WorldWideScience

Sample records for understand magmatic processes

  1. Petrography and Mineral Chemistry of Magmatic and Hydrothermal Biotite in Porphyry Copper-Gold Deposits: A Tool for Understanding Mineralizing Fluid Compositional Changes During Alteration Processes

    Directory of Open Access Journals (Sweden)

    Arifudin Idrus

    2018-01-01

    Full Text Available DOI: 10.17014/ijog.5.1.47-64This study aims to understand the petrography and chemistry of both magmatic and hydrothermal biotites in porphyry copper-gold deposits, and to evaluate the fluid compositional changes during alteration processes. A total of 206 biotite grains from selected rock samples taken from the Batu Hijau porphyry Cu-Au deposit was analyzed. Detailed petrography and biotite chemistry analysis were performed on thin sections and polished thin sections, respectively, representing various rocks and alteration types. A JEOL JXA-8900R electron microprobe analyzer (EMPA was used for the chemistry analysis. The biotite is texturally divided into magmatic and hydrothermal types. Ti, Fe, and F contents can be used to distinguish the two biotite types chemically. Some oxide and halogen contents of biotite from various rocks and alteration types demonstrate a systematic variation in chemical composition. Biotite halogen chemistry shows a systematic increase in log (XCl/XOH and decrease in log (XF/XOH values from biotite (potassic through chlorite-sericite (intermediate argillic to actinolite (inner propylitic zones. The y-intercepts on the log (XCl/XOH vs. XMg and log (XF/XOH vs. XFe plotted for biotite from potassic and intermediate argillic zones are similar or slightly different. In contrast, the y-intercepts on the log (XCl/XOH vs. XMg and log (XF/XOH vs. XFe plotted for biotite from inner propylitic zone display different values in comparison to the two alteration zones. Halogen (F,Cl fugacity ratios in biotite show a similar pattern: in the potassic and intermediate argillic zones they show little variation, whereas in the inner propylitic zone they are distinctly different. These features suggest the hydrothermal fluid composition remained fairly constant in the inner part of the deposit during the potassic and intermediate argillic alteration events, but changed significantly towards the outer part affected by inner propylitic

  2. Modulation of magmatic processes by carbon dioxide

    Science.gov (United States)

    Caricchi, L.; Sheldrake, T. E.; Blundy, J. D.

    2017-12-01

    Volatile solubility in magmas increases with pressure, although the solubility of CO2 is much lower than that of H2O. Consequently, magmas rising from depth release CO2-rich fluids, which inevitably interact with H2O-poor magmas in the upper crust (CO2-flushing). CO2-flushing triggers the exsolution of H2O-rich fluids, leading to an increase of volume and magma crystallisation. While the analyses of eruptive products demonstrates that this process operates in virtually all magmatic system, its impact on magmatic and volcanic processes has not been quantified. Here we show that depending on the initial magma crystallinity, and the depth of magma storage, CO2-flushing can lead to volcanic eruptions or promote conditions that favour the impulsive release of mineralising fluids. Our calculations show that the interaction between a few hundred ppm of carbonic fluids, and crystal-poor magmas stored at shallow depths, produces rapid pressurisation that can potentially lead to an eruption. Further addition of CO2 increases magma compressibility and crystallinity, reducing the potential for volcanic activity, promoting the formation of ore deposits. Increasing the depth of fluid-magma interaction dampens the impact of CO2-flushing on the pressurisation of a magma reservoir. CO2-flushing may result in surface inflation and increases in surface CO2 fluxes, which are commonly considered signs of an impending eruption, but may not necessarily result in eruption depending on the initial crystallnity and depth of the magmatic reservoir. We propose that CO2-flushing is a powerful agent modulating the pressurisation of magma reservoirs and the release of mineralising fluids from upper crustal magma reservoirs.

  3. Argon isotopes as recorders of magmatic processes

    Science.gov (United States)

    Layer, P. W.; Gardner, J. E.; Mora Chaparro, J. C.; Arce, J. L.

    2003-12-01

    Argon isotopic ratios vary enough between different reservoirs (atmosphere, crust, mantle) and diffuse fast enough through most minerals at magmatic temperatures (700-1200 C) to make them ideal for looking at magma chamber dynamics. Indeed, diffusion is sufficiently fast to allow short time scales to be deciphered, setting argon apart from many other isotopic methods. A mineral's ability to retain "excess" argon (40Ar/36Ar ratios greater than the atmospheric value and apparent ages older than the known eruption age) during post-eruption cooling is key to Ar studies. Previous work shows that both phenocrysts (crystallizing in the magma chamber; e.g. Mt St. Helens; Layer and Gardner, 2001) and xenocrysts (introduced into the magma chamber; e.g Toba; Gardner et al., 2002) preserve excess argon, which enables magma chamber processes to be deciphered through the variable diffusion rates between crystal phases. Single crystal 40Ar/39Ar step-heating of biotite from the 10.5 ka eruption of Nevado de Toluca volcano, Mexico indicates that they are xenocrystic and resided for only a short (< 1 year) time in the magma before it erupted. The biotite has reaction rims of hornblende, orthopyroxene and plagioclase, and failed to grow experimentally at pressure-temperature conditions of the magma, confirming the xenocrystic nature of this phase. Single-step fusion of plagioclase phenocrysts from eruptions of El Chichon volcano, Mexico, shows evidence of excess (mantle) argon, whereas hornblende from the same eruptions contains little or none. In this case, faster diffusion of Ar in plagioclase than in hornblende allow plagioclase to incorporate excess argon during magma recharge; hornblende does not. Combining such results with other isotopic systems may in fact better determine magma chamber processes. At El Chichon, Sr isotopes suggest magma recharges ocurred (Tepley et al., 2000), whereas the argon isotopes suggest such pulses occurred just before each eruption. The fast and

  4. Drilling to investigate processes in active tectonics and magmatism

    Science.gov (United States)

    Shervais, J.; Evans, J.; Toy, V.; Kirkpatrick, J.; Clarke, A.; Eichelberger, J.

    2014-12-01

    Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park City, Utah, in May 2013, was attended by 41 investigators from seven countries. Participants were asked to define compelling scientific justifications for examining problems that can be addressed by coordinated programs of continental scientific drilling and related site investigations. They were also asked to evaluate a wide range of proposed drilling projects, based on white papers submitted prior to the workshop. Participants working on faults and fault zone processes highlighted two overarching topics with exciting potential for future scientific drilling research: (1) the seismic cycle and (2) the mechanics and architecture of fault zones. Recommended projects target fundamental mechanical processes and controls on faulting, and range from induced earthquakes and earthquake initiation to investigations of detachment fault mechanics and fluid flow in fault zones. Participants working on active volcanism identified five themes: the volcano eruption cycle; eruption sustainability, near-field stresses, and system recovery; eruption hazards; verification of geophysical models; and interactions with other Earth systems. Recommended projects address problems that are transferrable to other volcanic systems, such as improved methods for identifying eruption history and constraining the rheological structure of shallow caldera regions. Participants working on chemical geodynamics identified four major themes: large igneous provinces (LIPs), ocean islands, continental hotspot tracks and rifts, and

  5. Characteristic Time Scales of Characteristic Magmatic Processes and Systems

    Science.gov (United States)

    Marsh, B. D.

    2004-05-01

    Every specific magmatic process, regardless of spatial scale, has an associated characteristic time scale. Time scales associated with crystals alone are rates of growth, dissolution, settling, aggregation, annealing, and nucleation, among others. At the other extreme are the time scales associated with the dynamics of the entire magmatic system. These can be separated into two groups: those associated with system genetics (e.g., the production and transport of magma, establishment of the magmatic system) and those due to physical characteristics of the established system (e.g., wall rock failure, solidification front propagation and instability, porous flow). The detailed geometry of a specific magmatic system is particularly important to appreciate; although generic systems are useful, care must be taken to make model systems as absolutely realistic as possible. Fuzzy models produce fuzzy science. Knowledge of specific time scales is not necessarily useful or meaningful unless the hierarchical context of the time scales for a realistic magmatic system is appreciated. The age of a specific phenocryst or ensemble of phenocrysts, as determined from isotopic or CSD studies, is not meaningful unless something can be ascertained of the provenance of the crystals. For example, crystal size multiplied by growth rate gives a meaningful crystal age only if it is from a part of the system that has experienced semi-monotonic cooling prior to chilling; crystals entrained from a long-standing cumulate bed that were mechanically sorted in ascending magma may not reveal this history. Ragged old crystals rolling about in the system for untold numbers of flushing times record specious process times, telling more about the noise in the system than the life of typical, first generation crystallization processes. The most helpful process-related time scales are those that are known well and that bound or define the temporal style of the system. Perhaps the most valuable of these

  6. Understanding Magmatic Plumbing System Dynamics at Fernandina Island, Galapagos

    Science.gov (United States)

    Varga, K. C.; McGuire, M.; Geist, D.; Harpp, K. S.

    2015-12-01

    Fernandina is the most active Galápagos volcano, and is located closest to the seismically defined hotspot. Allan and Simkin (2000) observed that the subaerial edifice is constructed of homogeneous basalts (Mg# = 49 ± 2) with highly variable plagioclase phenocryst contents and sparse olivine. Geist et al. (2006) proposed a magmatic plumbing system in which the volcano is supplied by interconnected sills, the shallowest of which is density-stratified: olivine and pyroxene are concentrated at greater depths, whereas less dense plagioclase mush is higher in the sill. Consequently, olivine-rich lava erupts laterally during submarine events, but plagioclase-rich lava supplies subaerial vents. To test this hypothesis, we examine lavas erupted in 1995, 2005, and 2009. These SW flank eruptions emerged alternatively from en echelon radial fissures on the lower flanks and circumferential fissures near the caldera rim. The 1995 radial fissure unzipped downslope and then formed a cone 4 km from the coast, sending flows to the ocean. In 2005, circumferential fissures erupted five flows south of the 1995 fissure. As in 1995, the 2009 fissures opened down the SW flank before focusing to a cone near the 1995 vents, producing 6 km-long flows that also reached the ocean. By correlating plagioclase crystal size distribution and morphologies with single event chronological sequences, we examine Fernandina's magmatic plumbing system. Modal plagioclase in 1995 lava decreases (20% to <5%) throughout the middle eruptive phase. Early 2005 samples are nearly aphyric (Chadwick et al., 2010), with 1-2% plagioclase. The 2009 eruption has reduced plagioclase, similar to mid-1995 samples. Preliminary observations suggest that less plagioclase-rich mush is being flushed out during early-to-medial event sequences, whereas plag phenocrysts are transported more during later phases. Plausible plumbing dynamics suggest a zone of plagioclase-rich mush that is eroded and incorporated into radial

  7. Thermal and magmatic processes on Venus, Earth, and Mars

    Science.gov (United States)

    Hauck, Steven Arthur, II

    Venus, Mars, and Earth present unique opportunities and laboratories for studying the thermal and magmatic evolution of terrestrial planets. Key observations from the Magellan mission to Venus were that the surface hosts a mere ˜1000 impact craters and that more than 65% of the surface is covered by volcanic plains. A popular hypothesis suggested the plains were emplaced in 10--100 Myr. However, analysis of the population of impact craters with respect to plains geology suggests that magmatism associated with plains emplacement lasted approximately half the average surface age of the planet, almost 500 Myr. Martian thermo-magmatic evolution is constrained by estimates that the crust was predominantly emplaced within the first 500 Myr, has an average crustal thickness of 50--100 km, and observations that imply that the planet had an internally generated magnetic field early, but is lacking one today. Coupling of a simple, parameterized model of mantle convection to a batch-melting model for peridotite allows reconstruction of reasonable estimates of the conditions and evolutionary path of the crust and mantle. Key elements of the nominal model are inclusion of the energetics of melting, a wet (weak) mantle rheology, self-consistent fractionation of heat producing elements to the crust, a near chondritic abundance of those same elements, and a core with 15 wt% sulfur. Inclusion of the latent heat of melting mantle material is crucial for constraining thermal and magmatic history of Mars. The nominal model results in an average crustal thickness of 67 km that was 75% emplaced by 4 Ga. The subduction of terrestrial oceanic lithosphere is an important heat transfer process related to plate tectonics. The source of deep focus earthquakes may be tied to the thermal structure of downgoing slabs and the potential for catastrophic transformation of metastable olivine below the 410 km discontinuity. The first models of subducting slabs that include thermal conductivity that

  8. Magmatic Processes and Systems Deduced from Single Crystals

    Science.gov (United States)

    Davidson, J.; Bezard, R. C.; Morgan, D. J.; Ginibre, C.

    2014-12-01

    When crystals grow in liquids the composition of their outermost layer will reflect that of the host with which they are in equilibrium and will therefore record the liquid composition, pressure and temperature.. Following separation from their sources, magmas differentiate. This change in liquid composition is driven largely by crystallisation in response to cooling or decompression. Other open system processes such as mixing and contamination are common. These can lead to abrupt changes in trace element and isotopic composition, accompanied by petrographic features, such as dissolution surfaces or zones of melt inclusions. Where such careful mineral-scale studies have been performed, the prevalence of open system processes is clear. In many cases these are shown by core-rim isotopic variations. Crystal-scale compositional variations in the context of whole rock compositions and petrography have allowed us to show crustal assimilation even from regions of supposedly oceanic crust such as the Lesser Antilles. In tandem with tracking magma evolution, core-rim analyses of appropriate crystals have also provided diffusion profiles which reflect timescales of magmatic processes. A key point, long recognised by Bruce Marsh, is that in situ geochemical data should be considered in a petrographic context in order to gain the most (and most credible) insights on the workings of magma systems from hand specimen to whole volcano/pluton scales: The petrographic microscope is not dead yet Identification of magmatic processes from in situ scrutiny allows us to synthesise the architectures and inner workings of magma systems. The evidence for interaction among magmas in many systems is compelling and suggests that many exist as stacked dike-sill arrangements with wall-rock focussed crystal growth and mush zones. These are consistent with many of the systematics suggested some time ago by Bruce Marsh

  9. Investigating Magmatic Processes in the Lower Levels of Mantle-derived Magmatic Systems: The Age & Emplacement of the Kunene Anorthosite Complex (SW Angola)

    Science.gov (United States)

    Hayes, B.; Bybee, G. M.; Owen-Smith, T.; Lehmann, J.; Brower, A. M.; Ashwal, L. D.; Hill, C. M.

    2017-12-01

    Our understanding of mantle-derived magmatic systems has shifted from a notion of upper crustal, melt-dominated magma chambers that feed short-lived volcanic eruptions, to a view of more long-lived trans-crustal, mush-dominated systems. Proterozoic massif-type anorthosite systems are voluminous, plagioclase-dominated plutonic suites with ubiquitous intermediate compositions (An 50 ± 10) that represent mantle-derived magmas initially ponded at Moho depths and crystallized polybarically until emplacement at mid-crustal levels. Thus, these systems provide unique insight into magma storage and processing in the lower reaches of the magma mush column, where such interpretation has previously relied on cumulate xenoliths in lavas, geophysical data and experimental/numerical modeling. We present new CA-ID-TIMS ages and a series of detailed field observations from the largest Proterozoic anorthosite massif on Earth, the Kunene Anorthosite Complex (KAC) of SW Angola. Field structures indicate that (i) the bulk of the material was emplaced in the form of crystal mushes, as both plutons and sheet-like intrusions; (ii) prolonged magmatism led to cumulate disaggregation (block structure development) and remobilization, producing considerable textural heterogeneity; (iii) crystal-rich magmatic flow induced localized recrystallization and the development of protoclastic (mortar) textures; and (iv) late residual melts were able to migrate locally prior to complete solidification. Dating of pegmatitic pods entrained from cumulate zones at the base of the crust (1500 ± 13 Ma) and their host anorthosites (1375-1438 Ma) reveals time periods in the range of 60-120 Myr between the earliest products of the system and the final mushes emplaced at higher crustal levels. Therefore, the KAC represents a complex, mushy magmatic system that developed over a long period of time. Not only do these observations help in refining our understanding of Proterozoic anorthosite petrogenesis, they

  10. Geophysical Observations Supporting Research of Magmatic Processes at Icelandic Volcanoes

    Science.gov (United States)

    Vogfjörd, Kristín. S.; Hjaltadóttir, Sigurlaug; Roberts, Matthew J.

    2010-05-01

    Magmatic processes at volcanoes on the boundary between the European and North American plates in Iceland are observed with in-situ multidisciplinary geophysical networks owned by different national, European or American universities and research institutions, but through collaboration mostly operated by the Icelandic Meteorological Office. The terrestrial observations are augmented by space-based interferometric synthetic aperture radar (InSAR) images of the volcanoes and their surrounding surface. Together this infrastructure can monitor magma movements in several volcanoes from the base of the crust up to the surface. The national seismic network is sensitive enough to detect small scale seismicity deep in the crust under some of the voclanoes. High resolution mapping of this seismicity and its temporal progression has been used to delineate the track of the magma as it migrates upwards in the crust, either to form an intrusion at shallow levels or to reach the surface in an eruption. Broadband recording has also enabled capturing low frequency signals emanating from magmatic movements. In two volcanoes, Eyjafjallajökull and Katla, just east of the South Iceland Seismic Zone (SISZ), seismicity just above the crust-mantle boundary has revealed magma intruding into the crust from the mantle below. As the magma moves to shallower levels, the deformation of the Earth‘s surface is captured by geodetic systems, such as continuous GPS networks, (InSAR) images of the surface and -- even more sensitive to the deformation -- strain meters placed in boreholes around 200 m below the Earth‘s surface. Analysis of these signals can reveal the size and shape of the magma as well as the temporal evolution. At near-by Hekla volcano flanking the SISZ to the north, where only 50% of events are of M>1 compared to 86% of earthquakes in Eyjafjallajökull, the sensitivity of the seismic network is insufficient to detect the smallest seismicity and so the volcano appears less

  11. Compositional Zoning in Kilauea Olivine: A Geochemical Tool for Investigating Magmatic Processes at Hawaiian Volcanoes

    Science.gov (United States)

    Lynn, Kendra J.

    Olivine compositions and zoning patterns have been widely used to investigate the evolution of magmas from their source to the Earthfs surface. Modeling the formation of compositional zoning in olivine crystals has been used to retrieve timescales of magma residence, mixing, and transit. This dissertation is composed of three projects that apply diffusion chronometry principles to investigate how zoned olivine phenocrysts record magmatic processes at Hawaiian volcanoes. Olivine phenocrysts from K.lauea, the most active and thoroughly studied volcano in Hawaiei, are used to develop a better understanding of how Hawaiian olivine crystals record magmatic histories. This work begins by examining how crustal processes such as magma mixing and diffusive reequilibration can modify olivine compositions inherited from growth in parental magmas (Chapter 2). Diffusive re-equilibration of Fe-Mg, Mn, and Ni in olivine crystals overprints the chemical relationships inherited during growth, which strongly impacts interpretations about mantle processes and source components. These issues are further complicated by sectioning effects, where small (400 ƒEm along the c-axis) olivine crystals are more susceptible to overprinting compared to large (800 ƒEm) crystals. Olivine compositions and zoning patterns are then used to show that magmas during K.laueafs explosive Keanak.koei Tephra period (1500-1823 C.E.) were mixed and stored in crustal reservoirs for weeks to months prior to eruption (Chapter 3). Fe-Mg disequilibrium between olivine rims and their surrounding glasses show that a late-stage mixing event likely occurred hours to days prior to eruption, but the exact timescale is difficult to quantify using Fe-Mg and Ni diffusion. Lithium, a rapidly diffusing trace element in olivine, is modeled for the first time in a natural volcanic system to quantify this late-stage, short-duration mixing event (Chapter 4). Lithium zoning in olivine records both growth and diffusion processes

  12. Magmatic Hydrothermal Fluids: Experimental Constraints on the Role of Magmatic Sulfide Crystallization and Other Early Magmatic Processes in Moderating the Metal Content of Ore-Forming Fluids

    Science.gov (United States)

    Piccoli, P. M.; Candela, P. A.

    2006-05-01

    It has been recognized for some time that sulfide phases, although common in intermediate-felsic volcanic rocks, are not as common in their plutonic equivalents. That sulfide crystallization, or the lack thereof, is important in the protracted magmatic history of porphyry Cu and related systems is supported by the work of e.g., Rowins (2000). Candela and Holland (1986) suggested that sulfide crystallization could moderate the ore metal concentrations in porphyry environments. Experiments show clearly that Au and Cu can partition into Cl-bearing vapor and brine. This effect can be enhanced by S (Simon, this session). However, in some instances enhances this effect. That is, the partitioning of Au and Cu into vapor+brine is highly efficient (e.g. Simon et al. 2003; Frank et al 2003). This suggests that if sulfides do not sequester ore metals early during the history of a magma body from the melt, they will partition strongly into the volatile phases. Whether volatile release occurs in the porphyry ore environment, or at deeper levels upon magma rise, is a yet unsolved question. Little is known about deep release of volatiles (during magma transport at lower- to mid-crustal levels). Saturation of melts with a CO2-bearing fluid could happen at levels much deeper than those typical of ore formation. CO2 is released preferentially, so a high CO2 concentration in fluids in the porphyry ore environment argues against deep fluid release. Of course, this depends upon the specific processes of crystallization and fluid release, which may be complex. Our experiments on sulfides have concentrated on pyrrhotite and Iss. Our partitioning data for Po/melt exhibit wide variations from metal to metal: Cu (2600); Co (170); Au (140); Ni (100); Bi, Zn and Mn (2). These results suggest that crystallization of Po can contribute to variable ore metal ratios (e.g. Cu/Au). Other sulfides behave differently. If a melt is Iss (Cpy) saturated, then Cu will be buffered at a high value, and Au

  13. Towards better process understanding

    DEFF Research Database (Denmark)

    Matero, Sanni Elina; van der Berg, Franciscus Winfried J; Poutiainen, Sami

    2013-01-01

    The manufacturing of tablets involves many unit operations that possess multivariate and complex characteristics. The interactions between the material characteristics and process related variation are presently not comprehensively analyzed due to univariate detection methods. As a consequence......, current best practice to control a typical process is to not allow process-related factors to vary i.e. lock the production parameters. The problem related to the lack of sufficient process understanding is still there: the variation within process and material properties is an intrinsic feature...... and cannot be compensated for with constant process parameters. Instead, a more comprehensive approach based on the use of multivariate tools for investigating processes should be applied. In the pharmaceutical field these methods are referred to as Process Analytical Technology (PAT) tools that aim...

  14. Titanium stable isotope investigation of magmatic processes on the Earth and Moon

    Science.gov (United States)

    Millet, Marc-Alban; Dauphas, Nicolas; Greber, Nicolas D.; Burton, Kevin W.; Dale, Chris W.; Debret, Baptiste; Macpherson, Colin G.; Nowell, Geoffrey M.; Williams, Helen M.

    2016-09-01

    We present titanium stable isotope measurements of terrestrial magmatic samples and lunar mare basalts with the aims of constraining the composition of the lunar and terrestrial mantles and evaluating the potential of Ti stable isotopes for understanding magmatic processes. Relative to the OL-Ti isotope standard, the δ49Ti values of terrestrial samples vary from -0.05 to +0.55‰, whereas those of lunar mare basalts vary from -0.01 to +0.03‰ (the precisions of the double spike Ti isotope measurements are ca. ±0.02‰ at 95% confidence). The Ti stable isotope compositions of differentiated terrestrial magmas define a well-defined positive correlation with SiO2 content, which appears to result from the fractional crystallisation of Ti-bearing oxides with an inferred isotope fractionation factor of ΔTi49oxide-melt = - 0.23 ‰ ×106 /T2. Primitive terrestrial basalts show no resolvable Ti isotope variations and display similar values to mantle-derived samples (peridotite and serpentinites), indicating that partial melting does not fractionate Ti stable isotopes and that the Earth's mantle has a homogeneous δ49Ti composition of +0.005 ± 0.005 (95% c.i., n = 29). Eclogites also display similar Ti stable isotope compositions, suggesting that Ti is immobile during dehydration of subducted oceanic lithosphere. Lunar basalts have variable δ49Ti values; low-Ti mare basalts have δ49Ti values similar to that of the bulk silicate Earth (BSE) while high-Ti lunar basalts display small enrichment in the heavy Ti isotopes. This is best interpreted in terms of source heterogeneity resulting from Ti stable isotope fractionation associated with ilmenite-melt equilibrium during the generation of the mantle source of high-Ti lunar mare basalts. The similarity in δ49Ti between terrestrial samples and low-Ti lunar basalts provides strong evidence that the Earth and Moon have identical stable Ti isotope compositions.

  15. Magmatic tritium

    International Nuclear Information System (INIS)

    Goff, F.; Aams, A.I.; McMurtry, G.M.; Shevenell, L.; Pettit, D.R.; Stimac, J.A.; Werner, C.

    1997-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. Detailed geochemical sampling of high-temperature fumaroles, background water, and fresh magmatic products from 14 active volcanoes reveal that they do not produce measurable amounts of tritium ( 3 H) of deep origin ( 2 O). On the other hand, all volcanoes produce mixtures of meteoric and magmatic fluids that contain measurable 3 H from the meteoric end-member. The results show that cold fusion is probably not a significant deep earth process but the samples and data have wide application to a host of other volcanological topics

  16. The influence of inherited structures on magmatic and amagmatic processes in the East African Rift.

    Science.gov (United States)

    Biggs, J.; Lloyd, R.; Hodge, M.; Robertson, E.; Wilks, M.; Fagereng, A.; Kendall, J. M.; Mdala, H. S.; Lewi, E.; Ayele, A.

    2017-12-01

    The idea that crustal heterogeneities, particularly inherited structures, influence the initiation and evolution of continental rifts is not new, but now modern techniques allow us to explore these controls from a fresh perspective, over a range of lengthscales, timescales and depths. In amagmatic rifts, I will demonstrate that deep fault structure is controlled by the stress orientation during the earliest phase of rifting, while the surface expression exploits near-surface weaknesses. I will show that pre-existing structures control the storage and orientation of deeper magma reservoirs in magmatic rifts, while the tectonic stress regime controls intra-rift faulting and shallow magmatism and stresses related to surface loading and cycles of inflation and deflation dominate at volcanic edifices. Finally, I will show how cross-rift structures influence short-term processes such as deformation and seismicity. I will illustrate the talk throughout using examples from along the East African Rift, including Malawi, Tanzania, Kenya and Ethiopia.

  17. Mg isotope systematics during magmatic processes: Inter-mineral fractionation in mafic to ultramafic Hawaiian xenoliths

    Science.gov (United States)

    Stracke, A.; Tipper, E. T.; Klemme, S.; Bizimis, M.

    2018-04-01

    Observed differences in Mg isotope ratios between bulk magmatic rocks are small, often on a sub per mill level. Inter-mineral differences in the 26Mg/24Mg ratio (expressed as δ26Mg) in plutonic rocks are on a similar scale, and have mostly been attributed to equilibrium isotope fractionation at magmatic temperatures. Here we report Mg isotope data on minerals in spinel peridotite and garnet pyroxenite xenoliths from the rejuvenated stage of volcanism on Oahu and Kauai, Hawaii. The new data are compared to literature data and to theoretical predictions to investigate the processes responsible for inter-mineral Mg isotope fractionation at magmatic temperatures. Theory predicts up to per mill level differences in δ26Mg between olivine and spinel at magmatic temperatures and a general decrease in Δ26Mgolivine-spinel (=δ26Mgolivine - δ26Mgspinel) with increasing temperature, but also with increasing Cr# in spinel. For peridotites with a simple petrogenetic history by melt depletion, where increasing depletion relates to increasing melting temperatures, Δ26Mgolivine-spinel should thus systematically decrease with increasing Cr# in spinel. However, most natural peridotites, including the Hawaiian spinel peridotites investigated in this study, are overprinted by variable extents of melt-rock reaction, which disturb the systematic primary temperature and compositionally related olivine-spinel Mg isotope systematics. Diffusion, subsolidus re-equilibration, or surface alteration may further affect the observed olivine-spinel Mg isotope fractionation in peridotites, making Δ26Mgolivine-spinel in peridotites a difficult-to-apply geothermometer. The available Mg isotope data on clinopyroxene and garnet suggest that this mineral pair is a more promising geothermometer, but its application is restricted to garnet-bearing igneous (garnet pyroxenites) and metamorphic rocks (eclogites). Although the observed δ26Mg variation is on a sub per mill range in bulk magmatic rocks

  18. Magmatic and Volcanic Processes Interpreted from Recent Ash Emissions from Nevado del Ruiz, Colombia

    Science.gov (United States)

    Wall, K. T.; Harpel, C. J.; Martinez, L. M.; Ceballos, J. A.; Cortés, G. P.

    2017-12-01

    Nevado del Ruiz is a composite volcano located in the Colombian Central Cordillera. It is the modern edifice of the Nevado del Ruiz Volcanic Complex that has been active since 1.8 Ma. Through historic times, Ruiz has exhibited decades-long eruptive stages that include minor explosions and fumarolic activity bracketing one major magmatic event. Modern eruptive activity began with seismic unrest in 1984, a small explosive eruption on September 11, 1985, and the catastrophic lahar-generating eruption of November 13, 1985. Since then, Ruiz has periodically erupted plumes up to a few kilometers above the crater, including a phreatomagmatic eruption on September 1, 1989, eruptions on May 29 (1 km plume) and June 30 (8 km plume) 2012, and frequent minor ash emissions from 2015 through the present. We have examined a suite of samples from the 1985, 1989, 2012, and 2015 eruptions to assess the origin of erupted materials (juvenile vs. non-juvenile) and nature of eruptive and subvolcanic processes (e.g. fresh intrusion, phreatic explosion). The November 1985 ash is dominated by beige to light gray pumice and free crystals, while samples from September 1985 and the 1989 through 2015 eruptions contain other fresh looking angular to subangular particles, including dense glassy to microcrystalline chips and vesicular glass shards. If juvenile, as we suspect, these components indicate phreatomagmatic to magmatic eruptive processes. Vesicular glass ranges from colorless to brown, often within the same sample, suggesting that bimodal magmatic sources, as recorded by mingled pumices of November 1985, have continued to play a role in eruptions at Ruiz. In particular, ash from 1989 contains vesicular glass that is 65% colorless to beige and 35% brown. Sparse, very dark brown vesicular glass appears in ash from June 2012—a larger eruption than that of May 2012—and is also observed in some 2015 samples, suggesting a more prominent mafic component. In addition to our observations

  19. Physical processes of magmatism and effects on the potential repository: Synthesis of technical work through Fiscal Year 1995

    International Nuclear Information System (INIS)

    Valentine, G.A.

    1996-01-01

    This chapter summarizes data collection and model calculations through FY 95 under Study Plan 8.3.1.8.1.2 Physical Processes of Magmatism and Effects on the Potential Repository. The focus of this study plan is to gather information that ultimately constrains the consequences of small-volume, basaltic magmatic activity at or near a potential repository. This is then combined with event probability estimates, described elsewhere in this synthesis report, to yield a magmatic risk assessment. Tere are two basic classes of effects of magmatisms that are considered here: (1) Eruptive effects, whereby rising magma intersects a potential repository, entrains radioactive waste, and erupts it onto the earth's surface. (2) Subsurface effects, which includes a wide range of processes such as hydrothermal flow, alteration of mineral assemblages in the potential repository system, and alteration of hydrologic flow properties of the rocks surrounding a potential repository

  20. Physical processes and effects of magmatism in the Yucca Mountain region

    International Nuclear Information System (INIS)

    Valentine, G.A.; Crowe, B.M.; Perry, F.V.

    1991-01-01

    This paper describes initial studies related to the effects of volcanism on performance of the proposed Yucca Mountain radioactive waste repository, and to the general processes of magmatism in the Yucca Mountain region. Volcanism or igneous activity can affect the repository performance by ejection of waste onto the earth's surface (eruptive effects), or by subsurface effects of hydrothermal processes and altered hydrology if an intrusion occurs within the repository block. Initial, conservative calculations of the volume of waste that might be erupted during a small-volume basaltic eruption (such as those which occurred in the Yucca Mountain region) indicate that regulatory limits might be exceeded. Current efforts to refine these calculations, based upon field studies at analog sites, are described. Studies of subsurface effects are just beginning, and are currently focused on field studies of intrusion properties and contact metamorphism at deeply eroded analog sites. General processes of magmatism are important for providing a physical basis for predictions of future volcanic activity. Initial studies have focused on modeling basaltic magma chambers in conjunction with petrographic and geochemical studies. An example of the thermal-fluid dynamic evolution of a small basaltic sill is described, based on numerical simulation. Quantification of eruption conditions can provide valuable information on the overall magmatic system. We are developing quantitative methods for mapping pyroclastic facies of small basaltic centers and, in combination with two-phase hydrodynamic simulation, using this information to estimate eruption conditions. Examples of such hydrodynamic simulations are presented, along with comparison to an historical eruption in Hawaii

  1. Magmatic tritium

    Energy Technology Data Exchange (ETDEWEB)

    Goff, F.; Aams, A.I. [Los Alamos National Lab., NM (United States); McMurtry, G.M. [Univ. of Hawaii, Honolulu, HI (United States); Shevenell, L. [Univ. of Nevada, Reno, NV (United States); Pettit, D.R. [National Aeronautics and Space Administration (United States); Stimac, J.A. [Union Geothermal Company (United States); Werner, C. [Pennsylvania State Univ., University Park, PA (United States)

    1997-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. Detailed geochemical sampling of high-temperature fumaroles, background water, and fresh magmatic products from 14 active volcanoes reveal that they do not produce measurable amounts of tritium ({sup 3}H) of deep origin (<0.1 T.U. or <0.32 pCi/kg H{sub 2}O). On the other hand, all volcanoes produce mixtures of meteoric and magmatic fluids that contain measurable {sup 3}H from the meteoric end-member. The results show that cold fusion is probably not a significant deep earth process but the samples and data have wide application to a host of other volcanological topics.

  2. Understanding the Budget Process

    Directory of Open Access Journals (Sweden)

    Mesut Yalvaç

    2000-03-01

    Full Text Available Many different budgeting techniques can be used in libraries, and some combination of these will be appropriate for almost any individual situation. Li-ne-item, program, performance, formula, variable, and zero-base budgets all have features that may prove beneficial in the preparation of a budget. Budgets also serve a variety of functions, providing for short-term and long-term financial planning as well as for cash management over a period of time. Short-term plans are reflected in the operating budget, while long-term plans are reflected in the capital budget. Since the time when cash is available to an organization does not usually coincide with the time that disbursements must be made, it is also important to carefully plan for the inflow and outflow of funds by means of a cash budget.      During the budget process an organization selects its programs and activities by providing the necessary funding; the library, along with others in the organization, must justify its requests. Because of the cyclical nature of the budget process, it is possible continually to gather information and evaluate alternatives for the next budget period so that the library may achieve its maximum potential for service to its patrons.

  3. Understanding the consultation processes

    International Nuclear Information System (INIS)

    Laing, A.C.

    1998-01-01

    This presentation focuses on the consultation processes between industry, government and First Nations communities regarding resource development. The expectations of the Crown are to facilitate capacity building within First Nations, to promote traditional use studies and to participate with industry proponents on certain consultation issues. The role of industry is to encourage partnerships between established contractors and First Nations contracting firms to allow First Nations firms to grow and experience success under the guidance of a mentor company. It is important to realize that solid First Nations relations are the key to shorter time lines and lower costs in developing projects. However, consultation and involvement must be 'real' with benefits and participation that fall within the First Nations Communities' definition of success

  4. Study on the formation process of composite MMEs (mafic magmatic enclaves) in Taejongdae, Busan Korea.

    Science.gov (United States)

    Adam, Mohammed; Kim, Young-Seog; Kim, Taehyung

    2017-04-01

    Mafic Magmatic Enclave (MME) is a common feature in granitic rocks. However, the layered MMEs developed in the outcrop of Cretaceous granite in Taejongdae National Geopark, Busan show various patterns and interesting phenomena providing useful information on the formation of MMEs. We define here the layered MME as MME composed of several contrasting rock shells. Characteristics and origin of MMEs have been studied in several ways; descriptively, geochemically and through isotope studies due to their importance in the evolution of igneous rocks. This study aims to understand the formation mechanism of the composite MMEs, including the reasons for the diversity of the MME rock types. To achieve those tasks, the relationship between the MMEs and the host granite, and difference between the layers were investigated based on petrological, XRF and EPMA analyses. The important results include the followings: the MMEs can be categorized into two main types; Simple-type composed of a single rock type, and Layered-type composed of different surrounded rock shells. Most of the Simple-type have relatively angular shapes and small sizes, and their contacts with the host granite are commonly sharp but some show small dioritic mixing rims. The forming rocks of the simple MMEs are variable from mafic porphyritic, mafic fine to medium grains and felsic coarse-grained dioritic rocks. The layered MMEs have almost circular to elliptical shapes, and show gradual change in composition from mafic and porphyritic texture in the center to fine in the outer shells (like a chilled margin) and again surrounded by a dioritic layer. The dioritic layer shows another chilled margin with the host granite, indicating double cooling mechanism. Some MMEs are injected by granitic materials through cracks. The injection of the granitic materials into the layered MMEs may indicate fracturing during the cooling process. They may indicate two different phases of mingling and one phase of mixing event. The

  5. A geochemical approach to distinguishing competing tectono-magmatic processes preserved in small eruptive centres

    Science.gov (United States)

    McGee, Lucy E.; Brahm, Raimundo; Rowe, Michael C.; Handley, Heather K.; Morgado, Eduardo; Lara, Luis E.; Turner, Michael B.; Vinet, Nicolas; Parada, Miguel-Ángel; Valdivia, Pedro

    2017-06-01

    Small eruptive centres (SECs) representing short-lived, isolated eruptions are effective samples of mantle heterogeneity over a given area, as they are generally of basaltic composition and show evidence of little magmatic processing. This is particularly powerful in volcanic arcs where the original melting process generating stratovolcanoes is often obscured by additions from the down-going slab (fluids and sediments) and the overlying crust. The Pucón area of southern Chile contains active and dormant stratovolcanoes, Holocene, basaltic SECs and an arc-scale strike-slip fault (the Liquiñe Ofqui Fault System: LOFS). The SECs show unexpected compositional heterogeneity considering their spatial proximity. We present a detailed study of these SECs combining whole rock major and trace element concentrations, U-Th isotopes and olivine-hosted melt inclusion major element and volatile contents to highlight the complex inter-relations in this small but active area. We show that heterogeneity preserved at individual SECs relates to different processes: some start in the melting region with the input of slab-derived fluids, whilst others occur later in a centre's magmatic history with the influence of crustal contamination prior to olivine crystallisation. These signals are deduced through the combination of the different geochemical tools used in this study. We show that there is no correlation between composition and distance from the arc front, whilst the local tectonic regime has an effect on melt composition: SECs aligned along the LOFS have either equilibrium U-Th ratios or small Th-excesses instead of the large—fluid influenced—U-excesses displayed by SECs situated away from this feature. One of the SECs is modelled as being generated from fluid-enriched depleted mantle, a source which it may share with the stratovolcano Villarrica, whilst another SEC with abundant evidence of crustal contamination may share its plumbing system with its neighbouring

  6. Synchronous alkaline and subalkaline magmatism during the late Neoproterozoic-early Paleozoic Ross orogeny, Antarctica: Insights into magmatic sources and processes within a continental arc

    Science.gov (United States)

    Hagen-Peter, Graham; Cottle, John M.

    2016-10-01

    Extensive exposure of intrusive igneous rocks along the Ross orogen of Antarctica-an ancient accretionary orogen on the margin of East Gondwana-provides an exceptional opportunity to study continental arc magmatism. There is significant petrologic and geochemical variability in igneous rocks within a 500-km-long segment of the arc in southern Victoria Land. The conspicuous occurrence of carbonatite and alkaline silicate rocks (nepheline syenite, A-type granite, and alkaline mafic rocks) adjacent to large complexes of subalkaline granitoids is not adequately explained by traditional models for continental arc magmatism. Extensive geochemical analysis (> 100 samples) and zircon U-Pb geochronology (n = 70) confirms that alkaline and carbonatitic magmatism was partially contemporaneous with the emplacement of large subduction-related igneous complexes in adjacent areas. Major pulses of subalkaline magmatism were compositionally distinct and occurred at different times along the arc. Large bodies of subalkaline orthogneiss and granite (sensu lato) were emplaced over similar time intervals (ca. 25 Myr) to the north (ca. 515-492 Ma) and south (ca. 550-525 Ma) of the alkaline magmatic province, although the initiation of these major pulses of magmatism was offset by ca. 35 Myr. Alkaline and carbonatitic magmatism spanned at least ca. 550-509 Ma, overlapping with voluminous subalkaline magmatism in adjacent areas. The most primitive rocks from each area have similarly enriched trace element compositions, indicating some common characteristics of the magma sources along the arc. The samples from the older subalkaline complex have invariably low Sr/Y ratios (generation and differentiation. The younger subalkaline complex and subalkaline rocks within the area of the alkaline province extend to higher Sr/Y ratios (up to 300), indicative of generation and differentiation at deeper levels. The significant spatial and temporal diversity in magmatism can be explained by a tectono-magmatic

  7. Along-Axis Structure and Crustal Construction Processes of Spreading Segments in Iceland: Implications for Magmatic Rifts

    Science.gov (United States)

    Siler, D. L.; Karson, J. A.

    2017-10-01

    Magmatic rift systems are composed of discrete spreading segments defined by morphologic, structural, and volcanic features that vary systematically along strike. In Iceland, structural features mapped in the glaciated and exhumed Miocene age upper crust correlate with analogous features in the seismically and volcanically active neovolcanic zone. Integrating information from both the active rift zones and ancient crust provides a three-dimensional perspective of crustal structure and the volcanic and tectonic processes that construct crust along spreading segments. Crustal exposures in the Skagi region of northern Iceland reveal significant along-strike variations in geologic structure. The upper crust at exhumed magmatic centers (segment centers) is characterized by a variety of intrusive rocks, high-temperature hydrothermal alteration, and geologic evidence for kilometer-scale subsidence. In contrast, the upper crust along segment limbs, which extend along strike from magmatic centers, is characterized by thick sections of gently dipping lava flows, cut by varying proportions of subvertical dikes. This structure implies relatively minor upper crustal subsidence and lateral dike intrusion. The differing modes of subsidence beneath segment centers and segment limbs require along-axis mass redistribution in the underlying upper, middle, and lower crust during crustal construction. This along-axis material transport is accomplished through lateral dike intrusion in the upper crust and by along-axis flow of magmatic to high-temperature solid-state gabbroic material in the middle and lower crust. These processes, inferred from outcrop evidence in Skagi, are consistent with processes inferred to be important during active rifting in Iceland and at analogous magmatic oceanic and continental rifts.

  8. Amphibole trace elements as indicators of magmatic processes at Mount St. Helens

    Science.gov (United States)

    Hampel, T. R.; Rowe, M. C.; Kent, A.; Thornber, C. R.

    2011-12-01

    Amphibole has the capability of incorporating a wide variety of trace elements resulting from a range of magmatic processes. Prior studies have used trace elements such as Li and Cu in amphibole to investigate volatile mobility associated with magma ascent regarding the 2004-2008 eruption of Mount St. Helens (Rowe et al. 2008). In order to investigate magmatic processes associated with the 2004-2008 eruption of Mount St. Helens we have measured a range of fluid-mobile trace elements in conjunction with major element compositions of amphibole phenocrysts in dacite lava. Major elements and volatiles (Cl, F) were measured by electron microprobe analysis at Washington State University and trace elements (Li, Sc, Co, Cu, Zn, Sr, Y, Zr, Mo, Ag, Sn, Sb, Te, Ba, Ce, W, and Pb) were analyzed by laser ablation (LA)-ICP-MS at Oregon State University. Amphibole crystallization temperatures were calculated after Ridolfi et al. (2010). Core to rim transects were measured by electron microprobe to evaluate volatile concentrations and temperature profiles across individual phenocrysts. Core temperatures from 17 days and 226 days post eruption are consistently hotter than the rim temperatures 997 to 881 degrees C, respectively. Amphiboles from the end of the eruption (811 days post eruption) appear to be more complex, with phenocrysts having both increasing and decreasing temperatures toward the rims. The overall calculated temperature range of the amphiboles at the end of the eruption is 1022 to 919 degrees C. There is much diversity in the concentrations of Li and Cu within the phenocrysts in both the samples and throughout the eruption. Concentrations steadily increase in the beginning of the eruption then drop dramatically toward the middle, slowly increase toward the end eruption. Overall concentrations of Sr, Sb, Co, Sn, Mo, Ba, Ce, Sc, and Y do not change over the course of the eruption but do vary sample to sample. Preliminary data for Zn, Sb, Ag, and W suggest the

  9. Understanding Magmatic Timescales and Magma Dynamics in Proterozoic Anorthosites: a Geochronological Investigation of the Kunene Complex (Angola)

    Science.gov (United States)

    Brower, A. M.; Corfu, F.; Bybee, G. M.; Lehmann, J.; Owen-Smith, T.

    2016-12-01

    The Kunene Anorthosite Complex, located in south west Angola, is one of the largest massif-type anorthosite intrusions on Earth, with an areal extent of at least 18 000 km2. Previous studies considered the Complex to consist of a series of coalesced plutons. However, the ages and relative emplacement sequence of these plutons are unknown. Understanding the relative timing of the pluton emplacement is crucial for understanding how these enigmatic magmas form and how they rise through the crust. Here we present new high precision U-Pb ID-TIMS ages (n=10) on zircons and baddeleyites for many of the coalesced plutons across the 300-km-long anorthositic complex. These new geochronological results reveal subtle variations in crystallization age between the coalesced plutons. There is no gradual age progression between plutons, but distinct groupings of ages (Fig.1). Age clusters of 1379.8 ± 2 Ma (n=5) occur north of the Red Granite NE-SW-striking intrusions, whereas in the south there is an older age grouping of 1390.4 ± 2.3 (n=3). Two additional ages of 1400.5 ± 1.3 in the centre and 1438.4 ± 1.1 Ma in the south east have been obtained. These results indicate that the Kunene anorthosites were emplaced over 60 Ma and may suggest long-lived magmatic systems and/or slowly ascending plutons. We also find a link between pluton composition and age. In general, leuconoritic domains are older than the leucotroctolitic domains. This may imply that the first pulses of magma received a greater degree of contamination, forcing the broadly basaltic magma to produce orthopyroxene as the main mafic phase. The later pulses receive less contamination as they ascend through the already partially melted crust, producing olivine as the mafic phase and deforming the older domains. This study reiterates the multiphase petrogenesis of Proterozoic anorthosites and sheds light on the assembly of crystal-rich magmas as they ascend through the crust.

  10. Magmatic underplating beneath the Rajmahal Traps: Gravity ...

    Indian Academy of Sciences (India)

    To understand the impact of the magmatic process that originated in the deep mantle on the lower crustal level of the eastern Indian shield and adjoining Bengal basin the conspicuous gravity anomalies observed over the region have been modelled integrating with available geophysical information. The 3-D gravity ...

  11. Present-day Opening of the Natron Rift: Tectonic and Magmatic Processes at Work

    Science.gov (United States)

    Calais, E.; Dalaison, M.; Saria, E.; Doubre, C.; Masson, F.

    2017-12-01

    The young Natron basin (system, is an important locale to study the initial stage of continental rifting. It was the locus of a rarely observed tectono-magmatic event in July 2007, with slow slip on an intra-basin normal fault followed by a 10 km-long dike intrusion underneath the Gelai shield volcano. Here we report on a series of GPS observations over a 20-site network spanning the basin, measured repeatedly since 2013. We observe a long wavelength ( 200 km wide) extension with a horizontal rate of about 2 mm/yr, consistent with recentlty published regional kinematic models, and a velocity gradient centered on the west-bounding fault of the Natron basin. Initial models show that the data is best fit by a normal fault dipping 60 degrees to the east and slipping at a rate of 6 mm/yr. Superimposed on this long wavelength extension, we observe a smaller scale ( 30 km wide) extensional signal in the middle of the basin, roughly coincident with the location of the Gelai volcano, which was the locale of the 2007 seismic-magmatic crisis. We investigate the relative importance of tectonic faulting, post-diking relaxation following the 2007 intrusion (as observed for instance in Afar or Iceland after similar events), and melt recharge of the intra-basin magmatic system in present-day extension across this young segment of the East African Rift.

  12. Early Permian intrusions of the Alai range: Understanding tectonic settings of Hercynian post-collisional magmatism in the South Tien Shan, Kyrgyzstan

    Science.gov (United States)

    Konopelko, D.; Wilde, S. A.; Seltmann, R.; Romer, R. L.; Biske, Yu. S.

    2018-03-01

    the Turkestan Ocean to the north and an inferred oceanic basin to the south, where the evidence of supra-subduction magmatism was largely destroyed by subsequent tectonic processes. In this scenario, after collision, the position of the Alai microcontinent between two major sutures enabled delamination of its lithospheric mantle, which resulted in production of diverse post-collisional magmatic series by interaction of ascending asthenospheric material with lithospheric mantle and various crustal protoliths.

  13. Surface deformation induced by magmatic processes at Pacaya Volcano, Guatemala revealed by InSAR

    Science.gov (United States)

    Wnuk, K.; Wauthier, C.

    2017-09-01

    Pacaya Volcano, Guatemala is a continuously active, basaltic volcano with an unstable western flank. Despite continuous activity since 1961, a lack of high temporal resolution geodetic surveying has prevented detailed modeling of Pacaya's underlying magmatic plumbing system. A new, temporally dense dataset of Interferometric Synthetic Aperture Radar (InSAR) RADARSAT-2 images, spanning December 2012 to March 2014, show magmatic deformation before and during major eruptions in January and March 2014. Inversion of InSAR surface displacements using simple analytical forward models suggest that three magma bodies are responsible for the observed deformation: (1) a 4 km deep spherical reservoir located northwest of the summit, (2) a 0.4 km deep spherical source located directly west of the summit, and (3) a shallow dike below the summit. Periods of heightened volcanic activity are instigated by magma pulses at depth, resulting in rapid inflation of the edifice. We observe an intrusion cycle at Pacaya that consists of deflation of one or both magma reservoirs followed by dike intrusion. Intrusion volumes are proportional to reservoir volume loss and do not always result in an eruption. Periods of increased activity culminate with larger dike-fed eruptions. Large eruptions are followed by inter-eruptive periods marked by a decrease in crater explosions and a lack of detected deformation. Co-eruptive flank motion appears to have initiated a new stage of volcanic rifting at Pacaya defined by repeated NW-SE oriented dike intrusions. This creates a positive feedback relationship whereby magmatic forcing from eruptive dike intrusions induce flank motion.

  14. Use of Digital Elevation Models to understand map landforms and history of the magmatism Khibiny Massif (Kola Peninsula, Russia)

    Science.gov (United States)

    Chesalova, Elena; Asavin, Alex

    2016-04-01

    This work presents an improved geomorphological methodology that uses 3D model of relief, remotely-sensed data, geological, geophysical maps and tools of Geographical Information Systems. On the basis of maps of 1: 50,000 and 1: 200,000 the Digital Elevation model (DEM) of Khibiny massif was developed. We used software ARC / INFO v10.2 ESRI. A DEM was used for analyzing landform by extracting the slope gradient, curvature, valley pro?les, slope, aspect and so on. The results were gradually re?ned from the interpretation of satellite imagery and geological map Geomorphological analysis will allow us to determine spatial regularities in inner massive construction. We try to found areas where gas emissions (CH4/H2) enrich, according to morphometry, geology, tectonic and other environments. The main regional blocks were de?ned by different morphological evidences: impression zone, similar to subsidence caldera; uplift zone, domed area (located in the highest part of massif and zone of intersection of main faults) and others. It says that there are the few stages in the development of the Khibiny massif. There is no common concept of the consequence of intrudes magmatic phases now. And we hope that our geomorphical analysis take a new evidences about this problems. Locations of the blocks' borders (tectonic zones) were recognized by lineament analysis of valleys and tectonic faults presented in relief. Erosion system is represented by valleys of 4 ranks. It inherits the zone of tectonic disturbances 3 groups of faults were recognized: 1) Global lineament system cross whole peninsula - existing before Khibiny massif intrusion; 2) Faults associated with the formation of the intrusive phases sequence and magma differentiation and with later collision history during magma cooling; 3) Crack system related to neotectonic process. We believed that if different magmatic phases intrude in similar tectonic environment, the common spatial system of faults will be formed. Really we

  15. Mineralogical and geochemical features of the alteration processes of magmatic ores in the Beni Bousera ultramafic massif (north Morocco)

    Science.gov (United States)

    Hajjar, Zaineb; Gervilla, Fernando; Essaifi, Abderrahim; Wafik, Amina

    2017-08-01

    The Beni Bousera ultramafic massif (Internal Rif, Morocco) is characterized by the presence of two types of small-scale magmatic mineralizations (i) a mineralization consisting mainly of chromite and Ni arsenides associated to orthopyroxene and cordierite (Cr-Ni ores), and (ii) a mineralization mainly composed of magmatic Fe-Ni-Cu sulfides containing variable amounts of graphite and chromite associated to phlogopite, clinopyroxène and plagioclase (S-G ores). Theses ores underwent High-T (450-550 °C) and Low-T (150-300 °C) alteration processes. The High-T alteration processes are tentatively related to intrusion of leucogranite dykes. They are preserved in the Galaros Cr-Ni ore deposit where nickeline is partly dissolved and transformed to maucherite, and orthopyroxene alters to phlogopite. Ni and Co were mobilized to the fluid phase, rising up their availability and promoting their diffusion into chromite and phlogopite, which have significantly higher contents in Ni and Co in phlogopite-rich ores than in orthopyroxene- and nickeline-rich ones. The Low-T alteration processes are related to serpentinization/weathering spatially associated with a regional shear zone. They affected both the Cr-Ni and S-G ores. In the Cr-Ni ores, Ni-arsenides were completely leached out while chromite is fractured within a matrix of chlorite, vermiculite and Ni-rich serpentine. In S-G ores, the silicates were altered into amphibole, Fe-rich chlorite and pectolite in clinopyroxene- and plagioclase-bearing ores while sulfides were completely leached out in phlogopite-bearing ores where iron oxides and hydroxides, and Fe-rich vermiculite were deposited. Chromite composition is not affected by the Low-T alteration processes.

  16. Magmatic evolution of Panama Canal volcanic rocks: A record of arc processes and tectonic change.

    Directory of Open Access Journals (Sweden)

    David W Farris

    Full Text Available Volcanic rocks along the Panama Canal present a world-class opportunity to examine the relationship between arc magmatism, tectonic forcing, wet and dry magmas, and volcanic structures. Major and trace element geochemistry of Canal volcanic rocks indicate a significant petrologic transition at 21-25 Ma. Oligocene Bas Obispo Fm. rocks have large negative Nb-Ta anomalies, low HREE, fluid mobile element enrichments, a THI of 0.88, and a H2Ocalc of >3 wt. %. In contrast, the Miocene Pedro Miguel and Late Basalt Fm. exhibit reduced Nb-Ta anomalies, flattened REE curves, depleted fluid mobile elements, a THI of 1.45, a H2Ocalc of <1 wt. %, and plot in mid-ocean ridge/back-arc basin fields. Geochemical modeling of Miocene rocks indicates 0.5-0.1 kbar crystallization depths of hot (1100-1190°C magmas in which most compositional diversity can be explained by fractional crystallization (F = 0.5. However, the most silicic lavas (Las Cascadas Fm. require an additional mechanism, and assimilation-fractional-crystallization can reproduce observed compositions at reasonable melt fractions. The Canal volcanic rocks, therefore, change from hydrous basaltic pyroclastic deposits typical of mantle-wedge-derived magmas, to hot, dry bi-modal magmatism at the Oligocene-Miocene boundary. We suggest the primary reason for the change is onset of arc perpendicular extension localized to central Panama. High-resolution mapping along the Panama Canal has revealed a sequence of inward dipping maar-diatreme pyroclastic pipes, large basaltic sills, and bedded silicic ignimbrites and tuff deposits. These volcanic bodies intrude into the sedimentary Canal Basin and are cut by normal and subsequently strike-slip faults. Such pyroclastic pipes and basaltic sills are most common in extensional arc and large igneous province environments. Overall, the change in volcanic edifice form and geochemistry are related to onset of arc perpendicular extension, and are consistent with the

  17. Xenopumice erupted on 15 October 2011 offshore of El Hierro (Canary Islands): a subvolcanic snapshot of magmatic, hydrothermal and pyrometamorphic processes

    Science.gov (United States)

    Del Moro, S.; Di Roberto, A.; Meletlidis, S.; Pompilio, M.; Bertagnini, A.; Agostini, S.; Ridolfi, F.; Renzulli, A.

    2015-06-01

    On 15 October 2011, a submarine eruption offshore of El Hierro Island gave rise to floating volcanic products, known as xenopumices, i.e., pumiceous xenoliths partly mingled and coated with the juvenile basanitic magma. Over the last few years, no consensus in the scientific community in explaining the origin of these products has been reached. In order to better understand the formation of xenopumice, we present a textural, mineralogical, and geochemical study of the possible magmatic, hydrothermal, and pyrometamorphic processes, which usually operate in the plumbing systems of active volcanoes. We carried out a comprehensive SEM investigation and Sr-Nd-Pb isotope analyses on some samples representative of three different xenopumice facies. All the data were compared with previous studies, new data for El Hierro extrusives and a literature dataset of Canary Islands igneous and sedimentary rocks. In the investigated xenopumices, we emphasize the presence of restitic magmatic phases as well as crystallization of minerals (mainly olivine + pyroxene + magnetite aggregates) as pseudomorphs after pre-existing mafic phenocrysts, providing evidence of pyrometamorphism induced by the high-T juvenile basanitic magma. In addition, we identify veins consisting of zircon + REE-oxides + mullite associated with Si-rich glass and hydrothermal quartz, which indicate the fundamental role played by hydrothermal fluid circulation in the xenopumice protolith. The petrological data agree with a pre-syneruptive formation of the xenopumice, when El Hierro basanite magma intruded hydrothermally altered trachyandesite to trachyte rocks and triggered local partial melting. Therefore, the El Hierro xenopumice represents a snapshot of the transient processes at the magma-wall rock interface, which normally occurs in the feeding system of active volcanoes.

  18. Assessment of magmatic vs. metasomatic processes in rare-metal granites: A case study of the Cínovec/Zinnwald Sn–W–Li deposit, Central Europe

    Czech Academy of Sciences Publication Activity Database

    Breiter, Karel; Ďurišová, Jana; Hrstka, Tomáš; Korbelová, Zuzana; Hložková Vaňková, M.; Vašinová Galiová, M.; Kanický, V.; Rambousek, P.; Knésl, I.; Dobeš, P.; Dosbaba, M.

    292/293, November (2017), s. 198-217 ISSN 0024-4937 R&D Projects: GA ČR GA14-13600S Institutional support: RVO:67985831 Keywords : rare-metal granite * Cínovec/Zinnwald deposit * rock textures * metasomatic processes * magmatic processes Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 3.677, year: 2016

  19. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes

    Science.gov (United States)

    Knipping, Jaayke L.; Bilenker, Laura D.; Simon, Adam C.; Reich, Martin; Barra, Fernando; Deditius, Artur P.; Wälle, Markus; Heinrich, Christoph A.; Holtz, François; Munizaga, Rodrigo

    2015-12-01

    Iron oxide-apatite (IOA) deposits are an important source of iron and other elements (e.g., REE, P, U, Ag and Co) vital to modern society. However, their formation, including the namesake Kiruna-type IOA deposit (Sweden), remains controversial. Working hypotheses include a purely magmatic origin involving separation of an Fe-, P-rich, volatile-rich oxide melt from a Si-rich silicate melt, and precipitation of magnetite from an aqueous ore fluid, which is either of magmatic-hydrothermal or non-magmatic surface or metamorphic origin. In this study, we focus on the geochemistry of magnetite from the Cretaceous Kiruna-type Los Colorados IOA deposit (∼350 Mt Fe) located in the northern Chilean Iron Belt. Los Colorados has experienced minimal hydrothermal alteration that commonly obscures primary features in IOA deposits. Laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) transects and electron probe micro-analyzer (EPMA) wavelength-dispersive X-ray (WDX) spectrometry mapping demonstrate distinct chemical zoning in magnetite grains, wherein cores are enriched in Ti, Al, Mn and Mg. The concentrations of these trace elements in magnetite cores are consistent with igneous magnetite crystallized from a silicate melt, whereas magnetite rims show a pronounced depletion in these elements, consistent with magnetite grown from an Fe-rich magmatic-hydrothermal aqueous fluid. Further, magnetite grains contain polycrystalline inclusions that re-homogenize at magmatic temperatures (>850 °C). Smaller inclusions (abundances consistent with growth from a magmatic-hydrothermal fluid. Mass balance calculations indicate that this process can leach and transport sufficient Fe from a magmatic source to form large IOA deposits such as Los Colorados. Furthermore, published experimental data demonstrate that a saline magmatic-hydrothermal ore fluid will scavenge significant quantities of metals such as Cu and Au from a silicate melt, and when combined with solubility

  20. Metallogenetic systems associated with granitoid magmatism in the Amazonian Craton: An overview of the present level of understanding and exploration significance

    Science.gov (United States)

    Bettencourt, Jorge Silva; Juliani, Caetano; Xavier, Roberto P.; Monteiro, Lena V. S.; Bastos Neto, Artur C.; Klein, Evandro L.; Assis, Rafael R.; Leite, Washington Barbosa, Jr.; Moreto, Carolina P. N.; Fernandes, Carlos Marcello Dias; Pereira, Vitor Paulo

    2016-07-01

    íder and Teles Pires suites). The Transamazonas Province corresponds to a N-S-trending orogenic belt, consolidated during the Transamazonian cycle (2.26-1.95 Ga), comprising the Lourenço, Amapá, Carecuru, Bacajá, and Santana do Araguaia tectonic domains. They show a protracted tectonic evolution, and are host to the pre-, syn-, and post-orogenic to anorogenic granitic magmatism. Gold mineralization associated with magmatic events is still unclear. Greisen and pegmatite Sn-Nb-Ta deposits are related to 1.84 to 1.75 Ga late-orogenic to anorogenic A-type granites. The Pitinga Tin Province includes the Madeira Sn-Nb-Ta-F deposit, Sn-greisens and Sn-episyenites. These are associated with A-type granites of the Madeira Suite (1.84-1.82 Ga), which occur within a cauldron complex (Iricoumé Group). The A-type magmatism evolved from a post-collisional extension, towards a within-plate setting. The hydrothermal processes (400 °C-100 °C) resulted in albitization and formation of disseminated cryolite, pyrochlore columbitization, and formation of a massive cryolite deposit in the core of the Madeira deposit. The Rondônia Tin Province hosts rare-metal (Ta, Nb, Be) and Sn-W mineralization, which is associated with the São Lourenço-Caripunas (1.31-1.30 Ga), related to the post-collisional stage of the Rondônia San Ignácio Province (1.56-1.30 Ga), and to the Santa Clara (1.08-1.07 Ga) and Younger Granites of Rondônia (0.99-0.97 Ga) A-type granites. The latter are linked to the evolution of the Sunsás-Aguapeí Province (1.20-0.95 Ga). Rare-metal polymetallic deposits are associated with late stage peraluminous granites, mainly as greisen, quartz vein, and pegmatite types.

  1. Enrichment of Rare Earth Elements during magmatic and post-magmatic processes: a case study from the Loch Loyal Syenite Complex, northern Scotland

    Science.gov (United States)

    Walters, A. S.; Goodenough, K. M.; Hughes, H. S. R.; Roberts, N. M. W.; Gunn, A. G.; Rushton, J.; Lacinska, A.

    2013-10-01

    Concern about security of supply of critical elements used in new technologies, such as the Rare Earth Elements (REE), means that it is increasingly important to understand the processes by which they are enriched in crustal settings. High REE contents are found in syenite-dominated alkaline complexes intruded along the Moine Thrust Zone, a major collisional zone in north-west Scotland. The most northerly of these is the Loch Loyal Syenite Complex, which comprises three separate intrusions. One of these, the Cnoc nan Cuilean intrusion, contains two mappable zones: a Mixed Syenite Zone in which mafic melasyenite is mixed and mingled with leucosyenite and a Massive Leucosyenite Zone. Within the Mixed Syenite Zone, hydrothermal activity is evident in the form of narrow altered veins dominated by biotite and magnetite; these are poorly exposed and their lateral extent is uncertain. The REE mineral allanite is relatively abundant in the melasyenite and is extremely enriched in the biotite-magnetite veins, which have up to 2 % total rare earth oxides in bulk rock analyses. An overall model for development of this intrusion can be divided into three episodes: (1) generation of a Light Rare Earth Element (LREE)-enriched parental magma due to enrichment of the mantle source by subduction of pelagic carbonates; (2) early crystallisation of allanite in melasyenite, due to the saturation of the magma in the LREE; and (3) hydrothermal alteration, in three different episodes identified by petrography and mineral chemistry, generating the intense enrichment of REE in the biotite-magnetite veins. Dating of allanite and titanite in the biotite-magnetite veins gives ages of c. 426 Ma, overlapping with previously published crystallisation ages for zircon in the syenite.

  2. Uranium deposits in magmatic and metamorphic rocks

    International Nuclear Information System (INIS)

    1989-01-01

    The association of uranium with certain types of magmatic and metamorphic rocks is well known. They have consequently been explored and studied quite extensively. In recent years interest in them has been eclipsed by the discovery of larger, lower cost deposits in other geological environments. Nonetheless, magmatic and metamorphic rocks continue to be important sources of uranium and large areas of the Earth's crust with such rocks are prospective locations for additional discoveries. As future exploration and development could be more difficult the full importance of individual deposits may not be recognized until after many years of investigation and experience. In addition to being important host rocks, magmatic and metamorphic rocks have been of considerable interest to uranium geologists as they are considered to be important source rocks for uranium and thus can lead to deposits nearby in other environments. Furthermore, these rocks provide important information on the geochemical cycle of uranium in the Earth's crust and mantle. Such information can lead to identification of uranium provinces and districts and to a basic understanding of processes of formation of uranium deposits. The International Atomic Energy Agency convened a Technical Committee Meeting on Uranium Deposits in Magmatic and Metamorphic Rocks. The meeting was held in Salamanca, Spain, from 29 September to 3 October 1986. It was followed by a two day field trip to uranium deposits in the Ciudad Rodrigo and Don Benito areas. The meeting was attended by 48 participants from 22 countries. Two panels were organized for discussion of the following topics: (1) ore deposit genesis and characterization and (2) exploration and resource assessment. The technical papers together with the panel reports form this publication. The scope and variety of the papers included and the panel reports provide a good coverage of current knowledge and thinking on uranium in magmatic and metamorphic rocks

  3. A Rare Window Into Magmatic Conduit Processes: Time Series Observations From Active Lava Lakes

    Science.gov (United States)

    Lev, E.; Ruprecht, P.; Patrick, M.; Oppenheimer, C.; Peters, N.; Spampinato, L.; Hernandez Perez, P. A.; Unglert, K.; Barreyre, T.

    2015-12-01

    Time-lapse thermal images of the lake surface are used to investigate the circulation and cooling patterns of three lava lakes: Kilauea's Halema'uma'u crater, Mount Erebus, and Nyiragongo. We report results for the time-dependent, two-dimensional velocity and temperature fields of the lake surface. These data sets constrain the locations of flow divergence (upwelling) and convergence (downwelling), the distribution of distinct "plates" and "rifts", the dominant time scales for changes in flow pattern at each lake, and the physical properties of the magma. Upwelling and downwelling locations are strikingly different between the three lakes. Upwelling at Nyiragongo and Erebus occurs dominantly in the interior of the lake, where it is occasionally interrupted by catastrophic downwellings. At Halema'uma'u upwelling and downwelling occur consistently along the perimeter. It remains to be seen whether these differences are dictated merely by the system's geometry or are indicative of intrinsic factors such as melt viscosity, temperature and volatile and crystal content, or of conduit processes such as gas pistoning or slug flow. The availability of high resolution data at Halema'uma'u allows as us to document the evolution of crustal plates and rifts and to investigate the physical properties of the lava and the crust. The physical properties of the lake's surface control lake cooling rates, and thus need to be included in lake circulation and thermal evolution models. We produce time-temperature cooling curves from surface temperature profiles normal to surface rifts and by tracking the cooling of intra-plate bubble bursts. By comparing observations to analytical cooling models, we estimate a porosity of > 80% during the high stand of the lake, slightly higher than estimates of 70% for the upper 120 meters based on gravity data, and close to the porosity of clasts ejected from the lake during recent minor explosions. Furthermore,we find that the number of surface plates

  4. Geochemical features of trace and rare earth elements of pumice in middle Okinawa Trough and its indication of magmatic process

    Science.gov (United States)

    Zhai, Shikui; Guo, Kun; Zong, Tong; Yu, Zenghui; Wang, Shujie; Cai, Zongwei; Zhang, Xia

    2017-04-01

    Pumice, the most widely distributed volcanic rock in Okinawa Trough, is loose and porous. Since its formation, it has definitely suffered from the denudation of the sea to different degrees. In order to truly reveal the geochemical features of pumice, we choose the method of mineral separation. Firstly, the phenocryst is separated from glass. Then the phenocryst is divided into light and heavy mineral compositions. By ICP-MS (inductively coupled plasma mass spectrometry) analytical technology, the contents of trace and rare earth elements in the whole pumice, the glass and the heavy and light mineral compositions are determined respectively. By researching the elemental geochemical features, the magma dynamic processes are found. It shows that the initial magma for the pumice in Okinawa Trough came from the depleted mantle, from which the N-MORB (normal type of mid-ocean ridge basalt) is formed, homologous with the local basalts. But they are formed in different periods of magma crystal fractionation. Featured with sufficient crystal fractionation for pumice, it is found that the earlier crystallizing minerals are olivine, plagioclase and pyroxene. The pumice magma, formed from the depleted mantle, was mixed with additional subduction-related materials (components), and contaminated with the mass from upper crust when it rose up into the crust. As the Okinawa Trough is a back-arc basin in its early back-arc spreading stage, its magmatism has a series of its own unique characteristics, different from not only the mid-ocean ridge expansion, but also the mature back-arc basin.

  5. Dual stable isotopes of CH 4 from Yellowstone hot-springs suggest hydrothermal processes involving magmatic CO 2

    Energy Technology Data Exchange (ETDEWEB)

    Moran, James J.; Whitmore, Laura M.; Jay, Zackary J.; Jennings, Ryan deM.; Beam, Jacob P.; Kreuzer, Helen W.; Inskeep, William P.

    2017-07-01

    Volcanism and post-magmatism contribute both significant annual CH4 fluxes to the atmosphere (on par with other natural sources such as forest fire and wild animal emissions) and have been implicated in past climate-change events. The Yellowstone hot spot is one of the largest volcanic systems on Earth and is known to emit methane in addition to other greenhouse gases (e.g. carbon dioxide) but the ultimate source of this methane flux has not been elucidated. Here we use dual stable isotope analysis (δ2H and δ13C) of CH4(g) sampled from ten high-temperature geothermal pools in Yellowstone National Park to show that the predominant flux of CH4(g) is abiotic. The average δ13C and δ2H values of CH4(g) emitted from hot springs (-26.7 (±2.4) and -236.9 (±12.0) ‰, respectively) are not consistent with biotic (microbial or thermogenic) methane sources, but are within previously reported ranges for abiotic methane production. Correlation between δ13CCH4 and δ13C-dissolved inorganic C (DIC) also suggests that CO2 is a parent C source for the observed CH4(g). Moreover, CH4-CO2 isotopic geothermometry was used to estimate CH4(g) formation temperatures ranging from ~ 250 - 350°C, which is just below the temperature estimated for the hydrothermal reservoir and consistent with the hypothesis that subsurface, rock-water interactions are responsible for large methane fluxes from this volcanic system. An understanding of conditions leading to the abiotic production of methane and associated isotopic signatures are central to understanding the evolutionary history of deep carbon sources on Earth.

