathematics…

  19. Examining the Efficacy of a Tier 2 Kindergarten Mathematics Intervention.

    Science.gov (United States)

    Clarke, Ben; Doabler, Christian T; Smolkowski, Keith; Baker, Scott K; Fien, Hank; Strand Cary, Mari

    2016-01-01

    This study examined the efficacy of a Tier 2 kindergarten mathematics intervention program, ROOTS, focused on developing whole number understanding for students at risk in mathematics. A total of 29 classrooms were randomly assigned to treatment (ROOTS) or control (standard district practices) conditions. Measures of mathematics achievement were collected at pretest and posttest. Treatment and control students did not differ on mathematics assessments at pretest. Gain scores of at-risk intervention students were significantly greater than those of control peers, and the gains of at-risk treatment students were greater than the gains of peers not at risk, effectively reducing the achievement gap. Implications for Tier 2 mathematics instruction in a response to intervention (RtI) model are discussed. © Hammill Institute on Disabilities 2014.

  20. An empirical approach to the mathematical values of problem choice and argumentation

    DEFF Research Database (Denmark)

    Johansen, Mikkel Willum; Misfeldt, Morten

    2016-01-01

    In this paper we describe and discuss how mathematical values influence researchers’ choices when practicing mathematics. Our paper is based on a qualitative investigation of mathematicians’ practices, and its goal is to gain an empirically grounded understanding of mathematical values. More...... specifically, we will analyze the values connected to mathematicians’ choice of problems and their choice of argumentative style when communicating their results. We suggest that these two situations can be understood as relating to the three mathematical values: recognizability, formalizability...

  1. Understanding apparently non-exponential outbreaks Comment on "Mathematical models to characterize early epidemic growth: A review" by Gerardo Chowell et al.

    Science.gov (United States)

    Champredon, David; Earn, David J. D.

    2016-09-01

    Mechanistic mathematical modelling of the population dynamics of infectious diseases has advanced tremendously over the last few decades [1-6]. Transmission models have been applied to countless diseases of public health importance, including seasonal and pandemic influenza [7], childhood diseases such as measles [8,9] and whooping cough [10], vector transmitted diseases such as malaria [11] and dengue [12], and waterborne diseases such as cholera [13-15]. Much attention in recent years has been directed to emergent diseases such as SARS [16], new subtypes of influenza [17,18], Ebola [19,20], and Zika [21], for which an understanding of early outbreak dynamics is critical.

  2. Matemáticas y juego = Mathematics and games

    OpenAIRE

    Alsina, Angel

    2001-01-01

    In this article we try to look at the learning of mathematics through games in the first years of schooling. The use of game resources in the class should not be carried out in a uniquely intuitive way but rather in a manner that contains some preliminary reflections such as, what do we understand by games? Why use games as a resource in the Mathematics classroom? And what does its use imply?

  3. Investigating middle school students’ difficulties in mathematical literacy problems level 1 and 2

    Science.gov (United States)

    Setiawati, S.; Herman, T.; Jupri, A.

    2017-11-01

    The background of this study is the lack of mathematical literacy skills of students. The proficiency of students’ mathematical literacy skills based on the results of the PISA 2015 study shows that Indonesian students at the proficiency level 1. This fact gave rise to this study which aims to investigate middle school students’ difficulties in mathematical literacy problems level 1 and 2. Qualitative research was used in this study. An individual written test on mathematical literacy problems was administered, followed by interviews. The subjects of the study were 61 students grade VII in Bandung and 26 of them were interviewed afterward. Data analysis revealed that students’ error in performing arithmetic most frequently observed. Other observed difficulties concerned understanding about algebra concept, applying arithmetic operation in algebraic expressions, and interpreting symbols to represent the unknown. In solving mathematical literacy problems, students use their prior knowledge, although sometimes not relevant to the questions. Based on the results, we suggest that mathematics learning in contextual learning and which invites students to participate in the processes of understanding the concepts.

  4. The nature and quality of the mathematical connections teachers make

    Directory of Open Access Journals (Sweden)

    Michael K. Mhlolo

    2012-05-01

    Full Text Available Current reforms in mathematics education emphasise the need for pedagogy because it offers learners opportunities to develop their proficiency with complex high-level cognitive processes. One has always associated the ability to make mathematical connections, together with the teacher’s role in teaching them, with deep mathematical understanding. This article examines the nature and quality of the mathematical connections that the teachers’ representations of those connections enabled or constrained. The researchers made video recordings of four Grade 11 teachers as they taught a series of five lessons on algebra-related topics. The results showed that the teachers’ representations of mathematical connections were either faulty or superficial in most cases. It compromised the learners’ opportunities for making meaningful mathematical connections. The researchers concluded by suggesting that helping teachers to build their representation repertoires could increase the effectiveness of their instructional practices.

