Understanding the Problems of Learning Mathematics.
Semilla-Dube, Lilia
1983-01-01
A model is being developed to categorize problems in teaching and learning mathematics. Categories include problems due to language difficulties, lack of prerequisite knowledge, and those related to the affective domain. This paper calls on individuals to share teaching and learning episodes; those submitted will then be compiled and categorized.…
Towards Understanding the Origins of Children's Difficulties in Mathematics Learning
Mulligan, Joanne
2011-01-01
Contemporary research from a psychology of mathematics education perspective has turned increasing attention to the structural development of mathematics as an explanation for the wide differences in mathematical competence shown upon school entry and in the early school years. Patterning, multiplicative reasoning and spatial structuring are three…
Junsay, Merle L.
2016-01-01
This is a quasi-experimental study that explored the effects of reflective learning on prospective teachers' conceptual understanding, critical thinking, problem solving, and mathematical communication skills and the relationship of these variables. It involved 60 prospective teachers from two basic mathematics classes of an institution of higher…
Directory of Open Access Journals (Sweden)
Rippi Maya
2011-07-01
Full Text Available This paper reports findings of a post test experimental control group design conducted to investigate the role of modified Moore learning approach on improving students’ mathematical understanding and proving abilities. Subject of study were 56 undergradute students of one state university in Bandung, who took advanced abstract algebra course. Instrument of study were a set test of mathematical understanding ability, a set test of mathematical proving ability, and a set of students’ opinion scale on modified Moore learning approach. Data were analyzed by using two path ANOVA. The study found that proof construction process was more difficult than mathematical understanding task for all students, and students still posed some difficulties on constructing mathematical proof task. The study also found there were not differences between students’ abilities on mathematical understanding and on proving abilities of the both classes, and both abilities were classified as mediocre. However, in modified Moore learning approach class there were more students who got above average grades on mathematical understanding than those of conventional class. Moreover, students performed positive opinion toward modified Moore learning approach. They were active in questioning and solving problems, and in explaining their works in front of class as well, while students of conventional teaching prefered to listen to lecturer’s explanation. The study also found that there was no interaction between learning approach and students’ prior mathematics ability on mathematical understanding and proving abilities, but there were quite strong association between students’ mathematical understanding and proving abilities.Keywords: modified Moore learning approach, mathematical understanding ability, mathematical proving ability. DOI: http://dx.doi.org/10.22342/jme.2.2.751.231-250
Sierpinska, Anna
1994-01-01
The concept of understanding in mathematics with regard to mathematics education is considered in this volume, the main problem for mathematics teachers being how to facilitate their students'' understanding of the mathematics being taught.
Understanding engineering mathematics
Cox, Bill
2001-01-01
* Unique interactive style enables students to diagnose their strengths and weaknesses and focus their efforts where needed* Ideal for self-study and tutorial work, building from an initially supportive approach to the development of independent learning skills * Free website includes solutions to all exercises, additional topics and applications, guide to learning mathematics, and practice materialStudents today enter engineering courses with a wide range of mathematical skills, due to the many different pre-university qualifications studied. Bill Cox''s aim is for students to gain a thorough understanding of the maths they are studying, by first strengthening their background in the essentials of each topic. His approach allows a unique self-paced study style, in which students Review their strengths and weaknesses through self-administered diagnostic tests, then focus on Revision where they need it, to finally Reinforce the skills required.The book is structured around a highly successful ''transition'' ma...
Learning Environments in Mathematics
Turner, Vanshelle E.
2017-01-01
Learning mathematics is problematic for most primary school age children because mathematics is rote and the memorization of steps rather than an approach to seeing relationships that builds inquiry and understanding. Therefore, the traditional "algorithmic" way of teaching mathematics has not fully prepared students to be critical…
Heng, Mary Anne; Sudarshan, Akhila
2013-01-01
This paper examines the perceptions and understandings of ten grades 1 and 2 Singapore mathematics teachers as they learned to use clinical interviews (Ginsburg, "Human Development" 52:109-128, 2009) to understand students' mathematical thinking. This study challenged teachers' pedagogical assumptions about what it means to teach for…
Kusmaryono, Imam; Suyitno, Hardi
2016-02-01
This study used a model of Concurrent Embedded with the aim of: (1) determine the difference between the conceptual understanding and mathematical power of students grade fourth who take the constructivist learning using scientific approach and direct learning, (2) determine the interaction between learning approaches and initial competence on the mathematical power and conceptual of understanding, and (3) describe the mathematical power of students grade fourth. This research was conducted in the fourth grade elementary school early 2015. Data initial competence and mathematical power obtained through tests, and analyzed using statistical tests multivariate and univariate. Statistical analysis of the results showed that: (1) There are differences in the concept of understanding and mathematical power among the students who follow the scientifically-based constructivist learning than students who take the Direct Learning in terms of students initial competency (F = 5.550; p = 0.007 problem solving and contributes tremendous increase students' math skills. Researcher suggested that the learning of mathematics in schools using scientifically- based constructivist approach to improve the mathematical power of students and conceptual understanding.
Desoete, Annemie; De Weerdt, Frauke
2013-01-01
Working memory, inhibition and naming speed was assessed in 22 children with mathematical learning disorders (MD), 17 children with a reading learning disorder (RD), and 45 children without any learning problems between 8 and 12 years old. All subjects with learning disorders performed poorly on working memory tasks, providing evidence that they…
Directory of Open Access Journals (Sweden)
I Made Suarsana
2017-06-01
Full Text Available The aim of this study is to examine the effect of Brain Based Learning on second grade junior high school students’ conceptual understanding on polyhedron. This study was conducted by using post-test only control group quasi-experimental design. The subjects of this study were 148 students that divided into three classes. Two classes were taken as sample by using cluster random sampling technique. One of the classes was randomly selected as an experimental group and the other as control group. There were 48 students in experimental group and 51 students in control group. The data were collected with post-test which contained mathematical conceptual understanding on fractions. The post-test consisted of 8 essay question types. The normality and variance homogeny test result showed that the scores are normally distributed and have no difference in variance. The data were analyzed by using one tailed t-test with significance level of 5%. The result of data analysis revealed that the value of t-test = 6,7096 greater than t-table = 1,987, therefore; the null hypothesis is rejected. There is positive effect of of Brain Based Learning on second grade junior students’ conceptual understanding in polyhedron.
Kudri, F.; Rahmi, R.; Haryono, Y.
2018-04-01
This research is motivated by the lack of understanding of mathematical concepts students and teachers have not familiarize students discussed in groups. This researchaims to determine whether an understanding of mathematical concepts junior class VIII SMPN 2 in Ranah Batahan Kabupaten Pasaman Barat by applying active learning strategy group to group types with LKS better than conventional learning. The type of research is experimental the design of randomized trials on the subject. The population in the study were all students VIII SMPN 2 Ranah Batahan Kabupaten Pasaman Barat in year 2012/2013 which consists of our class room experiment to determine the grade and control class with do nerandomly, so that classes VIII1 elected as a experiment class and class VIII4 as a control class. The instruments used in the test empirically understanding mathematical concepts are shaped by the essay with rt=0,82 greater than rt=0,468 means reliable tests used. The data analysis technique used is the test with the help of MINITAB. Based on the results of the data analisis known that both of the sample are normal and homogenity in real rate α = 0,05, so the hypothesis of this research is received. So, it can be concluded students’ understanding mathematical concept applied the active Group to Group learning strategy with LKS is better than the students’ understanding mathematical concept with Conventional Learning.
Understanding Mathematics-A Review
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 5. Understanding Mathematics – A Review. Shashidhar Jagadeeshan. Book Review Volume 6 Issue 5 May ... Author Affiliations. Shashidhar Jagadeeshan1. Centre for Learning, 469, 9th Cross, 1st Block, Jayanagar, Bangalore 560 011, India.
Gersten, Russell; Schumacher, Robin F; Jordan, Nancy C
Magnitude understanding is critical for students to develop a deep understanding of fractions and more advanced mathematics curriculum. The research reports in this special issue underscore magnitude understanding for fractions and emphasize number lines as both an assessment and an instructional tool. In this commentary, we discuss how number lines broaden the concept of fractions for students who are tied to the more general part-whole representations of area models. We also discuss how number lines, compared to other representations, are a superior and more mathematically correct way to explain fraction concepts.
Teachers' Understanding of the Role of Executive Functions in Mathematics Learning.
Gilmore, Camilla; Cragg, Lucy
2014-09-01
Cognitive psychology research has suggested an important role for executive functions, the set of skills that monitor and control thought and action, in learning mathematics. However, there is currently little evidence about whether teachers are aware of the importance of these skills and, if so, how they come by this information. We conducted an online survey of teachers' views on the importance of a range of skills for mathematics learning. Teachers rated executive function skills, and in particular inhibition and shifting, to be important for mathematics. The value placed on executive function skills increased with increasing teaching experience. Most teachers reported that they were aware of these skills, although few knew the term "executive functions." This awareness had come about through their teaching experience rather than from formal instruction. Researchers and teacher educators could do more to highlight the importance of these skills to trainee or new teachers.
Teachers' Understanding of the Role of Executive Functions in Mathematics Learning
Gilmore, Camilla; Cragg, Lucy
2014-01-01
Cognitive psychology research has suggested an important role for executive functions, the set of skills that monitor and control thought and action, in learning mathematics. However, there is currently little evidence about whether teachers are aware of the importance of these skills and, if so, how they come by this information. We conducted an online survey of teachers' views on the importance of a range of skills for mathematics learning. Teachers rated executive function skills, and in particular inhibition and shifting, to be important for mathematics. The value placed on executive function skills increased with increasing teaching experience. Most teachers reported that they were aware of these skills, although few knew the term “executive functions.” This awareness had come about through their teaching experience rather than from formal instruction. Researchers and teacher educators could do more to highlight the importance of these skills to trainee or new teachers. PMID:25674156
Learning mathematics for personal understanding and productions: A viewpoint
Directory of Open Access Journals (Sweden)
David Mtetwa
2010-09-01
Full Text Available In this paper we reflect on what makes mathematics more meaningful and more easily understood and thus enabling the learner to apply it to everyday situations in his/her life world. We identify personal – in relation to ‘collective’ or ‘public’ – mathematising as one key component towards real understanding of mathematics. We observe that today’s mathematics learner is often typified by such orientations as approaching the subject with timidity and in a cookbook fashion, adopting a re‐productive rather than a productive mode, and showing lack of intrinsic interest in the subject. Debilitating effects of some of these characteristics in relation to learning mathematics for personal development, include learner’s failure to exploit the subject’s natural features for developing own mental orientations such as algorithmic, stochastic, reflective, and creative thinking so essential in coping with modern life environments. We propose that, for inspirational effects, learners should have closer contact with and appreciation for the activities and practices of the professional mathematician. The mathematics teacher could enhance the learner’s mathematical learning experience by orienting instructional designs in ways that make the learning processes and outcomes more personal to the learner.
Hapsari, T.; Darhim; Dahlan, J. A.
2018-05-01
This research discusses the differentiated instruction, a mathematic learning which is as expected by the students in connection with the differentiated instruction itself, its implementation, and the students’ responses. This research employs a survey method which involves 62 students as the research respondents. The mathematics learning types required by the students and their responses to the differentiated instruction are examined through questionnaire and interview. The mathematics learning types in orderly required by the students, from the highest frequency cover the easily understood instructions, slowly/not rushing teaching, fun, not complicated, interspersed with humour, various question practices, not too serious, and conducive class atmosphere for the instructions. Implementing the differentiated instruction is not easy. The teacher should be able to constantly assess the students, s/he should have good knowledge of relevant materials and instructions, and properly prepare the instructions, although it is time-consuming. The differentiated instruction is implemented on the instructions of numerical pattern materials. The strategies implemented are flexible grouping, tiered assignment, and compacting. The students positively respond the differentiated learning instruction that they become more motivated and involved in the instruction.
Mathematics understanding and anxiety in collaborative teaching
Ansari, B. I.; Wahyu, N.
2017-12-01
This study aims to examine students’ mathematical understanding and anxiety using collaborative teaching. The sample consists of 51 students in the 7th-grade of MTs N Jeureula, one of the Islamic public junior high schools in Jeureula, Aceh, Indonesia. A test of mathematics understanding was administered to the students twice during the period of two months. The result suggests that there is a significant increase in mathematical understanding in the pre-test and post-test. We categorized the students into the high, intermediate, and low level of prior mathematics knowledge. In the high-level prior knowledge, there is no difference of mathematical understanding between the experiment and control group. Meanwhile, in the intermediate and low level of prior knowledge, there is a significant difference of mathematical understanding between the experiment and control group. The mathematics anxiety is at an intermediate level in the experiment class and at a high level in the control group. There is no interaction between the learning model and the students’ prior knowledge towards the mathematical understanding, but there are interactions towards the mathematics anxiety. It indicates that the collaborative teaching model and the students’ prior knowledge do not simultaneously impacts on the mathematics understanding but the mathematics anxiety.
Machine Learning via Mathematical Programming
National Research Council Canada - National Science Library
Mamgasarian, Olivi
1999-01-01
Mathematical programming approaches were applied to a variety of problems in machine learning in order to gain deeper understanding of the problems and to come up with new and more efficient computational algorithms...
Under Threes' Mathematical Learning
Franzén, Karin
2015-01-01
The article focuses on mathematics for toddlers in preschool, with the aim of challenging a strong learning discourse that mainly focuses on cognitive learning. By devoting more attention to other perspectives on learning, the hope is to better promote children's early mathematical development. Sweden is one of few countries to have a curriculum…
Learning Mathematics through Programming
DEFF Research Database (Denmark)
Misfeldt, Morten; Ejsing-Duun, Stine
2015-01-01
In this paper we explore the potentials for learning mathematics through programming by a combination of theoretically derived potentials and cases of practical pedagogical work. We propose a model with three interdependent learning potentials as programming which can: (1) help reframe the students...... to mathematics is paramount. Analyzing two cases, we suggest a number of ways in which didactical attention to epistemic mediation can support learning mathematics....
Understanding mathematical proof
Taylor, John
2014-01-01
Introduction The need for proof The language of mathematics Reasoning Deductive reasoning and truth Example proofs Logic and ReasoningIntroduction Propositions, connectives, and truth tables Logical equivalence and logical implication Predicates and quantification Logical reasoning Sets and Functions Introduction Sets and membership Operations on setsThe Cartesian product Functions and composite functions Properties of functions The Structure of Mathematical ProofsIntroduction Some proofs dissected An informal framework for proofs Direct proof A more formal framework Finding Proofs Direct proo
Nurhayati, Dian Mita; Hartono
2017-05-01
This study aims to determine whether there is a difference in the ability of understanding the concept of mathematics between students who use cooperative learning model Student Teams Achievement Division type with Realistic Mathematic Education approach and students who use regular learning in seventh grade SMPN 35 Pekanbaru. This study was quasi experiments with Posttest-only Control Design. The populations in this research were all the seventh grade students in one of state junior high school in Pekanbaru. The samples were a class that is used as the experimental class and one other as the control class. The process of sampling is using purposive sampling technique. Retrieval of data in this study using the documentation, observation sheets, and test. The test use t-test formula to determine whether there is a difference in student's understanding of mathematical concepts. Before the t-test, should be used to test the homogeneity and normality. Based in the analysis of these data with t0 = 2.9 there is a difference in student's understanding of mathematical concepts between experimental and control class. Percentage of students experimental class with score more than 65 was 76.9% and 56.4% of students control class. Thus be concluded, the ability of understanding mathematical concepts students who use the cooperative learning model type STAD with RME approach better than students using the regular learning. So that cooperative learning model type STAD with RME approach is well used in learning process.
Understanding Mathematics: Some Key Factors
Ali, Asma Amanat; Reid, Norman
2012-01-01
Mathematics is well known as a subject area where there can be problems in terms of understanding as well as retaining positive attitudes. In a large study involving 813 school students (ages approximately 10-12) drawn from two different school systems in Pakistan, the effect of limited working memory capacity on performance in mathematics was…
On Mathematical Understanding: Perspectives of Experienced Chinese Mathematics Teachers
Cai, Jinfa; Ding, Meixia
2017-01-01
Researchers have long debated the meaning of mathematical understanding and ways to achieve mathematical understanding. This study investigated experienced Chinese mathematics teachers' views about mathematical understanding. It was found that these mathematics teachers embrace the view that understanding is a web of connections, which is a result…
Almanasreh, Hasan
2017-01-01
This study concerns the use of e-learning in the educational system shedding the light on its advantages and disadvantages, and analyzing its applicability either partially or totally. From mathematical perspectives, theories are developed to test the courses tendency to online transformation. This leads to a new trend of learning, the offline-online-offline learning (fnf-learning), it merges e-learning mode with the traditional orientation of education. The derivation of the new trend is bas...
Nurjanah; Dahlan, J. A.; Wibisono, Y.
2017-02-01
This paper aims to make a design and development computer-based e-learning teaching material for improving mathematical understanding ability and spatial sense of junior high school students. Furthermore, the particular aims are (1) getting teaching material design, evaluation model, and intrument to measure mathematical understanding ability and spatial sense of junior high school students; (2) conducting trials computer-based e-learning teaching material model, asessment, and instrument to develop mathematical understanding ability and spatial sense of junior high school students; (3) completing teaching material models of computer-based e-learning, assessment, and develop mathematical understanding ability and spatial sense of junior high school students; (4) resulting research product is teaching materials of computer-based e-learning. Furthermore, the product is an interactive learning disc. The research method is used of this study is developmental research which is conducted by thought experiment and instruction experiment. The result showed that teaching materials could be used very well. This is based on the validation of computer-based e-learning teaching materials, which is validated by 5 multimedia experts. The judgement result of face and content validity of 5 validator shows that the same judgement result to the face and content validity of each item test of mathematical understanding ability and spatial sense. The reliability test of mathematical understanding ability and spatial sense are 0,929 and 0,939. This reliability test is very high. While the validity of both tests have a high and very high criteria.
The motivation of lifelong mathematics learning
Hashim Ali, Siti Aishah
2013-04-01
As adults, we have always learned throughout our life, but this learning is informal. Now, more career-switchers and career-upgraders who are joining universities for further training are becoming the major group of adult learners. This current situation requires formal education in courses with controlled output. Hence, lifelong learning is seen as a necessity and an opportunity for these adult learners. One characteristic of adult education is that the learners tend to bring with them life experience from their past, especially when learning mathematics. Most of them associate mathematics with the school subjects and unable to recognize the mathematics in their daily practice as mathematics. They normally place a high value on learning mathematics because of its prominent role in their prospective careers, but their learning often requires overcoming personal experience and motivating themselves to learn mathematics again. This paper reports on the study conducted on a group of adult learners currently pursuing their study. The aim of this study is to explore (i) the motivation of the adult learners continuing their study; and (ii) the perception and motivation of these learners in learning mathematics. This paper will take this into account when we discuss learners' perception and motivation to learning mathematics, as interrelated phenomena. Finding from this study will provide helpful insights in understanding the learning process and adaption of adult learners to formal education.
Students’ mathematical learning in modelling activities
DEFF Research Database (Denmark)
Kjeldsen, Tinne Hoff; Blomhøj, Morten
2013-01-01
Ten years of experience with analyses of students’ learning in a modelling course for first year university students, led us to see modelling as a didactical activity with the dual goal of developing students’ modelling competency and enhancing their conceptual learning of mathematical concepts i...... create and help overcome hidden cognitive conflicts in students’ understanding; that reflections within modelling can play an important role for the students’ learning of mathematics. These findings are illustrated with a modelling project concerning the world population....
Suarsana, I. Made; Widiasih, Ni Putu Santhi; Suparta, I. Nengah
2018-01-01
The aim of this study is to examine the effect of Brain Based Learning on second grade junior high school students? conceptual understanding on polyhedron. This study was conducted by using post-test only control group quasi-experimental design. The subjects of this study were 148 students that divided into three classes. Two classes were taken as…
Improving students’ understanding of mathematical concept using maple
Ningsih, Y. L.; Paradesa, R.
2018-01-01
This study aimed to improve students’ understanding of mathematical concept ability through implementation of using Maple in learning and expository learning. This study used a quasi-experimental research with pretest-posttest control group design. The sample on this study was 61 students in the second semester of Mathematics Education of Universitas PGRI Palembang, South Sumatera in academic year 2016/2017. The sample was divided into two classes, one class as the experiment class who using Maple in learning and the other class as a control class who received expository learning. Data were collective through the test of mathematical initial ability and mathematical concept understanding ability. Data were analyzed by t-test and two ways ANOVA. The results of this study showed (1) the improvement of students’ mathematical concept understanding ability who using Maple in learning is better than those who using expository learning; (2) there is no interaction between learning model and students’ mathematical initial ability toward the improvement of students’ understanding of mathematical concept ability.
Perception determinants in learning mathematics
Mokhtar, Siti Fairus; Ali, Noor Rasidah; Rashid, Nurazlina Abdul
2015-05-01
This article described a statistical study of students' perception in mathematics. The objective of this study is to identify factors related to perception about learning mathematics among non mathematics' student. This study also determined the relationship between of these factors among non mathematics' student. 43 items questionnaires were distributed to one hundred students in UiTM Kedah who enrolled in the Business Mathematics course. These items were measured by using a semantic scale with the following anchors: 1 = strongly disagree to 7 = strongly agree. A factor analysis of respondents were identified into five factors that influencing the students' perception in mathematics. In my study, factors identified were attitude, interest, role of the teacher, role of peers and usefulness of mathematics that may relate to the perception about learning mathematics among non mathematics' student.
Understanding Understanding Mathematics. Artificial Intelligence Memo No. 488.
Michener, Edwina Rissland
This document is concerned with the important extra-logical knowledge that is often outside of traditional discussions in mathematics, and looks at some of the ingredients and processes involved in the understanding of mathematics. The goal is to develop a conceptual framework in which to talk about mathematical knowledge and to understand the…
Using Prediction to Promote Mathematical Understanding and Reasoning
Kasmer, Lisa; Kim, Ok-Kyeong
2011-01-01
Research has shown that prediction has the potential to promote the teaching and learning of mathematics because it can be used to enhance students' thinking and reasoning at all grade levels in various topics. This article addresses the effectiveness of using prediction on students' understanding and reasoning of mathematical concepts in a middle…
Promoting the Understanding of Mathematics in Physics at Secondary Level
Thompson, Alaric
2016-01-01
This article explores some of the common mathematical difficulties that 11- to 16-year-old students experience with respect to their learning of physics. The definition of "understanding" expressed in the article is in the sense of transferability of mathematical skills from topic to topic within physics as well as between the separate…
Pepin, B.; Haggarty, L.
2001-01-01
After a through review of the relevant literature in terms of textbook analysis and mathematics teachers' user of textbooks in school contexts, this paper reports on selected and early findings from a study of mathematics textbooks and their use in English, French and German mathematics classrooms
[Difficulties in learning mathematics].