  6. Understanding Patients’ Process to Use Medical Marijuana

    Directory of Open Access Journals (Sweden)

    Tara L Crowell

    2016-09-01

    Full Text Available Given the necessity to better understand the process patients need to go through in order to seek treatment via medical marijuana, this study investigates this process to better understand this phenomenon. Specifically, Compassion Care Foundation (CCF and Stockton University worked together to identify a solution to this problem. Specifically, 240 new patients at CCF were asked to complete a 1-page survey regarding various aspects associated with their experience prior to their use of medicinal marijuana—diagnosis, what prompted them to seek treatment, level of satisfaction with specific stages in the process, total length of time the process took, and patient’s level of pain. Results reveal numerous patient diagnoses for which medical marijuana is being prescribed; the top 4 most common are intractable skeletal spasticity, chronic and severe pain, multiple sclerosis, and inflammatory bowel disease. Next, results indicate a little over half of the patients were first prompted to seek alternative treatment from their physicians, while the remaining patients indicated that other sources such as written information along with friends, relatives, media, and the Internet persuaded them to seek treatment. These data indicate that a variety of sources play a role in prompting patients to seek alternative treatment and is a critical first step in this process. Additional results posit that once patients began the process of qualifying to receive medical marijuana as treatment, the process seemed more positive even though it takes patients on average almost 6 months to obtain their first treatment after they started the process. Finally, results indicate that patients are reporting a moderately high level of pain prior to treatment. Implication of these results highlights several important elements in the patients’ initial steps toward seeking medical marijuana, along with the quality and quantity of the process patients must engage in prior to

  7. The geochemical evolution of syncollisional magmatism and the implications for significant magmatic-hydrothermal lead-zinc mineralization (Gangdese, Tibet)

    Science.gov (United States)

    Zhou, Jinsheng; Yang, Zhusen; Hou, Zengqian; Liu, Yingchao; Zhao, Xiaoyan; Zhang, Xiong; Zhao, Miao; Ma, Wang

    2017-09-01

    In addition to well-known subduction processes, the collision of two continents also generates abundant ore deposits, as in the case of the Tibetan Plateau, which is the youngest and most spectacular collisional belt on Earth. During the building history of the Gangdese magmatic belt, several magmatic flare-up events developed, however, significant magmatic-hydrothermal lead-zinc mineralization dominantly accompanied the magmatism during the syncollisional period ( 65-41 Ma). Based on integrated geochemical and isotopic data, we provide insights into the genesis and evolution of syncollisional magmas, and their implications for significant magmatic-hydrothermal lead-zinc mineralization. The Sr-Nd isotopic compositions of most syncollisional igneous rocks (87Sr/86Sr = 0.7034-0.7123; εNd(t) = - 9.0 to + 1.8) indicate a mixing origin between mantle-derived basaltic magmas and ancient crustal melts, and fractional crystallization is a fundamental mechanism by which syncollisional magmas evolve towards intermediate to silicic compositions. Most lead-zinc mineralization-related plutons are high silica (76.14% wt.% SiO2 on average), high oxygen fugacity (average ΔFMQ + 2.5) granites with highly evolved chemical signatures [average Eun/Eun* = 0.33, high Rb/Sr (average = 3.9)], and they represent the final products from primary magmas. Due to the contribution of ancient crustal melts to the genesis of mineralization-related parent magmas, the spatial distribution of Pb-Zn deposits within the northern Gangdese magmatic belt is controlled by the lithospheric architecture. In compressional environments, magmas have low evacuation efficiency and long magma chamber lifespan, which is favorable for basaltic parents evolved to high silica granites through sufficient fractional crystallization. This scenario contributes to our understanding of the significant magmatic-hydrothermal lead-zinc mineralization that occurred in the syncollisional period.

  8. Dual stable isotopes of CH4 from Yellowstone hot-springs suggest hydrothermal processes involving magmatic CO2

    Science.gov (United States)

    Moran, James J.; Whitmore, Laura M.; Jay, Zackary J.; Jennings, Ryan deM.; Beam, Jacob P.; Kreuzer, Helen W.; Inskeep, William P.

    2017-07-01

    Volcanism and post-magmatism contribute significant annual methane (CH4) fluxes to the atmosphere (on par with other natural sources such as forest fire and wild animal emissions) and have been implicated in past climate-change events. The Yellowstone hot spot is one of the largest volcanic systems on Earth and is known to emit CH4 (as well as carbon dioxide (CO2) and other gases), but the ultimate sources of this CH4 flux have not been elucidated. Here we use dual stable isotope analysis (δ2H and δ13C) of CH4 sampled from ten high-temperature geothermal pools in Yellowstone National Park along with other isotopic and gas analyses to evaluate potential sources of methane. The average δ13C and δ2H values of CH4 emitted from hot springs (26.7 (± 2.4) and - 236.9 (± 12.0) ‰, respectively) are inconsistent with microbial methanogenesis but do not allow distinction between thermogenic and abiotic sources. Correlation between δ13CCH4 and δ13C of dissolved inorganic C (DIC) is consistent with DIC as the parent C source for the observed CH4, or with equilibration of CH4 and DIC. Methane formation temperatures estimated by isotopic geothermometry based on δ13CCH4 and δ13CCO2 ranged from 250-350 °C, which is just below previous temperature estimates for the hydrothermal reservoir. Further, the δ2HH2O of the thermal springs and the measured δ2HCH4 values are consistent with equilibration between the source water and the CH4 at the formation temperatures. Though the ultimate origin of the CH4 could be attributed to either abiotic of themorgenic processes with subsequent isotopic equilibration, the C1/C2 + composition of the gases is more consistent with abiotic origins for most of the samples. Thus, our data support the hypothesis that subsurface rock-water interactions are responsible for at least a significant fraction of the CH4 flux from the Yellowstone National Park volcanic system.

  9. Experiments for understanding soil erosion processes

    Science.gov (United States)

    Seeger, Manuel

    2015-04-01

    Soil erosion processes are usually quantified by observation and measurement of their related forms. Rill, and gullies, moulds or sediment sinks are often used to estimate the soil loss. These forms are generally related directly to different types of processes, thus are also used to identify the dominant processes on a certain type of land-use. Nevertheless, the direct observation of erosion processes is constrained by their temporal and spatial erratic occurrence. As a consequence, the process understanding is generally deduced by analogies. Another possibility is to reproduce processes in experiments in both, the lab and in the field. Laboratory experiments are implemented when we want to have full control over all parameters we think are relevant for the process in our focus. So are very useful for identification of parameters influencing processes and their intensities, but also as physical models of the processes and process interactions in our focus. Therefore, we can use them to verify our concepts, and to define relevant parameters. Field experiments generally only simulate with controlled driving forces, this is the rain or the runoff, but dealing with the uncertainty of our study object, the soil. This enables two things: 1) similar as with lab experiments, we are able to identify processes and process interactions and so, to get a deeper understanding of soil erosion; 2) experiments are suitable for providing data about singular processes in the field and thus, to provide data suitable for model parametrisation and calibration. These may be quantitative data about erodibility or soil resistance, sediment detachment or transport. The Physical Geography Group at Trier University has a long lasting experience in the application of experiments in soil erosion research in the field, and has become lead in the further development conception and of devices and procedures to investigate splash detachment and initial transport of soil particles by wind and water

  10. Energy-constrained open-system magmatic processes IV: Geochemical, thermal and mass consequences of energy-constrained recharge, assimilation and fractional crystallization (EC-RAFC)

    International Nuclear Information System (INIS)

    Wendy A. Bohrson Department of Geological Sciences, Central Washington University, Ellensburg, Washington, 98926, USA; Frank J. Spera Institute for Crustal Studies and Department of Geological Sciences, University of California, Santa Barbara, California, 93106, USA

    2003-01-01

    RAFC events may record a more complete view of the physiochemical history of an open-system magma body. The capability of EC-RAFC to track melts and solids creates a genetic link that can be compared to natural analogues such as layered mafic intrusions and flood basalts, or mafic enclaves and their intermediate-composition volcanic or plutonic hosts. The ability to quantify chemical and volume characteristics of solids and melts also underscores the need for integrated field, petrologic and geochemical studies of igneous systems. While it appears that a number of volcanic events or systems may be characterized by continuous influx or eruption of magma (''steady state systems''), reports describing compositional homogeneity for products that represent eruptions of more than one event are relatively rare. In support of this, EC-RAFC results indicate that very specific combinations of recharge conditions, bulk distribution coefficients, and element concentrations are required to achieve geochemical homogeneity during cooling of a magma body undergoing RAFC. In summary, critical points are that EC-RAFC provides a method to quantitatively investigate complex magmatic systems in a thermodynamic context; it predicts complex, nonmonotonic geochemical trends for which there are natural analogues that have been difficult to model; and finally, EC-RAFC establishes the link between the chemical and physical attributes of a magmatic system. Application of EC-RAFC promises to improve our understanding of specific tectonomagmatic systems as well as enhance our grasp of the essential physiochemical principles that govern magma body evolution

  11. A Dual Process Approach to Understand Tourists’ Destination Choice Processes

    DEFF Research Database (Denmark)

    Kock, Florian; Josiassen, Alexander; Assaf, Albert

    2017-01-01

    Most studies that investigate tourists' choices of destinations apply the concept of mental destination representations, also referred to as destination image. The present study investigates tourists’ destination choice processes by conceptualizing how different components of destination image...... are mentally processed in tourists' minds. Specifically, the seminal dual processing approach is applied to the destination image literature. By doing this, we argue that some components of mental destination representations are processed systematically while others serve as inputs for heuristics...... that individuals apply to inform their decision making. Understanding how individuals make use of their mental destination representations and how they color their decision-making is essential in order to better explain tourist behavior....

  12. Understanding the Entrepreneurial Process: a Dynamic Approach

    Directory of Open Access Journals (Sweden)

    Vânia Maria Jorge Nassif

    2010-04-01

    Full Text Available There is considerable predominance in the adoption of perspectives based on characteristics in research into entrepreneurship. However, most studies describe the entrepreneur from a static or snapshot approach; very few adopt a dynamic perspective. The aim of this study is to contribute to the enhancement of knowledge concerning entrepreneurial process dynamics through an understanding of the values, characteristics and actions of the entrepreneur over time. By focusing on personal attributes, we have developed a framework that shows the importance of affective and cognitive aspects of entrepreneurs and the way that they evolve during the development of their business.

  13. Understanding Combustion Processes Through Microgravity Research

    Science.gov (United States)

    Ronney, Paul D.

    1998-01-01

    A review of research on the effects of gravity on combustion processes is presented, with an emphasis on a discussion of the ways in which reduced-gravity experiments and modeling has led to new understanding. Comparison of time scales shows that the removal of buoyancy-induced convection leads to manifestations of other transport mechanisms, notably radiative heat transfer and diffusional processes such as Lewis number effects. Examples from premixed-gas combustion, non-premixed gas-jet flames, droplet combustion, flame spread over solid and liquid fuels, and other fields are presented. Promising directions for new research are outlined, the most important of which is suggested to be radiative reabsorption effects in weakly burning flames.

  14. Assessment of magmatic vs. metasomatic processes in rare-metal granites: A case study of the Cínovec/Zinnwald Sn-W-Li deposit, Central Europe

    Science.gov (United States)

    Breiter, Karel; Ďurišová, Jana; Hrstka, Tomáš; Korbelová, Zuzana; Hložková Vaňková, Michaela; Vašinová Galiová, Michaela; Kanický, Viktor; Rambousek, Petr; Knésl, Ilja; Dobeš, Petr; Dosbaba, Marek

    2017-11-01

    The Cínovec rare-metal granite in the eastern segment of the Krušné Hory/Erzgebirge (Czech Republic/Germany) formed in the final stage of the magmatic evolution of the late Variscan volcano-plutonic system known as the Teplice caldera. The granite is slightly peraluminous; enriched in F, Li, Rb, Cs, Nb, Ta, Sn, W, Sc and U; and poor in P, Mg, Ti, Sr and Ba. The uppermost part of the granite cupola hosts a greisen-type Sn-W-Li deposit. Borehole CS-1 permits to study vertical evolution of the pluton to a depth of 1597 m. A combination of textural and chemical methods was applied to whole-rock and mineral samples to identify the extent of magmatic and metasomatic processes during the differentiation of the pluton and formation of the deposit. As indicated by textural and chemical data, the Cínovec pluton consists of two cogenetic intrusive bodies: a relatively homogeneous biotite granite at depths greater than 735 m, and a strongly differentiated zinnwaldite granite above this level. The pronounced differentiation of the zinnwaldite granite magma resulted in further increases in F, Li, Rb, Nb and Ta. A high degree of magmatic fractionation is documented by decreases in the K/Rb ratio from 25 to 15 and in the Zr/Hf ratio from 10 to 5. The increasing influence of the fluid is highlighted by a decrease in the Y/Ho ratio from 29 to 17. The following genetic scenario is proposed: the intrusion of the zinnwaldite granite magma reached subvolcanic conditions and a hem of fine-grained porphyritic granite crystallized along the upper contact. Separation of the first portion of fluid from the oversaturated melt promoted explosive degassing and the origin of breccia pipes. Subsequently, the zinnwaldite granite magma crystallized simultaneously from the upper contact and the footwall inwards. The residual melt between the two crystallizing fronts became enriched in water and volatiles to reach second saturation ("second boiling"). Segregated fluids escaped upwards, causing

  15. Insights into shallow magmatic processes at Kīlauea Volcano, Hawaiʻi, from a multiyear continuous gravity time series

    Science.gov (United States)

    Poland, Michael P.; Carbone, Daniele

    2016-01-01

    Continuous gravity data collected near the summit eruptive vent at Kīlauea Volcano, Hawaiʻi, during 2011–2015 show a strong correlation with summit-area surface deformation and the level of the lava lake within the vent over periods of days to weeks, suggesting that changes in gravity reflect variations in volcanic activity. Joint analysis of gravity and lava level time series data indicates that over the entire time period studied, the average density of the lava within the upper tens to hundreds of meters of the summit eruptive vent remained low—approximately 1000–1500 kg/m3. The ratio of gravity change (adjusted for Earth tides and instrumental drift) to lava level change measured over 15 day windows rose gradually over the course of 2011–2015, probably reflecting either (1) a small increase in the density of lava within the eruptive vent or (2) an increase in the volume of lava within the vent due to gradual vent enlargement. Superimposed on the overall time series were transient spikes of mass change associated with inflation and deflation of Kīlauea's summit and coincident changes in lava level. The unexpectedly strong mass variations during these episodes suggest magma flux to and from the shallow magmatic system without commensurate deformation, perhaps indicating magma accumulation within, and withdrawal from, void space—a process that might not otherwise be apparent from lava level and deformation data alone. Continuous gravity data thus provide unique insights into magmatic processes, arguing for continued application of the method at other frequently active volcanoes.

  16. METASOMATIC AND MAGMATIC PROCESSES IN THE MANTLE LITHOSPHERE OF THE BIREKTE TERRAIN OF THE SIBERIAN CRATON AND THEIR EFFECT ON THE LITHOSPHERE EVOLUTION

    Directory of Open Access Journals (Sweden)

    Lidia V. Solov’eva

    2015-01-01

    Full Text Available The area of studies covers the north-eastern part of the Siberian craton (the Birekte terrain, Russia. The influence of metasomatic and magmatic processes on the mantle lithosphere is studied based on results of analyses of phlogopite- and phlogopite-amphibole-containing deep-seated xenoliths from kimberlites of the Kuoika field. In the kimberlitic pipes, deep-seated xenoliths with mantle phlogopite- and phlogopite-amphibole mineralization are developed in two genetically different rock series: magnesian (Mg pyroxenite-peridotite series (with magnesian composition of rocks and minerals and phlogopite-ilmenite (Phl-Ilm hyperbasite series (with ferrous types of rocks and minerals. This paper is focused on issues of petrography and mineralogy of the xenoliths and describes the evidence of metasomatic / magmatic genesis of phlogopite and amphibole. We report here the first data set of 40Ar/39Ar age determinations for phlogopite from the rocks of the magnesian pyroxenite-peridotite series and the ferrous Phl-Ilm hyperbasite series.The Mg series is represented by a continuous transition of rocks from Sp, Sp-Grt, Grt clinopyroxenite and ortopyroxenite to websterite and lherzolite. Many researchers consider it as a layered intrusion in the mantle [Ukhanov et al., 1988; Solov’eva et al., 1994]. The mantle metasomatic phlogopite and amphibole are revealed in all petrographic types of the rocks in this series and compose transverse veins and irregular patchs at grain boundaries of primary minerals. At contacts of xenolith and its host kimberlite, grains of phlogopite and amphibole are often cut off, which gives an evidence of the development of metasomatic phlogopite-amphibole mineralization in the rocks before its’ entraiment into the kimberlite. In the xenoliths with exsolution pyroxene megacrystalls, comprising parallel plates of clino- and orthopyroxene ± garnet ± spinel (former high-temperature pigeonite [Solov’eva et al., 1994], the

  17. Understanding the Sales Process by Selling

    Science.gov (United States)

    Bussière, Dave

    2017-01-01

    Experiential projects bring students closer to real-world situations. This is valuable in sales education because the complexities of the sales process are difficult to learn from a textbook. A student project was developed that involved the selling of advertising space in a one-time newspaper insert. The project included a substantial minimum…

  18. Obsolescence – understanding the underlying processes

    NARCIS (Netherlands)

    Thomsen, A.F.

    2017-01-01

    Obsolescence, defined as the process of declining performance of buildings, is a serious threat for the value, the usefulness and the life span of built properties. Thomsen and van der Flier (2011) developed a model in which obsolescence is categorised on the basis of two distinctions, i.e. between

  19. Understanding Modeling Requirements of Unstructured Business Processes

    NARCIS (Netherlands)

    Allah Bukhsh, Zaharah; van Sinderen, Marten J.; Sikkel, Nicolaas; Quartel, Dick

    2017-01-01

    Management of structured business processes is of interest to both academia and industry, where academia focuses on the development of methods and techniques while industry focuses on the development of supporting tools. With the shift from routine to knowledge work, the relevance of management of

  20. 226Ra-230Th Disequilibria in Magmas from Llaima and Lonquimay Volcanoes, Chile: On the Roles and Rates of Subvolcanic Magmatic Processes.

    Science.gov (United States)

    Reubi, O.; Cooper, L. B.; Dungan, M. A.; Bourdon, B.

    2014-12-01

    226Ra excesses in mafic arc magmas are generally attributed to recent (contamination had a secondary influence on 226Ra-230Th disequilibria. Magmas with the highest AFC contribution have 226Ra-230Th close to equilibrium, implying that (226Ra-230Th) are mostly affected by either differentiation on time scales of ~8 kyr, or more likely, mixing with mush bodies several kyr old. Lonquimay magmas (52 to 64 wt% SiO2) are almost aphyric. Their evolution was controlled by fractional crystallization with limited crustal contamination. (226Ra-230Th) range from moderate 226Ra excesses to small deficits, and are negatively correlated with Ba/Th and MgO. These observations are difficult to reconcile with only slab-fluid addition and mantle melting. We posit that this (226Ra-230Th) range results from diffusive Ra-exchange between young recharge melts and an old crystal mush. A similar process may also explain 226Ra deficits at some other SVZ volcanoes. Thus (226Ra-230Th) in erupted magmas reflect modification of mantle-derived signatures by open-system magmatic processes in the crust. 1Sigmarsson et al., 2002, Earth and Planet. Sc. Lett. 196, 189-196. 2 Reubi et al., 2011, Earth and Planet. Sc. Lett. 303, 37-47.

  1. UNDERSTANDING SEVERE WEATHER PROCESSES THROUGH SPATIOTEMPORAL RELATIONAL RANDOM FORESTS

    Data.gov (United States)

    National Aeronautics and Space Administration — UNDERSTANDING SEVERE WEATHER PROCESSES THROUGH SPATIOTEMPORAL RELATIONAL RANDOM FORESTS AMY MCGOVERN, TIMOTHY SUPINIE, DAVID JOHN GAGNE II, NATHANIEL TROUTMAN,...

  2. Effect of Linked Rules on Business Process Model Understanding

    DEFF Research Database (Denmark)

    Wang, Wei; Indulska, Marta; Sadiq, Shazia

    2017-01-01

    of business processes has not been empirically evaluated. In this paper, we report on an experiment that investigates the effect of linked rules, a specific rule integration approach, on business process model understanding. Our results indicate that linked rules are associated with better time efficiency......Business process models are widely used in organizations by information systems analysts to represent complex business requirements and by business users to understand business operations and constraints. This understanding is extracted from graphical process models as well as business rules. Prior...... research advocated integrating business rules into business process models to improve the effectiveness of important organizational activities, such as developing shared understanding, effective communication, and process improvement. However, whether such integrated modeling can improve the understanding...

  3. Magmatic gas scrubbing: Implications for volcano monitoring

    Science.gov (United States)

    Symonds, R.B.; Gerlach, T.M.; Reed, M.H.

    2001-01-01

    Despite the abundance of SO2(g) in magmatic gases, precursory increases in magmatic SO2(g) are not always observed prior to volcanic eruption, probably because many terrestrial volcanoes contain abundant groundwater or surface water that scrubs magmatic gases until a dry pathway to the atmosphere is established. To better understand scrubbing and its implications for volcano monitoring, we model thermochemically the reaction of magmatic gases with water. First, we inject a 915??C magmatic gas from Merapi volcano into 25??C air-saturated water (ASW) over a wide range of gas/water mass ratios from 0.0002 to 100 and at a total pressure of 0.1 MPa. Then we model closed-system cooling of the magmatic gas, magmatic gas-ASW mixing at 5.0 MPa, runs with varied temperature and composition of the ASW, a case with a wide range of magmatic-gas compositions, and a reaction of a magmatic gas-ASW mixture with rock. The modeling predicts gas and water compositions, and, in one case, alteration assemblages for a wide range of scrubbing conditions; these results can be compared directly with samples from degassing volcanoes. The modeling suggests that CO2(g) is the main species to monitor when scrubbing exists; another candidate is H2S(g), but it can be affected by reactions with aqueous ferrous iron. In contrast, scrubbing by water will prevent significant SO2(g) and most HCl(g) emissions until dry pathways are established, except for moderate HCl(g) degassing from pH 100 t/d (tons per day) of SO2(g) in addition to CO2(g) and H2S(g) should be taken as a criterion of magma intrusion. Finally, the modeling suggests that the interpretation of gas-ratio data requires a case-by-case evaluation since ratio changes can often be produced by several mechanisms; nevertheless, several gas ratios may provide useful indices for monitoring the drying out of gas pathways. Published by Elsevier Science B.V.

  4. Chalcophile element (Ni, Cu, PGE, and Au) variations in the Tamarack magmatic sulfide deposit in the Midcontinent Rift System: implications for dynamic ore-forming processes

    Science.gov (United States)

    Taranovic, Valentina; Ripley, Edward M.; Li, Chusi; Rossell, Dean

    2016-10-01

    correlation between Pt and Pd, and between individual IPGE. At a given Pt or Pd content, however, the semi-massive sulfide ores have higher IPGE contents than the disseminated sulfide samples. Modeling results show that the variations in PGE tenors (metals in recalculated 100 % sulfide) in the Tamarack magmatic sulfide deposit are mainly controlled by variable R factors (magma/sulfide-liquid mass ratios) during sulfide-liquid segregation and subsequent monosulfide solid solution (MSS) fractionation during cooling. The initial contents of Ir, Pt, and Pd in the parental magma, estimated from the metal tenors of the disseminated sulfides, are 0.2, 2, and 1.8 ppb, respectively, which are ˜1/5 of the values for the PGE-undepleted primitive basalts of the Midcontinent Rift System. The variations of PGE tenors in the semi-massive and massive sulfide ores can be explained by MSS fractional crystallization from sulfide liquids. Extreme variations in the PGE contents of the massive sulfides may also in part reflect metal mobility during post-crystallization hydrothermal processes. The higher PGE tenors for the disseminated sulfides in the CGO dike relative to those in the FGO Intrusion are consistent with formation in a dynamic conduit where the early sulfide liquids left in the conduit by the FGO magma were subsequently upgraded by the subsequent surge of the CGO magma. The relatively low PGE tenors for the semi-massive and massive sulfides can be explained by lack of such an upgrading process for the sulfide due to their distal locations in a migrating conduit.

  5. Three-Dimensional Seismic Structure of the Mid-Atlantic Ridge: An Investigation of Tectonic, Magmatic, and Hydrothermal Processes in the Rainbow Area

    Science.gov (United States)

    Dunn, Robert A.; Arai, Ryuta; Eason, Deborah E.; Canales, J. Pablo; Sohn, Robert A.

    2017-12-01

    To test models of tectonic, magmatic, and hydrothermal processes along slow-spreading mid-ocean ridges, we analyzed seismic refraction data from the Mid-Atlantic Ridge INtegrated Experiments at Rainbow (MARINER) seismic and geophysical mapping experiment. Centered at the Rainbow area of the Mid-Atlantic Ridge (36°14'N), this study examines a section of ridge with volcanically active segments and a relatively amagmatic ridge offset that hosts the ultramafic Rainbow massif and its high-temperature hydrothermal vent field. Tomographic images of the crust and upper mantle show segment-scale variations in crustal structure, thickness, and the crust-mantle transition, which forms a vertical gradient rather than a sharp boundary. There is little definitive evidence for large regions of sustained high temperatures and melt in the lower crust or upper mantle along the ridge axes, suggesting that melts rising from the mantle intrude as small intermittent magma bodies at crustal and subcrustal levels. The images reveal large rotated crustal blocks, which extend to mantle depths in some places, corresponding to off-axis normal fault locations. Low velocities cap the Rainbow massif, suggesting an extensive near-surface alteration zone due to low-temperature fluid-rock reactions. Within the interior of the massif, seismic images suggest a mixture of peridotite and gabbroic intrusions, with little serpentinization. Here diffuse microearthquake activity indicates a brittle deformation regime supporting a broad network of cracks. Beneath the Rainbow hydrothermal vent field, fluid circulation is largely driven by the heat of small cooling melt bodies intruded into the base of the massif and channeled by the crack network and shallow faults.

  6. Understanding the Complexity of Social Issues through Process Drama.

    Science.gov (United States)

    O'Mara, Joanne

    2002-01-01

    Attempts to capture the process of understanding and questioning deforestation through process drama (in which students and teacher work both in and out of role to explore a problem, situation, or theme). Notes that moving topics such as the destruction of a rainforest into process drama introduces complexity into social issues. Considers how…

  7. Task-specific visual cues for improving process model understanding

    NARCIS (Netherlands)

    Petrusel, Razvan; Mendling, Jan; Reijers, Hajo A.

    2016-01-01

    Context Business process models support various stakeholders in managing business processes and designing process-aware information systems. In order to make effective use of these models, they have to be readily understandable. Objective Prior research has emphasized the potential of visual cues to

  8. Asymmetric rifting, breakup and magmatism across conjugate margin pairs: insights from Newfoundland to Ireland

    Science.gov (United States)

    Peace, Alexander L.; Welford, J. Kim; Foulger, Gillian R.; McCaffrey, Ken J. W.

    2017-04-01

    Continental extension, subsequent rifting and eventual breakup result in the development of passive margins with transitional crust between extended continental crust and newly created oceanic crust. Globally, passive margins are typically classified as either magma-rich or magma-poor. Despite this simple classification, magma-poor margins like the West Orphan Basin, offshore Newfoundland, do exhibit some evidence of localized magmatism, as magmatism to some extent invariably accompanies all continental breakup. For example, on the Newfoundland margin, a small volcanic province has been interpreted near the termination of the Charlie Gibbs Fracture Zone, whereas on the conjugate Irish margin within the Rockall Basin, magmatism appears to be more widespread and has been documented both in the north and in the south. The broader region over which volcanism has been identified on the Irish margin is suggestive of magmatic asymmetry across this conjugate margin pair and this may have direct implications for the mechanisms governing the nature of rifting and breakup. Possible causes of the magmatic asymmetry include asymmetric rifting (simple shear), post-breakup thermal anomalies in the mantle, or pre-existing compositional zones in the crust that predispose one of the margins to more melting than its conjugate. A greater understanding of the mechanisms leading to conjugate margin asymmetry will enhance our fundamental understanding of rifting processes and will also reduce hydrocarbon exploration risk by better characterizing the structural and thermal evolution of hydrocarbon bearing basins on magma-poor margins where evidence of localized magmatism exists. Here, the latest results of a conjugate margin study of the Newfoundland-Ireland pair utilizing seismic interpretation integrated with other geological and geophysical datasets are presented. Our analysis has begun to reveal the nature and timing of rift-related magmatism and the degree to which magmatic asymmetry

  9. What olivine and clinopyroxene mineral chemistry and melt inclusion study can tell us about magmatic processes in a post-collisional setting. Examples from the Miocene-Quaternary East Carpathian volcanic chain, Romania

    Science.gov (United States)

    Seghedi, Ioan; Mason, Paul R. D.

    2015-04-01

    Calc-alkaline magmatism occurred along the easternmost margin of Tisia-Dacia at the contact with East European Platform forming the Călimani-Gurghiu- Harghita volcanic chain. Its northern part represented by Călimani-Gurghiu-North Harghita (CGNH hereafter) is showing a diminishing age and volume southwards at 10-3.9 Ma. This marks the end of subduction-related magmatism along the post-collision front of the European convergent plate margin. Magma generation was associated with progressive break-off of a subducted slab and asthenosphere uprise. Fractionation and crustal assimilation were typical CGNH volcanic chain. The rocks show homogeneous 87Sr/86Sr, but a linear trend of Th/Y vs Nb/Y that reflects a common mantle source considered to be the metasomatized lithospheric mantle wedge. Fractionation and/or assimilation-fractional crystallization are characteristic for each main volcanic area, suggestive of lower to middle crust magma chamber processes. The South Harghita (SH) volcanic area represents direct continuation of the CGNH volcanic chain. Here at ca. 3 Ma following a time-gap, magma compositions changed to adakite-like calc-alkaline and continued until recent times (< 0.03 Ma). This volcanism was interrupted at ~1.6-1.8 Ma by simultaneous generation of Na- and K-alkalic varieties in nearby areas, suggestive of various sources and melting mechanisms, closely related to the hanging block beneath Vrancea seismic zone. The specific geochemistry is revealed by higher Nb/Y and Th/Y ratios and lower 87Sr/86Sr as compared to the CGNH chain. Identification of primitive magmas has been difficult despite the fact that this volcanic area contains more basalts than any other in the Carpathian-Pannonian region. Since the most primitive rocks represent the best opportunity to identify the trace element composition of the mantle source beneath the East Carpathian volcanic chain we use mineral and melt inclusions in olivine and composition of the most primitive

  10. Insights into Magmatic-Hydrothermal Processes in the Newly-Discovered Seafloor Massive Sulfide Deposits of the New Hebrides Arc-Backarc System, SW Pacific

    Science.gov (United States)

    Anderson, M. O.; Hannington, M. D.; Haase, K. M.; Schwarz-Schampera, U.; McConachy, T.

    2014-12-01

    Magmatic processes leading to hydrothermal venting and the controls on the distribution of vents at two locations along the New Hebrides arc-backarc system are being revealed by new bathymetric data and geological maps interpreted from remotely operated vehicle dive videos. The Nifonea volcanic complex spans the width of the Vate Trough, a nascent backarc basin located ~50 km to the east of the New Hebrides arc. Hydrothermal activity occurs in the caldera at the summit of Nifonea at a water depth of ~1875 m. A NW-trending eruptive fissure cuts through the center of the caldera near the area of active venting. This fissure is associated with isolated pillow mounds and collapse features along its length, and is the source of extensive jumbled sheet flows that cover the caldera floor. Low-temperature, diffuse venting is widespread; active black smoker chimneys are localized on and around the pillow mounds, in clusters of ~20 x 20 m and growing directly on the flows. The impression is that the hydrothermal venting is young and not yet "organized," in large part because of the eruptive style dominated by collapsed sheet flows. The Tinakula seafloor massive sulfide (SMS) deposit is located in a much shallower (~1150 m), extended arc-backarc setting at the northern end of the New Hebrides arc, ~25 km from the arc front. Chimney fields occur along two corridors, and are associated with volcanic mounds and calderas. The eastern field occupies an area of ~1200 x 200 m, and the western sulfide field is ~500 x 100 m in size. The density of chimneys appears to be largely controlled by permeability of the volcanic facies, which are dominated by autoclastic and hyaloclastic breccias. Tinakula has been commercially drilled, offering insight into the third dimension of the system. This is one of the first studies of SMS deposits in the New Hebrides arc and fills a 'knowledge gap' in the occurrence of seafloor hydrothermal systems in arc-related settings of the Melanesian

  11. Increasing process understanding by analyzing complex interactions in experimental data

    DEFF Research Database (Denmark)

    Naelapaa, Kaisa; Allesø, Morten; Kristensen, Henning Gjelstrup

    2009-01-01

    There is a recognized need for new approaches to understand unit operations with pharmaceutical relevance. A method for analyzing complex interactions in experimental data is introduced. Higher-order interactions do exist between process parameters, which complicate the interpretation...... understanding of a coating process. It was possible to model the response, that is, the amount of drug released, using both mentioned techniques. However, the ANOVAmodel was difficult to interpret as several interactions between process parameters existed. In contrast to ANOVA, GEMANOVA is especially suited...... for modeling complex interactions and making easily understandable models of these. GEMANOVA modeling allowed a simple visualization of the entire experimental space. Furthermore, information was obtained on how relative changes in the settings of process parameters influence the film quality and thereby drug...

  12. Understanding and Managing Process Interaction in IS Development Projects

    DEFF Research Database (Denmark)

    Bygstad, Bendik; Nielsen, Peter Axel

    2005-01-01

    Increasingly, information systems must be developed and implemented as a part of business change. This is a challenge for the IS project manager, since business change and information systems development usually are performed as separate processes. Thus, there is a need to understand and manage......-technical innovation in a situation where the organisational change process and the IS development process are parallel but incongruent. We also argue that iterative software engineering frameworks are well structured to support process interaction. Finally, we advocate that the IS project manager needs to manage...... the relationship between these two kinds of processes. To understand the interaction between information systems development and planned organisational change we introduce the concept of process interaction. We draw on a longitudinal case study of an IS development project that used an iterative and incremental...

  13. Understanding the process of greening of Brazilian business schools

    DEFF Research Database (Denmark)

    Jabbour, C.J.C.; Sarkis, J.; De Sousa Jabbour, A.B.L.

    2013-01-01

    activities; (d) paradoxically, the analyzed business schools can be considered academic leaders in the field, but have had difficulties in adopting environmental management practices internally; (e) there is a "path dependence" effect in this process; (f) there are barriers to organizational change towards...... green business schools; (g) institutional entrepreneurs are important to the process of greening. This research represents the first research shedding light to understanding the process of greening of Brazilian business schools while considering the multidimensional aspects (teaching, research, outreach...

  14. Understanding Control Function and Failure From a Process Perspective

    DEFF Research Database (Denmark)

    Heussen, Kai; Lind, Morten

    2012-01-01

    In control design, fault-identification and fault tolerant control, the controlled process is usually perceived as a dynamical process, captured in a mathematical model. The design of a control system for a complex process, however, begins typically long before these mathematical models become...... relevant and available. To consider the role of control functions in process design, a good qualitative understanding of the process as well as of control functions is required. As the purpose of a control function is closely tied to the process functions, its failure has a direct effects on the process...... behaviour and its function. This paper presents a formal methodology for the qualitative representation of control functions in relation to their process context. Different types of relevant process and control abstractions are introduced and their application to formal analysis of control failure modes...

  15. Role of magmatism in continental lithosphere extension: an introduction to tectnophysics special issue

    Energy Technology Data Exchange (ETDEWEB)

    Van Wijk, Jolante W [Los Alamos National Laboratory

    2008-01-01

    The dynamics and evolution of rifts and continental rifted margins have been the subject of intense study and debate for many years and still remain the focus of active investigation. The 2006 AGU Fall Meeting session 'Extensional Processes Leading to the Formation of Basins and Rifted Margins, From Volcanic to Magma-Limited' included several contributions that illustrated recent advances in our understanding of rifting processes, from the early stages of extension to breakup and incipient seafloor spreading. Following this session, we aimed to assemble a multi-disciplinary collection of papers focussing on the architecture, formation and evolution of continental rift zones and rifted margins. This Tectonophysics Special Issue 'Role of magmatism in continental lithosphere extension' comprises 14 papers that present some of the recent insights on rift and rifted margins dynamics, emphasising the role of magmatism in extensional processes. The purpose of this contribution is to introduce these papers.

  16. Understanding the folding process of synthetic polymers by small ...

    Indian Academy of Sciences (India)

    WINTEC

    *For correspondence. Understanding the folding process of synthetic polymers by ... Conformational control in biological macromole- cules depends largely ... context of sensors. 11–13 and more recently with regard to foldamers. 14–17. In these systems, the com- plexation of the OE segment by a metal-ion leads to either a ...

  17. Understanding the folding process of synthetic polymers by small ...

    Indian Academy of Sciences (India)

    WINTEC

    Understanding the folding process of synthetic polymers by small-molecule folding agents. S G RAMKUMAR and S RAMAKRISHNAN*. Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012 e-mail: raman@ipc.iisc.ernet.in. Abstract. Two acceptor containing polyimides PDI and NDI ...

  18. Understanding the Advising Learning Process Using Learning Taxonomies

    Science.gov (United States)

    Muehleck, Jeanette K.; Smith, Cathleen L.; Allen, Janine M.

    2014-01-01

    To better understand the learning that transpires in advising, we used Anderson et al.'s (2001) revision of Bloom's (1956) taxonomy and Krathwohl, Bloom, and Masia's (1964) affective taxonomy to analyze eight student-reported advising outcomes from Smith and Allen (2014). Using the cognitive processes and knowledge domains of Anderson et al.'s…

  19. Understanding the Process by Which New Employees Enter Work Groups

    Science.gov (United States)

    Summers, Donald B.

    1977-01-01

    The Group Integration Process, described in this article, serves as a broad and guiding set of steps (invitation, induction, orientation, training, relationship, and integration) that helps the supervisor better understand what is to be done in managing a new employee's entrance into a work group. (TA)

  20. Did the massive magnetite "lava flows" of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS

    Science.gov (United States)

    Dare, Sarah A. S.; Barnes, Sarah-Jane; Beaudoin, Georges

    2015-06-01

    The El Laco magnetite deposits consist of more than 98 % magnetite but show field textures remarkably similar to mafic lava flows. Therefore, it has long been suggested that they represent a rare example of an effusive Fe oxide liquid. Field and petrographic evidence, however, suggest that the magnetite deposits represent replacement of andesite flows and that the textures are pseudomorphs. We determined the trace element content of magnetite by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) from various settings at El Laco and compared them with magnetite from both igneous and hydrothermal environments. This new technique allows us to place constraints on the conditions under which magnetite in these supposed magnetite "lava flows" formed. The trace element content of magnetite from the massive magnetite samples is different to any known magmatic magnetite, including primary magnetite phenocrysts from the unaltered andesite host rocks at El Laco. Instead, the El Laco magnetite is most similar in composition to hydrothermal magnetite from high-temperature environments (>500 °C), such as iron oxide-copper-gold (IOCG) and porphyry-Cu deposits. The magnetite trace elements from massive magnetite are characterised by (1) depletion in elements considered relatively immobile in hydrothermal fluids (e.g. Ti, Al, Cr, Zr, Hf and Sc); (2) enrichment in elements that are highly incompatible with magmatic magnetite (rare earth elements (REE), Si, Ca, Na and P) and normally present in very low abundance in magmatic magnetite; (3) high Ni/Cr ratios which are typical of magnetite from hydrothermal environments; and (4) oscillatory zoning of Si, Ca, Mg, REE and most high field strength elements, and zoning truncations indicating dissolution, similar to that formed in hydrothermal Fe skarn deposits. In addition, secondary magnetite in altered, brecciated host rock, forming disseminations and veins, has the same composition as magnetite from the massive

  1. Understanding the IT/business partnership - a business process perspective

    DEFF Research Database (Denmark)

    Siurdyban, Artur

    2014-01-01

    From a business process perspective, the business value of information technologies (IT) stems from how they improve or enable business processes. At the same time, in the field of strategic IT/business alignment, the locus of discussion has been how IT/business partnerships enhance the value of IT....... Despite this apparent relationship, the business process perspective has been absent from the IT/business alignment discussion. In this paper, we use the case of an industrial company to develop a model for understanding IT/business partnerships in business process terms. Based on our findings, we define...... these partnerships by allocating responsibilities between central IT and the local business during two stages of a process lifecycle: formation and standardization. The significance of the findings lies in how the model’s configuration leads to different types of IT units’ process centricity. This in turn affects...

  2. Understanding metallic bonding: Structure, process and interaction by Rasch analysis

    Science.gov (United States)

    Cheng, Maurice M. W.; Oon, Pey-Tee

    2016-08-01

    This paper reports the results of a survey of 3006 Year 10-12 students on their understandings of metallic bonding. The instrument was developed based on Chi's ontological categories of scientific concepts and students' understanding of metallic bonding as reported in the literature. The instrument has two parts. Part one probed into students' understanding of metallic bonding as (a) a submicro structure of metals, (b) a process in which individual metal atoms lose their outermost shell electrons to form a 'sea of electrons' and octet metal cations or (c) an all-directional electrostatic force between delocalized electrons and metal cations, that is, an interaction. Part two assessed students' explanation of malleability of metals, for example (a) as a submicro structural rearrangement of metal atoms/cations or (b) based on all-directional electrostatic force. The instrument was validated by the Rasch Model. Psychometric assessment showed that the instrument possessed reasonably good properties of measurement. Results revealed that it was reliable and valid for measuring students' understanding of metallic bonding. Analysis revealed that the structure, process and interaction understandings were unidimensional and in an increasing order of difficulty. Implications for the teaching of metallic bonding, particular through the use of diagrams, critiques and model-based learning, are discussed.

  3. Surficial Expressions of Deeper Processes- Ridge 2000 Spurs Understanding of Mantle-Hydrothermal Connections and the Role of Crustal Processes at Oceanic Spreading Centers

    Science.gov (United States)

    Blackman, D. K.

    2011-12-01

    A decade ago the Ridge 2000 (R2K) program began implementing the Integrated Studies Site (ISS) strategy as a means to advance understanding of the linked magmatic/tectonic/hydrothermal systems that dictate the structure and ecosystems observed in young crust along the spreading axis. Through comparison amongst ISSs and other well-studied sites, where controlling factors such as spreading rate or tectonic/thermal setting differ, a number of new insights have been gained. I will review progress on 3 aspects, emphasizing R2K contributions but also noting a few other recent results: the pattern of magma supply, along and across axis; ridge segmentation and crust/mantle interplay; threshold behavior and limiting processes that are manifested in crustal properties. The results are derived from petrological/geochemical, seismic (imaging, seismicity, compliance), electromagnetic, modeling, and mapping investigations, so I will touch on each of these types of constraint. The breadth of the melt supply zone is an example where R2K results document that influx to at least the lower crust can extend out several km beyond the axial graben. Such knowledge addresses a fundamental problem in Earth Sciences- how magmatism and faulting interact and the potential for hydrothermal circulation to both influence, and be influenced by, their distributions. In addition to briefly summarizing work already completed, I will highlight efforts on the mantle portions of the Juan de Fuca and Lau ISS that are currently underway, using data/modeling from the final phase of R2K, to tease out further connections between mantle processes and crustal structure, within which the now-known-to-be-ubiquitous hydrothermal systems develop.

  4. Understanding uncertainty in process-based hydrological models

    Science.gov (United States)

    Clark, M. P.; Kavetski, D.; Slater, A. G.; Newman, A. J.; Marks, D. G.; Landry, C.; Lundquist, J. D.; Rupp, D. E.; Nijssen, B.

    2013-12-01

    Building an environmental model requires making a series of decisions regarding the appropriate representation of natural processes. While some of these decisions can already be based on well-established physical understanding, gaps in our current understanding of environmental dynamics, combined with incomplete knowledge of properties and boundary conditions of most environmental systems, make many important modeling decisions far more ambiguous. There is consequently little agreement regarding what a 'correct' model structure is, especially at relatively larger spatial scales such as catchments and beyond. In current practice, faced with such a range of decisions, different modelers will generally make different modeling decisions, often on an ad hoc basis, based on their balancing of process understanding, the data available to evaluate the model, the purpose of the modeling exercise, and their familiarity with or investment in an existing model infrastructure. This presentation describes development and application of multiple-hypothesis models to evaluate process-based hydrologic models. Our numerical model uses robust solutions of the hydrology and thermodynamic governing equations as the structural core, and incorporates multiple options to represent the impact of different modeling decisions, including multiple options for model parameterizations (e.g., below-canopy wind speed, thermal conductivity, storage and transmission of liquid water through soil, etc.), as well as multiple options for model architecture, that is, the coupling and organization of different model components (e.g., representations of sub-grid variability and hydrologic connectivity, coupling with groundwater, etc.). Application of this modeling framework across a collection of different research basins demonstrates that differences among model parameterizations are often overwhelmed by differences among equally-plausible model parameter sets, while differences in model architecture lead

  5. Understanding and Managing Process Interaction in IS Development Projects

    DEFF Research Database (Denmark)

    Bygstad, Bendik; Nielsen, Peter Axel

    2012-01-01

    Software-based information systems must be developed and implemented as a part of business change. This is a major challenge, since business change and the development of software-based information systems usually are performed in separate processes. Thus, there is a need to understand and manage...... critical events in the case, what led to the events, and what the consequences are. We discuss the implications for information systems research and in particular we discuss the contribution to project management of iterative and incremental software development.......Software-based information systems must be developed and implemented as a part of business change. This is a major challenge, since business change and the development of software-based information systems usually are performed in separate processes. Thus, there is a need to understand and manage...

  6. Toward understanding dynamic annealing processes in irradiated ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Michael Thomas [Texas A & M Univ., College Station, TX (United States)

    2013-05-01

    High energy particle irradiation inevitably generates defects in solids. The ballistic formation and thermalization of the defect creation process occur rapidly, and are believed to be reasonably well understood. However, knowledge of the evolution of defects after damage cascade thermalization, referred to as dynamic annealing, is quite limited. Unraveling the mechanisms associated with dynamic annealing is crucial since such processes play an important role in the formation of stable postirradiation disorder in ion-beam-processing of semiconductors, and determines the “radiation tolerance” of many nuclear materials. The purpose of this dissertation is to further our understanding of the processes involved in dynamic annealing. In order to achieve this, two main tasks are undertaken.

  7. Experiments to understand the corrosion process of fuel rod claddings

    International Nuclear Information System (INIS)

    Groeschel, F.; Hermann, A.

    1997-01-01

    Fuel rods in light water reactors have to respond to the trends in increased burn-up and extended dwelling time in reactor. Waterside corrosion of the cladding affecting wall thickness, mechanical stability due to hydriding and the heat transfer due to the low thermal conductivity of the oxide scale may become the limiting factors. The corrosion process is complex and involves a large variety of mechanisms. Understanding of the process is important for safe operation and a prerequisite for development of improved materials. A variety of analytical techniques and mechanical tests, including examination of irradiated pathfinder rods, are used to tackle the different aspects. (author) 6 figs., 1 tab., 17 refs

  8. Olivine-liquid relations of lava erupted by Kilauea volcano from 1994 to 1998: Implications for shallow magmatic processes associated with the ongoing east-rift-zone eruption

    Science.gov (United States)

    Thornber, C.R.

    2001-01-01

    From 1994 through 1998, the eruption of Ki??lauea, in Hawai'i, was dominated by steady-state effusion at Pu'u 'O??'??o that was briefly disrupted by an eruption 4 km uprift at Np??au Crater on January 30, 1997. In this paper, I describe the systematic relations of whole-rock, glass, olivine, and olivine-inclusion compositions of lava samples collected throughout this interval. This suite comprises vent samples and tube-contained flows collected at variable distances from the vent. The glass composition of tube lava varies systematically with distance and allows for the "vent-correction" of glass thermometry and olivine-liquid KD as a function of tube-transport distance. Combined olivine-liquid data for vent samples and "vent-corrected" lava-tube samples are used to document pre-eruptive magmatic conditions. KD values determined for matrix glasses and forsterite cores define three types of olivine phenocrysts: type A (in equilibrium with host glass), type B (Mg-rich relative to host glass) and type C (Mg-poor relative to host glass). All three types of olivine have a cognate association with melts that are present within the shallow magmatic plumbing system during this interval. During steady-state eruptive activity, the compositions of whole-rock, glass and most olivine phenocrysts (type A) all vary sympathetically over time and as influenced by changes of magmatic pressure within the summit-rift-zone plumbing system. Type-A olivine is interpreted as having grown during passage from the summit magmachamber along the east-rift-zone conduit. Type-B olivine (high Fo) is consistent with equilibrium crystallization from bulk-rock compositions and is likely to have grown within the summit magma-chamber. Lower-temperature, fractionated lava was erupted during non-steady state activity of the Na??pau Crater eruption. Type-A and type-B olivine-liquid relations indicate that this lava is a mixture of rift-stored and summit-derived magmas. Post-Na??pau lava (at Pu'u 'O?? 'o

  9. Transient processes in Stromboli's shallow basaltic system inferred from dolerite and magmatic breccia blocks erupted during the 5 April 2003 paroxysm

    Science.gov (United States)

    Renzulli, Alberto; Del Moro, Stefano; Menna, Michele; Landi, Patrizia; Piermattei, Marco

    2009-09-01

    We describe the mineralogy, geochemistry, and mesomicrostructure of fresh subvolcanic blocks erupted during the 5 April 2003 paroxysm of Stromboli (Aeolian Islands, Italy). These blocks represent ˜50 vol.% of the total erupted ejecta and consist of fine- to medium-grained basaltic lithotypes ranging from relatively homogeneous dolerites to strongly or poorly welded magmatic breccias. The breccia components are represented by angular fragments of dolerites entrapped in a matrix of vesiculated (lava-like to scoriae) crystal-rich (CR) basalt. All of the studied blocks are cognates with the CR basalt of the normal Strombolian activity or lavas and they are often coated by a few-centimeter thick layer of crystal-poor (CP) basaltic pumice erupted during the paroxysm. We suggest that they result from the rapid increase of pressure and related subvolcanic rock failure that occurred shortly before the 5 April 2003 explosion, when the uppermost portion of the edifice inflated and suffered brecciation as the result of the sudden rise of the gas-rich CP basalt that triggered the eruption. Dolerites and magmatic matrix of the breccias show major and trace element compositions that match those of the CR basalts erupted during normal Strombolian activity and effusive events at Stromboli volcano. Dolerites consist of (a) phenocrysts normally found in the CR basalts and (b) late-stage magmatic minerals such as sanidine, An60-28 plagioclase, Fe-Mn-rich olivines (Fo68-48), phlogopite, apatite, and opaque mineral pairs (magnetite and ilmenite), most of which are never found both in lava flows and scoriae erupted during the persistent explosive activity that characterizes typical Strombolian behavior. Subvolcanic crystallization of the Stromboli CR magma, leading to slowly cooled equivalents of basalts, could result from transient drainage of the magma from the summit craters to lower levels. Fingering and engulfing of the material that collapsed from the summit crater floor into the

  10. Study of the subduction-related magmatism and of the continental erosion, by uranium-series: constraints on the processes and the timescale

    International Nuclear Information System (INIS)

    Dosseto, A.

    2003-01-01

    (The first part of this research thesis in geochemistry proposes an overview of knowledge and a description of the contribution of uranium-series to the magmatism in subduction zones. The second part addresses the continental erosion, and more particularly the alteration regimes and the dynamics of transfer of sediments constrained by uranium-series. Already published articles complete this report: U-Th-Pa-Ra study of the Kamchatka arc: new constraints on genesis of arc basalts; Dehydration and partial melting in subduction zones: constraints from U-series disequilibria; Timescale and conditions of chemical weathering under tropical climate: study of the Amazon basin with U-series; Timescale and conditions of chemical weathering in the Bolivian Andes and their fore-land basin

  11. Commentary: how can technology help us understand the communication process?

    Science.gov (United States)

    Keyton, Joann

    2012-08-01

    In this commentary, the author reflects on the articles chosen for the special section on communications analysis. These articles problematize communication and raise an interesting set of questions for both human factors and communication scholars to ponder. In the end, both sets of scholars seek the same goal: How do we better examine communication to improve it? Problematizing communication requires scholars to challenge their fundamental assumptions about the phenomenon as well as to tease out the distinctions of methodological approaches typically used by both human factors and communication scholars. Human factors scholars tend to favor forms of communication in which technology or task roles control who can communicate and how. Communication scholars tend to favor contexts in which information flows more freely with fewer explicit restrictions. Creating opportunities to collaborate in research on the communication process may create the best understanding of technology that can better serve our understanding of communication.

  12. Importance of isotopes for understanding the sedimentation processes

    International Nuclear Information System (INIS)

    Manjunatha, B.R.

    2012-01-01

    Isotopes of either radioactive or stable depending upon radiation emitted or not respectively which have wide applications in understanding not only the history of sedimentation, but also provide information about paleoclimate. Stable isotope mass difference occurs due to changes in physicochemical conditions of the ambient environment, for instance temperature, evaporation, precipitation, redox processes, and changes in the mobility of elements during weathering processes, biological uptake, metabolism, re-mineralization of biogenic material, etc. In contrast, radionuclides emit radiation because of excess of neutrons present in the nucleus when compared to protons of an atom. The decay of radioactive isotopes is unaffected despite changes in physicochemical variations; hence, they are useful for determining ages of different types of materials on earth. The radioisotopes can be classified based on origin and half life into primordial or long-lived, cosmogenic and artificial radionuclides or fission products. In this study, the importance of 137 Cs artificial radionuclides will be highlighted to understand short-term sedimentation processes, particularly in estuaries, deltas/continental shelf of west coast of India. The distribution of 137 Cs in sediments of south-western continental margin of India indicates that coastal marginal environments are filters or sinks for fall-out radionuclides. The sparse of 137 Cs in the open continental shelf environment indicates that most of sediments are either older or sediments being diluted by components generated in the marine environment

  13. Felsic magmatism and uranium deposits

    International Nuclear Information System (INIS)

    Cuney, Michel

    2014-01-01

    The strongly incompatible behaviour of uranium in silicate magmas results in its concentration in the most felsic melts and a prevalence of granites and rhyolites as primary U sources for the formation of U deposits. Despite its incompatible behavior, U deposits resulting directly from magmatic processes are quite rare. In most deposits, U is mobilized by hydrothermal fluids or ground water well after the emplacement of the igneous rocks. Of the broad range of granite types, only a few have U contents and physico-chemical properties that permit the crystallization of accessory minerals from which uranium can be leached for the formation of U deposits. The first granites on Earth, which crystallized uraninite, dated at 3.1 Ga, are the potassic granites from the Kaapval craton (South Africa) which were also the source of the detrital uraninite for the Dominion Reef and Witwatersrand quartz pebble conglomerate deposits. Four types of granites or rhyolites can be sufficiently enriched in U to represent a significant source for the genesis of U deposits: per-alkaline, high-K met-aluminous calc-alkaline, L-type peraluminous and anatectic pegmatoids. L-type peraluminous plutonic rocks in which U is dominantly hosted in uraninite or in the glass of their volcanic equivalents represent the best U source. Per-alkaline granites or syenites are associated with the only magmatic U-deposits formed by extreme fractional crystallization. The refractory character of the U-bearing minerals does not permit their extraction under the present economic conditions and make them unfavorable U sources for other deposit types. By contrast, felsic per-alkaline volcanic rocks, in which U is dominantly hosted in the glassy matrix, represent an excellent source for many deposit types. High-K calc-alkaline plutonic rocks only represent a significant U source when the U-bearing accessory minerals (U-thorite, allanite, Nb oxides) become metamict. The volcanic rocks of the same geochemistry may be

  14. Felsic magmatism and uranium deposits

    International Nuclear Information System (INIS)

    Cuney, M.

    2014-01-01

    Uranium strongly incompatible behaviour in silicate magmas results in its concentration in the most felsic melts and a prevalence of granites and rhyolites as primary U sources for the formation of U deposits. Despite its incompatible behaviour, U deposits resulting directly from magmatic processes are quite rare. In most deposits, U is mobilized by hydrothermal fluids or ground water well after the emplacement of the igneous rocks. Of the broad range of granite types, only a few have have U contents and physico-chemical properties that permit the crystallization of accessory minerals from which uranium can be leached for the formation of U deposits. The first granites on Earth which crystallized uraninite appeared at 3.1 Ga, are the potassic granites from the Kaapval craton (South Africa) which were also the source of the detrital uraninite for the Dominion Reef and Witwatersrand quartz pebble conglomerate deposits. Four types of granites or rhyolites can be sufficiently enriched in U to represent a significant source for the genesis of U deposits: peralkaline, high-K metaluminous calc-alkaline, L-type peraluminous ones and anatectic pegmatoids. L-type peraluminous plutonic rocks in which U is dominantly hosted in uraninite or in the glass in their volcanic equivalents represent the best U source. Peralkaline granites or syenites represent the only magmatic U-deposits formed by extreme fractional crystallization. The refractory character of the U-bearing minerals does not permit their extraction at the present economic conditions and make them unfavourable U sources for other deposit types. By contrast, felsic peralkaline volcanic rocks, in which U is dominantly hosted in the glassy matrix, represent an excellent source for many deposit types. High-K calc-alkaline plutonic rocks only represent a significant U source when the U-bearing accessory minerals [U-thorite, allanite, Nb oxides] become metamict. The volcanic rocks of the same geochemistry may be also a

  15. Understanding the Relationship Between Soil Processes and Atmospheric Methane Concentrations

    Science.gov (United States)

    Laybolt, W. D.; O'Connell, E.; Risk, D. A.

    2014-12-01

    As vehicle-based atmospheric surveying becomes more commonplace, its natural evolution will see an increased movement towards detection of multiple gases and geochemical approaches for discriminating leaks of different origin. While multi-gas surveys are already feasible, the factor limiting our ability to interpret them is the understanding of gas source-sink dynamics, particularly at the soil level. This study aims to understand the relationship between soil processes and atmospheric methane concentrations. Using source regions of approximately 100 km2, extensive soil gas surveys were completed, measuring CH4, δ13CH4 and CO2. We compared this to daytime and nighttime vehicle-based surveys where we acquired data for the same gases to see which of these individual gases, or ratios thereof, could be detected in the lower atmosphere. These surveys were done in two contrasting regions, which were also expected to have different source/sink processes. Results showed that atmospheric CH4 concentration, its isotopic signature, and the CO2/CH4 ratio of above-background concentrations showed the highest level of correspondence with the soil CH4 values. Anomalies in CH4 concentrations in the first study area appeared to be from predominantly biological sources (δ13CH4 values near -60‰) rather than from a fossil source (underlying coal beds). However, the study area also showed anomalous values of δ13CH4, which may have been due to a soil CH4 sink. In both regions, nighttime atmospheric studies generally yield stronger signals and correlations because decreased night winds contributed to pooling of gases and higher atmospheric concentrations. This study helps advance our understanding of the relationship between soil processes and atmospheric methane, which is essential for improving vehicle-based surveys for use in detecting environmental side-effects of energy and geosequestration projects in regions of complex surface gas dynamics.

  16. Understanding the process by which female entrepreneurs create INVs

    DEFF Research Database (Denmark)

    Rosenbaum, Gitte Ohrt; Hannibal, Martin

    than remaining in one´s domestic market (e.g. in terms of risk propensity, ability to acquire foreign market knowledge, growth ambitions, network connections and such like), answers to the questions of “Who am I?, What do I know? Whom do I know?” in the founding stage for INVs are likely to be very...... different than for purely domestic new ventures. However, despite this apparent logic, INV scholars have only recently begun to explore how the founding characteristics and processes of INVs may vary from those of purely domestic ventures (e.g. Bell et al., 2003; Coviello, 2006; Coviello & Cox, 2006; Di...... Gregorio et al., 2008). Unfortunately, while the above studies have contributed to our understanding, they are all gender-neutral i.e. they fail to consider the process of INV creation from a female entrepreneurial perspective. This is problematic given the rapidly rising numbers of women-owned ventures...

  17. Towards an understanding of parietal mnemonic processes: some conceptual guideposts

    Science.gov (United States)

    Levy, Daniel A.

    2012-01-01

    The posterior parietal lobes have been implicated in a range of episodic memory retrieval tasks, but the nature of parietal contributions to remembering remains unclear. In an attempt to identify fruitful avenues of further research, several heuristic questions about parietal mnemonic activations are considered in light of recent empirical findings: Do such parietal activations reflect memory processes, or their contents? Do they precede, follow, or co-occur with retrieval? What can we learn from their pattern of lateralization? Do they index access to episodic representations, or the feeling of remembering? Are parietal activations graded by memory strength, quantity of retrieved information, or the type of retrieval? How do memory-related activations map onto functional parcellation of parietal lobes suggested by other cognitive phenomena? Consideration of these questions can promote understanding of the relationship between parietal mnemonic effects and perceptual, attentional, and action-oriented cognitive processes. PMID:22783175

  18. Towards an understanding of parietal mnemonic processes: Some conceptual guideposts

    Directory of Open Access Journals (Sweden)

    Daniel A Levy

    2012-07-01

    Full Text Available The posterior parietal lobes have been implicated in a range of episodic memory retrieval tasks, but the nature of parietal contributions to remembering remains unclear. In an attempt to identify fruitful avenues of further research, several heuristic questions about parietal-mnemonic activations are considered in light of recent empirical findings: Do such parietal activations reflect memory processes or their contents? Do they precede, follow, or co-occur with retrieval? What can we learn from their pattern of lateralization? Do they index access to episodic representations or the feeling of remembering? Are parietal activations graded by memory strength, quantity of retrieved information, or the type of retrieval? How do memory-related activations map onto functional parcellation of parietal lobes suggested by other cognitive phenomena? Consideration of these questions can promote understanding of the relationship between parietal-mnemonic effects and perceptual, attentional, and action-oriented cognitive processes.

  19. Understanding and Predicting the Process of Software Maintenance Releases

    Science.gov (United States)

    Basili, Victor; Briand, Lionel; Condon, Steven; Kim, Yong-Mi; Melo, Walcelio L.; Valett, Jon D.

    1996-01-01

    One of the major concerns of any maintenance organization is to understand and estimate the cost of maintenance releases of software systems. Planning the next release so as to maximize the increase in functionality and the improvement in quality are vital to successful maintenance management. The objective of this paper is to present the results of a case study in which an incremental approach was used to better understand the effort distribution of releases and build a predictive effort model for software maintenance releases. This study was conducted in the Flight Dynamics Division (FDD) of NASA Goddard Space Flight Center(GSFC). This paper presents three main results: 1) a predictive effort model developed for the FDD's software maintenance release process; 2) measurement-based lessons learned about the maintenance process in the FDD; and 3) a set of lessons learned about the establishment of a measurement-based software maintenance improvement program. In addition, this study provides insights and guidelines for obtaining similar results in other maintenance organizations.

  20. Understanding the mechanism of nanoparticle formation in wire explosion process

    International Nuclear Information System (INIS)

    Bora, B.; Wong, C.S.; Bhuyan, H.; Lee, Y.S.; Yap, S.L.; Favre, M.

    2013-01-01

    The mechanism of nanoparticle formation by wire explosion process has been investigated by optical emission spectroscopy in Antony et al. 2010 [2] [J Quant Spectrosc Radiat Transfer 2010; 111:2509]. It was reported that the size of the nanoparticles formed in Ar ambience increases with increasing pressure, while an opposite trend was observed for the nanoparticles produced in N 2 and He ambiences. However, the physics behind this opposite trend seems unclear. In this work, we have investigated the probable mechanism behind the opposite trend in particle size with pressure of different gases and understand the mechanism of nanoparticle formation in wire explosion process. The experiment was carried out to investigate the effect of ambient gas species (Ar and N 2 ) and pressure on arc plasma formation and its corresponding effects on the characteristics of the produced nanoparticles in wire explosion process. Our results show that the arc plasma formation is probably the mechanism that may account for the opposite trend of particle size with pressure of different gases. -- Highlights: ► Cu nanoparticles have been synthesized by wire explosion technique. ► Investigate the effect of the ambient gas species and pressure. ► Arc plasma formation in wire explosion process is investigated. ► Arc plasma formation plays a crucial role in characteristic of the nanoparticles

  1. Towards an understanding of business model innovation processes

    DEFF Research Database (Denmark)

    Taran, Yariv; Boer, Harry; Lindgren, Peter

    2009-01-01

    Companies today, in some industries more than others, invest more capital and resources just to stay competitive, develop more diverse solutions, and increasingly start to think more radically, when considering to innovate their business model. However, the development and innovation of business...... models is a complex venture and has not been widely researched yet. The objective of this paper is therefore 1) to build a [descriptive] theoretical understanding, based on Christensen’s (2005) three-step procedure, to business models and their innovation and, as a result of that, 2) to strengthen...... researchers’ and practitioners’ perspectives as to how the process of business model innovation can be realized. By using various researchers’ perspectives and assumptions, we identify relevant inconsistencies, which consequently lead us to propose possible supplementary solutions. We conclude our paper...

  2. Theory Building- Towards an understanding of business model innovation processes

    DEFF Research Database (Denmark)

    Taran, Yariv; Boer, Harry; Lindgren, Peter

    2009-01-01

    Companies today, in some industries more than others, invest more capital and resources just to stay competitive, develop more diverse solutions, and increasingly start to think more radically, when considering to innovate their business model. However, the development and innovation of business...... models is a complex venture and has not been widely researched yet. The objective of this paper is therefore 1) to build a [descriptive] theoretical understanding, based on Christensen's (2005) three-step procedure, to business models and their innovation and, as a result of that, 2) to strengthen...... researchers' and practitioners' perspectives as to how the process of business model innovation can be realized. By using various researchers' perspectives and assumptions, we identify relevant inconsistencies, which consequently lead us to propose possible supplementary solutions. We conclude our paper...

  3. Using infrared thermography for understanding and quantifying soil surface processes

    Science.gov (United States)

    de Lima, João L. M. P.

    2017-04-01

    At present, our understanding of the soil hydrologic response is restricted by measurement limitations. In the literature, there have been repeatedly calls for interdisciplinary approaches to expand our knowledge in this field and eventually overcome the limitations that are inherent to conventional measuring techniques used, for example, for tracing water at the basin, hillslope and even field or plot scales. Infrared thermography is a versatile, accurate and fast technique of monitoring surface temperature and has been used in a variety of fields, such as military surveillance, medical diagnosis, industrial processes optimisation, building inspections and agriculture. However, many applications are still to be fully explored. In surface hydrology, it has been successfully employed as a high spatial and temporal resolution non-invasive and non-destructive imaging tool to e.g. access groundwater discharges into waterbodies or quantify thermal heterogeneities of streams. It is believed that thermal infrared imagery can grasp the spatial and temporal variability of many processes at the soil surface. Thermography interprets the heat signals and can provide an attractive view for identifying both areas where water is flowing or has infiltrated more, or accumulated temporarily in depressions or macropores. Therefore, we hope to demonstrate the potential for thermal infrared imagery to indirectly make a quantitative estimation of several hydrologic processes. Applications include: e.g. mapping infiltration, microrelief and macropores; estimating flow velocities; defining sampling strategies; identifying water sources, accumulation of waters or even connectivity. Protocols for the assessment of several hydrologic processes with the help of IR thermography will be briefly explained, presenting some examples from laboratory soil flumes and field.

  4. A Science-Based Understanding of Cermet Processing

    Energy Technology Data Exchange (ETDEWEB)

    Cesarano, III, Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roach, Robert Allen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kilgo, Alice C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Susan, Donald Francis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Van Ornum, David J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stuecker, John N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shollenberger, Kimberly A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2006-04-01

    This report is a summary of the work completed in FY01 for science-based characterization of the processes used to fabricate 1) cermet vias in source feedthrus using slurry and paste-filling techniques and 2) cermet powder for dry pressing. Common defects found in cermet vias were characterized based on the ability of subsequent processing techniques (isopressing and firing) to remove the defects. Non-aqueous spray drying and mist granulation techniques were explored as alternative methods of creating CND50, the powder commonly used for dry pressed parts. Compaction and flow characteristics of these techniques were analyzed and compared to standard dry-ball-milled CND50. Due to processing changes, changes in microstructure can occur. A microstructure characterization technique was developed to numerically describe cermet microstructure. Machining and electrical properties of dry pressed parts were also analyzed and related to microstructure using this analytical technique.3 Executive SummaryThis report outlines accomplishments in the science-based understanding of cermet processing up to fiscal year 2002 for Sandia National Laboratories. The three main areas of work are centered on 1) increasing production yields of slurry-filled cermets, 2) evaluating the viability of high-solids-loading pastes for the same cermet components, and 3) optimizing cermet powder used in pressing processes (CND50). An additional development that was created as a result of the effort to fully understand the impacts of alternative processing techniques is the use of analytical methods to relate microstructure to physical properties. Recommendations are suggested at the end of this report. Summaries of these four efforts are as follows:1.Increase Production Yields of Slurry-Filled Cermet Vias Finalized slurry filling criteria were determined based on three designs of experiments where the following factors were analyzed: vacuum time, solids loading, pressure drop across the filter paper

  5. Continental extension, magmatism and elevation; formal relations and rules of thumb

    Science.gov (United States)

    Lachenbruch, A.H.; Morgan, P.

    1990-01-01

    To investigate simplified relations between elevation and the extensional, magmatic and thermal processes that influence lithosphere buoyancy, we assume that the lithosphere floats on an asthenosphere of uniform density and has no flexural strength. A simple graph relating elevation to lithosphere density and thickness provides an overview of expectable conditions around the earth and a simple test for consistancy of continental and oceanic lithosphere models. The mass-balance relations yield simple general rules for estimating elevation changes caused by various tectonic, magmatic and thermal processes without referring to detailed models. The rules are general because they depend principally on buoyancy, which under our assumptions is specified by elevation, a known quantity; they do not generally require a knowledge of lithosphere thickness and density. The elevation of an extended terrain contains important information on its tectonic and magmatic history. In the Great Basin where Cenozoic extension is estimated to be 100%, the present high mean elevation ( ~ 1.75 km) probably requires substantial low-density magmatic contributions to the extending lithosphere. The elevation cannot be reasonably explained solely as the buoyant residue of a very high initial terrane, or of a lithosphere that was initially very thick and subsequently delaminated and heated. Even models with a high initial elevation typically call for 10 km or so of accumulated magmatic material of near-crustal density. To understand the evolution of the Great Basin, it is important to determine whether such intruded material is present; some could replenish the stretching crust by underplating and crustal intrusion and some might reside in the upper mantle. The elevation maintained or approached by an intruded extending lithosphere depends on the ratio B of how fast magma is supplied from the asthenosphere ( b km/Ma) to how fast the lithosphere spreads the magma out by extension (?? Ma-1). For a

  6. Understanding Aquatic Rhizosphere Processes Through Metabolomics and Metagenomics Approach

    Science.gov (United States)

    Lee, Yong Jian; Mynampati, Kalyan; Drautz, Daniela; Arumugam, Krithika; Williams, Rohan; Schuster, Stephan; Kjelleberg, Staffan; Swarup, Sanjay

    2013-04-01

    The aquatic rhizosphere is a region around the roots of aquatic plants. Many studies focusing on terrestrial rhizosphere have led to a good understanding of the interactions between the roots, its exudates and its associated rhizobacteria. The rhizosphere of free-floating roots, however, is a different habitat that poses several additional challenges, including rapid diffusion rates of signals and nutrient molecules, which are further influenced by the hydrodynamic forces. These can lead to rapid diffusion and complicates the studying of diffusible factors from both plant and/or rhizobacterial origins. These plant systems are being increasingly used for self purification of water bodies to provide sustainable solution. A better understanding of these processes will help in improving their performance for ecological engineering of freshwater systems. The same principles can also be used to improve the yield of hydroponic cultures. Novel toolsets and approaches are needed to investigate the processes occurring in the aquatic rhizosphere. We are interested in understanding the interaction between root exudates and the complex microbial communities that are associated with the roots, using a systems biology approach involving metabolomics and metagenomics. With this aim, we have developed a RhizoFlowCell (RFC) system that provides a controlled study of aquatic plants, observed the root biofilms, collect root exudates and subject the rhizosphere system to changes in various chemical or physical perturbations. As proof of concept, we have used RFC to test the response of root exudation patterns of Pandanus amaryllifolius after exposure to the pollutant naphthalene. Complexity of root exudates in the aquatic rhizosphere was captured using this device and analysed using LC-qTOF-MS. The highly complex metabolomic profile allowed us to study the dynamics of the response of roots to varying levels of naphthalene. The metabolic profile changed within 5mins after spiking with

  7. Sr isotopic microsampling of magmatic rocks; a review (Invited)

    Science.gov (United States)

    Davidson, J. P.