  5. A comparison between Miller and five-stroke cycles for enabling deeply downsized, highly boosted, spark-ignition engines with ultra expansion

    International Nuclear Information System (INIS)

    Li, Tie; Wang, Bin; Zheng, Bin

    2016-01-01

    Highlights: • Deeply downsized, highly boosted SI engine with ultra-expansion cycle is studied. • The Miller and five stroke cycles are compared on BSFC improvements and WOT performance. • The mechanism of fuel conversion efficiency improvement at various loads is discussed. • Performance of the two-stage boosting system for the downsized SI engine is investigated. • A unique strategy using the bypass for the five-stroke engine is proposed. - Abstract: It has been well known that the engine downsizing combined with intake boosting is an effective way to improve the fuel conversion efficiency without penalizing the engine torque performance. However, the potential of engine downsizing is not yet fully explored, and the major hurdles include the knocking combustion and the pre-turbine temperature limit, owing to the aggressive intake boosting. Using the engine cycle simulation, this paper compares the effects of the Miller and five stroke cycles on the performance of the deeply downsized and highly boosted SI engine, taking the engine knock and pre-turbine temperature into consideration. In the simulation, the downsizing is implemented by reducing the combustion cylinder number from four to two, while a two stage boosting system is designed for the deeply downsized engine to ensure the wide-open-throttle (WOT) performance comparable to the original four cylinder engine. The Miller cycle is realized by varying the intake valve timing and lift, while the five stroke cycle is enabled with addition of an extra expansion cylinder between the two combustion cylinders. After calibration and validation of the engine cycle simulation models using the experimental data in the original engine, the performances of the deeply downsized engines with both the Miller and five stroke cycles are numerically studied. For the most frequently operated points on the torque-speed map, at low loads the Miller cycle exhibits superior performance over the five-stroke cycle in terms

  6. Mathematical modeling of renal hemodynamics in physiology and pathophysiology.

    Science.gov (United States)

    Sgouralis, Ioannis; Layton, Anita T

    2015-06-01

    In addition to the excretion of metabolic waste and toxin, the kidney plays an indispensable role in regulating the balance of water, electrolyte, acid-base, and blood pressure. For the kidney to maintain proper functions, hemodynamic control is crucial. In this review, we describe representative mathematical models that have been developed to better understand the kidney's autoregulatory processes. We consider mathematical models that simulate glomerular filtration, and renal blood flow regulation by means of the myogenic response and tubuloglomerular feedback. We discuss the extent to which these modeling efforts have expanded the understanding of renal functions in health and disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Mathematical Properties of Complex Networks

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2011-01-01

    Full Text Available Many researchers are attempting to create systems which
    mimic human thought, or understand speech, or beat to the best human chess-player [14]. Understanding intelligence and Creating intelligent artifacts both are the twin goals of Artificial Intelligence (AI.In more recent times, the interest is focused on problems related with Complex Networks [3, 5,6, 19], in particular on questions such as clustering search and identification. We attempt, in this paper, a panoramic vision of such mathematical methods in AI.

  8. Deciphering the recent phylogenetic expansion of the originally deeply rooted Mycobacterium tuberculosis lineage 7.

    Science.gov (United States)

    Yimer, Solomon A; Namouchi, Amine; Zegeye, Ephrem Debebe; Holm-Hansen, Carol; Norheim, Gunnstein; Abebe, Markos; Aseffa, Abraham; Tønjum, Tone