Rebollo, M A; Rodríguez, A L
2006-02-13
To discuss our concern for some aspects of mathematics learning disorders related to the nomenclature employed and their diagnosis; these aspects refer to the term 'dyscalculia' and to its diagnosis (especially syndromatic diagnosis). We also intend to propose a classification that could help to define the terminology. Lastly we are going to consider the different aspects of diagnosis and to determine which of them are indispensable in the diagnosis of primary and secondary disorders. As far as the nomenclature is concerned, we refer to the term 'dyscalculia'. The origins of the term are analysed along with the reasons why it should not be used in children with difficulties in learning mathematics. We propose a classification and denominations for the different types that should undoubtedly be discussed. With respect to the diagnosis, several problems related to the syndromatic diagnosis are considered, since in our country there are no standardised tests with which to study performance in arithmetic and geometry. This means that criterion reference tests are conducted to try to establish current and potential performance. At this stage of the diagnosis pedagogical and psychological studies must be conducted. The important factors with regard to the topographical and aetiological diagnoses are prior knowledge, results from the studies that have been carried out and findings from imaging studies. The importance of a genetic study must be defined in the aetiological diagnosis. We propose a nomenclature to replace the term 'dyscalculia'. Standardised tests are needed for the diagnosis. The need to establish current and potential performance is hierarchized. With regard to the topographical diagnosis, we highlight the need for more information about geometry, and in aetiological studies the analyses must be conducted with greater numbers of children.
Transformative Learning: Personal Empowerment in Learning Mathematics
Hassi, Marja-Liisa; Laursen, Sandra L.
2015-01-01
This article introduces the concept of personal empowerment as a form of transformative learning. It focuses on commonly ignored but enhancing elements of mathematics learning and argues that crucial personal resources can be essentially promoted by high engagement in mathematical problem solving, inquiry, and collaboration. This personal…
Godino, Juan D.; Font, Vicenc; Wilhelmi, Miguel R.; Lurduy, Orlando
2011-01-01
The semiotic approach to mathematics education introduces the notion of "semiotic system" as a tool to describe mathematical activity. The semiotic system is formed by the set of signs, the production rules of signs and the underlying meaning structures. In this paper, we present the notions of system of practices and configuration of objects and…
Understanding Mathematics Classroom Instruction Through Students and Teachers
Schenke, Katerina
2015-01-01
High quality instruction is necessary for students of all ages to develop a deep understanding of mathematics. Value-added models, a common approach used to describe teachers and classroom practices, are defined by the student standardized achievement gains teachers elicit. They may, however, fail to account for the complexity of mathematics instruction as it actually occurs in the classroom. To truly understand both a teacher’s impact on his/her students and how best to improve student learn...
Anticipation Guides: Reading for Mathematics Understanding
Adams, Anne E.; Pegg, Jerine; Case, Melissa
2015-01-01
With the acceptance by many states of the Common Core State Standards for Mathematics, new emphasis is being placed on students' ability to engage in mathematical practices such as understanding problems (including word problems), reading and critiquing arguments, and making explicit use of definitions (CCSSI 2010). Engaging students in…
Ellington, Aimee J.; Whitenack, Joy W.; Inge, Vickie L.; Murray, Megan K.; Schneider, Patti J.
2012-01-01
This article describes the design and implementation of an assessment instrument for Numbers and Operations, the first course in a program to train elementary mathematics specialists. We briefly describe the course and its content, and then we elaborate on the process we used to develop the assessment instrument and the corresponding rubric for…
Professional Learning in Mathematical Reasoning: Reflections of a Primary Teacher
Herbert, Sandra; Widjaja, Wanty; Bragg, Leicha A.; Loong, Esther; Vale, Colleen
2016-01-01
Reasoning is an important aspect in the understanding and learning of mathematics. This paper reports on a case study presenting one Australian primary teacher's reflections regarding the role played by a professional learning program in her developing understanding of mathematical reasoning. Examination of the transcripts of two interviews…
Enhancing Students’ Interest through Mathematics Learning
Azmidar, A.; Darhim, D.; Dahlan, J. A.
2017-09-01
A number of previous researchers indicated that students’ mathematics interest still low because most of them have perceived that mathematics is very difficult, boring, not very practical, and have many abstract theorems that were very hard to understand. Another cause is the teaching and learning process used, which is mechanistic without considering students’ needs. Learning is more known as the process of transferring the knowledge to the students. Let students construct their own knowledge with the physical and mental reflection that is done by activity in the new knowledge. This article is literature study. The purpose of this article is to examine the Concrete-Pictorial-Abstract approach in theoretically to improve students’ mathematics interest. The conclusion of this literature study is the Concrete-Pictorial-Abstract approach can be used as an alternative to improve students’ mathematics interest.
Pontrjagin, Lev Semenovič
1984-01-01
Lev Semenovic Pontrjagin (1908) is one of the outstanding figures in 20th century mathematics. In a long career he has made fundamental con tributions to many branches of mathematics, both pure and applied. He has received every honor that a grateful government can bestow. Though in no way constrained to do so, he has through the years taught mathematics courses at Moscow State University. In the year 1975 he set himself the task of writing a series of books on secondary school and beginning university mathematics. In his own words, "I wished to set forth the foundations of higher mathematics in a form that would have been accessible to myself as a lad, but making use of all my experience as a scientist and a teacher, ac cumulated over many years. " The present volume is a translation of the first two out of four moderately sized volumes on this theme planned by Pro fessor Pontrjagin. The book begins at the beginning of modern mathematics, analytic ge ometry in the plane and 3-dimensional space. Refin...
COLLEGE STUDENTS’ PERCEPTIONS OF LEARNING MATHEMATICS AND USING COMPUTERS
Gok, Tolga
2016-01-01
Mathematics isthe key course to interpret the science and nature. A positive attitude shouldbe improved by learners to comprehend the logic of mathematics. However, mostof the research indicated that they were not interested in learning andstudying mathematics. Instead of understanding the basic principles, manystudents preferred to use sophisticated software packages or graphingcalculators for solving mathematics problems. Thus, these tools prevent theimprovement of their mathematical skills...
Learning Mathematics through Games
Gough, John
2015-01-01
When considering the use of games for teaching mathematics, educators should distinguish between an "activity" and a "game". Gough (1999) states that "A 'game' needs to have two or more players, who take turns, each competing to achieve a 'winning' situation of some kind, each able to exercise some choice about how to move…
The Language of Mathematics: The Importance of Teaching and Learning Mathematical Vocabulary
Riccomini, Paul J.; Smith, Gregory W.; Hughes, Elizabeth M.; Fries, Karen M.
2015-01-01
Vocabulary understanding is a major contributor to overall comprehension in many content areas, including mathematics. Effective methods for teaching vocabulary in all content areas are diverse and long standing. Teaching and learning the language of mathematics is vital for the development of mathematical proficiency. Students' mathematical…
Creating opportunities to learn in mathematics education: a sociocultural perspective
Goos, Merrilyn
2014-09-01
The notion of `opportunities to learn in mathematics education' is open to interpretation from multiple theoretical perspectives, where the focus may be on cognitive, social or affective dimensions of learning, curriculum and assessment design, issues of equity and access, or the broad policy and political contexts of learning and teaching. In this paper, I conceptualise opportunities to learn from a sociocultural perspective. Beginning with my own research on the learning of students and teachers of mathematics, I sketch out two theoretical frameworks for understanding this learning. One framework extends Valsiner's zone theory of child development, and the other draws on Wenger's ideas about communities of practice. My aim is then to suggest how these two frameworks might help us understand the learning of others who have an interest in mathematics education, such as mathematics teacher educator-researchers and mathematicians. In doing so, I attempt to move towards a synthesis of ideas to inform mathematics education research and development.
Forms of Understanding in Mathematical Problem Solving.
1982-08-01
mathematical concepts, but more recent studies (e.g., Gelman & Gallistel , 1978) indicate that significant understanding of those concepts should be...Beranek, & Newman, 1980. Gelman, R., & Gallistel , C. R. The child’s understanding of number. Cambridge, Mass.: Harvard University Press, 1978. 43 Greeno
Learning to Calculate and Learning Mathematics.
Fearnley-Sander, Desmond
1980-01-01
A calculator solution of a simple computational problem is discussed with emphasis on its ramifications for the understanding of some fundamental theorems of pure mathematics and techniques of computing. (Author/MK)
Learning mathematics outside the classroom
DEFF Research Database (Denmark)
Mogensen, Arne
visits by researchers. The aim is to examine teaching forms and contents in outdoor teaching integrating mathematics, and this setting’s influence on pupils experienced learning, motivation, well-being and physical activity. Teachers’ management of outdoor education is also part of the study. Data were...
Research Trends in the Use of Mobile Learning in Mathematics
Crompton, Helen; Burke, Diane
2015-01-01
The use of mobile learning in education is growing at an exponential rate. To best understand how mobile learning is being used, it is crucial to gain a collective understanding of the research that has taken place. This research was a systematic review of 36 studies in mobile learning in mathematics from the year 2000 onward. Eight new findings…
Mobile phone application for mathematics learning
Supandi; Ariyanto, L.; Kusumaningsih, W.; Aini, A. N.
2018-03-01
This research was aimed to determine the role of the use of Mobile Phone Application (MPA) in Mathematics learning. The Pre and Post-test Quasy Experiment method was applied. The Pre-test was performed to understand the initial capability. In contrast, the Post-test was selected to identify changes in student ability after they were introduced to the application of Mobile Technology. Student responses to the use of this application were evaluated by a questionnaire. Based on the questionnaire, high scores were achieved, indicating the student's interest in this application. Also, learning results showed significant improvement in the learning achievement and the student learning behaviour. It was concluded that education supported by the MPA application gave a positive impact on learning outcomes as well as learning atmosphere both in class and outside the classroom.
Affordances of Spreadsheets In Mathematical Investigation: Potentialities For Learning
Directory of Open Access Journals (Sweden)
Nigel Calder
2009-10-01
Full Text Available This article, is concerned with the ways learning is shaped when mathematics problems are investigated in spreadsheet environments. It considers how the opportunities and constraints the digital media affords influenced the decisions the students made, and the direction of their enquiry pathway. How might the learning trajectory unfold, and the learning process and mathematical understanding emerge? Will the spreadsheet, as the pedagogical medium, evoke learning in a distinctive manner? The article reports on an aspect of an ongoing study involving students as they engage mathematical investigative tasks through digital media, the spreadsheet in particular. It considers the affordances of this learning environment for primary-aged students.
Learning Mathematics with Creative Drama
Directory of Open Access Journals (Sweden)
Baki Şahin
2018-04-01
Full Text Available In this study, a mathematics activity that used creative drama method to teach the fifth grade standard “Expresses a position with respect to another point using direction and unit” under geometry and measurement was implemented. Twenty students attending the fifth grade of a public school participated in the study. The lesson plan involved four activities in warm-up, role-play, and evaluation stages. Activities include processes that will ensure active participation of students. The activity lasted two lesson hours. Two prospective mathematics teachers and a mathematics teacher were available in the class during the activity to observe student participation and reactions. Additionally, 10 students were interviewed to learn their views about the lesson. Comments of the observers and the responses of the students to the interview questions indicate that the lesson was successful.
Mathematical Models of Elementary Mathematics Learning and Performance. Final Report.
Suppes, Patrick
This project was concerned with the development of mathematical models of elementary mathematics learning and performance. Probabilistic finite automata and register machines with a finite number of registers were developed as models and extensively tested with data arising from the elementary-mathematics strand curriculum developed by the…
Integrating Dynamic Mathematics Software into Cooperative Learning Environments in Mathematics
Zengin, Yilmaz; Tatar, Enver
2017-01-01
The aim of this study was to evaluate the implementation of the cooperative learning model supported with dynamic mathematics software (DMS), that is a reflection of constructivist learning theory in the classroom environment, in the teaching of mathematics. For this purpose, a workshop was conducted with the volunteer teachers on the…
Extreme Apprenticeship – Emphasising conceptual understanding in undergraduate mathematics
Rämö , Johanna; Oinonen , Lotta; Vikberg , Thomas
2015-01-01
International audience; Extreme Apprenticeship (XA) is an educational method that has been used in teaching undergraduate mathematics in the University of Helsinki. In this paper, we analyse the course assignments and exam questions of a certain lecture course that has recently been reformed to an XA-based course. The results show that the XA method has made it possible to move the emphasis from rote learning towards understanding the concepts behind the procedures.
The Effects of Self-Paced Blended Learning of Mathematics
Balentyne, Phoebe; Varga, Mary Alice
2016-01-01
As online and blended learning gain more popularity in education, it becomes more important to understand their effects on student learning. The purpose of this study was to explore the effects of self-paced blended learning of mathematics on the attitudes and achievement of 26 high ability middle school students, and investigate the relationship…
Collaborative and Cooperative Learning in Malaysian Mathematics Education
Hossain, Md. Anowar; Tarmizi, Rohani Ahmad; Ayud, Ahmad Fauzi Mohd
2012-01-01
Collaborative and cooperative learning studies are well recognized in Malaysian mathematics education research. Cooperative learning is used to serve various ability students taking into consideration of their level of understanding, learning styles, sociological backgrounds that develop students' academic achievement and skills, and breeze the…
How Chinese learn mathematics perspectives from insiders
Ngai-Ying, Wong; Lianghuo, Fan; Shiqi, Li
2004-01-01
The book has been written by an international group of very active researchers and scholars who have a passion for the study of Chinese mathematics education. It aims to provide readers with a comprehensive and updated picture of the teaching and learning of mathematics involving Chinese students from various perspectives, including the ways in which Chinese students learn mathematics in classrooms, schools and homes, the influence of the cultural and social environment on Chinese students' mathematics learning, and the strengths and weaknesses of the ways in which Chinese learn mathematics. Furthermore, based on the relevant research findings, the book explores the implications for mathematics education and offers sound suggestions for reform and improvement. This book is a must for anyone who is interested in the teaching and learning of mathematics concerning Chinese learners.
Processes of Learning with Regard to Students’ Learning Difficulties in Mathematics
Directory of Open Access Journals (Sweden)
Amalija Zakelj
2014-06-01
Full Text Available In the introduction, we write about the process of learning mathematics: the development of mathematical concepts, numerical and spatial imagery on reading and understanding of texts, etc. The central part of the paper is devoted to the study, in which we find that identifying the learning processes associated with learning difficulties of students in mathematics, is not statistically significantly different between primary school teachers and teachers of mathematics. Both groups expose the development of numerical concepts, logical reasoning, and reading and understanding the text as the ones with which difficulties in learning mathematics appear the most frequently. All the processes of learning that the teachers assessed as the ones that represent the greatest barriers to learning have a fairly uniform average estimates of the degree of complexity, ranging from 2.6 to 2.8, which is very close to the estimate makes learning very difficult.
E-learning materials in mathematics education
Fajfar, Tina
2012-01-01
When studying mathematics, most pupils and students need mathematical tools, along with the teachers' explanation. The updated curriculum for mathematics in primary and secondary education also recommends using materials connected to information and communication technology. Although e-learning materials are not directly mentioned in a curricula as a tool for learning mathematics, they should, nevertheless, be considered as a tool which can be used in a class with the help of a teacher or ind...
Mobile learning to improve mathematics teachers mathematical competencies
Hendrayana, A.; Wahyudin
2018-01-01
The role of teachers is crucial to the success of mathematics learning. One of the learning indicator is characterized by the students’ improved mathematical proficiency. In order to increase that, it is necessary to improve the teacher’s mathematical skills first. For that, it needs an innovative way to get teachers close to easily accessible learning resources through technology. The technology can facilitate teachers to access learning resources anytime and anywhere. The appropriate information technology is mobile learning. Innovations that can make teachers easy to access learning resources are mobile applications that can be accessed anytime and anywhere either online or offline. The research method was research development method. In preliminary analysis, subjects consist of teachers and lecturers in professional teacher education program. The results that the teachers ready to adopt mobile-learning for the improvement of their skills.
Learning the Work of Ambitious Mathematics Teaching
Anthony, Glenda; Hunter, Roberta
2013-01-01
"Learning the Work of Ambitious Mathematics" project was developed to support prospective teachers learn the work of ambitious mathematics teaching. Building on the work of U.S. researchers in the "Learning in, from, and for Teaching Practice" project, we investigate new ways to make practice studyable within the university…
Mathematics in Student-Centred Inquiry Learning: Student Engagement
Calder, Nigel
2013-01-01
This paper examines how mathematical understandings might be facilitated through student-centred inquiry. Data is drawn from a research project on student-centred inquiry learning that situated mathematics within authentic problem-solving contexts and involved students in a collaboratively constructed curriculum. A contemporary interpretive frame…
The Impediments Encountered While Learning Mathematics by Eight Grade Students
Erbay, Hatice Nur; Yavuz, Gunes
2016-01-01
Mathematics is seen by many people as the best way to get a good life and a good career. It is also thought as an assistant to understand life and the world and to produce ideas about them. Therefore, new reform studies are being held to construct a new system that assists students to learn mathematics in a comprehensive way (Dursun & Dede,…
Jao, Limin
2012-01-01
The National Council of Teachers of Mathematics (NCTM, 2000) has created a set of standards to reform mathematics teaching procedures to ensure that all students understand mathematics and learn to think mathematically. The standards also require teachers to use strategies that allow all students to reason and communicate mathematically and…
Inquiry based learning: a student centered learning to develop mathematical habits of mind
Handayani, A. D.; Herman, T.; Fatimah, S.; Setyowidodo, I.; Katminingsih, Y.
2018-05-01
Inquiry based learning is learning that based on understanding constructivist mathematics learning. Learning based on constructivism is the Student centered learning. In constructivism, students are trained and guided to be able to construct their own knowledge on the basis of the initial knowledge that they have before. This paper explained that inquiry based learning can be used to developing student’s Mathematical habits of mind. There are sixteen criteria Mathematical Habits of mind, among which are diligent, able to manage time well, have metacognition ability, meticulous, etc. This research method is qualitative descriptive. The result of this research is that the instruments that have been developed to measure mathematical habits of mind are validated by the expert. The conclusion is the instrument of mathematical habits of mind are valid and it can be used to measure student’s mathematical habits of mind.
Learning via problem solving in mathematics education
Directory of Open Access Journals (Sweden)
Piet Human
2009-09-01
problem-solving movement, over the last twenty years, mathematics educators around the world started increasingly to appreciate the role of social interaction and mathematical discourse in classrooms, and to take into consideration the inﬂ uence of the social, socio-mathematical and mathematical norms established in classrooms. This shift away from an emphasis on individualised instruction towards classroom practices characterised by rich and focused social interaction orchestrated by the teacher, became the second element, next to problem-solving, of what is now known as the “reform agenda”. Learning and teaching by means of problem-solving in a socially-interactive classroom, with a strong demand for conceptual understanding, is radically different from traditional expository teaching. However, contrary to commonly-held misunderstandings, it requires substantial teacher involvement. It also requires teachers to assume a much higher level of responsibility for the extent and quality of learning than that which teachers tended to assume traditionally. Over the last 10 years, teaching for and via problem solving has become entrenched in the national mathematics curriculum statements of many countries, and programs have been launched to induce and support teachers to implement it. Actual implementation of the “reform agenda” in classrooms is, however, still limited. The limited implementation is ascribed to a number of factors, including the failure of assessment practices to accommodate problem solving and higher levels of understanding that may be facilitated by teaching via problem solving, lack of clarity about what teaching for and via problem solving may actually mean in practice, and limited mathematical expertise of teachers. Some leading mathematics educators (for example, Schoenfeld, Stigler and Hiebert believe that the reform agenda speciﬁ es classroom practices that are fundamentally foreign to culturally embedded pedagogical traditions, and hence
Connecting mathematics learning through spatial reasoning
Mulligan, Joanne; Woolcott, Geoffrey; Mitchelmore, Michael; Davis, Brent
2018-03-01
Spatial reasoning, an emerging transdisciplinary area of interest to mathematics education research, is proving integral to all human learning. It is particularly critical to science, technology, engineering and mathematics (STEM) fields. This project will create an innovative knowledge framework based on spatial reasoning that identifies new pathways for mathematics learning, pedagogy and curriculum. Novel analytical tools will map the unknown complex systems linking spatial and mathematical concepts. It will involve the design, implementation and evaluation of a Spatial Reasoning Mathematics Program (SRMP) in Grades 3 to 5. Benefits will be seen through development of critical spatial skills for students, increased teacher capability and informed policy and curriculum across STEM education.
Modelling and Optimizing Mathematics Learning in Children
Käser, Tanja; Busetto, Alberto Giovanni; Solenthaler, Barbara; Baschera, Gian-Marco; Kohn, Juliane; Kucian, Karin; von Aster, Michael; Gross, Markus
2013-01-01
This study introduces a student model and control algorithm, optimizing mathematics learning in children. The adaptive system is integrated into a computer-based training system for enhancing numerical cognition aimed at children with developmental dyscalculia or difficulties in learning mathematics. The student model consists of a dynamic…
The Psychological Basis of Learning Mathematics.
Ruberu, J.
1982-01-01
Mathematics is a hierarchial build-up of concepts and the process of this systematic building up of concepts is of prime importance in the study of mathematics. Although discovery approaches are currently used, there are limitations. Ausubel's "meaningful learning" approach is suggested as an alternative to discovery learning in…
Mathematics learning on geometry for children with autism
Widayati, F. E.; Usodo, B.; Pamudya, I.
2017-12-01
The purpose of this research is to describe: (1) the mathematics learning process in an inclusion class and (2) the obstacle during the process of mathematics learning in the inclusion class. This research is a descriptive qualitative research. The subjects were a mathematics teacher, children with autism, and a teacher assistant. Method of collecting data was observation and interview. Data validation technique is triangulation technique. The results of this research are : (1) There is a modification of lesson plan for children with autism. This modification such as the indicator of success, material, time, and assessment. Lesson plan for children with autism is arranged by mathematics teacher and teacher assistant. There is no special media for children with autism used by mathematics teacher. (2) The obstacle of children with autism is that they are difficult to understand mathematics concept. Besides, children with autism are easy to lose their focus.
Fractions Learning in Children With Mathematics Difficulties.
Tian, Jing; Siegler, Robert S
Learning fractions is difficult for children in general and especially difficult for children with mathematics difficulties (MD). Recent research on developmental and individual differences in fraction knowledge of children with MD and typically achieving (TA) children has demonstrated that U.S. children with MD start middle school behind their TA peers in fraction understanding and fall further behind during middle school. In contrast, Chinese children, who like the MD children in the United States score in the bottom one third of the distribution in their country, possess reasonably good fraction understanding. We interpret these findings within the framework of the integrated theory of numerical development. By emphasizing the importance of fraction magnitude knowledge for numerical understanding in general, the theory proved useful for understanding differences in fraction knowledge between MD and TA children and for understanding how knowledge can be improved. Several interventions demonstrated the possibility of improving fraction magnitude knowledge and producing benefits that generalize to fraction arithmetic learning among children with MD. The reasonably good fraction understanding of Chinese children with MD and several successful interventions with U.S. students provide hope for the improvement of fraction knowledge among American children with MD.