    2010-12-01

    Sr isotopes have been used since the 1960s as powerful tracers of source for igneous rocks. In the past 10 years in-situ isotopic microsampling has afforded us tremendous progress in our capacity to understand magmatic processes. This progress is underpinned by analytical advances particularly in sample extraction through laser or micromill and in multicollector mass spectrometer improvements to sensitivity and precision. Perhaps the biggest surprise was the recognition in the 1990s that young magmatic rocks are commonly isotopically heterogeneous at the component (inter- or intra- crystal) scale. Given that melting and fractionation do not affect 87Sr/86Sr we would not a priori expect isotopic variations within or among crystals in a young igneous rock. This observation alone attests to open system behavior in magmas, and tells us that many of the crystals have been mechanically aggregated and not grown directly from the melt in which they are found solidified (a conclusion that can also commonly be drawn from cursory petrographic examination). This recognition in turn means that we can make use of the crystals as recorders of the isotopic environments in which they crystallise: If a crystal grows progressively from a melt which changes its isotopic composition through processes such as contamination and mixing, then the only record of the melt evolution is in the core-rim compositions of the crystals - analogous to the environmental record of tree rings. Plagioclase crystals in mafic enclaves from Lassen (CA) and Purico-Chascon (Chile), for instance, have isotopic records that reflect origination from the more silicic host. Core-rim records of evolution can also be integrated with textural measurements. At Stromboli we have shown how isotopic zoning correlates with crystal size distribution. The detailed records of single crystals can be complemented by multi crystal core analyses which can be used to distinguish specific populations. This approach was used on

  8. The Contribution of GGOS to Understanding Dynamic Earth Processes

    Science.gov (United States)

    Gross, Richard

    2017-04-01

    Geodesy is the science of the Earth's shape, size, gravity and rotation, including their evolution in time. Geodetic observations play a major role in the solid Earth sciences because they are fundamental for the understanding and modeling of Earth system processes. Changes in the Earth's shape, its gravitational field, and its rotation are caused by external forces acting on the Earth system and internal processes involving mass transfer and exchange of angular and linear momentum. Thus, variations in these geodetic quantities of the Earth reflect and constrain mechanical and thermo-dynamic processes in the Earth system. Mitigating the impact on human life and property of natural hazards such as earthquakes, volcanic eruptions, debris flows, landslides, land subsidence, sea level change, tsunamis, floods, storm surges, hurricanes and extreme weather is an important scientific task to which geodetic observations make fundamental contributions. Geodetic observations can be used to monitor the pre-eruptive deformation of volcanoes and the pre-seismic deformation of earthquake fault zones, aiding in the issuance of volcanic eruption and earthquake warnings. They can also be used to rapidly estimate earthquake fault motion, aiding in the modeling of tsunami genesis and the issuance of tsunami warnings. Geodetic observations are also used in other areas of the Earth sciences, not just the solid Earth sciences. For example, geodesy contributes to atmospheric science by supporting both observation and prediction of the weather by geo-referencing meteorological observing data and by globally tracking change in stratospheric mass and lower tropospheric water vapor fields. Geodetic measurements of refraction profiles derived from satellite occultation data are routinely assimilated into numerical weather prediction models. Geodesy contributes to hydrologic studies by providing a unique global reference system for measurements of: sub-seasonal, seasonal and secular movements

  9. Intraplate mafic magmatism: New insights from Africa and N. America

    Science.gov (United States)

    Ebinger, C. J.; van der Lee, S.; Tepp, G.; Pierre, S.

    2017-12-01

    Plate tectonic concepts consider that continental interiors are stable, with magmatism and strain localized to plate boundaries. We re-evaluate the role of pre-existing and evolving lithospheric heterogeneities in light of perspectives afforded by surface to mantle results from active and ancient rift zones in Africa and N. America. Our process-oriented approach addresses the localization of strain and magmatism and stability of continental plate interiors. In both Africa and N. America, geophysical imaging and xenolith studies reveal that thick, buoyant, and chemically distinct Archaean cratons with deep roots may deflect mantle flow, and localize magmatism and strain over many tectonic cycles. Studies of the Colorado Plateau and East African rift reveal widespread mantle metasomatism, and high levels of magma degassing along faults and at active volcanoes. The volcanoes and magmatic systems show a strong dependence on pre-existing heterogeneities in plate structure. Syntheses of the EarthScope program ishow that lateral density contrasts and migration of volatiles that accumulated during subduction can refertilize mantle lithosphere, and enable volatile-rich magmatism beneath relatively thick continental lithosphere. For example, the passive margin of eastern N. America shows uplift and magmatism long after the onset of seafloor spreading, demonstrating the dynamic nature of coupling between the lithosphere, asthenosphere, and deeper mantle. As demonstrated by the East African Rift, the Mid-Continent Rift, and other active and ancient rift zones, the interiors of continents, including thick, cold Archaean cratons are not immune to mafic magmatism and tectonism. Recent studies in N. America and Africa reveal ca. 1000 km-wide zones of dynamic uplift, low upper mantle velocities, and broadly distributed strain. The distribution of magmatism and volatile release, in combination with geophysical signals, indicates a potentially convective origin for widespread

  10. Distinct 238U/235U ratios and REE patterns in plutonic and volcanic angrites: Geochronologic implications and evidence for U isotope fractionation during magmatic processes

    Science.gov (United States)

    Tissot, François L. H.; Dauphas, Nicolas; Grove, Timothy L.

    2017-09-01

    Angrites are differentiated meteorites that formed between 4 and 11 Myr after Solar System formation, when several short-lived nuclides (e.g., 26Al-26Mg, 53Mn-53Cr, 182Hf-182W) were still alive. As such, angrites are prime anchors to tie the relative chronology inferred from these short-lived radionuclides to the absolute Pb-Pb clock. The discovery of variable U isotopic composition (at the sub-permil level) calls for a revision of Pb-Pb ages calculated using an ;assumed; constant 238U/235U ratio (i.e., Pb-Pb ages published before 2009-2010). In this paper, we report high-precision U isotope measurement for six angrite samples (NWA 4590, NWA 4801, NWA 6291, Angra dos Reis, D'Orbigny, and Sahara 99555) using multi-collector inductively coupled plasma mass-spectrometry and the IRMM-3636 U double-spike. The age corrections range from -0.17 to -1.20 Myr depending on the samples. After correction, concordance between the revised Pb-Pb and Hf-W and Mn-Cr ages of plutonic and quenched angrites is good, and the initial (53Mn/55Mn)0 ratio in the Early Solar System (ESS) is recalculated as being (7 ± 1) × 10-6 at the formation of the Solar System (the error bar incorporates uncertainty in the absolute age of Calcium, Aluminum-rich inclusions - CAIs). An uncertainty remains as to whether the Al-Mg and Pb-Pb systems agree in large part due to uncertainties in the Pb-Pb age of CAIs. A systematic difference is found in the U isotopic compositions of quenched and plutonic angrites of +0.17‰. A difference is also found between the rare earth element (REE) patterns of these two angrite subgroups. The δ238U values are consistent with fractionation during magmatic evolution of the angrite parent melt. Stable U isotope fractionation due to a change in the coordination environment of U during incorporation into pyroxene could be responsible for such a fractionation. In this context, Pb-Pb ages derived from pyroxenes fraction should be corrected using the U isotope composition

  11. Understanding Stoichiometric Controls in Nutrient Processing Along the River Continuum

    Science.gov (United States)

    Garayburu-Caruso, V. A.; Gonzalez-Pinzon, R.; Van Horn, D. J.; Covino, T. P.

    2016-12-01

    Eutrophication is the second most common cause of water impairment across the U.S. Nutrient retention in streams is controlled by physical and biochemical processes, including biomass availability and stoichiometric limitations. Decoupling the interactions between hydrology, nutrient supply and biogeochemical processes remains challenging for the scientific community due to lack of mechanistic understanding. Consequently, more knowledge regarding optimal controls for nutrient retention is needed to implement better management and restoration practices. We conducted column experiments to investigate how stoichiometric limitations influence nutrient spiraling in shallow sediment-water interactions along representative sites of the Jemez River-Rio Grande continuum (which spans eight stream orders), in New Mexico, USA. In each stream order we incubated six columns packed with different sediments (i.e., Silica Cone Density Sand ASTM D 1556 (0.075-2.00 mm), gravel (>2mm) and native sediments) from each site for three months. We performed two laboratory tracer experiments using columns of each substrate under identical flow conditions. In the first experiment we added a short-term pulse of reactive and conservative tracers (i.e. NaNO3 and NaBr). In the second experiment we added a short-term pulse of NaBr and nutrients following Redfield's ratio (106C:16N:1P). We estimated uptake kinetics using the Tracer Additions for Spiraling Curve Characterization (TASCC) method and evaluated how ideal stoichiometric conditions controlled efficient nutrient retention along fluvial networks. Our results suggest that biological uptake of nitrate is limited by nitrogen in headwater streams and by phosphorus and carbon in larger stream orders.

  12. Self-organizing maps in geothermal exploration-A new approach for understanding geochemical processes and fluid evolution

    Science.gov (United States)

    Brehme, Maren; Bauer, Klaus; Nukman, Mochamad; Regenspurg, Simona

    2017-04-01

    Understanding geochemical processes is an important part of geothermal exploration to get information about the source and evolution of geothermal fluids. However, in most cases knowledge of fluid properties is based on few parameters determined in samples from the shallow subsurface. This study presents a new approach that allows to conclude from the combination of a variety of these data on processes occurring at depth in a geothermal reservoir. The neural network clustering technique called "self-organizing maps" (SOMs) successfully distinguished two different geothermal settings based on a hydrochemical database and disclosed the source, evolution and flow pathways of geothermal fluids. Scatter plots, as shown in this study, are appropriate presentations of element concentrations and the chemical interaction of water and rock at depth. One geological setting presented here is marked by fault dominated fluid pathways and minor influence of volcanic affected fluids with high concentrations of HCO3, Ca and Sr. The second is a magmatically dominated setting showing strong alteration features in volcanic rocks and accommodates acidic fluids with high SO4 and Si concentrations. Former studies, i.e., Giggenbach (1988), suggested Cl, HCO3 and SO4 to be generally the most important elements for understanding hydrochemical processes in geothermal reservoirs. Their relation has been widely used to classify different water types in geothermal fields. However, this study showed that non-standard elements are at least of same importance to reveal different fluid types in geothermal systems. Therefore, this study is an extended water classification approach using SOM for element correlations. SOM have been proven to be a successful method for analyzing even relatively small hydrochemical datasets in geothermal applications.

  13. Understanding Metallic Bonding: Structure, Process and Interaction by Rasch Analysis

    Science.gov (United States)

    Cheng, Maurice M. W.; Oon, Pey-Tee

    2016-01-01

    This paper reports the results of a survey of 3006 Year 10-12 students on their understandings of metallic bonding. The instrument was developed based on Chi's ontological categories of scientific concepts and students' understanding of metallic bonding as reported in the literature. The instrument has two parts. Part one probed into students'…

  14. Lithospheric drip magmatism and magma-assisted rifting: a case study in the Western Rift, East Africa

    Science.gov (United States)

    Pitcavage, E.; Furman, T.; Nelson, W. R.

    2017-12-01

    The East African Rift System (EARS) is earth's largest continental divergent boundary and an unparalleled natural laboratory for understanding magmatism related to successful continental rifting. Classic views of continental rifting suggest that faulting and extension are facilitated by ascending magmas that weaken the lithosphere thermally and structurally within basin-bounding accommodation zones. In the EARS Western Rift (WR), many volcanic fields are not aligned along rift-bounding faults, and magma compositions lack evidence for asthenospheric inputs expected along lithosphere-penetrating fault systems. We note that compositional input from the Cenozoic Afar mantle plume is not recognized convincingly in WR mafic alkaline lavas1. Rather, magma compositions demonstrate significant input from anciently metasomatized sub-continental lithospheric mantle (SCLM). Destabilization and foundering of metasomatized SCLM has an increasingly recognized role in continental magmatism worldwide, producing volatile-rich, alkaline volcanics when drips of foundered SCLM devolatilize and melt on descent. This magmatism can lead to faulting: the lithospheric thinning that results from this process may play a role in physical aspects of rifting, contrasting with faulting facilitated by asthenospheric melts. Geochemical and geophysical evidence indicates that drip magmatism has occurred in several EARS provinces, including Turkana, Chyulu Hills, and in Afar2 where it is geographically coincident with successful rifting. We present bulk geochemical data that suggest drip melting of metasomatized SCLM is occurring in several WR volcanic fields. We focus on Bufumbira (Uganda), where mafic lavas are derived from garnet+phlogopite+amphibole+zircon-bearing pyroxenite, indicating a deep metasomatized SCLM source. Isotopic and trace element data suggest that extent of melting increased with depth of melting, a signature of lithospheric drip. We propose that drip magmatism is an important

  15. A Palaeoproterozoic tectono-magmatic lull as a potential trigger for the supercontinent cycle

    Science.gov (United States)

    Spencer, Christopher J.; Murphy, J. Brendan; Kirkland, Christopher L.; Liu, Yebo; Mitchell, Ross N.

    2018-02-01

    The geologic record exhibits periods of active and quiescent geologic processes, including magmatism, metamorphism and mineralization. This apparent episodicity has been ascribed either to bias in the geologic record or fundamental changes in geodynamic processes. An appraisal of the global geologic record from about 2.3 to 2.2 billion years ago demonstrates a Palaeoproterozoic tectono-magmatic lull. During this lull, global-scale continental magmatism (plume and arc magmatism) and orogenic activity decreased. There was also a lack of passive margin sedimentation and relative plate motions were subdued. A global compilation of mafic igneous rocks demonstrates that this episode of magmatic quiescence was terminated about 2.2 billion years ago by a flare-up of juvenile magmatism. This post-lull magmatic flare-up is distinct from earlier such events, in that the material extracted from the mantle during the flare-up yielded significant amounts of continental material that amalgamated to form Nuna — Earth's first hemispheric supercontinent. We posit that the juvenile magmatic flare-up was caused by the release of significant thermal energy that had accumulated over some time. This flux of mantle-derived energy could have provided a mechanism for dramatic growth of continental crust, as well as the increase in relative plate motions required to complete the transition to modern plate tectonics and the supercontinent cycle. These events may also be linked to Palaeoproterozoic atmospheric oxygenation and equilibration of the carbon cycle.

  16. Tectonics and magmatism of ultraslow spreading ridges

    Science.gov (United States)

    Dubinin, E. P.; Kokhan, A. V.; Sushchevskaya, N. M.

    2013-05-01

    The tectonics, structure-forming processes, and magmatism in rift zones of ultraslow spreading ridges are exemplified in the Reykjanes, Kolbeinsey, Mohns, Knipovich, Gakkel, and Southwest Indian ridges. The thermal state of the mantle, the thickness of the brittle lithospheric layer, and spreading obliquety are the most important factors that control the structural pattern of rift zones. For the Reykjanes and Kolbeinsey ridges, the following are crucial factors: variations in the crust thickness; relationships between the thicknesses of its brittle and ductile layers; width of the rift zone; increase in intensity of magma supply approaching the Iceland thermal anomaly; and spreading obliquety. For the Knipovich Ridge, these are its localization in the transitional zone between the Gakkel and Mohns ridges under conditions of shear and tensile stresses and multiple rearrangements of spreading; nonorthogonal spreading; and structural and compositional barrier of thick continental lithosphere at the Barents Sea shelf and Spitsbergen. The Mohns Ridge is characterized by oblique spreading under conditions of a thick cold lithosphere and narrow stable rift zone. The Gakkel and the Southwest Indian ridges are distinguished by the lowest spreading rate under the settings of the along-strike variations in heating of the mantle and of a variable spreading geometry. The intensity of endogenic structure-forming varies along the strike of the ridges. In addition to the prevalence of tectonic factors in the formation of the topography, magmatism and metamorphism locally play an important role.

  17. Understanding the Process of Acculturation for Primary Prevention.

    Science.gov (United States)

    Berry, J. W.

    This paper reviews the concepts of acculturation and adaptation to provide a framework for understanding the highly variable relationship between acculturation and mental health in refugee populations. It begins with an extended definition and discussion of the concepts of acculturation and adaptation. The characteristics of acculturating groups…

  18. Genetic Aspects of Deafness: Understanding the Counseling Process.

    Science.gov (United States)

    Boughman, Joann A.; Shaver, Kathleen A.

    1982-01-01

    An understanding of the genetic concepts applicable to individual cases of deafness, as well as an appreciation of the complex nature of determinaton of recurrence risks in families, will facilitate the referral of individuals and families for genetic evaluation and counseling. (Author)

  19. Understanding pre-registration nursing fitness to practise processes.

    Science.gov (United States)

    MacLaren, Jessica; Haycock-Stuart, Elaine; McLachlan, Alison; James, Christine

    2016-01-01

    Protection of the public is a key aspect of pre-registration nursing education and UK Nursing and Midwifery Council monitoring processes. Universities must ensure that nursing students are "fit to practise" both during their programme and at the point of registration. However, current evidence suggests that institutional fitness to practise policies and processes can be inconsistent, lacking in clarity, and open to legal challenge. To examine fitness to practise processes in pre-registration nursing programmes in Scotland. Academic personnel (n=11) with key roles in fitness to practise processes in nine of the eleven Scottish universities providing pre-registration nursing programmes. Semi-structured qualitative interviews were conducted with eleven academics with responsibility for fitness to practise processes in pre-registration programmes. The qualitative data and documentary evidence including institutional policies and processes were thematically analysed. In this paper, we focus on illuminating the key theme of Stages and Thresholds in Fitness to Practise processes i.e. Pre-fitness to practise, Stage 1, Stage 2, and Appeal, along with two thresholds (between Pre-fitness to practise and Stage 1; between Stage 1 and Stage 2. Diverse fitness to practise processes are currently in place for Scottish pre-registration nursing students. These processes draw on a shared set of principles but are couched in different terminology and vary according to their location within different university structures. Nevertheless, universities appear to be confronting broadly similar issues around ensuring fitness to practise and are building a body of expertise in this area. Examples of good practice are identified and include the use of staged processes and graduated outcomes, the incorporation of teaching about fitness to practise into nursing programmes, positive attitudes around health and disability, and collaborative decision making. Areas of challenge include systems for

  20. Learning from Game Design : Understanding Participatory processes through Game Mechanics

    NARCIS (Netherlands)

    Ampatzidou, Christina; Gugerell, Katharina; Diephuis, Jeremiah

    With the increasing interest of local governments in civic participation, it becomes important to explore the available methods for orchestrating participatory processes and evaluate how different tools address some of the common issues associated with participatory processes. Game design is an

  1. Suffering transaction: a process of reflecting and understanding

    OpenAIRE

    Wong, Shyh-Heng

    2011-01-01

    This study examines the transaction of the lived experience of ‘suffering’ in the process of psychotherapy. ‘Suffering’ is conceptualised as having its weight and value transacted between a psychotherapist and his or her client. As a psychotherapist from a family with a disabled member, my fieldwork in a hospital with the parents of disabled children was conducted in Taiwan. The development of our therapeutic relationship was discovered as the process of ‘suffering transaction’...

  2. Understanding mid-level representations in visual processing

    Science.gov (United States)

    Peirce, Jonathan W.

    2015-01-01

    It is clear that early visual processing provides an image-based representation of the visual scene: Neurons in Striate cortex (V1) encode nothing about the meaning of a scene, but they do provide a great deal of information about the image features within it. The mechanisms of these “low-level” visual processes are relatively well understood. We can construct plausible models for how neurons, up to and including those in V1, build their representations from preceding inputs down to the level of photoreceptors. It is also clear that at some point we have a semantic, “high-level” representation of the visual scene because we can describe verbally the objects that we are viewing and their meaning to us. A huge number of studies are examining these “high-level” visual processes each year. Less well studied are the processes of “mid-level” vision, which presumably provide the bridge between these “low-level” representations of edges, colors, and lights and the “high-level” semantic representations of objects, faces, and scenes. This article and the special issue of papers in which it is published consider the nature of “mid-level” visual processing and some of the reasons why we might not have made as much progress in this domain as we would like. PMID:26053241

  3. Understanding the process by which female entrepreneurs create INVs

    DEFF Research Database (Denmark)

    Rosenbaum, Gitte Ohrt; Hannibal, Martin

    , or vice-versa (Sarasvathy, 2005)? The present paper provides a comparative case study of the founding processes of nine Danish female-owned ventures (in the fashion design industry in Denmark). All have entered foreign markets within the first year of establishment. The retrospective case study draws...... close family members. As regards the latter, the effectual process of opportunity creation was very different across the case firms with some being more the result of collaboration with social network partners, whereas others appeared to be totally random or coincidental. The paper discusses the above...

  4. Quartz chemistry – A step to understanding magmatic-hydrothermal processes in ore-bearing granites: Cínovec/Zinnwald Sn-W-Li deposit, Central Europe

    Czech Academy of Sciences Publication Activity Database

    Breiter, Karel; Ďurišová, Jana; Dosbaba, M.

    2017-01-01

    Roč. 90, November 2017 (2017), s. 25-35 ISSN 0169-1368 Institutional support: RVO:67985831 Keywords : Quartz * trace elements * Cínovec * Zinnwald * Erzgebirge * LA-ICP-MS Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Mineralogy Impact factor: 3.095, year: 2016

  5. Understanding the cognitive processes involved in writing to learn.

    Science.gov (United States)

    Arnold, Kathleen M; Umanath, Sharda; Thio, Kara; Reilly, Walter B; McDaniel, Mark A; Marsh, Elizabeth J

    2017-06-01

    Writing is often used as a tool for learning. However, empirical support for the benefits of writing-to-learn is mixed, likely because the literature conflates diverse activities (e.g., summaries, term papers) under the single umbrella of writing-to-learn. Following recent trends in the writing-to-learn literature, the authors focus on the underlying cognitive processes. They draw on the largely independent writing-to-learn and cognitive psychology learning literatures to identify important cognitive processes. The current experiment examines learning from 3 writing tasks (and 1 nonwriting control), with an emphasis on whether or not the tasks engaged retrieval. Tasks that engaged retrieval (essay writing and free recall) led to better final test performance than those that did not (note taking and highlighting). Individual differences in structure building (the ability to construct mental representations of narratives; Gernsbacher, Varner, & Faust, 1990) modified this effect; skilled structure builders benefited more from essay writing and free recall than did less skilled structure builders. Further, more essay-like responses led to better performance, implicating the importance of additional cognitive processes such as reorganization and elaboration. The results highlight how both task instructions and individual differences affect the cognitive processes involved when writing-to-learn, with consequences for the effectiveness of the learning strategy. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Using Ancient DNA to Understand Evolutionary and Ecological Processes

    DEFF Research Database (Denmark)

    Orlando, Ludovic Antoine Alexandre; Cooper, Alan

    2014-01-01

    Ancient DNA provides a unique means to record genetic change through time and directly observe evolutionary and ecological processes. Although mostly based on mitochondrial DNA, the increasing availability of genomic sequences is leading to unprecedented levels of resolution. Temporal studies of ...

  7. Understanding Social Learning Processes in a Citrus Farming ...

    African Journals Online (AJOL)

    This paper focuses on what would traditionally be termed 'non-formal' learning processes in the context of a case study examining how citrus farming communities in the Patensie Valley in the Eastern Cape in South Africa were learning conservation practices. Communities of Practice theory was used to provide a ...

  8. Interviewing International Students to Understand the Process of Expatriate Acculturation

    Science.gov (United States)

    Peterson, Mark

    2014-01-01

    Globalization is the most influential trend of the early twenty-first century. However, many students have had limited direct contact with cultures other than their own. The following teaching innovation targets such students to give them an experiential learning opportunity about the process of acculturation for expatriates. This is accomplished…

  9. Understanding the process of fibrosis in Duchenne muscular dystrophy.

    Science.gov (United States)

    Kharraz, Yacine; Guerra, Joana; Pessina, Patrizia; Serrano, Antonio L; Muñoz-Cánoves, Pura

    2014-01-01

    Fibrosis is the aberrant deposition of extracellular matrix (ECM) components during tissue healing leading to loss of its architecture and function. Fibrotic diseases are often associated with chronic pathologies and occur in a large variety of vital organs and tissues, including skeletal muscle. In human muscle, fibrosis is most readily associated with the severe muscle wasting disorder Duchenne muscular dystrophy (DMD), caused by loss of dystrophin gene function. In DMD, skeletal muscle degenerates and is infiltrated by inflammatory cells and the functions of the muscle stem cells (satellite cells) become impeded and fibrogenic cells hyperproliferate and are overactivated, leading to the substitution of skeletal muscle with nonfunctional fibrotic tissue. Here, we review new developments in our understanding of the mechanisms leading to fibrosis in DMD and several recent advances towards reverting it, as potential treatments to attenuate disease progression.

  10. Understanding the Process of Fibrosis in Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Yacine Kharraz

    2014-01-01

    Full Text Available Fibrosis is the aberrant deposition of extracellular matrix (ECM components during tissue healing leading to loss of its architecture and function. Fibrotic diseases are often associated with chronic pathologies and occur in a large variety of vital organs and tissues, including skeletal muscle. In human muscle, fibrosis is most readily associated with the severe muscle wasting disorder Duchenne muscular dystrophy (DMD, caused by loss of dystrophin gene function. In DMD, skeletal muscle degenerates and is infiltrated by inflammatory cells and the functions of the muscle stem cells (satellite cells become impeded and fibrogenic cells hyperproliferate and are overactivated, leading to the substitution of skeletal muscle with nonfunctional fibrotic tissue. Here, we review new developments in our understanding of the mechanisms leading to fibrosis in DMD and several recent advances towards reverting it, as potential treatments to attenuate disease progression.

  11. Ultrathin (Understanding the processing, structure, and physical and electrical limits

    Science.gov (United States)

    Green, M. L.; Gusev, E. P.; Degraeve, R.; Garfunkel, E. L.

    2001-09-01

    The outstanding properties of SiO2, which include high resistivity, excellent dielectric strength, a large band gap, a high melting point, and a native, low defect density interface with Si, are in large part responsible for enabling the microelectronics revolution. The Si/SiO2 interface, which forms the heart of the modern metal-oxide-semiconductor field effect transistor, the building block of the integrated circuit, is arguably the worlds most economically and technologically important materials interface. This article summarizes recent progress and current scientific understanding of ultrathin (understanding of the limits of these gate dielectrics, i.e., how their continuously shrinking thickness, dictated by integrated circuit device scaling, results in physical and electrical property changes that impose limits on their usefulness. We observe, in conclusion, that although Si microelectronic devices will be manufactured with SiO2 and Si-O-N for the foreseeable future, continued scaling of integrated circuit devices, essentially the continued adherence to Moore's law, will necessitate the introduction of an alternate gate dielectric once the SiO2 gate dielectric thickness approaches ˜1.2 nm. It is hoped that this article will prove useful to members of the silicon microelectronics community, newcomers to the gate dielectrics field, practitioners in allied fields, and graduate students. Parts of this article have been adapted from earlier articles by the authors [L. Feldman, E. P. Gusev, and E. Garfunkel, in Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices, edited by E. Garfunkel, E. P. Gusev, and A. Y. Vul' (Kluwer, Dordrecht, 1998), p. 1 [Ref. 1]; E. P. Gusev, H. C. Lu, E. Garfunkel, T. Gustafsson, and M. Green, IBM J. Res. Dev. 43, 265 (1999) [Ref. 2]; R. Degraeve, B. Kaczer, and G. Groeseneken, Microelectron. Reliab. 39, 1445 (1999) [Ref. 3].

  12. Modeling Dynamic Food Choice Processes to Understand Dietary Intervention Effects.

    Science.gov (United States)

    Marcum, Christopher Steven; Goldring, Megan R; McBride, Colleen M; Persky, Susan

    2018-02-17

    Meal construction is largely governed by nonconscious and habit-based processes that can be represented as a collection of in dividual, micro-level food choices that eventually give rise to a final plate. Despite this, dietary behavior intervention research rarely captures these micro-level food choice processes, instead measuring outcomes at aggregated levels. This is due in part to a dearth of analytic techniques to model these dynamic time-series events. The current article addresses this limitation by applying a generalization of the relational event framework to model micro-level food choice behavior following an educational intervention. Relational event modeling was used to model the food choices that 221 mothers made for their child following receipt of an information-based intervention. Participants were randomized to receive either (a) control information; (b) childhood obesity risk information; (c) childhood obesity risk information plus a personalized family history-based risk estimate for their child. Participants then made food choices for their child in a virtual reality-based food buffet simulation. Micro-level aspects of the built environment, such as the ordering of each food in the buffet, were influential. Other dynamic processes such as choice inertia also influenced food selection. Among participants receiving the strongest intervention condition, choice inertia decreased and the overall rate of food selection increased. Modeling food selection processes can elucidate the points at which interventions exert their influence. Researchers can leverage these findings to gain insight into nonconscious and uncontrollable aspects of food selection that influence dietary outcomes, which can ultimately improve the design of dietary interventions.

  13. Understanding the work of telehealth implementation using Normalization Process Theory

    OpenAIRE

    Morrison, Janet Gwyneth

    2014-01-01

    This dissertation uses the theoretical constructs of Normalization Process Theory (NPT) to examine the successful implementation of an innovative telehealth service that delivers occupational health nursing services to a large healthcare employee population over a wide geographic area. Telehealth services have come to be regarded as a possible means to improve access to health care services, clinical efficiency, and cost effectiveness in an era where there are shrinking resources and growing ...

  14. How does crowdfunding work? Understanding the process through its activity

    OpenAIRE

    Stiver, Alexandra

    2016-01-01

    Crowdfunding is a process featuring incremental financial donations from a ‘crowd’ of backers to help fund a project initiated by a creator. In recent years, crowdfunding has generated significant revenue as well as great interest from industry, government, and creative entrepreneurs. However, rate of successful funding for crowdfunding projects remains around 35% for global crowdfunding leader Kickstarter1, and lower yet for other platforms.\\ud \\ud The identified gap between crowdfunding gro...

  15. Understanding Social Contagion in Adoption Processes Using Dynamic Social Networks.

    Science.gov (United States)

    Herrera, Mauricio; Armelini, Guillermo; Salvaj, Erica

    2015-01-01

    There are many studies in the marketing and diffusion literature of the conditions in which social contagion affects adoption processes. Yet most of these studies assume that social interactions do not change over time, even though actors in social networks exhibit different likelihoods of being influenced across the diffusion period. Rooted in physics and epidemiology theories, this study proposes a Susceptible Infectious Susceptible (SIS) model to assess the role of social contagion in adoption processes, which takes changes in social dynamics over time into account. To study the adoption over a span of ten years, the authors used detailed data sets from a community of consumers and determined the importance of social contagion, as well as how the interplay of social and non-social influences from outside the community drives adoption processes. Although social contagion matters for diffusion, it is less relevant in shaping adoption when the study also includes social dynamics among members of the community. This finding is relevant for managers and entrepreneurs who trust in word-of-mouth marketing campaigns whose effect may be overestimated if marketers fail to acknowledge variations in social interactions.

  16. Understanding Social Contagion in Adoption Processes Using Dynamic Social Networks.

    Directory of Open Access Journals (Sweden)

    Mauricio Herrera

    Full Text Available There are many studies in the marketing and diffusion literature of the conditions in which social contagion affects adoption processes. Yet most of these studies assume that social interactions do not change over time, even though actors in social networks exhibit different likelihoods of being influenced across the diffusion period. Rooted in physics and epidemiology theories, this study proposes a Susceptible Infectious Susceptible (SIS model to assess the role of social contagion in adoption processes, which takes changes in social dynamics over time into account. To study the adoption over a span of ten years, the authors used detailed data sets from a community of consumers and determined the importance of social contagion, as well as how the interplay of social and non-social influences from outside the community drives adoption processes. Although social contagion matters for diffusion, it is less relevant in shaping adoption when the study also includes social dynamics among members of the community. This finding is relevant for managers and entrepreneurs who trust in word-of-mouth marketing campaigns whose effect may be overestimated if marketers fail to acknowledge variations in social interactions.

  17. Petrogenesis of Bir Madi Gabbro-Diorite and Tonalite-Granodiorite Intrusions in Southeastern Desert, Egypt: Implications for Tectono-Magmatic Processes at the Neoproterozoic Shield

    Directory of Open Access Journals (Sweden)

    M. A. OBEID

    2010-06-01

    Full Text Available The Neoproterozoic rocks of the Bir Madi area, south eastern desert, comprise a Metagabbro-Diorite Complex (GDC and a Tonalite-Granodiorite Suite (TGrS. The GDC has a weak tonalitic to strong calc-alkaline character and is made up of olivine gabbro, hornblende gabbro, diorite and monzodiorite. The olivine gabbro is characterized by abun-dance of augite and labradorite with pseudomorphic serpentine. The hornblende gabbro is mainly composed of horn-blende, labradorite, andesine and minor amounts of quartz with or without augite. The diorite consists essentially of andesine, hornblende, biotite and quartz. The GDC is compositionally broad, with a wide range of SiO2 (46-57 % and pronounced enrichment in the LILE (Ba and Sr relative to the HFSE (Nb, Y and Zr. The GDC rocks exhibit petrological and geochemical characteristics of arc-related mafic magmas, derived possibly from partial melting of a mantle wedge above an early Pan-African subduction zone of the Neoproterozoic Shield. The tonalite and granodiorite have a calc-alkaline affinity and show the geochemical signatures of I-type granitoids. The TGrS contains amphibolite enclaves and foliated gabbroic xenoliths. Based on the field evidence and geochemical data, the GDC and TGrS are not related to a single magma type through fractional crystallization. The presence of microgranular amphibolite enclaves in the tonalitic rocks suggest against their generation by partial melting of a mantle-derived basaltic source. The tonalitic magma originated from partial melting of an amphibolitic lower crust by anatexis process at a volcanic arc regime during construction of the Arabian-Nubian Shield. Fractional crystallization of K-feldspar and biotite gave more developed granodiorite variety from the tonalitic magma. The gabbroic xenoliths are similar in the chemical composition to the investigated metagabbros. They are incompletely digested segments from the adjacent metagabbro rocks incorporated into the

  18. Platinum Metals in Magmatic Sulfide Ores

    Science.gov (United States)

    Naldrett, A. J.; Duke, J. M.

    1980-06-01

    Platinum-group elements (PGE) are mined predominantly from deposits that have formed by the segregation of molten iron-nickel-copper sulfides from silicate magmas. The absolute concentrations of PGE in sulfides from different deposits vary over a range of five orders of magnitude, whereas those of other chalcophile elements vary by factors of only 2 to 100. However, the relative proportions of the different PGE in a given deposit are systematically related to the nature of the parent magma. The absolute and relative concentrations of PGE in magmatic sulfides are explained in terms of the degree of partial melting of mantle peridotite required to produce the parent magma and the processes of batch equilibration and fractional segregation of sulfides. The Republic of South Africa and the U.S.S.R. together possess more than 97 percent of the world PGE reserves, but significant undeveloped resources occur in North America. The Stillwater complex in Montana is perhaps the most important example.

  19. Understanding movement data and movement processes: current and emerging directions.

    Science.gov (United States)

    Schick, Robert S; Loarie, Scott R; Colchero, Fernando; Best, Benjamin D; Boustany, Andre; Conde, Dalia A; Halpin, Patrick N; Joppa, Lucas N; McClellan, Catherine M; Clark, James S

    2008-12-01

    Animal movement has been the focus on much theoretical and empirical work in ecology over the last 25 years. By studying the causes and consequences of individual movement, ecologists have gained greater insight into the behavior of individuals and the spatial dynamics of populations at increasingly higher levels of organization. In particular, ecologists have focused on the interaction between individuals and their environment in an effort to understand future impacts from habitat loss and climate change. Tools to examine this interaction have included: fractal analysis, first passage time, Lévy flights, multi-behavioral analysis, hidden markov models, and state-space models. Concurrent with the development of movement models has been an increase in the sophistication and availability of hierarchical bayesian models. In this review we bring these two threads together by using hierarchical structures as a framework for reviewing individual models. We synthesize emerging themes in movement ecology, and propose a new hierarchical model for animal movement that builds on these emerging themes. This model moves away from traditional random walks, and instead focuses inference on how moving animals with complex behavior interact with their landscape and make choices about its suitability.

  20. Temporal evolution of magmatic-hydrothermal systems in the Manus Basin, Papua New Guinea: Insights from vent fluid chemistry and bathymetric observations

    Science.gov (United States)

    Reeves, E. P.; Thal, J.; Schaen, A.; Ono, S.; Seewald, J.; Bach, W.

    2015-12-01

    The temporal evolution of hydrothermal fluids from back-arc systems is poorly constrained, despite growing evidence for dynamic magmatic-hydrothermal activity, and imminent commercial mining. Here we discuss surveys of diverse vent fluids from multiple hydrothermal fields in the Manus back-arc basin, Papua New Guinea, sampled in 2006 and 2011. Effects of host rock composition, and dynamic magmatic volatile inputs on fluid chemistry are evaluated to understand changes in these systems. Highly acidic and SO4-rich moderate temperature fluids (~48-215°C), as well as SO4-poor black smoker fluids (up to 358°C), were collected at the PACMANUS, SuSu Knolls and DESMOS areas in 2006 and 2011. Acidic, milky white SuSu and DESMOS fluids, rich in elemental S and SO4, exit the seafloor with Na, K, Mg, and Ca diluted conservatively up to 30% relative to seawater, implying subsurface mixing of seawater with SO2-rich aqueous fluids exsolved from magma, analogous to subaerial fumarole discharge. SO2 disproportionation during cooling and mixing of magmatic fluids contributes acidity, SO4, H2S and S(0)(s), as well as widespread S outcrops on the seafloor. Nearby black smoker fluids indicate entrainment and reaction of magmatic fluid into convecting fluids at depth, and additional hybrid-type fluids appear to consist of evolved seawater and unreacted magmatic fluid SO2 derivatives. Fluids at DESMOS in 2006 indicate increased magmatic SO2 relative to 1995, despite constant low venting temperatures (~120°C). In contrast, dramatic changes in bathymetry and seafloor morphology point to substantial continuous eruption of volcaniclastic material between 2006 and 2011 at SuSu Knolls, burying fumarolic vents from 2006. Compositions of new 2011 acidic, sulfate-rich fluids there suggest reaction with less altered, fresher rock. At the PACMANUS area, farther from the arc, direct magmatic degassing to the seafloor is not occurring presently, but entrainment and reaction of similar acid

  1. Framework for Understanding LENR Processes, Using Ordinary Condensed Matter Physics

    Science.gov (United States)

    Chubb, Scott

    2005-03-01

    As I have emphasizedootnotetextS.R. Chubb, Proc. ICCF10 (in press). Also, http://www.lenr-canr.org/acrobat/ChubbSRnutsandbol.pdf http://www.lenr-canr.org/acrobat/ChubbSRnutsandbol.pdf, S.R. Chubb, Trans. Amer. Nuc. Soc. 88 , 618 (2003)., in discussions of Low Energy Nuclear Reactions(LENRs), mainstream many-body physics ideas have been largely ignored. A key point is that in condensed matter, delocalized, wave-like effects can allow large amounts of momentum to be transferred instantly to distant locations, without any particular particle (or particles) acquiring high velocity through a Broken Gauge Symmetry. Explicit features in the electronic structure explain how this can occur^1 in finite size PdD crystals, with real boundaries. The essential physics^1 can be related to standard many-body techniquesootnotetextBurke,P.G. and K.A. Berrington, Atomic and Molecular Processes:an R matrix Approach (Bristol: IOP Publishing, 1993).. In the paper, I examine this relationship, the relationship of the theory^1 to other LENR theories, and the importance of certain features (for example, boundaries^1) that are not included in the other LENR theories.

  2. Active Magmatic Underplating in Western Eger Rift, Central Europe

    Science.gov (United States)

    Hrubcová, Pavla; Geissler, Wolfram H.; Bräuer, Karin; Vavryčuk, Václav; Tomek, Čestmír.; Kämpf, Horst

    2017-12-01

    The Eger Rift is an active element of the European Cenozoic Rift System associated with intense Cenozoic intraplate alkaline volcanism and system of sedimentary basins. The intracontinental Cheb Basin at its western part displays geodynamic activity with fluid emanations, persistent seismicity, Cenozoic volcanism, and neotectonic crustal movements at the intersections of major intraplate faults. In this paper, we study detailed geometry of the crust/mantle boundary and its possible origin in the western Eger Rift. We review existing seismic and seismological studies, provide new interpretation of the reflection profile 9HR, and supplement it by new results from local seismicity. We identify significant lateral variations of the high-velocity lower crust and relate them to the distribution and chemical status of mantle-derived fluids and to xenolith studies from corresponding depths. New interpretation based on combined seismic and isotope study points to a local-scale magmatic emplacement at the base of the continental crust within a new rift environment. This concept of magmatic underplating is supported by detecting two types of the lower crust: a high-velocity lower crust with pronounced reflectivity and a high-velocity reflection-free lower crust. The character of the underplated material enables to differentiate timing and tectonic setting of two episodes with different times of origin of underplating events. The lower crust with high reflectivity evidences magmatic underplating west of the Eger Rift of the Late Variscan age. The reflection-free lower crust together with a strong reflector at its top at depths of 28-30 km forms a magma body indicating magmatic underplating of the late Cenozoic (middle and upper Miocene) to recent. Spatial and temporal relations to recent geodynamic processes suggest active magmatic underplating in the intracontinental setting.

  3. Towards an Understanding of Enabling Process Knowing in Global Software Development: A Case Study

    DEFF Research Database (Denmark)

    Zahedi, Mansooreh; Babar, Muhammad Ali

    2014-01-01

    Shared understanding of Software Engineering (SE) processes, that we call process knowing, is required for effective communication and coordination and communication within a team in order to improve team performance. SE Process knowledge can include roles, responsibilities and flow of information...... over a project lifecycle. Developing and sustaining process knowledge can be more challenging in Global Software Development (GSD). GSD distances can limit the ability of a team to develop a common understanding of processes. Anecdotes of the problems caused by lack of common understanding of processes...

  4. The Magmatic Budget of Rifted Margins: is it Related to Inheritance?

    Science.gov (United States)

    Manatschal, G.; Tugend, J.; Gillard, M.; Sauter, D.

    2017-12-01

    High quality reflection and refraction seismic surveys show a divergent style of margin architecture often referred to as magma-poor or magma-rich. More detailed studies show, however, that the evolution of these margins can be similar, despite the variable quantity and distribution of magmatism. These observations suggest that simple relations between magmatic and extensional systems are inappropriate to describe the magmatic history of rifted margins. Moreover, the study of magmatic additions indicates that they may occur, prior to, during or after lithospheric breakup. Furthermore, the observation that the magmatic budget may change very abruptly along strike and across the margin is difficult to reconcile with the occurrence of plumes or other deep-seated large-scale mantle phenomena only. These overall observations result in questions on how magmatic and tectonic processes are interacting during rifting and lithospheric breakup and on how far the inherited composition and temperature of the decompressing mantle may control the magmatic budget during rifting. In our presentation we will review examples from present-day and fossil rifted margins to discuss their structural and magmatic evolution and whether they are considered as magma-rich or magma-poor. The key questions that we aim to address are: 1) whether decompression melting is the driving force, or rather the consequence of extension, 2) how far the magmatic budget is controlled by inherited mantle composition and temperature, and 3) how important magma storage is during initial stages of rifting. Eventually, we will discuss to what extent the evolution of margins may reflect the interplay between inheritance (innate/"genetic code") and the actual physical processes (acquired/external factors).

  5. Lithospheric low-velocity zones associated with a magmatic segment of the Tanzanian Rift, East Africa

    Science.gov (United States)

    Plasman, M.; Tiberi, C.; Ebinger, C.; Gautier, S.; Albaric, J.; Peyrat, S.; Déverchère, J.; Le Gall, B.; Tarits, P.; Roecker, S.; Wambura, F.; Muzuka, A.; Mulibo, G.; Mtelela, K.; Msabi, M.; Kianji, G.; Hautot, S.; Perrot, J.; Gama, R.

    2017-07-01

    Rifting in a cratonic lithosphere is strongly controlled by several interacting processes including crust/mantle rheology, magmatism, inherited structure and stress regime. In order to better understand how these physical parameters interact, a 2 yr long seismological experiment has been carried out in the North Tanzanian Divergence (NTD), at the southern tip of the eastern magmatic branch of the East African rift, where the southward-propagating continental rift is at its earliest stage. We analyse teleseismic data from 38 broad-band stations ca. 25 km spaced and present here results from their receiver function (RF) analysis. The crustal thickness and Vp/Vs ratio are retrieved over a ca. 200 × 200 km2 area encompassing the South Kenya magmatic rift, the NTD and the Ngorongoro-Kilimanjaro transverse volcanic chain. Cratonic nature of the lithosphere is clearly evinced through thick (up to ca. 40 km) homogeneous crust beneath the rift shoulders. Where rifting is present, Moho rises up to 27 km depth and the crust is strongly layered with clear velocity contrasts in the RF signal. The Vp/Vs ratio reaches its highest values (ca. 1.9) beneath volcanic edifices location and thinner crust, advocating for melting within the crust. We also clearly identify two major low-velocity zones (LVZs) within the NTD, one in the lower crust and the second in the upper part of the mantle. The first one starts at 15-18 km depth and correlates well with recent tomographic models. This LVZ does not always coexist with high Vp/Vs ratio, pleading for a supplementary source of velocity decrease, such as temperature or composition. At a greater depth of ca. 60 km, a mid-lithospheric discontinuity roughly mimics the step-like and symmetrically outward-dipping geometry of the Moho but with a more slanting direction (NE-SW) compared to the NS rift. By comparison with synthetic RF, we estimate the associated velocity reduction to be 8-9 per cent. We relate this interface to melt ponding

  6. Unraveling the dynamics of magmatic CO2 degassing at Mammoth Mountain, California

    Science.gov (United States)

    Peiffer, Loïc; Wanner, Christoph; Lewicki, Jennifer L.

    2018-02-01

    The accumulation of magmatic CO2 beneath low-permeability barriers may lead to the formation of CO2-rich gas reservoirs within volcanic systems. Such accumulation is often evidenced by high surface CO2 emissions that fluctuate over time. The temporal variability in surface degassing is believed in part to reflect a complex interplay between deep magmatic degassing and the permeability of degassing pathways. A better understanding of the dynamics of CO2 degassing is required to improve monitoring and hazards mitigation in these systems. Owing to the availability of long-term records of CO2 emissions rates and seismicity, Mammoth Mountain in California constitutes an ideal site towards such predictive understanding. Mammoth Mountain is characterized by intense soil CO2 degassing (up to ∼1000 t d-1) and tree kill areas that resulted from leakage of CO2 from a CO2-rich gas reservoir located in the upper ∼4 km. The release of CO2-rich fluids from deeper basaltic intrusions towards the reservoir induces seismicity and potentially reactivates faults connecting the reservoir to the surface. While this conceptual model is well-accepted, there is still a debate whether temporally variable surface CO2 fluxes directly reflect degassing of intrusions or variations in fault permeability. Here, we report the first large-scale numerical model of fluid and heat transport for Mammoth Mountain. We discuss processes (i) leading to the initial formation of the CO2-rich gas reservoir prior to the occurrence of high surface CO2 degassing rates and (ii) controlling current CO2 degassing at the surface. Although the modeling settings are site-specific, the key mechanisms discussed in this study are likely at play at other volcanic systems hosting CO2-rich gas reservoirs. In particular, our model results illustrate the role of convection in stripping a CO2-rich gas phase from a rising hydrothermal fluid and leading to an accumulation of a large mass of CO2 (∼107-108 t) in a shallow

  7. Influence of volatile degassing on the eruptibility of large igneous province magmatic systems

    Science.gov (United States)

    Mittal, T.; Richards, M. A.

    2017-12-01

    Magmatic volatiles, in particular their buoyancy, may play a critical role in determining whether a magma reservoir can build up enough overpressure leading to drive flood basalt eruptions (Black & Manga 2017). Thus, it is important to understand the extent to which volatiles can remain trapped in a magmatic system and how they influence the eruptibility. Although the high-temperature metamorphic aureloe around a magma chamber is typically considered to have low permeability due to ductile creep, recent theoretical, experimental, and field work (e.g. Noriaki et al. 2017) have highlighted the role of dynamic permeability in magmatic systems. Consequently, the effective permeability of the crust when magma is present in the system can be orders of magnitude larger than that of exhumed rock samples. We model dynamic permeability changes as a competition between hydro-fracturing (increased porosity) and fracture closure by ductile creep and hydrothermal mineral precipitation (reduced porosity) and find yearly-to-decadal time-scales for periodic fracturing and fluid loss events and an increase in average permeability. We then use a fully coupled poro-thermo-elastic framework to model to explore the macroscopic influence of volatile loss on the stress state of the crust in this higher time-averaged permeability setting. We derive new semi-analytical solutions and combine them with a magma chamber box model (modified from Degruyter & Huber 2014) to analyze system-scale dynamics for both basaltic and silicic magmatic systems. We find that passive degassing likely has a substantial temporal influence on the stress distribution in the crust and the highly crystalline mush zone immediately surrounding a magma reservoir, and find an additional scale : pore-pressure diffusion timescale that exerts a first-order control on the magnitude and frequency of volcanic eruptions. We also explore how disconnected magma batches interact indirectly with each other and its implications for

  8. Quaternary Magmatism in the Cascades - Geologic Perspectives

    Science.gov (United States)

    Hildreth, Wes

    2007-01-01

    Foreward The Cascade magmatic arc is a belt of Quaternary volcanoes that extends 1,250 km from Lassen Peak in northern California to Meager Mountain in Canada, above the subduction zone where the Juan de Fuca Plate plunges beneath the North American Plate. This Professional Paper presents a synthesis of the entire volcanic arc, addressing all 2,300 known Quaternary volcanoes, not just the 30 or so visually prominent peaks that comprise the volcanic skyline. Study of Cascade volcanoes goes back to the geological explorers of the late 19th century and the seminal investigations of Howel Williams in the 1920s and 1930s. However, major progress and application of modern scientific methods and instrumentation began only in the 1970s with the advent of systematic geological, geophysical, and geochemical studies of the entire arc. Initial stimulus from the USGS Geothermal Research Program was enhanced by the USGS Volcano Hazards Program following the 1980 eruption of Mount St. Helens. Together, these two USGS Programs have provided more than three decades of stable funding, staffing, and analytical support. This Professional Paper summarizes the resultant USGS data sets and integrates them with the parallel contributions of other investigators. The product is based upon an all-encompassing and definitive geological database, including chemical and isotopic analyses to characterize the rocks and geochronology to provide the critical time constraints. Until now, this massive amount of data has not been summarized, and a systematic and uniform interpretation firmly grounded in geological fact has been lacking. Herein lies the primary utility of this Cascade volume. It not only will be the mandatory starting point for new workers, but also will provide essential geological context to broaden the perspectives of current investigators of specific Cascade volcanoes. Wes Hildreth's insightful understanding of volcanic processes and his uncompromising scientific integrity make him

  9. Cretaceous Arctic magmatism: Slab vs. plume? Or slab and plume?

    Science.gov (United States)

    Gottlieb, E. S.; Miller, E. L.; Andronikov, A. V.; Brumley, K.; Mayer, L. A.; Mukasa, S. B.

    2010-12-01

    Tectonic models for the Cretaceous paleogeographic evolution of the Arctic Ocean and its adjacent landmasses propose that rifting in the Amerasia Basin (AB) began in Jura-Cretaceous time, accompanied by the development of the High Arctic Large Igneous Province (HALIP). During the same timespan, deformation and slab-related magmatism, followed by intra-arc rifting, took place along the Pacific side of what was to become the Arctic Ocean. A compilation and comparison of the ages, characteristics and space-time variation of circum-Arctic magmatism allows for a better understanding of the role of Pacific margin versus Arctic-Atlantic plate tectonics and the role of plume-related magmatism in the origin of the Arctic Ocean. In Jura-Cretaceous time, an arc built upon older terranes overthrust the Arctic continental margins of North America and Eurasia, shedding debris into foreland basins in the Brooks Range, Alaska, across Chukotka, Russia, to the Lena Delta and New Siberian Islands region of the Russian Arctic. These syn-tectonic sediments have some common sources (e.g., ~250-300 Ma magmatic rocks) as determined by U-Pb detrital zircon geochronology. They are as young as Valanginian-Berriasian (~136 Ma, Gradstein et al., 2004) and place a lower limit on the age of formation of the AB. Subsequent intrusions of granitoid plutons, inferred to be ultimately slab-retreat related, form a belt along the far eastern Russian Arctic continental margin onto Seward Peninsula and have yielded a continuous succession of zircon U-Pb ages from ~137-95 Ma (n=28) and a younger suite ~91-82 Ma (n=16). All plutons dated were intruded in an extensional tectonic setting based on their relations to wall-rock deformation. Regional distribution of ages shows a southward migration of the locus of magmatism during Cretaceous time. Basaltic lavas as old as 130 Ma and as young as 80 Ma (40Ar/39Ar)) erupted across the Canadian Arctic Islands, Svalbard and Franz Josef Land and are associated with

  10. University Students' Understanding of Chemistry Processes and the Quality of Evidence in Their Written Arguments

    Science.gov (United States)

    Seung, Eulsun; Choi, Aeran; Pestel, Beverly

    2016-01-01

    We have developed a process-oriented chemistry laboratory curriculum for non-science majors. The purpose of this study is both to explore university students' understanding of chemistry processes and to evaluate the quality of evidence students use to support their claims regarding chemistry processes in a process-oriented chemistry laboratory…

  11. Microchemistry, geochemistry and geochronology of the Lagoa Real Uranium Province (BA) magmatic association: petrological and evolutionary significance

    International Nuclear Information System (INIS)

    Amorim, Lucas Eustaquio Dias

    2016-01-01

    The Lagoa Real Uranium Province (PULR) is located in the center-south of the Bahia State, in the central part of Sao Francisco Craton and consists of an association of Paleoproterozoic meta-granites, alkali-gneiss, albitites, meta-leucodiorite and charnockites. This work has as objective the studies of the magmatic association, trying to understand its petrological and evolutionary meaning. For this purpose, representative bodies were sampled in order to develop unpublished studies of litogeochemistry, isotopes, geochronology and mineral chemistry. These analyzes were performed in: different preserved granitoid facies (Lagoa do Barro, Sao Timoteo, Juazeirinho and late pegmatitic phases), the meta-leucodiorites and charnockite. The data obtained using several modern methodologies, such as geochronology and mineral chemistry by LA-ICP-MS, provided results that allowed the characterization of two magmatic lithologies not described in the literature (Juazeirinho granite e late pegmatitic phases), and also a lithology preliminarily described (Lagoa do Barro granite). Moreover, these data contributed to elucidate the origin and meaning of the leucodiorite and charnoquito varieties, and made it possible to verify new compositional and mineral chemistry tendencies of Sao Timoteo granite. The data presented show that the studied granites were affected by albititization events (tardi or post-magmatic), which have different micro-chemical characteristics from the processes of albite formation related to the non-mineralized albitites bodies. Three albititization events were identified: a) An event that affected the granites characterized by the formation of albite with Rb and U, (b) Another event related to fluids associated with late pegmatitic bodies that formed albite with high levels of U, Rb and Ba, and partially affected the granites of the next pegmatoids portions; and (c) a final albititization event that caused the formation of the albite gneiss bodies, with albite

  12. Magmatic architecture within a rift segment: Articulate axial magma storage at Erta Ale volcano, Ethiopia

    Science.gov (United States)

    Xu, Wenbin; Rivalta, Eleonora; Li, Xing

    2017-10-01

    Understanding the magmatic systems beneath rift volcanoes provides insights into the deeper processes associated with rift architecture and development. At the slow spreading Erta Ale segment (Afar, Ethiopia) transition from continental rifting to seafloor spreading is ongoing on land. A lava lake has been documented since the twentieth century at the summit of the Erta Ale volcano and acts as an indicator of the pressure of its magma reservoir. However, the structure of the plumbing system of the volcano feeding such persistent active lava lake and the mechanisms controlling the architecture of magma storage remain unclear. Here, we combine high-resolution satellite optical imagery and radar interferometry (InSAR) to infer the shape, location and orientation of the conduits feeding the 2017 Erta Ale eruption. We show that the lava lake was rooted in a vertical dike-shaped reservoir that had been inflating prior to the eruption. The magma was subsequently transferred into a shallower feeder dike. We also find a shallow, horizontal magma lens elongated along axis inflating beneath the volcano during the later period of the eruption. Edifice stress modeling suggests the hydraulically connected system of horizontal and vertical thin magmatic bodies able to open and close are arranged spatially according to stresses induced by loading and unloading due to topographic changes. Our combined approach may provide new constraints on the organization of magma plumbing systems beneath volcanoes in continental and marine settings.

  13. Geochemical evolution of magmatism in Archean granite-greenstone terrains

    Science.gov (United States)

    Samsonov, A. V.; Larionova, Yu. O.

    2006-05-01

    Evolution of Archean magmatism is one of the key problems concerning the early formation stages of the Earth crust and biosphere, because that evolution exactly controlled variable concentrations of chemical elements in the World Ocean, which are important for metabolism. Geochemical evolution of magmatism between 3.5 and 2.7 Ga is considered based on database characterizing volcanic and intrusive rock complexes of granite-greenstone terrains (GGT) studied most comprehensively in the Karelian (2.9-2.7 Ga) and Kaapvaal (3.5-2.9 Ga) cratons and in the Pilbara block (3.5-2.9 Ga). Trends of magmatic geochemical evolution in the mentioned GGTs were similar in general. At the early stage of their development, tholeiitic magmas were considerably enriched in chalcophile and siderophile elements Fe2O3, MgO, Cr, Ni, Co, V, Cu, and Zn. At the next stage, calc-alkaline volcanics of greenstone belts and syntectonic TTG granitoids were enriched in lithophile elements Rb, Cs, Ba, Th, U, Pb, Nb, La, Sr, Be and others. Elevated concentrations of both the “crustal” and “mantle-derived” elements represented a distinctive feature of predominantly intrusive rocks of granitoid composition, which were characteristic of the terminal stage of continental crust formation in the GGTs, because older silicic rocks and lithospheric mantle were jointly involved into processes of magma generation. On the other hand, the GGTs different in age reveal specific trends in geochemical evolution of rock associations close in composition and geological position. First, the geochemical cycle of GGT evolution was of a longer duration in the Paleoarchean than in the Meso-and Neoarchean. Second, the Paleoarche an tholeiitic associations had higher concentrations of LREE and HFSE (Zr, Ti, Th, Nb, Ta, Hf) than their Meso-and Neoarchean counterparts. Third, the Y and Yb concentrations in Paleoarchean calc-alkaline rock associations are systematically higher than in Neoarchean rocks of the same type

  14. A new perspective on proxy report: Investigating implicit processes of understanding through patient-proxy congruence.

    Science.gov (United States)

    Schwartz, Carolyn E; Ayandeh, Armon; Rodgers, Jonathan D; Duberstein, Paul; Weinstock-Guttman, Bianca; Benedict, Ralph H B

    2015-11-01

    Utilizing proxy report is a common solution to gathering quality-of-life information from people who are not capable of reliably answering questionnaires, such as people with dementia. Proxy report could, however, also provide information about patients' implicit processes of understanding, which we define as automatic, schema-driven cognitive processes that allow one to have a better understanding of oneself and of one's body, make oneself known and knowable to members of the social network, and allow one to react proactively in response to cues. We investigated whether implicit processes of understanding explain some of the association between reserve and healthy lifestyle behaviors. We operationalized three implicit processes of understanding: (a) psychosocial understanding; (b) insight into physical disability; and (c) somatic awareness. This secondary analysis involved a cohort of multiple sclerosis patients and their caregiver informants (n = 118 pairs). Measures included a neurologist-administered Expanded Disability Status Scale, patient- and informant-completed survey measures, and a heartbeat perception test (interoception). Patient-other congruence assessed implicit processes of understanding: psychosocial understanding (neurocognitive and personality); physical-disability insight; and somatic awareness (interoception). Effect sizes (ES) for the inter-correlations between the three implicit processes were small. Psychosocial understanding was associated with higher past reserve-building activities (small ES). Psychosocial understanding explained variance in healthy lifestyle behaviors over and above the variance explained by current reserve-building activities (∆R (2) = 0.04; model R Adjusted (2) = 0.18). Proxy versus patient report can provide information about underlying interpretational processes related to insight. These processes are distinct from reserve, predict health outcomes, and can inform lifestyle-changing interventions.

  15. Nominally hydrous magmatism on the Moon.

    Science.gov (United States)

    McCubbin, Francis M; Steele, Andrew; Hauri, Erik H; Nekvasil, Hanna; Yamashita, Shigeru; Hemley, Russell J

    2010-06-22

    For the past 40 years, the Moon has been described as nearly devoid of indigenous water; however, evidence for water both on the lunar surface and within the lunar interior have recently emerged, calling into question this long-standing lunar dogma. In the present study, hydroxyl (as well as fluoride and chloride) was analyzed by secondary ion mass spectrometry in apatite [Ca(5)(PO(4))(3)(F,Cl,OH)] from three different lunar samples in order to obtain quantitative constraints on the abundance of water in the lunar interior. This work confirms that hundreds to thousands of ppm water (of the structural form hydroxyl) is present in apatite from the Moon. Moreover, two of the studied samples likely had water preserved from magmatic processes, which would qualify the water as being indigenous to the Moon. The presence of hydroxyl in apatite from a number of different types of lunar rocks indicates that water may be ubiquitous within the lunar interior, potentially as early as the time of lunar formation. The water contents analyzed for the lunar apatite indicate minimum water contents of their lunar source region to range from 64 ppb to 5 ppm H(2)O. This lower limit range of water contents is at least two orders of magnitude greater than the previously reported value for the bulk Moon, and the actual source region water contents could be significantly higher.

  16. Tectonic obliteration of magmatic fabrics in an Ordovician ophiolite

    Science.gov (United States)

    Di Chiara, A.; Morris, A.; Anderson, M. W.; Menegon, L. M.

    2017-12-01

    The Thetford Mines Ophiolite (TMO) is part of the Canadian Appalachians (Quebec region) which experienced syn-emplacement and two post-emplacement deformations, the Taconian (Ordovician) and the (Devonian) Acadian orogenies. New results from an integrated rock magnetic, petrological and microstructural study on 12 paleomagnetic sites show a complete tectonic overprint of the original magnetic fabric. Anisotropy of magnetic susceptibility (AMS) results show that on the southern layered gabbros the magnetic fabric is locally preserved, being parallel to observed magmatic foliations. The nine sites from the northwestern sector of the TMO share a remarkably similar magnetic fabric, despite formed by fundamentally different magmatic processes. They are all characterized by a minimum anisotropy axis (kmin) oriented NW-SE and the maximum axis (kmax) steeply plunging to the NE. Additional microstructural analyses show that the kmax of the magnetic fabric is subparallel to the crystal preferred orientation of the iron rich particles. We think that at low strain regime the AMS fabric reflect the magmatic foliation; whereas at higher strain regime the AMS fabric has a tectonic overprint consistent with a shortening direction perpendicular to the regional trend of fold axes, thus recording the last regional tectonic event during the Acadian orogeny.

  17. Continental crust formation on early Earth controlled by intrusive magmatism.

    Science.gov (United States)

    Rozel, A B; Golabek, G J; Jain, C; Tackley, P J; Gerya, T

    2017-05-18

    The global geodynamic regime of early Earth, which operated before the onset of plate tectonics, remains contentious. As geological and geochemical data suggest hotter Archean mantle temperature and more intense juvenile magmatism than in the present-day Earth, two crust-mantle interaction modes differing in melt eruption efficiency have been proposed: the Io-like heat-pipe tectonics regime dominated by volcanism and the "Plutonic squishy lid" tectonics regime governed by intrusive magmatism, which is thought to apply to the dynamics of Venus. Both tectonics regimes are capable of producing primordial tonalite-trondhjemite-granodiorite (TTG) continental crust but lithospheric geotherms and crust production rates as well as proportions of various TTG compositions differ greatly, which implies that the heat-pipe and Plutonic squishy lid hypotheses can be tested using natural data. Here we investigate the creation of primordial TTG-like continental crust using self-consistent numerical models of global thermochemical convection associated with magmatic processes. We show that the volcanism-dominated heat-pipe tectonics model results in cold crustal geotherms and is not able to produce Earth-like primordial continental crust. In contrast, the Plutonic squishy lid tectonics regime dominated by intrusive magmatism results in hotter crustal geotherms and is capable of reproducing the observed proportions of various TTG rocks. Using a systematic parameter study, we show that the typical modern eruption efficiency of less than 40 per cent leads to the production of the expected amounts of the three main primordial crustal compositions previously reported from field data (low-, medium- and high-pressure TTG). Our study thus suggests that the pre-plate-tectonics Archean Earth operated globally in the Plutonic squishy lid regime rather than in an Io-like heat-pipe regime.

  18. Understanding the design research process: The evolution of a professional development program in Indian slums

    NARCIS (Netherlands)

    McKenney, Susan; Raval, Harini; Pieters, Jules

    2011-01-01

    McKenney, S., Raval, H., & Pieters, J. (2011, 8-12 April). Understanding the design research process: The evolution of a professional development program in Indian slums. Presentation at AERA annual meeting, New Orleans.

  19. Understanding the design research process: The evolution of a professional development program in Indian slums

    OpenAIRE

    McKenney, Susan; Raval, Harini; Pieters, Jules

    2011-01-01

    McKenney, S., Raval, H., & Pieters, J. (2011, 8-12 April). Understanding the design research process: The evolution of a professional development program in Indian slums. Paper presentation at AERA annual meeting, New Orleans.

  20. Understanding the design research process: The evolution of a professional development program in Indian slums

    NARCIS (Netherlands)

    McKenney, Susan; Raval, Harini; Pieters, Jules

    2012-01-01

    McKenney, S., Raval, H., & Pieters, J. (2011, 8-12 April). Understanding the design research process: The evolution of a professional development program in Indian slums. Paper presentation at AERA annual meeting, New Orleans.

  1. A model for understanding and learning of the game process of computer games

    DEFF Research Database (Denmark)

    Larsen, Lasse Juel; Majgaard, Gunver

    time make sure that the students learn to act and reflect like game designers? We fell our game design model managed to just that end. Our model entails a guideline for the computer game design process in its entirety, and at same time distributes clear and easy understandable insight to a particular......This abstract focuses on the computer game design process in the education of engineers at the university level. We present a model for understanding the different layers in the game design process, and an articulation of their intricate interconnectedness. Our motivation is propelled by our daily...... teaching practice of game design. We have observed a need for a design model that quickly can create an easily understandable overview over something as complex as the design processes of computer games. This posed a problem: how do we present a broad overview of the game design process and at the same...

  2. Understanding erosion process using rare earth element tracers in a preformed interrill-rill system

    Science.gov (United States)

    Tracking sediment source and movement is essential to fully understanding soil erosion processes. The objectives of this study were to identify dominant erosion process and to characterize the effects of upslope interrill erosion on downslope interrill and rill erosion in a preformed interrill-rill ...

  3. Process understanding on high shear granulated lactose agglomerates during and after drying

    NARCIS (Netherlands)

    Nieuwmeyer, F.J.S.

    2009-01-01

    In 2001 the FDA launched the Process Analytical Technology initiative as a response to the growing public and industrial awareness that there is a lack of process understanding required to have an optimal control of pharmaceutical manufacturing. The current research project was initiated based upon

  4. Differentiating Processes of Control and Understanding in the Early Development of Emotion and Cognition

    Science.gov (United States)

    Blankson, A. Nayena; O'Brien, Marion; Leerkes, Esther M.; Marcovitch, Stuart; Calkins, Susan D.

    2012-01-01

    In this study, we examined the hypothesis that preschoolers' performance on emotion and cognitive tasks is organized into discrete processes of control and understanding within the domains of emotion and cognition. Additionally, we examined the relations among component processes using mother report, behavioral observation, and physiological…

  5. Fluid Dynamic Experiments on Mush Column Magmatism

    Science.gov (United States)

    Flanagan-Brown, R. E.; Marsh, B. D.

    2001-05-01

    A vertically extensive stack of sills interconnected by pipe-like conduits extending from the mantle through the lithosphere and capped by a volcanic center is a magmatic mush column. At any instant at various locations it contains fractionated and primitive melts as pools of nearly crystal-free magma, pools of crystal-rich magma, thick beds of cumulates, open conduits, and conduits congested by cognate and wall debris. All boundaries of the system are sheathed by solidification fronts. With the wide range of local, characteristic length scales there is a commensurate range of solidification time scales. This creates a complicated series of resistances to magma flow and provides a variety of distinct local physical environments for the chemical modification of magma. The system is driven by over-pressure from the addition of new melt from below. The over-pressure propagates upward by moving magma which flushes conduits, disrupts cumulate beds, and pools or purges sills. A critical aspect of this process is the entrainment, transport, and deposition of crystals throughout the system. Picritic lavas charges with entrained (tramp) olivine of a wide compositional range erupted at many systems (e.g. Jan Mayen, Kilauea, Reunion, etc.) are the final expression of this process. That the size and abundance of these crystals is correlated with eruptive flux (Murata & Richter, AJS, 1966) suggests an important indicator of the overall dynamics of the mush column. A mush column of this basic nature is observed is observed in the McMurdo Dry Valleys region of Antarctica and is inferred beneath Hawaii and the ocean ridges. We have attempted to model this process by studying the entrainment, transport, and deposition of particles in a vertical stack of sills (Plexiglas tanks) connected by resistive conduits (check valves), over-pressured from the base, and open at the top. The system is about two meters in height with water and oil as fluids and particles with Reynolds numbers

  6. Gestalt Processing in Autism: Failure to Process Perceptual Relationships and the Implications for Contextual Understanding

    Science.gov (United States)

    Brosnan, Mark J.; Scott, Fiona J.; Fox, Simone; Pye, Jackie

    2004-01-01

    Background: Deficits in autism have been characterised as a bias towards local over global processing. This paper examines whether there is a deficit in gestalt grouping in autism. Method: Twenty-five low-functioning children with autism and 25 controls who were matched for chronological age and verbal mental age took part in the study. Results:…

  7. A Holistic Understanding of Conflicts during the Enterprise Resource Planning Change Process: A Dialectic Perspective

    OpenAIRE

    MUSLEH ALSULAMI

    2017-01-01

    This doctoral study investigates conflicts during ERP change process from a dialectic perspective. A major motivation of this study thus arises from the recognition that a high level of risk is generally associated with the ERP change process. This is due to three reasons: a) limited understanding and experience in supporting the ERP change process, b) highly complex and risky involvement of multiple ERP stakeholders who have contrasting expectations, and c) inherent ERP conflicts in the ERP ...

  8. Magmatism, Hydrothermalism, and Carbon Cycling in the sedimented Guaymas Basin

    Science.gov (United States)

    Soule, S. A.; Teske, A.; Lizarralde, D.; Ravelo, A. C.; Alello, I. W.; Mortera-Gutierrez, C. A.; Berndt, C.; Torres, M.; Canet, C.

    2017-12-01

    The central Gulf of California is characterized by thickly-sedimented, young oceanic spreading centers that lack the seafloor volcanic deposition common to mature, deep-water mid-ocean ridges. Instead, ascending magmas are emplaced within the sediment as sills, which drive hydrothermal circulation and decarbonation of the sediments. Guaymas Basin, a prime example of these processes, is comprised of two short overlappy spreading segments. Decades of study in the southern spreading center have revealed numerous high-temperature hydrothermal vents driven by shallow fluid circulation over magmatic sills, and deeper fluid circulation along rift graben bounding faults. Drilling studies in the southern basin led to a model of shallow sill intrusion within a 1-2km wide magmatic zone at the rift axis and subsequent deepening of the sill horizon due to subsidence and burial by sediment. Seismic observations in the northern Guaymas Basin, however, have suggested that sill intrusion may occur over a much wider area, up to 40km from the rift axis. In addition, seafloor mapping has shown numerous sites of fluid flow (n=100) across the northern Guaymas basin that correlate spatially with the subsurface distribution of sills. More recently, a cruise to the area located a high-temperature black smoker vent at the edge of the northern rift basin, which was previously thought to be devoid of active hydrothermal systems. Further, close inspection of one of the identified seafloor fluid flow sites located 40km from the rift axis found active fluid flow at 70˚C as well as typical hydrothermal sulfide-oxidizing vent fauna (Riftia tube worms, Beggiatoaceae bacterial mat), validating the hypothesis of magmatically-driven fluid flow at extreme distances from the presumed center of magmatic accretion. Together, these findings have motivated an IODP drilling leg to this region provisionally scheduled for 2019. This presentation will summarize the new findings at the northern Guaymas Basin

  9. Magmatic control along a strike-slip volcanic arc: The central Aeolian arc (Italy)

    KAUST Repository

    Ruch, Joel

    2016-01-23

    The regional stress field in volcanic areas may be overprinted by that produced by magmatic activity, promoting volcanism and faulting. In particular, in strike-slip settings, the definition of the relationships between the regional stress field and magmatic activity remains elusive. To better understand these relationships, we collected stratigraphic, volcanic and structural field data along the strike-slip Central Aeolian arc (Italy): here the islands of Lipari and Vulcano separate the extensional portion of the arc (to the east) from the contractional one (to the west). We collected >500 measurements of faults, extension fractures and dikes at 40 sites. Most structures are NNE-SSW to NNW-SSE oriented, eastward dipping, and show almost pure dip-slip motion; consistent with an E-W extension direction, with minor dextral and sinistral shear. Our data highlight six eruptive periods during the last 55 ka, which allow considering both islands as a single magmatic system, in which tectonic and magmatic activity steadily migrated eastward and currently focus on a 10 km long x 2 km wide active segment. Faulting appears to mostly occur in temporal and spatial relation with magmatic events, supporting that most of the observable deformation derives from transient magmatic activity (shorter-term, days to months), rather than from steady longer-term regional tectonics (102-104 years). More in general, the Central Aeolian case shows how magmatic activity may affect the structure and evolution of volcanic arcs, overprinting any strike-slip motion with magma-induced extension at the surface.