    2016-06-30

    A deeply rooted phylogenetic lineage of Mycobacterium tuberculosis (M. tuberculosis) termed lineage 7 was discovered in Ethiopia. Whole genome sequencing of 30 lineage 7 strains from patients in Ethiopia was performed. Intra-lineage genome variation was defined and unique characteristics identified with a focus on genes involved in DNA repair, recombination and replication (3R genes). More than 800 mutations specific to M. tuberculosis lineage 7 strains were identified. The proportion of non-synonymous single nucleotide polymorphisms (nsSNPs) in 3R genes was higher after the recent expansion of M. tuberculosis lineage 7 strain started. The proportion of nsSNPs in genes involved in inorganic ion transport and metabolism was significantly higher before the expansion began. A total of 22346 bp deletions were observed. Lineage 7 strains also exhibited a high number of mutations in genes involved in carbohydrate transport and metabolism, transcription, energy production and conversion. We have identified unique genomic signatures of the lineage 7 strains. The high frequency of nsSNP in 3R genes after the phylogenetic expansion may have contributed to recent variability and adaptation. The abundance of mutations in genes involved in inorganic ion transport and metabolism before the expansion period may indicate an adaptive response of lineage 7 strains to enable survival, potentially under environmental stress exposure. As lineage 7 strains originally were phylogenetically deeply rooted, this may indicate fundamental adaptive genomic pathways affecting the fitness of M. tuberculosis as a species.

  9. Deeply trapped electrons in imaging plates and their utilization for extending the dynamic range

    International Nuclear Information System (INIS)

    Ohuchi, Hiroko; Kondo, Yasuhiro

    2010-01-01

    The absorption spectra of deep centers in an imaging plate (IP) made of BaFBr 0:85 I 0:15 :Eu 2+ have been studied in the ultraviolet region. Electrons trapped in deep centers are considered to be the cause of unerasable and reappearing latent images in IPs over-irradiated with X-rays. Deep centers showed a dominant peak at around 320 nm, followed by two small peaks at around 345 and 380 nm. By utilizing deeply trapped electrons, we have attempted to extend the dynamic range of an IP. The IP was irradiated by 150-kV X-rays with doses from 8.07 mGy to 80.7 Gy. Reading out the latent image by the stimulation of Eu 2+ luminescence with a 633-nm He-Ne laser light from a conventional Fuji reader showed a linear relationship with irradiated dose up to 0.8 Gy, but then becoming non-linear. After fully erasing with visible light, unerasable latent images were read out using 635-nm semi-conductor laser light combined with a photon-counting detection system. The dose-response curve so obtained gave a further two orders of magnitude extending the dynamic range up to 80.7 Gy. Comprehensive results indicate that electrons supplied from deep centers to the F centers provided the extended dynamic range after the F centers became saturated. Based on these facts, a model of the excitation of deeply trapped electrons and PSL processes is proposed.

  10. Topics in the mathematical physics of E-infinity theory

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2006-01-01

    This is the fourth contribution in a series of papers aimed at directing the attention of the prospective E-infinity researcher to the most important mathematical background and sources needed for an easy understanding and successful application of this theory. The present paper is mainly concerned with the mathematical physics relevant to E-infinity theory with emphasis on super Yang-Mills theory and superstrings

  11. Operating experience in processing of differently sourced deeply depleted uranium oxide and production of deeply depleted uranium metal ingots

    International Nuclear Information System (INIS)

    Manna, S.; Ladola, Y.S.; Sharma, S.; Chowdhury, S.; Satpati, S.K.; Roy, S.B.

    2009-01-01

    Uranium Metal Plant (UMP) of BARC had first time experience on production of three Depleted Uranium Metal (DUM) ingots of 76kg, 152kg and 163kg during March 1991. These ingots were produced by processing depleted uranyl nitrate solution produced at Plutonium Plant (PP), Trombay. In recent past Uranium Metal Plant (UMP), Uranium Extraction Division (UED), has been assigned to produce tonnage quantity of Deeply DUM (DDUM) from its oxide obtained from PP, PREFRE and RMP, BARC. This is required for shielding the high radioactive source of BHABHATRON Tele-cobalt machine, which is used for cancer therapy. The experience obtained in processing of various DDU oxides is being utilized for design of large scale DDU-metal plant under XIth plan project. The physico- chemical characteristics like morphology, density, flowability, reactivity, particle size distribution, which are having direct effect on reactivity of the powders of the DDU oxide powder, were studied and the shop-floor operational experience in processing of different oxide powder were obtained and recorded. During campaign trials utmost care was taken to standardized all operating conditions using the same equipment which are in use for natural uranium materials processing including safety aspects both with respect to radiological safety and industrial safety. Necessary attention and close monitoring were specially arranged and maintained for the safety aspects during the trial period. In-house developed pneumatic transport system was used for powder transfer and suitable dust arresting system was used for reduction of powder carry over

  12. Using Mathematics Literature with Prospective Secondary Mathematics Teachers

    Science.gov (United States)

    Jett, Christopher C.