Problem Posing with Realistic Mathematics Education Approach in Geometry Learning
Mahendra, R.; Slamet, I.; Budiyono
2017-09-01
One of the difficulties of students in the learning of geometry is on the subject of plane that requires students to understand the abstract matter. The aim of this research is to determine the effect of Problem Posing learning model with Realistic Mathematics Education Approach in geometry learning. This quasi experimental research was conducted in one of the junior high schools in Karanganyar, Indonesia. The sample was taken using stratified cluster random sampling technique. The results of this research indicate that the model of Problem Posing learning with Realistic Mathematics Education Approach can improve students’ conceptual understanding significantly in geometry learning especially on plane topics. It is because students on the application of Problem Posing with Realistic Mathematics Education Approach are become to be active in constructing their knowledge, proposing, and problem solving in realistic, so it easier for students to understand concepts and solve the problems. Therefore, the model of Problem Posing learning with Realistic Mathematics Education Approach is appropriately applied in mathematics learning especially on geometry material. Furthermore, the impact can improve student achievement.
Understanding the Chinese Approach to Creative Teaching in Mathematics Classrooms
Niu, Weihua; Zhou, Zheng; Zhou, Xinlin
2017-01-01
Using Amabile's componential theory of creativity as a framework, this paper analyzes how Chinese mathematics teachers achieve creative teaching through acquiring in-depth domain-specific knowledge in mathematics, developing creativity-related skills, as well as stimulating student interest in learning mathematics, through well-crafted,…
Contextual Perspectives of School Mathematics: What Determines Mathematical Understanding?
White, Loren; Frid, Sandra
Results of a study into secondary school students' and teachers' conceptions of what mathematics is and the purposes of school mathematics are outlined. A total of about 220 first year engineering students and 600 high school students in Australia were involved in the surveys while 40 students, 19 teachers, 2 career counselors, and 2…
Making the Learning of Mathematics More Meaningful
Ward, Robin A.
1998-01-01
In the early 1980's, the National Commission on Excellence in Education responded to the call for reform in the teaching and learning of mathematics. In particular, the Commission developed a document addressing the consensus that all students need to learn more, and often different, mathematics and that instruction in mathematics must be significantly revised. In a response to these calls for mathematics education reform, the National Council of Teachers of Mathematics (NCTM) developed its Curriculum and Evaluation Standards (1989) with a two-fold purpose: 1) to create a coherent vision of what it means to be mathematically literate in a world that relies on calculators and computers, and 2) to create a set of standards to guide the revisions of school mathematics curriculum.
Understanding Learning Cultures
Hodkinson, Phil; Biesta, Gert; James, David
2007-01-01
This paper sets out an explanation about the nature of learning cultures and how they work. In so doing, it directly addresses some key weaknesses in current situated learning theoretical writing, by working to overcome unhelpful dualisms, such as the individual and the social, and structure and agency. It does this through extensive use of some…
Milaturrahmah, Naila; Mardiyana, Pramudya, Ikrar
2017-08-01
This 21st century demands competent human resources in science, technology, engineering design and mathematics so that education is expected to integrate the four disciplines. This paper aims to describe the importance of STEM as mathematics learning approach in Indonesia in the 21st century. This paper uses a descriptive analysis research method, and the method reveals that STEM education growing in developed countries today can be a framework for innovation mathematics in Indonesia in the 21st century. STEM education integrate understanding of science, math skills, and the available technology with the ability to perform engineering design process. Implementation of mathematics learning with STEM approach makes graduates trained in using of mathematics knowledge that they have to create innovative products that are able to solve the problems that exist in society.
Veloo, Arsaythamby; Md-Ali, Ruzlan; Chairany, Sitie
2016-01-01
Purpose: This paper was part of a larger study which looked into the effect of implementing Cooperative Teams-Games-Tournament (TGT) on understanding of and communication in mathematics. The study had identified the main and interaction effect of using Cooperative TGT for learning mathematics in religious secondary school classrooms. A…
Building mathematics cellular phone learning communities
Directory of Open Access Journals (Sweden)
Wajeeh M. Daher
2011-04-01
Full Text Available Researchers emphasize the importance of maintaining learning communities and environments. This article describes the building and nourishment of a learning community, one comprised of middle school students who learned mathematics out-of-class using the cellular phone. The building of the learning community was led by three third year pre-service teachers majoring in mathematics and computers. The pre-service teachers selected thirty 8th grade students to learn mathematics with the cellular phone and be part of a learning community experimenting with this learning. To analyze the building and development stages of the cellular phone learning community, two models of community building stages were used; first the team development model developed by Tuckman (1965, second the life cycle model of a virtual learning community developed by Garber (2004. The research findings indicate that a learning community which is centered on a new technology has five 'life' phases of development: Pre-birth, birth, formation, performing, and maturity. Further, the research finding indicate that the norms that were encouraged by the preservice teachers who initiated the cellular phone learning community resulted in a community which developed, nourished and matured to be similar to a community of experienced applied mathematicians who use mathematical formulae to study everyday phenomena.
Rezeki, S.; Setyawan, A. A.; Amelia, S.
2018-01-01
Mathematical understanding ability is a primary goal of Indonesian national education goals. However, various sources has shown that Indonesian students’ mathematical understanding ability is still relatively low. This study used quasi-experimental research design to examine the effectiveness of the application of Missouri Mathematics Project (MMP) on students’ mathematical understanding ability. The participants of the study were seventh grade students in Pekanbaru, Riau Province, Indonesia. They were selected purposively and represented as high, medium, and low-quality schools. The result of this study indicated that there was a significant effect of MMP on the overall students’ mathematical understanding ability and in all categories, except for low school level.
Keystone Method: A Learning Paradigm in Mathematics
Siadat, M. Vali; Musial, Paul M.; Sagher, Yoram
2008-01-01
This study reports the effects of an integrated instructional program (the Keystone Method) on the students' performance in mathematics and reading, and tracks students' persistence and retention. The subject of the study was a large group of students in remedial mathematics classes at the college, willing to learn but lacking basic educational…
Productive Ambiguity in the Learning of Mathematics
Foster, Colin
2011-01-01
In this paper I take a positive view of ambiguity in the learning of mathematics. Following Grosholz (2007), I argue that it is not only the arts which exploit ambiguity for creative ends but science and mathematics too. By enabling the juxtaposition of multiple conflicting frames of reference, ambiguity allows novel connections to be made. I…
Connecting Mathematics Learning through Spatial Reasoning
Mulligan, Joanne; Woolcott, Geoffrey; Mitchelmore, Michael; Davis, Brent
2018-01-01
Spatial reasoning, an emerging transdisciplinary area of interest to mathematics education research, is proving integral to all human learning. It is particularly critical to science, technology, engineering and mathematics (STEM) fields. This project will create an innovative knowledge framework based on spatial reasoning that identifies new…
Inquiry-based Learning in Mathematics Education
DEFF Research Database (Denmark)
Dreyøe, Jonas; Larsen, Dorte Moeskær; Hjelmborg, Mette Dreier
From a grading list of 28 of the highest ranked mathematics education journals, the six highest ranked journals were chosen, and a systematic search for inquiry-based mathematics education and related keywords was conducted. This led to five important theme/issues for inquiry-based learning...
Mahendra, Rengga; Slamet, Isnandar; Budiyono
2017-12-01
One of the difficulties of students in learning mathematics is on the subject of geometry that requires students to understand abstract things. The aim of this research is to determine the effect of learning model Problem Posing and Problem Solving with Realistic Mathematics Education Approach to conceptual understanding and students' adaptive reasoning in learning mathematics. This research uses a kind of quasi experimental research. The population of this research is all seventh grade students of Junior High School 1 Jaten, Indonesia. The sample was taken using stratified cluster random sampling technique. The test of the research hypothesis was analyzed by using t-test. The results of this study indicate that the model of Problem Posing learning with Realistic Mathematics Education Approach can improve students' conceptual understanding significantly in mathematics learning. In addition tu, the results also showed that the model of Problem Solving learning with Realistic Mathematics Education Approach can improve students' adaptive reasoning significantly in learning mathematics. Therefore, the model of Problem Posing and Problem Solving learning with Realistic Mathematics Education Approach is appropriately applied in mathematics learning especially on the subject of geometry so as to improve conceptual understanding and students' adaptive reasoning. Furthermore, the impact can improve student achievement.
The philosophical aspect of learning inverse problems of mathematical physics
Directory of Open Access Journals (Sweden)
Виктор Семенович Корнилов
2018-12-01
Full Text Available The article describes specific questions student learning inverse problems of mathematical physics. When teaching inverse problems of mathematical physics to the understanding of the students brought the information that the inverse problems of mathematical physics with a philosophical point of view are the problems of determining the unknown causes of known consequences, and the search for their solutions have great scientific and educational potential. The reasons are specified in the form of unknown coefficients, right side, initial conditions of the mathematical model of inverse problems, and as a consequence are functionals of the solution of this mathematical model. In the process of learning the inverse problems of mathematical physics focuses on the philosophical aspects of the phenomenon of information and identify cause-effect relations. It is emphasized that in the process of logical analysis applied and humanitarian character, students realize that information is always related to the fundamental philosophical questions that the analysis applied and the humanitarian aspects of the obtained results the inverse problem of mathematical physics allows students to make appropriate inferences about the studied process and to, ultimately, new information, to study its properties and understand its value. Philosophical understanding of the notion of information opens up to students a new methodological opportunities to comprehend the world and helps us to reinterpret existing science and philosophy of the theory related to the disclosure of the interrelationship of all phenomena of reality.
Battista, Michael T.
1986-01-01
Examined how preservice elementary teachers' (N=38) mathematical knowledge and mathematics anxiety affect their success in a mathematics methods course. Also examined the hypothesis that a mathematics methods course can reduce the mathematics anxiety of these teachers. One finding is that mathematics anxiety does not inhibit their learning of…
School mathematical discourse in a learning landscape
DEFF Research Database (Denmark)
Valero, Paola; Meaney, Tamsin; Alrø, Helle
By bringing our research work together, we are able to discuss the potential of combining the notions of the learning landscape and school mathematical discourse. We do so in a search for concepts and methodological tools to challenge the simplification of issues in regard to mathematics learning...... in multicultural settings, when adopting restricted perspectives on issues of bilingualism. In the paper we discuss the relationship between the learning landscape and school mathematical discourse. We then use these notions to analyse two case studies in Danish and New Zealand schools. Our conclusion raises...... possibilities about how these notions can be used when researching mathematics education in multicultural settings....
Playing with Mathematics: Play in Early Childhood as a Context for Mathematical Learning
Mathematics Education Research Group of Australasia, 2010
2010-01-01
Play is an essential part of young children's lives. This symposium highlights the integral role of play in young children's mathematics learning and examines the teacher's role in facilitating and extending this. Papers examine key tenets of play, contributing to theoretical understandings and presenting data on teacher's perceptions of play and…
Teachers' Understanding of Learning Goals
DEFF Research Database (Denmark)
Krog Skott, Charlotte; Slot, Marie Falkesgaard; Carlsen, Dorthe
will be presented. We expect to deepen our understanding of the relations between the various parameters in the teachers' practice in relation to learning goals and goal-oriented teaching. There is conducted research on the effects of goal-oriented teaching on students' learning both internationally...
Characterizing Preservice Teachers' Mathematical Understanding of Algebraic Relationships
Nillas, Leah A.
2010-01-01
Qualitative research methods were employed to investigate characterization of preservice teachers' mathematical understanding. Responses on test items involving algebraic relationships were analyzed using with-in case analysis (Miles and Huberman, 1994) and Pirie and Kieren's (1994) model of growth of mathematical understanding. Five elementary…
Misu, La; Ketut Budayasa, I.; Lukito, Agung
2018-03-01
This study describes the metacognition profile of mathematics and mathematics education students in understanding the concept of integral calculus. The metacognition profile is a natural and intact description of a person’s cognition that involves his own thinking in terms of using his knowledge, planning and monitoring his thinking process, and evaluating his thinking results when understanding a concept. The purpose of this study was to produce the metacognition profile of mathematics and mathematics education students in understanding the concept of integral calculus. This research method is explorative method with the qualitative approach. The subjects of this study are mathematics and mathematics education students who have studied integral calculus. The results of this study are as follows: (1) the summarizing category, the mathematics and mathematics education students can use metacognition knowledge and metacognition skills in understanding the concept of indefinite integrals. While the definite integrals, only mathematics education students use metacognition skills; and (2) the explaining category, mathematics students can use knowledge and metacognition skills in understanding the concept of indefinite integrals, while the definite integrals only use metacognition skills. In addition, mathematics education students can use knowledge and metacognition skills in understanding the concept of both indefinite and definite integrals.
Creativity and Mathematics: Using Learning Journals
Coles, Alf; Banfield, Gemma
2012-01-01
Does the term "learning journal" readily conjure up an image of something that is part of the normal mathematics classroom? Personally, do you ever use a journal of some form to help you organise your thoughts? Or, put quite simply--what is a learning journal? It might be that you are unfamiliar with the label, but journals are one type of…
Perception of mathematics teachers on cooperative learning method in the 21st century
Taufik, Nurshahira Alwani Mohd; Maat, Siti Mistima
2017-05-01
Mathematics education is one of the branches to be mastered by students to help them compete with the upcoming challenges that are very challenging. As such, all parties should work together to help increase student achievement in Mathematics education in line with the Malaysian Education Blueprint (MEB) 2010-2025. Teaching methods play a very important role in attracting and fostering student understanding and interested in learning Mathematics. Therefore, this study was conducted to identify the perceptions of teachers in carrying out cooperative methods in the teaching and learning of mathematics. Participants of this study involving 4 teachers who teach Mathematics in primary schools around the state of Negeri Sembilan. Interviews are used as a method for gathering data. The findings indicate that cooperative methods help increasing interest and understanding in the teaching and learning of mathematics. In conclusion, the teaching methods affect the interest and understanding of students in the learning of Mathematics in the classroom.
Nugraheni, Z.; Budiyono, B.; Slamet, I.
2018-03-01
To reach higher order thinking skill, needed to be mastered the conceptual understanding and strategic competence as they are two basic parts of high order thinking skill (HOTS). RMT is a unique realization of the cognitive conceptual construction approach based on Feurstein with his theory of Mediated Learning Experience (MLE) and Vygotsky’s sociocultural theory. This was quasi-experimental research which compared the experimental class that was given Rigorous Mathematical Thinking (RMT) as learning method and the control class that was given Direct Learning (DL) as the conventional learning activity. This study examined whether there was different effect of two learning model toward conceptual understanding and strategic competence of Junior High School Students. The data was analyzed by using Multivariate Analysis of Variance (MANOVA) and obtained a significant difference between experimental and control class when considered jointly on the mathematics conceptual understanding and strategic competence (shown by Wilk’s Λ = 0.84). Further, by independent t-test is known that there was significant difference between two classes both on mathematical conceptual understanding and strategic competence. By this result is known that Rigorous Mathematical Thinking (RMT) had positive impact toward Mathematics conceptual understanding and strategic competence.
Selection of Learning Media Mathematics for Junior School Students
Widodo, Sri Adi; Wahyudin
2018-01-01
One of the factors that determine the success of mathematics learning is the learning media used. Learning media can help students to create mathematical abstract mathematics that is abstract. In addition to media, meaningful learning is a learning that is adapted to the students' cognitive development. According to Piaget, junior high school…
Children's mathematics 4-15 learning from errors and misconceptions
Ryan, Julie
2007-01-01
Develops concepts for teachers to use in organizing their understanding and knowledge of children's mathematics. This book offers guidance for classroom teaching and concludes with theoretical accounts of learning and teaching. It transforms research on diagnostic errors into knowledge for teaching, teacher education and research on teaching.
2012-01-01
D.Ed. The aim of this theses is to find out whether there is any relationship between learners' attitudes and learning difficulties in mathematics: To investigate whether learning difficulties in mathematics are associated with learners' gender. To establish the nature of teachers' perceptions of the learning problem areas in the mathematics curriculum. To find out about the teachers' views on the methods of teaching mathematics, resources, learning of mathematics, extra curricular activit...
Directory of Open Access Journals (Sweden)
Nancy Chitera
2016-11-01
Full Text Available In this article, we present a discussion about the type of mathematical discourse that is being produced in classrooms where the language of learning and teaching is local languages. We also further explore the tensions in the mathematical discourse being produced. The study sample was 4 mathematics teachers from a semi-urban primary school in Malawi. The methods of data collection included classroom observations, pre-observation focus group discussions and reflective interviews. The results show that even though both students and teachers were able to communicate freely in local languages in the mathematics classroom, the mathematical discourse that came was distorted. This is mainly caused by lack of a well-developed mathematical discourse in local languages, which in turn takes away the confidence of mathematics teachers in the classroom. As a result, the mathematics classrooms are still being characterized by teachers not being creative, use of word by word from books, focus more on procedural than conceptual and thus teacher centered is still dominant in these classrooms. Furthermore, it is found that there are tensions between the formal and informal mathematical language in local languages. These results in turn have promoted a more in-depth understanding to the teaching and learning of mathematics when local language is the language of learning and teaching. Therefore, this article argues for a well-balanced approach when it comes to teaching and learning of mathematics rather than just focusing on the use of local languages.
Learning to understand others' actions.
Press, Clare; Heyes, Cecilia; Kilner, James M
2011-06-23
Despite nearly two decades of research on mirror neurons, there is still much debate about what they do. The most enduring hypothesis is that they enable 'action understanding'. However, recent critical reviews have failed to find compelling evidence in favour of this view. Instead, these authors argue that mirror neurons are produced by associative learning and therefore that they cannot contribute to action understanding. The present opinion piece suggests that this argument is flawed. We argue that mirror neurons may both develop through associative learning and contribute to inferences about the actions of others.
Developing Understanding of Mathematical Modeling in Secondary Teacher Preparation
Anhalt, Cynthia Oropesa; Cortez, Ricardo
2016-01-01
This study examines the evolution of 11 prospective teachers' understanding of mathematical modeling through the implementation of a modeling module within a curriculum course in a secondary teacher preparation program. While the prospective teachers had not previously taken a course on mathematical modeling, they will be expected to include…
Factors That Influence the Understanding of Good Mathematics Teaching
Leong, Kwan Eu
2013-01-01
This study explored the factors that influenced the understanding of good mathematics teaching. A mixed methodology was used investigate the beliefs of beginning secondary teachers on good mathematics teaching. The two research instruments used in this study were the survey questionnaire and an interview. Beginning teachers selected Immediate…
Mathematics and Science Learning Opportunities in Preschool Classrooms
Piasta, Shayne B.; Pelatti, Christina Yeager; Miller, Heather Lynnine
2014-01-01
Research findings The present study observed and coded instruction in 65 preschool classrooms to examine (a) overall amounts and (b) types of mathematics and science learning opportunities experienced by preschool children as well as (c) the extent to which these opportunities were associated with classroom and program characteristics. Results indicated that children were afforded an average of 24 and 26 minutes of mathematics and science learning opportunities, respectively, corresponding to spending approximately 25% of total instructional time in each domain. Considerable variability existed, however, in the amounts and types of mathematics and science opportunities provided to children in their classrooms; to some extent, this variability was associated with teachers’ years of experience, teachers’ levels of education, and the socioeconomic status of children served in the program. Practice/policy Although results suggest greater integration of mathematics and science in preschool classrooms than previously established, there was considerable diversity in the amounts and types of learning opportunities provided in preschool classrooms. Affording mathematics and science experiences to all preschool children, as outlined in professional and state standards, may require additional professional development aimed at increasing preschool teachers’ understanding and implementation of learning opportunities in these two domains in their classrooms. PMID:25489205
Shifting Roles and Responsibilities to Support Mathematical Understanding
Hansen, Pia; Mathern, Donna
2008-01-01
This article describes the journey that one elementary school took in examining the roles and responsibilities of the principal, teachers, students, and school environment in supporting mathematical understanding as described by the NCTM Standards. (Contains 2 tables and a bibliography.)
Literature Review of Applying Visual Method to Understand Mathematics
Directory of Open Access Journals (Sweden)
Yu Xiaojuan
2015-01-01
Full Text Available As a new method to understand mathematics, visualization offers a new way of understanding mathematical principles and phenomena via image thinking and geometric explanation. It aims to deepen the understanding of the nature of concepts or phenomena and enhance the cognitive ability of learners. This paper collates and summarizes the application of this visual method in the understanding of mathematics. It also makes a literature review of the existing research, especially with a visual demonstration of Euler’s formula, introduces the application of this method in solving relevant mathematical problems, and points out the differences and similarities between the visualization method and the numerical-graphic combination method, as well as matters needing attention for its application.
Understanding Immunology via Engineering Design: The Role of Mathematical Prototyping
Directory of Open Access Journals (Sweden)
David J. Klinke
2012-01-01
type 1 diabetes and the dynamics of dendritic cells in the lung. This paper is intended to illustrate some of the nuances associated with applying mathematical modeling to improve understanding of the dynamics of disease progression in humans.
Teacher's Ability to Develop Learning Materials Potentially Mathematical Discourse
Directory of Open Access Journals (Sweden)
Hamdani Hamdani
2017-10-01
Full Text Available In the process of learning in the field, the teacher still dominates the conversation while the students as a passive listener. As a result, not only the communication skills of students who are less developed, the understanding of student material is also lacking. Therefore it is necessary to research the ability of teachers in developing learning tools potentially mathematical discourse to improve students' mathematical communication skills. The research method used is descriptive. Research activities include: identification of problems through questionnaires, observation, and interviews; teacher training; teachers develop learning tools; validation; and enhancement of the device by the teacher. The subject of this research is the junior high school mathematics teacher from several districts in the border area of Sambas-Sarawak Regency. The results show that in every learning mathematics there is always a conversation between teachers and students, but rarely use the question "why" and "how". Most teacher-made lesson plans contain scenarios of conversations between teachers and students, but just plain questioning, have not led to a debate between each other so that understanding becomes deeper. Student worksheet made by the teacher in the form of a matter of the ordinary story, rarely load non-routine problem let alone open-ended.
Understanding Business Majors' Learning Styles
Giordano, James; Rochford, Regina A.
2005-01-01
Recently, business education programs have experienced a decline in enrollment and an increase in attrition. To understand these issues and recommend solutions, the learning styles of 503 first-year business majors at an urban community college were examined. The results demonstrated that: (a) 94% of the participants were analytic learners; (b)…
Deep learning for visual understanding
Guo, Y.
2017-01-01
With the dramatic growth of the image data on the web, there is an increasing demand of the algorithms capable of understanding the visual information automatically. Deep learning, served as one of the most significant breakthroughs, has brought revolutionary success in diverse visual applications,
Think Pair Share Using Realistic Mathematics Education Approach in Geometry Learning
Afthina, H.; Mardiyana; Pramudya, I.