  10. A Process-Philosophical Understanding of Organizational Learning as "Wayfinding": Process, Practices and Sensitivity to Environmental Affordances

    Science.gov (United States)

    Chia, Robert

    2017-01-01

    Purpose: This paper aims to articulate a practice-based, non-cognitivist approach to organizational learning. Design/methodology/approach: This paper explores the potential contribution of a process-based "practice turn" in social theory for understanding organizational learning. Findings: In complex, turbulent environments, robust…

  11. Process analytical tools for monitoring, understanding, and control of pharmaceutical fluidized bed granulation: A review.

    Science.gov (United States)

    Burggraeve, Anneleen; Monteyne, Tinne; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas

    2013-01-01

    Fluidized bed granulation is a widely applied wet granulation technique in the pharmaceutical industry to produce solid dosage forms. The process involves the spraying of a binder liquid onto fluidizing powder particles. As a result, the (wetted) particles collide with each other and form larger permanent aggregates (granules). After spraying the required amount of granulation liquid, the wet granules are rapidly dried in the fluid bed granulator. Since the FDA launched its Process Analytical Technology initiative (and even before), a wide range of analytical process sensors has been used for real-time monitoring and control of fluid bed granulation processes. By applying various data analysis techniques to the multitude of data collected from the process analyzers implemented in fluid bed granulators, a deeper understanding of the process has been achieved. This review gives an overview of the process analytical technologies used during fluid bed granulation to monitor and control the process. The fundamentals of the mechanisms contributing to wet granule growth and the characteristics of fluid bed granulation processing are briefly discussed. This is followed by a detailed overview of the in-line applied process analyzers, contributing to improved fluid bed granulation understanding, modeling, control, and endpoint detection. Analysis and modeling tools enabling the extraction of the relevant information from the complex data collected during granulation and the control of the process are highlighted. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Six sigma: process of understanding the control and capability of ranitidine hydrochloride tablet.

    Science.gov (United States)

    Chabukswar, Ar; Jagdale, Sc; Kuchekar, Bs; Joshi, Vd; Deshmukh, Gr; Kothawade, Hs; Kuckekar, Ab; Lokhande, Pd

    2011-01-01

    The process of understanding the control and capability (PUCC) is an iterative closed loop process for continuous improvement. It covers the DMAIC toolkit in its three phases. PUCC is an iterative approach that rotates between the three pillars of the process of understanding, process control, and process capability, with each iteration resulting in a more capable and robust process. It is rightly said that being at the top is a marathon and not a sprint. The objective of the six sigma study of Ranitidine hydrochloride tablets is to achieve perfection in tablet manufacturing by reviewing the present robust manufacturing process, to find out ways to improve and modify the process, which will yield tablets that are defect-free and will give more customer satisfaction. The application of six sigma led to an improved process capability, due to the improved sigma level of the process from 1.5 to 4, a higher yield, due to reduced variation and reduction of thick tablets, reduction in packing line stoppages, reduction in re-work by 50%, a more standardized process, with smooth flow and change in coating suspension reconstitution level (8%w/w), a huge cost reduction of approximately Rs.90 to 95 lakhs per annum, an improved overall efficiency by 30% approximately, and improved overall quality of the product.

  13. Using process elicitation and validation to understand and improve chemotherapy ordering and delivery.

    Science.gov (United States)

    Mertens, Wilson C; Christov, Stefan C; Avrunin, George S; Clarke, Lori A; Osterweil, Leon J; Cassells, Lucinda J; Marquard, Jenna L

    2012-11-01

    Chemotherapy ordering and administration, in which errors have potentially severe consequences, was quantitatively and qualitatively evaluated by employing process formalism (or formal process definition), a technique derived from software engineering, to elicit and rigorously describe the process, after which validation techniques were applied to confirm the accuracy of the described process. The chemotherapy ordering and administration process, including exceptional situations and individuals' recognition of and responses to those situations, was elicited through informal, unstructured interviews with members of an interdisciplinary team. The process description (or process definition), written in a notation developed for software quality assessment purposes, guided process validation (which consisted of direct observations and semistructured interviews to confirm the elicited details for the treatment plan portion of the process). The overall process definition yielded 467 steps; 207 steps (44%) were dedicated to handling 59 exceptional situations. Validation yielded 82 unique process events (35 new expected but not yet described steps, 16 new exceptional situations, and 31 new steps in response to exceptional situations). Process participants actively altered the process as ambiguities and conflicts were discovered by the elicitation and validation components of the study. Chemotherapy error rates declined significantly during and after the project, which was conducted from October 2007 through August 2008. Each elicitation method and the subsequent validation discussions contributed uniquely to understanding the chemotherapy treatment plan review process, supporting rapid adoption of changes, improved communication regarding the process, and ensuing error reduction.

  14. The Influence of Toy Design Activities on Middle School Students' Understanding of the Engineering Design Processes

    Science.gov (United States)

    Zhou, Ninger; Pereira, Nielsen L.; George, Tarun Thomas; Alperovich, Jeffrey; Booth, Joran; Chandrasegaran, Senthil; Tew, Jeffrey David; Kulkarni, Devadatta M.; Ramani, Karthik

    2017-10-01

    The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students' self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design activities have shown the potential to promote middle school students' self-efficacy and understanding of engineering design processes. However, traditional classrooms often lack hands-on engineering design experiences, leaving students unprepared to solve real-world design problems. In this study, we introduce the framework of a toy design workshop and investigate the influence of the workshop activities on students' understanding of and self-efficacy beliefs in engineering design. Using a mixed method approach, we conducted quantitative analyses to show changes in students' engineering design self-efficacy and qualitative analyses to identify students' understanding of the engineering design processes. Findings show that among the 24 participants, there is a significant increase in students' self-efficacy beliefs after attending the workshop. We also identified major themes such as design goals and prototyping in students' understanding of engineering design processes. This research provides insights into the key elements of middle school students' engineering design learning and the benefits of engaging middle school students in hands-on toy design workshops.

  15. Geochemical characteristics of Proterozoic granite magmatism from ...

    Indian Academy of Sciences (India)

    T Yellappa

    2018-03-06

    Mar 6, 2018 ... rocks occur near the transition zone around Krish- nagiri in the northern part of Tamil Nadu ... Archean and Neoproterozoic high-grade metamor- phic and magmatic rocks. The important ... Western Dharwar Craton, EDC: Eastern Dharwar Craton, Tz: Transition Zone. Location of the granite plutons are also.

  16. Exploring potentials of sense-making theory for understanding social processes in public hearing

    DEFF Research Database (Denmark)

    Lyhne, Ivar

    This paper has point of departure in a planning process on energy infrastructure in Denmark and focuses on a particular public hearing meeting characterised by trenchant opposition and distrust to the authorities among the public. It points at the need to understand the interaction between author...... of such a public meeting and the importance of trust and openness in the social processes in a public hearing....... authorities and the public in such planning often characterised by conflict. A sense-making framework is developed based on Karl Weick's theory to investigate how participants at the meeting change their understanding aspects like other actors' opinions and the infrastructure project. Through interviews...

  17. The Southern Washington Cascades magmatic system imaged with magnetotellurics

    Science.gov (United States)

    Bowles-martinez, E.; Bedrosian, P.; Schultz, A.; Hill, G. J.; Peacock, J.

    2016-12-01

    The goal of the interdisciplinary iMUSH project (Imaging Magma Under Saint Helens) is to image the magmatic system of Mount Saint Helens (MSH), and to determine the relationship of this system to the greater Cascades volcanic arc. We are especially interested in an anomalously conductive crustal zone between MSH and Mount Adams known as the Southern Washington Cascades Conductor (SWCC), which early studies interpreted as accreted sediments, but more recently has been interpreted as a broad region of partial melt. MSH is located 50 km west of the main arc and is the most active of the Cascade volcanoes. Its 1980 eruption highlighted the need to understand this potentially hazardous volcanic system. We use wideband magnetotelluric (MT) data collected in 2014-2015 along with data from earlier studies to create a 3D model of the electrical resistivity throughout the region, covering MSH as well as Mount Adams and Mount Rainier along the main volcanic arc. We look at not only the volcanoes themselves, but also their relationship to one another and to regional geologic structures. Preliminary modeling identifies several conductive features, including a mid-crustal conductive region between MSH and Mount Adams that passes below Indian Heaven Volcanic Field and coincides with a region with a high Vp/Vs ratio identified in the seismic component of iMUSH. This suggests that it could be magmatic, but does not preclude the possibility of conductive sediments. Synthesis of seismic and MT data to address this question is ongoing. We also note a conductive zone running north-south just west of MSH that is likely associated with fluids within faults of the Saint Helens Seismic Zone. We finally note that curvature of the conductive lineament that defines the main Cascade arc suggests that the boundary of magmatism is influenced by compression within the Yakima Fold and Thrust Belt, east and southeast of Mount Adams.

  18. Cretaceous magmatism in the High Canadian Arctic: Implications for the nature and age of Alpha Ridge

    Science.gov (United States)

    Bono, Richard; Tarduno, John; Singer, Brad

    2013-04-01

    Cretaceous magmatism in the High Arctic, best expressed on Axel Heiberg and Ellesmere Island, can provide clues to the nature and age of the adjacent Alpha Ridge, which is in turn a key to understanding the tectonic evolution of the Arctic Ocean. Although the incorporation of some continental crust cannot be excluded, the prevailing view is that Alpha Ridge is dominantly thickened oceanic crust, analogous to oceanic plateaus of the Pacific and Indian Ocean. Together with the on-land volcanic exposures, Alpha Ridge composes the High Arctic Large Igneous Province (LIP), but the physical processes responsible for the magmatism remain unclear. Here we focus on two volcanic formations found on the Canadian Arctic margin. The Strand Fiord Formation is composed of a series of classic continental flood basalt flows, and represents the most voluminous expression of volcanism that has survived erosion. These basalts yield a 40Ar/39Ar age of ~95 Ma (Tarduno et al., Science, 1998) but this comes from the distant edge of the flood basalt exposures. The Hansen Point Volcanics consist of felsic and mafic rocks; previous age assignments range from the Maastrichtian (on the basis of palynomorphs, Falcon-Lang et al., Palaeogeography, Palaeoclimatology, Palaeoecology, 2004) to 80 Ma (Rb/Sr isochron, Estrada and Henjes-Kunst, Z. dt. Geol. Ges, 2004). Here we report new 40Ar/39Ar radioisotopic and paleomagnetic data from the Hansen Point Volcanics. In contrast to the latest Cretaceous/Paleogene dates, we find ages of ~95 Ma and 88-90 Ma. Because of the proximity of the landward extension of Alpha Ridge to Hansen Point, these new ages suggest that volcanism that contributed to the construction of Alpha Ridge may have extended over at least a 7 million interval (although it could have occurred in pulses). We will discuss the implications of these new data for candidate mantle processes that could have been responsible for the emplacement of Alpha Ridge and the High Arctic LIP.

  19. Macrosystems ecology: novel methods and new understanding of multi-scale patterns and processes

    Science.gov (United States)

    Songlin Fei; Qinfeng Guo; Kevin Potter

    2016-01-01

    As the global biomes are increasingly threatened by human activities, understanding of macroscale patterns and processes is pressingly needed for effective management and policy making. Macrosystems ecology, which studies multiscale ecologicalpatterns and processes, has gained growing interest in the research community. However, as a relatively new field in...

  20. Magmatism on rift flanks: Insights from ambient noise phase velocity in Afar region

    Science.gov (United States)

    Korostelev, Félicie; Weemstra, Cornelis; Leroy, Sylvie; Boschi, Lapo; Keir, Derek; Ren, Yong; Molinari, Irene; Ahmed, Abdulhakim; Stuart, Graham W.; Rolandone, Frédérique; Khanbari, Khaled; Hammond, James O. S.; Kendall, J. M.; Doubre, Cécile; Ganad, Ismail Al; Goitom, Berhe; Ayele, Atalay

    2015-04-01

    During the breakup of continents in magmatic settings, the extension of the rift valley is commonly assumed to initially occur by border faulting and progressively migrate in space and time toward the spreading axis. Magmatic processes near the rift flanks are commonly ignored. We present phase velocity maps of the crust and uppermost mantle of the conjugate margins of the southern Red Sea (Afar and Yemen) using ambient noise tomography to constrain crustal modification during breakup. Our images show that the low seismic velocities characterize not only the upper crust beneath the axial volcanic systems but also both upper and lower crust beneath the rift flanks where ongoing volcanism and hydrothermal activity occur at the surface. Magmatic modification of the crust beneath rift flanks likely occurs for a protracted period of time during the breakup process and may persist through to early seafloor spreading.

  1. Understanding Customer Product Choices: A Case Study Using the Analytical Hierarchy Process

    Science.gov (United States)

    Robert L. Smith; Robert J. Bush; Daniel L. Schmoldt

    1996-01-01

    The Analytical Hierarchy Process (AHP) was used to characterize the bridge material selection decisions of highway officials across the United States. Understanding product choices by utilizing the AHP allowed us to develop strategies for increasing the use of timber in bridge construction. State Department of Transportation engineers, private consulting engineers, and...

  2. Understanding Teachers' Cognitive Processes during Online Professional Learning: A Methodological Comparison

    Science.gov (United States)

    Beach, Pamela; Willows, Dale

    2017-01-01

    This study examined the effectiveness of three types of think aloud methods for understanding elementary teachers' cognitive processes as they used a professional development website. A methodology combining a retrospective think aloud procedure with screen capture technology (referred to as the virtual revisit) was compared with concurrent and…

  3. Videogame Construction by Engineering Students for Understanding Modelling Processes: The Case of Simulating Water Behaviour

    Science.gov (United States)

    Pretelín-Ricárdez, Angel; Sacristán, Ana Isabel

    2015-01-01

    We present some results of an ongoing research project where university engineering students were asked to construct videogames involving the use of physical systems models. The objective is to help them identify and understand the elements and concepts involved in the modelling process. That is, we use game design as a constructionist approach…

  4. Embedded Formative Assessment and Classroom Process Quality: How Do They Interact in Promoting Science Understanding?

    Science.gov (United States)

    Decristan, Jasmin; Klieme, Eckhard; Kunter, Mareike; Hochweber, Jan; Büttner, Gerhard; Fauth, Benjamin; Hondrich, A. Lena; Rieser, Svenja; Hertel, Silke; Hardy, Ilonca

    2015-01-01

    In this study we examine the interplay between curriculum-embedded formative assessment--a well-known teaching practice--and general features of classroom process quality (i.e., cognitive activation, supportive climate, classroom management) and their combined effect on elementary school students' understanding of the scientific concepts of…

  5. Utilizing the Theoretical Framework of Collective Identity to Understand Processes in Youth Programs

    Science.gov (United States)

    Futch, Valerie A.

    2016-01-01

    This article explores collective identity as a useful theoretical framework for understanding social and developmental processes that occur in youth programs. Through narrative analysis of past participant interviews (n = 21) from an after-school theater program, known as "The SOURCE", it was found that participants very clearly describe…

  6. The Role of Regulation and Processing Strategies in Understanding Science Text among University Students

    Science.gov (United States)

    Vilppu, Henna; Mikkila-Erdmann, Mirjamaija; Ahopelto, Ilona

    2013-01-01

    The aim of the study was to investigate the role of regulation and processing strategies in understanding science text. A total of 91 student teachers answered open-ended questions concerning photosynthesis before and after reading either a traditional or a refutational science text. After this, they also answered parts of the Inventory of…

  7. Beyond Homophily: A Decade of Advances in Understanding Peer Influence Processes

    Science.gov (United States)

    Brechwald, Whitney A.; Prinstein, Mitchell J.

    2011-01-01

    This article reviews empirical and theoretical contributions to a multidisciplinary understanding of peer influence processes in adolescence over the past decade. Five themes of peer influence research from this decade were identified, including a broadening of the range of behaviors for which peer influence occurs, distinguishing the sources of…

  8. Nitrous oxide emissions from soils: how well do we understand the processes and their controls?

    Science.gov (United States)

    Butterbach-Bahl, Klaus; Baggs, Elizabeth M.; Dannenmann, Michael; Kiese, Ralf; Zechmeister-Boltenstern, Sophie

    2013-01-01

    Although it is well established that soils are the dominating source for atmospheric nitrous oxide (N2O), we are still struggling to fully understand the complexity of the underlying microbial production and consumption processes and the links to biotic (e.g. inter- and intraspecies competition, food webs, plant–microbe interaction) and abiotic (e.g. soil climate, physics and chemistry) factors. Recent work shows that a better understanding of the composition and diversity of the microbial community across a variety of soils in different climates and under different land use, as well as plant–microbe interactions in the rhizosphere, may provide a key to better understand the variability of N2O fluxes at the soil–atmosphere interface. Moreover, recent insights into the regulation of the reduction of N2O to dinitrogen (N2) have increased our understanding of N2O exchange. This improved process understanding, building on the increased use of isotope tracing techniques and metagenomics, needs to go along with improvements in measurement techniques for N2O (and N2) emission in order to obtain robust field and laboratory datasets for different ecosystem types. Advances in both fields are currently used to improve process descriptions in biogeochemical models, which may eventually be used not only to test our current process understanding from the microsite to the field level, but also used as tools for up-scaling emissions to landscapes and regions and to explore feedbacks of soil N2O emissions to changes in environmental conditions, land management and land use. PMID:23713120

  9. Toward theoretical understanding of the fertility preservation decision-making process: examining information processing among young women with cancer.

    Science.gov (United States)

    Hershberger, Patricia E; Finnegan, Lorna; Altfeld, Susan; Lake, Sara; Hirshfeld-Cytron, Jennifer

    2013-01-01

    Young women with cancer now face the complex decision about whether to undergo fertility preservation. Yet little is known about how these women process information involved in making this decision. The purpose of this article is to expand theoretical understanding of the decision-making process by examining aspects of information processing among young women diagnosed with cancer. Using a grounded theory approach, 27 women with cancer participated in individual, semistructured interviews. Data were coded and analyzed using constant-comparison techniques that were guided by 5 dimensions within the Contemplate phase of the decision-making process framework. In the first dimension, young women acquired information primarily from clinicians and Internet sources. Experiential information, often obtained from peers, occurred in the second dimension. Preferences and values were constructed in the third dimension as women acquired factual, moral, and ethical information. Women desired tailored, personalized information that was specific to their situation in the fourth dimension; however, women struggled with communicating these needs to clinicians. In the fifth dimension, women offered detailed descriptions of clinician behaviors that enhance or impede decisional debriefing. Better understanding of theoretical underpinnings surrounding women's information processes can facilitate decision support and improve clinical care.

  10. Fractionation of Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi in the peraluminous Early Permian Variscan granites of the Cornubian Batholith: Precursor processes to magmatic-hydrothermal mineralisation

    Science.gov (United States)

    Simons, Beth; Andersen, Jens C. Ø.; Shail, Robin K.; Jenner, Frances E.

    2017-05-01

    The Early Permian Variscan Cornubian Batholith is a peraluminous, composite pluton intruded into Devonian and Carboniferous metamorphosed sedimentary and volcanic rocks. Within the batholith there are: G1 (two-mica), G2 (muscovite), G3 (biotite), G4 (tourmaline) and G5 (topaz) granites. G1-G2 and G3-G4 are derived from greywacke sources and linked through fractionation of assemblages dominated by feldspars and biotite, with minor mantle involvement in G3. G5 formed though flux-induced biotite-dominate melting in the lower crust during granulite facies metamorphism. Fractionation enriched G2 granites in Li (average 315 ppm), Be (12 ppm), Ta (4.4 ppm), In (74 ppb), Sn (18 ppm) and W (12 ppm) relative to crustal abundances and G1 granites. Gallium (24 ppm), Nb (16 ppm) and Bi (0.46 ppm) are not significantly enriched during fractionation, implying they are more compatible in the fractionating assemblage. Sb (0.16 ppm) is depleted in G1-G2 relative to the average upper and lower continental crust. Muscovite, a late-stage magmatic/subsolidus mineral, is the major host of Li, Nb, In, Sn and W in G2 granites. G2 granites are spatially associated with W-Sn greisen mineralisation. Fractionation within the younger G3-G4 granite system enriched Li (average 364 ppm), Ga (28 ppm), In (80 ppb), Sn (14 ppm), Nb (27 ppm), Ta (4.6 ppm), W (6.3 ppm) and Bi (0.61 ppm) in the G4 granites with retention of Be in G3 granites due to partitioning of Be into cordierite during fractionation. The distribution of Nb and Ta is controlled by accessory phases such as rutile within the G4 granites, facilitated by high F and lowering the melt temperature, leading to disseminated Nb and Ta mineralisation. Lithium, In, Sn and W are hosted in biotite micas which may prove favourable for breakdown on ingress of hydrothermal fluids. Higher degrees of scattering on trace element plots may be attributable to fluid-rock interactions or variability within the magma chamber. The G3-G4 system is more boron

  11. Enhanced process understanding and multivariate prediction of the relationship between cell culture process and monoclonal antibody quality.

    Science.gov (United States)

    Sokolov, Michael; Ritscher, Jonathan; MacKinnon, Nicola; Souquet, Jonathan; Broly, Hervé; Morbidelli, Massimo; Butté, Alessandro

    2017-09-01

    This work investigates the insights and understanding which can be deduced from predictive process models for the product quality of a monoclonal antibody based on designed high-throughput cell culture experiments performed at milliliter (ambr-15 ® ) scale. The investigated process conditions include various media supplements as well as pH and temperature shifts applied during the process. First, principal component analysis (PCA) is used to show the strong correlation characteristics among the product quality attributes including aggregates, fragments, charge variants, and glycans. Then, partial least square regression (PLS1 and PLS2) is applied to predict the product quality variables based on process information (one by one or simultaneously). The comparison of those two modeling techniques shows that a single (PLS2) model is capable of revealing the interrelationship of the process characteristics to the large set product quality variables. In order to show the dynamic evolution of the process predictability separate models are defined at different time points showing that several product quality attributes are mainly driven by the media composition and, hence, can be decently predicted from early on in the process, while others are strongly affected by process parameter changes during the process. Finally, by coupling the PLS2 models with a genetic algorithm first the model performance can be further improved and, most importantly, the interpretation of the large-dimensioned process-product-interrelationship can be significantly simplified. The generally applicable toolset presented in this case study provides a solid basis for decision making and process optimization throughout process development. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1368-1380, 2017. © 2017 American Institute of Chemical Engineers.

  12. Understanding the Role of Water on Electron-Initiated Processes and Radical Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, Bruce C [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colson, Steven D [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dixon, David A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Laufer, Allan H [US Department of Energy Office of Science Office of Basic Energy Sciences; Ray, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2003-06-10

    On September 26–28, 2002, a workshop entitled “Understanding the Role of Water on Electron-Initiated Processes and Radical Chemistry” was held to assess new research opportunities in electron-driven processes and radical chemistry in aqueous systems. Of particular interest was the unique and complex role that the structure of water plays in influencing these processes. Novel experimental and theoretical approaches to solving long-standing problems in the field were explored. A broad selection of participants from universities and the national laboratories contributed to the workshop, which included scientific and technical presentations and parallel sessions for discussions and report writing.

  13. Understanding Craftsman’s Creativity in a Framework of Person, Process, Product and Press (4Ps)

    DEFF Research Database (Denmark)

    Zhang, Hui; Zhou, Chunfang; Tanggaard, Lene

    2016-01-01

    , Process, Product, and Press (4Ps) This research question drives to develop a theoretical study bridging two areas of creativity and craftsman’s work. This will further indicate craftsman’s working practice is full of complexity that stimulates creative behavior and that also requires a systematic view......The recent work has emphasized craftsmen are key actors in developing creative industries. However, little attention has been paid to the particular study on creativity of craftsmen. This paper aims to explore how can we understand craftsman’s creativity in a theoretical framework of Person...... to understand craftsman’s creativity as involving interaction between 4Ps....

  14. Tectonomagmatic evolution of the terrestrial planets: importance for understanding of processes of their formation and subsequent development

    Science.gov (United States)

    Sharkov, E.; Bogatikov, O.

    2009-04-01

    Our knowledge about formation and evolution of the terrestrial planets (the Earth, Venus, Mars, Mercury and, possibly, the Moon) based on different physical and geochemical speculations and models. The main disadvantage of such hypotheses is their abstract character and ignoring any data on tectonomagmatic evolution of those planets. At the same time, just this type of data provide an important information, which is necessary for elaborating of a present-day theory of their formation and evolution. The Earth has been much better studied compared to the other planets, therefore we will discuss the main questions of planetary tectonomagmatic evolution using the Earth as example plus involve other data on the Moon and the terrestrial planets. Two dominating hypotheses about composition of the primordial Earth's crust exist now: (1) traditional implies that the primordial crust had basic composition, whereas the sialic crust resulted from a geosyncline process or, in modern terms, from processes at convergent plate margins, and (2) primordial crust was sialic; the plate tectonic mechanisms started in the Middle Paleoproterozoic and resulted in oceanic spreading and formation of the secondary oceanic crust. Both models require a global melting of a primary chondritic material to form the primordial crust. The final result depends on the degree of melt differentiation during solidification of a magmatic ocean. Such a solidification, due to differences between adiabatic and melting-points gradients had to proceed in bottom-top direction (Jeffries, 1929) and resulted in accumulation of low-temperature derivates in the primordial crust. Geological data, namely granite-dominated Archean crust, and results of studying of detrital zircon from Australia supports the primordial-sialic crust hypothesis. The Moon which is four times smaller than Earth has a basic primordial crust. Such a difference can be explained by different depths of their magmatic oceans. The Early

  15. UNDERSTANDING THAI CULTURE AND ITS IMPACT ON REQUIREMENTS ENGINEERING PROCESS MANAGEMENT DURING INFORMATION SYSTEMS DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Theerasak Thanasankit

    2002-01-01

    Full Text Available This paper explores the impact of Thai culture on managing the decision making process in requirements engineering and contribution a better understand of its influence on the management of requirements engineering process. The paper illustrates the interaction of technology and culture and shows that rather than technology changing culture, culture can change the way technology is used. Thai culture is naturally inherent in Thai daily life and Thais bring that into their work practices. The concepts of power and uncertainty in Thai culture contribute toward hierarchical forms of communication and decision making process in Thailand, especially during requirements engineering, where information systems requirements need to be established for further development. The research shows that the decision making process in Thailand tends to take a much longer time, as every stage during requirements engineering needs to be reported to management for final decisions. The tall structure of Thai organisations also contributes to a bureaucratic, elongated decision-making process during information systems development. Understanding the influence of Thai culture on requirements engineering and information systems development will assist multinational information systems consulting organisations to select, adapt, better manage, or change requirements engineering process and information systems developments methodologies to work best with Thai organisations.

  16. A review of concentrated flow erosion processes on rangelands: Fundamental understanding and knowledge gaps

    Directory of Open Access Journals (Sweden)

    Sayjro K. Nouwakpo

    2016-06-01

    Full Text Available Concentrated flow erosion processes are distinguished from splash and sheetflow processes in their enhanced ability to mobilize and transport large amounts of soil, water and dissolved elements. On rangelands, soil, nutrients and water are scarce and only narrow margins of resource losses are tolerable before crossing the sustainability threshold. In these ecosystems, concentrated flow processes are perceived as indicators of degradation and often warrant the implementation of mitigation strategies. Nevertheless, this negative perception of concentrated flow processes may conflict with the need to improve understanding of the role of these transport vessels in redistributing water, soil and nutrients along the rangeland hillslope. Vegetation influences the development and erosion of concentrated flowpaths and has been the primary factor used to control and mitigate erosion on rangelands. At the ecohydrologic level, vegetation and concentrated flow pathways are engaged in a feedback relationship, the understanding of which might help improve rangeland management and restoration strategies. In this paper, we review published literature on experimental and conceptual research pertaining to concentrated flow processes on rangelands to: (1 present the fundamental science underpinning concentrated flow erosion modeling in these landscapes, (2 discuss the influence of vegetation on these erosion processes, (3 evaluate the contribution of concentrated flow erosion to overall sediment budget and (4 identify knowledge gaps.

  17. Aspects of the magmatic geochemistry of bismuth

    Science.gov (United States)

    Greenland, L.P.; Gottfried, D.; Campbell, E.Y.

    1973-01-01

    Bismuth has been determined in 74 rocks from a differentiated tholeiitic dolerite, two calc-alkaline batholith suites and in 66 mineral separates from one of the batholiths. Average bismuth contents, weighted for rock type, of the Great Lake (Tasmania) dolerite, the Southern California batholith and the Idaho batholith are, 32, 50 and 70 ppb respectively. All three bodies demonstrate an enrichment of bismuth in residual magmas with magmatic differentiation. Bismuth is greatly enriched (relative to the host rock) in the calcium-rich accessory minerals, apatite and sphene, but other mineral analyses show that a Bi-Ca association is of little significance to the magmatic geochemistry of bismuth. Most of the bismuth, in the Southern California batholith at least, occurs in a trace mineral phase (possibly sulfides) present as inclusions in the rock-forming minerals. ?? 1973.

  18. Societal rationality; towards an understanding of decision making processes in society

    International Nuclear Information System (INIS)

    Wahlstroem, Bjoern

    2001-01-01

    In a search for new ways to structure decision making on complex and controversial issues it is necessary to build an understanding of why traditional decision making processes break down. One reason is connected to the issues themselves. They represent steps into the unknown and decisions should therefore be made with prudence. A second reason is connected to a track record according to which new technologies are seen as generating more problems than solutions. A third and more fundamental reason is connected to the decision making processes themselves and a need to find better ways to approach difficult questions in the society. One way to approach societal decision making processes is to investigate their hidden rationality in an attempt to understand causes of observed difficulties. The paper is based mainly on observations from the nuclear industry, but it builds also on controversies experienced in attempts to agree on global efforts towards sustainable approaches to development. It builds on an earlier paper, which discussed the basis of rationality both on an individual and a societal level. Research in societal decision making has to rely on a true multi-disciplinary approach. It is nor enough to understand the technical and scientific models by which outcomes are predicted, but it is also necessary to understand how people make sense of their environment and how they co-operate. Rationality is in this connection one of the key concepts, with an understanding that people always are rational in their own frame of action. The challenge in this connection is to understand how this subjective rationality is formed. Societal rationality has to do with the allocation of resources. There are decisions in which several conflicting views have to be considered. Spending time and resources ex ante may support a consensus ex post, but unfortunately there is no panacea for approaching difficult decisions. Decisions with an uncertain future have to be more robust than

  19. Societal rationality; towards an understanding of decision making processes in society

    Energy Technology Data Exchange (ETDEWEB)

    Wahlstroem, Bjoern [Technical Research Centre of Finland, Espoo (Finland)

    2001-07-01

    In a search for new ways to structure decision making on complex and controversial issues it is necessary to build an understanding of why traditional decision making processes break down. One reason is connected to the issues themselves. They represent steps into the unknown and decisions should therefore be made with prudence. A second reason is connected to a track record according to which new technologies are seen as generating more problems than solutions. A third and more fundamental reason is connected to the decision making processes themselves and a need to find better ways to approach difficult questions in the society. One way to approach societal decision making processes is to investigate their hidden rationality in an attempt to understand causes of observed difficulties. The paper is based mainly on observations from the nuclear industry, but it builds also on controversies experienced in attempts to agree on global efforts towards sustainable approaches to development. It builds on an earlier paper, which discussed the basis of rationality both on an individual and a societal level. Research in societal decision making has to rely on a true multi-disciplinary approach. It is nor enough to understand the technical and scientific models by which outcomes are predicted, but it is also necessary to understand how people make sense of their environment and how they co-operate. Rationality is in this connection one of the key concepts, with an understanding that people always are rational in their own frame of action. The challenge in this connection is to understand how this subjective rationality is formed. Societal rationality has to do with the allocation of resources. There are decisions in which several conflicting views have to be considered. Spending time and resources ex ante may support a consensus ex post, but unfortunately there is no panacea for approaching difficult decisions. Decisions with an uncertain future have to be more robust than

  20. Mesozoic Granitic Magmatism in Macao, Southeast China

    Science.gov (United States)

    Quelhas, P. M.; Mata, J.; Lou, U. T.; Ribeiro, M. L.; Dias, Á. A.

    2016-12-01

    Macao ( 30 Km2) is a territory characterized by small granitic intrusions, located along the coastal region of Southeast China (Cathaysia Block). Granitoids occur as different facies, including microgranite dykes, with distinct textural, mineralogical and geochemical features, for which a middle-upper Jurassic age ( 164 Ma) has been proposed. New data suggest that these granitoids are mostly high-K calc-alkaline metaluminous (A/CNK = 0.8 - 1.1) biotite granites, consistent with total absence of primary muscovite. They show variable amounts of SiO2 (67-77%), reflecting different degrees of magmatic evolution. There is also variability in terms of trace elements, particularly Rare Earth Elements (REEs), evidenced by decreasing (La/Sm)N, (Gd/Lu)N, (Ce/Yb)N and (Eu/Eu*)N towards the more evolved samples, which can be partly attributed to fractional crystallization processes. Most of the granitoids are characterized by (La/Yb)N = 3 - 10.8, showing negative Ba, Nb, Sr, Zr, P, Ti and Eu anomalies. On the other hand, microgranite dykes, along with a few more evolved granites, show an opposite tendency, being usually enriched in HREEs relatively to LREEs with (La/Yb)N = 0.4 - 1.1. Our data suggests intermediate genetic affinities between I-type and A-type granites. Although these granitoids are mostly metaluminous (characteristic of I-types), Ga/Al ratios, usually used to identify A-types, are close to the accepted boundary between A-type and other granite types. The affinities with A-type granites are more marked for the more evolved facies, which depict higher values of FeOt/MgO (14 - 60) and K2O/MgO (60 - 250). Their trace element characteristics are also transitional between WPG (Within-plate granites) and Syn-COLG (Collision Granites). We interpret those transitional characteristics (A/I and WPG/Syn-COLG) of Macao granitoids as reflecting an origin by melting of infracrustal sources over a period of high heat transfer from mantle to crust during an extensional tectonic

  1. Using a Design Science Perspective to Understand a Complex Design-Based Research Process

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2012-01-01

    The purpose of the paper is to demonstrate how a design science perspective can be used to describe and understand a set of related design-based research processes. We describe and analyze a case study in a manner that is inspired by design science. The case study involves the design of modeling......-based research processes. And we argue that a design science perspective may be useful for both researchers and practitioners....... tools and the redesign of an information service in a library. We use a set of guidelines from a design science perspective to organize the description and analysis of the case study. By doing this we demonstrate the usefulness of design science as an analytical tool for understanding related design...

  2. Embedded formative assessment and classroom process quality. How do they interact in promoting students' science understanding

    OpenAIRE

    Decristan, Jasmin; Klieme, Eckhard; Kunter, Mareike; Hochweber, Jan; Büttner, Gerhard; Fauth, Benjamin; Hondrich, Anna Lena; Rieser, Svenja; Hertel, Silke; Hardy, Ilonca

    2015-01-01

    In this study we examine the interplay between curriculum-embedded formative assessment-a well-known teaching practice-and general features of classroom process quality (i.e., cognitive activation, supportive climate, classroom management) and their combined effect on elementary school students' understanding of the scientific concepts of floating and sinking. We used data from a cluster-randomized controlled trial and compared curriculum-embedded formative assessment (17 classes) with a cont...

  3. Beyond Homophily: A Decade of Advances in Understanding Peer Influence Processes

    OpenAIRE

    Brechwald, Whitney A.; Prinstein, Mitchell J.

    2011-01-01

    This article reviews empirical and theoretical contributions to a multidisciplinary understanding of peer influence processes in adolescence over the past decade. Five themes of peer influence research from this decade were identified, including a broadening of the range of behaviors for which peer influence occurs, distinguishing the sources of influence, probing the conditions under which influence is amplified/attenuated (moderators), testing theoretically based models of peer influence pr...

  4. Neural Information Processing in Cognition: We Start to Understand the Orchestra, but Where is the Conductor?

    Science.gov (United States)

    Palm, Günther

    2016-01-01

    Research in neural information processing has been successful in the past, providing useful approaches both to practical problems in computer science and to computational models in neuroscience. Recent developments in the area of cognitive neuroscience present new challenges for a computational or theoretical understanding asking for neural information processing models that fulfill criteria or constraints from cognitive psychology, neuroscience and computational efficiency. The most important of these criteria for the evaluation of present and future contributions to this new emerging field are listed at the end of this article. PMID:26858632

  5. Powder stickiness in milk drying: uncertainty and sensitivity analysis for process understanding

    DEFF Research Database (Denmark)

    Ferrari, Adrián; Gutiérrez, Soledad; Sin, Gürkan

    2017-01-01

    A powder stickiness model based in the glass transition temperature (Gordon – Taylor equations) was built for a production scale milk drying process (including a spray chamber, and internal/external fluid beds). To help process understanding, the model was subjected to sensitivity analysis (SA......) of inputs/parameters, and uncertainty analysis (UA) to estimate confidence intervals on model predictions. For SA, a differential local and also a global approach were used. A variance decomposition method (e.g. Sobol first order sensitivity index) was implemented for global SA, and Monte Carlo technique...

  6. Unraveling the dynamics of magmatic CO2 degassing at Mammoth Mountain, California

    Science.gov (United States)

    Pfeiffer, Loic; Wanner, Christoph; Lewicki, Jennifer L.

    2018-01-01

    The accumulation of magmatic CO2 beneath low-permeability barriers may lead to the formation of CO2-rich gas reservoirs within volcanic systems. Such accumulation is often evidenced by high surface CO2 emissions that fluctuate over time. The temporal variability in surface degassing is believed in part to reflect a complex interplay between deep magmatic degassing and the permeability of degassing pathways. A better understanding of the dynamics of CO2 degassing is required to improve monitoring and hazards mitigation in these systems. Owing to the availability of long-term records of CO2 emissions rates and seismicity, Mammoth Mountain in California constitutes an ideal site towards such predictive understanding. Mammoth Mountain is characterized by intense soil CO2 degassing (up to ∼1000 t d−1) and tree kill areas that resulted from leakage of CO2 from a CO2-rich gas reservoir located in the upper ∼4 km. The release of CO2-rich fluids from deeper basaltic intrusions towards the reservoir induces seismicity and potentially reactivates faults connecting the reservoir to the surface. While this conceptual model is well-accepted, there is still a debate whether temporally variable surface CO2 fluxes directly reflect degassing of intrusions or variations in fault permeability. Here, we report the first large-scale numerical model of fluid and heat transport for Mammoth Mountain. We discuss processes (i) leading to the initial formation of the CO2-rich gas reservoir prior to the occurrence of high surface CO2 degassing rates and (ii) controlling current CO2 degassing at the surface. Although the modeling settings are site-specific, the key mechanisms discussed in this study are likely at play at other volcanic systems hosting CO2-rich gas reservoirs. In particular, our model results illustrate the role of convection in stripping a CO2-rich gas phase from a rising hydrothermal fluid and leading to an accumulation of a large mass of CO2 (∼107–108

  7. Referral to a periodontist by a general dentist: An understanding of the referral process

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Bhati

    2016-01-01

    Full Text Available Periodontal disease is one of the most common health care problems. The type of treatment of periodontal disease depends on the diagnosis. The treatment plan should also focus on managing the risk factors and modifying factors which affect the periodontal disease and treatment. The evidence-based advancements have given a success predictability level to the periodontal diagnosis and treatment plan. The level of specialty education is limited in the curriculum for undergraduates. Patients should receive the same quality of treatment whether administered by a specialist or general practitioner. Therefore, general dentists need to be well informed about how to make timely and appropriate referrals to periodontists when necessary. An online literature search was done through PubMed, PMC, and open access journals to understand the referral process. Articles pertaining to referral process were selected. Based on the search, it was found that knowledge of elements of the referral process, conditions (general and periodontal requiring referral, and selection of periodontist are important aspects of the referral process. This short communication will help the general dentist to understand the referral process that will enable them to provide the timely periodontal referral and treatment to the patients.

  8. Evolution of the earliest mantle caused by the magmatism-mantle upwelling feedback: Implications for the Moon and the Earth

    Science.gov (United States)

    Ogawa, M.

    2017-12-01

    The two most important agents that cause mantle evolution are magmatism and mantle convection. My earlier 2D numerical models of a coupled magmatism-mantle convection system show that these two agents strongly couple each other, when the Rayleigh number Ra is sufficiently high: magmatism induced by a mantle upwelling flow boosts the upwelling flow itself. The mantle convection enhanced by this positive feedback (the magmatism-mantle upwelling, or MMU, feedback) causes vigorous magmatism and, at the same time, strongly stirs the mantle. I explored how the MMU feedback influences the evolution of the earliest mantle that contains the magma ocean, based on a numerical model where the mantle is hot and its topmost 1/3 is partially molten at the beginning of the calculation: The evolution drastically changes its style, as Ra exceeds the threshold for onset of the MMU feedback, around 107. At Ra 107, however, the mantle remains compositionally more homogeneous in spite of the widespread magmatism, and the deep mantle remains hotter than the shallow mantle, because of the strong convective stirring caused by the feedback. The threshold value suggests that the mantle of a planet larger than Mars evolves in a way substantially different from that in the Moon does. Indeed, in my earlier models, magmatism makes the early mantle compositionally stratified in the Moon, but the effects of strong convective stirring overwhelms that of magmatism to keep the mantle compositionally rather homogeneous in Venus and the Earth. The MMU feedback is likely to be a key to understanding why vestiges of the magma ocean are so scarce in the Earth.

  9. Metallogeny by Trans-magmatic Fluids—Theoretical Analysis and Field Evidence

    Science.gov (United States)

    Luo, Zhaohua; Mo, Xuanxue; Lu, Xinxiang; Chen, Bihe; Ke, Shan; Hou, Zengqian; Jiang, Wan

    This paper is aimed at introducing and developing the principle of Metallogenic Theory through Trans-magmatic Fluids (MTTF) proposed by the Russian Kozhinskii's school. Some fundamental problems of metallogeny are discussed on geodynamic bases. In this theory, the trans-magmatic fluid is interpreted as a moving fluid passing through magma which is not yet consolidated. The intensive wallrock alteration of most of hydrothermal ore systems suggests that large scale fluid flow accompanies metallogenesis. However, geological observations and experiments imply a very limited solubility of fluids in magmas. In addition, the close relationship between small igneous bodies and large ore systems together with the difficulty of fluids that from the wallrocks might enter a magmatic body, which is under high pressure and temperature, need also to be considered. Those ore-bearing fluids that originate from a deep fluid system, are independent of magmas. Experiments show rapid increases of the solubility of ore-forming elements or their compounds in hydrothermal fluids. Therefore, the essential prerequisites for mineralization are (1) large volumes of deep ore-bearing fluids with high concentration of metals, and (2) the large amounts of metal accumulation depend on the rapid ascent of the deep ore-bearing fluid. Magmas are the favorable medium for the ascending fluids, because these magmas provide conditions that prevent re-equilibrium between the fluid and the wallrocks at different deep levels. The fluids in turn, may provide the driving force for the rapid ascent of magmas. Therefore, the two systems act together to account for the close relationship between magmatism and metallogeny. According to this theory, the scale and location of an ore-forming process are decided by (1) the volumetric ratio of the magma and the fluid systems, (2) the ascending rate of the ore-bearing fluid, (3) the boundary conditions for metal accumulation and (4) the segregation of the fluid from

  10. Understanding Nutrient Processing Under Similar Hydrologic Conditions Along a River Continuum

    Science.gov (United States)

    Garayburu-Caruso, V. A.; Mortensen, J.; Van Horn, D. J.; Gonzalez-Pinzon, R.

    2015-12-01

    Eutrophication is one of the main causes of water impairment across the US. The fate of nutrients in streams is typically described by the dynamic coupling of physical processes and biochemical processes. However, isolating each of these processes and determining its contribution to the whole system is challenging due to the complexity of the physical, chemical and biological domains. We conducted column experiments seeking to understand nutrient processing in shallow sediment-water interactions along representative sites of the Jemez River-Rio Grande continuum (eight stream orders), in New Mexico (USA). For each stream order, we used a set of 6 columns packed with 3 different sediments, i.e., Silica Cone Density Sand ASTM D 1556 (0.075-2.00 mm), gravel (> 2mm) and native sediments from each site. We incubated the sediments for three months and performed tracer experiments in the laboratory under identical flow conditions, seeking to normalize the physical processes along the river continuum. We added a short-term pulse injection of NO3, resazurin and NaCl to each column and determined metabolism and NO3 processing using the Tracer Additions for Spiraling Curve Characterization method (TASCC). Our methods allowed us to study how changes in bacterial communities and sediment composition along the river continuum define nutrient processing.

  11. Understanding how replication processes can maintain systems away from equilibrium using Algorithmic Information Theory.

    Science.gov (United States)

    Devine, Sean D

    2016-02-01

    Replication can be envisaged as a computational process that is able to generate and maintain order far-from-equilibrium. Replication processes, can self-regulate, as the drive to replicate can counter degradation processes that impact on a system. The capability of replicated structures to access high quality energy and eject disorder allows Landauer's principle, in conjunction with Algorithmic Information Theory, to quantify the entropy requirements to maintain a system far-from-equilibrium. Using Landauer's principle, where destabilising processes, operating under the second law of thermodynamics, change the information content or the algorithmic entropy of a system by ΔH bits, replication processes can access order, eject disorder, and counter the change without outside interventions. Both diversity in replicated structures, and the coupling of different replicated systems, increase the ability of the system (or systems) to self-regulate in a changing environment as adaptation processes select those structures that use resources more efficiently. At the level of the structure, as selection processes minimise the information loss, the irreversibility is minimised. While each structure that emerges can be said to be more entropically efficient, as such replicating structures proliferate, the dissipation of the system as a whole is higher than would be the case for inert or simpler structures. While a detailed application to most real systems would be difficult, the approach may well be useful in understanding incremental changes to real systems and provide broad descriptions of system behaviour. Copyright © 2016 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.

  12. Processes of enhanced self-understanding during a counselling programme for parents of children with disabilities.

    Science.gov (United States)

    Haugstvedt, Karen Therese Sulheim; Graff-Iversen, Sidsel; Bukholm, Ida Rashida Khan; Haugli, Liv; Hallberg, Ulrika

    2013-03-01

    The stress and burden on parents of children with disabilities are well documented, and the parents' way of handling the situation is crucial to the health and well-being of all family members, including the child with special needs. We conducted a group-based counselling programme for parents, based mainly on Gestalt education and personal construct theories, aiming at increasing the parents' ability to handle the situation. To explore the parents' experiences from processes of change after the counselling programme. METHOD DESIGN: This qualitative study is based on modified grounded theory. The study conducted in Norway examines the experiences of 67 parents (of whom 29 fathers) of children with disabilities. Information was collected through focus group discussions after finishing their sessions of the counselling programme. From the parents' experiences, the following categories were developed: feeling motivated to communicate, describing oneself in new words, being inspired to experience one's own emotions, being more present and in charge and making a difference by taking new steps. The core category in our analysis turned out to be Improved handling of the situation by enhanced self-understanding. The parents seemed to redevelop their self-understanding through new experiences of themselves. They emphasized the importance of a secure setting of peers with similar experiences and skilled counsellors to feel free to explore one's own emotions with connecting thoughts and bodily reactions. Discussion of existential issues as one's own values also contributed to enhanced self-understanding, which strengthened the parents to find new possibilities and priorities in handling the situation. The parents described subjective processes of awareness and self-reflection as important for being able to start a process towards enhanced self-understanding, which helped to detect one's own values and new ways of acting. These experiences may be relevant for the parents and

  13. Towards an integrated understanding of how micro scale processes shape groundwater ecosystem functions.

    Science.gov (United States)

    Schmidt, Susanne I; Cuthbert, Mark O; Schwientek, Marc

    2017-08-15

    Micro scale processes are expected to have a fundamental role in shaping groundwater ecosystems and yet they remain poorly understood and under-researched. In part, this is due to the fact that sampling is rarely carried out at the scale at which microorganisms, and their grazers and predators, function and thus we lack essential information. While set within a larger scale framework in terms of geochemical features, supply with energy and nutrients, and exchange intensity and dynamics, the micro scale adds variability, by providing heterogeneous zones at the micro scale which enable a wider range of redox reactions. Here we outline how understanding micro scale processes better may lead to improved appreciation of the range of ecosystems functions taking place at all scales. Such processes are relied upon in bioremediation and we demonstrate that ecosystem modelling as well as engineering measures have to take into account, and use, understanding at the micro scale. We discuss the importance of integrating faunal processes and computational appraisals in research, in order to continue to secure sustainable water resources from groundwater. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Toward understanding the thermodynamics of TALSPEAK process. Medium effects on actinide complexation

    Energy Technology Data Exchange (ETDEWEB)

    Peter R Zalupski; Leigh R Martin; Ken Nash; Yoshinobu Nakamura; Masahiko Yamamoto

    2009-07-01

    The ingenious combination of lactate and diethylenetriamine-N,N,N’,N”,N”-pentaacetic acid (DTPA) as an aqueous actinide-complexing medium forms the basis of the successful separation of americium and curium from lanthanides known as the TALSPEAK process. While numerous reports in the prior literature have focused on the optimization of this solvent extraction system, considerably less attention has been devoted to the understanding of the basic thermodynamic features of the complex fluids responsible for the separation. The available thermochemical information of both lactate and DTPA protonation and metal complexation reactions are representative of the behavior of these ions under idealized conditions. Our previous studies of medium effects on lactate protonation suggest that significant departures from the speciation predicted based on reported thermodynamic values should be expected in the TALSPEAK aqueous environment. Thermodynamic parameters describing the separation chemistry of this process thus require further examination at conditions significantly removed from conventional ideal systems commonly employed in fundamental solution chemistry. Such thermodynamic characterization is the key to predictive modelling of TALSPEAK. Improved understanding will, in principle, allow process technologists to more efficiently respond to off-normal conditions during large scale process operation. In this report, the results of calorimetric and potentiometric investigations of the effects of aqueous electrolytes on the thermodynamic parameters for lactate protonation and lactate complexation of americium and neodymium will be presented. Studies on the lactate protonation equilibrium will clearly illustrate distinct thermodynamic variations between strong electrolyte aqueous systems and buffered lactate environment.

  15. Lithospheric convective removal related post-collisional middle Eocene magmatism along the Izmir-Ankara-Erzincan suture zone (NE Turkey).

    Science.gov (United States)

    Göçmengil, Gönenç; Karacık, Zekiye; Genç, Ş. Can

    2017-04-01

    Obliteration of the Mesozoic Neo-Tethyan Ocean and succeeding collision of the micro plates along the northern part of Turkey lead the development of the İzmir-Ankara-Erzincan suture zone (IAESZ). The suturing and collision stages terminate with the amalgamation of the three different crustal blocks (Pontides, Central Anatolian Crystalline Complex and Anatolide-Tauride Block) in the Paleocene-Early Eocene period. After the collisional stage; a new phase of extension and magmatism concomitantly developed at the both sides and as well as along the IAESZ during the Middle Eocene period. However, the origin, mechanism and driving force of the post-collisional magmatism is still enigmatic. To understand and better constrain the syn-to post collisional evolutionary stages, we have carried out volcano-stratigraphy and geochemistry based study on the middle Eocene magmatic associations along a transect ( 100 km) from Pontides to the Central Anatolian Crystalline Complex (CACC) at the NE part of the Turkey. Middle Eocene magmatic activity in the region has been represented by calc-alkaline, alkaline, shoshonitic volcanic and granitic rocks together with scarce gabbroic intrusions. We particularly focused on middle Eocene volcano-sedimentary successions (MEVSS) to constrain the tectono-magmatic evolution of the abovementioned transect. The volcano-sedimentary succsessions are coevally developed and cover the crustal blocks (Pontides and CACC) and the IAESZ with a region wide unconformity. We have differentiated three lava series (V1-V2-V3) and their sub-groups (V1a-V1b; V2a-V2b) in MEVSS. Generally, all lava series have middle-K to shoshonitic composition with distinct subduction characteristics. V1 series is marked by presence of hydrous phenocrysts such as amphibole+biotite. V1a sub-group constitute the first volcanic product and characterized by the high Mg# (42-69); alkaline basaltic andesite, and hawaiites. V1b sub-group is represented by calc-alkaline, low Mg# (24

  16. Fundamental understanding of distracted oxygen delignification efficiency by dissolved lignin during biorefinery process of eucalyptus.

    Science.gov (United States)

    Zhao, Huifang; Li, Jing; Zhang, Xuejin

    2018-02-27

    In this work, a fundamental understanding of oxygen delignification distracted by dissolved lignin was investigated. In the new biorefinery model of shortening kraft pulping integrated with extended oxygen delignification process, increasing content of residual lignin in the original pulp could result in enhanced delignification efficiency, higher pulp viscosity and less carbonyl groups. However, the invalid oxygen consumption by dissolved lignin could be increased with the increase of process temperature and alkali dosage. The normalized ultraviolet absorbance (divided by absorbance at 280 nm) also showed that the content of chromophoric group in dissolved lignin decreased with oxygen delignification proceeded, both of which indicated that dissolved lignin could enhance the invalid oxygen consumption. Therefore, a conclusion that replacement of the liquor at the initial phase of oxygen delignification process would balance the enhancement of delignification efficiency and invalid oxygen consumption was achieved. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Cognitive analysis as a way to understand students' problem-solving process in BODMAS rule

    Science.gov (United States)

    Ung, Ting Su; Kiong, Paul Lau Ngee; Manaf, Badron bin; Hamdan, Anniza Binti; Khium, Chen Chee

    2017-04-01

    Students tend to make lots of careless mistake during the process of mathematics solving. To facilitate effective learning, educators have to understand which cognitive processes are used by students and how these processes help them to solve problems. This paper is only aimed to determine the common errors in mathematics by pre-diploma students that took Intensive Mathematics I (MAT037) in UiTM Sarawak. Then, concentrate on the errors did by the students on the topic of BODMAS rule and the mental processes corresponding to these errors that been developed by students. One class of pre-diploma students taking MAT037 taught by the researchers was selected because they performed poorly in SPM mathematics. It is inevitable that they finished secondary education with many misconceptions in mathematics. The solution scripts for all the tutorials of the participants were collected. This study was predominately qualitative and the solution scripts were content analyzed to identify the common errors committed by the participants, and to generate possible mental processes to these errors. Selected students were interviewed by the researchers during the progress. BODMAS rule could be further divided into Numerical Simplification and Powers Simplification. Furthermore, the erroneous processes could be attributed to categories of Basic Arithmetic Rules, Negative Numbers and Powers.

  18. Understanding the implementation of complex interventions in health care: the normalization process model

    Directory of Open Access Journals (Sweden)

    Rogers Anne

    2007-09-01

    Full Text Available Abstract Background The Normalization Process Model is a theoretical model that assists in explaining the processes by which complex interventions become routinely embedded in health care practice. It offers a framework for process evaluation and also for comparative studies of complex interventions. It focuses on the factors that promote or inhibit the routine embedding of complex interventions in health care practice. Methods A formal theory structure is used to define the model, and its internal causal relations and mechanisms. The model is broken down to show that it is consistent and adequate in generating accurate description, systematic explanation, and the production of rational knowledge claims about the workability and integration of complex interventions. Results The model explains the normalization of complex interventions by reference to four factors demonstrated to promote or inhibit the operationalization and embedding of complex interventions (interactional workability, relational integration, skill-set workability, and contextual integration. Conclusion The model is consistent and adequate. Repeated calls for theoretically sound process evaluations in randomized controlled trials of complex interventions, and policy-makers who call for a proper understanding of implementation processes, emphasize the value of conceptual tools like the Normalization Process Model.

  19. Functional traits can improve our understanding of niche- and dispersal-based processes.

    Science.gov (United States)

    Jiang, Feng; Xun, Yanhan; Cai, Huiying; Jin, Guangze

    2018-03-01

    Ecologists often determine the relative importance of niche- and dispersal-based processes via variation partitioning based on species composition. Functional traits and their proxies of phylogeny are expected to increase the detection of niche-based processes and reduce the unexplained variation relative to species identity. We collected eight adult tree traits and phylogenetic data of 41 species and employed a phylogenetic fuzzy weighting method to address this issue in a 9-ha temperate forest dynamics plot. We used redundancy analysis to relate species, phylogenetic and functional compositions to environmental (soil resources and topography) and spatial variables. We also performed multi-scaled analyses on spatial variables by adding environment as the covariates to determine if functional traits increase the detection of niche-based processes at broad scales. The functional traits and intraspecific variation of the wood density among ontogenetic stages could dramatically increase the detection of niche-based processes and reduce the unexplained variation relative to species identity. Phylogenetic and functional compositions were mainly driven by total soil P and elevation, while species composition was weakly affected by multiple environmental variables. After controlling for the environment, a larger amount of the compositional variations in seed mass and maximum height were explained by finer-scaled spatial variables, indicating that dispersal processes may be important at fine spatial scales. Our results suggested that considering functional traits and their intraspecific variations could improve our understanding of ecological processes and increase our ability to predict the responses of plants to environmental change.

  20. The problem of “culture” in the process of intercultural understanding

    Directory of Open Access Journals (Sweden)

    Andreana Marchi

    2016-01-01

    Full Text Available http://dx.doi.org/10.5007/2175-8026.2016v69n1p251 The problem of “culture” in the process of intercultural understanding is one of the most discussed issues among scholars today. Anthropologists, linguists, literary critics, and philosophers, just to name a few, study this issue in a problem-based and research format. Culture and cultural understanding are hereby presented by demonstrating studies and observations of two cultural anthropologists, R. H. Robbins and Clifford Geertz, a literary critic, Lionel Trilling, and C. S. Lewis, a famous writer of both fiction and non-fiction. My intention here is to answer the question: how to describe and analyze a culture that is so different from the perspective of our own? In this sense, language and discourse are also analyzed in this paper as part of culture and can indicate some of our own moral perspectives and judgments on others’ cultures.

  1. Assessing middle school students` understanding of science relationships and processes: Year 2 - instrument validation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schau, C.; Mattern, N.; Weber, R.; Minnick, K.

    1997-01-01

    Our overall purpose for this multi-year project was to develop an alternative assessment format measuring rural middle school students understanding of science concepts and processes and the interrelationships among them. This kind of understanding is called structural knowledge. We had 3 major interrelated goals: (1) Synthesize the existing literature and critically evaluate the actual and potential use of measures of structural knowledge in science education. (2) Develop a structural knowledge alternative assessment format. (3) Examine the validity of our structural knowledge format. We accomplished the first two goals during year 1. The structural knowledge assessment we identified and developed further was a select-and-fill-in concept map format. The goal for our year 2 work was to begin to validate this assessment approach. This final report summarizes our year 2 work.

  2. Understanding the process of social network evolution: Online-offline integrated analysis of social tie formation.

    Science.gov (United States)

    Kwak, Doyeon; Kim, Wonjoon

    2017-01-01

    It is important to consider the interweaving nature of online and offline social networks when we examine social network evolution. However, it is difficult to find any research that examines the process of social tie formation from an integrated perspective. In our study, we quantitatively measure offline interactions and examine the corresponding evolution of online social network in order to understand the significance of interrelationship between online and offline social factors in generating social ties. We analyze the radio signal strength indicator sensor data from a series of social events to understand offline interactions among the participants and measure the structural attributes of their existing online Facebook social networks. By monitoring the changes in their online social networks before and after offline interactions in a series of social events, we verify that the ability to develop an offline interaction into an online friendship is tied to the number of social connections that participants previously had, while the presence of shared mutual friends between a pair of participants disrupts potential new connections within the pre-designed offline social events. Thus, while our integrative approach enables us to confirm the theory of preferential attachment in the process of network formation, the common neighbor theory is not supported. Our dual-dimensional network analysis allows us to observe the actual process of social network evolution rather than to make predictions based on the assumption of self-organizing networks.

  3. Dual processing and discourse space: Exploring fifth grade students' language, reasoning, and understanding through writing

    Science.gov (United States)

    Yoon, Sae Yeol

    analysis of writing and talking. The results showed (1) students' low level of engagement in evaluation impacted their reasoning and use of sources for making meanings, as well as their understanding of the topic. Compared to the results of a previous study, students' complexity of reasoning was relatively less developed, and similarly students' use of reflective sources was generally observed relatively less often. (2) The teacher and students in this study engaged in limited public negotiation, which focused more on articulating than on evaluating ideas. The limited public negotiation that was represented by the dialogical patterns in this study cannot support the development of understanding through writing or the practice of the roles of constructor and critiquer, which play a core function in the comprehension of scientific practice. This study has several implications for teacher education and research. Teacher education needs to be centered more on how to encourage students' engagement in the process of evaluation, since this plays an important function not only in the development of understanding, but also in providing opportunities to perform the roles of both constructor and critiquer. Teachers can use writing as an argumentative activity to encourage or foster students' engagement in the process of evaluation or critique. Additionally, this study provides insight into the importance of the learning environment in which the teacher and students create and develop; this learning environment needs to provide not only opportunities but also demands for students to engage in both constructing and critiquing ideas.

  4. Two examples of the use of Habitus to understand processes of marginalisation

    DEFF Research Database (Denmark)

    Arp Fallov, Mia; Armstrong, Jo E.

    This paper offers an evaluation of the concept of habitus from a policy oriented perspective, drawing on empirical material from two research projects; one on urban regeneration, and one on women’s working lives. Addressing different substantive areas, these projects found common strengths...... and weaknesses in applying habitus to understand processes of continuity and change in institutions and individuals’ lives. The concept provides a temporal and spatial framework that is valuable in explaining the embodiment and reproduction of inequality. Using habitus points to the importance of social...

  5. Pharmaceutical quality by design: product and process development, understanding, and control.

    Science.gov (United States)

    Yu, Lawrence X

    2008-04-01

    The purpose of this paper is to discuss the pharmaceutical Quality by Design (QbD) and describe how it can be used to ensure pharmaceutical quality. The QbD was described and some of its elements identified. Process parameters and quality attributes were identified for each unit operation during manufacture of solid oral dosage forms. The use of QbD was contrasted with the evaluation of product quality by testing alone. The QbD is a systemic approach to pharmaceutical development. It means designing and developing formulations and manufacturing processes to ensure predefined product quality. Some of the QbD elements include: Defining target product quality profile; Designing product and manufacturing processes; Identifying critical quality attributes, process parameters, and sources of variability; Controlling manufacturing processes to produce consistent quality over time. Using QbD, pharmaceutical quality is assured by understanding and controlling formulation and manufacturing variables. Product testing confirms the product quality. Implementation of QbD will enable transformation of the chemistry, manufacturing, and controls (CMC) review of abbreviated new drug applications (ANDAs) into a science-based pharmaceutical quality assessment.

  6. Geology of the Icy Galilean Satellites: Understanding Crustal Processes and Geologic Histories Through the JIMO Mission

    Science.gov (United States)

    Figueredo, P. H.; Tanaka, K.; Senske, D.; Greeley, R.

    2003-01-01

    Knowledge of the geology, style and time history of crustal processes on the icy Galilean satellites is necessary to understanding how these bodies formed and evolved. Data from the Galileo mission have provided a basis for detailed geologic and geo- physical analysis. Due to constrained downlink, Galileo Solid State Imaging (SSI) data consisted of global coverage at a -1 km/pixel ground sampling and representative, widely spaced regional maps at -200 m/pixel. These two data sets provide a general means to extrapolate units identified at higher resolution to lower resolution data. A sampling of key sites at much higher resolution (10s of m/pixel) allows evaluation of processes on local scales. We are currently producing the first global geological map of Europa using Galileo global and regional-scale data. This work is demonstrating the necessity and utility of planet-wide contiguous image coverage at global, regional, and local scales.

  7. Understanding Fundamental Material Degradation Processes in High Temperature Aggressive Chemomechanical Environments

    International Nuclear Information System (INIS)

    2014-01-01

    The objective of this project is to develop a fundamental understanding of the mechanisms that limit materials durability for very high-temperature applications. Current design limitations are based on material strength and corrosion resistance. This project will characterize the interactions of high-temperature creep, fatigue, and environmental attack in structural metallic alloys of interest for the very high-temperature gas-cooled reactor (VHTR) or Next Generation Nuclear Plant (NGNP) and for the associated thermo-chemical processing systems for hydrogen generation. Each of these degradation processes presents a major materials design challenge on its own, but in combination, they can act synergistically to rapidly degrade materials and limit component lives. This research and development effort will provide experimental results to characterize creep-fatigue-environment interactions and develop predictive models to define operation limits for high-temperature structural material applications. Researchers will study individually and in combination creep-fatigue-environmental attack processes in Alloys 617, 230, and 800H, as well as in an advanced Ni-Cr oxide dispersion strengthened steel (ODS) system. For comparison, the study will also examine basic degradation processes in nichrome (Ni-20Cr), which is a basis for most high-temperature structural materials, as well as many of the superalloys. These materials are selected to represent primary candidate alloys, one advanced developmental alloy that may have superior high-temperature durability, and one model system on which basic performance and modeling efforts can be based. The research program is presented in four parts, which all complement each other. The first three are primarily experimental in nature, and the last will tie the work together in a coordinated modeling effort. The sections are (1) dynamic creep-fatigue-environment process, (2) subcritical crack processes, (3) dynamic corrosion crack

  8. Understanding Fundamental Material Degradation Processes in High Temperature Aggressive Chemomechanical Environments

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, James; Gewirth, Andrew; Sehitoglu, Huseyin; Sofronis, Petros; Robertson, Ian

    2014-01-16

    The objective of this project is to develop a fundamental understanding of the mechanisms that limit materials durability for very high-temperature applications. Current design limitations are based on material strength and corrosion resistance. This project will characterize the interactions of high-temperature creep, fatigue, and environmental attack in structural metallic alloys of interest for the very high-temperature gas-cooled reactor (VHTR) or Next–Generation Nuclear Plant (NGNP) and for the associated thermo-chemical processing systems for hydrogen generation. Each of these degradation processes presents a major materials design challenge on its own, but in combination, they can act synergistically to rapidly degrade materials and limit component lives. This research and development effort will provide experimental results to characterize creep-fatigue-environment interactions and develop predictive models to define operation limits for high-temperature structural material applications. Researchers will study individually and in combination creep-fatigue-environmental attack processes in Alloys 617, 230, and 800H, as well as in an advanced Ni-Cr oxide dispersion strengthened steel (ODS) system. For comparison, the study will also examine basic degradation processes in nichrome (Ni-20Cr), which is a basis for most high-temperature structural materials, as well as many of the superalloys. These materials are selected to represent primary candidate alloys, one advanced developmental alloy that may have superior high-temperature durability, and one model system on which basic performance and modeling efforts can be based. The research program is presented in four parts, which all complement each other. The first three are primarily experimental in nature, and the last will tie the work together in a coordinated modeling effort. The sections are (1) dynamic creep-fatigue-environment process, (2) subcritical crack processes, (3) dynamic corrosion – crack

  9. Toward understanding the thermodynamics of TALSPEAK process. Medium effects on actinide complexation

    International Nuclear Information System (INIS)

    Zalupski, Peter R.; Martin, Leigh R.; Nash, Ken; Nakamura, Yoshinobu; Yamamoto, Masahiko

    2009-01-01

    The ingenious combination of lactate and diethylenetriamine-N,N,N',N(double p rime),N(double p rime)-pentaacetic acid (DTPA) as an aqueous actinide-complexing medium forms the basis of the successful separation of americium and curium from lanthanides known as the TALSPEAK process. While numerous reports in the prior literature have focused on the optimization of this solvent extraction system, considerably less attention has been devoted to the understanding of the basic thermodynamic features of the complex fluids responsible for the separation. The available thermochemical information of both lactate and DTPA protonation and metal complexation reactions are representative of the behavior of these ions under idealized conditions. Our previous studies of medium effects on lactate protonation suggest that significant departures from the speciation predicted based on reported thermodynamic values should be expected in the TALSPEAK aqueous environment. Thermodynamic parameters describing the separation chemistry of this process thus require further examination at conditions significantly removed from conventional ideal systems commonly employed in fundamental solution chemistry. Such thermodynamic characterization is the key to predictive modelling of TALSPEAK. Improved understanding will, in principle, allow process technologists to more efficiently respond to off-normal conditions during large scale process operation. In this report, the results of calorimetric and potentiometric investigations of the effects of aqueous electrolytes on the thermodynamic parameters for lactate protonation and lactate complexation of americium and neodymium will be presented. Studies on the lactate protonation equilibrium will clearly illustrate distinct thermodynamic variations between strong electrolyte aqueous systems and buffered lactate environment.

  10. From Process Understanding Via Soil Functions to Sustainable Soil Management - A Systemic Approach

    Science.gov (United States)

    Wollschlaeger, U.; Bartke, S.; Bartkowski, B.; Daedlow, K.; Helming, K.; Kogel-Knabner, I.; Lang, B.; Rabot, E.; Russell, D.; Stößel, B.; Weller, U.; Wiesmeier, M.; Rabot, E.; Vogel, H. J.

    2017-12-01

    Fertile soils are central resources for the production of biomass and the provision of food and energy. A growing world population and latest climate targets lead to an increasing demand for both, food and bio-energy, which requires preserving and improving the long-term productivity of soils as a bio-economic resource. At the same time, other soil functions and ecosystem services need to be maintained: filter for clean water, carbon sequestration, provision and recycling of nutrients, and habitat for biological activity. All these soil functions result from the interaction of a multitude of physical, chemical and biological processes that are not yet sufficiently understood. In addition, we lack understanding about the interplay between the socio-economic system and the soil system and how soil functions benefit human wellbeing. Hence, a solid and integrated assessment of soil quality requires the consideration of the ensemble of soil functions and its relation to soil management to finally be able to develop site-specific options for sustainable soil management. We present an integrated modeling approach that investigates the influence of soil management on the ensemble of soil functions. It is based on the mechanistic relationships between soil functional attributes, each explained by a network of interacting processes as derived from scientific evidence. As the evidence base required for feeding the model is for the most part stored in the existing scientific literature, another central component of our work is to set up a public "knowledge-portal" providing the infrastructure for a community effort towards a comprehensive knowledge base on soil processes as a basis for model developments. The connection to the socio-economic system is established using the Drivers-Pressures-Impacts-States-Responses (DPSIR) framework where our improved understanding about soil ecosystem processes is linked to ecosystem services and resource efficiency via the soil functions.

  11. Beyond Engagement to Reflection and Understanding: Focusing on the process of science

    Science.gov (United States)

    Scotchmoor, J. G.; Mitchell, B. J.