    2014-01-01

    Literature in mathematics has been found to foster positive improvements in mathematics learning. This manuscript reports on a mathematics teacher educator's use of literature via literature circles with 11 prospective secondary mathematics teachers in a mathematics content course. Using survey and reflection data, the author found that…

  13. Line integral on engineering mathematics

    Science.gov (United States)

    Wiryanto, L. H.

    2018-01-01

    Definite integral is a basic material in studying mathematics. At the level of calculus, calculating of definite integral is based on fundamental theorem of calculus, related to anti-derivative, as the inverse operation of derivative. At the higher level such as engineering mathematics, the definite integral is used as one of the calculating tools of line integral. the purpose of this is to identify if there is a question related to line integral, we can use definite integral as one of the calculating experience. The conclusion of this research says that the teaching experience in introducing the relation between both integrals through the engineer way of thinking can motivate and improve students in understanding the material.

  14. Einstein's Theory A Rigorous Introduction for the Mathematically Untrained

    CERN Document Server

    Grøn, Øyvind

    2011-01-01

    This book provides an introduction to the theory of relativity and the mathematics used in its processes. Three elements of the book make it stand apart from previously published books on the theory of relativity. First, the book starts at a lower mathematical level than standard books with tensor calculus of sufficient maturity to make it possible to give detailed calculations of relativistic predictions of practical experiments. Self-contained introductions are given, for example vector calculus, differential calculus and integrations. Second, in-between calculations have been included, making it possible for the non-technical reader to follow step-by-step calculations. Thirdly, the conceptual development is gradual and rigorous in order to provide the inexperienced reader with a philosophically satisfying understanding of the theory.  Einstein's Theory: A Rigorous Introduction for the Mathematically Untrained aims to provide the reader with a sound conceptual understanding of both the special and genera...

  15. Understanding space weather with new physical, mathematical and philosophical approaches

    Science.gov (United States)

    Mateev, Lachezar; Velinov, Peter; Tassev, Yordan

    2016-07-01

    The actual problems of solar-terrestrial physics, in particular of space weather are related to the prediction of the space environment state and are solved by means of different analyses and models. The development of these investigations can be considered also from another side. This is the philosophical and mathematical approach towards this physical reality. What does it constitute? We have a set of physical processes which occur in the Sun and interplanetary space. All these processes interact with each other and simultaneously participate in the general process which forms the space weather. Let us now consider the Leibniz's monads (G.W. von Leibniz, 1714, Monadologie, Wien; Id., 1710, Théodicée, Amsterdam) and use some of their properties. There are total 90 theses for monads in the Leibniz's work (1714), f.e. "(1) The Monad, of which we shall here speak, is nothing but a simple substance, which enters into compounds. By 'simple' is meant 'without parts'. (Theod. 10.); … (56) Now this connexion or adaptation of all created things to each and of each to all, means that each simple substance has relations which express all the others, and, consequently, that it is a perpetual living mirror of the universe. (Theod. 130, 360.); (59) … this universal harmony, according to which every substance exactly expresses all others through the relations it has with them. (63) … every Monad is, in its own way, a mirror of the universe, and the universe is ruled according to a perfect order. (Theod. 403.)", etc. Let us introduce in the properties of monads instead of the word "monad" the word "process". We obtain the following statement: Each process reflects all other processes and all other processes reflect this process. This analogy is not formal at all, it reflects accurately the relation between the physical processes and their unity. The category monad which in the Leibniz's Monadology reflects generally the philosophical sense is fully identical with the

  16. Affective Productions of Mathematical Experience

    Science.gov (United States)

    Walshaw, Margaret; Brown, Tony

    2012-01-01

    In underscoring the affective elements of mathematics experience, we work with contemporary readings of the work of Spinoza on the politics of affect, to understand what is included in the cognitive repertoire of the Subject. We draw on those resources to tell a pedagogical tale about the relation between cognition and affect in settings of…

  17. Doing Mathematics with Purpose: Mathematical Text Types

    Science.gov (United States)

    Dostal, Hannah M.; Robinson, Richard

    2018-01-01

    Mathematical literacy includes learning to read and write different types of mathematical texts as part of purposeful mathematical meaning making. Thus in this article, we describe how learning to read and write mathematical texts (proof text, algorithmic text, algebraic/symbolic text, and visual text) supports the development of students'…