2017-09-01
This research aims to determine the impact of mathematics learning applying Think Pair Share (TPS) using Realistic Mathematics Education (RME) viewed from mathematical-logical intelligence in geometry learning. Method that used in this research is quasi experimental research The result of this research shows that (1) mathematics achievement applying TPS using RME approach gives a better result than those applying direct learning model; (2) students with high mathematical-logical intelligence can reach a better mathematics achievement than those with average and low one, whereas students with average mathematical-logical intelligence can reach a better achievement than those with low one; (3) there is no interaction between learning model and the level of students’ mathematical-logical intelligence in giving a mathematics achievement. The impact of this research is that TPS model using RME approach can be applied in mathematics learning so that students can learn more actively and understand the material more, and mathematics learning become more meaningful. On the other hand, internal factors of students must become a consideration toward the success of students’ mathematical achievement particularly in geometry material.
Hipatia: a hypermedia learning environment in mathematics
Directory of Open Access Journals (Sweden)
Marisol Cueli
2016-01-01
Full Text Available Literature revealed the benefits of different instruments for the development of mathematical competence, problem solving, self-regulated learning, affective-motivational aspects and intervention in students with specific difficulties in mathematics. However, no one tool combined all these variables. The aim of this study is to present and describe the design and development of a hypermedia tool, Hipatia. Hypermedia environments are, by definición, adaptive learning systems, which are usually a web-based application program that provide a personalized learning environment. This paper describes the principles on which Hipatia is based as well as a review of available technologies developed in different academic subjects. Hipatia was created to boost self-regulated learning, develop specific math skills, and promote effective problem solving. It was targeted toward fifth and sixth grade students with and without learning difficulties in mathematics. After the development of the tool, we concluded that it aligned well with the logic underlying the principles of self-regulated learning. Future research is needed to test the efficacy of Hipatia with an empirical methodology.
A Study on the Role of Drama in Learning Mathematics
Directory of Open Access Journals (Sweden)
Elahe Masoum
2013-08-01
Full Text Available Present educational systems needs modern strategies for teaching and learning. Mathematics education has to change for students in elementary schools. One of the modern strategies, it is drama activities. The drama is as empirical aspect of learning. The student may learn from what they are doing in drama. They are so active instead having a passive shape in drama, in fact, students are learning, finding experiences and new paths from drama as well. The students could find its capabilities, recommendations and strength-weakness points through the different drama. This study is looking to investigate the role of drama so that have a better understanding of mathematical concepts in Zahedan's girly elementary students (2011-12. This research is used on 36 three grade students through quasi-experiment method. The emerging results clearly showed that using drama in mathematics education has been better results against the traditional teaching. Then it seems that cited method is suitable for elementary students to learn mathematical concepts.
Edmodo social learning network for elementary school mathematics learning
Ariani, Y.; Helsa, Y.; Ahmad, S.; Prahmana, RCI
2017-12-01
A developed instructional media can be as printed media, visual media, audio media, and multimedia. The development of instructional media can also take advantage of technological development by utilizing Edmodo social network. This research aims to develop a digital classroom learning model using Edmodo social learning network for elementary school mathematics learning which is practical, valid and effective in order to improve the quality of learning activities. The result of this research showed that the prototype of mathematics learning device for elementary school students using Edmodo was in good category. There were 72% of students passed the assessment as a result of Edmodo learning. Edmodo has become a promising way to engage students in a collaborative learning process.
Manipulatives Implementation For Supporting Learning Of Mathematics For Prospective Teachers
Sulistyaningsih, D.; Mawarsari, V. D.; Hidayah, I.; Dwijanto
2017-04-01
Manipulatives are needed by teachers to facilitate students understand of mathematics which is abstract. As a prospective mathematics teacher, the student must have good skills in making manipulatives. Aims of this study is to describe the implementation of learning courses of manipulative workshop in mathematics education courses by lecturer at Universitas Muhammadiyah Semarang which includes the preparation of learning, general professional ability, the professional capacity specifically, ability of self-development, development class managing, planning and implementation of learning, a way of delivering the material, and evaluation of learning outcomes. Data collection techniques used were questionnaires, interviews, and observation. The research instrument consisted of a questionnaire sheet, sheet observation and interview guides. Validity is determined using data triangulation and triangulation methods. Data were analyzed using an interactive model. The results showed that the average value of activities in preparation for learning, fosters capabilities of general professional, specialized professional, self-development, manage the classroom, implementing the learning, how to deliver the material, and how to evaluate learning outcomes are 79%, 73%, 67%, 75%, 83%, 72%, 64%, and 54%, respectively
Exploring Mathematics Achievement Goals Using Kolb’s Learning Style Model
Directory of Open Access Journals (Sweden)
Avelino G. Ignacio Jr.
2017-02-01
Full Text Available This research work is an exploration of causality connection of learning styles to mathematics achievement goals. The objectives of the study are as follows: (1 to identify the mathematics achievement goal of students when grouped according to preferred learning style (2 to identify the learning style of students when grouped according to preferred mathematics achievement goal and (3 to determine if there is a significant difference in each mathematics achievement goal when grouped according to learning style. The researcher used explanatory cross-sectional design. The Revised Achievement Goal Questionnaire and Kolb’s Learning Style Inventory 3.1 were utilized to collect data. Results show that respondents hold mastery-approach achievement goals regardless of learning styles. Also, students with approach type of mathematics achievement goals hold assimilative learning style which operates on reflective observation and abstract conceptualization; and students with avoidance type of mathematics achievement goals hold accommodative learning style which operates on active experimentation and concrete experimentation. Furthermore, findings show that there is no significant difference in the mathematics achievement goals based on learning style. Exploratory research is recommended to understand why students with approach type of mathematics achievement goals hold assimilative learning style and why students with avoidance type of mathematics achievement goals hold accommodative learning style.
Do mathematics learning facilitators implement metacognitive ...
African Journals Online (AJOL)
It is widely accepted that mathematical skills are critically important in our technologically sophisticated world. Educators' metacognition directs, plans, monitors, evaluates and reflects their instructional behaviour and this can promote learners ' learning with und ers tanding. The p urpos e of this study was to investigate the ...
Picture Books Stimulate the Learning of Mathematics
van den Heuvel-Panhuizen, Marja; van den Boogaard, Sylvia; Doig, Brian
2009-01-01
In this article we describe our experiences using picture books to provide young children (five- to six-year-olds) with a learning environment where they can explore and extend preliminary notions of mathematics-related concepts, without being taught these concepts explicitly. We gained these experiences in the PICO-ma project, which aimed to…
Fractions Learning in Children with Mathematics Difficulties
Tian, Jing; Siegler, Robert S.
2017-01-01
Learning fractions is difficult for children in general and especially difficult for children with mathematics difficulties (MD). Recent research on developmental and individual differences in fraction knowledge of children with MD and typically achieving (TA) children has demonstrated that U.S. children with MD start middle school behind their TA…
Active Learning Strategies for the Mathematics Classroom
Kerrigan, John
2018-01-01
Active learning involves students engaging with course content beyond lecture: through writing, applets, simulations, games, and more (Prince, 2004). As mathematics is often viewed as a subject area that is taught using more traditional methods (Goldsmith & Mark, 1999), there are actually many simple ways to make undergraduate mathematics…
Virtual Manipulatives: Tools for Teaching Mathematics to Students with Learning Disabilities
Shin, Mikyung; Bryant, Diane P.; Bryant, Brian R.; McKenna, John W.; Hou, Fangjuan; Ok, Min Wook
2017-01-01
Many students with learning disabilities demonstrate difficulty in developing a conceptual understanding of mathematical topics. Researchers recommend using visual models to support student learning of the concepts and skills necessary to complete abstract and symbolic mathematical problems. Virtual manipulatives (i.e., interactive visual models)…
Representations of Mathematics, their teaching and learning: an exploratory study
Directory of Open Access Journals (Sweden)
Maria Margarida Graça
2004-03-01
Full Text Available This work describes an exploratory study, the first of the four phases of a more inclusive research, which aims at understanding the way to promote, in a Mathematics teachers’ group, a representational evolution leading to a practice that allows a Mathematical meaningful learning of Mathematics. The methodology of this study is qualitative. Data gathering was based on questioning; all the subjects of the sample (n=48 carried out a projective task (a hierarchical evocation test and answered a written individual questionnaire. Data analysis was based in a set of categories previously defined. The main purpose of this research was to identify, to characterize and to describe the representations of Mathematics, their teaching and learning, in a group of 48 subjects, from different social groups, in order to get indicators for the construction of the instruments to be used in to the next phases of the research. The main results of this study are the following: (1 we were able to identify and characterize different representations of the teaching and learning of Mathematics, in what respects its epistemological, pedagogical, emotional and sociocultural dimensions; (2 we were also able to identify limitations, difficulties and items to be included or rephrased in the instruments used.
Active Learning to Improve Fifth Grade Mathematics Achievement in Banten
Directory of Open Access Journals (Sweden)
Andri Suherman
2011-12-01
Full Text Available Teaching for active learning is a pedagogical technique that has been actively promoted in Indonesian education through government reform efforts and international development assistance projects for decades. Recently, elementary schools in Banten province received training in active learning instructional strategies from the USAID-funded project, Decentralized Basic Education 2. Post-training evaluations conducted by lecturers from the University of Sultan Ageng Tirtayasa (UNTIRTA: Universitas Sultan Ageng Tirtayasa suggested that teachers were successfully employing active learning strategies in some subjects, but not mathematics. In order to understand the difficulties teachers were having in teaching for active learning in mathematics, and to assist them in using active learning strategies, a team of lecturers from UNTIRTA designed and carried out an action research project to train teachers in an elementary school in the city of Cilegon to use a technique called Magic Fingers in teaching Grade 5 multiplication. During the course of the project the research team discovered that teachers were having problems transferring knowledge gained from training in one context and subject to other school subjects and contexts. Key Words: Mathematics, Teaching for Active Learning, Indonesia, Banten
Understanding Cognitive Language Learning Strategies
Directory of Open Access Journals (Sweden)
Sergio Di Carlo
2017-01-01
Full Text Available Over time, definitions and taxonomies of language learning strategies have been critically examined. This article defines and classifies cognitive language learning strategies on a more grounded basis. Language learning is a macro-process for which the general hypotheses of information processing are valid. Cognitive strategies are represented by the pillars underlying the encoding, storage and retrieval of information. In order to understand the processes taking place on these three dimensions, a functional model was elaborated from multiple theoretical contributions and previous models: the Smart Processing Model. This model operates with linguistic inputs as well as with any other kind of information. It helps to illustrate the stages, relations, modules and processes that occur during the flow of information. This theoretical advance is a core element to classify cognitive strategies. Contributions from cognitive neuroscience have also been considered to establish the proposed classification which consists of five categories. Each of these categories has a different predominant function: classification, preparation, association, elaboration and transfer-practice. This better founded taxonomy opens the doors to potential studies that would allow a better understanding of the interdisciplinary complexity of language learning. Pedagogical and methodological implications are also discussed.
Learning to understand others' actions
Press, Clare; Heyes, Cecilia; Kilner, James M.
2010-01-01
Despite nearly two decades of research on mirror neurons, there is still much debate about what they do. The most enduring hypothesis is that they enable ‘action understanding’. However, recent critical reviews have failed to find compelling evidence in favour of this view. Instead, these authors argue that mirror neurons are produced by associative learning and therefore that they cannot contribute to action understanding. The present opinion piece suggests that this argument is flawed. We a...
An Investigation of Secondary Teachers’ Understanding and Belief on Mathematical Problem Solving
Yuli Eko Siswono, Tatag; Wachidul Kohar, Ahmad; Kurniasari, Ika; Puji Astuti, Yuliani
2016-02-01
Weaknesses on problem solving of Indonesian students as reported by recent international surveys give rise to questions on how Indonesian teachers bring out idea of problem solving in mathematics lesson. An explorative study was undertaken to investigate how secondary teachers who teach mathematics at junior high school level understand and show belief toward mathematical problem solving. Participants were teachers from four cities in East Java province comprising 45 state teachers and 25 private teachers. Data was obtained through questionnaires and written test. The results of this study point out that the teachers understand pedagogical problem solving knowledge well as indicated by high score of observed teachers‘ responses showing understanding on problem solving as instruction as well as implementation of problem solving in teaching practice. However, they less understand on problem solving content knowledge such as problem solving strategies and meaning of problem itself. Regarding teacher's difficulties, teachers admitted to most frequently fail in (1) determining a precise mathematical model or strategies when carrying out problem solving steps which is supported by data of test result that revealed transformation error as the most frequently observed errors in teachers’ work and (2) choosing suitable real situation when designing context-based problem solving task. Meanwhile, analysis of teacher's beliefs on problem solving shows that teachers tend to view both mathematics and how students should learn mathematics as body static perspective, while they tend to believe to apply idea of problem solving as dynamic approach when teaching mathematics.
Learning environment, learning styles and conceptual understanding
Ferrer, Lourdes M.
1990-01-01
In recent years there have been many studies on learners developing conceptions of natural phenomena. However, so far there have been few attempts to investigate how the characteristics of the learners and their environment influence such conceptions. This study began with an attempt to use an instrument developed by McCarthy (1981) to describe learners in Malaysian primary schools. This proved inappropriate as Asian primary classrooms do not provide the same kind of environment as US classrooms. It was decided to develop a learning style checklist to suit the local context and which could be used to describe differences between learners which teachers could appreciate and use. The checklist included four dimensions — perceptual, process, self-confidence and motivation. The validated instrument was used to determine the learning style preferences of primary four pupils in Penang, Malaysia. Later, an analysis was made regarding the influence of learning environment and learning styles on conceptual understanding in the topics of food, respiration and excretion. This study was replicated in the Philippines with the purpose of investigating the relationship between learning styles and achievement in science, where the topics of food, respiration and excretion have been taken up. A number of significant relationships were observed in these two studies.
Undergraduate Mathematics Students' Understanding of the Concept of Function
Bardini, Caroline; Pierce, Robyn; Vincent, Jill; King, Deborah
2014-01-01
Concern has been expressed that many commencing undergraduate mathematics students have mastered skills without conceptual understanding. A pilot study carried out at a leading Australian university indicates that a significant number of students, with high tertiary entrance ranks, have very limited understanding of the concept of function,…
Mathematical Games: Skill + Luck = Learning
Parsons, John
2008-01-01
Left to their own devices, many students are happy to work within their comfort zone of skill and understanding, a level where they are confident that they will achieve regular success. The job of the classroom teacher is to help students reach beyond this and to help them make this level their new comfort zone. Clearly, teachers need to employ a…
Directory of Open Access Journals (Sweden)
Yinghui Lai
Full Text Available Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA and mathematical metacognition on word problem solving (WPS. We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56 with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil's Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA, typical achieving (TA, low achieving (LA, and mathematical learning difficulty (MLD. Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA than the TA and HA children, but not in mathematical evaluation anxiety (MEA. MLD children's LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions.
Lai, Yinghui; Zhu, Xiaoshuang; Chen, Yinghe; Li, Yanjun
2015-01-01
Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA) and mathematical metacognition on word problem solving (WPS). We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56) with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil's Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA), typical achieving (TA), low achieving (LA), and mathematical learning difficulty (MLD). Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA) than the TA and HA children, but not in mathematical evaluation anxiety (MEA). MLD children's LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions.
Lai, Yinghui; Zhu, Xiaoshuang; Chen, Yinghe; Li, Yanjun
2015-01-01
Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA) and mathematical metacognition on word problem solving (WPS). We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56) with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil’s Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA), typical achieving (TA), low achieving (LA), and mathematical learning difficulty (MLD). Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA) than the TA and HA children, but not in mathematical evaluation anxiety (MEA). MLD children’s LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions. PMID:26090806
Mathematical Representation Ability by Using Project Based Learning on the Topic of Statistics
Widakdo, W. A.
2017-09-01
Seeing the importance of the role of mathematics in everyday life, mastery of the subject areas of mathematics is a must. Representation ability is one of the fundamental ability that used in mathematics to make connection between abstract idea with logical thinking to understanding mathematics. Researcher see the lack of mathematical representation and try to find alternative solution to dolve it by using project based learning. This research use literature study from some books and articles in journals to see the importance of mathematical representation abiliy in mathemtics learning and how project based learning able to increase this mathematical representation ability on the topic of Statistics. The indicators for mathematical representation ability in this research classifies namely visual representation (picture, diagram, graph, or table); symbolize representation (mathematical statement. Mathematical notation, numerical/algebra symbol) and verbal representation (written text). This article explain about why project based learning able to influence student’s mathematical representation by using some theories in cognitive psychology, also showing the example of project based learning that able to use in teaching statistics, one of mathematics topic that very useful to analyze data.
What is the problem in problem-based learning in higher education mathematics
Dahl, Bettina
2018-01-01
Problem and Project-Based Learning (PBL) emphasise collaborate work on problems relevant to society and emphases the relation between theory and practice. PBL fits engineering students as preparation for their future professions but what about mathematics? Mathematics is not just applied mathematics, but it is also a body of abstract knowledge where the application in society is not always obvious. Does mathematics, including pure mathematics, fit into a PBL curriculum? This paper argues that it does for two reasons: (1) PBL resembles the working methods of research mathematicians. (2) The concept of society includes the society of researchers to whom theoretical mathematics is relevant. The paper describes two cases of university PBL projects in mathematics; one in pure mathematics and the other in applied mathematics. The paper also discusses that future engineers need to understand the world of mathematics as well as how engineers fit into a process of fundamental-research-turned-into-applied-science.
Esa, Suraya; Mohamed, Nurul Akmal
2017-05-01
This study aims to identify the relationship between students' learning styles and mathematics anxiety amongst Form Four students in Kerian, Perak. The study involves 175 Form Four students as respondents. The instrument which is used to assess the students' learning styles and mathematic anxiety is adapted from the Grasha's Learning Styles Inventory and the Mathematics Anxiety Scale (MAS) respectively. The types of learning styles used are independent, avoidant, collaborative, dependent, competitive and participant. The collected data is processed by SPSS (Statistical Packages for Social Sciences 16.0). The data is analysed by using descriptive statistics and inferential statistics that include t-test and Pearson correlation. The results show that majority of the students adopt collaborative learning style and the students have moderate level of mathematics anxiety. Moreover, it is found that there is significant difference between learning style avoidant, collaborative, dependent and participant based on gender. Amongst all students' learning style, there exists a weak but significant correlation between avoidant, independent and participant learning style and mathematics anxiety. It is very important for the teachers need to be concerned about the effects of learning styles on mathematics anxiety. Therefore, the teachers should understand mathematics anxiety and implement suitable learning strategies in order for the students to overcome their mathematics anxiety.
DEVELOPING STUDENTS’ ABILITY OF MATHEMATICAL CONNECTION THROUGH USING OUTDOOR MATHEMATICS LEARNING
Directory of Open Access Journals (Sweden)
Saleh Haji
2017-01-01
Full Text Available The Purpose of this study is to determine the achievement and improvement of students’ mathematical connectionability through using outdoor mathematics learning. 64 students from the fifth grade of Primary School at SDN 65 and SDN 67 Bengkulu City were taken as the sample of this study. While the method of the research used in this research is experiment with quasi-experimental designs non-equivalent control group. The results of the study are as follows: (1 There is an increasing ability found in mathematical connection of students whom taught by using outdoors mathematics learning is 0,53; (2 Based on statical computation that achievement of students’ ability of mathematical connection is taught by using outdoor mathematics learning score is 71,25. It is higher than the students score 66,25 which were taught by using the conventional learning. So as to improve students’ mathematical connection, teachers are suggested to use the outdoors mathematics learning
Rabab'h, Belal; Veloo, Arsaythamby
2015-01-01
Jordanian 8th grade students revealed low achievement in mathematics through four periods (1999, 2003, 2007 & 2011) of Trends in International Mathematics and Science Study (TIMSS). This study aimed to determine whether spatial visualization mediates the affect of Mathematics Learning Strategies (MLS) factors namely mathematics attitude,…
Mathematics Self-Related Beliefs and Online Learning
Ichinose, Cherie; Bonsangue, Martin
2016-01-01
This study examined students' mathematical self-related beliefs in an online mathematics course. Mathematical self-related beliefs of a sample of high school students learning mathematics online were compared with student response data from the 2012 Programme for International Student Assessment (PISA). The treatment group reported higher levels…
Using Assessment for Learning Mathematics with Mobile Tablet Based Solutions
Directory of Open Access Journals (Sweden)
Ghislain Maurice Norbert Isabwe
2014-03-01
Full Text Available This article discusses assessment for learning in mathematics subjects. Teachers of large classes face the challenge of regularly assessing studentsཿ ongoing mathematical learning achievements. Taking the complexity of assessment and feedback for learning as a background, we have developed a new approach to the assessment for learning mathematics at university level. We devised mobile tablet technology supported assessment processes, and we carried out user studies in both Rwanda and Norway. Results of our study indicated that students found it fruitful to be involved in assessing other studentsཿ mathematics work, i.e. assessing fellow studentsཿ answers to mathematical tasks. By being involved in the assessment process, the students expected mathematical learning gains. Their providing and obtaining of feedback to/from their fellow students using technology supported tools were highly appreciated as regards their own mathematical learning process.
Examining mathematical discourse to understand in-service teachers’ mathematical activities
Directory of Open Access Journals (Sweden)
Margot Berger
2013-04-01
Full Text Available In this article I use Sfard’s theory of commognition to examine the surprising activities of a pair of in-service mathematics teachers in South Africa as they engaged in a particular mathematical task which allowed for, but did not prescribe, the use of GeoGebra. The (pre-calculus task required students to examine a function at an undefined point and to decide whether a vertical asymptote is associated with this point or not. Using the different characteristics of mathematical discourse, I argue that the words that students use really matter and show how a change in one participant’s use of the term ‘vertical asymptote’ constituted and reflected her learning. I also show how the other participant used imitation in a ritualised routine to get through the task. Furthermore I demonstrate how digital immigrants may resist the use of technology as the generator of legitimate mathematical objects.
Effects of Computer-Based Visual Representation on Mathematics Learning and Cognitive Load
Yung, Hsin I.; Paas, Fred
2015-01-01
Visual representation has been recognized as a powerful learning tool in many learning domains. Based on the assumption that visual representations can support deeper understanding, we examined the effects of visual representations on learning performance and cognitive load in the domain of mathematics. An experimental condition with visual…
Yes, but why? Teaching for understanding in mathematics
Southall, Edward
2017-01-01
Getting the right answers in maths is only half the problem. Understanding why what you’re doing works is the part that often stumps students and teachers alike. This book informs existing and trainee teachers how and why popular algorithms and mathematical properties work, and how they make sense.
Group investigation with scientific approach in mathematics learning
Indarti, D.; Mardiyana; Pramudya, I.