    2011-12-01

    We must engage the public and make science more accessible to all...It is important that the scientific community, in its outreach, help people not only to see the fun of science but also to understand what science is, what a scientific theory is, how science is done, that accepted scientific models or theories are based on evidence, that hypotheses are tested by experiment, and that theories change as new evidence emerges. Shirley Ann Jackson, AAAS Presidential Address, 2005 The nature of science is noted as a critical topic for science literacy; however, by all accounts, Americans' understanding of the nature of science is inadequate, and students and teachers at all grade levels have inaccurate understandings of what science is and how it works. Such findings do not bode well for the future of scientific literacy in the United States. In large part, the current confusions about evolution, global warming, stem cell research, and other aspects of science deemed by some as "controversial" are symptomatic of a general misunderstanding of what science is and what it is not. Too few of our citizens view science as a dynamic process through which we gain a reliable understanding of the natural world. As a result, the public becomes vulnerable to misinformation and the very real benefits of science are obscured. New opportunities are emerging for members of the scientific community to share their science with segments of the public - both informally through science cafés and science festivals, and more formally through science competitions and classroom visits. Each of these helps to make science more accessible and provides a critical first step toward connecting the public to the "fun and excitement" of science. Less often these activities focus on how science works - what science is, what it is not, and what is not science - as well as the creativity, curiosity, exploration, dead-ends, and a-ha moments that inspire scientists. This talk will share a teacher

  12. Understanding non-radiative recombination processes of the optoelectronic materials from first principles

    Science.gov (United States)

    Shu, Yinan

    The annual potential of the solar energy hit on the Earth is several times larger than the total energy consumption in the world. This huge amount of energy source makes it appealing as an alternative to conventional fuels. Due to the problems, for example, global warming, fossil fuel shortage, etc. arising from utilizing the conventional fuels, a tremendous amount of efforts have been applied toward the understanding and developing cost effective optoelectrical devices in the past decades. These efforts have pushed the efficiency of optoelectrical devices, say solar cells, increases from 0% to 46% as reported until 2015. All these facts indicate the significance of the optoelectrical devices not only regarding protecting our planet but also a large potential market. Empirical experience from experiment has played a key role in optimization of optoelectrical devices, however, a deeper understanding of the detailed electron-by-electron, atom-by-atom physical processes when material upon excitation is the key to gain a new sight into the field. It is also useful in developing the next generation of solar materials. Thanks to the advances in computer hardware, new algorithms, and methodologies developed in computational chemistry and physics in the past decades, we are now able to 1). model the real size materials, e.g. nanoparticles, to locate important geometries on the potential energy surfaces(PESs); 2). investigate excited state dynamics of the cluster models to mimic the real systems; 3). screen large amount of possible candidates to be optimized toward certain properties, so to help in the experiment design. In this thesis, I will discuss the efforts we have been doing during the past several years, especially in terms of understanding the non-radiative decay process of silicon nanoparticles with oxygen defects using ab initio nonadiabatic molecular dynamics as well as the accurate, efficient multireference electronic structure theories we have developed to

  13. UNDERSTANDING AND PERCEPTION OF THE CHARACTER IMAGE BY PRIMARY SCHOOLCHILDREN IN THE PROCESS OF TEXT INTERPRETATION

    Directory of Open Access Journals (Sweden)

    Kateryna Hnatenko

    2017-07-01

    Full Text Available Modern literature research works practically assert that literature is a way of thinking in imagery, and the interpretation of art works is almost always the interpretation of imagery, in other words perfect reality. Psychologists confirm that educational process in primary school should be formed on the account of both present and potential abilities of the children. Literature is an important means of pupils’ development. Reading in grades 1 − 4 promotes the development of children’s positive moral and will-power qualitie. With its help children perceive the world, learn to understand and love beautiful things. The writer’s ideological content of a piece of literature can be revealed in images. The main objective of text interpretation in grades 1 − 4 is to promote pupils’ perception and comprehension. Nowadays the changes in educational sphere require more attention to the issue of literary perception. In 2011, primary school changed the training course of "Reading" into "Literary reading," which aims at the development of the following reader’s qualities: to be capable to independent reading,to perform different communicative and creative activities. However, the educational process observation showed the existence of problems in young learners’ perception and understanding of literary art, and especially the role of character and its images. Today, the methodology pays attention to the quality of the perception, its depth and awareness. The efficiency level of children’s literary work perception is set on the analysis of readers’ activity results. Difficulties in the determination of the literary work perception level lie in various interpretations, complexity of the perception process, necessity to reflect different sides and emotions of imagination and thinking. Many scientific works are devoted to the analysis of literary texts understanding, to the role of visual images and imagination in literary text understanding

  14. Elementary education preservice teachers' understanding of biotechnology and its related processes.

    Science.gov (United States)

    Chabalengula, Vivien Mweene; Mumba, Frackson; Chitiyo, Jonathan

    2011-07-01

    This study examined preservice teachers' understanding of biotechnology and its related processes. A sample comprised 88 elementary education preservice teachers at a large university in the Midwest of the USA. A total of 60 and 28 of the participants were enrolled in introductory and advanced science methods courses, respectively. Most participants had taken two integrated science courses at the college level. Data were collected using a questionnaire, which had open-ended items and which required participants to write the definitions and examples of the following terms: biotechnology, genetic engineering, cloning and genetically modified foods. The results indicate that preservice teachers had limited understanding of biotechnology and its related processes. The majority of the preservice teachers provided poor definitions, explanations, and examples of biotechnology, genetic engineering and genetically modified foods. Surprisingly, however, a moderate number of preservice teachers correctly defined cloning and provided correct examples of cloning. Implications for science teacher education, science curriculum, as well as recommendations for further research are discussed. Copyright © 2011 Wiley Periodicals, Inc.

  15. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes.

    Science.gov (United States)

    McCormack, M Luke; Dickie, Ian A; Eissenstat, David M; Fahey, Timothy J; Fernandez, Christopher W; Guo, Dali; Helmisaari, Heljä-Sisko; Hobbie, Erik A; Iversen, Colleen M; Jackson, Robert B; Leppälammi-Kujansuu, Jaana; Norby, Richard J; Phillips, Richard P; Pregitzer, Kurt S; Pritchard, Seth G; Rewald, Boris; Zadworny, Marcin

    2015-08-01

    Fine roots acquire essential soil resources and mediate biogeochemical cycling in terrestrial ecosystems. Estimates of carbon and nutrient allocation to build and maintain these structures remain uncertain because of the challenges of consistently measuring and interpreting fine-root systems. Traditionally, fine roots have been defined as all roots ≤ 2 mm in diameter, yet it is now recognized that this approach fails to capture the diversity of form and function observed among fine-root orders. Here, we demonstrate how order-based and functional classification frameworks improve our understanding of dynamic root processes in ecosystems dominated by perennial plants. In these frameworks, fine roots are either separated into individual root orders or functionally defined into a shorter-lived absorptive pool and a longer-lived transport fine-root pool. Using these frameworks, we estimate that fine-root production and turnover represent 22% of terrestrial net primary production globally - a c. 30% reduction from previous estimates assuming a single fine-root pool. Future work developing tools to rapidly differentiate functional fine-root classes, explicit incorporation of mycorrhizal fungi into fine-root studies, and wider adoption of a two-pool approach to model fine roots provide opportunities to better understand below-ground processes in the terrestrial biosphere. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  16. Making and Unmaking the Endangered in India (1880-Present: Understanding Animal-Criminal Processes

    Directory of Open Access Journals (Sweden)

    Varun Sharma

    2015-01-01

    Full Text Available The concerns of the present paper emerge from the single basic question of whether the available histories of the tiger are comprehensive enough to enable an understanding of how this nodular species comprises/contests the power dynamics of the present. Starting with this basic premise, this paper retells a series of events which go to clarify that a nuanced understanding of the manner in which a species serves certain political purposes is not possible by tracking the animal alone. A discourse on endangerment has beginnings in the body and being of species that are remarkably cut off from the tiger-the elephant, birds, and the rhino (and man if we might add-and develops with serious implications for power, resource appropriation, and criminality, over a period of time, before more directly recruiting the tiger itself. If we can refer to this as the intermittent making and unmaking of the endangered, it is by turning to the enunciations of Michel Foucault that we try to canvas a series of events that can be described as animal-criminal processes. The role of such processes in the construction of endangerment, the structuring of space, and shared ideas of man-animal relations is further discussed in this paper.

  17. Hydrologic Connectivity for Understanding Watershed Processes: Brand-new Puzzle or Emerging Panacea?

    Science.gov (United States)

    Ali, G. A.; Roy, A. G.; Tetzlaff, D.; Soulsby, C.; McDonnell, J. J.

    2011-12-01

    As a way to develop a more holistic approach to watershed assessment and management, the concept of hydrologic connectivity (HC) is often put at the forefront. HC can be seen as the strength of the water-mediated linkages between discrete units of the landscape and as such, it facilitates our intuitive understanding of the mechanisms driving runoff initiation and cessation. Much of the excitement surrounding HC is attributable to its potential to enhance our ability to gain insights into multiple areas including process dynamics, numerical model building, the effects of human elements in our landscape conceptualization, and the development of simplified watershed management tools. However, before such potential can be fully demonstrated, many issues must be resolved with regards to the measure of HC. Here we provide examples highlighting how connectivity can be useful towards understanding water routing in river basins, ecohydrological systems coupling, and intermittent rainfall-runoff dynamics. First, the use of connectivity metrics to examine the relative influence of surface/subsurface topography and soil characteristics on runoff generation will be discussed. Second, the effectiveness of using geochemical tracers will be examined with respect to identifying non-point runoff sources and linking hillslope-to-channel connectivity with surface water-groundwater exchanges in the biologically sensitive hyporheic zone. Third, the identification of different hydrologic thresholds will be presented as a way to discriminate the establishment of connectivity across a range of contrasted catchments located in Canada, Scotland, the USA, and Sweden. These examples will show that current challenges with regards to HC revolve around the choice of an accurate methodological framework for an appropriate translation of experimental findings into effective watershed management approaches. Addressing these questions simultaneously will lead to the emergence of HC as a powerful tool

  18. ATOMIC PHYSICS PROCESSES IMPORTANT TO THE UNDERSTANDING OF THE SCRAPE-OFF LAYER OF TOKAMAKS

    Energy Technology Data Exchange (ETDEWEB)

    WEST, W.P.; GOLDSMITH,; B. EVANS,T.E.; OLSON, R.J.

    2002-05-01

    The region between the well-confined plasma and the vessel walls of a magnetic confinement fusion research device, the scrape-off layer (SOL), is typically rich in atomic and molecular physics processes. The most advanced magnetic confinement device, the magnetically diverted tokamak, uses a magnetic separatrix to isolate the confinement zone (closed flux surfaces) from the edge plasma (open field lines). Over most of their length the open field lines run parallel to the separatrix, forming a thin magnetic barrier with the nearby vessel walls. In a poloidally-localized region, the open field lines are directed away from the separatrix and into the divertor, a region spatially separated from the separatrix where intense plasma wall interaction can occur relatively safely. Recent data from several tokamaks indicate that particle transport across the field lines of the SOL can be somewhat faster than previously thought. In these cases, the rate at which particles reach the vessel wall is comparable to the rate to the divertor from parallel transport. The SOL can be thin enough that the recycling neutrals and sputtered impurities from the wall may refuel or contaminate the confinement zone more efficiently than divertor plasma wall interaction. Just inside the SOL is a confinement barrier that produces a sharp pedestal in plasma density and temperature. Understanding neutral transport through the SOL and into the pedestal is key to understanding particle balance and particle and impurity exhaust. The SOL plasma is sufficiently hot and dense to excite and ionize neutrals. Ion and neutral temperatures are high enough that charge exchange between the neutrals and fuel and impurity ions is fast. Excitation of neutrals can be fast enough to lead to nonlinear behavior in charge exchange and ionization processes. In this paper the detailed atomic physics important to the understanding of the neutral transport through the SOL will be discussed.

  19. X-ray crystallography and its impact on understanding bacterial cell wall remodeling processes.

    Science.gov (United States)

    Büttner, Felix Michael; Renner-Schneck, Michaela; Stehle, Thilo

    2015-02-01

    The molecular structure of matter defines its properties and function. This is especially true for biological macromolecules such as proteins, which participate in virtually all biochemical processes. A three dimensional structural model of a protein is thus essential for the detailed understanding of its physiological function and the characterization of essential properties such as ligand binding and reaction mechanism. X-ray crystallography is a well-established technique that has been used for many years, but it is still by far the most widely used method for structure determination. A particular strength of this technique is the elucidation of atomic details of molecular interactions, thus providing an invaluable tool for a multitude of scientific projects ranging from the structural classification of macromolecules over the validation of enzymatic mechanisms or the understanding of host-pathogen interactions to structure-guided drug design. In the first part of this review, we describe essential methodological and practical aspects of X-ray crystallography. We provide some pointers that should allow researchers without a background in structural biology to assess the overall quality and reliability of a crystal structure. To highlight its potential, we then survey the impact X-ray crystallography has had on advancing an understanding of a class of enzymes that modify the bacterial cell wall. A substantial number of different bacterial amidase structures have been solved, mostly by X-ray crystallography. Comparison of these structures highlights conserved as well as divergent features. In combination with functional analyses, structural information on these enzymes has therefore proven to be a valuable template not only for understanding their mechanism of catalysis, but also for targeted interference with substrate binding. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. Claritas rise, Mars: Pre-Tharsis magmatism?

    Science.gov (United States)

    Dohm, J.M.; Anderson, R.C.; Williams, J.-P.; Ruiz, J.; McGuire, P.C.; Buczkowski, D.L.; Wang, R.; Scharenbroich, L.; Hare, T.M.; Connerney, J.E.P.; Baker, V.R.; Wheelock, S.J.; Ferris, J.C.; Miyamoto, H.

    2009-01-01

    Claritas rise is a prominent ancient (Noachian) center of tectonism identified through investigation of comprehensive paleotectonic information of the western hemisphere of Mars. This center is interpreted to be the result of magmatic-driven activity, including uplift and associated tectonism, as well as possible hydrothermal activity. Coupled with its ancient stratigraphy, high density of impact craters, and complex structure, a possible magnetic signature may indicate that it formed during an ancient period of Mars' evolution, such as when the dynamo was in operation. As Tharsis lacks magnetic signatures, Claritas rise may pre-date the development of Tharsis or mark incipient development, since some of the crustal materials underlying Tharsis and older parts of the magmatic complex, respectively, could have been highly resurfaced, destroying any remanent magnetism. Here, we detail the significant characteristics of the Claritas rise, and present a case for why it should be targeted by the Mars Odyssey, Mars Reconnaissance Orbiter, and Mars Express spacecrafts, as well as be considered as a prime target for future tier-scalable robotic reconnaissance. ?? 2009 Elsevier B.V.

  1. Magmatic unrest beneath Mammoth Mountain, California

    Science.gov (United States)

    Hill, David P.; Prejean, Stephanie

    2005-09-01

    Mammoth Mountain, which stands on the southwest rim of Long Valley caldera in eastern California, last erupted ˜57,000 years BP. Episodic volcanic unrest detected beneath the mountain since late 1979, however, emphasizes that the underlying volcanic system is still active and capable of producing future volcanic eruptions. The unrest symptoms include swarms of small ( M ≤ 3) earthquakes, spasmodic bursts (rapid-fire sequences of brittle-failure earthquakes with overlapping coda), long-period (LP) and very-long-period (VLP) volcanic earthquakes, ground deformation, diffuse emission of magmatic CO 2, and fumarole gases with elevated 3He/ 4He ratios. Spatial-temporal relations defined by the multi-parameter monitoring data together with earthquake source mechanisms suggest that this Mammoth Mountain unrest is driven by the episodic release of a volume of CO 2-rich hydrous magmatic fluid derived from the upper reaches of a plexus of basaltic dikes and sills at mid-crustal depths (10-20 km). As the mobilized fluid ascends through the brittle-plastic transition zone and into overlying brittle crust, it triggers earthquake swarm activity and, in the case of the prolonged, 11-month-long earthquake swarm of 1989, crustal deformation and the onset of diffuse CO 2 emissions. Future volcanic activity from this system would most likely involve steam explosions or small-volume, basaltic, strombolian or Hawaiaan style eruptions. The impact of such an event would depend critically on vent location and season.

  2. The Magmatic Component of the Plate Boundary Observatory.

    Science.gov (United States)

    Mencin, D.; Jackson, M.; Lisowski, M.; Feaux, K.; Andersen, G.; Bohnenstiehl, K.; Hodgkinson, K.; Coyle, B.; Friesen, B.; Pauk, B.; Walls, C.; Meertens, C.

    2007-12-01

    The Plate Boundary Observatory (PBO) component of the NSF-funded Earthscope program has a significant complement of instruments devoted to the study of magmatic systems. There are ten target areas: Akutan, Unimak, Augustine, Mt St Helens, Long Valley, Yellowstone, Lake Tahoe, Medicine Lake, Mt Lassen, and Mt Shasta that include 22 borehole strainmeters, 22 borehole seismometers, 26 borehole tiltmeters and 110 continuous GPS stations all returning data in near real-time. In conjunction with the existing instrumentation operated by the USGS Volcanic Hazards Programs Volcano Observatories, this represents a significant array of tools for exploring various volcanic processes. In the first four years of the project, PBO has captured two volcanic events (Mt St Helens and Augustine) far exceeding the anticipation of capturing one event in the first 15 years of the project. This presentation gives an overview and status of the program, the various targets, instrumentation and results.

  3. Mineralogy and geochemistry of the Neo-Tethyan Orhaneli ultramafic suite, NW Turkey: Evidence for the initiation and evolution of magmatic processes in a developing crust-mantle boundary

    Science.gov (United States)

    Uysal, Ibrahim; Dokuz, Abdurrahman; Kapsiotis, Argyris; Kaliwoda, Melanie; Karsli, Orhan; Müller, Dirk; Aydin, Faruk

    2017-04-01

    and Al2O3 contents and high Mg#) identical of clinopyroxene in arc-derived peridotites. These magmatically formed dunites are rich in light rare earth elements (LREE) and commonly carry elevated Pt+Pd concentrations (up to 17.92 ppb), especially compared to replacive dunites that are almost deprived of Pt and Pd (up to 3.92 ppb). Further upward movement and differentiation of this melt caused the formation of clinopyroxenites, containing spinel similar in composition to that of cumulate dunites, with elevated Pt+Pd abundances (up to 499.75 ppb) and LREE-depleted multi-element patterns typical of crystallization from a melt with comparable composition between boninite and IAT. Overall data indicate that the studied ultramafic suite represents part of a sub-oceanic Moho transition zone, which preserves mixed mantle and cumulate characteristics.

  4. Primary School Teachers' Understanding of Science Process Skills in Relation to Their Teaching Qualifications and Teaching Experience

    Science.gov (United States)

    Shahali, Edy H. M.; Halim, Lilia; Treagust, David F.; Won, Mihye; Chandrasegaran, A. L.

    2017-01-01

    This study investigated the understanding of science process skills (SPS) of 329 science teachers from 52 primary schools selected by random sampling. The understanding of SPS was measured in terms of conceptual and operational aspects of SPS using an instrument called the "Science Process Skills Questionnaire" (SPSQ) with a Cronbach's…

  5. Understanding Earthquake Processes in the Central and Eastern US and Implications for Nuclear Reactor Safety

    Science.gov (United States)

    Seber, D.; Tabatabai, S.

    2012-12-01

    All of the early site permits and new reactor licensing applications, which have been submitted to the U.S. Nuclear Regulatory Commission (U.S. NRC), are located in the Central and Eastern United States (CEUS). Furthermore, among the 104 commercial nuclear power plants (NPPs) already licensed to operate in the US, 96 are located in the CEUS. While there are many considerations in siting commercial NPPs, the perceived lower seismic hazard in the CEUS compared to the Western United States is one of the reasons why the majority of operating and potential future nuclear reactors are located in the CEUS. However, one important criterion used in the licensing and safe operation of a nuclear power plant is its seismic design basis, which establishes the plant's ability to withstand ground motions produced by moderate- to large-sized earthquakes without suffering any damage to its critical safety related structures, systems, and components. The seismic design basis for a NPP is site specific and determined using up-to-date knowledge and information about seismic sources surrounding the site and seismic wave propagation characteristics. Therefore, an in-depth understanding of the processes generating earthquakes (tectonic or man-made) and the seismic wave propagation characteristics in the CEUS is crucial. The U.S. NRC's seismic review process for evaluating new reactor siting applications heavily relies upon up-to-date scientific knowledge of seismic sources within at least 320 km of a proposed site. However, the availability of up-to-date knowledge and information about potential seismic sources in low-seismicity regions is limited and relevant data are sparse. Recently, the NRC participated in a joint effort to develop new seismic source models to be used in the CEUS seismic hazard studies for nuclear facilities. In addition, efforts are underway to better understand the seismic potential of the Eastern Tennessee Seismic Zone. While very large and successful scientific

  6. Toward an understanding of methane selectivity in the Fischer-Tropsch process

    Science.gov (United States)

    Psarras, Peter C.

    The purpose of this research is to elucidate a better understanding of the conditions relevant to methane selectivity in the Fischer-Tropsch (FT) process. The development of more efficient FT catalysts can result in great commercial profit. The industrially relevant FT process has long been hampered by the production of methane. Nearly 60 percent of FT capital is devoted to the removal of methane and purification of feed-stock gases through steam-reforming. Naturally, a more efficient FT catalyst would need to have a reasonable balance between catalytic activity and suppression of methane formation (low methane selectivity). Though a significant amount of work has been devoted to understanding the mechanisms involved in methane selectivity, the exact mechanism is still not well understood. Density functional theory (DFT) methods provide an opportunity to explore the FT catalytic process at the molecular level. This work represents a combination of various DFT approaches in an attempt to gather new insight on the conditions relevant to methane selectivity. A thorough understanding of the electronic environment involved in the surface-adsorbate interaction is necessary to the advancement of more efficient Fischer-Tropsch catalysts. This study investigates the promotive effect of four late transition metals (Cu, Ag, Au and Pd) on three FT catalytic surfaces (Fe, Co and Ni). The purpose of this research is to examine the surface-adsorbate interaction from two perspectives: 1) interactions occurring between FT precursors and small, bimetallic surface analogs (clusters), and 2) plane-wave calculations of the interactions between FT precursors and simulated bulk surfaces. Our results suggest that promising candidates for the reduction of FT methane selectivity include Au and Pd on Ni, Au and Ag on Co, and Cu, Ag, and Pd on Fe. Additionally, cluster models were susceptible to effects not encountered in the plane-wave approach. Thermodynamic trends can be made more

  7. Toward a better understanding of the complex geochemical processes governing subsurface contaminant transport

    International Nuclear Information System (INIS)

    Puls, R.W.

    1990-01-01

    Identification and understanding of the geochemical processes, including ion exchange, precipitation, organic partitioning, chemisorption, aqueous complexation, and colloidal stability and transport, controlling subsurface contamination is essential for making accurate predictions of the fate and transport of these constituents. Current approaches to quantify the effect of these processes primarily involve laboratory techniques, including the use of closed static systems (batch experiments) where small amounts of aquifer solids or minerals are contacted with an aqueous phase containing the components of interest for relatively short durations; and dynamic systems (column experiments) where a larger segment of the aquifer is investigated by analyzing the breakthrough profiles of reactive and non-reactive species. Both approaches are constrained by differences in scale, alteration of media during sample collection and use, and spatial variability. More field reactivity studies are needed to complement established laboratory approaches for the determination of retardation factors and scaling factors, corroboration of batch and column results, and validation of sampling techniques. These studies also serve to accentuate areas of geochemical process research where data deficiencies exist, such as the kinetics of adsorption-desorption, metal-organic-mineral interactions, and colloidal mobility. The advantages and disadvantages of the above approaches are discussed in the context of achieving a more completely integrated approach to geochemical transport experiments, with supportive data presented from selected studies. (Author) (16 refs., 4 figs., 2 tabs.)

  8. A new method of analysis enabled a better understanding of clinical practice guideline development processes.

    Science.gov (United States)

    Moreira, Tiago; May, Carl; Mason, James; Eccles, Martin

    2006-11-01

    To describe the process by which various forms of evidence are discussed, valued, and interpreted within the process of developing evidence-based clinical practice guidelines and, in so doing, to develop a method for such studies. An observational study. Two guideline development groups were observed by a nonparticipant observer. The 21 meetings were recorded, transcribed, and analyzed using grounded theory and frame analysis. Qualitative analysis was complemented with descriptive statistics. The groups organized their discussion around four domains--'science', 'practice', politics', and 'process'--and used boundary work to mediate between these domains. Both groups spent most time discussing 'science', followed by 'practice' or its relation with 'science'. Our analysis offers an innovative, replicable method of analysis of guideline development that permits the identification of the proportions and interrelations between knowledge domains deployed by guideline groups. This analysis also suggests that the participation hierarchy observed here and by others might be an effect of the imbalanced use of knowledge domains in the construction of clinical guidance. This constitutes an important framework to understand the interplay of participants and knowledge in guideline development.

  9. New understanding of rhizosphere processes enabled by advances in molecular and spatially resolved techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Nancy J.; Paša-Tolić, Ljiljana; Bailey, Vanessa L.; Dohnalkova, Alice C.

    2017-06-01

    Understanding the role played by microorganisms within soil systems is challenged by the unique intersection of physics, chemistry, mineralogy and biology in fostering habitat for soil microbial communities. To address these challenges will require observations across multiple spatial and temporal scales to capture the dynamics and emergent behavior from complex and interdependent processes. The heterogeneity and complexity of the rhizosphere require advanced techniques that press the simultaneous frontiers of spatial resolution, analyte sensitivity and specificity, reproducibility, large dynamic range, and high throughput. Fortunately many exciting technical advancements are now available to inform and guide the development of new hypotheses. The aim of this Special issue is to provide a holistic view of the rhizosphere in the perspective of modern molecular biology methodologies that enabled a highly-focused, detailed view on the processes in the rhizosphere, including numerous, strong and complex interactions between plant roots, soil constituents and microorganisms. We discuss the current rhizosphere research challenges and knowledge gaps, as well as perspectives and approaches using newly available state-of-the-art toolboxes. These new approaches and methodologies allow the study of rhizosphere processes and properties, and rhizosphere as a central component of ecosystems and biogeochemical cycles.

  10. Contrasting magmatic signatures in the Rairakhol and Koraput ...

    Indian Academy of Sciences (India)

    The relation between alkaline magmatism and tectonism has been a contentious issue, parti- cularly for the Precambrian continental regions. Alkaline complexes at the southwestern margin of Eastern Ghats belt, India, have been interpreted as rift-valley magmatism. However, those complexes occurring in granulite ...

  11. Study of a low-dose capsule filling process by dynamic and static tests for advanced process understanding.

    Science.gov (United States)

    Stranzinger, S; Faulhammer, E; Scheibelhofer, O; Calzolari, V; Biserni, S; Paudel, A; Khinast, J G

    2018-04-05

    Precise filling of capsules with doses in the mg-range requires a good understanding of the filling process. Therefore, we investigated the various process steps of the filling process by dynamic and static mode tests. Dynamic tests refer to filling of capsules in a regular laboratory dosator filling machine. Static tests were conducted using a novel filling system developed by us. Three grades of lactose excipients were filled into size 3 capsules with different dosing chamber lengths, nozzle diameters and powder bed heights, and, in the dynamic mode, with two filling speeds (500, 3000 caps/h). The influence of the gap at the bottom of the powder container on the fill weight and variability was assessed. Different gaps resulted in a change in fill weight in all materials, although in different ways. In all cases, the fill weight of highly cohesive Lactohale 220 increased when decreasing the gap. Furthermore, experiments with the stand-alone static test tool indicated that this very challenging powder could successfully be filled without any pre-compression in the range of 5 mg-20 mg with acceptable RSDs. This finding is of great importance since for very fine lactose powders high compression ratios (dosing-chamber-length-to-powder-bed height compression ratios) may result in jamming of the piston. Moreover, it shows that the static mode setup is suitable for studying fill weight and variability. Since cohesive powders, such as Lactohale 220, are hard to fill, we investigated the impact of vibration on the process. Interestingly, we found no correlation between the reported fill weight changes in dynamic mode at 3000 cph and static mode using similar vibration. However, we could show that vibrations during sampling in the static mode dramatically reduced fill weight variability. Overall, our results indicate that by fine-tuning instrumental settings even very challenging powders can be filled with a low-dose dosator capsule filling machine. This study is a

  12. Comparison of Re-Os Systematics Between the Nonmagmatic and Magmatic Iron Meteories

    Science.gov (United States)

    Wang, G. Q.; Peng, L.; Xu, J. F.

    2014-12-01

    Re-Os system is a valuable tool for understanding the origin and crystallization sequence of asteroidal cores, and the evolution of HSE in other planetary cores. In the past several decades, numerous Re-Os data of magmatic iron meteorites have been published, but few for nonmagmatic iron meteorites. The nonmagmatic iron meteorites experienced incomplete melt, therefore they cannot represent the asteroidal core samples. It is ambiguous question for the origin and crystallization process of nonmagmatic iron meteorites. In this study, 10 iron meteorites have been analyzed by the high-precision NTIMS (TRITON) Faraday cup static measurement through using isotopic dilution method. Among 10 iron meteorites studied here, 3 samples of group ⅢAB and one sample of group ⅢE belong to magmatic iron meteorites. Another 3 samples of groupⅠAB and 3 samples of group ⅢCD are nonmagmatic iron meteorites. The precision is ≤ 20 ppm 2σ for 187Os/188Os and blank of Re and Os is rang of 187Re/188Os ratios is from 0.460391 to 0.691148. Application of a λ for 187Re=1.666×10-11 yr-1 yields an age of 4590±37 Ma. In error rang, this age is consistent with reported Re-Os isochron age of 4558±12 Ma. The large uncertainty likely result from small number data. 3 samples of groupⅠAB in this study produce a slope of 0.07904±0.00011, and initial 187Os/188Os of 0.09663±0.00005, corresponding to T=4582.6±6.4Ma, which is older than the published data for theⅠA, 4529±23Ma, and 4537±21 Ma. Another 3 samples of group ⅢCD also defined a slop of 0.07315±0.00073, and initial 187Os/188Os of 0.09873±0.00038, the age calculation is 4253±44 Ma. 187Os/188Os ratios vary rather narrow (the biggest difference is 0.087) in the 6 nonmagmatic iron meteorites, which lead to increase the uncertainty of the ages. But one thing can be known that the crystallization of ⅠAB is earlier than ⅢCD. The distribution of Re and Os concentration also shows same compositional feature. More Re

  13. Nursing Students' Experiences of Health Care in Swaziland: Transformational Processes in Developing Cultural Understanding.

    Science.gov (United States)

    Murray, Bethany A

    2015-09-01

    This study examined the experiences of nursing students following a service-learning placement in Swaziland. Students worked in a hospital and implemented community health clinics. Six students were interviewed 1 month after their return from the overseas study experience. A thematic analysis was performed. Four themes emerged. The first theme was transitions-students experienced personal hardships, emotional reactions, and language difficulties that created discomfort. The second theme was perceptions-cultural dissonance was encountered between the health care and nursing cultures of Swaziland and the United States. The third theme was internalization-discomfort and cultural dissonance activated coping mechanisms within students that generated a process of change in attitudes and beliefs. The fourth theme was incorporation-personal and professional growth were demonstrated with greater awareness, compassion, resourcefulness, and comfort with diversity. The stress and cultural dissonance experienced by students led to an increase in cultural understanding and awareness. Copyright 2015, SLACK Incorporated.

  14. Constraining land carbon cycle process understanding with observations of atmospheric CO2 variability

    Science.gov (United States)

    Collatz, G. J.; Kawa, S. R.; Liu, Y.; Zeng, F.; Ivanoff, A.

    2013-12-01

    We evaluate our understanding of the land biospheric carbon cycle by benchmarking a model and its variants to atmospheric CO2 observations and to an atmospheric CO2 inversion. Though the seasonal cycle in CO2 observations is well simulated by the model (RMSE/standard deviation of observations 40N though fluxes match poorly at regional to continental scales. Regional and global fire emissions are strongly correlated with variability observed at northern flask sample sites and in the global atmospheric CO2 growth rate though in the latter case fire emissions anomalies are not large enough to account fully for the observed variability. We discuss remaining unexplained variability in CO2 observations in terms of the representation of fluxes by the model. This work also demonstrates the limitations of the current network of CO2 observations and the potential of new denser surface measurements and space based column measurements for constraining carbon cycle processes in models.

  15. SOCRATE: an optical bench dedicated to the understanding and improvement of a laser conditioning process

    Science.gov (United States)

    Bertussi, Bertrand; Piombini, Hervé; Damiani, David; Pommies, Matthieu; Le Borgne, Xavier; Plessis, Daniel

    2006-11-01

    We present an automatic excimer laser bench (SOCRATE) allowing for the treatment of optical components by laser conditioning. This apparatus, developed at the Commissariat a l'Energie Atomique-Le Ripault, has been designed to add to this conditioning process an in situ, accurate laser-induced damage threshold (LIDT) measurement and different nondestructive optical techniques for the characterization of the component during treatment. Through different examples, we demonstrate the importance of these characterizations to improve the understanding of the laser conditioning. The role of an in situ adapted metrology associated in real time with a laser conditioning bench offers new opportunities to analyze laser-induced damage mechanisms and subsequently to increase the LIDT of optical components.

  16. Understanding Student Cognition about Complex Earth System Processes Related to Climate Change

    Science.gov (United States)

    McNeal, K. S.; Libarkin, J.; Ledley, T. S.; Dutta, S.; Templeton, M. C.; Geroux, J.; Blakeney, G. A.

    2011-12-01

    The Earth's climate system includes complex behavior and interconnections with other Earth spheres that present challenges to student learning. To better understand these unique challenges, we have conducted experiments with high-school and introductory level college students to determine how information pertaining to the connections between the Earth's atmospheric system and the other Earth spheres (e.g., hydrosphere and cryosphere) are processed. Specifically, we include psychomotor tests (e.g., eye-tracking) and open-ended questionnaires in this research study, where participants were provided scientific images of the Earth (e.g., global precipitation and ocean and atmospheric currents), eye-tracked, and asked to provide causal or relational explanations about the viewed images. In addition, the students engaged in on-line modules (http://serc.carleton.edu/eslabs/climate/index.html) focused on Earth system science as training activities to address potential cognitive barriers. The developed modules included interactive media, hands-on lessons, links to outside resources, and formative assessment questions to promote a supportive and data-rich learning environment. Student eye movements were tracked during engagement with the materials to determine the role of perception and attention on understanding. Students also completed a conceptual questionnaire pre-post to determine if these on-line curriculum materials assisted in their development of connections between Earth's atmospheric system and the other Earth systems. The pre-post results of students' thinking about climate change concepts, as well as eye-tracking results, will be presented.

  17. Understanding High-Resolution Spatiotemporal Dynamics of Groundwater Recharge Using Process Based Hydrologic Modeling

    Science.gov (United States)

    Kang, G.; Qiu, H.; Li, S. G.; Lusch, D.; Phanikumar, M. S.

    2016-12-01

    Quantifying the natural rates of groundwater recharge and identifying the location and timing of major recharge events are essential for maintaining sustainable water yields and for understanding contaminant transport mechanisms in groundwater systems. Using Ottawa County, Michigan as a case study in sustainable water resources management, this research is part of a larger project that examines the issues of declining water tables and increasing chloride concentrations within the county. A process-based hydrologic model (PAWS) is used to mechanistically evaluate the integrated hydrologic response of both the surface and subsurface systems to further compute daily fluxes due to evapotranspiration, surface runoff, recharge and groundwater-stream interactions. Both rain gauge (NCDC) and NEXRAD precipitation data are used as input for the model. The model is built based on three major watersheds at 300m spatial resolution and daily temporal resolution, covering all of Ottawa County and is calibrated using streamflow data from USGS gauging stations. In addition, synoptic and time-series baseflow data collected using Acoustic Doppler Current Profilers and electromagnetic flow meters during the summer of 2015 are used to test the ability of the model to simulate baseflows and to quantify the uncertainty. The MODIS evapotranspiration product is used to evaluate model performance in simulating ET. The primary objectives of this study are to (1) understand the periods of high and low groundwater recharge in the county between the years 2009 and 2015; and (2) analyze the impacts of different types of land use, soil, elevation, and slope on groundwater recharge.

  18. Preparation and Support of Patients through the Transplant Process: Understanding the Recipients' Perspectives

    Directory of Open Access Journals (Sweden)

    Oliver Mauthner

    2012-01-01

    Full Text Available Preparation for heart transplant commonly includes booklets, instructional videos, personalized teaching sessions, and mentorship. This paper explores heart transplant recipients’ thoughts on their preparation and support through the transplant process. Twenty-five interviews were audio-/videotaped capturing voice and body language and transcribed verbatim. Coding addressed language, bodily gesture, volume, and tone in keeping with our visual methodology. Recipients reported that only someone who had a transplant truly understands the experience. As participants face illness and life-altering experiences, maintaining a positive attitude and hope is essential to coping well. Healthcare professionals provide ongoing care and reassurance about recipients’ medical status. Mentors, family members, and close friends play vital roles in supporting recipients. Participants reported that only heart transplant recipients understood the experience, the hope, and ultimately the suffering associated with living with another persons’ heart. Attention needs to be focused not solely on the use of teaching modalities, but also on the development of innovative support networks. This will promote patient and caregiver engagement in self-management. Enhancing clinicians’ knowledge of the existential aspects of transplantation will provide them with a nuanced understanding of the patients’ experience, which will ultimately enhance their ability to better prepare and support patients and their caregivers.

  19. Classroom virtual lab experiments as teaching tools for explaining how we understand planetary processes

    Science.gov (United States)

    Hill, C. N.; Schools, H.; Research Team Members

    2012-12-01

    This presentation will report on a classroom pilot study in which we teamed with school teachers in four middle school classes to develop and deploy course modules that connect the real-world to virtual forms of laboratory experiments.The broad goal is to help students realize that seemingly complex Earth system processes can be connected to basic properties of the planet and that this can be illustrated through idealized experiment. Specifically the presentation will describe virtual modules based on on-demand cloud computing technologies that allow students to test the notion that pole equator gradients in radiative forcing together with rotation can explain characteristic patterns of flow in the atmosphere. The module developed aligns with new Massachusetts science standard requirements regarding understanding of weather and climate processes. These new standards emphasize an appreciation of differential solar heating and a qualitative understanding of the significance of rotation. In our preliminary classroom pilot studies we employed pre and post evaluation tests to establish that the modules had increased student knowledge of phenomenology and terms. We will describe the results of these tests as well as results from anecdotal measures of student response. This pilot study suggests that one way to help make Earth science concepts more tractable to a wider audience is through virtual experiments that distill phenomena down, but still retain enough detail that students can see the connection to the real world. Modern computer technology and developments in research models appear to provide an opportunity for more work in this area. We will describe some follow-up possibilities that we envisage.

  20. Understanding the creation of & reducing surface microroughness during polishing & post-processing of glass optics

    Energy Technology Data Exchange (ETDEWEB)

    Suratwala, Tayyab [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-22

    In the follow study, we have developed a detailed understanding of the chemical and mechanical microscopic interactions that occur during polishing affecting the resulting surface microroughness of the workpiece. Through targeted experiments and modeling, the quantitative relationships of many important polishing parameters & characteristics affecting surface microroughness have been determined. These behaviors and phenomena have been described by a number of models including: (a) the Ensemble Hertzian Multi Gap (EHMG) model used to predict the removal rate and roughness at atomic force microscope (AFM) scale lengths as a function of various polishing parameters, (b) the Island Distribution Gap (IDG) model used to predict the roughness at larger scale lengths, (c) the Deraguin-Verwey-Landau-Overbeek (DLVO) 3-body electrostatic colloidal model used to predict the interaction of slurry particles at the interface and roughness behavior as a function of pH, and (d) a diffusion/chemical reaction rate model of the incorporation of impurities species into the polishing surface layer (called the Bielby layer). Based on this improved understanding, novel strategies to polish the workpiece have been developed simultaneously leading to both ultrasmooth surfaces and high material removal rates. Some of these strategies include: (a) use of narrow PSD slurries, (b) a novel diamond conditioning recipe of the lap to increase the active contact area between the workpiece and lap without destroying its surface figure, (c) proper control of pH for a given glass type to allow for a uniform distribution of slurry particles at the interface, and (d) increase in applied load just up to the transition between molecular to plastic removal regime for a single slurry particle. These techniques have been incorporated into a previously developed finishing process called Convergent Polishing leading to not just economical finishing process with improved surface figure control, but also

  1. The Critical Zone: A Necessary Framework for Understanding Surface Earth Processes

    Science.gov (United States)

    Dietrich, W. E.

    2016-12-01

    One definition of the critical zone is: the thin veneer of Earth that extends from the top of the vegetation to the base of weathered bedrock. With this definition we can envision the critical zone as a distinct entity with a well-defined top and a fairly well-defined bottom that is distributed across terrestrial earth landscapes. It is a zone of co-evolving processes and, importantly, much of this zone is well below the soil mantle (and commonly more than 10 times thicker than the soil). Weathering advance into fresh bedrock creates a hydrologically-conductive skin that mediates runoff and solute chemistry, stores water used by vegetation, releases water as baseflow to streams, influences soil production and hillslope evolution, and feeds gasses to the atmosphere. Especially in seasonally dry environments, rock moisture in the critical zone, i.e. moisture that is exchangeable and potentially mobile in the matrix and fractures of the bedrock, can be a significant source of water to plants and is a previously unrecognized large component of the water budget that matters to climate models. First observations on the systematic variation of the critical zone across hillslopes have led to four distinct theories representing four distinct processes for what controls the depth to fresh bedrock (and thus the thickness of this zone across a hillslope). These theories are motivating geophysical surveys, deep drilling, and other actions to parameterize and explore the power of these models. Studies at the NSF-supported Critical Zone Observatories have taught us that the critical zone is an entity and that enduring field studies reveal key processes. A challenge we now face is how to include this emerging understanding of the critical zone into models of reactive transport, hydrologic processes and water supply, critical zone structure, landscape evolution, and climate.

  2. Diffuse degassing through magmatic arc crust (Invited)

    Science.gov (United States)

    Manning, C. E.; Ingebritsen, S.

    2013-12-01

    The crust of magmatic arcs plays an important role in the volatile cycle at convergent margins. The fluxes of subduction- and arc-related volatiles such as H2O, C, Cl, S are poorly known. It is commonly believed that gases emitted from volcanoes account nearly quantitatively for the volatiles that cross the Moho beneath the volcanic front. This volcanic degassing may occur during eruption, emission from summit fumaroles and hot springs, or more 'diffuse' delivery to volcano flanks. However, several observations suggest that volatiles also transit arc crust by even more diffuse pathways, which could account for significant volatile loss on long time and length scales. Active metamorphism of arc crust produces crustal-scale permeability that is sufficient to transport a large volume of subducted volatiles (Ingebritsen and Manning, 2002, PNAS, 99, 9113). Arc magmas may reach volatile saturation deeper than the maximum depths recorded by melt inclusions (e.g., Blundy et al., 2010, EPSL, 290, 289), and exhumed sections of magmatic arc crust typically record voluminous plutons reflecting magma crystallization and volatile loss at depths well below the volcanic edifice. At shallower depths, topographically driven meteoric groundwater systems can absorb magmatic volatiles and transport them laterally by tens of km (e.g., James et al., 1999, Geology, 27, 823; Evans et al., 2002, JVGR, 114, 291). Hydrothermal ore deposits formed at subvolcanic depths sequester vast amounts of volatiles, especially sulfur, that are only returned to the surface on the time scale of exhumation and/or erosion. Water-rich metamorphic fluids throughout the crust can readily carry exsolved volcanic gases because the solubilities of volatile bearing minerals such as calcite, anhydrite, and fluorite are quite high at elevated pressure and temperature (e.g., Newton and Manning, 2002, Am Min, 87, 1401; 2005, J Pet, 46, 701; Tropper and Manning, 2007, Chem Geol, 242, 299). Taken together, these

  3. Icepod Plus Potential Field: An Integrated Approach For Understanding Ice Shelf Processes

    Science.gov (United States)

    Frearson, N.

    2015-12-01

    Warm water flowing beneath the large floating ice shelves in Antarctica will play an important role in how fast sea level rises. The lack of detailed bathymetry beneath the large ice shelves and lack of understanding of their internal structure inherently limits our knowledge of how ice shelves will thin and collapse. Understanding the bathymetry beneath the remaining ice shelves is critical to understanding how ice shelves will thin in the future and how that will impact the flux of ice into the global ocean. The Ross Ice Shelf, the largest ice shelf remaining on our planet, buttresses the West Antarctic Ice Sheet. The bathymetry beneath the Ross Ice Shelf is the least explored piece of ocean floor on our planet. The IcePod is a compact integrated ice imaging system developed for use on any C-130 aircraft developed with NSF support. The initial development program was targeted towards investigating glacial and ice-sheet processes. In this program, deep and shallow ice radars were developed. Optical instruments, including a scanning laser, Infra-red camera and visible wave camera were integrated into the pod. We have expanded the IcePod instrument suite to include the potential field measurements of magnetic and gravity anomalies with support from the Moore Foundation. During the development, a total field cesium sensor magnetometer and 3-axis fluxgate from previously funded work were also incorporated into the pod. Their behavioral response to being located close to high-frequency electronics, power supplies and metallic objects were studied. We describe in part some of that development process and the positive findings that resulted. The Icepod group is also actively pursuing the development, modification and incorporation of a new gravimeter into the suite of instruments available to the program and is investigating reduction in size of this that may eventually lead to incorporating the gravimeter into the pod itself. As part of this program we are also

  4. Understanding the structured processes followed by organisations prior to engaging in agile processes: A South African Perspective

    Directory of Open Access Journals (Sweden)

    Nimrod Noruwana

    2012-06-01

    Full Text Available There appears to be a lack of knowledge on the phases South African (SA organisations go through while adopting agile methods. As a means to address this gap, this study uncovered empirical evidence on the phases SA organisations go through whilst adopting agile methods as well as the disparities between agile prescriptions and the way SA organisations actually implement agile methods. The data collected using a case study approach was analysed through the lens of Actor-Network Theory (ANT. The results reveal that there is no structured process for adopting agile methods and organisations go through various phases in their attempts to adopt agile methods. During the various phases, organisations face challenges which are culture as well as people related. Through this study South African practitioners could now be aware that before adopting an agile methodology, there has to be a common understanding of the problems at hand and the envisioned solution. The findings also inform aspiring adopters in South Africa that adoption of the methods does not have to be as prescribed. They are free to adopt only those aspects the organisations need most.

  5. Peer review in design: Understanding the impact of collaboration on the review process and student perception

    Science.gov (United States)

    Mandala, Mahender Arjun

    A cornerstone of design and design education is frequent situated feedback. With increasing class sizes, and shrinking financial and human resources, providing rich feedback to students becomes increasingly difficult. In the field of writing, web-based peer review--the process of utilizing equal status learners within a class to provide feedback to each other on their work using networked computing systems--has been shown to be a reliable and valid source of feedback in addition to improving student learning. Designers communicate in myriad ways, using the many languages of design and combining visual and descriptive information. This complex discourse of design intent makes peer reviews by design students ambiguous and often not helpful to the receivers of this feedback. Furthermore, engaging students in the review process itself is often difficult. Teams can complement individual diversity and may assist novice designers collectively resolve complex task. However, teams often incur production losses and may be impacted by individual biases. In the current work, we look at utilizing a collaborative team of reviewers, working collectively and synchronously, in generating web based peer reviews in a sophomore engineering design class. Students participated in a cross-over design, conducting peer reviews as individuals and collaborative teams in parallel sequences. Raters coded the feedback generated on the basis of their appropriateness and accuracy. Self-report surveys and passive observation of teams conducting reviews captured student opinion on the process, its value, and the contrasting experience they had conducting team and individual reviews. We found team reviews generated better quality feedback in comparison to individual reviews. Furthermore, students preferred conducting reviews in teams, finding the process 'fun' and engaging. We observed several learning benefits of using collaboration in reviewing including improved understanding of the assessment

  6. Understanding the Local Socio-political Processes Affecting Conservation Management Outcomes in Corbett Tiger Reserve, India

    Science.gov (United States)

    Rastogi, Archi; Hickey, Gordon M.; Badola, Ruchi; Hussain, Syed Ainul

    2014-05-01

    Several measures have been recommended to guarantee a sustainable population of tigers: sufficient inviolate spaces for a viable population, sufficient prey populations, trained and skilled manpower to guard against poaching and intrusion, banning trade in tiger products to reduce poaching, and importantly, the political will to precipitate these recommendations into implementation. Of these, the creation of sufficient inviolate spaces (generally in the form of protected areas) has created the most issues with local resource-dependent communities, often resulting in significant challenges for tiger conservation policy and management. Very little empirical research has, however, been done to understand and contextualize the local-level socio-political interactions that may influence the efficacy of tiger conservation in India. In this paper, we present the results of exploratory research into the ways in which local-stakeholder groups affect the management of Corbett Tiger Reserve (CTR). Using a combined grounded theory-case study research design, and the Institutional Analysis and Development framework for analysis, we identify the socio-political processes through which local-stakeholder groups are able to articulate their issues and elicit desirable actions from the management of CTR. Increasing our awareness of these processes can help inform the design and implementation of more effective tiger conservation management and policy strategies that have the potential to create more supportive coalitions of tiger conservation stakeholders at the local level.

  7. The hydrogeochemical evolution of a barrier island freshwater reservoir: Conceptual understanding and identification of key processes

    Science.gov (United States)

    Seibert, Stephan; Holt, Tobias; Greskowiak, Janek; Freund, Holger; Böttcher, Michael E.; Massmann, Gudrun

    2017-04-01

    Coastal aquifers play an important role in satisfying the water demands for many people in the world. However, exposition to storm surges, climate change and extensive abstraction pose a threat to current and future use of these valuable water resources in many cases. To mitigate water quality constraints and ensure safe water supply applications, an in-depth understanding of relevant process that determine the water quality is required. We investigated two freshwater reservoirs below the barrier island Spiekeroog, Germany. The main freshwater reservoir is located at the western part of the island, ˜350 years old and has a vertical extension of ˜45m. The other investigated freshwater reservoir is located at the east of Spiekeroog, only a few decades old and has a vertical extension pH values ranging between 7.5-8.5 confirm that groundwater at Spiekeroog is in equilibrium with calcite and underline that calcite dissolution is an important process. With respect to the redox system, the data indicates oxygen and nitrate reduction within the first meters of the saturated zone but Mn-Oxide and Fe-Oxide reduction rates seem to be low in the aquifer based on measured dissolved Mn(2+) and Fe(2+) concentrations. The absence of dissolved Fe(2+) could be explained by the formation of iron sulfide minerals which is in agreement with observed sulfate reduction at greater depth indicated by elevated H2S concentrations and PHREEQC speciation calculations.

  8. Understanding the local socio-political processes affecting conservation management outcomes in Corbett Tiger Reserve, India.

    Science.gov (United States)

    Rastogi, Archi; Hickey, Gordon M; Badola, Ruchi; Hussain, Syed Ainul

    2014-05-01

    Several measures have been recommended to guarantee a sustainable population of tigers: sufficient inviolate spaces for a viable population, sufficient prey populations, trained and skilled manpower to guard against poaching and intrusion, banning trade in tiger products to reduce poaching, and importantly, the political will to precipitate these recommendations into implementation. Of these, the creation of sufficient inviolate spaces (generally in the form of protected areas) has created the most issues with local resource-dependent communities, often resulting in significant challenges for tiger conservation policy and management. Very little empirical research has, however, been done to understand and contextualize the local-level socio-political interactions that may influence the efficacy of tiger conservation in India. In this paper, we present the results of exploratory research into the ways in which local-stakeholder groups affect the management of Corbett Tiger Reserve (CTR). Using a combined grounded theory-case study research design, and the Institutional Analysis and Development framework for analysis, we identify the socio-political processes through which local-stakeholder groups are able to articulate their issues and elicit desirable actions from the management of CTR. Increasing our awareness of these processes can help inform the design and implementation of more effective tiger conservation management and policy strategies that have the potential to create more supportive coalitions of tiger conservation stakeholders at the local level.

  9. Contribution of Satellite Gravimetry to Understanding Seismic Source Processes of the 2011 Tohoku-Oki Earthquake

    Science.gov (United States)

    Han, Shin-Chan; Sauber, Jeanne; Riva, Riccardo

    2011-01-01

    The 2011 great Tohoku-Oki earthquake, apart from shaking the ground, perturbed the motions of satellites orbiting some hundreds km away above the ground, such as GRACE, due to coseismic change in the gravity field. Significant changes in inter-satellite distance were observed after the earthquake. These unconventional satellite measurements were inverted to examine the earthquake source processes from a radically different perspective that complements the analyses of seismic and geodetic ground recordings. We found the average slip located up-dip of the hypocenter but within the lower crust, as characterized by a limited range of bulk and shear moduli. The GRACE data constrained a group of earthquake source parameters that yield increasing dip (7-16 degrees plus or minus 2 degrees) and, simultaneously, decreasing moment magnitude (9.17-9.02 plus or minus 0.04) with increasing source depth (15-24 kilometers). The GRACE solution includes the cumulative moment released over a month and demonstrates a unique view of the long-wavelength gravimetric response to all mass redistribution processes associated with the dynamic rupture and short-term postseismic mechanisms to improve our understanding of the physics of megathrusts.

  10. Application of characterization, modelling, and analytics towards understanding process-structure linkages in metallic 3D printing

    Science.gov (United States)

    Groeber, M. A.; Schwalbach, E.; Donegan, S.; Chaput, K.; Butler, T.; Miller, J.

    2017-07-01

    This paper presents methods for combining process monitoring, thermal modelling and microstructure characterization together to draw process-to-structure relationships in metal additive manufacturing. The paper discusses heterogeneities in the local processing conditions within additively manufactured components and how they affect the resulting material structure. Methods for registering and fusing disparate data sources are presented, and some effort is made to discuss the utility of different data sources for specific microstructural features of interest. It is the intent that this paper will highlight the need for improved understanding of metallic additive manufacturing processes and show that combining experimental data with modelling and advanced data processing and analytics methods will accelerate that understanding.

  11. Understanding aquatic microbial processes using EEM's and in-situ fluorescence sensors

    Science.gov (United States)

    Fox, Bethany; Attridge, John; Rushworth, Cathy; Cox, Tim; Anesio, Alexandre; Reynolds, Darren

    2015-04-01

    The diverse origin of dissolved organic matter (DOM) in aquatic systems is well documented within the literature. Previous literature indicates that coloured dissolved organic matter (CDOM) is, in part, transformed by aquatic microbial processes, and that dissolved organic material derived from a microbial origin exhibits tryptophan-like fluorescence. However, this phenomenon is not fully understood and very little data is available within the current literature. The overall aim of our work is to reveal the microbial-CDOM interactions that give rise to the observed tryptophan-like fluorescence. The work reported here investigates the microbial processes that occur within freshwater aquatic samples, as defined by the biochemical oxygen demand (BOD) test, as a function of the T1 peak (λex/em 280/330-370 nm). A series of standard water samples were prepared using glucose, glutamic acid, BOD dilution water and a bacterial seed (Cole-Parmer BOD microbe capsules). Samples were spiked with CDOM (derived from an environmental water body) and subjected to time resolved BOD analysis and as excitation-emission fluorescence spectroscopy. All EEM spectral data was interrogated using parallel factor analysis (PARAFAC) in an attempt to determine the presence and dominance (relative intensities) of the CDOM-related and T1-related fluorophores within the samples. In-situ fluorescence sensors (Chelsea Technologies Group Ltd.) were also used to monitor the T1 fluorescence peak (UviLux Tryptophan) and the CDOM fluorescence peak (UviLux CDOM) during experiments. Tryptophan-like fluorescence was observed (albeit transient) in both spiked and un-spiked standard water samples. By furthering our understanding of aquatic organic matter fluorescence, its origin, transformation, fate and interaction with aquatic microbiological processes, we aim to inform the design of a new generation in-situ fluorescence sensor for the monitoring of aquatic ecosystem health.

  12. Process Network Approach to Understanding How Forest Ecosystems Adapt to Changes

    Science.gov (United States)

    Kim, J.; Yun, J.; Hong, J.; Kwon, H.; Chun, J.

    2011-12-01

    Sustainability challenges are transforming science and its role in society. Complex systems science has emerged as an inevitable field of education and research, which transcends disciplinary boundaries and focuses on understanding of the dynamics of complex social-ecological systems (SES). SES is a combined system of social and ecological components and drivers that interact and give rise to results, which could not be understood on the basis of sociological or ecological considerations alone. However, both systems may be viewed as a network of processes, and such a network hierarchy may serve as a hinge to bridge social and ecological systems. As a first step toward such effort, we attempted to delineate and interpret such process networks in forest ecosystems, which play a critical role in the cycles of carbon and water from local to global scales. These cycles and their variability, in turn, play an important role in the emergent and self-organizing interactions between forest ecosystems and their environment. Ruddell and Kumar (2009) define a process network as a network of feedback loops and the related time scales, which describe the magnitude and direction of the flow of energy, matter, and information between the different variables in a complex system. Observational evidence, based on micrometeorological eddy covariance measurements, suggests that heterogeneity and disturbances in forest ecosystems in monsoon East Asia may facilitate to build resilience for adaptation to change. Yet, the principles that characterize the role of variability in these interactions remain elusive. In this presentation, we report results from the analysis of multivariate ecohydrologic and biogeochemical time series data obtained from temperate forest ecosystems in East Asia based on information flow statistics.

  13. Understanding controls on redox processes in floodplain sediments of the Upper Colorado River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Noël, Vincent; Boye, Kristin; Kukkadapu, Ravi K.; Bone, Sharon; Lezama Pacheco, Juan S.; Cardarelli, Emily; Janot, Noémie; Fendorf, Scott; Williams, Kenneth H.; Bargar, John R.

    2017-12-15

    River floodplains, heavily used for water supplies, housing, agriculture, mining, and industry, may have water quality jeopardized by native or exogenous metals. Redox processes mediate the accumulation and release of these species in groundwater. Understanding the physicochemical, hydrological, and biogeochemical controls on the distribution and variability and variability of redox conditions is therefore critical to developing conceptual and numerical models of contaminants transport within floodplains. The distribution and intensity of redox activity at the Rifle, CO, site within the Upper Colorado River Basin (UCRB), are believed to be controlled by textural and compositional heterogeneities. Regionally, the UCRB is impacted by former uranium and vanadium ore processing, resulting in contaminations by U, Mo, V, As, Se, and Mn. Floodplains throughout the UCRB share sediment and groundwater characteristics, making redox activity regionally important to metal and radionuclide mobility. In this study, Fe and S speciation were used to track the distribution and stability of redox processes in sediment cores from three floodplain sites covering a 250 km range in the central portion of the UCRB. The results of the present study support the hypothesis that Fe(III) and sulfate reducing sediments are regionally important in the UCRB. The presence of organic carbon together with pore saturation were the key requirements for reducing conditions, dominated by sulfate-reduction. Sediment texture moderated the response of the system to external forcing, such as oxidant infusion, making fine-grain sediments resistant to change in comparison to coarser-grained sediments. Exposure to O2 and NO3- mediates the reactivity and longevity of freshly precipitated sulfides creating the potential for release of sequestered radionuclides and metals. The physical and chemical parameters of reducing zones evidenced in this study are thus thought to be key parameters on the dynamic exchange

  14. Understanding system disturbance and ecosystem services in restored saltmarshes: Integrating physical and biogeochemical processes

    Science.gov (United States)

    Spencer, K. L.; Harvey, G. L.

    2012-06-01

    Coastal saltmarsh ecosystems occupy only a small percentage of Earth's land surface, yet contribute a wide range of ecosystem services that have significant global economic and societal value. These environments currently face significant challenges associated with climate change, sea level rise, development and water quality deterioration and are consequently the focus of a range of management schemes. Increasingly, soft engineering techniques such as managed realignment (MR) are being employed to restore and recreate these environments, driven primarily by the need for habitat (re)creation and sustainable coastal flood defence. Such restoration schemes also have the potential to provide additional ecosystem services including climate regulation and waste processing. However, these sites have frequently been physically impacted by their previous land use and there is a lack of understanding of how this 'disturbance' impacts the delivery of ecosystem services or of the complex linkages between ecological, physical and biogeochemical processes in restored systems. Through the exploration of current data this paper determines that hydrological, geomorphological and hydrodynamic functioning of restored sites may be significantly impaired with respects to natural 'undisturbed' systems and that links between morphology, sediment structure, hydrology and solute transfer are poorly understood. This has consequences for the delivery of seeds, the provision of abiotic conditions suitable for plant growth, the development of microhabitats and the cycling of nutrients/contaminants and may impact the delivery of ecosystem services including biodiversity, climate regulation and waste processing. This calls for a change in our approach to research in these environments with a need for integrated, interdisciplinary studies over a range of spatial and temporal scales incorporating both intensive and extensive research design.

  15. It's the little things that matter most: The role of volatiles in volcanoes and their magmatic roots

    Science.gov (United States)

    Keller, T.; Suckale, J.

    2017-12-01

    transport will provide an opportunity to gain deeper insights into magmatic and volcanic phenomena as related rather than separate processes. In time we may thus come to more fully understand how it is that the little things that are mantle volatiles do matter most in volcanoes and their magmatic roots.

  16. Can spectroscopic analysis improve our understanding of biogeochemical processes in agricultural streams?

    Science.gov (United States)

    Bieroza, Magdalena; Heathwaite, Ann Louise

    2015-04-01

    In agricultural catchments diffuse fluxes of nutrients, mainly nitrogen (N) and phosphorus (P) from arable land and livestock are responsible for pollution of receiving waters and their eutrophication. Organic matter (OM) can play an important role in mediating a range of biogeochemical processes controlling diffuse pollution in streams and at their interface with surrounding land in the riparian and hyporheic zones. Thus, a holistic and simultaneous monitoring of N, P and OM fractions can help to improve our understanding of biogeochemical functioning of agricultural streams. In this study we build on intensive in situ monitoring of diffuse pollution in a small agricultural groundwater-fed stream in NW England carried out since 2009. The in situ monitoring unit captures high-frequency (15 minutes to hourly) responses of water quality parameters including total phosphorus, total reactive phosphorus and nitrate-nitrogen to changing flow conditions. For two consecutive hydrological years we have carried out additional spectroscopic water analyses to characterise organic matter components and their interactions with nutrient fractions. Automated and grab water samples have been analysed using ultraviolet-visible (UV-Vis) absorbance and excitation-emission (EEM) fluorescence spectroscopy. In addition, a tryptophan sensor was trialled to capture in situ fluorescence dynamics. Our paper evaluates patterns in nutrient and OM responses to baseflow and storm flow conditions and provides an assessment of storage-related changes of automated samples and temperature and turbidity effects on in situ tryptophan measurements. The paper shows the value of spectroscopic measurements to understand biogeochemical and hydrological nutrient dynamics and quantifies analytical uncertainty associated with both laboratory-based and in situ spectroscopic measurements.

  17. Quantitative analysis of precipitation over Fukushima to understand the wet deposition process in March 2011

    Science.gov (United States)

    Yatagai, A.; Onda, Y.; Watanabe, A.

    2012-04-01

    The Great East Japan Earthquake caused a severe accident at the Fukushima-Daiichi nuclear power plant (NPP), leading to the emission of large amounts of radioactive pollutants into the environment. The transport and diffusion of these radioactive pollutants in the atmosphere caused a disaster for residents in and around Fukushima. Studies have sought to understand the transport, diffusion, and deposition process, and to understand the movement of radioactive pollutants through the soil, vegetation, rivers, and groundwater. However, a detailed simulation and understanding of the distribution of radioactive compounds depend on a simulation of precipitation and on the information on the timing of the emission of these radioactive pollutants from the NPP. Past nuclear expansion studies have demonstrated the importance of wet deposition in distributing pollutants. Hence, this study examined the quantitative precipitation pattern in March 2011 using rain-gauge observations and X-band radar data from Fukushima University. We used the AMeDAS rain-gauge network data of 1) the Japan Meteorological Agency (1273 stations in Japan) and 2) the Water Information System (47 stations in Fukushima prefecture) and 3) the rain-gauge data of the Environmental Information Network of NTT Docomo (30 stations in Fukushima) to construct 0.05-degree mesh data using the same method used to create the APHRODITE daily grid precipitation data (Yatagai et al., 2009). Since some AMeDAS data for the coastal region were lost due to the earthquake, the complementary network of 2) and 3) yielded better precipitation estimates. The data clarified that snowfall was observed on the night of Mar 15 into the morning of Mar 16 throughout Fukushima prefecture. This had an important effect on the radioactive contamination pattern in Fukushima prefecture. The precipitation pattern itself does not show one-on-one correspondence with the contamination pattern. While the pollutants transported northeast of the

  18. Experimental study of the interplay between magmatic rift intrusion and flank instability with application to the 2001 Mount Etna eruption

    KAUST Repository

    Le Corvec, Nicolas

    2014-07-01

    Mount Etna volcano is subject to transient magmatic intrusions and flank movement. The east flank of the edifice, in particular, is moving eastward and is dissected by the Timpe Fault System. The relationship of this eastward motion with intrusions and tectonic fault motion, however, remains poorly constrained. Here we explore this relationship by using analogue experiments that are designed to simulate magmatic rift intrusion, flank movement, and fault activity before, during, and after a magmatic intrusion episode. Using particle image velocimetry allows for a precise temporal and spatial analysis of the development and activity of fault systems. The results show that the occurrence of rift intrusion episodes has a direct effect on fault activity. In such a situation, fault activity may occur or may be hindered, depending on the interplay of fault displacement and flank acceleration in response to dike intrusion. Our results demonstrate that a complex interplay may exist between an active tectonic fault system and magmatically induced flank instability. Episodes of magmatic intrusion change the intensity pattern of horizontal flank displacements and may hinder or activate associated faults. We further compare our results with the GPS data of the Mount Etna 2001 eruption and intrusion. We find that syneruptive displacement rates at the Timpe Fault System have differed from the preeruptive or posteruptive periods, which shows a good agreement of both the experimental and the GPS data. Therefore, understanding the flank instability and flank stability at Mount Etna requires consideration of both tectonic and magmatic forcing. Key Points Analyzing Mount Etna east flank dynamics during the 2001 eruption Good correlation between analogue models and GPS data Understanding the different behavior of faulting before/during/after an eruption © 2014. American Geophysical Union. All Rights Reserved.

  19. Spies and Bloggers: New Synthetic Biology Tools to Understand Microbial Processes in Soils and Sediments

    Science.gov (United States)

    Masiello, C. A.; Silberg, J. J.; Cheng, H. Y.; Del Valle, I.; Fulk, E. M.; Gao, X.; Bennett, G. N.

    2017-12-01

    Microbes can be programmed through synthetic biology to report on their behavior, informing researchers when their environment has triggered changes in their gene expression (e.g. in response to shifts in O2 or H2O), or when they have participated in a specific step of an elemental cycle (e.g. denitrification). This use of synthetic biology has the potential to significantly improve our understanding of microbes' roles in elemental and water cycling, because it allows reporting on the environment from the perspective of a microbe, matching the measurement scale exactly to the scale that a microbe experiences. However, synthetic microbes have not yet seen wide use in soil and sediment laboratory experiments because synthetic organisms typically report by fluorescing, making their signals difficult to detect outside the petri dish. We are developing a new suite of microbial programs that report instead by releasing easily-detected gases, allowing the real-time, noninvasive monitoring of behaviors in sediments and soils. Microbial biosensors can, in theory, be programmed to detect dynamic processes that contribute to a wide range of geobiological processes, including C cycling (biofilm production, methanogenesis, and synthesis of extracellular enzymes that degrade organic matter), N cycling (expression of enzymes that underlie different steps of the N cycle) and potentially S cycling. We will provide an overview of the potential uses of gas-reporting biosensors in soil and sediment lab experiments, and will report the development of the systematics of these sensors. Successful development of gas biosensors for laboratory use will require addressing issues including: engineering the intensity and selectivity of microbial gas production to maximize the signal to noise ratio; normalizing the gas reporter signal to cell population size, managing gas diffusion effects on signal shape; and developing multiple gases that can be used in parallel.

  20. Understanding and Controlling Sialylation in a CHO Fc-Fusion Process.

    Science.gov (United States)

    Lewis, Amanda M; Croughan, William D; Aranibar, Nelly; Lee, Alison G; Warrack, Bethanne; Abu-Absi, Nicholas R; Patel, Rutva; Drew, Barry; Borys, Michael C; Reily, Michael D; Li, Zheng Jian

    2016-01-01

    A Chinese hamster ovary (CHO) bioprocess, where the product is a sialylated Fc-fusion protein, was operated at pilot and manufacturing scale and significant variation of sialylation level was observed. In order to more tightly control glycosylation profiles, we sought to identify the cause of variability. Untargeted metabolomics and transcriptomics methods were applied to select samples from the large scale runs. Lower sialylation was correlated with elevated mannose levels, a shift in glucose metabolism, and increased oxidative stress response. Using a 5-L scale model operated with a reduced dissolved oxygen set point, we were able to reproduce the phenotypic profiles observed at manufacturing scale including lower sialylation, higher lactate and lower ammonia levels. Targeted transcriptomics and metabolomics confirmed that reduced oxygen levels resulted in increased mannose levels, a shift towards glycolysis, and increased oxidative stress response similar to the manufacturing scale. Finally, we propose a biological mechanism linking large scale operation and sialylation variation. Oxidative stress results from gas transfer limitations at large scale and the presence of oxygen dead-zones inducing upregulation of glycolysis and mannose biosynthesis, and downregulation of hexosamine biosynthesis and acetyl-CoA formation. The lower flux through the hexosamine pathway and reduced intracellular pools of acetyl-CoA led to reduced formation of N-acetylglucosamine and N-acetylneuraminic acid, both key building blocks of N-glycan structures. This study reports for the first time a link between oxidative stress and mammalian protein sialyation. In this study, process, analytical, metabolomic, and transcriptomic data at manufacturing, pilot, and laboratory scales were taken together to develop a systems level understanding of the process and identify oxygen limitation as the root cause of glycosylation variability.

  1. Understanding the Journey: A Phenomenological Study of College Students' Lived Experiences during the Weight-Loss Process

    Science.gov (United States)

    Davis, Michael W.

    2013-01-01

    Although numerous studies have focused on understanding various aspects of the science of weight loss and weight gain in college students, understanding how the weight-loss process affects college students psychologically and behaviorally may help administrators and student affairs professionals to better work with students on their campuses. The…

  2. Role of deep-Earth water cycling in the growth and evolution of continental crust: Constraints from Cretaceous magmatism in southeast China

    Science.gov (United States)

    Li, Zhen; Wang, Xuan-Ce; Wilde, Simon A.; Liu, Liang; Li, Wu-Xian; Yang, Xuemei

    2018-03-01

    The late Mesozoic igneous province in southeast China provides an excellent opportunity to understand the processes that controlled the growth and evolution of Phanerozoic continental crust. Here we report petrological, whole-rock geochemical and isotopic data, and in situ zircon U-Pb-Lu-Hf isotopic data from granitoids and associated gabbros in the Pingtan and Tong'an complexes, southeast China. Through combining the new results with published datasets in southeast China, we show that the Early Cretaceous magmatic rocks are dominated by juvenile Nd-Hf isotopic compositions, whereas the Late Cretaceous ones display less radiogenic Nd-Hf isotope signatures. Furthermore, Nd-Hf isotope systematics are coupled with decreasing abundance of hydrous minerals and an increase of zircon saturation temperatures. Compiled zircon Hf-O data indicates that the 117-116 Ma granites have zircon δ18O values ranging from mantle values (close to 5.3‰) to as low as 3.9‰, but with dominantly positive initial epsilon Hf (εHf(t)) values. Zircon grains from 105 to 98 Ma rocks have δ18O values plotting within the mantle-like range (6.5‰ - 4.5‰), but mainly with negative εHf(t) values. Zircon grains from ca. 87 Ma rocks have positive εHf(t) values (+ 9.8 to + 0.7) and a large range of δ18O values (6.3‰ - 3.5‰). The variations in Hf-Nd-O isotopic compositions are correlated with decreasing abundance of magma water contents, presenting a case that water-fluxed melting generated large-scale granitic magmatism. Deep-Earth water cycling provides an alternative or additional mechanism to supply volatiles (e.g., H2O) for hydrous basaltic underplating, continental crustal melting, and magmatic differentiation.

  3. Recent developments toward understanding magnetization processes in Nd-Fe-B permanent magnet materials

    International Nuclear Information System (INIS)

    Hirosawa, S.; Fukagawa, T.; Maki, T.

    2007-01-01

    The quick rise of an enormous market of high-coercivity grades of Nd-Fe-B sintered magnets for hybrid electric vehicles (HEV) has created a new concern about resources of certain elements such as Tb and Dy which is used in order to guarantee stability of magnetic flux at operating temperatures. Accordingly, improvements of coercivity in the Nd-Fe-B magnets at elevated temperatures without heavily using these scarce elements are required. For this goal, deeper understanding of the coercivity mechanism is necessary. In order to clearly study the relationship between local microstructure and coercivity related to that microstructure, an approach using a model magnet composed of a thin sintered magnet and an Nd layer deposited on its surface is reported. Besides this micropscopic apporach, macroscopic approaches are also indepensable. Also described in this paper is investigation of successive recoil curves and their relation with magnetic domain structures in a system composed of submicron size grains of Nd 2 Fe 14 B that can be prepared by means of hydrogenation-disproportionation-dehydrogenation-decomposition process. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Dynamics of gas-surface interactions atomic-level understanding of scattering processes at surfaces

    CERN Document Server

    Díez Muniño, Ricardo

    2013-01-01

    This book gives a representative survey of the state of the art of research on gas-surface interactions. It provides an overview of the current understanding of gas surface dynamics and, in particular, of the reactive and non-reactive processes of atoms and small molecules at surfaces. Leading scientists in the field, both from the theoretical and the experimental sides, write in this book about their most recent advances. Surface science grew as an interdisciplinary research area over the last decades, mostly because of new experimental technologies (ultra-high vacuum, for instance), as well as because of a novel paradigm, the ‘surface science’ approach. The book describes the second transformation which is now taking place pushed by the availability of powerful quantum-mechanical theoretical methods implemented numerically. In the book, experiment and theory progress hand in hand with an unprecedented degree of accuracy and control. The book presents how modern surface science targets the atomic-level u...