  18. An Overview on Synergy between Mathematics and Biology

    International Nuclear Information System (INIS)

    He, Matthew

    2013-01-01

    Recent progress in the determination of genomic sequences has yielded many millions of gene sequences. But what do these sequences tell us and what are the generalities and rules that are governed by them? It seems that we understand very little about genetic contexts required to ''read'' them. There is more to life than the genomic blueprint of each organism. Life functions within the natural laws that we know and the ones we do not know. Mathematics can be used to understand life from the molecular to the biosphere level. This paper provides a brief overview of major historical events of molecular biology and genetics, current interface of emerging field of bioinformatics, and future challenges and perspectives between mathematics and biology

  19. Annual Perspectives in Mathematics Education 2016: Mathematical Modeling and Modeling Mathematics

    Science.gov (United States)

    Hirsch, Christian R., Ed.; McDuffie, Amy Roth, Ed.

    2016-01-01

    Mathematical modeling plays an increasingly important role both in real-life applications--in engineering, business, the social sciences, climate study, advanced design, and more--and within mathematics education itself. This 2016 volume of "Annual Perspectives in Mathematics Education" ("APME") focuses on this key topic from a…

  20. Mathematical Model of the Public Understanding of Space Science

    Science.gov (United States)

    Prisniakov, V.; Prisniakova, L.

    The success in deployment of the space programs now in many respects depends on comprehension by the citizens of necessity of programs, from "space" erudition of country. Purposefulness and efficiency of the "space" teaching and educational activity depend on knowledge of relationships between separate variables of such process. The empirical methods of ``space'' well-information of the taxpayers should be supplemented by theoretical models permitting to demonstrate a ways of control by these processes. Authors on the basis of their experience of educational activity during 50- years of among the students of space-rocket profession obtain an equation of ``space" state of the society determining a degree of its knowledge about Space, about achievements in its development, about indispensable lines of investigations, rates of informatization of the population. It is supposed, that the change of the space information consists of two parts: (1) - from going of the information about practical achievements, about development special knowledge requiring of independent financing, and (2) from intensity of dissemination of the ``free" information of a general educational line going to the population through mass-media, book, in family, in educational institutions, as a part of obligatory knowledge of any man, etc. In proposed model the level space well-information of the population depends on intensity of dissemination in the society of the space information, and also from a volume of financing of space-rocket technology, from a part of population of the employment in the space-rocket programs, from a factor of education of the population in adherence to space problems, from welfare and mentality of the people, from a rate of unemployment and material inequality. Obtained in the report on these principles the equation of a space state of the society corresponds to catastrophe such as cusp, the analysis has shown which one ways of control of the public understanding of space

  1. What is the problem in problem-based learning in higher education mathematics

    Science.gov (United States)

    Dahl, Bettina

    2018-01-01

    Problem and Project-Based Learning (PBL) emphasise collaborate work on problems relevant to society and emphases the relation between theory and practice. PBL fits engineering students as preparation for their future professions but what about mathematics? Mathematics is not just applied mathematics, but it is also a body of abstract knowledge where the application in society is not always obvious. Does mathematics, including pure mathematics, fit into a PBL curriculum? This paper argues that it does for two reasons: (1) PBL resembles the working methods of research mathematicians. (2) The concept of society includes the society of researchers to whom theoretical mathematics is relevant. The paper describes two cases of university PBL projects in mathematics; one in pure mathematics and the other in applied mathematics. The paper also discusses that future engineers need to understand the world of mathematics as well as how engineers fit into a process of fundamental-research-turned-into-applied-science.

  2. Scott Foresman-Addison Wesley Elementary Mathematics. What Works Clearinghouse Intervention Report

    Science.gov (United States)

    What Works Clearinghouse, 2010

    2010-01-01

    "Scott Foresman-Addison Wesley Elementary Mathematics" is a core curriculum for students at all ability levels in prekindergarten through grade 6. The program supports students' understanding of key math concepts and skills and covers a range of mathematical content across grades. The What Works Clearinghouse (WWC) reviewed 12 studies on…

  3. A Literature Review: The Effect of Implementing Technology in a High School Mathematics Classroom

    Science.gov (United States)