2018-03-01
The aim of this research is to find out the effect of learning model toward mathematics achievement. This research is quasi-experimental research. The population of research is all VII grade students of Karanganyar regency in the academic year of 2016/2017. The sample of this research was taken using stratified cluster random sampling technique. Data collection was done based on mathematics achievement test. The data analysis technique used one-way ANOVA following the normality test with liliefors method and homogeneity test with Bartlett method. The results of this research is the mathematics learning using Group Investigation learning model with scientific approach produces the better mathematics learning achievement than learning with conventional model on material of quadrilateral. Group Investigation learning model with scientific approach can be used by the teachers in mathematics learning, especially in the material of quadrilateral, which is can improve the mathematics achievement.
Modellus: Learning Physics with Mathematical Modelling
Teodoro, Vitor
Computers are now a major tool in research and development in almost all scientific and technological fields. Despite recent developments, this is far from true for learning environments in schools and most undergraduate studies. This thesis proposes a framework for designing curricula where computers, and computer modelling in particular, are a major tool for learning. The framework, based on research on learning science and mathematics and on computer user interface, assumes that: 1) learning is an active process of creating meaning from representations; 2) learning takes place in a community of practice where students learn both from their own effort and from external guidance; 3) learning is a process of becoming familiar with concepts, with links between concepts, and with representations; 4) direct manipulation user interfaces allow students to explore concrete-abstract objects such as those of physics and can be used by students with minimal computer knowledge. Physics is the science of constructing models and explanations about the physical world. And mathematical models are an important type of models that are difficult for many students. These difficulties can be rooted in the fact that most students do not have an environment where they can explore functions, differential equations and iterations as primary objects that model physical phenomena--as objects-to-think-with, reifying the formal objects of physics. The framework proposes that students should be introduced to modelling in a very early stage of learning physics and mathematics, two scientific areas that must be taught in very closely related way, as they were developed since Galileo and Newton until the beginning of our century, before the rise of overspecialisation in science. At an early stage, functions are the main type of objects used to model real phenomena, such as motions. At a later stage, rates of change and equations with rates of change play an important role. This type of equations
Digital games and learning mathematics: Student, teacher and parent perspectives
Su Ting Yong; Peter Gates; Ian Harrison
2016-01-01
The purpose of this study was to explore the potential use of digital games in learning mathematics at secondary school level in Malaysia. Three secondary school students, three mathematics teachers and three parents were interviewed in this study. All the participants were asked for their views and experiences in mathematics, technology usage and the use of digital games in learning mathematics. The results suggested that students were supportive and positive towards the use of computer game...
The role of mathematical models in understanding pattern formation in developmental biology.
Umulis, David M; Othmer, Hans G
2015-05-01
In a Wall Street Journal article published on April 5, 2013, E. O. Wilson attempted to make the case that biologists do not really need to learn any mathematics-whenever they run into difficulty with numerical issues, they can find a technician (aka mathematician) to help them out of their difficulty. He formalizes this in Wilsons Principle No. 1: "It is far easier for scientists to acquire needed collaboration from mathematicians and statisticians than it is for mathematicians and statisticians to find scientists able to make use of their equations." This reflects a complete misunderstanding of the role of mathematics in all sciences throughout history. To Wilson, mathematics is mere number crunching, but as Galileo said long ago, "The laws of Nature are written in the language of mathematics[Formula: see text] the symbols are triangles, circles and other geometrical figures, without whose help it is impossible to comprehend a single word." Mathematics has moved beyond the geometry-based model of Galileo's time, and in a rebuttal to Wilson, E. Frenkel has pointed out the role of mathematics in synthesizing the general principles in science (Both point and counter-point are available in Wilson and Frenkel in Notices Am Math Soc 60(7):837-838, 2013). We will take this a step further and show how mathematics has been used to make new and experimentally verified discoveries in developmental biology and how mathematics is essential for understanding a problem that has puzzled experimentalists for decades-that of how organisms can scale in size. Mathematical analysis alone cannot "solve" these problems since the validation lies at the molecular level, but conversely, a growing number of questions in biology cannot be solved without mathematical analysis and modeling. Herein, we discuss a few examples of the productive intercourse between mathematics and biology.
Teacher Identification of Student Learned Helplessness in Mathematics
Yates, Shirley
2009-01-01
Teachers frequently encounter students with learned helplessness who are discouraged, turned off, or have given up trying to learn mathematics. Although learned helplessness has a long history in psychology, there has been no reliable means by which mathematics teachers can identify students exhibiting these debilitating yet changeable…
Motivational Classroom Climate for Learning Mathematics: A Reversal Theory Perspective
Lewis, Gareth
2015-01-01
In this article, a case is made that affect is central in determining students' experience of learning or not learning mathematics. I show how reversal theory (Apter, 2001), and particularly its taxonomy of motivations and emotions, provides a basis for a thick description of students' experiences of learning in a mathematics classroom. Using data…
Khusna, H.; Heryaningsih, N. Y.
2018-01-01
The aim of this research was to examine mathematical modeling ability who learn mathematics by using SAVI approach. This research was a quasi-experimental research with non-equivalent control group designed by using purposive sampling technique. The population of this research was the state junior high school students in Lembang while the sample consisted of two class at 8th grade. The instrument used in this research was mathematical modeling ability. Data analysis of this research was conducted by using SPSS 20 by Windows. The result showed that students’ ability of mathematical modeling who learn mathematics by using SAVI approach was better than students’ ability of mathematical modeling who learn mathematics using conventional learning.
Lin, Su-Wei; Tai, Wen-Chun
2015-01-01
This study investigated how various mathematics learning strategies affect the mathematical literacy of students. The data for this study were obtained from the 2012 Programme for International Student Assessment (PISA) data of Taiwan. The PISA learning strategy survey contains three types of learning strategies: elaboration, control, and…
Clarke, Carne; Fisher, William; Marks, Rick; Ross, Sharon; Zbiek, Rose Mary
2010-01-01
This book focuses on essential knowledge for teachers about rational numbers. It is organized around four big ideas, supported by multiple smaller, interconnected ideas--essential understandings. Taking teachers beyond a simple introduction to rational numbers, the book will broaden and deepen their mathematical understanding of one of the most…
Shin, Mikyung; Bryant, Diane Pedrotty
2015-01-01
The purpose of this study was to synthesize the findings from 23 articles that compared the mathematical and cognitive performances of students with mathematics learning disabilities (LD) to (a) students with LD in mathematics and reading, (b) age- or grade-matched students with no LD, and (c) mathematical-ability-matched younger students with no LD. Overall results revealed that students with mathematics LD exhibited higher word problem-solving abilities and no significant group differences on working memory, long-term memory, and metacognition measures compared to students with LD in mathematics and reading. Findings also revealed students with mathematics LD demonstrated significantly lower performance compared to age- or grade-matched students with no LD on both mathematical and cognitive measures. Comparison between students with mathematics LD and younger students with no LD revealed mixed outcomes on mathematical measures and generally no significant group differences on cognitive measures. © Hammill Institute on Disabilities 2013.
Adams, Thomasenia Lott
2001-01-01
Focuses on the National Council of Teachers of Mathematics 2000 process-oriented standards of problem solving, reasoning and proof, communication, connections, and representation as providing a framework for using the multiple intelligences that children bring to mathematics learning. Presents ideas for mathematics lessons and activities to…
Understanding Learning Style by Eye Tracking in Slide Video Learning
Cao, Jianxia; Nishihara, Akinori
2012-01-01
More and more videos are now being used in e-learning context. For improving learning effect, to understand how students view the online video is important. In this research, we investigate how students deploy their attention when they learn through interactive slide video in the aim of better understanding observers' learning style. Felder and…
Understanding the Learning Process in SMEs
Carr, James; Gannon-Leary, Pat
2007-01-01
A major obstacle to the diffusion of management development learning technologies from Higher Education Institutions to Small and Medium-sized Enterprises (SMEs) is a lack of understanding about how SME learners learn. This article examines the nature of learning in SMEs and considers the incidence of informal support for informal learning.…
Flevares, Lucia M; Schiff, Jamie R
2014-01-01
In the past 25 years an identifiable interest in using children's literature in mathematics learning emerged (Clyne and Griffiths, 1991; Welchman-Tischler, 1992; Hong, 1996; Hellwig etal., 2000; Haury, 2001). We critically review the rationales given for the use of picture books in mathematics learning, with a special focus on geometry due to its underrepresentation in this body of literature and the need for greater focus on this topic. The benefits and effectiveness of using picture books for children's mathematics learning and interest have been documented (Hong, 1996; O'Neill etal., 2004; Young-Loveridge, 2004). For geometry, although much learning of shape ideas should be hands-on, two-dimensional figures are essential to develop children's understanding of plane geometry. Books may effectively engage pre-literate children with plane shapes (van den Heuvel-Panhuizen and van den Boogaard, 2008; Skoumpourdi and Mpakopoulou, 2011) and shapes as gestalt wholes or prototypes (van Hiele, 1986; Clements etal., 1999; Hannibal, 1999). We review several guidelines and evaluative criteria for book selection, including Cianciolo (2000), Schiro (1997), Hunsader (2004), and van den Heuvel-Panhuizen and Elia (2012). Geometry concepts have proven challenging for young students, but their difficulties may stem, in part, from inadequate teacher training and professional development (Clements and Sarama, 2000; Chard etal., 2008) which lead to misconceptions (Oberdorf and Taylor-Cox, 1999; Inan and Dogan-Temur, 2010). Using picture books in teacher training may be an inviting way for early childhood teachers to enhance their own knowledge. We will examine the literature for guidance on incorporating children's literature into teacher training. In closing we will outline a comprehensive, multi-pronged agenda for best instructional practices for selection and use of children's books in mathematics activities and for teacher training.
Rhetorical ways of thinking Vygotskian theory and mathematical learning
Albert, Lillie R; Macadino, Vittoria
2012-01-01
Combining Vygotskian theory with current teaching and learning practices, this volume focuses on how the co-construction of learning models the interpretation of a mathematical situation, providing educationalists with a valuable practical methodology.
Cooperative learning model with high order thinking skills questions: an understanding on geometry
Sari, P. P.; Budiyono; Slamet, I.
2018-05-01
Geometry, a branch of mathematics, has an important role in mathematics learning. This research aims to find out the effect of learning model, emotional intelligence, and the interaction between learning model and emotional intelligence toward students’ mathematics achievement. This research is quasi-experimental research with 2 × 3 factorial design. The sample in this research included 179 Senior High School students on 11th grade in Sukoharjo Regency, Central Java, Indonesia in academic year of 2016/2017. The sample was taken by using stratified cluster random sampling. The results showed that: the student are taught by Thinking Aloud Pairs Problem-Solving using HOTs questions provides better mathematics learning achievement than Make A Match using HOTs questions. High emotional intelligence students have better mathematics learning achievement than moderate and low emotional intelligence students, and moderate emotional intelligence students have better mathematics learning achievement than low emotional intelligence students. There is an interaction between learning model and emotional intelligence, and these affect mathematics learning achievement. We conclude that appropriate learning model can support learning activities become more meaningful and facilitate students to understand material. For further research, we suggest to explore the contribution of other aspects in cooperative learning modification to mathematics achievement.
Paterson, Judy; Sneddon, Jamie
2011-01-01
This article reports on the learning conversations between a mathematician and a mathematics educator as they worked together to change the delivery model of a third year discrete mathematics course from a traditional lecture mode to team-based learning (TBL). This change prompted the mathematician to create team tasks which increasingly focused…
The Role of Mathematics Learning Centres in Engineering Education.
Fuller, Milton
2002-01-01
Points out the diminishing demand for mathematics undergraduate programs and the strong trend in engineering education to make greater use of computer coursework such as Mathcad, Matlab, and other software systems for the mathematical and statistical components of engineering programs. Describes the changing role of mathematics learning centers…
Theorizing Collaborative Mathematics Teacher Learning in Communities of Practice
Bannister, Nicole A.
2018-01-01
Persistent disconnects within and among education research, practice, and policy are limiting the reach of professional mathematics teacher communities, one of the most promising levers for humanizing mathematics teaching and learning in schools. An overarching goal of this commentary is to convince the field of mathematics education to broaden…
Yuliana, Yuliana; Tasari, Tasari; Wijayanti, Septiana
2017-01-01
The objectives of this research are (1) to develop Guided Discovery Learning in integral calculus subject; (2) to identify the effectiveness of Guided Discovery Learning in improving the students' understanding toward integral calculus subject. This research was quasy experimental research with the students of even semester in Mathematics Education Widya Dharma University as the sample. Cluster Random sampling was conducted to determine control group that was taught using Conventional model a...
The role of mathematics for physics teaching and understanding
International Nuclear Information System (INIS)
Pospiech, G; Geyer, M.A.; Eylon, B.; Bagno, E.; Lehavi, Y.
2015-01-01
That mathematics is the “language of physics” implies that both areas are deeply interconnected, such that often no separation between “pure” mathematics and “pure” physics is possible. To clarify their interplay a technical and a structural role of mathematics can be distinguished. A thorough understanding of this twofold role in physics is also important for shaping physics education especially with respect to teaching the nature of physics. Herewith the teachers and their pedagogical content knowledge play an important role. Therefore we develop a model of PCK concerning the interplay of mathematics and physics in order to provide a theoretical framework for the views and teaching strategies of teachers. In an exploratory study four teachers from Germany and four teachers from Israel have been interviewed concerning their views and its transfer to teaching physics. Here we describe the results from Germany. Besides general views and knowledge held by all or nearly all teachers we also observe specific individual focus depending on the teachers’ background and experiences. The results fit well into the derived model of PCK.
The role of mathematics for physics teaching and understanding
Pospiech, Gesche; Eylon, BatSheva; Bagno, Esther; Lehavi, Yaron; Geyer, Marie-Annette
2016-05-01
-1That mathematics is the "language of physics" implies that both areas are deeply interconnected, such that often no separation between "pure" mathematics and "pure" physics is possible. To clarify their interplay a technical and a structural role of mathematics can be distinguished. A thorough understanding of this twofold role in physics is also important for shaping physics education especially with respect to teaching the nature of physics. Herewith the teachers and their pedagogical content knowledge play an important role. Therefore we develop a model of PCK concerning the interplay of mathematics and physics in order to provide a theoretical framework for the views and teaching strategies of teachers. In an exploratory study four teachers from Germany and four teachers from Israel have been interviewed concerning their views and its transfer to teaching physics. Here we describe the results from Germany. Besides general views and knowledge held by all or nearly all teachers we also observe specific individual focus depending on the teachers' background and experiences. The results fit well into the derived model of PCK.
Hamideh Jafari Koshkouei; Ahmad Shahvarani; Mohammad Hassan Behzadi; Mohsen Rostamy-Malkhalifeh
2016-01-01
The present study was carried out to investigate the influence of mathematics self-concept (MSC), motivation to learn mathematics (SMOT) and self-regulation learning (SRL) on students' mathematics academic achievement. This study is of a descriptive survey type. 300 female students at the first grade of high school (the second period) in City Qods, were selected by multiple step cluster sampling method and completed MSC, SMOT and SRL questionnaires. Mathematics academic achievement was measur...
Wong, Terry Tin-Yau
2017-12-01
The current study examined the unique and shared contributions of arithmetic operation understanding and numerical magnitude representation to children's mathematics achievement. A sample of 124 fourth graders was tested on their arithmetic operation understanding (as reflected by their understanding of arithmetic principles and the knowledge about the application of arithmetic operations) and their precision of rational number magnitude representation. They were also tested on their mathematics achievement and arithmetic computation performance as well as the potential confounding factors. The findings suggested that both arithmetic operation understanding and numerical magnitude representation uniquely predicted children's mathematics achievement. The findings highlight the significance of arithmetic operation understanding in mathematics learning. Copyright © 2017 Elsevier Inc. All rights reserved.
Mathematics Anxiety: What Have We Learned in 60 Years?
Dowker, Ann; Sarkar, Amar; Looi, Chung Yen
2016-01-01
The construct of mathematics anxiety has been an important topic of study at least since the concept of “number anxiety” was introduced by Dreger and Aiken (1957), and has received increasing attention in recent years. This paper focuses on what research has revealed about mathematics anxiety in the last 60 years, and what still remains to be learned. We discuss what mathematics anxiety is; how distinct it is from other forms of anxiety; and how it relates to attitudes to mathematics. We discuss the relationships between mathematics anxiety and mathematics performance. We describe ways in which mathematics anxiety is measured, both by questionnaires, and by physiological measures. We discuss some possible factors in mathematics anxiety, including genetics, gender, age, and culture. Finally, we describe some research on treatment. We conclude with a brief discussion of what still needs to be learned. PMID:27199789
Mathematics anxiety: what have we learned in 60 years?
Directory of Open Access Journals (Sweden)
Ann eDowker
2016-04-01
Full Text Available The construct of mathematics anxiety has been an important topic of study at least since the concept of 'number anxiety' was introduced by Dreger & Aiken (1957, and has received increasing attention in recent years. This paper focuses on what research has revealed about mathematics anxiety in the last 60 years, and what still remains to be learned. We discuss what mathematics anxiety is; how distinct it is from other forms of anxiety; and how it relates to attitudes to mathematics. We discuss the relationships between mathematics anxiety and mathematics performance. We describe ways in which mathematics anxiety is measured, both by questionnaires, and by physiological measures. We discuss some possible factors in mathematics anxiety, including genetics, gender, age and culture. Finally, we describe some research on treatment. We conclude with a brief discussion of what still needs to be learned.
Mathematics and Metacognition in Adolescents and Adults with Learning Disabilities
Desoete, Annemie
2009-01-01
A majority of studies on learning disabilities have focused on elementary grades. Although problems with learning disabilities are life-affecting only a few studies focus on deficits in adults. In this study adults with isolated mathematical disabilities (n = 101) and adults with combined mathematical and reading disabilities (n = 130) solved…
Review of Mathematics Interventions for Secondary Students with Learning Disabilities
Marita, Samantha; Hord, Casey
2017-01-01
Recent educational policy has raised the standards that all students, including students with disabilities, must meet in mathematics. To examine the strategies currently used to support students with learning disabilities, the authors reviewed literature from 2006 to 2014 on mathematics interventions for students with learning disabilities. The 12…
Mathematical Model of the Public Understanding of Space Science
Prisniakov, V.; Prisniakova, L.
science. The boundary sectioning area of effective and unefficient modes of training and education of the population of country in space spirit is determined. The mathematical model of quality of process of education concern to an outer space exploration is reviewed separately. The coefficient of quality of education in an estimation of space event is submitted as relation Δ I' to mismatch of the universal standard of behavior with the information, which is going to the external spectator, about the applicable reacting of the considered individual Δ I''. The obtained outcomes allow to control a learning process and education of the society spirit of adherence to space ideals of mankind.
Understanding intratumor heterogeneity by combining genome analysis and mathematical modeling.
Niida, Atsushi; Nagayama, Satoshi; Miyano, Satoru; Mimori, Koshi
2018-04-01
Cancer is composed of multiple cell populations with different genomes. This phenomenon called intratumor heterogeneity (ITH) is supposed to be a fundamental cause of therapeutic failure. Therefore, its principle-level understanding is a clinically important issue. To achieve this goal, an interdisciplinary approach combining genome analysis and mathematical modeling is essential. For example, we have recently performed multiregion sequencing to unveil extensive ITH in colorectal cancer. Moreover, by employing mathematical modeling of cancer evolution, we demonstrated that it is possible that this ITH is generated by neutral evolution. In this review, we introduce recent advances in a research field related to ITH and also discuss strategies for exploiting novel findings on ITH in a clinical setting. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Pre-service mathematics teachers' attitudes towards learning English: A case study in Yogyakarta
Setyaningrum, Wahyu
2017-08-01
This study investigated attitudes of pre-service mathematics teachers towards English as one of the subject at the university. It is a qualitative study in which questionnaire and face-to-face interview were employed to collect the data. The participants of this study were sixty students of mathematics education department at one of the university in Yogyakarta. The main research question was concern with how pre-service mathematics teachers perceive the importance of learning English. This study found that most of the participants perceive English as an important language that should be acquired by mathematics teachers. Their beliefs about the importance of English were mostly due to instrumental orientation rather than integrative orientation, such as getting a good job, getting a scholarship and understanding learning sources that are written in English. The data also revealed some obstacles faced by pre-service mathematics teachers in learning English as an additional language for them. The main obstacles were related to the differences between English for mathematics and English in daily life including its vocabulary and structure. Most of the participants argued that several mathematics vocabularies had precise meaning and different from daily English. In addition, they found difficult to understand some sentences used in the paper journal due to its structure. This study therefore, provided an insight into the pre-service mathematics teachers' perception and obstacles when learning English that could be use in improving pre-service teachers' education.
Focus group discussion in mathematical physics learning
Ellianawati; Rudiana, D.; Sabandar, J.; Subali, B.
2018-03-01
The Focus Group Discussion (FGD) activity in Mathematical Physics learning has helped students perform the stages of problem solving reflectively. The FGD implementation was conducted to explore the problems and find the right strategy to improve the students' ability to solve the problem accurately which is one of reflective thinking component that has been difficult to improve. The research method used is descriptive qualitative by using single subject response in Physics student. During the FGD process, one student was observed of her reflective thinking development in solving the physics problem. The strategy chosen in the discussion activity was the Cognitive Apprenticeship-Instruction (CA-I) syntax. Based on the results of this study, it is obtained the information that after going through a series of stages of discussion, the students' reflective thinking skills is increased significantly. The scaffolding stage in the CA-I model plays an important role in the process of solving physics problems accurately. Students are able to recognize and formulate problems by describing problem sketches, identifying the variables involved, applying mathematical equations that accord to physics concepts, executing accurately, and applying evaluation by explaining the solution to various contexts.
Student teachers’ mathematical questioning and courage in metaphorical thinking learning
Hendriana, H.; Hidayat, W.; Ristiana, M. G.
2018-01-01
This study was designed in the form of experiments with control group design and post-test only which aimed to examine the role of metaphorical thinking learning in the mathematical questioning ability of student teachers based on the level of mathematical courage. The population of this study was student teachers of mathematics education study program in West Java Province, while the sample of this study was 152 student teachers which were set purposively and then randomly to be included in the experimental class and control class. Based on the results and discussion, it was concluded that: (a) the mathematical questioning ability of student teachers who received Metaphorical Thinking learning was better than those who received conventional learning seen from mathematical courage level; (b) learning and mathematical courage level factors affected the achievement of student teachers’ mathematical questioning ability. In addition, there was no interaction effect between learning and mathematical courage level (high, medium, and low) simultaneously in developing student teachers’ mathematical questioning ability; (c) achievement of mastering mathematical questioning ability of student teacher was still not well achieved on indicator of problem posing in the form of non-routine question and open question.
Bannister, Nicole A.
2009-01-01
This dissertation seeks to understand how teachers learn through interactions in newly formed workplace communities by examining how mathematics teachers engaged in equity-oriented reforms frame problems of practice. It examines how teachers' framings develop over time, and how teachers' shifting frames connect to their learning in a community of…
Student Motivation and Learning in Mathematics and Science: A Cluster Analysis
Ng, Betsy L. L.; Liu, W. C.; Wang, John C. K.