  5. Changes in health perceptions after exposure to human suffering: using discrete emotions to understand underlying processes.

    Directory of Open Access Journals (Sweden)

    Antonia A Paschali

    Full Text Available BACKGROUND: The aim of this study was to examine whether exposure to human suffering is associated with negative changes in perceptions about personal health. We further examined the relation of possible health perception changes, to changes in five discrete emotions (i.e., fear, guilt, hostility/anger, and joviality, as a guide to understand the processes underlying health perception changes, provided that each emotion conveys information regarding triggering conditions. METHODOLOGY/FINDINGS: An experimental group (N = 47 was exposed to images of human affliction, whereas a control group (N = 47 was exposed to relaxing images. Participants in the experimental group reported more health anxiety and health value, as well as lower health-related optimism and internal health locus of control, in comparison to participants exposed to relaxing images. They also reported more fear, guilt, hostility and sadness, as well as less joviality. Changes in each health perception were related to changes in particular emotions. CONCLUSION: These findings imply that health perceptions are shaped in a constant dialogue with the representations about the broader world. Furthermore, it seems that the core of health perception changes lies in the acceptance that personal well-being is subject to several potential threats, as well as that people cannot fully control many of the factors the determine their own well-being.

  6. Process analytical technology to understand the disintegration behavior of alendronate sodium tablets.

    Science.gov (United States)

    Xu, Xiaoming; Gupta, Abhay; Sayeed, Vilayat A; Khan, Mansoor A

    2013-05-01

    Various adverse events including esophagus irritations have been reported with the use of alendronate tablets, likely attributed to the rapid tablet disintegration in the mouth or esophagus. Accordingly, the disintegration of six alendronate tablet drug products was studied using a newly developed testing device equipped with in-line sensors, in addition to the official compendial procedure for measuring the disintegration time. The in-line sensors were used to monitor the particle count and solution pH change to assess the onset and duration of disintegration. A relatively large variation was observed in the disintegration time of the tested drug products using the compendial method. The data collected using the in-line sensors suggested that all tested drug products exhibited almost instantaneous onset of disintegration, under 2 s, and a sharp drop in solution pH. The drop in pH was slower for tablets with slower disintegration. The in-house prepared alendronate test tablets also showed similar trends suggesting rapid solubilization of the drug contributed to the fast tablet disintegration. This research highlights the usefulness of the newly developed in-line analytical method in combination with the compendial method in providing a better understanding of the disintegration and the accompanying drug solubilization processes for fast disintegrating tablet drug products. Copyright © 2013 Wiley Periodicals, Inc.

  7. Magmatic and fragmentation controls on volcanic ash surface chemistry

    Science.gov (United States)

    Ayris, Paul M.; Diplas, Spyros; Damby, David E.; Hornby, Adrian J.; Cimarelli, Corrado; Delmelle, Pierre; Scheu, Bettina; Dingwell, Donald B.

    2016-04-01

    The chemical effects of silicate ash ejected by explosive volcanic eruptions on environmental systems are fundamentally mediated by ash particle surfaces. Ash surfaces are a composite product of magmatic properties and fragmentation mechanisms, as well as in-plume and atmospheric alteration processes acting upon those surfaces during and after the eruption. Recent attention has focused on the capacity of alteration processes to shape ash surfaces; most notably, several studies have utilised X-ray photoelectron spectroscopy (XPS), a technique probing the elemental composition and coordination state of atoms within the top 10 nm of ash surfaces, to identify patterns of elemental depletions and enrichments relative to bulk ash chemical composition. Under the presumption of surface and bulk equivalence, any disparities have been previously attributed to surface alteration processes, but the ubiquity of some depletions (e.g., Ca, Fe) across multiple ash studies, irrespective of eruptive origin, could suggest these to be features of the surface produced at the instant of magma fragmentation. To investigate this possibility further, we conducted rapid decompression experiments at different pressure conditions and at ambient and magmatic temperature on porous andesitic rocks. These experiments produced fragmented ash material untouched by secondary alteration, which were compared to particles produced by crushing of large clasts from the same experiments. We investigated a restricted size fraction (63-90 μm) from both fragmented and crushed materials, determining bulk chemistry and mineralogy via XRF, SEM-BSE and EPMA, and investigated the chemical composition of the ash surface by XPS. Analyses suggest that fragmentation under experimental conditions partitioned a greater fraction of plagioclase-rich particles into the selected size fraction, relative to particles produced by crushing. Trends in surface chemical composition in fragmented and crushed particles mirror that

  8. Origin of fumarolic fluids from Tupungatito Volcano (Central Chile): interplay between magmatic, hydrothermal, and shallow meteoric sources

    Science.gov (United States)

    Benavente, Oscar; Tassi, Franco; Gutiérrez, Francisco; Vaselli, Orlando; Aguilera, Felipe; Reich, Martin

    2013-08-01

    Tupungatito is a poorly known volcano located about 100 km eastward of Santiago (Chile) in the northernmost sector of the South Volcanic Zone. This 5,682 m high volcano shows intense fumarolic activity. It hosts three crater lakes within the northwestern portion of the summit area. Chemical compositions of fumarolic gases and isotopic signatures of noble gases (3He/4He and 40Ar/36Ar are up to 6.09 Ra and 461, respectively), and steam (δ18O and δD) suggest that they are produced by mixing of fluids from a magmatic source rich in acidic gas compounds (SO2, HCl, and HF), and meteoric water. The magmatic-hydrothermal fluids are affected by steam condensation that controls the outlet fumarolic temperatures (contamination from the subducting slab, (2) the sedimentary basement, and (3) limited contribution from crustal sediments. Gas geothermometry based on the kinetically rapid H2-CO equilibria indicates equilibrium temperatures 200 °C and redox conditions are consistent with those inferred by the presence of the SO2-H2S redox pair, typical of fluids that have attained equilibrium in magmatic environment. A comprehensive conceptual geochemical model describing the circulation pattern of the Tupungatito hydrothermal-magmatic fluids is proposed. It includes fluid source regions and re-equilibration processes affecting the different gas species due to changing chemical-physical conditions as the magmatic-hydrothermal fluids rise up toward the surface.

  9. On the relation between crustal deformation and seismicity during the 2012-2014 magmatic intrusions in El Hierro island.

    Science.gov (United States)

    Domínguez Cerdeña, Itahiza; García-Cañada, Laura; Ángeles Benito Saz, María; Del Fresno, Carmen

    2017-04-01

    The last volcanic eruption in the Canary Islands took place in 2011 less than 2 km offshore El Hierro island, after 3 months of measuring surface deformation (up to 5 cm) and locating more than 10 000 earthquakes. In the two years following the end of the submarine eruption on 5 March 2012, six deep magmatic intrusions were recorded beneath the island. Despite the short time duration of these intrusions, these events have been more energetic that the 2011 pre-eruptive intrusive event but none of them ended in a new eruption. These post-eruptive reactivations are some of the few examples in the world of well monitored magmatic intrusions related with monogenetic volcanism. In order to understand these processes we have analyzed the geodetic and seismic data with different techniques. First, we did a joint hypocentral relocation of the six seismic swarms, including more than 6 300 events, to analyze the relative distribution of the earthquakes from different intrusions. The uncertainties of the earthquakes relocations was reduced to an average value of 300 m. New earthquakes' distribution shows the alignments of the different intrusions and a temporal migration of the events to larger depths. Moreover, we show the results of the ground deformation using GPS data from the network installed on the island (for each of the six intrusive events) and their inversion considering spherical models. In most of the intrusions the optimal source model was shallower and southern than the corresponding seismicity hypocenters. The intruded magma volume ranges from 0.02 to 0.13 km3. Finally, we also computed the b value from the Gutenberg Richter equation by means of a bootstrap method. The spatial and temporal evolution of the b value for the seismicity show a clear correlation with the temporal evolution of the crustal deformation. The six magma intrusions can be grouped, depending on their location, in three pairs each one associated with each of the three active rifts of El

  10. Microchemistry, geochemistry and geochronology of the Lagoa Real Uranium Province (BA) magmatic association: petrological and evolutionary significance; Microquimica, geoquimica e geocronologia da associacao magmatica da provincia uranifera de Lagoa Real, BA: significado petrologico e evolutivo

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Lucas Eustaquio Dias

    2016-07-01

    The Lagoa Real Uranium Province (PULR) is located in the center-south of the Bahia State, in the central part of Sao Francisco Craton and consists of an association of Paleoproterozoic meta-granites, alkali-gneiss, albitites, meta-leucodiorite and charnockites. This work has as objective the studies of the magmatic association, trying to understand its petrological and evolutionary meaning. For this purpose, representative bodies were sampled in order to develop unpublished studies of litogeochemistry, isotopes, geochronology and mineral chemistry. These analyzes were performed in: different preserved granitoid facies (Lagoa do Barro, Sao Timoteo, Juazeirinho and late pegmatitic phases), the meta-leucodiorites and charnockite. The data obtained using several modern methodologies, such as geochronology and mineral chemistry by LA-ICP-MS, provided results that allowed the characterization of two magmatic lithologies not described in the literature (Juazeirinho granite e late pegmatitic phases), and also a lithology preliminarily described (Lagoa do Barro granite). Moreover, these data contributed to elucidate the origin and meaning of the leucodiorite and charnoquito varieties, and made it possible to verify new compositional and mineral chemistry tendencies of Sao Timoteo granite. The data presented show that the studied granites were affected by albititization events (tardi or post-magmatic), which have different micro-chemical characteristics from the processes of albite formation related to the non-mineralized albitites bodies. Three albititization events were identified: a) An event that affected the granites characterized by the formation of albite with Rb and U, (b) Another event related to fluids associated with late pegmatitic bodies that formed albite with high levels of U, Rb and Ba, and partially affected the granites of the next pegmatoids portions; and (c) a final albititization event that caused the formation of the albite gneiss bodies, with albite

  11. Emergency management: does it have a sufficiently comprehensive understanding of decision-making, process and context?

    International Nuclear Information System (INIS)

    Niculae, C.

    2003-01-01

    Full text: It is now widely recognized in the social and management sciences that the effective support of decision-making requires a multi-disciplinary perspective, with businesses increasingly using inter-disciplinary teams. This trend is also seen in nuclear emergency management, for example in the UK inter-disciplinary groups are formed to focus on specific topics such as remediation where their recommendations are feed to the decision makers. The necessity of taking a multi-disciplinary perspective is particularly important for contexts in which the decision makers are likely to be under high stress and so could revert to instinctive patterns of behaviour and modes of communication found in their core disciplines. Yet when we look at the design of the information systems produced to support emergency management, we find a very partial set of disciplinary perspectives providing a strongly rationalistic, technocratic view. These systems have been developed by the technical community with little consultation with non-expert decision makers and limited understanding of emergency management processes across Europe and the social systems with which they interact. In this paper we have considered the Cynefin model, developed by IBM, which draws together much of the work on decision making and decision context over the past 30-40 years, describing the possible contexts in which decision-making may take place, the known, the knowable, the complex and the chaotic space. The known space is the realm of scientific knowledge where the cause and effect are understood. Next, there is the knowable space the realm of scientific enquiry where the cause and effect can be determined with sufficient data. In the complex space there are many interacting cause and effects, to the extent that we do not have sufficiently refined models to predict what will happen as a consequence of any particular actions and the cause and effect may only be explained after the event. In the chaotic

  12. Understanding controls of hydrologic processes across two monolithological catchments using model-data integration

    Science.gov (United States)

    Xiao, D.; Shi, Y.; Li, L.

    2016-12-01

    Field measurements are important to understand the fluxes of water, energy, sediment, and solute in the Critical Zone however are expensive in time, money, and labor. This study aims to assess the model predictability of hydrological processes in a watershed using information from another intensively-measured watershed. We compare two watersheds of different lithology using national datasets, field measurements, and physics-based model, Flux-PIHM. We focus on two monolithological, forested watersheds under the same climate in the Shale Hills Susquehanna CZO in central Pennsylvania: the Shale-based Shale Hills (SSH, 0.08 km2) and the sandstone-based Garner Run (GR, 1.34 km2). We firstly tested the transferability of calibration coefficients from SSH to GR. We found that without any calibration the model can successfully predict seasonal average soil moisture and discharge which shows the advantage of a physics-based model, however, cannot precisely capture some peaks or the runoff in summer. The model reproduces the GR field data better after calibrating the soil hydrology parameters. In particular, the percentage of sand turns out to be a critical parameter in reproducing data. With sandstone being the dominant lithology, GR has much higher sand percentage than SSH (48.02% vs. 29.01%), leading to higher hydraulic conductivity, lower overall water storage capacity, and in general lower soil moisture. This is consistent with area averaged soil moisture observations using the cosmic-ray soil moisture observing system (COSMOS) at the two sites. This work indicates that some parameters, including evapotranspiration parameters, are transferrable due to similar climatic and land cover conditions. However, the key parameters that control soil moisture, including the sand percentage, need to be recalibrated, reflecting the key role of soil hydrological properties.

  13. Olivine-hosted melt inclusions as an archive of redox heterogeneity in magmatic systems

    Science.gov (United States)

    Hartley, Margaret E.; Shorttle, Oliver; Maclennan, John; Moussallam, Yves; Edmonds, Marie

    2017-12-01

    -equilibration of fO2 between inclusions and carrier melts occurs on timescales of hours to days, causing a drop in the sulfur content at sulfide saturation (SCSS) and driving the exsolution of immiscible sulfide globules in the inclusions. Our data demonstrate the roles of magma mixing, progressive re-equilibration, and degassing in redox evolution within magmatic systems, and the open-system nature of melt inclusions to fO2 during these processes. Redox heterogeneity present at the time of inclusion trapping may be overprinted by rapid re-equilibration of melt inclusion fO2 with the external environment, both in the magma chamber and during slow cooling in lava at the surface. This can decouple the melt inclusion archives of fO2, major and trace element chemistry, and mask associations between fO2, magmatic differentiation and mantle source heterogeneity unless the assembly of diverse magmas is rapidly followed by eruption. Our tools for understanding the redox conditions of magmas are thus limited; however, careful reconstruction of pre- and post-eruptive magmatic history has enabled us to confirm the relatively oxidised nature of ocean island-type mantle compared to that of mid-ocean ridge mantle.

  14. Insights into Students' Conceptual Understanding Using Textual Analysis: A Case Study in Signal Processing

    Science.gov (United States)

    Goncher, Andrea M.; Jayalath, Dhammika; Boles, Wageeh

    2016-01-01

    Concept inventory tests are one method to evaluate conceptual understanding and identify possible misconceptions. The multiple-choice question format, offering a choice between a correct selection and common misconceptions, can provide an assessment of students' conceptual understanding in various dimensions. Misconceptions of some engineering…

  15. The Grieving Process in Children: Strategies for Understanding, Educating, and Reconciling Children's Perceptions of Death.

    Science.gov (United States)

    Willis, Clarissa A.

    2002-01-01

    Provides an overview of how young children understand death, and offers concrete strategies for talking to children about death and suggestions for teachers about how to help children of various ages through grief and mourning. Highlights developmental differences in four components of children's understanding of death: irreversibility, finality,…

  16. Chronology of magmatic and biological events during mass extinctions

    Science.gov (United States)

    Schaltegger, U.; Davies, J.; Baresel, B.; Bucher, H.

    2016-12-01

    For mass extinctions, high-precision geochronology is key to understanding: 1) the age and duration of mass extinction intervals, derived from palaeo-biodiversity or chemical proxies in marine sections, and 2) the age and duration of the magmatism responsible for injecting volatiles into the atmosphere. Using high-precision geochronology, here we investigate the sequence of events linked to the Triassic-Jurassic boundary (TJB) and the Permian-Triassic boundary (PTB) mass extinctions. At the TJB, the model of Guex et al. (2016) invokes degassing of early magmas produced by thermal erosion of cratonic lithosphere as a trigger of climate disturbance in the late Rhaetian. We provide geochronological evidence that such early intrusives from the CAMP (Central Atlantic Magmatic Province), predate the end-Triassic extinction event (Blackburn et al. 2013) by 100 kyr (Davies et al., subm.). We propose that these early intrusions and associated explosive volcanism (currently unidentified) initiate the extinction, followed by the younger basalt eruptions of the CAMP. We also provide accurate and precise calibration of the PTB in marine sections in S. China: The PTB and the extinction event coincide within 30 kyr in deep water settings; a hiatus followed by microbial limestone deposition in shallow water settings is of <100 kyr duration. The PTB extinction interval is preceded by up to 300 kyr by the onset of partly alkaline explosive, extrusive and intrusive rocks, which are suggested as the trigger of the mass extinction, rather than the subsequent basalt flows of the Siberian Traps (Burgess and Bowring 2015). From temporal constraints, the main inferences that can be made are: The duration of extinction events is in the x10 kyr range during the initial intrusive activity of a Large Igneous Province, and is postdated by the majority of basalt flows over several 100 kyr. For modeling climate change associated with mass extinctions, volatiles released from the basalt flows may

  17. Hydrothermal plume anomalies over the southwest Indian ridge: magmatic control

    Science.gov (United States)

    Yue, X.; Li, H.; Tao, C.; Ren, J.; Zhou, J.; Chen, J.; Chen, S.; Wang, Y.

    2017-12-01

    Here we firstly reported the extensive survey results of the hydrothermal activity along the ultra-slow spreading southwest Indian ridge (SWIR). The study area is located at segment 27, between the Indomed and Gallieni transform faults, SWIR. The seismic crustal thickness reaches 9.5km in this segment (Li et al., 2015), which is much thicker than normal crustal. The anomaly thickened crust could be affected by the Crozet hotspot or highly focused melt delivery from the mantle. The Duanqiao hydrothermal field was reported at the ridge valley of the segment by Tao et al (2009). The Deep-towed Hydrothermal Detection System (DHDS) was used to collect information related with hydrothermal activity, like temperature, turbidity, oxidation-reduction potential (ORP) and seabed types. There are 15 survey lines at the interval of 2 to 3 km which are occupied about 1300 km2 in segment 27. After processing the raw data, including wiping out random noise points, 5-points moving average processing and subtracting the ambient, we got anomalous Nephelometric Turbidity Units values (ΔNTU). And dE/dt was used to identify the ORP anomalous as the raw data is easily influenced by electrode potentials drifting (Baker et al., 2016). According to the results of water column turbidity and ORP distributions, we confirmed three hydrothermal anomaly fields named A1, A2 and A3. The three fields are all located in the western part of the segment. The A1 field lies on the ridge valley, west side of Duanqiao field. The A2 and A3 field lie on the northern and southern of the ridge valley, respectively. We propose that recent magmatic activity probably focus on the western part of segment 27.And the extensive distribution of hydrothermal plume in the segment is the result of the discrete magma intrusion. References Baker E T, et al. How many vent fields? New estimates of vent field populations on ocean ridges from precise mapping of hydrothermal discharge locations. EPSL, 2016, 449:186-196. Li J

  18. Understanding geological processes: Visualization of rigid and non-rigid transformations

    Science.gov (United States)

    Shipley, T. F.; Atit, K.; Manduca, C. A.; Ormand, C. J.; Resnick, I.; Tikoff, B.

    2012-12-01

    Visualizations are used in the geological sciences to support reasoning about structures and events. Research in cognitive sciences offers insights into the range of skills of different users, and ultimately how visualizations might support different users. To understand the range of skills needed to reason about earth processes we have developed a program of research that is grounded in the geosciences' careful description of the spatial and spatiotemporal patterns associated with earth processes. In particular, we are pursuing a research program that identifies specific spatial skills and investigates whether and how they are related to each other. For this study, we focus on a specific question: Is there an important distinction in the geosciences between rigid and non-rigid deformation? To study a general spatial thinking skill we employed displays with non-geological objects that had been altered by rigid change (rotation), and two types of non-rigid change ("brittle" (or discontinuous) and "ductile" (or continuous) deformation). Disciplinary scientists (geosciences and chemistry faculty), and novices (non-science faculty and undergraduate psychology students) answered questions that required them to visualize the appearance of the object before the change. In one study, geologists and chemists were found to be superior to non-science faculty in reasoning about rigid rotations (e.g., what an object would look like from a different perspective). Geologists were superior to chemists in reasoning about brittle deformations (e.g., what an object looked like before it was broken - here the object was a word cut into many fragments displaced in different directions). This finding is consistent with two hypotheses: 1) Experts are good at visualizing the types of changes required for their domain; and 2) Visualization of rigid and non-rigid changes are not the same skill. An additional important finding is that there was a broad range of skill in both rigid and non

  19. Petrogenesis and tectonic implications of an Early Jurassic magmatic arc from South to East China Seas

    Science.gov (United States)

    Zhang, L.; Xu, C.

    2017-12-01

    Granite and diorite samples by drilling in northeastern South China Sea (SCS) and southwestern East China Sea (ECS) contribute key information to understanding tectonic regime of South China Block in Jurassic time. SIMS and LA-ICPMS U-Pb zircon analyses yield ages ranging from 195±2 Ma to 198±1 Ma for samples from well LF3511 in SCS, and an age of 187±1 Ma for the sample from well ESC635 in ECS. They are low temperature I-type granitoids with strongly enriched fluid-mobile elements and depleted Nb-Ta features, indicating subduction arc-related magmatism in their origin. Sr-Nd isotopic compositions for samples from SCS ((87Sr/86Sr)i=0.705494-0.706623, ɛNdt=-0.9 to +2.2) and sample from ECS ((87Sr/86Sr)i=0.705200, ɛNdt=1.1) suggest an affinity with evolved mantle-derived melts. The granitoids found from NE SCS, SE Taiwan to the SW ECS could spatially define an Early Jurassic NE-SW-trending Dongsha-Talun-Yandang low-temperature magmatic arc zone along the East Asian continental margin, paired with Jurassic accretionary complexes exposed in SW Japan, E Taiwan to the W Philippines. Its geodynamic context is associated with oblique subduction of the paleo-Pacific slab beneath Eurasia, as a mechanism responsible for early Jurassic lithospheric extension with magmatism in the South China Block.

  20. Real Time Tracking of Magmatic Intrusions by means of Ground Deformation Modeling during Volcanic Crises

    Science.gov (United States)

    Cannavò, Flavio; Camacho, Antonio G.; González, Pablo J.; Mattia, Mario; Puglisi, Giuseppe; Fernández, José

    2015-01-01

    Volcano observatories provide near real-time information and, ultimately, forecasts about volcano activity. For this reason, multiple physical and chemical parameters are continuously monitored. Here, we present a new method to efficiently estimate the location and evolution of magmatic sources based on a stream of real-time surface deformation data, such as High-Rate GPS, and a free-geometry magmatic source model. The tool allows tracking inflation and deflation sources in time, providing estimates of where a volcano might erupt, which is important in understanding an on-going crisis. We show a successful simulated application to the pre-eruptive period of May 2008, at Mount Etna (Italy). The proposed methodology is able to track the fast dynamics of the magma migration by inverting the real-time data within seconds. This general method is suitable for integration in any volcano observatory. The method provides first order unsupervised and realistic estimates of the locations of magmatic sources and of potential eruption sites, information that is especially important for civil protection purposes. PMID:26055494

  1. Gondwana subduction-modified mantle domain prevents magmatic seafloor generation in the Central Indian Ridge

    Science.gov (United States)

    Morishita, T.; Nakamura, K.; Senda, R.; Suzuki, K.; Kumagai, H.; Sato, H.; Sato, T.; Shibuya, T.; Minoguchi, K.; Okino, K.

    2013-12-01

    The creation of oceanic crust at mid-ocean ridges is essential to understanding the genesis of oceanic plate and the evolution of the Earth. Detailed bathymetric measurements coupled with dense sample recovery at mid-ocean ridge revealed a wide range of variations in the ridge and seafloor morphologies, which cannot be simply explained by a spreading rate, but also by ridge geometry, mantle compositions and thermal structure (Dick et al., 2003 Nature; Cannat et al. 2006 Geology). It is now widely accepted that very limited magmatic activity with tectonic stretching generates oceanic core complex and/or smooth seafloor surface in the slow to ultraslow-spreading ridges, where serpentinized peridotite and gabbros are expected to be exposed associated with detachment faults (Cann et al., 1997 Nature; Cannat et al., 2006), although magmatism might be an essential role for the formation of oceanic core complexes (Buck et al., 2005 Nature; Tucholke et al 2008 JGR). A rising question is why magmatic activity is sometimes prevented during the oceanic plate formation. Ancient melting domain, that are too refractory to melt even in adiabatically upwelling to the shallow upper mantle, might cause the amagmatic spreading ridges (Harvey et al., 2006 EPSL, Liu et al.,2008 Nature). Its origin and effect on seafloor generations are, however, not well understood yet. We report an oceanic hill as an example of an ancient subduction-modified mantle domain, probably formed at continental margin of the Gondwanaland~Pangea supercontinent, existing beneath the Central Indian Ridge. This domain is the most likely to have prevented magmatic seafloor generation, resulting in creation of very deep oceanic valley and serpentine diaper (now the studied oceanic hill) at the present Central Indian ridge.

  2. Toward self-consistent tectono-magmatic numerical model of rift-to-ridge transition

    Science.gov (United States)

    Gerya, Taras; Bercovici, David; Liao, Jie

    2017-04-01

    Natural data from modern and ancient lithospheric extension systems suggest three-dimensional (3D) character of deformation and complex relationship between magmatism and tectonics during the entire rift-to-ridge transition. Therefore, self-consistent high-resolution 3D magmatic-thermomechanical numerical approaches stand as a minimum complexity requirement for modeling and understanding of this transition. Here we present results from our new high-resolution 3D finite-difference marker-in-cell rift-to-ridge models, which account for magmatic accretion of the crust and use non-linear strain-weakened visco-plastic rheology of rocks that couples brittle/plastic failure and ductile damage caused by grain size reduction. Numerical experiments suggest that nucleation of rifting and ridge-transform patterns are decoupled in both space and time. At intermediate stages, two patterns can coexist and interact, which triggers development of detachment faults, failed rift arms, hyper-extended margins and oblique proto-transforms. En echelon rift patterns typically develop in the brittle upper-middle crust whereas proto-ridge and proto-transform structures nucleate in the lithospheric mantle. These deep proto-structures propagate upward, inter-connect and rotate toward a mature orthogonal ridge-transform patterns on the timescale of millions years during incipient thermal-magmatic accretion of the new oceanic-like lithosphere. Ductile damage of the extending lithospheric mantle caused by grain size reduction assisted by Zenner pinning plays critical role in rift-to-ridge transition by stabilizing detachment faults and transform structures. Numerical results compare well with observations from incipient spreading regions and passive continental margins.

  3. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits

    Science.gov (United States)

    Ulrich, T.; Günther, D.; Heinrich, C. A.

    1999-06-01

    Porphyry copper-molybdenum-gold deposits are the most important metal resources formed by hydrothermal processes associated with magmatism. It remains controversial, however, whether the metal content of porphyry-style and other magmatic-hydrothermal deposits is dominantly controlled by metal partitioning between magma and an exsolving magmatic fluid phase, or by scavenging of metals from solid upper-crustal rocks by surface-derived fluids. It also remains unknown to what degree the metal content in such deposits is affected by selective mineral precipitation from the ore fluid. Extremely saline fluids, precipitating quartz and ore minerals in veins have been inferred to have a significant magma-derived component, on the basis of geological, isotopic, and experimental evidence,. Here we report gold and copper concentrations of single fluid inclusions in quartz, determined by laser-ablation inductively coupled plasma mass spectrometry. The results show that the Au/Cu ratio of primary high-temperature brines is identical to the bulk Au/Cu ratio in two of the world's largest copper-gold ore bodies. This indicates that the bulk metal budget of such deposits is primarily controlled by the composition of the incoming fluid, which is, in turn, likely to be controlled by the crystallization process in an underlying magma chamber.

  4. Magmatism on rift flanks: insights from Ambient-Noise Phase-velocity in Afar region

    Science.gov (United States)

    Korostelev, Félicie; Weemstra, Cornelis; Leroy, Sylvie; Boschi, Lapo; Ren, Yong; Ahmed, Abdulhakim; Keir, Derek; Stuart, Graham W.; Rolandone, Frédérique; Khanbari, Khaled; Hammond, James O. S.; Kendall, J. Michael; Doubre, Cécile; Ganad, Ismail Al

    2015-04-01

    During the breakup of continent in the presence of magma, strain is commonly assumed to initially occur by border faulting, and progressively migrate in space and time towards axial magma intrusion. Magmatic processes near the rift flanks are commonly ignored. We present phase-velocity maps of the crust and uppermost mantle of the conjugate margins of the southern Red Sea (Afar and Yemen) using ambient noise tomography to constrain crustal modification during breakup. Our images show that the low seismic velocities characterize not only upper crust beneath the axial volcanic systems, but also both upper and lower crust beneath rift flanks where ongoing volcanism and hydrothermal activity occurs at the surface. The results show that magmatic modification of the crust beneath rift flanks likely occurs for a protracted period of time during the breakup process, and may persist through to early seafloor spreading. Since ongoing flank magmatism during breakup impacts the thermal evolution of the lithosphere, it has implications for the subsidence history of the rift.

  5. Linking deep earth to surface processes in the Woodlark Rift of Papua New Guinea; a framework for understanding (U)HP exhumation globally

    Science.gov (United States)

    Baldwin, S.; Fitzgerald, P. G.; Bermudez, M. A.; Webb, L. E.; Moucha, R.; Miller, S. R.; Catalano, J. P.; Zirakparvar, N. A.

    2012-12-01

    flow associated with slab remnants and the resultant induced dynamic topography in the region. These models depict surface uplift that increases from east to west (where lithospheric extension is active), consistent with the pattern of surface uplift inferred from regional stream profile analysis. The rising topography over thinned crust occurs over warm asthenosphere, indicating that mantle buoyancy and flow contribute to active surface uplift and landscape evolution in the Woodlark Rift. Thermokinematic models constrained by thermochronologic data are being used to assess the relative role of buoyancy forces vs extensional forces in driving (U)HP exhumation. Integrated isotopic studies reveal details in the timing and conditions of (U)HP metamorphism in Papua New Guinea that are rarely resolvable in older (U)HP terranes. However in the active Woodlark Rift, transient thermal effects associated with syn-rift magmatism have partially to completely overprinted the late Miocene record of (U)HP metamorphism. Understanding how deep earth, plate tectonic and surface processes are linked in New Guinea provides an active, obliquely convergent geodynamic setting to compare with (U)HP exhumation in collisional orogens elsewhere, such as the Oligocene western Alps, and the Eocene Himalaya.

  6. Studies of Magmatic Inclusions in the Basaltic Martian Meteorites Shergotty, Zagami, EETA 79001 and QUE 94201

    Science.gov (United States)

    Harvey, Ralph P.; McKay, Gordon A.

    1997-01-01

    Currently there are 12 meteorites thought by planetary scientists to be martian samples, delivered to the Earth after violent impacts on that planet's surface. Of these 12 specimens, 4 are basaltic: Shergotty, Zagami, EETA 79001 and QUE 94201. Basalts are particularly important rocks to planetary geologists- they are the most common rocks found on the surfaces of the terrestrial planets, representing volcanic activity of their parent worlds. In addition, because they are generated by partial melting of the mantle and/or lower crust, they can serve as guide posts to the composition and internal processes of a planet. Consequently these four meteorites can serve as 'ground-truth' representatives of the predominant volcanic surface rocks of Mars, and offer researchers a glimpse of the magmatic history of that planet. Unfortunately, unraveling the parentage of a basaltic rock is not always straightforward. While many basalts are simple, unaltered partial melts of the mantle, others have undergone secondary processes which change the original parental chemistry, such as assimilation of other crustal rocks, mixing with other magmas, accumulation, re-equilibration between mineral species after crystallization, loss of late-stage magmatic fluids and alteration by metamorphic or metasomatic processes. Fortunately, magmatic inclusions can trap the evolving magmatic liquid, isolating it from many of these secondary processes and offering a direct look at the magma during different stages of development. These inclusions form when major or minor phases grow skeletally, surrounding small amounts of the parental magma within pockets in the growing crystal. The inclusion as a whole (usually consisting of glass with enclosed crystals) continues to represent the composition of the parental magma at the time the melt pocket closed, even when the rock as a whole evolves under changing conditions. The four basaltic martian meteorites contain several distinct generations of melt

  7. A Goal Congruity Model of Role Entry, Engagement, and Exit: Understanding Communal Goal Processes in STEM Gender Gaps.

    Science.gov (United States)

    Diekman, Amanda B; Steinberg, Mia; Brown, Elizabeth R; Belanger, Aimee L; Clark, Emily K

    2017-05-01

    The goal congruity perspective provides a theoretical framework to understand how motivational processes influence and are influenced by social roles. In particular, we invoke this framework to understand communal goal processes as proximal motivators of decisions to engage in science, technology, engineering, and mathematics (STEM). STEM fields are not perceived as affording communal opportunities to work with or help others, and understanding these perceived goal affordances can inform knowledge about differences between (a) STEM and other career pathways and (b) women's and men's choices. We review the patterning of gender disparities in STEM that leads to a focus on communal goal congruity (Part I), provide evidence for the foundational logic of the perspective (Part II), and explore the implications for research and policy (Part III). Understanding and transmitting the opportunities for communal goal pursuit within STEM can reap widespread benefits for broadening and deepening participation.

  8. I'm sorry to say, but your understanding of image processing fundamentals is absolutely wrong

    OpenAIRE

    Diamant, Emanuel

    2008-01-01

    In this paper, I have proposed a few ideas that are entirely new and therefore might look suspicious. All the novelties come as a natural extension of a new definition of information that is sequentially applied to various aspects of image processing. The most important innovation is positing information image processing as the prime mode of image processing (in contrast to traditionally dominant data image processing). The next novelty is the dissociation between physical and semantic inform...

  9. Magmatic mineral assemblages of eclogitized and not eclogitized Paleoproterozoic gabbronorites from the Belomorian province, Eastern Fennoscandian shield

    Science.gov (United States)

    Egorova, S.

    2012-04-01

    Recognition of magmatic crystallization processes is problematic in high-grade metamorphic terrains. However, sometimes metamorphosed gabbro preserve relics of primary magmatic mineral assemblages that give valuable information about the time and conditions of melt crystallization. The Belomorian province of the eastern part of the Fennoscandian Shield is characterized by repeated high-pressure metamorphic events during Archean and Paleoproterozoic. Metagabbronorites of age ca. 2.4 Ga are widespread in the Belomorian province(Stepanova, Stepanov, 2010) and in spite of metamorphic alteration they retain relicts of primary igneous mineral assemblages. We have studied eclogitized gabbronorites, from the Gridino area (metamorphosed at P~19 kbar, T≤930°C, Volodichev, 2005) and metagabbronorites metamorphosed in amphibolite facies conditions (P corona textures on the boundary of plagioclase and clinopyroxene. Eclogitized gabbronorites contain also omphacite (up to Jd52), and plagioclase (An17). It was found that central parts of the both eclogitized and not eclogitized metagabbronorite bodies are well-preserved and retain magmatic textures and primary mineral assemblages that consist of Ol, Opx, Cpx and Pl. Magnesium olivine (Fo81-84) in these rocks is enclosed in euhedral bronzite that also may contain small inclusions of chromite. Rather more ferrous olivine (Fo75) occurs in association with augite, hypersthene and plagioclase (An70). The magmatic stage of crystallization in eclogized and not eclogized olivine gabbronorites is identical: (Ol1+Crt) → OPx → Ol2+Pl (An70) +Aug →Pl (An45). The microprobe data on the composition of rock-forming minerals were used to calculate the crystallization pressures and temperatures for the minerals equilibrium with the melt. Calculations of PT-conditions of magmatic mineral assemblage crystallization were carried out using several geotermobarometers (Nimis, 1996, Putirka,1996, 2008). Relict magmatic assemblages in the

  10. Please Wait, Processing: A Selective Literature Review of the Neurological Understanding of Emotional Processing in ASD and Its Potential Contribution to Neuroeducation.

    Science.gov (United States)

    Shyman, Eric

    2017-11-17

    Autism spectrum disorder (ASD) and its corresponding conditions have been investigated from a multitude of perspectives resulting in varying understandings of its origin, its outplay, its prognosis, and potential methods of intervention and education for individuals with the disorder. One area that has contributed significantly to providing a different type of understanding is that of neuroscience, and specifically neuroimaging. This paper will offer a selective literature review of research that investigates the role of emotional processing in ASD, and how a deepening of this line of understanding can be used to inform more comprehensive educational practices.

  11. Please Wait, Processing: A Selective Literature Review of the Neurological Understanding of Emotional Processing in ASD and Its Potential Contribution to Neuroeducation

    Directory of Open Access Journals (Sweden)

    Eric Shyman

    2017-11-01

    Full Text Available Autism spectrum disorder (ASD and its corresponding conditions have been investigated from a multitude of perspectives resulting in varying understandings of its origin, its outplay, its prognosis, and potential methods of intervention and education for individuals with the disorder. One area that has contributed significantly to providing a different type of understanding is that of neuroscience, and specifically neuroimaging. This paper will offer a selective literature review of research that investigates the role of emotional processing in ASD, and how a deepening of this line of understanding can be used to inform more comprehensive educational practices.

  12. Geomorphic and vegetation processes of the Willamette River floodplain, Oregon: current understanding and unanswered science questions

    Science.gov (United States)

    Wallick, J. Rose; Jones, Krista L.; O'Connor, Jim E.; Keith, Mackenzie K.; Hulse, David; Gregory, Stanley V.

    2013-01-01

    This report summarizes the current understanding of floodplain processes and landforms for the Willamette River and its major tributaries. The area of focus encompasses the main stem Willamette River above Newberg and the portions of the Coast Fork Willamette, Middle Fork Willamette, McKenzie, and North, South and main stem Santiam Rivers downstream of U.S. Army Corps of Engineers dams. These reaches constitute a large portion of the alluvial, salmon-bearing rivers in the Willamette Basin. The geomorphic, or historical, floodplain of these rivers has two zones - the active channel where coarse sediment is mobilized and transported during annual flooding and overbank areas where fine sediment is deposited during higher magnitude floods. Historically, characteristics of the rivers and geomorphic floodplain (including longitudinal patterns in channel complexity and the abundance of side channels, islands and gravel bars) were controlled by the interactions between floods and the transport of coarse sediment and large wood. Local channel responses to these interactions were then shaped by geologic features like bedrock outcrops and variations in channel slope. Over the last 150 years, floods and the transport of coarse sediment and large wood have been substantially reduced in the basin. With dam regulation, nearly all peak flows are now confined to the main channels. Large floods (greater than 10-year recurrence interval prior to basinwide flow regulation) have been largely eliminated. Also, the magnitude and frequency of small floods (events that formerly recurred every 2–10 years) have decreased substantially. The large dams trap an estimated 50–60 percent of bed-material sediment—the building block of active channel habitats—that historically entered the Willamette River. They also trap more than 80 percent of the estimated bed material in the lower South Santiam River and Middle and Coast Forks of the Willamette River. Downstream, revetments further

  13. Changes in Pre-service Science Teachers' Understandings After Being Involved in Explicit Nature of Science and Socioscientific Argumentation Processes

    Science.gov (United States)

    Kutluca, A. Y.; Aydın, A.

    2017-08-01

    The study explored the changes in pre-service science teachers' understanding of the nature of science and their opinions about the nature of science, science teaching and argumentation after their participation in explicit nature of science (NOS) and socioscientific argumentation processes. The participants were 56 third-grade pre-service science teachers studying in a state university in Turkey. The treatment group comprised 27 participants, and there were 29 participants in the comparison group. The comparison group participants were involved in a student-centred science-teaching process, and the participants of the treatment group were involved in explicit NOS and socioscientific argumentation processes. In the study, which lasted a total of 11 weeks, a NOS-as-argumentation questionnaire was administered to all the participants to determine their understanding of NOS at the beginning and end of the data collection process, and six random participants of the treatment group participated in semi-structured interview questions in order to further understand their views regarding NOS, science teaching and argumentation. Qualitative and quantitative data analysis revealed that the explicit NOS and socioscientific argumentation processes had a significant effect on pre-service science teachers' NOS understandings. Furthermore, NOS, argumentation and science teaching views of the participants in the treatment group showed a positive change. The results of this study are discussed in light of the related literature, and suggestions are made within the context of contribution to science-teaching literature, improvement of education quality and education of pre-service teachers.

  14. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean

    Science.gov (United States)

    Michael, P. J.; Langmuir, C. H.; Dick, H. J. B.; Snow, J. E.; Goldstein, S. L.; Graham, D. W.; Lehnert, K.; Kurras, G.; Jokat, W.; Mühe, R.; Edmonds, H. N.

    2003-06-01

    A high-resolution mapping and sampling study of the Gakkel ridge was accomplished during an international ice-breaker expedition to the high Arctic and North Pole in summer 2001. For this slowest-spreading endmember of the global mid-ocean-ridge system, predictions were that magmatism should progressively diminish as the spreading rate decreases along the ridge, and that hydrothermal activity should be rare. Instead, it was found that magmatic variations are irregular, and that hydrothermal activity is abundant. A 300-kilometre-long central amagmatic zone, where mantle peridotites are emplaced directly in the ridge axis, lies between abundant, continuous volcanism in the west, and large, widely spaced volcanic centres in the east. These observations demonstrate that the extent of mantle melting is not a simple function of spreading rate: mantle temperatures at depth or mantle chemistry (or both) must vary significantly along-axis. Highly punctuated volcanism in the absence of ridge offsets suggests that first-order ridge segmentation is controlled by mantle processes of melting and melt segregation. The strong focusing of magmatic activity coupled with faulting may account for the unexpectedly high levels of hydrothermal activity observed.

  15. Understanding price discovery in interconnected markets: Generalized Langevin process approach and simulation

    Science.gov (United States)

    Schenck, Natalya A.; Horvath, Philip A.; Sinha, Amit K.

    2018-02-01

    While the literature on price discovery process and information flow between dominant and satellite market is exhaustive, most studies have applied an approach that can be traced back to Hasbrouck (1995) or Gonzalo and Granger (1995). In this paper, however, we propose a Generalized Langevin process with asymmetric double-well potential function, with co-integrated time series and interconnected diffusion processes to model the information flow and price discovery process in two, a dominant and a satellite, interconnected markets. A simulated illustration of the model is also provided.

  16. Understanding community-based processes for research ethics review: a national study.

    Science.gov (United States)

    Shore, Nancy; Brazauskas, Ruta; Drew, Elaine; Wong, Kristine A; Moy, Lisa; Baden, Andrea Corage; Cyr, Kirsten; Ulevicus, Jocelyn; Seifer, Sarena D

    2011-12-01

    Institutional review boards (IRBs), designed to protect individual study participants, do not routinely assess community consent, risks, and benefits. Community groups are establishing ethics review processes to determine whether and how research is conducted in their communities. To strengthen the ethics review of community-engaged research, we sought to identify and describe these processes. In 2008 we conducted an online survey of US-based community groups and community-institutional partnerships involved in human-participants research. We identified 109 respondents who met participation criteria and had ethics review processes in place. The respondents' processes mainly functioned through community-institutional partnerships, community-based organizations, community health centers, and tribal organizations. These processes had been created primarily to ensure that the involved communities were engaged in and directly benefited from research and were protected from research harms. The primary process benefits included giving communities a voice in determining which studies were conducted and ensuring that studies were relevant and feasible, and that they built community capacity. The primary process challenges were the time and resources needed to support the process. Community-based processes for ethics review consider community-level ethical issues that institution-based IRBs often do not.

  17. Understanding the Condemnation Process in Texas. Teachers Instructional Packet, TIP No. 8, Fall 1985.

    Science.gov (United States)

    Texas A and M Univ., College Station. Texas Real Estate Research Center.

    Part of a series of classroom aids designed for real estate instructors, this instructional packet was developed to help real estate students understand where the power to condemn property comes from, which entities have this power, what the condemnation procedure is in Texas, and how property rights are best protected. First, information about…

  18. Modelling Joint Decision Making Processes Involving Emotion-Related Valuing and Mutual Empathic Understanding

    NARCIS (Netherlands)

    Treur, J.

    2011-01-01

    In this paper a social agent model for joint decision making is presented addressing the role of mutually acknowledged empathic understanding in the decision making. The model is based on principles from recent neurological theories on mirror neurons, internal simulation, and emotion-related

  19. A process approach to children's understanding of scientific concepts : A longitudinal case study

    NARCIS (Netherlands)

    van der Steen, Steffie; Steenbeek, Henderien; van Dijk, Marijn; van Geert, Paul

    In order to optimally study changes in the complexity of understanding, microgenetic measures are needed, and a coupling of these to longer-term measures. We focus on the interaction dynamics between a 4-year old boy and a researcher while they work on tasks about air pressure in three subsequent

  20. Understanding disease processes in multiple sclerosis through magnetic resonance imaging studies in animal models

    Directory of Open Access Journals (Sweden)

    Nabeela Nathoo

    2014-01-01

    Full Text Available There are exciting new advances in multiple sclerosis (MS resulting in a growing understanding of both the complexity of the disorder and the relative involvement of grey matter, white matter and inflammation. Increasing need for preclinical imaging is anticipated, as animal models provide insights into the pathophysiology of the disease. Magnetic resonance (MR is the key imaging tool used to diagnose and to monitor disease progression in MS, and thus will be a cornerstone for future research. Although gadolinium-enhancing and T2 lesions on MRI have been useful for detecting MS pathology, they are not correlative of disability. Therefore, new MRI methods are needed. Such methods require validation in animal models. The increasing necessity for MRI of animal models makes it critical and timely to understand what research has been conducted in this area and what potential there is for use of MRI in preclinical models of MS. Here, we provide a review of MRI and magnetic resonance spectroscopy (MRS studies that have been carried out in animal models of MS that focus on pathology. We compare the MRI phenotypes of animals and patients and provide advice on how best to use animal MR studies to increase our understanding of the linkages between MR and pathology in patients. This review describes how MRI studies of animal models have been, and will continue to be, used in the ongoing effort to understand MS.

  1. Position, Possession or Process? Understanding Objective and Subjective Employability during University-to-Work Transitions

    Science.gov (United States)

    Okay-Somerville, Belgin; Scholarios, Dora

    2017-01-01

    This article aims to understand predictors of objective (i.e. job offers, employment status and employment quality) and subjective (i.e. perceived) graduate employability during university-to-work transitions. Using survey data from two cohorts of graduates in the UK (N = 293), it contrasts three competing theoretical approaches to employability:…

  2. Watersheds in Baltimore, Maryland: understanding and application of integrated ecological and social processes

    Science.gov (United States)

    Steward T.A. Pickett; Kenneth T. Belt; Michael F. Galvin; Peter M. Groffman; J. Morgan Grove; Donald C. Outen; Richard V. Pouyat; William P. Stack; Mary L. Cadenasso

    2007-01-01

    The Water and Watersheds program has made significant and lasting contributions to the basic understanding of the complex ecological system of Baltimore, MD. Funded at roughly the same time as the urban Long- Term Ecological Research (LTER) project in Baltimore, the Water and Watersheds grant and the LTER grant together established the Baltimore Ecosystem Study (BES)...

  3. Towards a Dialogic Understanding of Children's Art-Making Process

    Science.gov (United States)

    Kim, Hyunsu

    2018-01-01

    This article is intended to identify the complex process of children's art making by bringing new methodologies into the analysis of children's pictures. This article analyses the art-making process of a selected drawing by a five-year-old boy. The study builds on previous findings regarding children's verbal discourses during the art-making…

  4. Understanding bit by bit: information theory and the role of inflections in sentence processing

    NARCIS (Netherlands)

    Manika, S.

    2014-01-01

    What makes a sentence hard to process? Apart from the meanings of the words it contains, their number, and the way these words combine into constituents, words also contribute to processing difficulty on the basis of their accessibility in lexical retrieval. Apart from their frequency of use or

  5. Propositional integration and world-knowledge inference: Processes in understanding because sentences

    NARCIS (Netherlands)

    Cozijn, R.; Noordman, L.G.M.; Vonk, W.

    2011-01-01

    he issue addressed in this study is whether propositional integration and world-knowledge inference can be distinguished as separate processes during the comprehension of Dutch omdat (because) sentences. “Propositional integration” refers to the process by which the reader establishes the type of

  6. A Scheme for Understanding Group Processes in Problem-Based Learning

    Science.gov (United States)

    Hammar Chiriac, Eva

    2008-01-01

    The purpose of this study was to identify, describe and interpret group processes occurring in tutorials in problem-based learning. Another aim was to investigate if a combination of Steiner's (Steiner, I. D. (1972). "Group process and productivity". New York: Academic Press.) theory of group work and Bion's (Bion, W. R. (1961). "Experiences in…

  7. Understanding micro-processes of institutionalization: stewardship contracting and national forest management

    Science.gov (United States)

    Cassandra Moseley; Susan Charnley

    2014-01-01

    This paper examines micro-processes of institutionalization, using the case of stewardship contracting within the US Forest Service. Our basic premise is that, until a new policy becomes an everyday practice among local actors, it will not become institutionalized at the macro-scale. We find that micro-processes of institutionalization are driven by a mixture of large-...

  8. Processes and sources during late Variscan Dioritic-Tonalitic magmatism

    DEFF Research Database (Denmark)

    Pietranik, A.; Waight, Tod Earle

    2008-01-01

    The Gesiniec Intrusion (Strzelin Massif, East Sudetes) (~307-290 Ma) is composed predominantly of dioritic to tonalitic rocks with 87Sr/86Sr ratios ranging from 0.7069 to 0.7080 and eNd=-3.1 to -4.2, emplaced as post-collisional magmas following the Variscan orogeny. In situ Sr isotope and trace ...

  9. Using Self-Efficacy Beliefs to Understand How Students in a General Chemistry Course Approach the Exam Process

    Science.gov (United States)

    Willson-Conrad, Angela; Kowalske, Megan Grunert

    2018-01-01

    Retention of students who major in STEM continues to be a major concern for universities. Many students cite poor teaching and disappointing grades as reasons for dropping out of STEM courses. Current college chemistry courses often assess what a student has learned through summative exams. To understand students' experiences of the exam process,…

  10. Enduring Understandings, Artistic Processes, and the New Visual Arts Standards: A Close-up Consideration for Curriculum Planning

    Science.gov (United States)

    Stewart, Marilyn G.

    2014-01-01

    National Coalition for Core Arts Standards (NCCAS) Writing Team member Marilyn G. Stewart discusses what to expect from the new "next generation" Visual Arts Standards, detailing the 4 Artistic Processes and 15 Enduring Understandings. This invited essay addresses the instructional aspects of the standards, and looks at how they can help…

  11. Understanding How Students Study: The Genealogy and Conceptual Basis of a Widely Used Pedagogical Research Tool, Biggs' Study Process Questionnaire

    Science.gov (United States)

    Lake, Warren; Boyd, William; Boyd, Wendy

    2017-01-01

    The Study Process Questionnaire (SPQ) continues to be applied in a wide range of pedagogical situations. However, the question remains as to how well a researcher understands the conceptual basis behind the tool they choose. This essay provides a compact and comprehensive view of the conceptual basis for the development of the original SPQ, and…

  12. The Influence of Toy Design Activities on Middle School Students' Understanding of the Engineering Design Processes

    Science.gov (United States)

    Zhou, Ninger; Pereira, Nielsen L.; Tarun, Thomas George; Alperovich, Jeffrey; Booth, Joran; Chandrasegaran, Senthil; Tew, Jeffrey David; Kulkarni, Devadatta M.; Ramani, Karthik

    2017-01-01

    The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students' self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design…

  13. Magma sources during Gondwana breakup: chemistry and chronology of Cretaceous magmatism in Westland, New Zealand

    Science.gov (United States)

    van der Meer, Quinten H. A.; Waight, Tod E.; Scott, James M.

    2013-04-01

    Cretaceous-Paleogene rifting of the Eastern Gondwana margin thinned the continental crust of Zealandia and culminated in the opening of the Tasman Sea between Australia and New Zealand and the Southern Ocean, separating both from Antarctica. The Western Province of New Zealand consists of a succession of metasedimentary rocks intruded by Palaeozoic and Mesozoic granitoids that formed in an active margin setting through the Phanerozoic. Upon cessation of subduction, the earliest stages of extension (~110-100 Ma) were expressed in the formation of metamorphic core complexes, followed by emplacement of granitoid plutons, the deposition of terrestrial Pororari Group sediments in extensional half-grabens across on- and offshore Westland, and the intrusion of mafic dikes from ~90 Ma. These dikes are concentrated in the swarms of the Paparoa and Hohonu Ranges and were intruded prior to and simultaneous with volumetrically minor A-type plutonism at 82 Ma. The emplacement of mafic dikes and A-type plutonism at ~82 Ma is significant as it coincides with the age of the oldest seafloor in the Tasman Sea, therefore it represents magmatism coincident with the initiation of seafloor spreading which continued until ~53 Ma. New 40Ar-39Ar ages indicate that the intrusion of mafic dikes in basement lithologies both preceded and continued after the initial opening of the Tasman Sea, including an additional population of ages at ~70 Ma. This indicates either a prolonged period of extension-related magmatism that continued >10 Ma after initial breakup, or two discrete episodes of magmatism during Tasman Sea spreading. Volumetrically minor Cenozoic within-plate magmatism continued sporadically throughout the South Island and bears a characteristic HIMU (high time integrated U/Pb) signature. A detailed geochemistry and chronological study of Cretaceous mafic and felsic magmatism is currently in progress and aims to better understand the transition of magma sources from a long lived active

  14. Naive Architecting - Understanding the Reasoning Process of Students A Descriptive Survey

    NARCIS (Netherlands)

    Heesch, Uwe van; Avgeriou, Paris; Babar, MA; Gorton,

    2010-01-01

    Software architecting entails making architecture decisions, which requires a lot of experience and expertise. Current literature contains several methods and processes to support architects with architecture design, documentation and evaluation but not with the design reasoning involved in

  15. Understanding process-induced microstructures in RBa2Cu3O7

    Science.gov (United States)

    McCallum, R. W.; Kramer, M. J.

    1990-06-01

    During the processing of rare earth (R)-barium-copper-oxygen superconductors, a variety of microstructures can be induced. Many processes are designed to avoid forming some structures, but these same processes can result in other structures which degrade the superconducting properties. Because liquid phases can be detrimental, for example, low-temperature calcination is often employed. But the CO2 gas evolved during calcination leads to the formation of a nanoc-rystalline microstructure which may affect superconducting properties. Textures and defects can be induced by high-temperature and high-pressure deformation. For commercial dreams to become reality, these processing-induced microstructures, and their effects on properties, will have to be understood and controlled.

  16. The role of stable isotopes in understanding rainfall interception processes: a review

    Science.gov (United States)

    The isotopic composition of water transmitted by the canopy as throughfall or stemflow reflects important hydrologic processes occurring in the canopy. A synthesis of the literature shows that complex spatiotemporal variations of isotopic composition are created by canopy interce...

  17. Using iterative learning to improve understanding during the informed consent process in a South African psychiatric genomics study

    Science.gov (United States)

    Susser, Ezra; Mall, Sumaya; Mqulwana, Sibonile G.; Mndini, Michael M.; Ntola, Odwa A.; Nagdee, Mohamed; Zingela, Zukiswa; Van Wyk, Stephanus; Stein, Dan J.

    2017-01-01

    Obtaining informed consent is a great challenge in global health research. There is a need for tools that can screen for and improve potential research participants’ understanding of the research study at the time of recruitment. Limited empirical research has been conducted in low and middle income countries, evaluating informed consent processes in genomics research. We sought to investigate the quality of informed consent obtained in a South African psychiatric genomics study. A Xhosa language version of the University of California, San Diego Brief Assessment of Capacity to Consent Questionnaire (UBACC) was used to screen for capacity to consent and improve understanding through iterative learning in a sample of 528 Xhosa people with schizophrenia and 528 controls. We address two questions: firstly, whether research participants’ understanding of the research study improved through iterative learning; and secondly, what were predictors for better understanding of the research study at the initial screening? During screening 290 (55%) cases and 172 (33%) controls scored below the 14.5 cut-off for acceptable understanding of the research study elements, however after iterative learning only 38 (7%) cases and 13 (2.5%) controls continued to score below this cut-off. Significant variables associated with increased understanding of the consent included the psychiatric nurse recruiter conducting the consent screening, higher participant level of education, and being a control. The UBACC proved an effective tool to improve understanding of research study elements during consent, for both cases and controls. The tool holds utility for complex studies such as those involving genomics, where iterative learning can be used to make significant improvements in understanding of research study elements. The UBACC may be particularly important in groups with severe mental illness and lower education levels. Study recruiters play a significant role in managing the quality

  18. Using iterative learning to improve understanding during the informed consent process in a South African psychiatric genomics study.

    Directory of Open Access Journals (Sweden)

    Megan M Campbell

    Full Text Available Obtaining informed consent is a great challenge in global health research. There is a need for tools that can screen for and improve potential research participants' understanding of the research study at the time of recruitment. Limited empirical research has been conducted in low and middle income countries, evaluating informed consent processes in genomics research. We sought to investigate the quality of informed consent obtained in a South African psychiatric genomics study. A Xhosa language version of the University of California, San Diego Brief Assessment of Capacity to Consent Questionnaire (UBACC was used to screen for capacity to consent and improve understanding through iterative learning in a sample of 528 Xhosa people with schizophrenia and 528 controls. We address two questions: firstly, whether research participants' understanding of the research study improved through iterative learning; and secondly, what were predictors for better understanding of the research study at the initial screening? During screening 290 (55% cases and 172 (33% controls scored below the 14.5 cut-off for acceptable understanding of the research study elements, however after iterative learning only 38 (7% cases and 13 (2.5% controls continued to score below this cut-off. Significant variables associated with increased understanding of the consent included the psychiatric nurse recruiter conducting the consent screening, higher participant level of education, and being a control. The UBACC proved an effective tool to improve understanding of research study elements during consent, for both cases and controls. The tool holds utility for complex studies such as those involving genomics, where iterative learning can be used to make significant improvements in understanding of research study elements. The UBACC may be particularly important in groups with severe mental illness and lower education levels. Study recruiters play a significant role in managing

  19. Understanding the Processes of Customer Acquisition, Customer Retention and Customer Relationship Development

    OpenAIRE

    Alina Filip; Lelia Voinea

    2012-01-01

    Attracting new customers is an objective pursued by any organization, which in the actual competitive environment is almost inevitably facing with a phenomenon of customer migration. Therefore, lost customers must be replaced and this process involves specific activities of prospects identification, communication channels selection and choice of the adequate supply for targeting potential customers. Processes of customer retention and customer relationship development are a logical continuati...

  20. Towards understanding how surface life can affect interior geological processes: a non-equilibrium thermodynamics approach

    Directory of Open Access Journals (Sweden)

    J. G. Dyke

    2011-06-01

    Full Text Available Life has significantly altered the Earth's atmosphere, oceans and crust. To what extent has it also affected interior geological processes? To address this question, three models of geological processes are formulated: mantle convection, continental crust uplift and erosion and oceanic crust recycling. These processes are characterised as non-equilibrium thermodynamic systems. Their states of disequilibrium are maintained by the power generated from the dissipation of energy from the interior of the Earth. Altering the thickness of continental crust via weathering and erosion affects the upper mantle temperature which leads to changes in rates of oceanic crust recycling and consequently rates of outgassing of carbon dioxide into the atmosphere. Estimates for the power generated by various elements in the Earth system are shown. This includes, inter alia, surface life generation of 264 TW of power, much greater than those of geological processes such as mantle convection at 12 TW. This high power results from life's ability to harvest energy directly from the sun. Life need only utilise a small fraction of the generated free chemical energy for geochemical transformations at the surface, such as affecting rates of weathering and erosion of continental rocks, in order to affect interior, geological processes. Consequently when assessing the effects of life on Earth, and potentially any planet with a significant biosphere, dynamical models may be required that better capture the coupled nature of biologically-mediated surface and interior processes.

  1. Process, institutional and organizational approaches in sociological understanding of educational system

    Directory of Open Access Journals (Sweden)

    M. V. Klyov

    2016-10-01

    Full Text Available The article draws attention to the nature and characteristics of culture­centric, process, institutional and organizational approaches to form the essence of the educational process as a whole. The author examines the university not only as an educational and scientific center, but also as a spiritual center, forming a new type of professional identity. It is noted that as a social phenomenon, process and social institution, education makes social changes in society, and the transparent nature of social processes, the dominance of market relations in turn affect the educational institute. However, the institutional approach makes it possible to consider the educational processes on social, and personal levels. It is observed that the institutionalization of higher education as a particular social institution within the entire social institution of education occurred in the second half of the twentieth century, which allowed to talk about the leading role of universities in modern culture. The author stresses that the theory of higher education is the widely recognized thesis that has multiple arguments. They are governed by national law based on national finance, train specialists for the national economy. In fact, the emergence of new forms of relationships is a positive social process, but there are also negative effects. Their premise, according to some researchers, was globalization, the effect of «market forces» that contribute to the development of «a world without borders».

  2. NIR spectroscopy as a process analytical technology (PAT) tool for monitoring and understanding of a hydrolysis process.

    Science.gov (United States)

    Wu, Zhisheng; Peng, Yanfang; Chen, Wei; Xu, Bing; Ma, Qun; Shi, Xinyuan; Qiao, Yanjiang

    2013-06-01

    The use of near infrared spectroscopy was investigated as a process analytical technology to monitor the amino acids concentration profile during hydrolysis process of Cornu Bubali. A protocol was followed, including outlier selection using relationship plot of residuals versus the leverage level, calibration models using interval partial least squares and synergy interval partial least squares (SiPLS). A strategy of four robust root mean square error of predictions (RMSEP) values have been developed to assess calibration models by means of the desirability index. Furthermore, multivariate quantification limits (MQL) values of the optimum model were determined using two types of error. The SiPLS(3) models for L-proline, L-tyrosine, L-valine, L-phenylalanine and L-lysine provided excellent accuracies with RMSEP values of 0.0915 mg/mL, 0.1605 mg/mL, 0.0515 mg/mL, 0.0586 mg/mL and 0.0613 mg/mL, respectively. The MQL ranged from 90 ppm to 810 ppm, which confirmed that these models can be suitable for most applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Understanding the effects of pre-processing on extracted signal features from gait accelerometry signals.

    Science.gov (United States)

    Millecamps, Alexandre; Lowry, Kristin A; Brach, Jennifer S; Perera, Subashan; Redfern, Mark S; Sejdić, Ervin

    2015-07-01

    Gait accelerometry is an important approach for gait assessment. Previous contributions have adopted various pre-processing approaches for gait accelerometry signals, but none have thoroughly investigated the effects of such pre-processing operations on the obtained results. Therefore, this paper investigated the influence of pre-processing operations on signal features extracted from gait accelerometry signals. These signals were collected from 35 participants aged over 65years: 14 of them were healthy controls (HC), 10 had Parkinson׳s disease (PD) and 11 had peripheral neuropathy (PN). The participants walked on a treadmill at preferred speed. Signal features in time, frequency and time-frequency domains were computed for both raw and pre-processed signals. The pre-processing stage consisted of applying tilt correction and denoising operations to acquired signals. We first examined the effects of these operations separately, followed by the investigation of their joint effects. Several important observations were made based on the obtained results. First, the denoising operation alone had almost no effects in comparison to the trends observed in the raw data. Second, the tilt correction affected the reported results to a certain degree, which could lead to a better discrimination between groups. Third, the combination of the two pre-processing operations yielded similar trends as the tilt correction alone. These results indicated that while gait accelerometry is a valuable approach for the gait assessment, one has to carefully adopt any pre-processing steps as they alter the observed findings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Using a Virtual Tablet Machine to Improve Student Understanding of the Complex Processes Involved in Tablet Manufacturing.

    Science.gov (United States)

    Mattsson, Sofia; Sjöström, Hans-Erik; Englund, Claire

    2016-06-25

    Objective. To develop and implement a virtual tablet machine simulation to aid distance students' understanding of the processes involved in tablet production. Design. A tablet simulation was created enabling students to study the effects different parameters have on the properties of the tablet. Once results were generated, students interpreted and explained them on the basis of current theory. Assessment. The simulation was evaluated using written questionnaires and focus group interviews. Students appreciated the exercise and considered it to be motivational. Students commented that they found the simulation, together with the online seminar and the writing of the report, was beneficial for their learning process. Conclusion. According to students' perceptions, the use of the tablet simulation contributed to their understanding of the compaction process.

  5. Applying traditional signal processing techniques to social media exploitation for situational understanding

    Science.gov (United States)

    Abdelzaher, Tarek; Roy, Heather; Wang, Shiguang; Giridhar, Prasanna; Al Amin, Md. Tanvir; Bowman, Elizabeth K.; Kolodny, Michael A.

    2016-05-01

    Signal processing techniques such as filtering, detection, estimation and frequency domain analysis have long been applied to extract information from noisy sensor data. This paper describes the exploitation of these signal processing techniques to extract information from social networks, such as Twitter and Instagram. Specifically, we view social networks as noisy sensors that report events in the physical world. We then present a data processing stack for detection, localization, tracking, and veracity analysis of reported events using social network data. We show using a controlled experiment that the behavior of social sources as information relays varies dramatically depending on context. In benign contexts, there is general agreement on events, whereas in conflict scenarios, a significant amount of collective filtering is introduced by conflicted groups, creating a large data distortion. We describe signal processing techniques that mitigate such distortion, resulting in meaningful approximations of actual ground truth, given noisy reported observations. Finally, we briefly present an implementation of the aforementioned social network data processing stack in a sensor network analysis toolkit, called Apollo. Experiences with Apollo show that our techniques are successful at identifying and tracking credible events in the physical world.

  6. Commonisation and decommonisation: Understanding the processes of change in the Chilika Lagoon, India

    Directory of Open Access Journals (Sweden)

    Prateep Kumar Nayak

    2011-01-01

    Full Text Available This article examines the processes of change in a large lagoon system, and its implications for how commons can be managed as commons in the long run. We use two related concepts in our analysis of change: commonisation and decommonisation; ′commonisation′ is understood as a process through which a resource gets converted into a jointly used resource under commons institutions that deal with excludability and subtractability, and ′decommonisation′ refers to a process through which a jointly used resource under commons institutions loses these essential characteristics. We analyse various contributing issues and dynamics associated with the processes of commonisation and decommonisation. We consider evidence collected through household and village level surveys, combined with a host of qualitative and quantitative research methods in the Chilika Lagoon, the largest lagoon in India, and one of the largest lagoons in Asia. We suggest that in order to keep the Chilika commons as commons will require, as a starting point, a policy environment in which legal rights and customary livelihoods are respected. With international prawn markets stabilised and the ′pink gold rush′ over, the timing may be good for a policy change in order to create a political space for negotiation and to reverse the processes causing decommonisation. Fishers need to be empowered to re-connect to their environment and re-invent traditions of stewardship, without which there will be no resources left to fight over.

  7. Biological Niches within Human Calcified Aortic Valves: Towards Understanding of the Pathological Biomineralization Process

    Directory of Open Access Journals (Sweden)

    Valentina Cottignoli

    2015-01-01

    Full Text Available Despite recent advances, mineralization site, its microarchitecture, and composition in calcific heart valve remain poorly understood. A multiscale investigation, using scanning electron microscopy (SEM, transmission electron microscopy (TEM, and energy dispersive X-ray spectrometry (EDS, from micrometre up to nanometre, was conducted on human severely calcified aortic and mitral valves, to provide new insights into calcification process. Our aim was to evaluate the spatial relationship existing between bioapatite crystals, their local growing microenvironment, and the presence of a hierarchical architecture. Here we detected the presence of bioapatite crystals in two different mineralization sites that suggest the action of two different growth processes: a pathological crystallization process that occurs in biological niches and is ascribed to a purely physicochemical process and a matrix-mediated mineralized process in which the extracellular matrix acts as the template for a site-directed nanocrystals nucleation. Different shapes of bioapatite crystallization were observed at micrometer scale in each microenvironment but at the nanoscale level crystals appear to be made up by the same subunits.

  8. Interactive Whiteboard Integration in Classrooms: Active Teachers Understanding about Their Training Process

    Science.gov (United States)

    Pujol, Meritxell Cortada; Quintana, Maria Graciela Badilla; Romaní, Jordi Riera

    With the incorporation in education of Information and Communication Technologies (ICT), especially the Interactive Whiteboard (IWB), emerges the need for a proper teacher training process due to adequate the integration and the didactic use of this tool in the classroom. This article discusses the teachers' perception on the training process for ICT integration. Its main aim is to contribute to the unification of minimum criteria for effective ICT implementation in any training process for active teachers. This case study begins from the development of a training model called Eduticom which was putted into practice in 4 schools in Catalonia, Spain. Findings indicated different teachers' needs such as an appropriate infrastructure, a proper management and a flexible training model which essentially addresses methodological and didactic aspects of IWB uses in the classroom.

  9. Understanding Managers Decision Making Process for Tools Selection in the Core Front End of Innovation

    DEFF Research Database (Denmark)

    Appio, Francesco P.; Achiche, Sofiane; McAloone, Tim C.

    2011-01-01

    and optimise the activities. To select these tools, managers of the product development team have to use several premises to decide upon which tool is more appropriate to which activity. This paper proposes an approach to model the decision making process of the managers. The results underline the dimensions...... hypotheses are tested. A preliminary version of a theoretical model depicting the decision process of managers during tools selection in the FFE is proposed. The theoretical model is built from the constructed hypotheses....... influencing the decision process before a certain tool is chosen, and how those tools impact the performance of cost, time and efficiency. In order to achieve this, five companies participated for the data collection. Interesting trends and differences emerge from the analysis of the data in hand, and several...

  10. Understanding Managers Decision Making Process for Tools Selection in the Core Front End of Innovation

    DEFF Research Database (Denmark)

    Appio, Francesco P.; Achiche, Sofiane; McAloone, Tim C.

    2011-01-01

    and optimise the activities. To select these tools, managers of the product development team have to use several premises to decide upon which tool is more appropriate to which activity. This paper proposes an approach to model the decision making process of the managers. The results underline the dimensions......New product development (NPD) describes the process of bringing a new product or service to the market. The Fuzzy Front End (FFE) of Innovation is the term describing the activities happening before the product development phase of NPD. In the FFE of innovation, several tools are used to facilitate...... influencing the decision process before a certain tool is chosen, and how those tools impact the performance of cost, time and efficiency. In order to achieve this, five companies participated for the data collection. Interesting trends and differences emerge from the analysis of the data in hand, and several...

  11. Present status of theoretical understanding of charge changing processes at low beam energies

    OpenAIRE

    Swami, D. K.; Nandi, T.

    2017-01-01

    A model for the evaluation of charge-state distributions of fast heavy ions in solid targets is being developed since late eighties in terms of ETACHA code. Time to time it is being updated to deal with more number of electrons and non-perturbative processes. The calculation approach of the recent one, which is formulated for handling the non-perturbative processes better, is different from the earlier ones. However, the experimental results for the projectiles up to 28 electrons can be compa...

  12. Hydrology of prairie wetlands: Understanding the integrated surface-water and groundwater processes

    Science.gov (United States)

    Hayashi, Masaki; van der Kamp, Garth; Rosenberry, Donald O.

    2016-01-01

    Wetland managers and policy makers need to make decisions based on a sound scientific understanding of hydrological and ecological functions of wetlands. This article presents an overview of the hydrology of prairie wetlands intended for managers, policy makers, and researchers new to this field (e.g., graduate students), and a quantitative conceptual framework for understanding the hydrological functions of prairie wetlands and their responses to changes in climate and land use. The existence of prairie wetlands in the semi-arid environment of the Prairie-Pothole Region (PPR) depends on the lateral inputs of runoff water from their catchments because mean annual potential evaporation exceeds precipitation in the PPR. Therefore, it is critically important to consider wetlands and catchments as highly integrated hydrological units. The water balance of individual wetlands is strongly influenced by runoff from the catchment and the exchange of groundwater between the central pond and its moist margin. Land-use practices in the catchment have a sensitive effect on runoff and hence the water balance. Surface and subsurface storage and connectivity among individual wetlands controls the diversity of pond permanence within a wetland complex, resulting in a variety of eco-hydrological functionalities necessary for maintaining the integrity of prairie-wetland ecosystems.