    Murphy, Daniel

    2016-01-01

    This study is a literature review to investigate the effects of implementing technology into a high school mathematics classroom. Mathematics has a hierarchical structure in learning and it is essential that students get a firm understanding of mathematics early in education. Some students that miss beginning concepts may continue to struggle with…

  4. Speed mathematics secrets skills for quick calculation

    CERN Document Server

    Handley, Bill

    2011-01-01

    Using this book will improve your understanding of math and haveyou performing like a genius!People who excel at mathematics use better strategies than the restof us; they are not necessarily more intelligent.Speed Mathematics teaches simple methods that will enable you tomake lightning calculations in your head-including multiplication,division, addition, and subtraction, as well as working withfractions, squaring numbers, and extracting square and cube roots.Here's just one example of this revolutionary approach to basicmathematics:96 x 97 =Subtract each number from 100.96 x 97 =4 3Subtract

  5. Logic and discrete mathematics a concise introduction

    CERN Document Server

    Conradie, Willem

    2015-01-01

    A concise yet rigorous introduction to logic and discrete mathematics. This book features a unique combination of comprehensive coverage of logic with a solid exposition of the most important fields of discrete mathematics, presenting material that has been tested and refined by the authors in university courses taught over more than a decade.  The chapters on logic - propositional and first-order - provide a robust toolkit for logical reasoning, emphasizing the conceptual understanding of the language and the semantics of classical logic as well as practical applications through the easy

  6. International Workshop on Exotic Hadronic Atoms, Deeply Bound Kaonic Nuclear States and Antihydrogen : Present Results, Future Challenges

    CERN Document Server

    Widmann, E; Curceanu, C; Trento 2006; Trento06

    2006-01-01

    These are the miniproceedings of the workshop "Exotic hadronic atoms, deeply bound kaonic nuclear states and antihydrogen: present results, future challenges," which was held at the European Centre for Theoretical Nuclear Physics and Related Studies (ECT*), Trento (Italy), June 19-24, 2006. The document includes a short presentation of the topics, the list of participants, and a short contribution from each speaker.

  7. Writing and mathematical problem solving in Grade 3

    Directory of Open Access Journals (Sweden)

    Belinda Petersen

    2017-06-01

    Full Text Available This article looks at writing tasks as a methodology to support learners’ mathematical problemsolving strategies in the South African Foundation Phase context. It is a qualitative case study and explores the relation between the use of writing in mathematics and development of learners’ problem-solving strategies and conceptual understanding. The research was conducted in a suburban Foundation Phase school in Cape Town with a class of Grade 3 learners involved in a writing and mathematics intervention. Writing tasks were modelled to learners and implemented by them while they were engaged in mathematical problem solving. Data were gathered from a sample of eight learners of different abilities and included written work, interviews, field notes and audio recordings of ability group discussions. The results revealed an improvement in the strategies and explanations learners used when solving mathematical problems compared to before the writing tasks were implemented. Learners were able to reflect critically on their thinking through their written strategies and explanations. The writing tasks appeared to support learners in providing opportunities to construct and apply mathematical knowledge and skills in their development of problem-solving strategies.

  8. Mathematical Abstraction: Constructing Concept of Parallel Coordinates

    Science.gov (United States)

    Nurhasanah, F.; Kusumah, Y. S.; Sabandar, J.; Suryadi, D.

    2017-09-01

    Mathematical abstraction is an important process in teaching and learning mathematics so pre-service mathematics teachers need to understand and experience this process. One of the theoretical-methodological frameworks for studying this process is Abstraction in Context (AiC). Based on this framework, abstraction process comprises of observable epistemic actions, Recognition, Building-With, Construction, and Consolidation called as RBC + C model. This study investigates and analyzes how pre-service mathematics teachers constructed and consolidated concept of Parallel Coordinates in a group discussion. It uses AiC framework for analyzing mathematical abstraction of a group of pre-service teachers consisted of four students in learning Parallel Coordinates concepts. The data were collected through video recording, students’ worksheet, test, and field notes. The result shows that the students’ prior knowledge related to concept of the Cartesian coordinate has significant role in the process of constructing Parallel Coordinates concept as a new knowledge. The consolidation process is influenced by the social interaction between group members. The abstraction process taken place in this group were dominated by empirical abstraction that emphasizes on the aspect of identifying characteristic of manipulated or imagined object during the process of recognizing and building-with.