2016-01-01
The present study focused on an in-depth understanding of student motivation and self-regulated learning in mathematics and science through cluster analysis. It examined the different learning profiles of motivational beliefs and self-regulatory strategies in relation to perceived teacher autonomy support, basic psychological needs (i.e. autonomy,…
Contextual Teaching and Learning Approach of Mathematics in Primary Schools
Selvianiresa, D.; Prabawanto, S.
2017-09-01
The Contextual Teaching and Learning (CTL) approach is an approach involving active students in the learning process to discover the concepts learned through to knowledge and experience of the students. Similar to Piaget’s opinion that learning gives students an actives trying to do new things by relating their experiences and building their own minds. When students to connecting mathematics with real life, then students can looking between a conceptual to be learned with a concept that has been studied. So that, students can developing of mathematical connection ability. This research is quasi experiment with a primary school in the city of Kuningan. The result showed that CTL learning can be successful, when learning used a collaborative interaction with students, a high level of activity in the lesson, a connection to real-world contexts, and an integration of science content with other content and skill areas. Therefore, CTL learning can be applied by techer to mathematics learning in primary schools.
The Effect of Blended Learning in Mathematics Course
Lin, Ya-Wen; Tseng, Chih-Lung; Chiang, Po-Jui
2017-01-01
With the advent of the digital age, traditional didactic teaching and online learning have been modified and gradually replaced by "Blended Learning." The purpose of this study was to explore the influences of blended learning pedagogy on junior high school student learning achievement and the students' attitudes toward mathematics. To…
Wardono; Waluya, S. B.; Mariani, Scolastika; Candra D, S.
2016-02-01
This study aims to find out that there are differences in mathematical literacy ability in content Change and Relationship class VII Junior High School 19, Semarang by Problem Based Learning (PBL) model with an Indonesian Realistic Mathematics Education (called Pendidikan Matematika Realistik Indonesia or PMRI in Indonesia) approach assisted Elearning Edmodo, PBL with a PMRI approach, and expository; to know whether the group of students with learning PBL models with PMRI approach and assisted E-learning Edmodo can improve mathematics literacy; to know that the quality of learning PBL models with a PMRI approach assisted E-learning Edmodo has a good category; to describe the difficulties of students in working the problems of mathematical literacy ability oriented PISA. This research is a mixed methods study. The population was seventh grade students of Junior High School 19, Semarang Indonesia. Sample selection is done by random sampling so that the selected experimental class 1, class 2 and the control experiment. Data collected by the methods of documentation, tests and interviews. From the results of this study showed average mathematics literacy ability of students in the group PBL models with a PMRI approach assisted E-learning Edmodo better than average mathematics literacy ability of students in the group PBL models with a PMRI approach and better than average mathematics literacy ability of students in the expository models; Mathematics literacy ability in the class using the PBL model with a PMRI approach assisted E-learning Edmodo have increased and the improvement of mathematics literacy ability is higher than the improvement of mathematics literacy ability of class that uses the model of PBL learning with PMRI approach and is higher than the improvement of mathematics literacy ability of class that uses the expository models; The quality of learning using PBL models with a PMRI approach assisted E-learning Edmodo have very good category.
Learning to teach secondary mathematics using an online learning system
Cavanagh, Michael; Mitchelmore, Michael
2011-12-01
We report the results of a classroom study of three secondary mathematics teachers who had no prior experience teaching with technology as they began to use an online mathematics learning system in their lessons. We gave the teachers only basic instruction on how to operate the system and then observed them intensively over four school terms as they taught using it. We documented changes in the teachers' Pedagogical Technology Knowledge and subsequently classified their various roles as technology bystanders, adopters, adaptors and innovators. Results show that all teachers made some progress toward using the system in more sophisticated ways, but the improvements were not uniform across the teachers. We suggest possible reasons to explain the variation and discuss some implications for teacher professional development.
Understanding nomadic collaborative learning groups
DEFF Research Database (Denmark)
Ryberg, Thomas; Davidsen, Jacob; Hodgson, Vivien
2018-01-01
-term collaborations within the frame of Problem and Project Based Learning. By analysing the patterns of nomadic collaborative learning we identify and discuss how the two groups of students incorporate mobile and digital technologies as well as physical and/or non-digital technologies into their group work......The paper builds on the work of Rossitto et al. on collaborative nomadic work to develop three categories of practice of nomadic collaborative learning groups. Our study is based on interviews, workshops and observations of two undergraduate student's group practices engaged in self-organised, long....... Specifically, we identify the following categories of nomadic collaborative learning practices: “orchestration of work phases, spaces and activities,” “the orchestration of multiple technologies” and “orchestration of togetherness.” We found that for both groups of students there was a fluidity, situatedness...
Understanding Immunology via Engineering Design: The Role of Mathematical Prototyping
Klinke, David J.; Wang, Qing
2012-01-01
A major challenge in immunology is how to translate data into knowledge given the inherent complexity and dynamics of human physiology. Both the physiology and engineering communities have rich histories in applying computational approaches to translate data obtained from complex systems into knowledge of system behavior. However, there are some differences in how disciplines approach problems. By referring to mathematical models as mathematical prototypes, we aim to highlight aspects related to the process (i.e., prototyping) rather than the product (i.e., the model). The objective of this paper is to review how two related engineering concepts, specifically prototyping and “fitness for use,” can be applied to overcome the pressing challenge in translating data into improved knowledge of basic immunology that can be used to improve therapies for disease. These concepts are illustrated using two immunology-related examples. The prototypes presented focus on the beta cell mass at the onset of type 1 diabetes and the dynamics of dendritic cells in the lung. This paper is intended to illustrate some of the nuances associated with applying mathematical modeling to improve understanding of the dynamics of disease progression in humans. PMID:22973412
Concept mapping learning strategy to enhance students' mathematical connection ability
Hafiz, M.; Kadir, Fatra, Maifalinda
2017-05-01
The concept mapping learning strategy in teaching and learning mathematics has been investigated by numerous researchers. However, there are still less researchers who have scrutinized about the roles of map concept which is connected to the mathematical connection ability. Being well understood on map concept, it may help students to have ability to correlate one concept to other concept in order that the student can solve mathematical problems faced. The objective of this research was to describe the student's mathematical connection ability and to analyze the effect of using concept mapping learning strategy to the students' mathematical connection ability. This research was conducted at senior high school in Jakarta. The method used a quasi-experimental with randomized control group design with the total number was 72 students as the sample. Data obtained through using test in the post-test after giving the treatment. The results of the research are: 1) Students' mathematical connection ability has reached the good enough level category; 2) Students' mathematical connection ability who had taught with concept mapping learning strategy is higher than who had taught with conventional learning strategy. Based on the results above, it can be concluded that concept mapping learning strategycould enhance the students' mathematical connection ability, especially in trigonometry.
Reflective Awareness in Mathematics Teachers' Learning and Teaching
Chapman, Olive
2015-01-01
The nature of mathematics teachers' knowledge specific to teaching mathematics [MTK] is of ongoing concern in mathematics education research. This article contributes to our under-standing of this knowledge with particular focus on reflective awareness. It discusses MTK based on ways it has been used in research. It highlights reflective awareness…
Understanding Nomadic Collaborative Learning Groups
Ryberg, Thomas; Davidsen, Jacob; Hodgson, Vivien
2018-01-01
The paper builds on the work of Rossitto "et al." on collaborative nomadic work to develop three categories of practice of nomadic collaborative learning groups. Our study is based on interviews, workshops and observations of two undergraduate student's group practices engaged in self-organised, long-term collaborations within the frame…
Utilizing Microsoft Mathematics In Teaching And Learning Calculus
Directory of Open Access Journals (Sweden)
Rina Oktaviyanthi
2015-10-01
Full Text Available The experimental design was conducted to investigate the use of Microsoft Mathematics, free software made by Microsoft Corporation, in teaching and learning Calculus. This paper reports results from experimental study details on implementation of Microsoft Mathematics in Calculus, students’ achievement and the effects of the use of Microsoft Mathematics on students’ attitudes in relation to such experience. Two classes of the students from the first year student in Universitas Serang Raya were participated in the study. This study found that students who taught by using Microsoft Mathematics had higher achievement and has a positive effect on students’ confidence of mathematics.
MODERN OR TRADITIONAL TEACHING STRATEGY IN LEARNING ENGINEERING MATHEMATICS COURSE
Directory of Open Access Journals (Sweden)
N. RAZALI
2016-11-01
Full Text Available First-year engineering students of the Faculty of Engineering and Built Environment, UKM are in the process of transition in the way they learn mathematics from pre-university level to the undergraduate level. It is essential for good engineers to have the ability to unfold mathematical problems in an efficient way. Thus, this research is done to investigate students preference in learning KKKQ1123 Engineering Mathematics I (Vector Calculus (VC course; either individually or in a team; using modern (e-learning or traditional (cooperative-learning teaching strategy. Questionnaires are given to the first year Chemical and Process Engineering students from academic year 2015/2016 and the results were analysed. Based on the finding, the students believed that the physical educators or teachers play an important role and that they have slightest preference in the traditional teaching strategy to learn engineering mathematics course.
Digital games and learning mathematics: Student, teacher and parent perspectives
Directory of Open Access Journals (Sweden)
Su Ting Yong
2016-12-01
Full Text Available The purpose of this study was to explore the potential use of digital games in learning mathematics at secondary school level in Malaysia. Three secondary school students, three mathematics teachers and three parents were interviewed in this study. All the participants were asked for their views and experiences in mathematics, technology usage and the use of digital games in learning mathematics. The results suggested that students were supportive and positive towards the use of computer games in learning mathematics. Nevertheless, parents preferred conventional teaching approach, in which they recognized personal communication and socialization as a significant component in learning. Although the teachers did not go on to oppose the idea of using computer games for teaching mathematics, they still perceived the use of discursive approaches as the best teaching approach for learning mathematics with digital technologies at best a possible additional complementary feature. In view of that, the combination of classroom teaching and computer games might the best mathematics pedagogy.
The Influence of Symbols and Equations on Understanding Mathematical Equivalence
Powell, Sarah R.
2015-01-01
Students with mathematics difficulty demonstrate lower mathematics performance than typical-performing peers. One contributing factor to lower mathematics performance may be misunderstanding of mathematics symbols. In several studies related to the equal sign (=), students who received explicit instruction on the relational definition (i.e.,…
Engaging Students in Mathematical Modeling through Service-Learning
Carducci, Olivia M.
2014-01-01
I have included a service-learning project in my mathematical modeling course for the last 6 years. This article describes my experience with service-learning in this course. The article includes a description of the course and the service-learning projects. There is a discussion of how to connect with community partners and identify…
Jitendra, Asha K.; Lein, Amy E.; Im, Soo-hyun; Alghamdi, Ahmed A.; Hefte, Scott B.; Mouanoutoua, John
2018-01-01
This meta-analysis is the first to provide a quantitative synthesis of empirical evaluations of mathematical intervention programs implemented in secondary schools for students with learning disabilities and mathematics difficulties. Included studies used a treatment-control group design. A total of 19 experimental and quasi-experimental studies…
Directory of Open Access Journals (Sweden)
Tatag Bagus Argikas
2016-10-01
Full Text Available This research aims to: (1 describe the implementation of learning mathematics with Reciprocal Teaching methods that is for improving the concept of learning understanding mathematic in class VIIA SMP Negeri 2 Depok. (2 Knowing the increased understanding of student learning in class VIIA SMP Negeri 2 Depok use Reciprocal Teaching methods. This research constitutes an action in class that is according along the teacher. The data of research was collated by sheet observations and each evaluation of cycles. That is done in two cycles. The first was retrieved the average value of student learning achievement of 70.96%. The second was retrieved achievement of 90.32%. Thus this learning model can increase student learning understanding. Key word: The understanding of Mathematical Concept, Reciprocal Teaching Method.
Memory and cognitive control circuits in mathematical cognition and learning.
Menon, V
2016-01-01
Numerical cognition relies on interactions within and between multiple functional brain systems, including those subserving quantity processing, working memory, declarative memory, and cognitive control. This chapter describes recent advances in our understanding of memory and control circuits in mathematical cognition and learning. The working memory system involves multiple parietal-frontal circuits which create short-term representations that allow manipulation of discrete quantities over several seconds. In contrast, hippocampal-frontal circuits underlying the declarative memory system play an important role in formation of associative memories and binding of new and old information, leading to the formation of long-term memories that allow generalization beyond individual problem attributes. The flow of information across these systems is regulated by flexible cognitive control systems which facilitate the integration and manipulation of quantity and mnemonic information. The implications of recent research for formulating a more comprehensive systems neuroscience view of the neural basis of mathematical learning and knowledge acquisition in both children and adults are discussed. © 2016 Elsevier B.V. All rights reserved.
Memory and cognitive control circuits in mathematical cognition and learning
Menon, V.
2018-01-01
Numerical cognition relies on interactions within and between multiple functional brain systems, including those subserving quantity processing, working memory, declarative memory, and cognitive control. This chapter describes recent advances in our understanding of memory and control circuits in mathematical cognition and learning. The working memory system involves multiple parietal–frontal circuits which create short-term representations that allow manipulation of discrete quantities over several seconds. In contrast, hippocampal–frontal circuits underlying the declarative memory system play an important role in formation of associative memories and binding of new and old information, leading to the formation of long-term memories that allow generalization beyond individual problem attributes. The flow of information across these systems is regulated by flexible cognitive control systems which facilitate the integration and manipulation of quantity and mnemonic information. The implications of recent research for formulating a more comprehensive systems neuroscience view of the neural basis of mathematical learning and knowledge acquisition in both children and adults are discussed. PMID:27339012
Darma, I. K.
2018-01-01
This research is aimed at determining: 1) the differences of mathematical problem solving ability between the students facilitated with problem-based learning model and conventional learning model, 2) the differences of mathematical problem solving ability between the students facilitated with authentic and conventional assessment model, and 3) interaction effect between learning and assessment model on mathematical problem solving. The research was conducted in Bali State Polytechnic, using the 2x2 experiment factorial design. The samples of this research were 110 students. The data were collected using a theoretically and empirically-validated test. Instruments were validated by using Aiken’s approach of technique content validity and item analysis, and then analyzed using anova stylistic. The result of the analysis shows that the students facilitated with problem-based learning and authentic assessment models get the highest score average compared to the other students, both in the concept understanding and mathematical problem solving. The result of hypothesis test shows that, significantly: 1) there is difference of mathematical problem solving ability between the students facilitated with problem-based learning model and conventional learning model, 2) there is difference of mathematical problem solving ability between the students facilitated with authentic assessment model and conventional assessment model, and 3) there is interaction effect between learning model and assessment model on mathematical problem solving. In order to improve the effectiveness of mathematics learning, collaboration between problem-based learning model and authentic assessment model can be considered as one of learning models in class.
The body and playfulness: promising tools for teaching and learning mathematics
Directory of Open Access Journals (Sweden)
Yolanda Rodríguez Manosalva
2017-06-01
Full Text Available This paper will analyze the importance of playfulness as an instrument for learning mathematics, taking into account that the body allows to develop not only motor skills but also intellectual faculties involving high levels of abstraction, such as mathematical operations like addition, subtraction, multiplication and division. The methodology used was action research, through interviews to students, parents and teachers, as well as the systematization of experiences in the classroom by means of a field diary. It was found that traditional –tedious- teaching does not allow students to realize the importance of learning mathematics. It is concluded that it is necessary for the teachers to implement strategies that link playfulness and the body, in order to improve teaching-learning processes, which allows that mathematics do not be considered as something far from reality, but that be granted the status of a knowledge that improves the processes of understanding and reflection, facilitating the solution of practical problems.
Utilization of Information and Communication Technologies in Mathematics Learning
Directory of Open Access Journals (Sweden)
Farzaneh Saadati
2014-07-01
Full Text Available Attention to integrate technology in teaching and learning has provided a major transformation in the landscape of education. Therefore, many innovations in teaching and learning have been technology-driven. The study attempted to examine what is engineering students’ perception regarding the use of Information and Communication Technologies (ICT in mathematics learning as well as investigate their opinion about how ICT can be integrated to improve teaching and learning processes. The subjects were Iranian engineering students from two universities. The finding showed they are fully aware of importance of ICT in teaching and learning mathematics. Whilst, they were feeling comfortable and confident with technology, they do not have more experience of using technology in mathematics classes before. The findings supported the other studies, which indicated the potentials of ICT to facilitate students’ learning, improve teaching, and enhance institutional administration as established in the literature.
Student’s social interaction in mathematics learning
Apriliyanto, B.; Saputro, D. R. S.; Riyadi
2018-03-01
Mathematics learning achievement is influenced by the internal and external factor of the students. One of the influencing external factors is social interaction with friends in learning activities. In modern learning, the learning is student-centered, so the student interaction is needed to learn about certain basic competence. Potential and motivation of students in learning are expected to develop with good social interaction in order to get maximum results. Social interaction is an important aspect of learning Mathematics because students get the opportunity to express their own thoughts in order to encourage a reflection on the knowledge they have. This research uses the correlational descriptive method involving 36 students for the tenth grade, eleventh grade, and twelfth grade of SMA Negeri 1 Wuryantoro and data collecting technique using questionnaire for social interaction and documentation for learning outcome. The result of this research shows that learning achievement and social interaction of students are not good. Based on the result of data analysis, it is shown that the social interaction and Mathematics learning achievement are still in the low level. This research concludes that students’ social interaction influences student learning achievement in Mathematics subjects.
International Nuclear Information System (INIS)
Wardono; Mariani, S; Hendikawati, P; Ikayani
2017-01-01
Mathematizing process (MP) is the process of modeling a phenomenon mathematically or establish the concept of a phenomenon. There are two mathematizing that is Mathematizing Horizontal (MH) and Mathematizing Vertical (MV). MH as events changes contextual problems into mathematical problems, while MV is the process of formulation of the problem into a variety of settlement mathematics by using some appropriate rules. Mathematics Literacy (ML) is the ability to formulate, implement and interpret mathematics in various contexts, including the capacity to perform reasoning mathematically and using the concepts, procedures, and facts to describe, explain or predict phenomena incident. If junior high school students are conditioned continuously to conduct mathematizing activities on RCP (RME-Card Problem) learning, it will be able to improve ML that refers PISA. The purpose of this research is to know the capability of the MP grade VIII on ML content shape and space with the matter of the cube and beams with RCP learning better than the scientific learning, upgrade MP grade VIII in the issue of the cube and beams with RCP learning better than the scientific learning in terms of cognitive styles reflective and impulsive the MP grade VIII with the approach of the RCP learning in terms of cognitive styles reflective and impulsive This research is the mixed methods model concurrent embedded. The population in this study, i.e., class VIII SMPN 1 Batang with sample two class. Data were taken with the observation, interviews, and tests and analyzed with a different test average of one party the right qualitative and descriptive. The results of this study demonstrate the capability of the MP student with RCP learning better than the scientific learning, upgrade MP with RCP learning better compare with scientific learning in term cognitive style of reflective and impulsive. The subject of the reflective group top, middle, and bottom can meet all the process of MH indicators are
Teachers, Equity, and Computers for Secondary Mathematics Learning
Forgasz, Helen
2006-01-01
The findings presented in this article were derived from a 3-year study aimed at examining issues associated with the use of computers for secondary mathematics learning in Victorian (Australia) schools. Gender and other equity factors were of particular interest. In this article, the focus is on the participating mathematics teachers. Data on…
Equity and Computers for Mathematics Learning: Access and Attitudes
Forgasz, Helen J.
2004-01-01
Equity and computer use for secondary mathematics learning was the focus of a three year study. In 2003, a survey was administered to a large sample of grade 7-10 students. Some of the survey items were aimed at determining home access to and ownership of computers, and students' attitudes to mathematics, computers, and computer use for…
Utilizing Microsoft Mathematics in Teaching and Learning Calculus
Oktaviyanthi, Rina; Supriani, Yani
2015-01-01
The experimental design was conducted to investigate the use of Microsoft Mathematics, free software made by Microsoft Corporation, in teaching and learning Calculus. This paper reports results from experimental study details on implementation of Microsoft Mathematics in Calculus, students' achievement and the effects of the use of Microsoft…
Under-Threes' Mathematical Learning--Teachers' Perspectives
Franzén, Karin
2014-01-01
This project highlights preschool teachers' views of toddlers' learning in mathematics. The Swedish national curriculum covers even the youngest children who are 1-3?years old. Interesting questions are thus: what should mathematics be for this age group and how should preschool teachers work with maths to achieve the curriculum objectives? Data…
Amidst Multiple Theories of Learning in Mathematics Education
Simon, Martin A.
2009-01-01
Currently, there are more theories of learning in use in mathematics education research than ever before (Lerman & Tsatsaroni, 2004). Although this is a positive sign for the field, it also has brought with it a set of challenges. In this article, I identify some of these challenges and consider how mathematics education researchers might think…
Student-Made Games to Learn the History of Mathematics
Huntley, Mary Ann; Flores, Alfinio
2011-01-01
In this article, the authors describe how prospective secondary mathematics teachers designed their own adaptations of popular board and computer games to learn the history of mathematics. They begin the article by describing some of the games students designed and used, and follow this with a discussion of factors for successful use of games in…
Cognitive Play and Mathematical Learning in Computer Microworlds.
Steffe, Leslie P.; Wiegel, Heide G.
1994-01-01
Uses the constructivist principle of active learning to explore the possibly essential elements in transforming a cognitive play activity into mathematical activity. Suggests that for such transformation to occur, cognitive play activity must involve operations of intelligence that, yield situations of mathematical schemes. Illustrates the…
Using Sport to Engage and Motivate Students to Learn Mathematics
Robinson, Carol L.
2012-01-01
This article describes how technology has been used to motivate the learning of mathematics for students of Sports Technology at Loughborough University. Sports applications are introduced whenever appropriate and Matlab is taught to enable the students to solve realistic problems. The mathematical background of the students is varied and the…
Assessing the Potential of Mathematics Textbooks to Promote Deep Learning
Shield, Malcolm; Dole, Shelley
2013-01-01
Curriculum documents for mathematics emphasise the importance of promoting depth of knowledge rather than shallow coverage of the curriculum. In this paper, we report on a study that explored the analysis of junior secondary mathematics textbooks to assess their potential to assist in teaching and learning aimed at building and applying deep…
"Lettuce" Learn Math: Teaching Mathematics with Seeds and Centimeters
Rickard, Laura N.; Wilson, Colette
2006-01-01
"Lettuce Learn Math" is an interdisciplinary program that has effectively linked a small-scale agricultural production system to a sixth-grade mathematics and science curriculum. The mathematical concepts and skills, including measurement and geometry, taught in this project met and often exceeded the standards set by New York state for…
Experimental Design: Utilizing Microsoft Mathematics in Teaching and Learning Calculus
Oktaviyanthi, Rina; Supriani, Yani
2015-01-01
The experimental design was conducted to investigate the use of Microsoft Mathematics, free software made by Microsoft Corporation, in teaching and learning Calculus. This paper reports results from experimental study details on implementation of Microsoft Mathematics in Calculus, students' achievement and the effects of the use of Microsoft…
Using Student-Made Games to Learn Mathematics
Gallegos, Irene; Flores, Alfinio
2010-01-01
First-year university students design and play their own games, including board, computer, and other kinds of games, to learn mathematical concepts and practice procedures for their pre-calculus and calculus courses. (Contains 2 tables and 8 figures.)