  13. Further Understanding of Complex Information Processing in Verbal Adolescents and Adults with Autism Spectrum Disorders

    Science.gov (United States)

    Williams, Diane L.; Minshew, Nancy J.; Goldstein, Gerald

    2015-01-01

    More than 20?years ago, Minshew and colleagues proposed the Complex Information Processing model of autism in which the impairment is characterized as a generalized deficit involving multiple modalities and cognitive domains that depend on distributed cortical systems responsible for higher order abilities. Subsequent behavioral work revealed a…

  14. Integrating Process and Factor Understanding of Environmental Innovation by Water Utilities

    NARCIS (Netherlands)

    Spiller, Marc; McIntosh, Brian S.; Seaton, Roger A.F.; Jeffrey, Paul J.

    2015-01-01

    Innovations in technology and organisations are central to enabling the water sector to adapt to major environmental changes such as climate change, land degradation or drinking water pollution. While there are literatures on innovation as a process and on the factors that influence it, there is

  15. Understanding the innovation adoption process of construction clients, Clients driving Innovation

    NARCIS (Netherlands)

    Hartmann, Andreas; Dewulf, Geert P.M.R.; Reymen, Isabelle; Adams, L.; Guest, K.

    2006-01-01

    Although the role of clients in stimulating construction innovation seems to be controversial, little has been known about their innovation adoption behaviour. This paper presents first results of an ongoing research project the aim of which is to shed more light on the adoption processes of

  16. Understanding Data Use Practice among Teachers: The Contribution of Micro-Process Studies

    Science.gov (United States)

    Little, Judith Warren

    2012-01-01

    Despite the growing volume of research on data use systems or data use activities in which teachers engage, micro-process studies--investigations of what teachers and others actually do under the broad banner of "data use" or "evidence-based decision making"--remain substantially underdeveloped. Starting with a review of the…

  17. Understanding consumers' multichannel choices across the different stages of the buying process

    NARCIS (Netherlands)

    Gensler, Sonja; Verhoef, Peter C.; Boehm, Martin

    2012-01-01

    This article provides a more integrative approach toward channel choice than previous research by considering all stages of the buying process (search, purchase, and after-sales), and by taking channel attributes, experience, and spillover effects into account when examining consumers' channel

  18. Reframing the Glass Ceiling as a Socially Constructed Process: Implications for Understanding and Change.

    Science.gov (United States)

    Buzzanell, Patrice M.

    1995-01-01

    Argues that traditional definitions of "glass ceiling" perpetuate gender-biased organizational practices and create an illusion of women's opportunity, preventing critical assessment of contemporary organizational practices and of gendered communication. Creates awareness of unjust organizing processes by juxtaposing the ordinary ways of "doing…

  19. Compliance pluralisme and processes : Understanding compliance behavior in restaurants in China

    NARCIS (Netherlands)

    Wu, Y.

    2017-01-01

    This research aimed to offer a case study of dynamic compliance processes in selected Chinese restaurants with the main methods of participant observation and in-depth interviews. It applied an integrated and dynamic research approach, called descriptive analysis of compliance behavior, which

  20. Picosecond pulse radiolysis studies to understand the primary processes in radiolysis

    International Nuclear Information System (INIS)

    Jonah, C.D.; Lewis, M.A.

    1984-01-01

    The use of pulse radiolysis to learn about processes which occur before the beginning of chemical times is discussed. Two examples, the distance distribution of positive and negative ions in hydrocarbons, and the state of the dry electron are discussed in detail

  1. Picosecond pulse radiolysis studies to understand the primary processes in radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Jonah, C.D.; Lewis, M.A.

    1984-01-01

    The use of pulse radiolysis to learn about processes which occur before the beginning of chemical times is discussed. Two examples, the distance distribution of positive and negative ions in hydrocarbons, and the state of the dry electron are discussed in detail.

  2. A multiscale dataset for understanding complex eco-hydrological processes in a heterogeneous oasis system

    Science.gov (United States)

    Li, Xin; Liu, Shaomin; Xiao, Qin; Ma, Mingguo; Jin, Rui; Che, Tao; Wang, Weizhen; Hu, Xiaoli; Xu, Ziwei; Wen, Jianguang; Wang, Liangxu

    2017-06-01

    We introduce a multiscale dataset obtained from Heihe Watershed Allied Telemetry Experimental Research (HiWATER) in an oasis-desert area in 2012. Upscaling of eco-hydrological processes on a heterogeneous surface is a grand challenge. Progress in this field is hindered by the poor availability of multiscale observations. HiWATER is an experiment designed to address this challenge through instrumentation on hierarchically nested scales to obtain multiscale and multidisciplinary data. The HiWATER observation system consists of a flux observation matrix of eddy covariance towers, large aperture scintillometers, and automatic meteorological stations; an eco-hydrological sensor network of soil moisture and leaf area index; hyper-resolution airborne remote sensing using LiDAR, imaging spectrometer, multi-angle thermal imager, and L-band microwave radiometer; and synchronical ground measurements of vegetation dynamics, and photosynthesis processes. All observational data were carefully quality controlled throughout sensor calibration, data collection, data processing, and datasets generation. The data are freely available at figshare and the Cold and Arid Regions Science Data Centre. The data should be useful for elucidating multiscale eco-hydrological processes and developing upscaling methods.

  3. Undocumented and Unafraid: Understanding the Disclosure Management Process for Undocumented College Students and Graduates

    Science.gov (United States)

    Muñoz, Susana M.

    2016-01-01

    Previous qualitative studies on undocumented college students have primarily focused on their lived experiences; however, little research has been done to consider the disclosure process or identity management for undocumented students, particularly students who self-identify as "undocumented and unafraid." Using research on legal…

  4. FEATURES OF INVESTMENT PROCESS UNDERSTANDING BY A. SMITH AS THE FOUNDER OF CLASSICAL THEORY

    Directory of Open Access Journals (Sweden)

    T. Ovcharenko

    2013-03-01

    Full Text Available The paper examines the essence and the nature of the concept of “investment”. The main conceptual elements of a scientific theory of Adam Smith are defined. The features of the investment process by Adam Smith as the driving mechanism for social and economic development of a society are revealed.

  5. The Relevance of the Social Information Processing Model for Understanding Relational Aggression in Girls

    Science.gov (United States)

    Crain, Marcelle M.; Finch, Cambra L.; Foster, Sharon L.

    2005-01-01

    Two studies examined whether social information-processing variables predict relational aggression in girls. In Study 1, fourth- through sixth-grade girls reported their intent attributions, social goals, outcome expectancies for relational aggression, and the likelihood that they would choose a relationally aggressive response in response to…

  6. A semiotic framework to understand how signs in construction process simulations convey information

    NARCIS (Netherlands)

    Hartmann, Timo; Vossebeld, Niels

    2013-01-01

    Planning the production sequence for a construction project requires the combination and transfer of information and knowledge from a large variety of areas. To support this knowledge combination and transfer, construction process visualizations, also referred to as 4D CAD, have proven to be

  7. Amphibole reaction rims as a record of pre-eruptive magmatic heating: An experimental approach

    Science.gov (United States)

    De Angelis, S. H.; Larsen, J.; Coombs, Michelle L.; Dunn, A.; Hayden, Leslie A.

    2015-01-01

    Magmatic minerals record the pre-eruptive timescales of magma ascent and mixing in crustal reservoirs and conduits. Investigations of the mineral records of magmatic processes are fundamental to our understanding of what controls eruption style, as ascent rates and magma mixing processes are well known to control and/or trigger potentially hazardous explosive eruptions. Thus, amphibole reaction rims are often used to infer pre-eruptive magma dynamics, and in particular to estimate magma ascent rates. However, while several experimental studies have investigated amphibole destabilization during decompression, only two investigated thermal destabilization relevant to magma mixing processes. This study examines amphibole decomposition experimentally through isobaric heating of magnesio-hornblende phenocrysts within a natural high-silica andesite glass. The experiments first equilibrated for 24 h at 870 °C and 140 MPa at H2O-saturated conditions and ƒO2 ∼ Re–ReO prior to rapid heating to 880, 900, or 920 °C and hold times of 3–48 h. At 920 °C, rim thicknesses increased from 17 μm after 3 h, to 55 μm after 12 h, and became pseudomorphs after longer durations. At 900 °C, rim thicknesses increased from 7 μm after 3 h, to 80 μm after 24 h, to pseudomorphs after longer durations. At 880 °C, rim thicknesses increased from 7 μm after 3 h, to 18 μm after 36 h, to pseudomorphs after 48 h. Reaction rim microlites vary from 5–16 μm in size, with no systematic relationship between crystal size and the duration or magnitude of heating. Time-averaged rim microlite growth rates decrease steadily with increasing experimental duration (from  to 3.1 to ). Time-averaged microlite nucleation rates also decrease with increasing experimental duration (from  to 5.3 mm−3 s−1). There is no systematic relationship between time-averaged growth or nucleation rates and the magnitude of the heating step. Ortho- and clinopyroxene together constitute 57–90

  8. Amphibole reaction rims as a record of pre-eruptive magmatic heating: An experimental approach

    Science.gov (United States)

    De Angelis, S. H.; Larsen, J.; Coombs, M.; Dunn, A.; Hayden, L.

    2015-09-01

    Magmatic minerals record the pre-eruptive timescales of magma ascent and mixing in crustal reservoirs and conduits. Investigations of the mineral records of magmatic processes are fundamental to our understanding of what controls eruption style, as ascent rates and magma mixing processes are well known to control and/or trigger potentially hazardous explosive eruptions. Thus, amphibole reaction rims are often used to infer pre-eruptive magma dynamics, and in particular to estimate magma ascent rates. However, while several experimental studies have investigated amphibole destabilization during decompression, only two investigated thermal destabilization relevant to magma mixing processes. This study examines amphibole decomposition experimentally through isobaric heating of magnesio-hornblende phenocrysts within a natural high-silica andesite glass. The experiments first equilibrated for 24 h at 870 °C and 140 MPa at H2O-saturated conditions and ƒO2 ∼ Re-ReO prior to rapid heating to 880, 900, or 920 °C and hold times of 3-48 h. At 920 °C, rim thicknesses increased from 17 μm after 3 h, to 55 μm after 12 h, and became pseudomorphs after longer durations. At 900 °C, rim thicknesses increased from 7 μm after 3 h, to 80 μm after 24 h, to pseudomorphs after longer durations. At 880 °C, rim thicknesses increased from 7 μm after 3 h, to 18 μm after 36 h, to pseudomorphs after 48 h. Reaction rim microlites vary from 5-16 μm in size, with no systematic relationship between crystal size and the duration or magnitude of heating. Time-averaged rim microlite growth rates decrease steadily with increasing experimental duration (from 3.97 ×10-7 mms-1 to 3.1 to 3.5 ×10-8 mms-1). Time-averaged microlite nucleation rates also decrease with increasing experimental duration (from 1.2 ×103mm-3s-1 to 5.3 mm-3 s-1). There is no systematic relationship between time-averaged growth or nucleation rates and the magnitude of the heating step. Ortho- and clinopyroxene

  9. Understanding and Mastering Dynamics in Computing Grids Processing Moldable Tasks with User-Level Overlay

    CERN Document Server

    Moscicki, Jakub Tomasz

    Scientic communities are using a growing number of distributed systems, from lo- cal batch systems, community-specic services and supercomputers to general-purpose, global grid infrastructures. Increasing the research capabilities for science is the raison d'^etre of such infrastructures which provide access to diversied computational, storage and data resources at large scales. Grids are rather chaotic, highly heterogeneous, de- centralized systems where unpredictable workloads, component failures and variability of execution environments are commonplace. Understanding and mastering the hetero- geneity and dynamics of such distributed systems is prohibitive for end users if they are not supported by appropriate methods and tools. The time cost to learn and use the interfaces and idiosyncrasies of dierent distributed environments is another challenge. Obtaining more reliable application execution times and boosting parallel speedup are important to increase the research capabilities of scientic communities. L...

  10. Understanding and retention of the informed consent process among parents in rural northern Ghana

    Directory of Open Access Journals (Sweden)

    Atuguba Frank

    2008-06-01

    Full Text Available Abstract Background The individual informed consent model remains critical to the ethical conduct and regulation of research involving human beings. Parental informed consent process in a rural setting of northern Ghana was studied to describe comprehension and retention among parents as part of the evaluation of the existing informed consent process. Methods The study involved 270 female parents who gave consent for their children to participate in a prospective cohort study that evaluated immune correlates of protection against childhood malaria in northern Ghana. A semi-structured interview with questions based on the informed consent themes was administered. Parents were interviewed on their comprehension and retention of the process and also on ways to improve upon the existing process. Results The average parental age was 33.3 years (range 18–62, married women constituted a majority (91.9%, Christians (71.9%, farmers (62.2% and those with no formal education (53.7%. Only 3% had ever taken part in a research and 54% had at least one relation ever participate in a research. About 90% of parents knew their children were involved in a research study that was not related to medical care, and 66% said the study procedures were thoroughly explained to them. Approximately, 70% recalled the study involved direct benefits compared with 20% for direct risks. The majority (95% understood study participation was completely voluntary but only 21% recalled they could withdraw from the study without giving reasons. Younger parents had more consistent comprehension than older ones. Maternal reasons for allowing their children to take part in the research were free medical care (36.5%, better medical care (18.8%, general benefits (29.4%, contribution to research in the area (8.8% and benefit to the community (1.8%. Parental suggestions for improving the consent process included devoting more time for explanations (46.9%, use of the local languages (15

  11. An Exploration of High School (12 17 Year Old) Students' Understandings of, and Attitudes Towards Biotechnology Processes

    Science.gov (United States)

    Dawson, Vaille

    2007-03-01

    The products of modern biotechnology processes such as genetic engineering, DNA testing and cloning will increasingly impact on society. It is essential that young people have a well-developed scientific understanding of biotechnology and associated processes so that they are able to contribute to public debate and make informed personal decisions. The aim of this study was to examine the development of understandings and attitudes about biotechnology processes as students progress through high school. In a cross-sectional case study, data was obtained from student interviews and written surveys of students aged 12 to 17 years. The results indicate that students' ability to provide a generally accepted definition and examples of biotechnology, cloning and genetically modified foods was relatively poor amongst 12 13 year old students but improved in older students. Most students approved of the use of biotechnology processes involving micro-organisms, plants and humans and disapproved of the use of animals. Overall, 12 13 year old students' attitudes were less favourable than older students regardless of the context. An awareness of the development and range of students' understandings and attitudes may lead to a more appropriate use of biotechnology curriculum materials and thus improved biotechnology education in schools.

  12. Mesoarchean Gabbroanorthosite Magmatism of the Kola Region

    Science.gov (United States)

    Kudryashov, N.; Mokrushin, A.

    2012-04-01

    The Kola peninsula is the region marked with development of anorthosite magmatism in the NE Baltic Shield. The Archaean gabbroanorthosites intrusions - Tsaginsky, Achinsky and Medvezhe-Schucheozersky - have the age of 2.7-2.6 Ga (Bayanova, 2004). The Patchemvarek and Severny gabbroanorthosites intrusions are located in the junction zone of the Kolmozero-Voronja greenstone belt and the Murmansk domain. Age data for sedimentaryvolcanogenic rocks of the Kolmozero-Voronja belt and Murmansk domain granitoids are 2.8-2.7 Ga. The gabbroanorthosites intrusions have more calcic composition (70-85% An) of normative plagioclase, and low contents of TiO2, FeO, and Fe2O3. In terms of chemical composition, the gabbroanorthosites of the studied massifs are close to the rocks of the Fiskenesset Complex (Greenland) and to the anorthosites of the Vermillion Lake Complex (Canada). U-Pb zircon dating established Mesoarchean ages of 29257 and 29358 Ma for the gabbroanorthosites of the Patchemvarek and Severny massifs, respectively. It was shown that the gabbroanorthosites of the studied massifs have fairly low REE contents (Cen = 2.2-4.2, Ybn = 1.6-2.6) and distinct positive Eu anomaly. Comagmatic ultrabasic differentiates have practically unfractionated REE pattern, low total REE contents (Cen = 1.2, Ybn = 1.1, La/Ybn = 1.32), and no Eu anomaly. The studied samples of the Archean gabbroanorthosites are characterized by positive "Nd= + 2.68 for the gabbroanorthosites of the Severny Massif and from + 2.77 to + 1.66 for the Patchemvarek Massif. The rocks of the Severny and Patchemvarek massifs has 87Sr/86Sri = 0.702048 and 87Sr/86Sri = 0.70258_8, respectively. The oldest U-Pb zircon ages for the gabbroanorthosites of the Patchemvarek and Severny massifs marking the Mesoarchean stage in the evolution of region. The differences in the initial 143Nd/144Nd ratios between the Neoarchean and the Mesoarchean gabbroanorthosites suggest the existence of two mantle sources. One of them produced

  13. Understanding processing-induced phase transformations in erythromycin-PEG 6000 solid dispersions

    DEFF Research Database (Denmark)

    Mirza, Sabiruddin; Heinämäki, Jyrki; Miroshnyk, Inna

    2006-01-01

    Since the quality and performance of a pharmaceutical solid formulation depend on solid state of the drug and excipients, a thorough investigation of potential processing-induced transformations (PITs) of the ingredients is required. In this study, the physical phenomena taking place during...... intermolecular interactions between the drug and polymer in the solid state were further studied by Fourier transform infrared (FTIR) spectroscopy. While in the absence of PEG the dehydration was the only transformation observed, hot-melt processing with the polymer caused the drug to undergo multiple phase...... formulation of erythromycin (EM) dihydrate solid dispersions with polyethylene glycol (PEG) 6000 by melting were investigated. PITs were monitored in situ using variable temperature X-ray powder diffraction (VT-XRPD), differential scanning calorimetry (DSC), and hot-stage microscopy (HSM). Possible...

  14. Living systems theory as a paradigm for organizational behavior: understanding humans, organizations, and social processes.

    Science.gov (United States)

    Vancouver, J B

    1996-07-01

    Living systems theories have been used to model human, organization, and communication processes. This paper attempts to describe these models and to highlight the isomorphisms among the models. Particular emphasis is given to self-regulating properties of humans as a subsystem of social systems. Attention is given to the advantages of generalizing across levels and phenomena and integrating the middle-range theories that dominate the field of organizational behavior. Three broad recommendations for future research are discussed.

  15. A multiscale dataset for understanding complex eco-hydrological processes in a heterogeneous oasis system

    OpenAIRE

    Li, Xin; Liu, Shaomin; Xiao, Qin; Ma, Mingguo; Jin, Rui; Che, Tao; Wang, Weizhen; Hu, Xiaoli; Xu, Ziwei; Wen, Jianguang; Wang, Liangxu

    2017-01-01

    We introduce a multiscale dataset obtained from Heihe Watershed Allied Telemetry Experimental Research (HiWATER) in an oasis-desert area in 2012. Upscaling of eco-hydrological processes on a heterogeneous surface is a grand challenge. Progress in this field is hindered by the poor availability of multiscale observations. HiWATER is an experiment designed to address this challenge through instrumentation on hierarchically nested scales to obtain multiscale and multidisciplinary data. The HiWAT...

  16. Understanding Immersivity: Image Generation and Transformation Processes in 3D Immersive Environments.

    Science.gov (United States)

    Kozhevnikov, Maria; Dhond, Rupali P

    2012-01-01

    Most research on three-dimensional (3D) visual-spatial processing has been conducted using traditional non-immersive 2D displays. Here we investigated how individuals generate and transform mental images within 3D immersive (3DI) virtual environments, in which the viewers perceive themselves as being surrounded by a 3D world. In Experiment 1, we compared participants' performance on the Shepard and Metzler (1971) mental rotation (MR) task across the following three types of visual presentation environments; traditional 2D non-immersive (2DNI), 3D non-immersive (3DNI - anaglyphic glasses), and 3DI (head mounted display with position and head orientation tracking). In Experiment 2, we examined how the use of different backgrounds affected MR processes within the 3DI environment. In Experiment 3, we compared electroencephalogram data recorded while participants were mentally rotating visual-spatial images presented in 3DI vs. 2DNI environments. Overall, the findings of the three experiments suggest that visual-spatial processing is different in immersive and non-immersive environments, and that immersive environments may require different image encoding and transformation strategies than the two other non-immersive environments. Specifically, in a non-immersive environment, participants may utilize a scene-based frame of reference and allocentric encoding whereas immersive environments may encourage the use of a viewer-centered frame of reference and egocentric encoding. These findings also suggest that MR performed in laboratory conditions using a traditional 2D computer screen may not reflect spatial processing as it would occur in the real world.

  17. A mechanistic understanding of processing additive-induced efficiency enhancement in bulk heterojunction organic solar cells

    KAUST Repository

    Schmidt, Kristin

    2013-10-31

    The addition of processing additives is a widely used approach to increase power conversion efficiencies for many organic solar cells. We present how additives change the polymer conformation in the casting solution leading to a more intermixed phase-segregated network structure of the active layer which in turn results in a 5-fold enhancement in efficiency. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Contrasting magmatic structures between small plutons and batholiths emplaced at shallow crustal level (Sierras de Córdoba, Argentina)

    Science.gov (United States)

    Pinotti, Lucio P.; D'Eramo, Fernando J.; Weinberg, Roberto F.; Demartis, Manuel; Tubía, José María; Coniglio, Jorge E.; Radice, Stefania; Maffini, M. Natalia; Aragón, Eugenio

    2016-11-01

    Processes like injection, magma flow and differentiation and influence of the regional strain field are here described and contrasted to shed light on their role in the formation of small plutons and large batholiths their magmatic structures. The final geometric and compositional arrangement of magma bodies are a complex record of their construction and internal flow history. Magma injection, flow and differentiation, as well as regional stresses, all control the internal nature of magma bodies. Large magma bodies emplaced at shallow crustal levels result from the intrusion of multiple magma batches that interact in a variety of ways, depending on internal and external dynamics, and where the early magmatic, growth-related structures are commonly overprinted by subsequent history. In contrast, small plutons emplaced in the brittle-ductile transition more likely preserve growth-related structures, having a relatively simple cooling history and limited internal magma flow. Outcrop-scale magmatic structures in both cases record a rich set of complementary information that can help elucidate their evolution. Large and small granitic bodies of the Sierra Pampeanas preserve excellent exposures of magmatic structures that formed as magmas stepped through different rheological states during pluton growth and solidification. These structures reveal not only the flow pattern inside magma chambers, but also the rheological evolution of magmas in response to temperature evolution.

  19. Understanding the Cognition Process of the Students using the Internet as a Learning Resource

    Directory of Open Access Journals (Sweden)

    Husniyatus Salamah Zainiati

    2017-06-01

    Full Text Available This study aims to investigate how students search and process the information found on the Internet to meet the needs of their academic tasks as well as how they view such information compared to printed materials. The study was conducted targeting the student teachers at Primary School Teacher Education (PGMI Program and Kindergarten Teacher Education Program (PGRA in State Islamic University Sunan Ampel Surabaya. Such information search and processing are then later viewed through the lens of Blooms’ taxonomy. A qualitative method using the phenomenological approach is adopted in the study. Nine student participants of 1st, 2nd, 3rd-year classes were interviewed. The study indicates that the presence of the Internet as a source of learning has not shifted the role of the textbook as a primary source of information for the students while working on their academic assignments. It was revealed that the information search activities on the Internet have facilitated students to experience the four domains of the learning process in Bloom's Taxonomy. 

  20. Understanding Coupled Earth-Surface Processes through Experiments and Models (Invited)

    Science.gov (United States)

    Overeem, I.; Kim, W.

    2013-12-01

    Traditionally, both numerical models and experiments have been purposefully designed to ';isolate' singular components or certain processes of a larger mountain to deep-ocean interconnected source-to-sink (S2S) transport system. Controlling factors driven by processes outside of the domain of immediate interest were treated and simplified as input or as boundary conditions. Increasingly, earth surface processes scientists appreciate feedbacks and explore these feedbacks with more dynamically coupled approaches to their experiments and models. Here, we discuss key concepts and recent advances made in coupled modeling and experimental setups. In addition, we emphasize challenges and new frontiers to coupled experiments. Experiments have highlighted the important role of self-organization; river and delta systems do not always need to be forced by external processes to change or develop characteristic morphologies. Similarly modeling f.e. has shown that intricate networks in tidal deltas are stable because of the interplay between river avulsions and the tidal current scouring with both processes being important to develop and maintain the dentritic networks. Both models and experiment have demonstrated that seemingly stable systems can be perturbed slightly and show dramatic responses. Source-to-sink models were developed for both the Fly River System in Papua New Guinea and the Waipaoa River in New Zealand. These models pointed to the importance of upstream-downstream effects and enforced our view of the S2S system as a signal transfer and dampening conveyor belt. Coupled modeling showed that deforestation had extreme effects on sediment fluxes draining from the catchment of the Waipaoa River in New Zealand, and that this increase in sediment production rapidly shifted the locus of offshore deposition. The challenge in designing coupled models and experiments is both technological as well as intellectual. Our community advances to make numerical model coupling more

  1. The effects of magmatic redistribution of heat producing elements on the lunar mantle evolution inferred from numerical models that start from various initial states

    Science.gov (United States)

    Ogawa, Masaki

    2018-02-01

    To discuss how redistribution of heat producing elements (HPEs) by magmatism affects the lunar mantle evolution depending on the initial condition, I present two-dimensional numerical models of magmatism in convecting mantle internally heated by incompatible HPEs. Mantle convection occurs beneath a stagnant lithosphere that inhibits recycling of the HPE-enriched crustal materials to the mantle. Magmatism is modeled by a permeable flow of magma generated by decompression melting through matrix. Migrating magma transports heat, mass, and HPEs. When the deep mantle is initially hot with the temperature TD around 1800 K at its base, magmatism starts from the beginning of the calculated history to extract HPEs from the mantle. The mantle is monotonously cooled, and magmatism ceases within 2 Gyr, accordingly. When the deep mantle is initially colder with TD around 1100 K, HPEs stay in the deep mantle for a longer time to let the planet be first heated up and then cooled only slightly. If, in addition, there is an HPE-enriched domain in the shallow mantle at the beginning of the calculation, magma continues ascending to the surface through the domain for more than 3 Gyr. The low TD models fit in with the thermal and magmatic history of the Moon inferred from spacecraft observations, although it is not clear if the models are consistent with the current understanding of the origin of the Moon and its magnetic field. Redistribution of HPEs by magmatism is a crucial factor that must be taken into account in future studies of the evolution of the Moon.

  2. Experimental impact cratering provides ground truth data for understanding planetary-scale collision processes

    Science.gov (United States)

    Poelchau, Michael H.; Deutsch, Alex; Kenkmann, Thomas

    2013-04-01

    Impact cratering is generally accepted as one of the primary processes that shape planetary surfaces in the solar system. While post-impact analysis of craters by remote sensing or field work gives many insights into this process, impact cratering experiments have several advantages for impact research: 1) excavation and ejection processes can be directly observed, 2) physical parameters of the experiment are defined and can be varied, and 3) cratered target material can be analyzed post-impact in an unaltered, uneroded state. The main goal of the MEMIN project is to comprehensively quantify impact processes by conducting a stringently controlled experimental impact cratering campaign on the meso-scale with a multidisciplinary analytical approach. As a unique feature we use two-stage light gas guns capable of producing impact craters in the decimeter size-range in solid rocks that, in turn, allow detailed spatial analysis of petrophysical, structural, and geochemical changes in target rocks and ejecta. In total, we have carried out 24 experiments at the facilities of the Fraunhofer EMI, Freiburg - Germany. Steel, aluminum, and iron meteorite projectiles ranging in diameter from 2.5 to 12 mm were accelerated to velocities ranging from 2.5 to 7.8 km/s. Targets were solid rocks, namely sandstone, quartzite and tuff that were either dry or saturated with water. In the experimental setup, high speed framing cameras monitored the impact process, ultrasound sensors were attached to the target to record the passage of the shock wave, and special particle catchers were positioned opposite of the target surface to capture the ejected target and projectile material. In addition to the cratering experiments, planar shock recovery experiments were performed on the target material, and numerical models of the cratering process were developed. The experiments resulted in craters with diameters up to 40 cm, which is unique in laboratory cratering research. Target porosity

  3. Brain reflections: A circuit-based framework for understanding information processing and cognitive control.

    Science.gov (United States)

    Gratton, Gabriele

    2018-03-01

    Here, I propose a view of the architecture of the human information processing system, and of how it can be adapted to changing task demands (which is the hallmark of cognitive control). This view is informed by an interpretation of brain activity as reflecting the excitability level of neural representations, encoding not only stimuli and temporal contexts, but also action plans and task goals. The proposed cognitive architecture includes three types of circuits: open circuits, involved in feed-forward processing such as that connecting stimuli with responses and characterized by brief, transient brain activity; and two types of closed circuits, positive feedback circuits (characterized by sustained, high-frequency oscillatory activity), which help select and maintain representations, and negative feedback circuits (characterized by brief, low-frequency oscillatory bursts), which are instead associated with changes in representations. Feed-forward activity is primarily responsible for the spread of activation along the information processing system. Oscillatory activity, instead, controls this spread. Sustained oscillatory activity due to both local cortical circuits (gamma) and longer corticothalamic circuits (alpha and beta) allows for the selection of individuated representations. Through the interaction of these circuits, it also allows for the preservation of representations across different temporal spans (sensory and working memory) and their spread across the brain. In contrast, brief bursts of oscillatory activity, generated by novel and/or conflicting information, lead to the interruption of sustained oscillatory activity and promote the generation of new representations. I discuss how this framework can account for a number of psychological and behavioral phenomena. © 2017 Society for Psychophysiological Research.

  4. Understanding the process of establishing a food and nutrition policy: the case of Slovenia.

    Science.gov (United States)

    Kugelberg, Susanna; Jönsson, Kristina; Yngve, Agneta

    2012-09-01

    There has been an increasing effort across Europe to develop national policies in food and nutrition during the last decade. However, little is known about how public health nutrition issues get on the public health agenda and the roles individuals have when these agendas are being set. The aims of this study were to scrutinise the development process of the Slovenian national food and nutrition policy, and to identify the roles and functions of individuals who have contributed to that process. This study undertook a qualitative approach. Data collection included 18 semi-structured interviews between 2007 and 2011, and grey and scientific literature search. Text analysis was based on Kingdon's streams model, which involved highlighting the relationship between problem identification, policy solutions and political opportunities. Data were coded to identify the roles and functions of individuals participating in the agenda-setting process. The analysis showed that the opportunity for the Slovenian food and nutrition policy to be developed was largely explained by a change in political circumstances, namely the accession of Slovenia to the European Union and the Common Agricultural Policy. Individuals with experience in policy development were identified because of their analytical, strategic and policy entrepreneurial skills. The analyst was responsible for communicating the key nutrition issues to policy-makers, the strategist joined international networks and promoted policy solutions from international experts including the World Health Organization, and the policy entrepreneur took advantage of the political situation to enlist the participation of previous opponents to a national nutrition policy. This study found that individuals, their roles and skills, played an important role in the development of the Slovenian National Food and Nutrition Policy. The roles and functions of these individuals, which are identified in this study, may assist future endeavours

  5. Understanding the process of patient satisfaction with nurse-led chronic disease management in general practice.

    Science.gov (United States)

    Mahomed, Rosemary; St John, Winsome; Patterson, Elizabeth

    2012-11-01

      To investigate the process of patient satisfaction with nurse-led chronic disease management in Australian general practice.   Nurses working in the primary care context of general practice, referred to as practice nurses, are expanding their role in chronic disease management; this is relatively new to Australia. Therefore, determining patient satisfaction with this trend is pragmatically and ethically important. However, the concept of patient satisfaction is not well understood particularly in relation to care provided by practice nurses.   A grounded theory study underpinned by a relativist ontological position and a relativist epistemology.   Grounded theory was used to develop a theory from data collected through in-depth interviews with 38 participants between November 2007-April 2009. Participants were drawn from a larger project that trialled a practice nurse-led, collaborative model of chronic disease management in three Australian general practices. Theoretical sampling, data collection, and analysis were conducted concurrently consistent with grounded theory methods.   Patients undergo a cyclical process of Navigating Care involving three stages, Determining Care Needs, Forming Relationship, and Having Confidence. The latter two processes are inter-related and a feedback loop from them informs subsequent cycles of Determining Care Needs. If any of these steps fails to develop adequately, patients are likely to opt out of nurse-led care.   Navigating Care explains how and why time, communication, continuity, and trust in general practitioners and nurses are important to patient satisfaction. It can be used in identifying suitable patients for practice nurse-led care and to inform the practice and organization of practice nurse-led care to enhance patient satisfaction. © 2012 Blackwell Publishing Ltd.

  6. Understanding the pregnancy decision-making process among couples seeking induced abortion.

    Science.gov (United States)

    Costescu, Dustin J; Lamont, John A

    2013-10-01

    The role of partners in the abortion experience is complex and poorly understood. We sought to examine how women and their partners navigate the pregnancy decision-making process. Thirty couples presenting for abortion completed questionnaires exploring experiences leading to the abortion. Participants were sequestered from their partners during completion of the study, and booklets were coded to allow comparison within couples. This portion of the study explored partner involvement in the decision-making process. One half of women had decided on abortion before informing their partner of the pregnancy. Of those who were undecided at the time of disclosure, all sought their partner's advice. Most participants (84%) were happy with the amount of discussion that took place with their partners, although one fifth of women and nearly one third of men could have discussed it more. More women than men were happy with the discussions that took place (96.6% vs. 70.4%). Two thirds of respondents viewed the decision to have an abortion as being made by both partners, one quarter viewed the decision as being mostly the woman's choice, and 5% viewed the decision as being mostly the male partner's choice. Although making the choice to have an abortion rests with the woman, her partner may play a role in the decision-making process, particularly when the woman is undecided. For many couples presenting for abortion, the decision is seen as being made jointly by both partners. Further research may identify opportunities to foster greater partner support throughout a woman's abortion experience.

  7. Study and understanding of n/γ discrimination processes in organic plastic scintillators

    International Nuclear Information System (INIS)

    Hamel, Matthieu; Blanc, Pauline; Rocha, Licinio; Normand, Stephane; Pansu, Robert

    2013-01-01

    For 50 years, it was assumed that unlike liquid scintillators or organic crystals, plastic scintillators were not able to discriminate fast neutrons from gamma. In this work, we will demonstrate that triplet-triplet annihilations (which are responsible of n/γ discrimination) can occur even in plastic scintillators, following certain conditions. Thus, the presentation will deal with the chemical preparation, the characterization and the comparison of n/γ pulse shape discrimination of various plastic scintillators. To this aim, scale-up of the process allowed us to prepare a O 100 mm x*110 mm thick. (authors)

  8. How Radiologists Think: Understanding Fast and Slow Thought Processing and How It Can Improve Our Teaching.

    Science.gov (United States)

    van der Gijp, Anouk; Webb, Emily M; Naeger, David M

    2017-06-01

    Scholars have identified two distinct ways of thinking. This "Dual Process Theory" distinguishes a fast, nonanalytical way of thinking, called "System 1," and a slow, analytical way of thinking, referred to as "System 2." In radiology, we use both methods when interpreting and reporting images, and both should ideally be emphasized when educating our trainees. This review provides practical tips for improving radiology education, by enhancing System 1 and System 2 thinking among our trainees. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  9. Understanding defect related luminescence processes in wide bandgap materials using low temperature multi-spectroscopic techniques

    DEFF Research Database (Denmark)

    Prasad, Amit Kumar

    tunneling loss of the trapped electrons over geological time (so called anomalous fading); this gives rise to apparent ages that underestimate the true age. Despite a rapid progress in the infra-red stimulated luminescence (IRSL) dating technique using feldspar, a clear understanding of luminescence...... play a role in charge transport. The main defect used in optical dating is called the infra-red dosimetric trap (IR trap), which has a thermal lifetime of millions of years, appropriate for dating Middle to Late Quaternary time scales. However, this trap is known to suffer from instability arising from...... to the thesis, while Chapter 2 describes the instrumentation and samples used to carry out this research. The key findings of my Ph.D. research are summarized in five different chapters (Chapter 3 to Chapter 7). I discovered a ‘red edge effect’ in the greenorange emission in feldspar, and demonstrated...

  10. Understanding watershed hydrogeochemistry: 2. Synchronized hydrological and geochemical processes drive stream chemostatic behavior

    Science.gov (United States)

    Li, Li; Bao, Chen; Sullivan, Pamela L.; Brantley, Susan; Shi, Yuning; Duffy, Christopher

    2017-03-01

    Why do solute concentrations in streams remain largely constant while discharge varies by orders of magnitude? We used a new hydrological land surface and reactive transport code, RT-Flux-PIHM, to understand this long-standing puzzle. We focus on the nonreactive chloride (Cl) and reactive magnesium (Mg) in the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO). Simulation results show that stream discharge comes from surface runoff (Qs), soil lateral flow (QL), and deeper groundwater (QG), with QL contributing >70%. In the summer, when high evapotranspiration dries up and disconnects most of the watershed from the stream, Cl is trapped along planar hillslopes. Successive rainfalls connect the watershed and mobilize trapped Cl, which counteracts dilution effects brought about by high water storage (Vw) and maintains chemostasis. Similarly, the synchronous response of clay dissolution rates (Mg source) to hydrological conditions, maintained largely by a relatively constant ratio between "wetted" mineral surface area Aw and Vw, controls Mg chemostatic behavior. Sensitivity analysis indicates that cation exchange plays a secondary role in determining chemostasis compared to clay dissolution, although it does store an order-of-magnitude more Mg on exchange sites than soil water. Model simulations indicate that dilution (concentration decrease with increasing discharge) occurs only when mass influxes from soil lateral flow are negligible (e.g., via having low clay surface area) so that stream discharge is dominated by relatively constant mass fluxes from deep groundwater that are unresponsive to surface hydrological conditions.

  11. Carbon-water Cycling in the Critical Zone: Understanding Ecosystem Process Variability Across Complex Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, Holly [Univ. of Colorado, Boulder, CO (United States); Brooks, Paul [Univ. of Utah, Salt Lake City, UT (United States); Univ. of Arizona, Tucson, AZ (United States)

    2016-06-16

    One of the largest knowledge gaps in environmental science is the ability to understand and predict how ecosystems will respond to future climate variability. The links between vegetation, hydrology, and climate that control carbon sequestration in plant biomass and soils remain poorly understood. Soil respiration is the second largest carbon flux of terrestrial ecosystems, yet there is no consensus on how respiration will change as water availability and temperature co-vary. To address this knowledge gap, we use the variation in soil development and topography across an elevation and climate gradient on the Front Range of Colorado to conduct a natural experiment that enables us to examine the co-evolution of soil carbon, vegetation, hydrology, and climate in an accessible field laboratory. The goal of this project is to further our ability to combine plant water availability, carbon flux and storage, and topographically driven hydrometrics into a watershed scale predictive model of carbon balance. We hypothesize: (i) landscape structure and hydrology are important controls on soil respiration as a result of spatial variability in both physical and biological drivers: (ii) variation in rates of soil respiration during the growing season is due to corresponding shifts in belowground carbon inputs from vegetation; and (iii) aboveground carbon storage (biomass) and species composition are directly correlated with soil moisture and therefore, can be directly related to subsurface drainage patterns.

  12. Understanding the Process and Success Factors to Increase Synergies between Research and Teaching

    Directory of Open Access Journals (Sweden)

    Deborah Ballou

    2016-12-01

    Full Text Available While the synergies between research for knowledge discovery and teaching are widely accepted, the evidence is mostly implicit, verbal and poorly documented, and many times contradictive. In an effort to better understand the interaction between these important activities, the main objective of this study is to collect knowledge illustrating their synergies through specific cases. A complementary objective is to identify the important factors, which professionals should implement or avoid for increasing the likelihood that these synergies will be derived. To collect the necessary information personal interviews have been used to address the research question. The same set of questions was sent to several professionals known to have extensive experience in the areas of academic research and teaching. The respondents were asked to: 1. briefly describe the knowledge area in which the synergies occurred; 2. For the specified knowledge area, to please describe in summary form but specifically how they derived the synergy between research and teaching; and 3. Based on their personal experience, to please identify the important factors to increase the likelihood that academic research will produce benefits for teaching, and vice versa. The results strongly corroborate the importance of academic research for effective teaching. Based on the results, a set of recommendations are made to faculty members and school administrators to further promote academic research as an important factor for more effective teaching.

  13. Cooling a quantum oscillator: A useful analogy to understand laser cooling as a thermodynamical process

    Science.gov (United States)

    Freitas, Nahuel; Paz, Juan Pablo

    2018-03-01

    We analyze the lowest achievable temperature for a mechanical oscillator coupled with a quantum refrigerator composed of a parametrically driven system that is in contact with a bosonic reservoir where the energy is dumped. We show that the cooling of the oscillator (achieved by the resonant transport of its phonon excitations into the environment) is always stopped by a fundamental heating process that is dominant at sufficiently low temperatures. This process can be described as the nonresonant production of excitation pairs. This result is in close analogy with the recent study that showed that pair production is responsible for enforcing the validity of the dynamical version of the third law of thermodynamics [Phys. Rev. E 95, 012146 (2017), 10.1103/PhysRevE.95.012146]. Interestingly, we relate our model to the ones used to describe laser cooling of a single trapped ion reobtaining the correct limiting temperatures for the regimes of resolved and nonresolved sidebands. We show that the limiting temperature for laser cooling is achieved when the cooling transitions induced by the resonant transport of excitations from the motion into the electromagnetic environment is compensated by the heating transitions induced by the creation of phonon-photon pairs.

  14. Utilizing Virtual Reality to Understand Athletic Performance and Underlying Sensorimotor Processing

    Directory of Open Access Journals (Sweden)

    Toshitaka Kimura

    2018-02-01

    Full Text Available In behavioral sports sciences, knowledge of athletic performance and underlying sensorimotor processing remains limited, because most data is obtained in the laboratory. In laboratory experiments we can strictly control the measurement conditions, but the action we can target may be limited and differ from actual sporting action. Thus, the obtained data is potentially unrealistic. We propose using virtual reality (VR technology to compensate for the lack of actual reality. We have developed a head mounted display (HMD-based VR system for application to baseball batting where the user can experience hitting a pitch in a virtual baseball stadium. The batter and the bat movements are measured using nine-axis inertial sensors attached to various parts of the body and bat, and they are represented by a virtual avatar in real time. The pitched balls are depicted by computer graphics based on previously recorded ball trajectories and are thrown in time with the motion of a pitcher avatar based on simultaneously recorded motion capture data. The ball bounces depending on its interaction with the bat. In a preliminary measurement where the VR system was combined with measurement equipment we found some differences between the behavioral and physiological data (i.e., the body movements and respiration of experts and beginners and between the types of pitches during virtual batting. This VR system with a sufficiently real visual experience will provide novel findings as regards athletic performance that were formerly hard to obtain and allow us to elucidate their sensorimotor processing in detail.

  15. Big-data reflection high energy electron diffraction analysis for understanding epitaxial film growth processes.

    Science.gov (United States)

    Vasudevan, Rama K; Tselev, Alexander; Baddorf, Arthur P; Kalinin, Sergei V

    2014-10-28

    Reflection high energy electron diffraction (RHEED) has by now become a standard tool for in situ monitoring of film growth by pulsed laser deposition and molecular beam epitaxy. Yet despite the widespread adoption and wealth of information in RHEED images, most applications are limited to observing intensity oscillations of the specular spot, and much additional information on growth is discarded. With ease of data acquisition and increased computation speeds, statistical methods to rapidly mine the data set are now feasible. Here, we develop such an approach to the analysis of the fundamental growth processes through multivariate statistical analysis of a RHEED image sequence. This approach is illustrated for growth of La(x)Ca(1-x)MnO(3) films grown on etched (001) SrTiO(3) substrates, but is universal. The multivariate methods including principal component analysis and k-means clustering provide insight into the relevant behaviors, the timing and nature of a disordered to ordered growth change, and highlight statistically significant patterns. Fourier analysis yields the harmonic components of the signal and allows separation of the relevant components and baselines, isolating the asymmetric nature of the step density function and the transmission spots from the imperfect layer-by-layer (LBL) growth. These studies show the promise of big data approaches to obtaining more insight into film properties during and after epitaxial film growth. Furthermore, these studies open the pathway to use forward prediction methods to potentially allow significantly more control over growth process and hence final film quality.

  16. Evolutionary theories of aging. 1. The need to understand the process of natural selection.

    Science.gov (United States)

    Keller, L; Genoud, M

    1999-01-01

    In a Forum article Le Bourg (1998) criticized recent tests of evolutionary theories of aging and suggested alternative explanations for the long lifespan of ant queens and the positive relationship between body size and lifespan in mammals. Moreover, he attempts to criticize evolutionary theories of aging by showing that explanations other than evolutionary theories of aging probably account for the variation in human lifespan across countries. Here we show that the arguments of Le Bourg suffer several problems. First, many of the arguments reveal a misunderstanding of the process of natural selection. Second, some of the arguments reflect a lack of knowledge of evolutionary theories of aging (e.g. pre-reproductive mortality is not predicted to influence lifespan of organisms contrary to what is claimed). Finally, his final example on lifespan in humans simply is a straw-man because serious evolutionary biologists are well aware of the importance of confounding variables and would certainly not make the type of conclusion suggested by Le Bourg. Although a critical discussion of evolutionary theories of aging is welcome, we believe that the alternative explanations proposed by Le Bourg are implausible and reflect a misunderstanding of the process of natural selection. Copyright 1999 S. Karger AG, Basel

  17. Understanding the core of RNA interference: The dynamic aspects of Argonaute-mediated processes

    KAUST Repository

    Zhu, Lizhe

    2016-10-05

    At the core of RNA interference, the Argonaute proteins (Ago) load and utilize small guide nucleic acids to silence mRNAs or cleave foreign nucleic acids in a sequence specific manner. In recent years, based on extensive structural studies of Ago and its interaction with the nucleic acids, considerable progress has been made to reveal the dynamic aspects of various Ago-mediated processes. Here we review these novel insights into the guide-strand loading, duplex unwinding, and effects of seed mismatch, with a focus on two representative Agos, the human Ago 2 (hAgo2) and the bacterial Thermus thermophilus Ago (TtAgo). In particular, comprehensive molecular simulation studies revealed that although sharing similar overall structures, the two Agos have vastly different conformational landscapes and guide-strand loading mechanisms because of the distinct rigidity of their L1-PAZ hinge. Given the central role of the PAZ motions in regulating the exposure of the nucleic acid binding channel, these findings exemplify the importance of protein motions in distinguishing the overlapping, yet distinct, mechanisms of Ago-mediated processes in different organisms.

  18. States of stress and slip partitioning in a continental scale strike-slip duplex: Tectonic and magmatic implications by means of finite element modeling

    Science.gov (United States)

    Iturrieta, Pablo Cristián; Hurtado, Daniel E.; Cembrano, José; Stanton-Yonge, Ashley

    2017-09-01

    Orogenic belts at oblique convergent subduction margins accommodate deformation in several trench-parallel domains, one of which is the magmatic arc, commonly regarded as taking up the margin-parallel, strike-slip component. However, the stress state and kinematics of volcanic arcs is more complex than usually recognized, involving first- and second-order faults with distinctive slip senses and mutual interaction. These are usually organized into regional scale strike-slip duplexes, associated with both long-term and short-term heterogeneous deformation and magmatic activity. This is the case of the 1100 km-long Liquiñe-Ofqui Fault System in the Southern Andes, made up of two overlapping margin-parallel master faults joined by several NE-striking second-order faults. We present a finite element model addressing the nature and spatial distribution of stress across and along the volcanic arc in the Southern Andes to understand slip partitioning and the connection between tectonics and magmatism, particularly during the interseismic phase of the subduction earthquake cycle. We correlate the dynamics of the strike-slip duplex with geological, seismic and magma transport evidence documented by previous work, showing consistency between the model and the inferred fault system behavior. Our results show that maximum principal stress orientations are heterogeneously distributed within the continental margin, ranging from 15° to 25° counter-clockwise (with respect to the convergence vector) in the master faults and 10-19° clockwise in the forearc and backarc domains. We calculate the stress tensor ellipticity, indicating simple shearing in the eastern master fault and transpressional stress in the western master fault. Subsidiary faults undergo transtensional-to-extensional stress states. The eastern master fault displays slip rates of 5 to 10 mm/yr, whereas the western and subsidiary faults show slips rates of 1 to 5 mm/yr. Our results endorse that favorably oriented

  19. Understanding modern and past sedimentary processes in selected lakes from the High Arctic and the Mediterranean realm

    OpenAIRE

    Francke, Alexander

    2014-01-01

    Lacustrine sediment sequences can provide valuable archives of past environmental and climatological variability in terrestrial realms. In order to unravel the history of a lake and of a lake’s catchment, a profound understanding of the sedimentary processes is required. This encompasses the supply of allochthonous organic matter, nutrients and clastic material to the lake, the subsequent redistribution within the lake as well as autochthonous organic matter and mineral deposition. These lake...

  20. Cloud-based Virtual Reality Integrated Automatic Presentation Script for Understanding Urban Design Concepts in the Consensus Process

    OpenAIRE

    Yuanyi, Zhang; Zhenjiang, Shen; Kai, Wang; Fumihiko, Kobayashi; Xinyi, Lin

    2017-01-01

    In recent years, designers have used various types of tools, such as public Participation GIS (PP GIS) and Virtual Reality Modelling Language (VRML), to improve urban design concept understanding in the consensus process. However, these tools were frequently criticized as being too complex for the majority of potential users. Moreover, due to the limitations of data compression, hardware performance, network bandwidth and costs of current virtual reality platforms, the users need to gather in...

  1. The modeling of understanding and sense’s generation processes in different architectural environmental situations of socio-cultural interaction

    OpenAIRE

    Марія Юріївна Блінова

    2015-01-01

    The article is an attempt to modeling of understanding and sense’s generation processes in different architectural environmental situations of socio-cultural interaction. Methodologically interpretation of the subject sociocultural interaction offered to make from the standpoint of modern social theories, the entity that is the social role, understood as a model of human behavior objectively given social position of the individual in the system of social relations

  2. An innovative lab-based training program to help patient groups understand their disease and the research process.

    Directory of Open Access Journals (Sweden)

    Marion Mathieu

    2015-02-01

    Full Text Available Genuine partnership between patient groups and medical experts is important but challenging. Our training program meets this challenge by organizing hands-on, lab-based training sessions for members of patient groups. These sessions allow "trainees" to better understand their disease and the biomedical research process, and strengthen links between patients and local researchers. Over the past decade, we and our partner institutes have received more than 900 French patients, with the participation of over 60 researchers and clinicians.

  3. An innovative lab-based training program to help patient groups understand their disease and the research process.

    Science.gov (United States)

    Mathieu, Marion; Hammond, Constance; Karlin, David G

    2015-02-01

    Genuine partnership between patient groups and medical experts is important but challenging. Our training program meets this challenge by organizing hands-on, lab-based training sessions for members of patient groups. These sessions allow "trainees" to better understand their disease and the biomedical research process, and strengthen links between patients and local researchers. Over the past decade, we and our partner institutes have received more than 900 French patients, with the participation of over 60 researchers and clinicians.

  4. Understanding the self-assembly process and behavior of metal-seamed pyrogallol[4]arene nanocapsules

    Science.gov (United States)

    Mossine, Andrew V.

    time of measurement as well as the solvent system during synthesis were also performed. Furthermore, SANS was also used to study Fe3+-PgC complexes. These complexes are difficult if not impossible to crystallize, and therefore cannot be studied using scXRD. SANS was used in conjunction with elemental analysis to deduce a structure for these materials. In addition to understanding the synthesis of MONCs, another goal was to also use them for other (possibly practical) purposes. To this end, PgC-based MONCs were used as building blocks in metal-organic frameworks (MOFs). This involved the use of divergent ligands to "link" capsular monomers together, resulting in one and two dimensional frameworks. This work not only produced functional materials that may be useful in future research efforts, but also showed that exo-ligand exchange can be used to derivatize MONCs into potentially useful and functional materials. The introduction of radioisotopes into the nanocapsule was another method by which functionality could theoretically be imparted into MONCs. It was envisioned that MONCs could potentially be used as carrier systems for radioisotopes, and thereby function as agents for therapy or medical imaging. Copper hexamers constructed from 64Cu2+ were therefore prepared and studied in a living system. However, these studies were unsuccessful at showing that the copper-seamed MONCs differed in behavior from 64Cu in vivo, either due to poor labeling efficiency or metabolism. Nevertheless, radiolabeling of hexameric nanocapsules was helpful in broadening our understanding of these materials. Some of the studies that were conducted include those that gauge the solubility and stability of nanocapsules, as well as others that explore the conditions required for cationic uptake and exchange.

  5. An Interdisciplinary Undergraduate Space Physics Course: Understanding the Process of Science Through One Field's Colorful History

    Science.gov (United States)

    Lopez, Ramon E.

    1996-01-01

    Science education in this country is in its greatest period of ferment since the post-Sputnik frenzy a generation ago. In that earlier time, however, educators' emphasis was on producing more scientists and engineers. Today we recognize that all Americans need a good science background. The ability to observe, measure, think quantitatively, and reach logical conclusions based on available evidence is a set of skills that everyone entering the workforce needs to acquire if our country is to be competitive in a global economy. Moreover, as public policy increasingly crystallizes around scientific issues, it is critical that citizens be educated in science so that they may provide informed debate and on these issues. In order to develop this idea more fully, I proposed to teach a historically based course about space physics as an honors course at the University of Maryland-College Park (UMCP). The honors program at UMCP was established to foster broad-based undergraduate courses that utilize innovative teaching techniques to provide exemplary education to a select group of students. I designed an introductory course that would have four basic goals: to acquaint students with geomagnetic and auroral phenomena and their relationship to the space environment; to examine issues related to the history of science using the evolution of the field as an example; to develop familiarity with basic skills such as describing and interpreting observations, analyzing scientific papers, and communicating the results of their own research; and to provide some understanding of basic physics, especially those aspect that play a role in the near-earth space environment.

  6. A conceptual framework for understanding the process of family caregiving to frail elders in Taiwan.

    Science.gov (United States)

    Shyu, Yea-Ing Lotus

    2002-04-01

    This descriptive, correlational study of family caregivers (N=125) tested a conceptual framework for family caregiving to frail elders in Taiwan, using the concept of "finding a balance point" derived from a previous qualitative study. It was hypothesized that caregivers who were better able to find a balance point among competing needs would provide better-quality care to frail elders, which would lead to more positive caregiver and family outcomes. After controlling for the influence of caregiving characteristics and caregiving factors, finding a balance point significantly explained 7% of the variance in overall caregiving consequences. The findings of this study add a new perspective to the caregiving process in Taiwan. Copyright 2002 Wiley Periodicals, Inc.

  7. Understanding the nature of the manganese hot dip phosphatizing process of steel

    International Nuclear Information System (INIS)

    Alvarado M, G.; Fuentes A, J. C.; Salinas R, A.; Rodriguez V, F. J.

    2013-01-01

    In this work, the phosphatizing process of steel is investigated using open circuit potential and Tafel curves as well as scanning electron microscopy and energy dispersive X-ray spectroscopy. The results reveal that a ph of 2.57 in the phosphatizing solution promotes the dissociation of phosphoric acid which assist the formation of the manganese tertiary salt (Mn 3 (PO 4 ) 2 ), which is deposited on the substrate. It was also observed that an increase in the temperature from 25 to 90 C and the presence of HNO 3 as catalysts enhances the manganese phosphatizing kinetics. On the other hand, the generation of iron phosphates and oxides is predominant at a ph of 1 and 90 C. These observations are supported by species distribution and Pourbaix thermodynamic diagrams. (Author)

  8. Understanding the nature of the manganese hot dip phosphatizing process of steel

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado M, G.; Fuentes A, J. C.; Salinas R, A.; Rodriguez V, F. J., E-mail: juan.fuentes@cinvestav.edu.mx [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Saltillo, Av. Industria Metalurgica No. 1062, Parque Industrial Ramos Arizpe, 25900 Saltillo, Coahuila (Mexico)

    2013-07-01

    In this work, the phosphatizing process of steel is investigated using open circuit potential and Tafel curves as well as scanning electron microscopy and energy dispersive X-ray spectroscopy. The results reveal that a ph of 2.57 in the phosphatizing solution promotes the dissociation of phosphoric acid which assist the formation of the manganese tertiary salt (Mn{sub 3}(PO{sub 4}){sub 2}), which is deposited on the substrate. It was also observed that an increase in the temperature from 25 to 90 C and the presence of HNO{sub 3} as catalysts enhances the manganese phosphatizing kinetics. On the other hand, the generation of iron phosphates and oxides is predominant at a ph of 1 and 90 C. These observations are supported by species distribution and Pourbaix thermodynamic diagrams. (Author)

  9. Water Pollution Control Legislation in Israel: Understanding Implementation Processes from an Actor-Centered Approach

    Directory of Open Access Journals (Sweden)

    Sharon Hophmayer-Tokich

    2013-09-01

    Full Text Available In the State of Israel, advanced legislation for the management of scarce water resources, including legislation to prevent water pollution, were put in place in the early stages of the State’s formation. Despite that, on-going uncontrolled pollution has deteriorated the quality of water sources for decades, with the main source of pollution being untreated or partially treated domestic wastewater. This has been mainly the result of lack of enforcement of the existing laws. During the 1990s and onwards, a shift to forceful enforcement has been observed and wastewater treatment substantially improved. The paper analyzes the implementation processes of the pollution control legislations (the lack-of and the shift to forceful enforcement based on an actor-centered approach, using the contextual interaction theory.

  10. Understanding processes at the origin of species flocks with a focus on the marine Antarctic fauna.

    Science.gov (United States)

    Chenuil, Anne; Saucède, Thomas; Hemery, Lenaïg G; Eléaume, Marc; Féral, Jean-Pierre; Améziane, Nadia; David, Bruno; Lecointre, Guillaume; Havermans, Charlotte

    2018-02-01

    Species flocks (SFs) fascinate evolutionary biologists who wonder whether such striking diversification can be driven by normal evolutionary processes. Multiple definitions of SFs have hindered the study of their origins. Previous studies identified a monophyletic taxon as a SF if it displays high speciosity in an area in which it is endemic (criterion 1), high ecological diversity among species (criterion 2), and if it dominates the habitat in terms of biomass (criterion 3); we used these criteria in our analyses. Our starting hypothesis is that normal evolutionary processes may provide a sufficient explanation for most SFs. We thus clearly separate each criterion and identify which biological (intrinsic) and environmental (extrinsic) traits are most favourable to their realization. The first part focuses on evolutionary processes. We highlight that some popular putative causes of SFs, such as key innovations or ecological speciation, are neither necessary nor sufficient to fulfill some or all of the three criteria. Initial differentiation mechanisms are diverse and difficult to identify a posteriori because a primary differentiation of one type (genetic, ecological or geographical) often promotes other types of differentiation. Furthermore, the criteria are not independent: positive feedbacks between speciosity and ecological diversity among species are expected whatever the initial cause of differentiation, and ecological diversity should enhance habitat dominance at the clade level. We then identify intrinsic and extrinsic factors that favour each criterion. Low dispersal emerges as a convincing driver of speciosity. Except for a genomic architecture favouring ecological speciation, for which assessment is difficult, high effective population sizes are the single intrinsic factor that directly enhances speciosity, ecological diversity and habitat dominance. No extrinsic factor appeared to enhance all criteria simultaneously but a combination of factors

  11. Landscape community genomics: understanding eco-evolutionary processes in complex environments

    Science.gov (United States)

    Hand, Brian K.; Lowe, Winsor H.; Kovach, Ryan P.; Muhlfeld, Clint C.; Luikart, Gordon

    2015-01-01

    Extrinsic factors influencing evolutionary processes are often categorically lumped into interactions that are environmentally (e.g., climate, landscape) or community-driven, with little consideration of the overlap or influence of one on the other. However, genomic variation is strongly influenced by complex and dynamic interactions between environmental and community effects. Failure to consider both effects on evolutionary dynamics simultaneously can lead to incomplete, spurious, or erroneous conclusions about the mechanisms driving genomic variation. We highlight the need for a landscape community genomics (LCG) framework to help to motivate and challenge scientists in diverse fields to consider a more holistic, interdisciplinary perspective on the genomic evolution of multi-species communities in complex environments.

  12. Isotopic evidence of Middle Proterozoic magmatism from Bombay ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Isotopic evidence of Middle Proterozoic magmatism from. Bombay High Field: Implications to crustal evolution of western offshore of India. S S Rathore1,∗, A R Vijan2, M P Singh2, B N Prabhu3 and Anand Sahu1. 1Forward Base Office, Assam & Assam Arakan Basin-Tripura, ONGC, Agartala 799 014, India.

  13. Magmatic Densities Control Erupted Volumes in Icelandic Volcanic Systems

    Directory of Open Access Journals (Sweden)

    Margaret Hartley

    2018-04-01

    Full Text Available Magmatic density and viscosity exert fundamental controls on the eruptibility of magmas. In this study, we investigate the extent to which magmatic physical properties control the eruptibility of magmas from Iceland's Northern Volcanic Zone (NVZ. By studying subaerial flows of known age and volume, we are able to directly relate erupted volumes to magmatic physical properties, a task that has been near-impossible when dealing with submarine samples dredged from mid-ocean ridges. We find a strong correlation between magmatic density and observed erupted volumes on the NVZ. Over 85% of the total volume of erupted material lies close to a density and viscosity minimum that corresponds to the composition of basalts at the arrival of plagioclase on the liquidus. These magmas are buoyant with respect to the Icelandic upper crust. However, a number of small-volume eruptions with densities greater than typical Icelandic upper crust are also found in Iceland's neovolcanic zones. We use a simple numerical model to demonstrate that the eruption of magmas with higher densities and viscosities is facilitated by the generation of overpressure in magma chambers in the lower crust and uppermost mantle. This conclusion is in agreement with petrological constraints on the depths of crystallization under Iceland.

  14. Contrasting magmatic signatures in the Rairakhol and Koraput ...

    Indian Academy of Sciences (India)

    Koraput complex was emplaced in a pull-apart structure, dominated by magmatic fabrics and geochemically similar to a fractionated alkaline complex, compatible with an alkali- basalt series. Rairakhol complex, on the other hand, shows dominantly solid-state deformation fabrics and geochemically similar to a fractionated ...

  15. Contrasting magmatic signatures in the Rairakhol and Koraput ...

    Indian Academy of Sciences (India)

    Koraput complex was emplaced in a pull-apart structure, dominated by magmatic fabrics and geochemically similar to a fractionated alkaline complex, compatible with an alkalibasalt series. Rairakhol complex, on the other hand, shows dominantly solid-state deformation fabrics and geochemically similar to a fractionated ...

  16. Early Neoarchaean A-type granitic magmatism by crustal reworking ...

    Indian Academy of Sciences (India)

    29

    dyke swarm). It is suggested that the ~2.8 Ga A-type granites in the Singbhum craton mark a significant crustal reworking event attendant to mantle-derived mafic magmatism in an extensional tectonic setting. Key words: Granite; A-type; Geochemistry; Archaean; Crustal reworking; Singhbhum craton. Abstract. Click here to ...

  17. Early Neoarchaean A-type granitic magmatism by crustal reworking ...

    Indian Academy of Sciences (India)

    Abhishek Topno

    2018-04-11

    Apr 11, 2018 ... crustal melting of tonalitic/granodioritic source similar to the ~3.3 Ga Singhbhum Granite. Intrusion of the Pala Lahara granites was coeval with prominent mafic magmatism in the Singhbhum craton (e.g., the Dhanjori mafic volcanic rocks and NNE–SSW trending mafic dyke swarm). It is suggested that the.

  18. The Neoproterozoic Malani magmatism of the northwestern Indian ...

    Indian Academy of Sciences (India)

    2) in India. This magmatic activity took place at ∼750Ma post-dating the Erinpura granite (850 Ma) and ended prior to Marwar Supergroup (680 Ma) sedimentation. Malani eruptions occurred mostly on land, but locally sub-aqueous conditions ...

  19. Understanding rhizosphere processes to enhance phytoextraction of germanium and rare earth elements

    Science.gov (United States)

    Wiche, Oliver

    2017-04-01

    Germanium (Ge) and rare earth elements (REEs) are economically valuable raw materials that are not actually rare in terms of concentrations in soils but they are hardly available for plant uptake due to interactions with organic matter (SOM), secondary soil constituents such as Fe/Mn oxides and P bearing soil fractions. Processes in the rhizosphere might influence availability of Ge and REEs in the soil-plant system, since lowering of the pH and presence of carboxylates and siderophores (small molecules that strongly chelate Fe and other elements) strongly influences the chemical speciation of Ge and REEs in soil and consequently this comprehensive knowledge helps us to improve phytomining. In a series of field and greenhouse experiments 16 plant species from the functional groups of grasses, herbs and legumes were tested with regard to their accumulation efficiency of Ge and REEs in shoots. Subsequently, we conducted mixed culture experiments in which inefficient species (e.g. cereals like Avena sativa, Hordeum vulgare, Panicum miliaceum) were cultivated in mixed cultures with efficient species (Lupinus albus, Lupinus angustifolius). Based on the plant concentrations a principal component analysis (PCA) was performed to identify significant factors that explain the accumulation behavior of different plant species with regard to Ge, REEs, Si, Fe and Mn. In this analysis Mn was used to identify plant species with efficient mechanisms to access sparingly available P-resources in soils. Particularly in nonmycorrhizal species concentrations of Mn in leaves often indicate a carboxylate based P-mobilising strategy. Herbaceous plant species accumulated significantly higher amounts of REEs while grasses accumulated significantly higher amounts of Ge. Concentrations of Ge in shoots of grasses correlated significantly positive with Si, but negatively with concentrations of Mn. Indeed, the results of the PCA clearly show that plants with high Mn concentrations tend to have

  20. Understanding controls of hydrologic processes across two headwater monolithological catchments using model-data synthesis

    Science.gov (United States)

    Xiao, D.; Shi, Y.; Hoagland, B.; Del Vecchio, J.; Russo, T. A.; DiBiase, R. A.; Li, L.

    2017-12-01

    How do watershed hydrologic processes differ in catchments derived from different lithology? This study compares two first order, deciduous forest watersheds in Pennsylvania, a sandstone watershed, Garner Run (GR, 1.34 km2), and a shale-derived watershed, Shale Hills (SH, 0.08 km2). Both watersheds are simulated using a combination of national datasets and field measurements, and a physics-based land surface hydrologic model, Flux-PIHM. We aim to evaluate the effects of lithology on watershed hydrology and assess if we can simulate a new watershed without intensive measurements, i.e., directly use calibration information from one watershed (SH) to reproduce hydrologic dynamics of another watershed (GR). Without any calibration, the model at GR based on national datasets and calibration inforamtion from SH cannot capture some discharge peaks or the baseflow during dry periods. The model prediction agrees well with the GR field discharge and soil moisture after calibrating the soil hydraulic parameters using the uncertainty based Hornberger-Spear-Young algorithm and the Latin Hypercube Sampling method. Agreeing with the field observation and national datasets, the difference in parameter values shows that the sandstone watershed has a larger averaged soil pore diameter, greater water storage created by porosity, lower water retention ability, and greater preferential flow. The water budget calculation shows that the riparian zone and the colluvial valley serves as buffer zones that stores water at GR. Using the same procedure, we compared Flux-PIHM simulations with and without a field measured surface boulder map at GR. When the boulder map is used, the prediction of areal averaged soil moisture is improved, without performing extra calibration. When calibrated separately, the cases with or without boulder map yield different calibration values, but their hydrologic predictions are similar, showing equifinality. The calibrated soil hydraulic parameter values in the

  1. Diamond morphology as a key to understanding metasomatic processes in subcratonic mantle

    Science.gov (United States)

    Fedortchouk, Yana; Perritt, Samantha; Chinn, Ingrid

    2016-04-01

    Metasomatism in the subcratonic mantle is responsible for growth as well as dissolution of diamond. The morphology of resorption features developed on diamond during its residence in the mantle provides an important record of the nature of the metasomatic media and conditions of diamond destructive metasomatic events, while the diversity of these features indicates different metasomatic processes occurring in the mantle. The objective of this study was to shed more light on the nature of metasomatic processes in the subcratonic mantle by examining the conditions of mantle-derived diamond resorption. Towards this end, we conducted a study of 800 diamonds from two kimberlite pipes in the Orapa kimberlite field, Botswana, and examined the relationship between the conditions of diamond growth, as recorded in their nitrogen defects, and subsequent dissolution recorded in their resorption features. Using a set of morphological criteria we identified preservation of mantle-derived resorption features on 55% of diamonds from one pipe and 25-75% of diamonds from the second pipe. We identified at least twelve distinct morphological types developed during mantle residence of the diamond, and examined the possible effect of diamond internal features vs. the effect of the conditions of the mantle metasomatism. The mantle resorption types are the same for diamonds from both of the Orapa kimberlites studied, and compare well to the types previously described on diamonds from Ekati Mine (Canada), implying similarity of metasomatic history beneath the Slave and Zimbabwe cratons. A comparison of the mantle-derived diamond morphologies to the products of diamond dissolution experiments allows assessment of the importance of metasomatism caused by carbonatitic melts vs. aqueous silicate melts in the mantle underlying the kimberlites. The nitrogen content and nitrogen aggregation state of the diamonds from the different morphological groups provides insights into the relationship

  2. From the ocean to a salt marsh: towards understanding iron reduction processes with FORC-PCA.

    Science.gov (United States)

    Muraszko, J. R.; Lascu, I.; Collins, S. M.; Harrison, R. J.

    2017-12-01

    Biogenic magnetic minerals are a high fidelity recorder of climate change. Their sensitivity to sedimentary redox conditions and bottom water ventilation have the potential to provide useful insights into past diagenetic conditions. However, the mechanisms controlling preservation and dissolution of magnetosomes are not fully understood, thus undermining the reliability of the paleomagnetic records in marine environments. Recovering information about the diagenetic past of the sediment is a crucial challenge; specifically, the biogenic components need to be identified and unmixed from the bulk magnetic signal. We address the issue in this study by applying Principal Component Analysis on First Order Reversal Curve diagrams (FORC-PCA) in case studies of cores obtained from the Iberian Margin and the sedimentologically active coastal salt marshes of Norfolk. We demonstrate the applicability of FORC-PCA as a new environmental proxy, yielding a high resolution temporal marine record of environmental changes reflected in magnetic composition over the last 194 kyr. The strongest variations are observed in the microbially derived components, the bulk properties of the sediment being controlled by a low coercivity SP-SD component which is generally anticorrelated with the magnetosome signal. Supported by TEM studies, we suggest the prevalence of clusters of nano-particles of magnetite associated with iron reduction. To further investigate the mechanisms controlling these processes, the active sedimentary environment of Norfolk was chosen as a case study of early diagenesis controlled by strong vertical geochemical gradients.

  3. The importance of Soil Science to understand and remediate Land Degradation and Desertification processes

    Science.gov (United States)

    Bouma, Johan; Keesstra, Saskia; Cerdà, Artemi

    2017-04-01

    Documentation is abundantly available to demonstrate the devastating effect of Land degradation and desertification on sustainable development in many countries. This present a major barrier to achieving the UN Sustainable Development Goals by 2030, as agreed upon at the General Assembly of the UN in September 2015. Research has certainly been successful in reversing these two processes in many case studies but persistant problems remain not only in developing countries but also in developed countries where, for example, soil compaction and loss of soil organic matter due to the industrialization of agriculture, result in a structural decline of agricultural productivity and environmental quality. The problems are quite complex because not only technical matters play a role but also, and often quite prominantly, socio-economic factors. What turn out to be successful remediation procedures at a given location or region, based on the characterization of underlying soil processes, will most likely not work in other regions inhibiting the extrapolation of local research results to areas elsewhere. One important reason for location specificity of research is the variation of soil properties in combination with the location of soils in a given landscape which governs its water, energy and nutrient dynamics, also considering the climate. Different soils are characterized by different natural riks for degradation and , in arid regions, deserticification and their particular remediation potential differs widely as well. Such risks can sometimes be overcome by innovative soil management and knowing the soil type, the climate and landscape processes, extrapolation of such types of innovative management to comparable soils and landscapes elsewhere may be feasible and effective , provided that socio-economic conditions allow the required risk-reducing measures to be realized in practice. More cooperation between soil scientists and physical geographers, familiar with landscape

  4. Geobiological Cycling of Gold: From Fundamental Process Understanding to Exploration Solutions

    Directory of Open Access Journals (Sweden)

    Frank Reith

    2013-11-01

    Full Text Available Microbial communities mediating gold cycling occur on gold grains from (sub-tropical, (semi-arid, temperate and subarctic environments. The majority of identified species comprising these biofilms are β-Proteobacteria. Some bacteria, e.g., Cupriavidus metallidurans, Delftia acidovorans and Salmonella typhimurium, have developed biochemical responses to deal with highly toxic gold complexes. These include gold specific sensing and efflux, co-utilization of resistance mechanisms for other metals, and excretion of gold-complex-reducing siderophores that ultimately catalyze the biomineralization of nano-particulate, spheroidal and/or bacteriomorphic gold. In turn, the toxicity of gold complexes fosters the development of specialized biofilms on gold grains, and hence the cycling of gold in surface environments. This was not reported on isoferroplatinum grains under most near-surface environments, due to the lower toxicity of mobile platinum complexes. The discovery of gold-specific microbial responses can now drive the development of geobiological exploration tools, e.g., gold bioindicators and biosensors. Bioindicators employ genetic markers from soils and groundwaters to provide information about gold mineralization processes, while biosensors will allow in-field analyses of gold concentrations in complex sampling media.