  9. Mathematical foundations of biomechanics.

    Science.gov (United States)

    Niederer, Peter F

    2010-01-01

    The aim of biomechanics is the analysis of the structure and function of humans, animals, and plants by means of the methods of mechanics. Its foundations are in particular embedded in mathematics, physics, and informatics. Due to the inherent multidisciplinary character deriving from its aim, biomechanics has numerous connections and overlapping areas with biology, biochemistry, physiology, and pathophysiology, along with clinical medicine, so its range is enormously wide. This treatise is mainly meant to serve as an introduction and overview for readers and students who intend to acquire a basic understanding of the mathematical principles and mechanics that constitute the foundation of biomechanics; accordingly, its contents are limited to basic theoretical principles of general validity and long-range significance. Selected examples are included that are representative for the problems treated in biomechanics. Although ultimate mathematical generality is not in the foreground, an attempt is made to derive the theory from basic principles. A concise and systematic formulation is thereby intended with the aim that the reader is provided with a working knowledge. It is assumed that he or she is familiar with the principles of calculus, vector analysis, and linear algebra.

  10. Mathematics and Maxwell's equations

    International Nuclear Information System (INIS)

    Boozer, Allen H

    2010-01-01

    The universality of mathematics and Maxwell's equations is not shared by specific plasma models. Computations become more reliable, efficient and transparent if specific plasma models are used to obtain only the information that would otherwise be missing. Constraints of high universality, such as those from mathematics and Maxwell's equations, can be obscured or lost by integrated computations. Recognition of subtle constraints of high universality is important for (1) focusing the design of control systems for magnetic field errors in tokamaks from perturbations that have little effect on the plasma to those that do, (2) clarifying the limits of applicability to astrophysics of computations of magnetic reconnection in fields that have a double periodicity or have B-vector =0 on a surface, as in a Harris sheet. Both require a degree of symmetry not expected in natural systems. Mathematics and Maxwell's equations imply that neighboring magnetic field lines characteristically separate exponentially with distance along a line. This remarkably universal phenomenon has been largely ignored, though it defines a trigger for reconnection through a critical magnitude of exponentiation. These and other examples of the importance of making distinctions and understanding constraints of high universality are explained.

  11. Cultural horizons for mathematics

    Science.gov (United States)

    Owens, Kay; Paraides, Patricia; Jannok Nutti, Ylva; Johansson, Gunilla; Bennet, Maria; Doolan, Pat; Peckham, Ray; Hill, John; Doolan, Frank; O'Sullivan, Dominic; Murray, Libbey; Logan, Patricia; McNair, Melissa; Sunnari, Vappu; Murray, Beatrice; Miller, Alissa; Nolan, John; Simpson, Alca; Ohrin, Christine; Doolan, Terry; Doolan, Michelle; Taylor, Paul

    2011-06-01

    As a result of a number of government reports, there have been numerous systemic changes in Indigenous education in Australia revolving around the importance of partnerships with the community. A forum with our local Dubbo community established the importance of working together and developed a model which placed the child in an ecological perspective that particularly noted the role of Elders and the place of the child in the family. However, there was also the issue of curriculum and mathematics education to be addressed. It was recognised that a colonised curriculum reduces the vision of what might be the potential for Indigenous mathematics education. This paper reports on the sharing that developed between our local community and some researchers and teachers from Sweden, Papua New Guinea and New Zealand. It has implications for recognising the impact of testing regimes, the teaching space, understanding the ways children learn, the curriculum, and teacher education. As a result of these discussions, a critical pedagogy that considers culture and place is presented as an ecocultural perspective on mathematics education. This perspective was seen as critical for the curriculum and learning experiences of Indigenous children.

  12. The Impediments Encountered While Learning Mathematics by Eight Grade Students

    Science.gov (United States)

    Erbay, Hatice Nur; Yavuz, Gunes

    2016-01-01

    Mathematics is seen by many people as the best way to get a good life and a good career. It is also thought as an assistant to understand life and the world and to produce ideas about them. Therefore, new reform studies are being held to construct a new system that assists students to learn mathematics in a comprehensive way (Dursun & Dede,…

  13. A mathematical medley fifty easy pieces on mathematics

    CERN Document Server

    Szpiro, George G

    2010-01-01

    Szpiro's book provides a delightful, well-written, eclectic selection of mathematical tidbits that makes excellent airplane reading for anyone with an interest in mathematics, regardless of their mathematical background. Excellent gift material. -Keith Devlin, Stanford University, author of The Unfinished Game and The Language of Mathematics It is great to have collected in one volume the many varied, insightful and often surprising mathematical stories that George Szpiro has written in his mathematical columns for the newspapers through the years. -Marcus du Sautoy, Oxford University, author