Priatna, Nanang
2017-08-01
The use of Information and Communication Technology (ICT) in mathematics instruction will help students in building conceptual understanding. One of the software products used in mathematics instruction is GeoGebra. The program enables simple visualization of complex geometric concepts and helps improve students' understanding of geometric concepts. Instruction applying brain-based learning principles is one oriented at the efforts of naturally empowering the brain potentials which enable students to build their own knowledge. One of the goals of mathematics instruction in school is to develop mathematical communication ability. Mathematical representation is regarded as a part of mathematical communication. It is a description, expression, symbolization, or modeling of mathematical ideas/concepts as an attempt of clarifying meanings or seeking for solutions to the problems encountered by students. The research aims to develop a learning model and teaching materials by applying the principles of brain-based learning aided by GeoGebra to improve junior high school students' mathematical representation ability. It adopted a quasi-experimental method with the non-randomized control group pretest-posttest design and the 2x3 factorial model. Based on analysis of the data, it is found that the increase in the mathematical representation ability of students who were treated with mathematics instruction applying the brain-based learning principles aided by GeoGebra was greater than the increase of the students given conventional instruction, both as a whole and based on the categories of students' initial mathematical ability.
Using Digital Games to Learn Mathematics – What students think?
Su Ting Yong; Ian Harrison; Peter Gates
2016-01-01
The aim of this study was to explore how university foundation students perceive the use of digital games in learning mathematics. Data was collected using an online questionnaire and 209 foundation university students participated in this study. The questionnaire was used to explore students’ gaming experience and students’ attitude towards mathematics learning with digital games. It was found that most of the university foundation students liked to play different types of digital games. ...
A Study on the Role of Drama in Learning Mathematics
Elahe Masoum; Mohsen Rostamy-Malkhalifeh; Zahra Kalantarnia
2013-01-01
Present educational systems needs modern strategies for teaching and learning. Mathematics education has to change for students in elementary schools. One of the modern strategies, it is drama activities. The drama is as empirical aspect of learning. The student may learn from what they are doing in drama. They are so active instead having a passive shape in drama, in fact, students are learning, finding experiences and new paths from drama as well. The students could find its capabilities, r...
Chinese Number Words, Culture, and Mathematics Learning
Ng, Sharon Sui Ngan; Rao, Nirmala
2010-01-01
This review evaluates the role of language--specifically, the Chinese-based system of number words and the simplicity of Chinese mathematical terms--in explaining the relatively superior performance of Chinese and other East Asian students in cross-national studies of mathematics achievement. Relevant research is critically reviewed focusing on…
Using Two Languages when Learning Mathematics
Moschkovich, Judit
2007-01-01
This article reviews two sets of research studies from outside of mathematics education to consider how they may be relevant to the study of bilingual mathematics learners using two languages. The first set of studies is psycholinguistics experiments comparing monolinguals and bilinguals using two languages during arithmetic computation (language…
Effectiveness of discovery learning model on mathematical problem solving
Herdiana, Yunita; Wahyudin, Sispiyati, Ririn
2017-08-01
This research is aimed to describe the effectiveness of discovery learning model on mathematical problem solving. This research investigate the students' problem solving competency before and after learned by using discovery learning model. The population used in this research was student in grade VII in one of junior high school in West Bandung Regency. From nine classes, class VII B were randomly selected as the sample of experiment class, and class VII C as control class, which consist of 35 students every class. The method in this research was quasi experiment. The instrument in this research is pre-test, worksheet and post-test about problem solving of mathematics. Based on the research, it can be conclude that the qualification of problem solving competency of students who gets discovery learning model on level 80%, including in medium category and it show that discovery learning model effective to improve mathematical problem solving.
Learning to Leverage Children's Multiple Mathematical Knowledge Bases in Mathematics Instruction
Turner, Erin E.; Foote, Mary Q.; Stoehr, Kathleen Jablon; McDuffie, Amy Roth; Aguirre, Julia Maria; Bartell, Tonya Gau; Drake, Corey
2016-01-01
In this article, the authors explore prospective elementary teachers' engagement with and reflection on activities they conducted to learn about a single child from their practicum classroom. Through these activities, prospective teachers learned about their child's mathematical thinking and the interests, competencies, and resources she or he…
High profile students’ growth of mathematical understanding in solving linier programing problems
Utomo; Kusmayadi, TA; Pramudya, I.
2018-04-01
Linear program has an important role in human’s life. This linear program is learned in senior high school and college levels. This material is applied in economy, transportation, military and others. Therefore, mastering linear program is useful for provision of life. This research describes a growth of mathematical understanding in solving linear programming problems based on the growth of understanding by the Piere-Kieren model. Thus, this research used qualitative approach. The subjects were students of grade XI in Salatiga city. The subjects of this study were two students who had high profiles. The researcher generally chose the subjects based on the growth of understanding from a test result in the classroom; the mark from the prerequisite material was ≥ 75. Both of the subjects were interviewed by the researcher to know the students’ growth of mathematical understanding in solving linear programming problems. The finding of this research showed that the subjects often folding back to the primitive knowing level to go forward to the next level. It happened because the subjects’ primitive understanding was not comprehensive.
Zbiek, Rose Mary; Conner, Annamarie
2006-01-01
Views of mathematical modeling in empirical, expository, and curricular references typically capture a relationship between real-world phenomena and mathematical ideas from the perspective that competence in mathematical modeling is a clear goal of the mathematics curriculum. However, we work within a curricular context in which mathematical…
Grounded Blends and Mathematical Gesture Spaces: Developing Mathematical Understandings via Gestures
Yoon, Caroline; Thomas, Michael O. J.; Dreyfus, Tommy
2011-01-01
This paper examines how a person's gesture space can become endowed with mathematical meaning associated with mathematical spaces and how the resulting mathematical gesture space can be used to communicate and interpret mathematical features of gestures. We use the theory of grounded blends to analyse a case study of two teachers who used gestures…
Mathematics education and students with learning disabilities: introduction to the special series.
Rivera, D P
1997-01-01
The prevalence of students with mathematics learning disabilities has triggered an interest among special education researchers and practitioners in developing an understanding of the needs of this group of students, and in identifying effective instructional programming to foster their mathematical performance during the school years and into adulthood. Research into the characteristics of students with mathematics learning disabilities is being approached from different perspectives, including developmental, neurological and neuropsychological, and educational. This diversity helps us develop a broader understanding of students' learning needs and difficulties. Special education assessment practices encompass a variety of approaches, including norm-referenced, criterion-referenced, and nonstandardized procedures, depending on the specific assessment questions professionals seek to answer. Students' mathematical knowledge and conceptual understanding must be examined to determine their strengths and weaknesses, curriculum-based progress, and use of cognitive strategies to arrive at mathematical solutions. Research findings have identified empirically validated interventions for teaching mathematics curricula to students with mathematics learning disabilities. Research studies have been grounded in behavioral theory and cognitive psychology, with an emergent interest in the constructivist approach. Although research studies have focused primarily on computational performance, more work is being conducted in the areas of story-problem solving and technology. These areas as well as other math curricular skills require further study. Additionally, the needs of adults with math LD have spurred educators to examine the elementary and secondary math curricula and determine ways to infuse them with life skills instruction accordingly. As the field of mathematics special education continues to evolve, special educators must remain cognizant of the developments in and
Understanding Learning Style Variations among Undergraduate Students
Directory of Open Access Journals (Sweden)
N. Jayakumar
2017-09-01
Full Text Available A study was conducted in Vellore district of Tamil Nadu state to understand the learning styles of students. The term learning style refers to the way or method or approach by which a student learns. The study explored the possible learning style variations among agricultural, horticultural, engineering and arts & science students and their association with academic achievement. One hundred and twelve students were randomly selected from the four streams and their learning styles were analyzed. In the agricultural and horticultural streams, a majority of the students were auditory learners. They were also found to be predominantly unimodal learners. Overall, it was found that majority of the students were visual learners followed by auditory and kinesthetic style. The highest percentage of kinesthetic learners was found among engineering students. Trimodal learners scored the highest mean percentage of marks. The influence of learning styles on the academic achievements of the students did not show a significant relationship.
Learning Mathematics for Teaching Mathematics: Non-Specialist Teachers' Mathematics Teacher Identity
Crisan, Cosette; Rodd, Melissa
2017-01-01
A non-specialist teacher of mathematics is a school teacher who qualified to teach in a subject other than mathematics yet teaches mathematics to students in secondary school. There is an emerging interest internationally in this population, a brief report of which is given in the paper. Because of concerns about the quality of non-specialists'…
Analysis of students’ self-determination in learning mathematics
Wilujeng, H.
2018-01-01
Self-determination (SDT) is the ability in identifying and achieving the purpose based on knowledge and the assessment of the individual against himself. Three aspects in the SDT includes autonomy, competence and relationships become an important part for students to be able to understand the capabilities of themselves, having a positive competitiveness to other students and can interact well between friends. Therefore, teachers need to know the ability of students SDT after making the learning process. This research was conducted to improve the process of learning mathematics by knowing the ability of students SDT. The researcher gave the question form to 38 students and analyzed the ability of SDT. The Results of the study showed that the student SDT ability is still poor. Students were lack of confidence to solve math problems. In addition, the competitiveness of students was low that have made them looked lazy. This can be resolved by making learning more interesting for students so that it can increase the student SDT ability.
Soro, S.; Maarif, S.; Kurniawan, Y.; Raditya, A.
2018-01-01
The aim of this study is to find out the effect of Dienes AEM (Algebra Experience Materials) on the ability of understanding concept of algebra on the senior high school student in Indonesia. This research is an experimental research with subject of all high school students in Indonesia. The samples taken were high school students in three provinces namely DKI Jakarta Province, West Java Province and Banten Province. From each province was taken senior high school namely SMA N 9 Bekasi West Java, SMA N 94 Jakarta and SMA N 5 Tangerang, Banten. The number of samples in this study was 114 high school students of tenth grade as experimental class and 115 high school students of tenth grade as control class. Learning algebra concept is needed in learning mathematics, besides it is needed especially to educate students to be able to think logically, systematically, critically, analytically, creatively, and cooperation. Therefore in this research will be developed an effective algebra learning by using Dienes AEM. The result of this research is that there is a significant influence on the students’ concept comprehension ability taught by using Dienes AEM learning as an alternative to instill the concept of algebra compared to the students taught by conventional learning. Besides, the students’ learning motivation increases because students can construct the concept of algebra with props.
Learned Helplessness in Mathematics: What Educators Should Know.
Gentile, J. Ronald; Monaco, Nanci M.
1986-01-01
The range of problems associated with learned helplessness in mathematics is introduced through three hypothetical case studies. Then the basic theory of, the evidence for, and variables affecting learned helplessness are described. Issues of cure and prevention are discussed, and some suggestions are offered for teachers. (MNS)
Embedding Diagnostic Mechanisms in a Digital Game for Learning Mathematics
Huang, Yueh-Min; Huang, Shu-Hsien; Wu, Ting-Ting
2014-01-01
Mathematics is closely related to daily life, but it is also one of the lessons which often cause anxiety to primary school students. Digital game-based learning (DGBL) has been regarded as a sound learning strategy in raising learner willingness and interest in many disciplines. Thus, ways of designing a DGBL system to mitigate anxiety are well…
Directory of Open Access Journals (Sweden)
Nevin ORHUN
2013-07-01
Full Text Available Open and distance education plays an important role in the actualization of cultural goals as well as in societal developments. This is an independent teaching and learning method for mathematics which forms the dynamic of scientific thinking. Distance education is an important alternative to traditional teaching applications. These contributions brought by technology enable students to participate actively in having access to information and questioning it. Such an application increases students’ motivation and teaches how mathematics can be used in daily life. Derivative is a mathematical concept which can be used in many areas of daily life. The aim of this study is to enable the concept of derivatives to be understood well by using the derivative function in the solution of various problems. It also aims at interpreting difficulties theoretically in the solution of problems and determining mistakes in terms of teaching methods. In this study, how various aspects of derivatives are understood is emphasized. These aspects concern the explanation of concepts and process, and also their application to certain concepts in physics. Students’ depth of understanding of derivatives was analyzed based on two aspects of understanding; theoretical analysis and contextual application. Follow-up interviews were conducted with five students. The results show that the students preferred to apply an algebraic symbolic aspect instead of using logical meanings of function and its derivative. In addition, in relation to how the graph of the derivative function affects the aspect of function, it was determined that the students displayed low performance.
Learning mathematics from hierarchies to networks
Burton, Prof Leone
2012-01-01
How and why is mathematics taught? This book seeks to improve on our current answers. The contributors provide various perspectives in this richly cross-referenced work. Relevant to policy makers, practitioners and researchers.
Assessment for Learning in Norway and Portugal: The Case of Primary School Mathematics Teaching
Nortvedt, Guri A.; Santos, Leonor; Pinto, Jorge
2016-01-01
In this study, we aim to understand the forces driving assessment for learning (AfL) in primary school teaching. By applying a case study design, including the two cases of Norway and Portugal and using mathematics teaching as an example, available policy documents and research reports are analysed to identify the differences and similarities that…
Moyer-Packenham, Patricia S.; Bullock, Emma K.; Shumway, Jessica F.; Tucker, Stephen I.; Watts, Christina M.; Westenskow, Arla; Anderson-Pence, Katie L.; Maahs-Fladung, Cathy; Boyer-Thurgood, Jennifer; Gulkilik, Hilal; Jordan, Kerry
2016-01-01
This paper focuses on understanding the role that affordances played in children's learning performance and efficiency during clinical interviews of their interactions with mathematics apps on touch-screen devices. One hundred children, ages 3 to 8, each used six different virtual manipulative mathematics apps during 30-40-min interviews. The…
Handayani, I.; Januar, R. L.; Purwanto, S. E.
2018-01-01
This research aims to know the influence of Missouri Mathematics Project Learning Model to Mathematical Problem-solving Ability of Students at Junior High School. This research is a quantitative research and uses experimental research method of Quasi Experimental Design. The research population includes all student of grade VII of Junior High School who are enrolled in the even semester of the academic year 2016/2017. The Sample studied are 76 students from experimental and control groups. The sampling technique being used is cluster sampling method. The instrument is consisted of 7 essay questions whose validity, reliability, difficulty level and discriminating power have been tested. Before analyzing the data by using t-test, the data has fulfilled the requirement for normality and homogeneity. The result of data shows that there is the influence of Missouri mathematics project learning model to mathematical problem-solving ability of students at junior high school with medium effect.
Identification of Conceptual Understanding in Biotechnology Learning
Suryanti, E.; Fitriani, A.; Redjeki, S.; Riandi, R.
2018-04-01
Research on the identification of conceptual understanding in the learning of Biotechnology, especially on the concept of Genetic Engineering has been done. The lesson is carried out by means of discussion and presentation mediated-powerpoint media that contains learning materials with relevant images and videos. This research is a qualitative research with one-shot case study or one-group posttest-only design. Analysis of 44 students' answers show that only 22% of students understand the concept, 18% of students lack understanding of concepts, 57% of students have misconceptions, and 3% of students are error. It can be concluded that most students has misconceptions in learning the concept of Genetic Engineering.
Schuchardt, Anita
Integrating mathematics into science classrooms has been part of the conversation in science education for a long time. However, studies on student learning after incorporating mathematics in to the science classroom have shown mixed results. Understanding the mixed effects of including mathematics in science has been hindered by a historical focus on characteristics of integration tangential to student learning (e.g., shared elements, extent of integration). A new framework is presented emphasizing the epistemic role of mathematics in science. An epistemic role of mathematics missing from the current literature is identified: use of mathematics to represent scientific mechanisms, Mechanism Connected Mathematics (MCM). Building on prior theoretical work, it is proposed that having students develop mathematical equations that represent scientific mechanisms could elevate their conceptual understanding and quantitative problem solving. Following design and implementation of an MCM unit in inheritance, a large-scale quantitative analysis of pre and post implementation test results showed MCM students, compared to traditionally instructed students) had significantly greater gains in conceptual understanding of mathematically modeled scientific mechanisms, and their ability to solve complex quantitative problems. To gain insight into the mechanism behind the gain in quantitative problem solving, a small-scale qualitative study was conducted of two contrasting groups: 1) within-MCM instruction: competent versus struggling problem solvers, and 2) within-competent problem solvers: MCM instructed versus traditionally instructed. Competent MCM students tended to connect their mathematical inscriptions to the scientific phenomenon and to switch between mathematical and scientifically productive approaches during problem solving in potentially productive ways. The other two groups did not. To address concerns about teacher capacity presenting barriers to scalability of MCM
UTILIZATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES IN MATHEMATICS LEARNING
Directory of Open Access Journals (Sweden)
Farzaneh Saadati
2014-07-01
Full Text Available Attention to integrate technology in teaching and learning has provided a major transformation in the landscape of education. Therefore, many innovations in teaching and learning have been technology-driven. The study attempted to examine what is engineering students’ perception regarding the use of Information and Communication Technologies (ICT in mathematics learning as well as investigate their opinion about how ICT can be integrated to improve teaching and learning processes. The subjects were Iranian engineering students from two universities. The finding showed they are fully aware of importance of ICT in teaching and learning mathematics. Whilst, they were feeling comfortable and confident with technology, they do not have more experience of using technology in mathematics classes before. The findings supported the other studies, which indicated the potentials of ICT to facilitate students’ learning, improve teaching, and enhance institutional administration as established in the literature.Keywords: Technology, Mathematics Learning, Facebook, Attitude Toward ICT DOI: http://dx.doi.org/10.22342/jme.5.2.1498.138-147
Role of cognitive theory in the study of learning disability in mathematics.
Geary, David C
2005-01-01
Gersten, Jordan, and Flojo (in this issue) provide the beginnings of an essential bridge between basic research on mathematical disabilities (MD) in young children and the application of this research for the early identification and remediation of these forms of learning disability. As they acknowledge, the field of MD is in the early stages of development, and thus recommendations regarding identification measures and remedial techniques must be considered preliminary. I discuss the importance of maintaining a tight link between theoretical and empirical research on children's developing numerical, arithmetical, and mathematical competencies and future research on learning disabilities in mathematics. This link will provide the foundation for transforming experimental procedures into assessment measures, understanding the cognitive strengths and weaknesses of children with these forms of learning disability, and developing remedial approaches based on the pattern of cognitive strengths and weaknesses for individual children.
The Role of Self-Assessment in Foundation of Mathematics Learning
Masriyah
2018-01-01
This research is motivated by the low performance of students who took Foundations of Mathematics course. This study was aimed to describe (1) the learning outcomes of students who learned Mathematics Foundation after learning axiomatic applying self-assessment; (2) the difficulty of students and the alternative solutions; and (3) the response of students toward Foundation of Mathematics learning taught by applying self-assessment. This research was a descriptive research. The subjects were 25 mathematics students who studied Foundation of Mathematics in odd semester of the 2015/2016 academic year. Data collection was done using questionnaires, and testing methods. Based on the results of data analysis, it can be concluded that the learning outcomes of students were categorized as “good.” Student responses were positive; the difficulties lied in the sub material: Classification of Axiom Systems and the requirements, Theorem and how the formation, and finite geometry. The alternatives deal with these difficulties are to give emphasis and explanation as needed on these materials, as well as provide some more exercises to reinforce their understanding.
Grounded understanding of abstract concepts: The case of STEM learning.
Hayes, Justin C; Kraemer, David J M
2017-01-01
Characterizing the neural implementation of abstract conceptual representations has long been a contentious topic in cognitive science. At the heart of the debate is whether the "sensorimotor" machinery of the brain plays a central role in representing concepts, or whether the involvement of these perceptual and motor regions is merely peripheral or epiphenomenal. The domain of science, technology, engineering, and mathematics (STEM) learning provides an important proving ground for sensorimotor (or grounded) theories of cognition, as concepts in science and engineering courses are often taught through laboratory-based and other hands-on methodologies. In this review of the literature, we examine evidence suggesting that sensorimotor processes strengthen learning associated with the abstract concepts central to STEM pedagogy. After considering how contemporary theories have defined abstraction in the context of semantic knowledge, we propose our own explanation for how body-centered information, as computed in sensorimotor brain regions and visuomotor association cortex, can form a useful foundation upon which to build an understanding of abstract scientific concepts, such as mechanical force. Drawing from theories in cognitive neuroscience, we then explore models elucidating the neural mechanisms involved in grounding intangible concepts, including Hebbian learning, predictive coding, and neuronal recycling. Empirical data on STEM learning through hands-on instruction are considered in light of these neural models. We conclude the review by proposing three distinct ways in which the field of cognitive neuroscience can contribute to STEM learning by bolstering our understanding of how the brain instantiates abstract concepts in an embodied fashion.
Directory of Open Access Journals (Sweden)
Hafizh Nizham
2017-12-01
Full Text Available This study is a Quasi Experimental study with the design of The Pretest-Post-Test Non-Equivalent Group Design. Population in this research is all student of class X SHS in South Jakarta. Sampling is done by purposive sampling, to obtain an experimental class and control class. In the experimental class, students learn with Treffinger learning model and control, class learning with conventional learning. This study is also to examine the differences of self-efficacy improvement and students literacy skills, and decreased students' mathematical anxiety. Also, this study also examines the relevance of early mathematical abilities (high, medium, low with improving students' math literacy skills. The instrument used in this research is literacy skill test, self-efficacy scale, mathematical anxiety scale, observation sheet, and student interview. Data were analyzed by t-test, one-way ANOVA, and two lines. From the results of the data, it is found that: (1 The improvement of literacy ability of students who are learned with Treffinger model learning is not significantly higher than students who learn with conventional. (2 The self-efficacy of students who learning with the Treffinger model learning is better than the student that is learning by conventional. (3 The mathematical anxiety of students learning with Treffinger model learning reduces better than students learning with conventional. (4 There is a difference in the improvement of students' mathematical literacy skills learning by learning the Treffinger model and students learning with conventional learning based on early mathematical abilities. (5 Student response to Treffinger model learning is better than students learning with conventional learning. Therefore, learning model Treffinger can be an alternative model of learning to improve students' mathematical literacy skills, and self-efficacy students, and able to reduce mathematical anxiety.
Yuliani, R. E.; Suryadi, D.; Dahlan, J. A.