  5. Control of Listeria monocytogenes in the processing environment by understanding biofilm formation and resistance to sanitizers.

    Science.gov (United States)

    Manios, Stavros G; Skandamis, Panagiotis N

    2014-01-01

    Listeria monocytogenes can colonize in the food processing environment and thus pose a greater risk of cross-contamination to food. One of the proposed mechanisms that facilitates such colonization is biofilm formation. As part of a biofilm, it is hypothesized that L. monocytogenes can survive sanitization procedures. In addition, biofilms are difficult to remove and may require additional physical and chemical mechanisms to reduce their presence and occurrence. The initial stage of biofilm formation is attachment to surfaces, and therefore it is important to be able to determine the ability of L. monocytogenes strains to attach to various inert surfaces. In this chapter, methods to study bacterial attachment to surfaces are described. Attachment is commonly induced by bringing planktonic cells into contact with plastic, glass, or stainless steel surfaces with or without food residues ("soil") in batch or continuous (e.g., with constant flow of nutrients) culture. Measurement of biofilm formed is carried out by detaching cells (with various mechanical methods) and measuring the viable counts or by measuring the total attached biomass. Resistance of biofilms to sanitizers is commonly carried out by exposure of the whole model surface bearing the attached cells to a solution of sanitizer, followed by measuring the survivors as described above.

  6. Recent Advances in Improvement of Forecast Skill and Understanding Climate Processes Using AIRS Version-5 Products

    Science.gov (United States)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena; Rosenberg, Robert

    2012-01-01

    AIRS/AMSU is the state of the art infrared and microwave atmospheric sounding system flying aboard EOS Aqua. These observations, covering the period September 2002 until the present, have been analyzed using the AIRS Science Team Version-5 retrieval algorithm. AIRS is a high spectral resolution infrared grating spectrometer with spect,ral coverage from 650 per centimeter extending to 2660 per centimeter, with low noise and a spectral resolving power of 2400. A brief overview of the AIRS Version-5 retrieval procedure will be presented, including the AIRS channels used in different steps in the retrieval process. Many researchers have used these products to make significant advances in both climate and weather applications. Recent significant results of these experiments will be presented, including results showing that 1) assimilation of AIRS Quality Controlled temperature profiles into a General Circulation Model (GCM) significantly improves the ability to predict storm tracks of intense precipitation events; and 2) anomaly time-series of Outgoing Longwave Radiation (OLR) computed using AIRS sounding products closely match those determined from the CERES instrument, and furthermore explain that the phenomenon that global and especially tropical mean OLR have been decreasing since September 2002 is a result of El Nino/La Nina oscillations during this period.

  7. Understanding and improving communication processes in an increasingly multicultural aged care workforce.

    Science.gov (United States)

    Nichols, Pam; Horner, Barbara; Fyfe, Katrina

    2015-01-01

    This study explored how culture shapes relationships in aged care and the extent to which the residential aged care sector supports a cohesive multicultural workforce. An exploratory methodology utilising semi-structured questionnaires collected data from 58 participants comprising: staff who provide direct care to residents; managers; and family members from six residential care facilities in Perth, Western Australia. Communication issues emerged as an over-arching theme, and included interpersonal communication, the effect of cultural norms on communication and the impact of informal and formal workplace policies relating to spoken and written language. Sixty percent of participants from a culturally and linguistically diverse (CaLD) background had experienced negative reactions from residents with dementia, linked to visible cultural difference. They used a range of coping strategies including ignoring, resilience and avoidance in such situations. CaLD participants also reported prejudicial treatment from non-CaLD staff. The findings highlight the need for organisations to incorporate explicit processes which address the multiple layers of influence on cross cultural communication: internalised beliefs and values; moderating effects of education, experience and social circumstance; and factors external to the individuals, including workplace culture and the broader political economy, to develop a cohesive multicultural workplace. Copyright © 2015. Published by Elsevier Inc.

  8. Multichannel auditory search: toward understanding control processes in polychotic auditory listening.

    Science.gov (United States)

    Lee, M D

    2001-01-01

    Two experiments are presented that serve as a framework for exploring auditory information processing. The framework is referred to as polychotic listening or auditory search, and it requires a listener to scan multiple simultaneous auditory streams for the appearance of a target word (the name of a letter such as A or M). Participants' ability to scan between two and six simultaneous auditory streams of letter and digit names for the name of a target letter was examined using six loudspeakers. The main independent variable was auditory load, or the number of active audio streams on a given trial. The primary dependent variables were target localization accuracy and reaction time. Results showed that as load increased, performance decreased. The performance decrease was evident in reaction time, accuracy, and sensitivity measures. The second study required participants to practice the same task for 10 sessions, for a total of 1800 trials. Results indicated that even with extensive practice, performance was still affected by auditory load. The present results are compared with findings in the visual search literature. The implications for the use of multiple auditory displays are discussed. Potential applications include cockpit and automobile warning displays, virtual reality systems, and training systems.

  9. Untargeted Metabolomics Approach in Halophiles: Understanding the Biodeterioration Process of Building Materials

    Directory of Open Access Journals (Sweden)

    Justyna Adamiak

    2017-12-01

    Full Text Available The aim of the study was to explore the halophile metabolome in building materials using untargeted metabolomics which allows for broad metabolome coverage. For this reason, we used high-performance liquid chromatography interfaced to high-resolution mass spectrometry (HPLC/HRMS. As an alternative to standard microscopy techniques, we introduced pioneering Coherent Anti-stokes Raman Scattering Microscopy (CARS to non-invasively visualize microbial cells. Brick samples saturated with salt solution (KCl, NaCl (two salinity levels, MgSO4, Mg(NO32, were inoculated with the mixture of preselected halophilic microorganisms, i.e., bacteria: Halobacillus styriensis, Halobacillus naozhouensis, Halobacillus hunanensis, Staphylococcus succinus, Marinococcus halophilus, Virgibacillus halodenitryficans, and yeast: Sterigmatomyces halophilus and stored at 28°C and 80% relative humidity for a year. Metabolites were extracted directly from the brick samples and measured via HPLC/HRMS in both positive and negative ion modes. Overall, untargeted metabolomics allowed for discovering the interactions of halophilic microorganisms with buildings materials which together with CARS microscopy enabled us to elucidate the biodeterioration process caused by halophiles. We observed that halophile metabolome was differently affected by different salt solutions. Furthermore, we found indications for haloadaptive strategies and degradation of brick samples due to microbial pigment production as a salt stress response. Finally, we detected changes in lipid content related to changes in the structure of phospholipid bilayers and membrane fluidity.

  10. Os and U-Th isotope signatures of arc magmatism near Mount Mazama, Crater Lake, Oregon

    Science.gov (United States)

    Ankney, Meagan E.; Shirey, Steven B.; Hart, Garret L.; Bacon, Charles R.; Johnson, Clark M.

    2016-03-01

    Interaction of mantle melts with the continental crust can have significant effects on the composition of the resulting melts as well as on the crust itself, and tracing this interaction is key to our understanding of arc magmatism. Lava flows and pyroclastic deposits erupted from ∼50 to 7.7 ka at Mt. Mazama (Crater Lake, Oregon) were analyzed for their Re/Os and U-Th isotopic compositions. Mafic lavas from monogenetic vents around Mt. Mazama that erupted during the buildup to its climactic eruption have lower 187Os/188Os ratios (0.1394 to 0.1956) and high 230Th excess ((230Th/238U)0 of 1.180 to 1.302), whereas dacites and rhyodacites tend to have higher 187Os/188Os ratios (0.2292 to 0.2788) and significant 238U excess ((230Th/238U)0 of 0.975 to 0.989). The less radiogenic Os isotope compositions of the mafic lavas can be modeled by assimilation of young (∼2.5 to 7 Ma), mafic lower crust that was modified during regional extension, whereas the more radiogenic Os isotope compositions of the dacites and rhyodacites can be attributed to assimilation of older (∼10 to 16 Ma), mid to upper crust that acquired its composition during an earlier period of Cascade magmatism. Production of Th excesses in the lower crust requires very young garnet formation accompanying dehydration melting in the lower crust at less than a few 100 ka by heat from recent basaltic magma injection. The results from this study suggest that the combination of Os and Th isotopes may be used to provide insights into the timescales of evolution of the continental crust in arc settings, as well as the influence of the crust on erupted magmas, and suggest a link between the age and composition of the lower and upper crust to regional tectonic extension and/or earlier Cascade magmatism.

  11. Understanding the Budget Process Bütçe Sürecini Anlamak

    Directory of Open Access Journals (Sweden)

    Madeline J. Daubert

    2000-03-01

    Full Text Available Many different budgeting techniques can be used in libraries, and some combination of these will be appropriate for almost any individual situation. Line-item, program, performance, formula, variable, and zero-base budgets all have features that may prove beneficial in the preparation of a budget. Budgets also serve a variety of functions, providing for short-term and long-term financial planning as well as for cash management over a period of time. Short-term plans are reflected in the operating budget, while long-term plans are reflected in the capital budget. Since the time when cash is available to an organization does not usually coincide with the time that disbursements must be made, it is also important to carefully plan for the inflow and outflow of funds by means of a cash budget. During the budget process an organization selects its programs and activities by providing the necessary funding; the library, along with others in the organization, must justify its requests. Because of the cyclical nature of the budget process, it is possible continually to gather information and evaluate alternatives for the next budget period so that the library may achieve its maximum potential for service to its patrons. Kütüphanelerde bir çok farklı bütçeleme tekniği kullanılabilir ve bu tekniklerin bazı kombinasyonları, hemen hemen her özel durum için uygundur. Kalem, Program, Performans, Formül, Değişken ve Sıfır-tabanlı bütçelerinin hepsi, bir bütçenin hazırlanmasında yararlı olacak özelliklere sahiptirler. Bütçeler aynı zamanda kısa ve uzun vadeli parasal planlamaları ve belli bir zaman sürecinde para idaresini sağlamak gibi çeşitli işlere hizmet ederler. Kısa vadeli projeler, cari bütçede yansıtılırken, uzun vadeli planlar yatırım bütçede yansıtılırlar. Nakitin kurumun kullanımına hazır olduğu zamanlarla, ödemelerin yapılacağı zamanlar genellikle çakışmadığından, bir nakit b

  12. Towards the understanding of biogeochemical processes involved in the release of carbonyl sulfide (COS) from soil

    Science.gov (United States)

    Behrendt, Thomas; Catao, Elisa; Bunk, Rüdiger; Yi, Zhigang; Greule, Markus; Keppler, Frank; Kesselmeier, Jürgen; Trumbore, Susan

    2017-04-01

    Carbonyl sulfide (COS) is present in the atmosphere in low mixing ratio ( 500ppt). It is relevant in climate change through the effect in aerosol formation. Soils can act as source of COS, e.g. by microbial degradation of thiocyanate from plant material. On the other side it is known that COS can be consumed via various enzymatic pathways. Assuming that biogenic processes dominate over chemical reactions we extracted nucleic acids and performed amplicon sequencing for bacteria (16S rRNA) and fungi (ITS region) from a mid-latitude agricultural maize soil which was previously incubated under ambient COS and COS fumigation ( 1000ppt). The mixing ratios of COS have been measured online from soil samples in a dynamic chamber system under laboratory conditions by an integrated cavity output spectroscopy (IOCS) analyzer (Los Gatos Research Inc., USA). Additionally stable carbon isotope values (δ13C values) of COS were measured using a pre-concentration method and stable isotope ratio mass spectrometry (IRMS). Under low COS mixing ratio ( 50ppt) δ13C +4.7 ‰ for spruce forest ( 23°C), and -24.4‰ for mid-latitude cornfield ( 22°C), respectively. Linking gas release rates of (COS, CO2, CO, NO) to isotopic signatures of COS and molecular results might allow us to indicate bacterial s-compound degradation related to the higher activity of β-Proteobacteria and of the family Acetobacteraceae from the α-Proteobacteria phylum, potentially involved with the hydrolysis of thiocyanate in the soil releasing COS. Furthermore, our study reports the first COS data for rainforest and desert soils which are in the order of 0.5 pmol gdw-1 h-1 and 2 pmol gdw-1 h-1, respectively.

  13. Advances in Understanding Sorption and Transport Processes Affecting the Fate of Environmental Pollutants in the Subsurface

    Science.gov (United States)

    Karapanagioti, H. K.; Werner, D.; Werth, C.

    2012-04-01

    The results of a call for a special issue that is now in press by the Journal of Contaminant Hydrology will be presented. This special issue is edited by the authors and is entitled "Sorption and Transport Processes Affecting the Fate of Environmental Pollutants in the Subsurface". A short abstract of each paper will be presented along with the most interesting results. Nine papers were accepted. Pollutants studied include: biocolloids, metals (arsenic, chromium, nickel), organic compounds such as hydrocarbons, chlorinated hydrocarbons, micropollutants (PAHs, PCBs), pesticides (glyphosate, 2,4-D). Findings presented in the papers include a modified batch reactor system to study equilibrium-reactive transport problems of metals. Column studies along with theoretical approximations evaluate the combined effects of grain size and pore water velocity on the transport in water saturated porous media of three biocolloids. A polluted sediment remediation method is evaluated considering site-specific conditions through monitoring results and modelling. A field study points to glogging and also sorption as mechanisms affecting the effectiveness of sub-surface flow constructed wetlands. A new isotherm model combining modified traditionally used isotherms is proposed that can be used to simulate pH-dependent metal adsorption. Linear free energy relationships (LFERs) demonstrate ability to predict slight isotope shifts into the groundwater due to sorption. Possible modifications that improve the reliability of kinetic models and parameter values during the evaluation of experiments that assess the sorption of pesticides on soils are tested. Challenges in selecting groundwater pollutant fate and transport models that account for the effect of grain-scale sorption rate limitations are evaluated based on experimental results and are discussed based on the Damköhler number. Finally, a thorough review paper presents the impact of mineral micropores on the transport and fate of

  14. An interactive modelling tool for understanding hydrological processes in lowland catchments

    Science.gov (United States)

    Brauer, Claudia; Torfs, Paul; Uijlenhoet, Remko

    2016-04-01

    Recently, we developed the Wageningen Lowland Runoff Simulator (WALRUS), a rainfall-runoff model for catchments with shallow groundwater (Brauer et al., 2014ab). WALRUS explicitly simulates processes which are important in lowland catchments, such as feedbacks between saturated and unsaturated zone and between groundwater and surface water. WALRUS has a simple model structure and few parameters with physical connotations. Some default functions (which can be changed easily for research purposes) are implemented to facilitate application by practitioners and students. The effect of water management on hydrological variables can be simulated explicitly. The model description and applications are published in open access journals (Brauer et al, 2014). The open source code (provided as R package) and manual can be downloaded freely (www.github.com/ClaudiaBrauer/WALRUS). We organised a short course for Dutch water managers and consultants to become acquainted with WALRUS. We are now adapting this course as a stand-alone tutorial suitable for a varied, international audience. In addition, simple models can aid teachers to explain hydrological principles effectively. We used WALRUS to generate examples for simple interactive tools, which we will present at the EGU General Assembly. C.C. Brauer, A.J. Teuling, P.J.J.F. Torfs, R. Uijlenhoet (2014a): The Wageningen Lowland Runoff Simulator (WALRUS): a lumped rainfall-runoff model for catchments with shallow groundwater, Geosci. Model Dev., 7, 2313-2332. C.C. Brauer, P.J.J.F. Torfs, A.J. Teuling, R. Uijlenhoet (2014b): The Wageningen Lowland Runoff Simulator (WALRUS): application to the Hupsel Brook catchment and Cabauw polder, Hydrol. Earth Syst. Sci., 18, 4007-4028.

  15. The role of high frequency monitoring in understanding nutrient pollution processes to address catchment management issues

    Science.gov (United States)

    Quinn, Paul; Jonczyk, Jennine; Owen, Gareth; Barber, Nick; Adams, Russell; ODonnell, Greg; EdenDTC Team

    2015-04-01

    The process insights afforded to catchment scientists through the availability of high frequency time series of hydrological and nutrient pollution datasets are invaluable. However, the observations reveal both good and bad news for the WFD. Data for flow, N, P and sediment (taken at 30 min intervals) from the River Eden Demonstration Test Catchment and several other detailed UK studies, will be used to discuss nutrient fluxes in catchments between 1km2 and 10km2. Monitoring of the seasonal groundwater status and the forensic analysis of numerous storm events have identified dominant flow pathways and nutrient losses. Nonetheless, many of the management questions demanded by the WFD will not be resolved by collecting these datasets alone. Long term trends are unlikely to be determined from these data and even if trends are found they are unlikely to be accurately apportioned to the activities that have caused them. The impacts of where and when an action takes place will not be detected at the catchment scale and the cost effectiveness of any mitigation method is unlikely to be quantifiable. Even in small well instrumented catchments the natural variability in rainfall, antecedent patterns and the variability in farming practices will mask any identifiable catchment scale signal. This does not mean the cost of the data acquisition has been wasted, it just means that the knowledge and expertise gained from these data should be used in new novel ways. It will always be difficult to quantify the actual losses occurring at the farm or field scale, but the positive benefits of any mitigation may still be approximated. The evidence for the rate of nutrient removal from a local sediment trap, wetland and a pond can be shown with high resolution datasets. However, any quantifiable results are still highly localised and the transfer and upscaling of any findings must be done with care. Modelling these datasets is also possible and the nature of models have evolved in the

  16. The world at 1.5°C: Understanding its regional dimensions and driving processes

    Science.gov (United States)

    Seneviratne, S. I.; Wartenburger, R.; Vogel, M.; Hirsch, A.; Guillod, B.; Donat, M.; Pitman, A. J.; Davin, E.; Greve, P.; Hirschi, M.

    2017-12-01

    This presentation reviews the available evidence regarding projected regional changes in climate extremes at 1.5°C vs higher levels of warming based on recent analyses (Seneviratne et al. 2016; Wartenburger et al., submitted; Greve et al., submitted). In several regions, significant differences in the occurrence of climate extremes can be identified already for half a degree of warming when assessing changes at 1.5°C vs 2°C global warming. An important feature is the much stronger warming of hot extremes in several continental regions compared to the global mean warming, which implies that temperature extremes can warm regionally by much more than 1.5°C, even if global temperature warming is stabilized at this level (e.g. up to 6°C for certain models in the Arctic). This feature is due to a combination of feedbacks and internal climate variability. We highlight in particular the importance of land-climate feedbacks for projected changes in hot extremes in mid-latitude regions (Vogel et al. 2017). Because of the strong effects of land processes on regional changes in temperature extremes, changes in land surface properties, including land use changes, are found to be particularly important for projections in low-emissions scenarios (Hirsch et al. 2017; Guillod et al., submitted). References: Greve, P., et al.: Regional scaling of annual mean precipitation and water availability with global temperature change. Submitted. Guillod, B.P., et al.: Land use in low climate warming targets critical for hot extreme projections. Submitted. Hirsch, A.L., et al., 2017: Can climate-effective land management reduce regional warming? J. Geophys. Res. Atmos., 122, 2269-2288, doi:10.1002/2016JD026125. Seneviratne, S.I., et al., 2016: Allowable CO2 emissions based on regional and impact-related climate targets. Nature, 529, 477-483, doi:10.1038/nature16542. Vogel, M.M., et al., 2017: Regional amplification of projected changes in extreme temperatures strongly controlled by soil

  17. Understanding charge carrier relaxation processes in terbium arsenide nanoparticles using transient absorption spectroscopy

    Science.gov (United States)

    Vanderhoef, Laura R.

    Erbium arsenide nanoparticles epitaxially grown within III-V semiconductors have been shown to improve the performance of devices for applications ranging from thermoelectrics to THz pulse generation. The small size of rare-earth nanoparticles suggests that interesting electronic properties might emerge as a result of both spatial confinement and surface states. However, ErAs nanoparticles do not exhibit any signs of quantum confinement or an emergent bandgap, and these experimental observations are understood from theory. The incorporation of other rare-earth monopnictide nanoparticles into III-V hosts is a likely path to engineering carrier excitation, relaxation and transport dynamics for optoelectronic device applications. However, the electronic structure of these other rare-earth monopnictide nanoparticles remains poorly understood. The objective of this research is to explore the electronic structure and optical properties of III-V materials containing novel rare-earth monopnictides. We use ultrafast pump-probe spectroscopy to investigate the electronic structure of TbAs nanoparticles in III-V hosts. We start with TbAs:GaAs, which was expected to be similar to ErAs:GaAs. We study the dynamics of carrier relaxation into the TbAs states using optical pump terahertz probe transient absorption spectroscopy. By analyzing how the carrier relaxation rates depend on pump fluence and sample temperature, we conclude that the TbAs states are saturable. Saturable traps suggest the existence of a bandgap for TbAs nanoparticles, in sharp contrast with previous results for ErAs. We then apply the same experimental technique to two samples of TbAs nanoparticles in InGaAs with different concentrations of TbAs. We observe similar relaxation dynamics associated with trap saturation, though the ability to resolve these processes is contingent upon a high enough TbAs concentration in the sample. We have also constructed an optical pump optical probe transient absorption

  18. Extraction of water and solutes from argillaceous rocks for geochemical characterisation: Methods, processes and current understanding

    Science.gov (United States)

    Sacchi, Elisa; Michelot, Jean-Luc; Pitsch, Helmut; Lalieux, Philippe; Aranyossy, Jean-François

    2001-01-01

    This paper summarises the results of a comprehensive critical review, initiated by the OECD/NEA "Clay Club," of the extraction techniques available to obtain water and solutes from argillaceous rocks. The paper focuses on the mechanisms involved in the extraction processes, the consequences on the isotopic and chemical composition of the extracted pore water and the attempts made to reconstruct its original composition. Finally, it provides some examples of reliable techniques and information, as a function of the purpose of the geochemical study. Résumé. Cet article résume les résultats d'une synthèse critique d'ensemble, lancée par le OECD/NEA "Clay Club", sur les techniques d'extraction disponibles pour obtenir l'eau et les solutés de roches argileuses. L'article est consacré aux mécanismes impliqués dans les processus d'extraction, aux conséquences sur la composition isotopique et chimique de l'eau porale extraite et aux tentatives faites pour reconstituer sa composition originelle. Finalement, il donne quelques exemples de techniques fiables et d'informations, en fonction du but de l'étude géochimique. Resúmen. Este artículo resume los resultados de una revisión crítica exhaustiva (iniciada por el "Clay Club" OECD/NEA) de las técnicas de extracción disponibles para obtener agua y solutos en rocas arcillosas. El artículo se centra en los mecanismos involucrados en los procesos extractivos, las consecuencias en la composición isotópica y química del agua intersticial extraída, y en los intentos realizados para reconstruir su composición original. Finalmente, se presentan algunos ejemplos de técnicas fiables e información, en función del propósito del estudio geoquímico.

  19. In-depth experimental analysis of pharmaceutical twin-screw wet granulation in view of detailed process understanding.

    Science.gov (United States)

    Verstraeten, Maxim; Van Hauwermeiren, Daan; Lee, Kai; Turnbull, Neil; Wilsdon, David; Am Ende, Mary; Doshi, Pankaj; Vervaet, Chris; Brouckaert, Davinia; Mortier, Séverine T F C; Nopens, Ingmar; Beer, Thomas De

    2017-08-30

    Twin-screw wet granulation is gaining increasing interest within the pharmaceutical industry for the continuous manufacturing of solid oral dosage forms. However, limited prior fundamental physical understanding has been generated relating to the granule formation mechanisms and kinetics along the internal compartmental length of a twin-screw granulator barrel, and about how process settings, barrel screw configuration and formulation properties such as particle size, density and surface properties influence these mechanisms. One of the main reasons for this limited understanding is that experimental data is generally only collected at the exit of the twin-screw granulator barrel although the granule formation occurs spatially along the internal length of the barrel. The purpose of this study is to analyze the twin-screw wet granulation process using both hydrophilic and hydrophobic formulations, manufactured under different process settings such as liquid-to-solid ratio, mass throughput and screw speed, in such a way that the mechanisms occurring in the individual granulator barrel compartments (i.e., the wetting and different conveying and kneading compartments) and their impact upon granule formation are understood. To achieve this, a unique experimental setup was developed allowing granule characteristic data-collection such as size, shape, liquid and porosity distribution at the different compartments along the length of the granulator barrel. Moreover, granule characteristic information per granule size class was determined. The experimental results indicated that liquid-to-solid ratio is the most important factor dictating the formation of the granules and their corresponding properties, by regulating the degree of aggregation and breakage in the different compartments along the internal length of the twin-screw granulator barrel. Collecting appropriate and detailed experimental data about granule formation along the internal length of the granulator barrel

  20. CO2-mineral Wettability and Implications for Understanding Leakage Processes from Geologic Carbon Sequestration Sites

    Science.gov (United States)

    Clarens, A. F.; Edwards, I.; Wang, S.

    2011-12-01

    In geological carbon sequestration (GCS), leakage events will be difficult to predict because parcels of CO2 will travel over long length scales and encounter a number of heterogeneous formations and endogenous brine in their rise to the surface. A constitutive model of a rising parcel of CO2 includes at least three main forces: 1) buoyant forces, 2) surface tension forces, and 3) shear drag forces. Of these, surface tension forces are of great significance, especially for predicting capillary and mineral trapping, and are affected by surface tension and the three-phase contact angle between CO2, brine, and the solid host mineral surfaces. Very limited experimental data on contact angles in GCS relevant systems has been reported in the academic literature. Here, the contact angle of several of the rock and clay species prevailing near GCS sites, e.g. quartz, feldspar, calcite, kaolinite, smectite and illite, were measured under a range of relevant temperature, pressure and ionic strength conditions. The measurements were made in a custom-built high-pressure view cell by introducing precisely controlled pendant CO2 droplets of constant volume to smooth and clean mineral surfaces after saturating the surrounding brine with CO2 and images were recorded using a high resolution digital camera. Images were processed and the contact angle measured using ImageJ software with a plug-in designed for this purpose. To measure the contact angle of CO2 on clay surfaces, ultra-pure microscope glass slides were coated with cleaned and particle-size-separated clay particles using hydrolyzed polyvinyl alcohol to ensure adhesion and a continuous coating on the surface. The uniform morphology of the surface was confirmed using electron microscopy. Preliminary results demonstrate differences in contact angle between the tested minerals, with calcite > quartz > feldspar. The absolute differences between the minerals were on the order of 3-7%. The results also demonstrate that under

  1. Processing Demands Impact 3-Year-Olds' Performance in a Spontaneous-Response Task: New Evidence for the Processing-Load Account of Early False-Belief Understanding.

    Science.gov (United States)

    Scott, Rose M; Roby, Erin

    2015-01-01

    Prior to age four, children succeed in non-elicited-response false-belief tasks but fail elicited-response false-belief tasks. To explain this discrepancy, the processing-load account argues that the capacity to represent beliefs emerges in infancy, as indicated by early success on non-elicited-response tasks, but that children's ability to demonstrate this capacity depends on the processing demands of the task and children's processing skills. When processing demands exceed young children's processing abilities, such as in standard elicited-response tasks, children fail despite their capacity to represent beliefs. Support for this account comes from recent evidence that reducing processing demands improves young children's performance: when demands are sufficiently reduced, 2.5-year-olds succeed in elicited-response tasks. Here we sought complementary evidence for the processing-load account by examining whether increasing processing demands impeded children's performance in a non-elicited-response task. 3-year-olds were tested in a preferential-looking task in which they heard a change-of-location false-belief story accompanied by a picture book; across children, we manipulated the amount of linguistic ambiguity in the story. The final page of the book showed two images: one that was consistent with the main character's false belief and one that was consistent with reality. When the story was relatively unambiguous, children looked reliably longer at the false-belief-consistent image, successfully demonstrating their false-belief understanding. When the story was ambiguous, however, this undermined children's performance: looking times to the belief-consistent image were correlated with verbal ability, and only children with verbal skills in the upper quartile of the sample demonstrated a significant preference for the belief-consistent image. These results support the processing-load account by demonstrating that regardless of whether a task involves an elicited

  2. Processing Demands Impact 3-Year-Olds’ Performance in a Spontaneous-Response Task: New Evidence for the Processing-Load Account of Early False-Belief Understanding

    Science.gov (United States)

    Scott, Rose M.; Roby, Erin

    2015-01-01

    Prior to age four, children succeed in non-elicited-response false-belief tasks but fail elicited-response false-belief tasks. To explain this discrepancy, the processing-load account argues that the capacity to represent beliefs emerges in infancy, as indicated by early success on non-elicited-response tasks, but that children’s ability to demonstrate this capacity depends on the processing demands of the task and children’s processing skills. When processing demands exceed young children’s processing abilities, such as in standard elicited-response tasks, children fail despite their capacity to represent beliefs. Support for this account comes from recent evidence that reducing processing demands improves young children’s performance: when demands are sufficiently reduced, 2.5-year-olds succeed in elicited-response tasks. Here we sought complementary evidence for the processing-load account by examining whether increasing processing demands impeded children’s performance in a non-elicited-response task. 3-year-olds were tested in a preferential-looking task in which they heard a change-of-location false-belief story accompanied by a picture book; across children, we manipulated the amount of linguistic ambiguity in the story. The final page of the book showed two images: one that was consistent with the main character’s false belief and one that was consistent with reality. When the story was relatively unambiguous, children looked reliably longer at the false-belief-consistent image, successfully demonstrating their false-belief understanding. When the story was ambiguous, however, this undermined children’s performance: looking times to the belief-consistent image were correlated with verbal ability, and only children with verbal skills in the upper quartile of the sample demonstrated a significant preference for the belief-consistent image. These results support the processing-load account by demonstrating that regardless of whether a task

  3. Development and Performance of a Highly Sensitive Model Formulation Based on Torasemide to Enhance Hot-Melt Extrusion Process Understanding and Process Development.

    Science.gov (United States)

    Evans, Rachel C; Kyeremateng, Samuel O; Asmus, Lutz; Degenhardt, Matthias; Rosenberg, Joerg; Wagner, Karl G

    2018-02-27

    The aim of this work was to investigate the use of torasemide as a highly sensitive indicator substance and to develop a formulation thereof for establishing quantitative relationships between hot-melt extrusion process conditions and critical quality attributes (CQAs). Using solid-state characterization techniques and a 10 mm lab-scale co-rotating twin-screw extruder, we studied torasemide in a Soluplus® (SOL)-polyethylene glycol 1500 (PEG 1500) matrix, and developed and characterized a formulation which was used as a process indicator to study thermal- and hydrolysis-induced degradation, as well as residual crystallinity. We found that torasemide first dissolved into the matrix and then degraded. Based on this mechanism, extrudates with measurable levels of degradation and residual crystallinity were produced, depending strongly on the main barrel and die temperature and residence time applied. In addition, we found that 10% w/w PEG 1500 as plasticizer resulted in the widest operating space with the widest range of measurable residual crystallinity and degradant levels. Torasemide as an indicator substance behaves like a challenging-to-process API, only with higher sensitivity and more pronounced effects, e.g., degradation and residual crystallinity. Application of a model formulation containing torasemide will enhance the understanding of the dynamic environment inside an extruder and elucidate the cumulative thermal and hydrolysis effects of the extrusion process. The use of such a formulation will also facilitate rational process development and scaling by establishing clear links between process conditions and CQAs.

  4. Drawing as a “head over heels” thought process: understanding the meaning of fragmentation in the act of drawing

    Directory of Open Access Journals (Sweden)

    Christian Montarou

    2012-02-01

    Full Text Available This article examines the significance of free-hand drawing from perspectives that go beyond the technical considerations of perspective, proportion and chiaroscuro. These perspectives include the artist’s mental process while drawing, exploring the relationship between the artist and the artwork in order to understand the significance of fragmentation as a creative element in this process. Another perspective examines the conditions for seeing and drawing, that is, the cognitive and psychological aspects of the act of drawing. In addition, various theoretical concepts are applied to analyse the creative process. References to psychoanalysis are used to explain the state of fragmentation inherent in the condition of human beings as subjects, while language theory is applied to reveal the motives underlying the need for self-expression through drawing. Theories about mental development during childhood are applied to shed light on artistic practice and increase our understanding of the psychological mechanisms behind creativity. Finally, the “creative mode” as such is questioned: How can this state of mind be induced and what is its relevance for encouraging creative thinking? The theoretical approach is illustrated with images taken from student work at the Department of Landscape Architecture and Spatial Planning at the Norwegian University of Life Sciences (UMB, as well as my own paintings and one historical painting.

  5. Improving understanding in the research informed consent process: a systematic review of 54 interventions tested in randomized control trials.

    Science.gov (United States)

    Nishimura, Adam; Carey, Jantey; Erwin, Patricia J; Tilburt, Jon C; Murad, M Hassan; McCormick, Jennifer B

    2013-07-23

    Obtaining informed consent is a cornerstone of biomedical research, yet participants comprehension of presented information is often low. The most effective interventions to improve understanding rates have not been identified. To systematically analyze the random controlled trials testing interventions to research informed consent process. The primary outcome of interest was quantitative rates of participant understanding; secondary outcomes were rates of information retention, satisfaction, and accrual. Interventional categories included multimedia, enhanced consent documents, extended discussions, test/feedback quizzes, and miscellaneous methods. The search spanned from database inception through September 2010. It was run on Ovid MEDLINE, Ovid EMBASE, Ovid CINAHL, Ovid PsycInfo and Cochrane CENTRAL, ISI Web of Science and Scopus. Five reviewers working independently and in duplicate screened full abstract text to determine eligibility. We included only RCTs. 39 out of 1523 articles fulfilled review criteria (2.6%), with a total of 54 interventions. A data extraction form was created in Distiller, an online reference management system, through an iterative process. One author collected data on study design, population, demographics, intervention, and analytical technique. Meta-analysis was possible on 22 interventions: multimedia, enhanced form, and extended discussion categories; all 54 interventions were assessed by review. Meta-analysis of multimedia approaches was associated with a non-significant increase in understanding scores (SMD 0.30, 95% CI, -0.23 to 0.84); enhanced consent form, with significant increase (SMD 1.73, 95% CI, 0.99 to 2.47); and extended discussion, with significant increase (SMD 0.53, 95% CI, 0.21 to 0.84). By review, 31% of multimedia interventions showed significant improvement in understanding; 41% for enhanced consent form; 50% for extended discussion; 33% for test/feedback; and 29% for miscellaneous.Multiple sources of variation

  6. Improving understanding in the research informed consent process: a systematic review of 54 interventions tested in randomized control trials

    Science.gov (United States)

    2013-01-01

    Background Obtaining informed consent is a cornerstone of biomedical research, yet participants comprehension of presented information is often low. The most effective interventions to improve understanding rates have not been identified. Purpose To systematically analyze the random controlled trials testing interventions to research informed consent process. The primary outcome of interest was quantitative rates of participant understanding; secondary outcomes were rates of information retention, satisfaction, and accrual. Interventional categories included multimedia, enhanced consent documents, extended discussions, test/feedback quizzes, and miscellaneous methods. Methods The search spanned from database inception through September 2010. It was run on Ovid MEDLINE, Ovid EMBASE, Ovid CINAHL, Ovid PsycInfo and Cochrane CENTRAL, ISI Web of Science and Scopus. Five reviewers working independently and in duplicate screened full abstract text to determine eligibility. We included only RCTs. 39 out of 1523 articles fulfilled review criteria (2.6%), with a total of 54 interventions. A data extraction form was created in Distiller, an online reference management system, through an iterative process. One author collected data on study design, population, demographics, intervention, and analytical technique. Results Meta-analysis was possible on 22 interventions: multimedia, enhanced form, and extended discussion categories; all 54 interventions were assessed by review. Meta-analysis of multimedia approaches was associated with a non-significant increase in understanding scores (SMD 0.30, 95% CI, -0.23 to 0.84); enhanced consent form, with significant increase (SMD 1.73, 95% CI, 0.99 to 2.47); and extended discussion, with significant increase (SMD 0.53, 95% CI, 0.21 to 0.84). By review, 31% of multimedia interventions showed significant improvement in understanding; 41% for enhanced consent form; 50% for extended discussion; 33% for test/feedback; and 29% for

  7. Floor-fractured craters on the Moon: an evidence of past intrusive magmatic activity

    Science.gov (United States)

    Thorey, C.; Michaut, C.

    2012-12-01

    Floor-fractured lunar craters (FFC's) are a class of craters modified by post impact mechanisms. They are defined by distinctive shallow, often plate-like or convex floors, wide floor moats and radial, concentric and polygonal floor-fractures, suggesting an endogenous process of modification. Two main mechanisms have been proposed to account for such observations : 1) viscous relaxation and 2) spreading of magmatic intrusions at depth below the crater. Here, we propose to test the case of magmatic intrusions. We develop a model for the dynamics of magma spreading below an elastic crust with a crater-like topography and above a rigid horizontal surface. Results show first that the lithostatic pressure increase at the crater rim prevents the intrusion from spreading horizontally giving rise to intrusion thickening and to an uplift of the crater floor. Second, the deformation of the overlying crust exerts a strong control on the intrusion shape, and hence, on the nature of the crater floor uplift. As the deformation can only occur over a minimum flexural wavelength noted Λ, the intrusion shape shows a bell-shaped geometry for crater radius smaller than 3Λ, or a flat top with smooth edges for crater radius larger than 3Λ. For given crustal elastic properties, the crust flexural wavelength increases with the intrusion depth. Therefore, for a large intrusion depth or small crater size, we observe a convex uplift of the crater floor. On the contrary, for a small intrusion depth or large crater size, the crater floor undergoes a piston-like uplift and a circular moat forms just before the rim. The depth of the moat is controlled by the thickening of the crust at the crater rim. On the contrary to viscous relaxation models, our model is thus able to reproduce most of the features of FFC's, including small-scale features. Spreading of a magmatic intrusion at depth can thus be considered as the main endogenous mechanism at the origin of the deformations observed at FFC

  8. Understanding the Canadian adult CT head rule trial: use of the theoretical domains framework for process evaluation

    Directory of Open Access Journals (Sweden)

    Curran Janet A

    2013-02-01

    Full Text Available Abstract Background The Canadian CT Head Rule was prospectively derived and validated to assist clinicians with diagnostic decision-making regarding the use of computed tomography (CT in adult patients with minor head injury. A recent intervention trial failed to demonstrate a decrease in the rate of head CTs following implementation of the rule in Canadian emergency departments. Yet, the same intervention, which included a one-hour educational session and reminders at the point of requisition, was successful in reducing cervical spine imaging rates in the same emergency departments. The reason for the varied effect of the intervention across these two behaviours is unclear. There is an increasing appreciation for the use of theory to conduct process evaluations to better understand how strategies are linked with outcomes in implementation trials. The Theoretical Domains Framework (TDF has been used to explore health professional behaviour and to design behaviour change interventions but, to date, has not been used to guide a theory-based process evaluation. In this proof of concept study, we explored whether the TDF could be used to guide a retrospective process evaluation to better understand emergency physicians’ responses to the interventions employed in the Canadian CT Head Rule trial. Methods A semi-structured interview guide, based on the 12 domains from the TDF, was used to conduct telephone interviews with project leads and physician participants from the intervention sites in the Canadian CT Head Rule trial. Two reviewers independently coded the anonymised interview transcripts using the TDF as a coding framework. Relevant domains were identified by: the presence of conflicting beliefs within a domain; the frequency of beliefs; and the likely strength of the impact of a belief on the behaviour. Results Eight physicians from four of the intervention sites in the Canadian CT Head Rule trial participated in the interviews. Barriers

  9. Exsolution lamellae in volcanic pyroxene; Single phenocryst thermometry for long-lived magmatic reservoir

    Science.gov (United States)

    I Made, R.; Herrin, J. S.; Tay, Y. Y.; Costa Rodriguez, F.

    2017-12-01

    Comprehensive understanding of the relevant timescales of thermal and chemical evolution of magma below the active volcanoes can help us to better anticipate volcanic eruptions and their likely precursor signals. In recent years, several lines of thermochronological inquiry have converged on a realization that, within many volcanic systems, magmas experience prolonged periods of relatively low-temperature storage prior to eruption during short duration transient events. This prolonged storage at low magmatic temperatures can result in series of solid state phase transformations within minerals, producing a petrologic record of their thermal history. In this example, we observed pigeonite exsolution lamellae in augite phenocrysts from the 2011 eruption of Cordon Caulle volcano, Chile. The small size of these features ( 70nm width and bear exsolution textures and apply this knowledge to understanding the thermal conditions of magma storage in long-lived volcanic reservoirs.

  10. The meaning of isometries as function of a set of points and the process of understanding of geometric transformation

    OpenAIRE

    Thaqi, Xhevdet; Gimenez, Joaquim; Aljimi, Ekrem

    2015-01-01

    International audience; In this paper, we try to show that in the process of understanding of isometric transformations, the meaning of isometric transformations is characterized as a function of whole figure to whole figure, as a function of the parts of the figure to the correspondent parts of the figure, and as a function of the set of points of figure to set of points of the same or other figures. This perception of isometric transformation has been observed in an experimental study which...

  11. Exhumation History Of Brasilian Highlands After Late Cretaceous Alcaline Magmatism

    Science.gov (United States)

    Doranti Tiritan, Carolina; Hackspacher, Peter Christian; Carina Siqueira Ribeiro, Marli; Glasmacher, Ulrich Anton; Françoso de Godoy, Daniel

    2017-04-01

    The southeast Brazilian margin recorded a long history of tectonic and magmatic events after the Gondwana continent break up. The drifting of the South American Platform over a thermal anomaly generated a series of alkaline intrusions that are distributed from the interior to the coast from west to east. Several exhumation events are recorded on the region and we are providing insights on the landscape evolution of the region since Late Cretaceous, comparing low temperature thermochronology results from two alkaline intrusions regions. Poços de Caldas Alkaline Massif (PCAM), is lied in the interior, 300km from the coastline, covering over 800km2 intruding the Precambrian basement around 83Ma, nepheline syenites, phonolites and tinguaites intruded in a continuous and rapid sequence lasting between 1 to 2 Ma. São Sebastião Island (SSI) on the other hand is located at the coast, 200 km southeast of São Paulo. It is characterized by an intrusion in Precambrian/Brazilian orogen and intruded by Early Cretaceous sub-alkaline basic and acid dykes, as well as by Late Cretaceous alkaline stocks (syenites) and dykes (basanite to phonolite). Will be presenting the apatite fission track (AFT) and (U-Th)/He results that shows the main difference between the areas is that PCAM region register older history then the coastal area of SSI, where thermal history starts register cooling event after the South Atlantic rifting process, while in the PCAM area register a previous history, since Carboniferous. The results are giving support to studies that indicate the development of the relief in Brazil being strongly influenced by the local and regional tectonic movements and the lithological and structural settings. The landscape at the Late Cretaceous was witness of heating process between 90 and 60Ma due the intense uplift of South American Platform. The elevation of the isotherms is associated with the mantellic plumes and the crustal thickness that caused thermal anomalies due

  12. The critical role of NIR spectroscopy and statistical process control (SPC) strategy towards captopril tablets (25 mg) manufacturing process understanding: a case study.

    Science.gov (United States)

    Curtivo, Cátia Panizzon Dal; Funghi, Nathália Bitencourt; Tavares, Guilherme Diniz; Barbosa, Sávio Fujita; Löbenberg, Raimar; Bou-Chacra, Nádia Araci

    2015-05-01

    In this work, near-infrared spectroscopy (NIRS) method was used to evaluate the uniformity of dosage units of three captopril 25 mg tablets commercial batches. The performance of the calibration method was assessed by determination of Q value (0.9986), standard error of estimation (C-set SEE = 1.956), standard error of prediction (V-set SEP = 2.076) as well as the consistency (106.1%). These results indicated the adequacy of the selected model. The method validation revealed the agreement of the reference high pressure liquid chromatography (HPLC) and NIRS methods. The process evaluation using the NIRS method showed that the variability was due to common causes and delivered predictable results consistently. Cp and Cpk values were, respectively, 2.05 and 1.80. These results revealed a non-centered process in relation to the average target (100% w/w), in the specified range (85-115%). The probability of failure was 21:100 million tablets of captopril. The NIRS in combination with the method of multivariate calibration, partial least squares (PLS) regression, allowed the development of methodology for the uniformity of dosage units evaluation of captopril tablets 25 mg. The statistical process control strategy associated with NIRS method as PAT played a critical role in understanding of the sources and degree of variation and its impact on the process. This approach led towards a better process understanding and provided the sound scientific basis for its continuous improvement.

  13. Scientific Process Flowchart Assessment (SPFA): A Method for Evaluating Changes in Understanding and Visualization of the Scientific Process in a Multidisciplinary Student Population.

    Science.gov (United States)

    Wilson, Kristy J; Rigakos, Bessie

    The scientific process is nonlinear, unpredictable, and ongoing. Assessing the nature of science is difficult with methods that rely on Likert-scale or multiple-choice questions. This study evaluated conceptions about the scientific process using student-created visual representations that we term "flowcharts." The methodology, Scientific Process Flowchart Assessment (SPFA), consisted of a prompt and rubric that was designed to assess students' understanding of the scientific process. Forty flowcharts representing a multidisciplinary group without intervention and 26 flowcharts representing pre- and postinstruction were evaluated over five dimensions: connections, experimental design, reasons for doing science, nature of science, and interconnectivity. Pre to post flowcharts showed a statistically significant improvement in the number of items and ratings for the dimensions. Comparison of the terms used and connections between terms on student flowcharts revealed an enhanced and more nuanced understanding of the scientific process, especially in the areas of application to society and communication within the scientific community. We propose that SPFA can be used in a variety of circumstances, including in the determination of what curricula or interventions would be useful in a course or program, in the assessment of curriculum, or in the evaluation of students performing research projects. © 2016 K. J. Wilson and B. Rigakos. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. The nature of transition from adakitic to non-adakitic magmatism in a slab window setting: A synthesis from the eastern Pontides, NE Turkey

    Directory of Open Access Journals (Sweden)

    Yener Eyuboglu

    2013-07-01

    Full Text Available The eastern Pontides orogenic belt provides a window into continental arc magmatism in the Alpine–Himalayan belt. The late Mesozoic–Cenozoic geodynamic evolution of this belt remains controversial. Here we focus on the nature of the transition from the adakitic to non-adakitic magmatism in the Kale area of Gumushane region in NE Turkey where this transition is best preserved. The adakitic lithologies comprise porphyries and hyaloclastites. The porphyries are represented by biotite-rich andesites, hornblende-rich andesite and dacite. The hayaloclastites represent the final stage of adakitic activity and they were generated by eruption/intrusion of adakitic andesitic magma into soft carbonate mud. The non-adakitic lithologies include basaltic-andesitic volcanic and associated pyroclastic rocks. Both rock groups are cutting by basaltic dikes representing the final stage of the Cenozoic magmatism in the study area. We report zircon U-Pb ages of 48.71 ± 0.74 Ma for the adakitic rocks, and 44.68 ± 0.84 Ma for the non-adakitic type, suggesting that there is no significant time gap during the transition from adakitic to non-adakitic magmatism. We evaluate the origin, magma processes and tectonic setting of the magmatism in the southern part of the eastern Pontides orogenic belt. Our results have important bearing on the late Mesozoic–Cenozoic geodynamic evolution of the eastern Mediterranean region.

  15. Magmatism in the brazilian sedimentary basins and the petroleum geology; Magmatismo nas bacias sedimentares brasileiras e sua influencia na geologia do petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Thomaz Filho, Antonio; Antonioli, Luzia [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Faculdade de Geologia]. E-mails: antoniothomaz@globo.com; antonioli@novanet.com.br; Mizusaki, Ana Maria Pimentel [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Geociencias]. E-mail: ana.mizusaki@ufrgs.br

    2008-06-15

    In the recent years, the researches on the magmatic events that occurred in the Brazilian sedimentary basins had shown the importance of these episodes for the hydrocarbons exploration. The generation (heating), migration (structural and petrographic alterations), accumulation (basalt fractures) and migrations barriers (sills and dykes) of the hydrocarbons, produced for these rocks, are cited in the marginal and intra continental Brazilian basins. The magmatism produce the temperature increase in the sedimentary basin, around its intrusion, and this propitiate the maturation of the organic matter contained in the hydrocarbons generating rocks of the basin. At the same time, has been verified that the contacts dykes/sedimentary rocks can represent important ways for the hydrocarbons migrations. Recent studies have shown that the magmatism, in its extrusive manifestations, can be analyzed in view of the possibility of having acted as effective hydrocarbon seals and, in consequence, making possible the accumulation of hydrocarbons generated in the underlying sediments. The magmatism of predominantly basic to intermediary character is generated in the asthenosphere, that is, below the lithosphere. The dykes that had introduced in the basement of our sedimentary basins are good heat conductors and we can expect the geothermal gradients increase in the overlapped sedimentary deposits. The more detailed study of the magmatic processes in the Brazilian sedimentary basins must lead to new forms of hydrocarbons exploration in our sedimentary basins, also in those basins where the traditional exploration activities have not occasioned the waited expected successes. (author)

  16. Martian Magmatic-Driven Hydrothermal Sites: Potential Sources of Energy, Water, and Life

    Science.gov (United States)

    Anderson, R. C.; Dohm, J. M.; Baker, V. R.; Ferris, J. C.; Hare, T. M.; Tanaka, K. L.; Klemaszewski, J. E.; Skinner, J. A.; Scott, D. H.

    2000-01-01

    Magmatic-driven processes and impact events dominate the geologic record of Mars. Such recorded geologic activity coupled with significant evidence of past and present-day water/ice, above and below the martian surface, indicate that hydrothermal environments certainly existed in the past and may exist today. The identification of such environments, especially long-lived magmatic-driven hydrothermal environments, provides NASA with significant target sites for future sample return missions, since they (1) could favor the development and sustenance of life, (2) may comprise a large variety of exotic mineral assemblages, and (3) could potentially contain water/ice reservoirs for future Mars-related human activities. If life developed on Mars, the fossil record would presumably be at its greatest concentration and diversity in environments where long-term energy sources and water coexisted such as at sites where long-lived, magmatic-driven hydrothermal activity occurred. These assertions are supported by terrestrial analogs. Small, single-celled creatures (prokaryotes) are vitally important in the evolution of the Earth; these prokaryotes are environmentally tough and tolerant of environmental extremes of pH, temperature, salinity, and anoxic conditions found around hydrothermal vents. In addition, there is a great ability for bacteria to survive long periods of geologic time in extreme conditions, including high temperature hydrogen sulfide and sulfur erupted from Mount St. Helens volcano. Our team of investigators is conducting a geological investigation using multiple mission-derived datasets (e.g., existing geologic map data, MOC imagery, MOLA, TES image data, geophysical data, etc.) to identify prime target sites of hydrothermal activity for future hydrological, mineralogical, and biological investigations. The identification of these sites will enhance the probability of success for future missions to Mars.

  17. Do Hf isotopes in magmatic zircons represent those of their host rocks?

    Science.gov (United States)

    Wang, Di; Wang, Xiao-Lei; Cai, Yue; Goldstein, Steven L.; Yang, Tao

    2018-04-01

    Lu-Hf isotopic system in zircon is a powerful and widely used geochemical tracer in studying petrogenesis of magmatic rocks and crustal evolution, assuming that zircon Hf isotopes can represent initial Hf isotopes of their parental whole rock. However, this assumption may not always be valid. Disequilibrium partial melting of continental crust would preferentially melt out non-zircon minerals with high time-integrated Lu/Hf ratios and generate partial melts with Hf isotope compositions that are more radiogenic than those of its magma source. Dissolution experiments (with hotplate, bomb and sintering procedures) of zircon-bearing samples demonstrate this disequilibrium effect where partial dissolution yielded variable and more radiogenic Hf isotope compositions than fully dissolved samples. A case study from the Neoproterozoic Jiuling batholith in southern China shows that about half of the investigated samples show decoupled Hf isotopes between zircons and the bulk rocks. This decoupling could reflect complex and prolonged magmatic processes, such as crustal assimilation, magma mixing, and disequilibrium melting, which are consistent with the wide temperature spectrum from ∼630 °C to ∼900 °C by Ti-in-zircon thermometer. We suggest that magmatic zircons may only record the Hf isotopic composition of their surrounding melt during crystallization and it is uncertain whether their Hf isotopic compositions can represent the primary Hf isotopic compositions of the bulk magmas. In this regard, using zircon Hf isotopic compositions to trace crustal evolution may be biased since most of these could be originally from disequilibrium partial melts.

  18. Understanding Segregation Processes

    Science.gov (United States)

    Bruch, Elizabeth

    There is growing consensus that living in neighborhoods of concentrated poverty increases the likelihood of social problems such as teenage parenthood, drug and alcohol use, crime victimization, and chronic unemployment. Neighborhood inequality is also implicated in studies of enduring race/ethnic health disparities, and there are recent moves to broaden the definition of health care policy to policies targeting social inequality (Mechanic 2007). Residential segregation affects health outcomes in several different ways. First, income, education, and occupation are all strongly related to health (Adler and Newman 2002). Segregation is a key mechanism through which socioeconomic inequality is perpetuated and reinforced, as it hinders the upward mobility of disadvantaged groups by limiting their educational and employment opportunities. Second, segregation increases minority exposure to unhealthy neighborhood environments. Residential segregation creates areas with concentrated poverty and unemployment, both of which are key factors that predict violence and create racial differences in homicide (Samson and Wilson 1995). Neighborhood characteristics, such as exposure to environmental hazards, fear of violence, and access to grocery stores, affect health risks and health behaviors (Cheadle et al. 1991). Tobacco and alcohol industries also advertise their products disproportionately in poor, minority areas (Moore, Williams, and Qualls 1996). Finally, residential segregation leads to inequalitie in health care resources, which contributes to disparities in quality of treatment (Smedley, Stith, and Nelson 2002).

  19. The Wall-Rock Record of Incremental Emplacement in the Little Cottonwood-Alta Magmatic and Hydrothermal System, Wasatch Mountains, Utah, U.S.A.

    Science.gov (United States)

    Stearns, M.; Callis, S.; Beno, C.; Bowman, J. R.; Bartley, J. M.

    2017-12-01

    Contact aureoles record the cumulative effects on wall rocks of magma emplacement. Like the plutons they surround, contact aureoles have long been regarded to form geologically instantaneously. Protracted incremental emplacement of plutons must be reconciled with the wall-rock record of heat and mass transfer. Fundamental questions include how heat and material move from intrusions into their aureoles and how long that process takes. The Little Cottonwood stock is surrounded by a 2 km-wide contact aureole that contains prograde AFM mineral assemblages in the pelitic layers of the Proterozoic Big Cottonwood Formation. The Alta stock is surrounded by a well characterized 1 km-wide contact aureole containing both prograde AFM and CMS mineral assemblages in Ophir Shale and Mississippian dolostones, respectively. Understanding the petrogenesis of these aureoles requires the timing of magmatism and wall-rock metamorphism to be independently determined. Preliminary petrochronology (U/Th-Pb dates and trace element concentrations collected by LASS-ICP-MS) from the inner aureoles of both intrusions establishes a protracted history of monazite (re)crystallization from 35-25 Ma in the Little Cottonwood aureole and 35 Ma in the Alta aureole. Little Cottonwood aureole monazites are characterized by a positive age correlation with heavy rare earth elements (HREE) and a negative correlation with Eu/Eu*. Alta aureole monazites have a similar range of the HREE concentrations and Eu/Eu* variation. Zircon growth interpreted to record emplacement-level magmatic crystallization of the western Little Cottonwood stock ranges from 33-28 Ma near the contact. Multi-grain U-Pb zircon TIMS dates from the Alta stock range from 35-33 Ma and are interpreted to suggest the full range of emplacement-level magmatism in the Alta stock. Additionally, in situ U-Pb titanite dates from the Alta stock record intermittent high temperature hydrothermal activity in the stock margin from 35-24 Ma. These new

  20. Working with the ineffable: Toward a process of understanding and communicating qualitative research knowledge and experience through design

    DEFF Research Database (Denmark)

    Coxon, Ian Robert

    2013-01-01

    The work described in this paper addresses the conference call for "New processes, tools or approaches that facilitate knowledge exchange and collaboration" between academia and creative people. It introduces a research-for-design program that we at the Experience-based Designing Centre in Denmark......-based Designing (XbD). The discussion will centre on XbD as we currently practice it with a view to exploring new opportunities for improvement within the whole Experience-based Designing process. The four pillars involving Exploring, Understanding, Sharing and Showing How are staging points for the input of new...... have been working on and with for the past year. It will present a program of teaching, research and industry collaboration that is essentially a knowledge gathering and information exchange program that is in itself a work-in-progress. We refer to this work as the four pillars of Experience...

  1. Understanding Groundwater and Surface Water Exchange Processes Along a Controlled Stream Using Thermal Remote Sensing and In-Situ Measurements

    Science.gov (United States)

    Varli, D.; Yilmaz, K. K.

    2016-12-01

    Effective management of water resources requires understanding and quantification of interaction between groundwater and surface water bodies. Moreover, the exchange processes have recently received increasing attention due to important influences on biogeochemical and ecological status of watersheds. In this study we investigated the exchange processes between surface water and groundwater along Kirmir stream - a controlled stream nearby Kizilcahamam, Ankara, Turkey. At the first stage, potential stream reaches where the exchange processes could occur were pinpointed using geological and geomorphological information. Then, thermal remote sensing was utilized to further narrow down the potential locations in which interaction could occur at a smaller scale. Nested piezometers were installed at identified locations to observe the variations in vertical hydraulic gradient over time. Differential discharge measurements were performed to understand the gains and losses along the stream reach. Streambed temperature measurements were taken at two different depths for a period of time using temperature loggers to calculate the vertical fluid fluxes through the streambed at various locations. Basic water quality field parameters (temperature, electrical conductivity, total dissolved solid amount, dissolved oxygen, pH and oxidation - reduction potential) were measured along the stream reach, from surface water and the piezometers as wells as from the nearby springs and wells. Chloride mass balance was performed to find the contribution of groundwater and chloride concentrations were associated with the geology of the area. This hierarchical, multi-scale methodology provided an efficient and effective way to determine the locations and the direction of groundwater and surface water exchange processes within the study area.

  2. Understanding the Risk to Neotropical Migrant Bird Species of Multiple Human-Caused Stressors: Elucidating Processes Behind the Patterns.

    Directory of Open Access Journals (Sweden)

    Ralph S. Hames

    2006-06-01

    Full Text Available Ubiquitous human-caused changes to the environment act as multiple stressors for organisms in the wild, and the effects of these stressors may be synergistic, rather than merely additive, with unexpected results. However, understanding how focal organisms respond to these stressors is crucial for conservation planning for these species. We propose a paradigm that alternates extensive, broadscale data collection by volunteer collaborators to document patterns of response, with intensive fine-scale studies by professional researchers, to elucidate the processes underlying these patterns. We demonstrate this technique, building on our existing work linking patterns of population declines in the Wood Thrush (Hylocichla mustelina to synergistic effects of acid rain and habitat fragmentation. To better understand the processes behind these patterns, we use a simple protocol to explore linkages between acid rain, leaching of calcium from the soil, and declines in the abundance of calcium-rich invertebrate prey species, which may be necessary for successful breeding by this thrush. We sampled at 40 study sites across New York that were chosen based on estimated acid deposition and soil properties. Our results show that the calcium content of the soils sampled is proportional to the soil pH, that the abundance of calcium-rich invertebrate prey tracks soil properties, and that the presence of a breeding Wood Thrush was correctly predicted in >70% of study sites by the biomass of calcium-rich prey, and in particular, the biomass of myriapods (Diplopoda. We show that a simple repeatable protocol, suitable for use by volunteers across broad geographic extents and ranges of habitat fragmentation, can help us understand the reactions of some forest birds to acid rain in combination with habitat fragmentation. We detail the development of this protocol for volunteers in the Birds in Forested Landscapes project, and describe future plans.

  3. Effect of Process-Oriented Guided-Inquiry Learning on Non-majors Biology Students' Understanding of Biological Classification

    Science.gov (United States)

    Wozniak, Breann M.

    The purpose of this study was to examine the effect of process-oriented guided-inquiry learning (POGIL) on non-majors college biology students' understanding of biological classification. This study addressed an area of science instruction, POGIL in the non-majors college biology laboratory, which has yet to be qualitatively and quantitatively researched. A concurrent triangulation mixed methods approach was used. Students' understanding of biological classification was measured in two areas: scores on pre and posttests (consisting of 11 multiple choice questions), and conceptions of classification as elicited in pre and post interviews and instructor reflections. Participants were Minnesota State University, Mankato students enrolled in BIOL 100 Summer Session. One section was taught with the traditional curriculum (n = 6) and the other section in the POGIL curriculum (n = 10) developed by the researcher. Three students from each section were selected to take part in pre and post interviews. There were no significant differences within each teaching method (p group may have scored higher on the posttest (M = 8.830 +/- .477 vs. M = 7.330 +/- .330; z =-1.729, p = .084) and the traditional group may have scored higher on the pretest than the posttest (M = 8.333 +/- .333 vs M = 7.333 +/- .333; z = -1.650 , p = .099). Two themes emerged after the interviews and instructor reflections: 1) After instruction students had a more extensive understanding of classification in three areas: vocabulary terms, physical characteristics, and types of evidence used to classify. Both groups extended their understanding, but only POGIL students could explain how molecular evidence is used in classification. 2) The challenges preventing students from understanding classification were: familiar animal categories and aquatic habitats, unfamiliar organisms, combining and subdividing initial groupings, and the hierarchical nature of classification. The POGIL students were the only group to

  4. Fine-scale temporal recovery, reconstruction and evolution of a post-supereruption magmatic system

    Science.gov (United States)

    Barker, Simon J.; Wilson, Colin J. N.; Allan, Aidan S. R.; Schipper, C. Ian

    2015-07-01

    Supereruptions (>1015 kg ≈ 450 km3 of ejected magma) have received much attention because of the challenges in explaining how and over what time intervals such large volumes of magma are accumulated, stored and erupted. However, the processes that follow supereruptions, particularly those focused around magmatic recovery, are less fully documented. We present major and trace-element data from whole-rock, glass and mineral samples from eruptive products from Taupo volcano, New Zealand, to investigate how the host magmatic system reestablished and evolved following the Oruanui supereruption at 25.4 ka. Taupo's young eruptive units are precisely constrained chronostratigraphically, providing uniquely fine-scale temporal snapshots of a post-supereruption magmatic system. After only ~5 kyr of quiescence following the Oruanui eruption, Taupo erupted three small volume (~0.1 km3) dacitic pyroclastic units from 20.5 to 17 ka, followed by another ~5-kyr-year time break, and then eruption of 25 rhyolitic units starting at ~12 ka. The dacites show strongly zoned minerals and wide variations in melt-inclusion compositions, consistent with early magma mixing followed by periods of cooling and crystallisation at depths of >8 km, overlapping spatially with the inferred basal parts of the older Oruanui silicic mush system. The dacites reflect the first products of a new silicic system, as most of the Oruanui magmatic root zone was significantly modified in composition or effectively destroyed by influxes of hot mafic magmas following caldera collapse. The first rhyolites erupted between 12 and 10 ka formed through shallow (4-5 km depth) cooling and fractionation of melts from a source similar in composition to that generating the earlier dacites, with overlapping compositions for melt inclusions and crystal cores between the two magma types. For the successively younger rhyolite units, temporal changes in melt chemistry and mineral phase stability are observed, which reflect the

  5. Seismogenic frictional melting in the magmatic column

    OpenAIRE

    Kendrick, J. E.; Lavallee, Y.; Hess, K-U; De Angelis, S.; Ferk, A.; Gaunt, H. E.; Meredith, P. G.; Dingwell, D. B.; Leonhardt, R.

    2014-01-01

    Lava dome eruptions subjected to high extrusion rates commonly evolve from endogenous to exogenous growth and limits to their structural stability hold catastrophic potential as explosive eruption triggers. In the conduit, strain localisation in magma, accompanied by seismogenic failure, marks the onset of brittle magma ascent dynamics. The rock record of exogenous dome structures preserves vestiges of cataclastic processes and thermal anomalies, key to unravelling subsurfac...

  6. Failed magmatic eruptions: Late-stage cessation of magma ascent

    Science.gov (United States)

    Moran, S.C.; Newhall, C.; Roman, D.C.

    2011-01-01

    When a volcano becomes restless, a primary question is whether the unrest will lead to an eruption. Here we recognize four possible outcomes of a magmatic intrusion: "deep intrusion", "shallow intrusion", "sluggish/viscous magmatic eruption", and "rapid, often explosive magmatic eruption". We define "failed eruptions" as instances in which magma reaches but does not pass the "shallow intrusion" stage, i. e., when magma gets close to, but does not reach, the surface. Competing factors act to promote or hinder the eventual eruption of a magma intrusion. Fresh intrusion from depth, high magma gas content, rapid ascent rates that leave little time for enroute degassing, opening of pathways, and sudden decompression near the surface all act to promote eruption, whereas decreased magma supply from depth, slow ascent, significant enroute degassing and associated increases in viscosity, and impingement on structural barriers all act to hinder eruption. All of these factors interact in complex ways with variable results, but often cause magma to stall at some depth before reaching the surface. Although certain precursory phenomena, such as rapidly escalating seismic swarms or rates of degassing or deformation, are good indicators that an eruption is likely, such phenomena have also been observed in association with intrusions that have ultimately failed to erupt. A perpetual difficulty with quantifying the probability of eruption is a lack of data, particularly on instances of failed eruptions. This difficulty is being addressed in part through the WOVOdat database. Papers in this volume will be an additional resource for scientists grappling with the issue of whether or not an episode of unrest will lead to a magmatic eruption.

  7. A synthesis on the alkaline magmatism of Eastern Paraguay

    OpenAIRE

    Gomes, Celso de Barros; Chiaramonti, Piero Comin-; Fernandez, Victor Velazquez

    2013-01-01

    Alkaline magmatism occurs in six distinct areas of Paraguay and forms bodies of variable size, shape, composition and age. The oldest rocks are found in the north and correspond to the Permo-Triassic Alto Paraguay Province (241 Ma). Four Early Cretaceous events can be distinguished in Eastern Paraguay: the Rio Apa and Amambay Provinces (139 Ma), both predating the tholeiites of the Serra Geral Formation, are located in the northern and northeastern regions, respectively; and the Central (126 ...

  8. Active Magmatic Underplating in Western Eger Rift, Central Europe

    Czech Academy of Sciences Publication Activity Database

    Hrubcová, Pavla; Geissler, W.H.; Bräuer, K.; Vavryčuk, Václav; Tomek, Č.; Kämpf, H.

    2017-01-01

    Roč. 36, č. 12 (2017), s. 2846-2862 ISSN 0278-7407 R&D Projects: GA ČR GA17-19297S; GA ČR GC16-19751J Institutional support: RVO:67985530 Keywords : active intraplate magmatic underplating * mantle-derived fluids * high-velocity lower crust * reflection-free magma body Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 3.784, year: 2016

  9. A synthesis of magmatic Ni-Cu-(PGE) sulfide deposits in the ∼260 Ma Emeishan large igneous province, SW China and northern Vietnam

    Science.gov (United States)

    Wang, Christina Yan; Wei, Bo; Zhou, Mei-Fu; Minh, Dinh Huu; Qi, Liang

    2018-04-01

    intrusion. Overall, the three types of Ni-Cu-(PGE) sulfide deposits in the Emeishan LIP can be taken as a spectrum of Ni-Cu-(PGE) sulfide mineralization, the formation of which involved similar magmatic processes in open systems of magma conduits. The magma conduits developed along the cross-linking structures created by numerous strike-slip faults and each intrusion appears to be part of a connecting trellis of conduits that formed complex pathways from the mantle to the surface. The Ni-Cu sulfide-dominated deposits are attributed to a single sulfide segregation event in staging magma chambers, whereas the PGE-dominated deposits were likely formed by a multistage-dissolution, upgrading process in the staging chambers. The Ni-Cu-(PGE) sulfide-dominated deposits may have experienced interaction between successive pulses of S-undersaturated mafic magma and early segregated sulfide melts in the staging chambers. This study is intended to provide a better understanding of the magmatic processes related to the formation of conduit-type Ni-Cu-(PGE) sulfide deposits associated with continental flood basalt magmatism.

  10. Nanomineralogy as a new dimension in understanding elusive geochemical processes in soils: The case of low-solubility-index elements

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Michael; Hochella, Michael F.

    2016-05-20

    Nanomineralogy is a new dimension in understanding chemical processes in soils. These processes are revealed at the nanoscale within the structures and compositions of phases that heretofore were not even known to exist in the soils in which they are found. The discovery and understanding of soil chemistry in this way is best accessible via a combination of focused ion beam technology (for sample preparation) and high resolution, analytical transmission electron microscopy (for phase identification). We have used this scientific framework and these techniques to decipher past and present chemical processes in a soil in Sudbury, Ontario, Canada that has been impacted by both smelter contamination (acidification) and subsequent remediation within the past century. In this study, we use these methods to investigate mobilization and sequestration of the relatively immobile elements Al, Ti and Zr. In a micrometer-thick alteration layer on an albite grain, a first generation of clay minerals represents weathering of the underlying mineral prior to the acidification of the soils. Complex assemblages of Ti- and Zr-bearing nanophases occur on the surfaces of Fe-(hydr)oxide crystals and are the result of the dissolution of silicates and oxides and the mobilization of Ti- and Zr-bearing colloids under acidic conditions. These phases include anatase (TiO2), kleberite (Fe3+Ti6O11(OH)5) Ti4O7, baddelyite (ZrO2), a structural analogue to kelyshite (NaZr[Si2O6(OH)]) and authigenic zircon (ZrSiO4). Subsequent remediation of the acidic soils has resulted in the sequestration of Al and in the neoformation of the clay minerals kaolinite, smectite and illite. These complex mineral assemblages form a porous layer that controls the interaction of the underlying mineral with the environment.

  11. Scenarios of Earth system change in western Canada: Conceptual understanding and process insights from the Changing Cold Regions Network

    Science.gov (United States)

    DeBeer, C. M.; Wheater, H. S.; Pomeroy, J. W.; Stewart, R. E.; Turetsky, M. R.; Baltzer, J. L.; Pietroniro, A.; Marsh, P.; Carey, S.; Howard, A.; Barr, A.; Elshamy, M.

    2017-12-01

    The interior of western Canada has been experiencing rapid, widespread, and severe hydroclimatic change in recent decades, and this is projected to continue in the future. To better assess future hydrological, cryospheric and ecological states and fluxes under future climates, a regional hydroclimate project was formed under the auspices of the Global Energy and Water Exchanges (GEWEX) project of the World Climate Research Programme; the Changing Cold Regions Network (CCRN; www.ccrnetwork.ca) aims to understand, diagnose, and predict interactions among the changing Earth system components at multiple spatial scales over the Mackenzie and Saskatchewan River basins of western Canada. A particular challenge is in applying land surface and hydrological models under future climates, as system changes and cold regions process interactions are not often straightforward, and model structures and parameterizations based on historical observations and understanding of contemporary system functioning may not adequately capture these complexities. To address this and provide guidance and direction to the modelling community, CCRN has drawn insights from a multi-disciplinary perspective on the process controls and system trajectories to develop a set of feasible scenarios of change for the 21st century across the region. This presentation will describe CCRN's efforts towards formalizing these insights and applying them in a large-scale modelling context. This will address what are seen as the most critical processes and key drivers affecting hydrological, cryospheric and ecological change, how these will most likely evolve in the coming decades, and how these are parameterized and incorporated as future scenarios for terrestrial ecology, hydrological functioning, permafrost state, glaciers, agriculture, and water management.

  12. Selective recovery of pure copper nanopowder from indium-tin-oxide etching wastewater by various wet chemical reduction process: Understanding their chemistry and comparisons of sustainable valorization processes.

    Science.gov (United States)

    Swain, Basudev; Mishra, Chinmayee; Hong, Hyun Seon; Cho, Sung-Soo

    2016-05-01

    Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11kg/m(3) of copper and 1.35kg/m(3) of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered using various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compare