  14. A mathematical primer on quantum mechanics

    CERN Document Server

    Teta, Alessandro

    2018-01-01

    This book offers a rigorous yet elementary approach to quantum mechanics that will meet the needs of Master’s-level Mathematics students and is equally suitable for Physics students who are interested in gaining a deeper understanding of the mathematical structure of the theory. Throughout the coverage, which is limited to single-particle quantum mechanics, the focus is on formulating theory and developing applications in a mathematically precise manner. Following a review of selected key concepts in classical physics and the historical background, the basic elements of the theory of operators in Hilbert spaces are presented and used to formulate the rules of quantum mechanics. The discussion then turns to free particles, harmonic oscillators, delta potential, and hydrogen atoms, providing rigorous proofs of the corresponding dynamical properties. Starting from an analysis of these applications, readers are subsequently introduced to more advanced topics such as the classical limit, scattering theory, and s...

  15. The Relationship among Elementary Teachers’ Mathematics Anxiety, Mathematics Instructional Practices, and Student Mathematics Achievement

    OpenAIRE

    Hadley, Kristin M.; Dorward, Jim

    2011-01-01

    Many elementary teachers have been found to have high levels of mathematics anxiety but the impact on student achievement was unknown. Elementary teachers (N = 692) completed the modified Mathematics Anxiety Rating Scale-Revised (Hopko, 2003) along with a questionnaire probing anxiety about teaching mathematics and current mathematics instructional practices. Student mathematics achievement data were collected for the classrooms taught by the teachers. A positive relationship was found betwee...

  16. Mathematics and science Teachers' Understanding and Practices of ...

    African Journals Online (AJOL)

    Amy Stambach

    It employed qualitative methods of data collection including in-depth interviews and ... Education, Science, Technology, Scientific Research, 2003; Rwanda Education .... Rwandan science teachers were not having common understanding of ...

  17. Does the cognitive reflection test measure cognitive reflection? A mathematical modeling approach.

    Science.gov (United States)

    Campitelli, Guillermo; Gerrans, Paul

    2014-04-01

    We used a mathematical modeling approach, based on a sample of 2,019 participants, to better understand what the cognitive reflection test (CRT; Frederick In Journal of Economic Perspectives, 19, 25-42, 2005) measures. This test, which is typically completed in less than 10 min, contains three problems and aims to measure the ability or disposition to resist reporting the response that first comes to mind. However, since the test contains three mathematically based problems, it is possible that the test only measures mathematical abilities, and not cognitive reflection. We found that the models that included an inhibition parameter (i.e., the probability of inhibiting an intuitive response), as well as a mathematical parameter (i.e., the probability of using an adequate mathematical procedure), fitted the data better than a model that only included a mathematical parameter. We also found that the inhibition parameter in males is best explained by both rational thinking ability and the disposition toward actively open-minded thinking, whereas in females this parameter was better explained by rational thinking only. With these findings, this study contributes to the understanding of the processes involved in solving the CRT, and will be particularly useful for researchers who are considering using this test in their research.

  18. Supporting Teachers' Understandings of Function through Online Professional Development

    Science.gov (United States)

    Silverman, Jason

    2017-01-01

    This article explores one segment of an extended research and development project that was conducted to better understand the ways online teacher professional development can support teachers' development of deep and connected mathematical understandings. In particular, this article discusses teachers' understandings of the concept of…

  19. The language of mathematics telling mathematical tales

    CERN Document Server

    Barton, Bill

    2008-01-01

    Everyday mathematical ideas are expressed differently in different languages. This book probes those differences and explores their implications for mathematics education, arguing for alternatives to how we teach and learn mathematics.

  20. Scott Foresman-Addison Wesley Elementary Mathematics. What Works Clearinghouse Intervention Report. Updated

    Science.gov (United States)

    What Works Clearinghouse, 2013

    2013-01-01

    "Scott Foresman-Addison Wesley Elementary Mathematics" is a core mathematics curriculum for students in prekindergarten through grade 6. The program aims to improve students' understanding of key math concepts through problem-solving instruction, hands-on activities, and math problems that involve reading and writing. The curriculum…