2018-05-01
The objective of this research is to design an alleged teacher learning path or Hypotetical Learning Trajectory (HLT) to anticipate mathematics anxiety of students in learning algebra. HLT loads expected mathematics learning objectives, estimates the level of knowledge and understanding of the students, as well as the selection of mathematical activity in accordance with the learning competencies. This research uses educational design research method. The research steps consist of a preliminary design, experimental and retrospective analysis. Data were gathered from various sources, such as data is written during the research process of test results, documentation, sheet results of students' work, results of interviews, questionnaires, and video recordings. The subjects of the study were 10 junior high school students. Based on the research identified 2 students at the level of high anxiety, 7 people at medium anxiety level and 1 student at low anxiety level. High anxiety levels about 20%, was approximately 70% and approximately 10% lower. These results can be used as an evaluation and reflection for designing materials that can anticipate mathematics anxiety of students learning algebra concepts.
Mathematic anxiety, help seeking behavior and cooperative learning
Masoud Gholamali Lavasani; Farah Khandan
2011-01-01
Present project assess the effectiveness of cooperative learning over the mathematic anxiety and review the behavior of help seeking in first grade high school girl students. The experimental research procedure was in the form of pre-post tests after a period of 8 sessions of teaching. To measure the variables, the questionnaire of mathematic anxiety (Shokrani, 2002) and the questionnaire of help seeking technique (Ghadampour, 1998) were practiced (accepting or avoiding help seeking).To perfo...
E-learning support for Economic-mathematical methods
Directory of Open Access Journals (Sweden)
Pavel Kolman
2009-01-01
Full Text Available Article is describing process of creating and using of e-learning program for graphical solution of linear programming problems that is used in the Economic mathematical methods course on Faculty of Business and Economics, MZLU. The program was created within FRVŠ 788/2008 grant and is intended for practicing of graphical solution of LP problems and allows better understanding of the linear programming problems. In the article is on one hand described the way, how does the program work, it means how were the algorithms implemented, and on the other hand there is described way of use of that program. The program is constructed for working with integer and rational numbers. At the end of the article are shown basic statistics of programs use of students in the present form and the part-time form of study. It is mainly the number of programs downloads and comparison to another programs and students opinion on the e-learning support.
Talking about teaching and learning mathematics in indigenous schools
Directory of Open Access Journals (Sweden)
Lucélida de Fátima Maia da Costa
2012-09-01
Full Text Available To teach and to learn mathematics are not always conjugated concomitantly, particularly in the context of formal indigenous schools. This article puts in discussion some facts about the role of schools in indigenous communities, often mistakenly called Indian schools, as well as questions about the meaning of teaching mathematics in those contexts. Based on the concepts of ethnomathematics, it shows that a dialogue is possible between the traditional mathematical knowledge of various ethnic groups of the Amazon and the knowledge disseminated by formal school teaching practice.
GRADE AS THE MOTIVATIONAL FACTOR IN LEARNING MATHEMATICS
Directory of Open Access Journals (Sweden)
Sead Rešić
2017-09-01
Full Text Available In this research the motivation for learning mathematics was tested,as well as the effect of grades on the motivation of primary school level students. On a sample of N=100 participants, primary school students, we conducted a survey, the results of which show that the participants are more motivated with extrinsic factors, then intrinsic factors for learning mathematics. Grades are the main factor that has the most influence on the motivation level of students for learning mathematics, because students need good grades for their further education. The results also show that punishment and rewards from parents for bad and good grades has no effect on the motivation level of students
Students’ Perceptions of Learning Mathematics With Cellular Phones and Applets
Directory of Open Access Journals (Sweden)
Wajeeh M. Daher
2009-03-01
Full Text Available This paper describes the perceptions of middle school students regarding learning mathematics with cellular phones and web applets, their perceptions regarding the differences between these two electronic devices and their preferences regarding using the devices in learning mathematics. To analyze these perceptions I used the grounded theory approach which involves: open coding, axial coding, and selective coding, where the unit of analysis was the sentence in each of the interviews. The research findings imply that the participants perceived different aspects of both of the electronic devices: the availability of the device, the collaboration aspect, the communication aspect, the size of the device, and the swiftness of working with the device. These aspects influenced the participants’ decisions when, where and how to use each of the devices for the learning of mathematics. More participants preferred the cellular phone over the applet primarily for its small size which makes easy its portability as well as for its communication facilities.
Brain based learning with contextual approach to mathematics achievement
Directory of Open Access Journals (Sweden)
V Kartikaningtyas
2017-12-01
Full Text Available The aim of this study was to know the effect of Brain Based Learning (BBL with a contextual approach to mathematics achievement. BBL-contextual is the learning model that designed to develop and optimize the brain ability for getting a new concept and solving the real life problem. This study method was a quasi-experiment. The population was the junior high school students. The sample chosen by using stratified cluster random sampling. The sample was 109 students. The data collected through a mathematics achievement test that was given after the treatment. The data analyzed by using one way ANOVA. The results of the study showed that BBL-contextual is better than direct learning on mathematics achievement. It means BBL-contextual could be an effective and innovative model.
Nasution, M. L.; Yerizon, Y.; Gusmiyanti, R.
2018-04-01
One of the purpose mathematic learning is to develop problem solving abilities. Problem solving is obtained through experience in questioning non-routine. Improving students’ mathematical problem-solving abilities required an appropriate strategy in learning activities one of them is models problem based learning (PBL). Thus, the purpose of this research is to determine whether the problem solving abilities of mathematical students’ who learn to use PBL better than on the ability of students’ mathematical problem solving by applying conventional learning. This research included quasi experiment with static group design and population is students class XI MIA SMAN 1 Lubuk Alung. Class experiment in the class XI MIA 5 and class control in the class XI MIA 6. The instrument of final test students’ mathematical problem solving used essay form. The result of data final test in analyzed with t-test. The result is students’ mathematical problem solving abilities with PBL better then on the ability of students’ mathematical problem solving by applying conventional learning. It’s seen from the high percentage achieved by the group of students who learn to use PBL for each indicator of students’ mathematical problem solving.
Ma'rufi, Budayasa, I. Ketut; Juniati, Dwi
2017-08-01
The aim of this study was to describe the analysis of mathematics teachers' learning on algebra function limit material based on teaching experience difference. The purpose of this study is to describe the analysis of mathematics teacher's learning on limit algebraic functions in terms of the differences of teaching experience. Learning analysis focused on Pedagogical Content Knowledge (PCK) of teachers in mathematics on limit algebraic functions related to the knowledge of pedagogy. PCK of teachers on limit algebraic function is a type of specialized knowledge for teachers on how to teach limit algebraic function that can be understood by students. Subjects are two high school mathematics teacher who has difference of teaching experience they are one Novice Teacher (NP) and one Experienced Teacher (ET). Data are collected through observation of learning in the class, videos of learning, and then analyzed using qualitative analysis. Teacher's knowledge of Pedagogic defined as a knowledge and understanding of teacher about planning and organizing of learning, and application of learning strategy. The research results showed that the Knowledge of Pedagogy on subject NT in mathematics learning on the material of limit function algebra showed that the subject NT tended to describe procedurally, without explaining the reasons why such steps were used, asking questions which tended to be monotonous not be guiding and digging deeper, and less varied in the use of learning strategies while subject ET gave limited guidance and opportunities to the students to find their own answers, exploit the potential of students to answer questions, provide an opportunity for students to interact and work in groups, and subject ET tended to combine conceptual and procedural explanation.
Using Digital Games to Learn Mathematics – What students think?
Directory of Open Access Journals (Sweden)
Su Ting Yong
2016-06-01
Full Text Available The aim of this study was to explore how university foundation students perceive the use of digital games in learning mathematics. Data was collected using an online questionnaire and 209 foundation university students participated in this study. The questionnaire was used to explore students’ gaming experience and students’ attitude towards mathematics learning with digital games. It was found that most of the university foundation students liked to play different types of digital games. Males preferred playing digital games in more traditional male genres namely sport, racing, shooter, action adventure, role play and strategy games. As for females, they generally preferred playing puzzle and simulation games. Astonishingly, the foundation students were not very positive towards the use of digital games in learning mathematics, and their attitude was essentially influenced by their mathematics interest. Students with greater interest in mathematics were more likely to support the use of digital games in learning.
Understanding Mathematics and Culture in Rural Contexts. ERIC Digest.
Bush, William S.
This ERIC Digest provides an overview of concepts, writers, and tenets associated with the study of mathematics and culture and offers researchers a framework for the field, particularly with regard to rural contexts. (Author)
Bennison, Anne; Goos, Merrilyn
2010-04-01
The potential for digital technologies to enhance students' mathematics learning is widely recognised, and use of computers and graphics calculators is now encouraged or required by secondary school mathematics curriculum documents throughout Australia. However, previous research indicates that effective integration of technology into classroom practice remains patchy, with factors such as teacher knowledge, confidence, experience and beliefs, access to resources, and participation in professional development influencing uptake and implementation. This paper reports on a large-scale survey of technology-related professional development experiences and needs of Queensland secondary mathematics teachers. Teachers who had participated in professional development were found to be more confident in using technology and more convinced of its benefits in supporting students' learning of mathematics. Experienced, specialist mathematics teachers in large metropolitan schools were more likely than others to have attended technology-related professional development, with lack of time and limited access to resources acting as hindrances to many. Teachers expressed a clear preference for professional development that helps them meaningfully integrate technology into lessons to improve student learning of specific mathematical topics. These findings have implications for the design and delivery of professional development that improves teachers' knowledge, understanding, and skills in a diverse range of contexts.
Tinungki, Georgina Maria
2015-01-01
The importance of learning mathematics can not be separated from its role in all aspects of life. Communicating ideas by using mathematics language is even more practical, systematic, and efficient. In order to overcome the difficulties of students who have insufficient understanding of mathematics material, good communications should be built in…
POOR PROGRESS STUDENTS IN LEARNING MATHEMATICS AS SOCIAL AND PSYCHOLOGICAL-PEDAGOGICAL PROBLEM
Directory of Open Access Journals (Sweden)
Vladimir Tatochenko
2016-09-01
Full Text Available The article is devoted to theoretical substantiation of modern methodical system of Mathematics teaching of poor progressing secondary school pupils. A systematic approach to the study of psycho-pedagogical determinants of poor progress of pupils in math was implemented. The dynamic of interfunctional relationship of structure of educational and informative sphere of poor progressing pupils in mathematics was disclosed and scientific understanding of this process was expanded. The introduction in the educational process of didactic methodical and psychologically balanced methodical control system and correction of poor progressing students’ in Maths improves quality indicators of their permanent knowledge and skills. It allows you to discover the fullness, depth and durability of learning at different stages and levels of education, it contributes to correction, management and partly self-management learning process of poor progressing students in Mathematics, excites them to an active mental activity promotes the development of a conscious attitude to their systematic academic work. The essence of “poor progress” phenomena is observed as well as “educational retardation” of school students during teaching mathematics. Target orientation, the resource potential of the real educational process of poor progressing pupils in Mathematics are determined. Contradictions are singled out and pedagogical conditions of results control of learning outcomes of comprehensive school pupils are proved. An attempt to consider the academic failure of schoolchildren in Mathematics in connection with the main categories of didactics – the content and the learning process was made. Certain shortcomings of teaching and learning activities of students in the study of Mathematics are highlighted as poor progressing elements and gaps. The process and content, enriched with the use of NIT, ensuring the formation of key competencies of lagging behind and
CAN INFOGRAPHICS FACILITATE THE LEARNING OF INDIVIDUALS WITH MATHEMATICAL LEARNING DIFFICULTIES?
Directory of Open Access Journals (Sweden)
Basak Baglama
2017-12-01
Full Text Available Visualization of data has recently gained great importance in education and use of infographics is regarded as an important tool in teaching mathematics since it presents information in a clear and abstract way. Therefore, use of infographics for helping individuals with mathematical learning difficulties has become an important research question. This study aims to provide an overview on the use of infographics in teaching mathematics to individuals with mathematical learning difficulties. This is a qualitative study in which document analysis was used the collect the data. Results provided information about the definition of infographics, effectiveness of using infographics in education and facilitative role of infographics in enhancing learning of individuals with mathematical learning difficulties, namely dyscalculia. Results were discussed with relevant literature and recommendations for further research and practices were also presented.
Reflection on Cuboid Net with Mathematical Learning Quality
Sari, Atikah; Suryadi, Didi; Syaodih, Ernawulan
2017-09-01
This research aims to formulate an alternative to the reflection in mathematics learning activities related to the activities of the professionalism of teachers motivated by a desire to improve the quality of learning. This study is a qualitative study using the Didactical Design research. This study was conducted in one of the elementary schools. The data collection techniques are triangulation with the research subject is teacher 5th grade. The results of this study indicate that through deep reflection, teachers can design learning design in accordance with the conditions of the class. Also revealed that teachers have difficulty in choosing methods of learning and contextual learning media. Based on the implementation of activities of reflection and make the learning design based on the results of reflection can be concluded that the quality of learning in the class will develop.
[Mathematical models of decision making and learning].
Ito, Makoto; Doya, Kenji
2008-07-01
Computational models of reinforcement learning have recently been applied to analysis of brain imaging and neural recording data to identity neural correlates of specific processes of decision making, such as valuation of action candidates and parameters of value learning. However, for such model-based analysis paradigms, selecting an appropriate model is crucial. In this study we analyze the process of choice learning in rats using stochastic rewards. We show that "Q-learning," which is a standard reinforcement learning algorithm, does not adequately reflect the features of choice behaviors. Thus, we propose a generalized reinforcement learning (GRL) algorithm that incorporates the negative reward effect of reward loss and forgetting of values of actions not chosen. Using the Bayesian estimation method for time-varying parameters, we demonstrated that the GRL algorithm can predict an animal's choice behaviors as efficiently as the best Markov model. The results suggest the usefulness of the GRL for the model-based analysis of neural processes involved in decision making.
Zeytun, Aysel Sen; Cetinkaya, Bulent; Erbas, Ayhan Kursat
2017-01-01
This paper investigates how prospective teachers develop mathematical models while they engage in modeling tasks. The study was conducted in an undergraduate elective course aiming to improve prospective teachers' mathematical modeling abilities, while enhancing their pedagogical knowledge for the integrating of modeling tasks into their future…
Jansen, Amanda; Berk, Dawn; Meikle, Erin
2017-01-01
In this article, Amanda Jansen, Dawn Berk, and Erin Meikle investigate the impact of mathematics teacher education on teaching practices. In their study they interviewed six first-year teachers who graduated from the same elementary teacher education program and who were oriented toward teaching mathematics conceptually. They observed each teacher…
Ho Younghusband, Alice Christine
2017-01-01
Certified teachers in British Columbia (BC) schools can be assigned to teach secondary mathematics without having a major, minor, or formal background in mathematics. This is known as out-of-field teaching. These non-mathematics subject specialist teachers (NMSSTs) must learn or relearn the subject matter of mathematics to teach secondary mathematics. This study investigates what professional learning activities NMSSTs participate in to gain subject matter content knowledge in mathematics, wh...
Learning mathematics in students of Mechanical Engineering
Directory of Open Access Journals (Sweden)
Raquel Ramírez-Pedroso
2016-07-01
Full Text Available Mathematical discipline contributes to the development of logical and algorithmic thinking and provides the basics of a specialist in Technical Sciences, as every engineer considers technical and scientific representations in mathematical terms, with which reflects the quantitative and qualitative features of the phenomena studied . His goal is to make the engineer master the mathematical apparatus to do so able to model and analyze the technical, economic, productive and scientific processes using both, analytical methods and numerical. Interdisciplinarity is a current educational trend that puts in the center the comprehensive treatment of the complex processes of reality from the contribution of different disciplines and meet common objectives. It is necessary to address the issue of interdisciplinarity, from different points of view. Normal 0 21 false false false ES X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}
How we understand mathematics conceptual integration in the language of mathematical description
Woźny, Jacek
2018-01-01
This volume examines mathematics as a product of the human mind and analyzes the language of "pure mathematics" from various advanced-level sources. Through analysis of the foundational texts of mathematics, it is demonstrated that math is a complex literary creation, containing objects, actors, actions, projection, prediction, planning, explanation, evaluation, roles, image schemas, metonymy, conceptual blending, and, of course, (natural) language. The book follows the narrative of mathematics in a typical order of presentation for a standard university-level algebra course, beginning with analysis of set theory and mappings and continuing along a path of increasing complexity. At each stage, primary concepts, axioms, definitions, and proofs will be examined in an effort to unfold the tell-tale traces of the basic human cognitive patterns of story and conceptual blending. This book will be of interest to mathematicians, teachers of mathematics, cognitive scientists, cognitive linguists, and anyone interested...
Student talk and opportunities for mathematical learning in small group interactions
Wood, M.; Kalinec, C.
2012-01-01
Small group interactions are an important tool for mathematical learning and yet researchers have neither examined small group talk across entire lessons nor have they focused on moments of mathematical learning in small groups. We examined such talk and identified kinds of interactions and connections between interactions and mathematical learning. We differentiated talk based upon its focus: mathematical objects (mathematizing), people (subjectifying), or more specifically, people’s attribu...
Amongst mathematicians teaching and learning mathematics at university level
Nardi, Elena
2008-01-01
"Amongst Mathematicians" offers a unique perspective on the ways in which mathematicians perceive their students' learning, the way they teach and reflect on those teaching practices. Elena Nardi employs fictional characters to create a conversation on these important issues. While personas are created, the facts incorporated into their stories are based on large bodies of data including intense focus groups comprised of mathematicians and mathematics education.This book further develops analyses of the data and demonstrates the pedagogical potential that lies in collaborative research that engages educators, researchers, and students in undergraduate mathematics education. Nardi also addresses the need for action in undergraduate mathematics education by creating discourse for reform and demonstrating the feasibility and potential of collaboration between mathematicians and researchers. "Amongst Mathematicians" is of interest to the entire mathematics community including teacher educators, undergraduate and ...
Measurement of Usability for Multimedia Interactive Learning Based on Website in Mathematics for SMK
Sukardjo, Moch.; Sugiyanta, Lipur
2018-04-01
Web usability, if evaluation done correctly, can significantly improve the quality of the website. Website containing multimedia for education shoud apply user interfaces that are both easy to learn and easy to use. Multimedia has big role in changing the mindset of a person in learning. Using multimedia, learners get easy to obtain information, adjust information and empower information. Therefore, multimedia is utilized by teachers in developing learning techniques to improve student learning outcomes. For students with self-directed learning, multimedia provides the ease and completeness of the courses in such a way that students can complete the learning independently both at school and at home without the guidance of teachers. The learning independence takes place in how students choose, absorb information, and follow the evaluation quickly and efficiently. The 2013 Curriculum 2013 for Vocational High School (SMK) requires teachers to create engaging teaching and learning activities that students enjoy in the classroom (also called invitation learning environment). The creation of learning activity environment is still problem for most teachers. Various researches reveal that teaching and learning activities will be more effective and easy when assisted by visual tools. Using multimedia, learning material can be presented more attractively that help students understand the material easily. The opposite is found in the learning activity environment who only rely on ordinary lectures. Usability is a quality level of multimedia with easy to learn, easy to use and encourages users to use it. The website Multimedia Interactive Learning for Mathematics SMK Class X is targeted object. Usability website in Multimedia Interactive Learning for Mathematics SMK Class X is important indicators to measure effectiveness, efficiency, and student satisfaction to access the functionality of website. This usability measurement should be done carefully before the design is
Mathematical beauty in service of deep approach to learning
DEFF Research Database (Denmark)
Karamehmedovic, Mirza
2015-01-01
was hands-on MATLAB programming, where the algorithms were tested and applied to solve physical modelbased problems. To encourage a deep approach, and discourage a surface approach to learning, I introduced into the lectures a basic but rigorous mathematical treatment of crucial theoretical points...
Using Generative Routines to Support Learning of Ambitious Mathematics Teaching
Ghousseini, Hala; Beasley, Heather; Lord, Sarah
2017-01-01
In this paper, we integrate a set of theoretical considerations that together serve as a model for investigating how high-leverage practices could be generative of teacher learning. We use the context of rehearsals to investigate how the use of a specified question sequence aimed at eliciting student mathematical thinking can afford opportunities…
Cooperative learning and Mathematics Education: A happy Marriage?
Terwel, J.; Stéphan Vincent-Lancrin, S.; Kiira Kärkkäinen, K.; Francesco Avvisati, F.
2011-01-01
One of the main questions in this paper is: ‘Should knowledge be provided or generated in mathematics education?’ In trying to respond on this fundamental question it became clear that this dichotomy is not fruitful. Therefore we looked for a third way in which guided cooperative learning was a
Learning mathematics through inquiry; a large scale evaluation
de Jong, Anthonius J.M.; Hendrikse, Petra; van der Meij, Hans; Jacobson, M.J.; Reiman, P.
2010-01-01
Mathematics education is changing from a procedure-oriented approach to one in which concepts and their relations take a central place. Inquiry environments offer students the opportunity to investigate a domain and to focus on conceptual aspects. In this chapter, we describe a learning arrangement
Designing Opportunities to Learn Mathematics Theory-Building Practices
Bass, Hyman
2017-01-01
Mathematicians commonly distinguish two modes of work in the discipline: "Problem solving," and "theory building." Mathematics education offers many opportunities to learn problem solving. This paper explores the possibility, and value, of designing instructional activities that provide supported opportunities for students to…
Learning Mathematics: Perspectives of Australian Aboriginal Children and Their Teachers
Howard, Peter; Perry, Bob
2005-01-01
Two key stakeholders in enhancing and building Aboriginal children's capacity to learn mathematics are teachers and the Aboriginal children themselves. In Australian schools it is often the case that the two groups come from different cultural backgrounds with very differing life experiences. This paper reports on an ethnographic study and focuses…
Effects of Game Technology on Elementary Student Learning in Mathematics
Shin, Namsoo; Sutherland, LeeAnn M.; Norris, Cathleen A.; Soloway, Elliot
2012-01-01
This paper reports the effects of game technology on student learning in mathematics as investigated in two data sets collected from slightly different subjects. In the first, 41 second graders (7 or 8 years old) from two classes used either a technology-based game or a paper-based game for 5 weeks. For the next 13 weeks, both classes used a…
Differential Effects of Learning Games on Mathematics Proficiency
Chang, Mido; Evans, Michael A.; Kim, Sunha; Norton, Anderson; Samur, Yavuz
2015-01-01
This study examined the effects of a learning game, [The Math App] on the mathematics proficiency of middle school students. For the study, researchers recruited 306 students, Grades 6-8, from two schools in rural southwest Virginia. Over a nine-week period, [The Math App] was deployed as an intervention for investigation. Students were assigned…
Developing Critical Thinking Skills of Students in Mathematics Learning
Directory of Open Access Journals (Sweden)
Firdaus Firdaus
2015-08-01
Full Text Available Critical thinking skills should be owned by students. Therefore, schools should be responsible to develop and evaluate critical thinking skills through teaching and learning process in schools. This study aims to identify the effects of mathematical learning modules based on problem-based learning to critical thinking skills at secondary school students in District of Bone. Assessment of critical thinking skills in mathematical problem solving non-routine includes three parts; the identification and interpretation of information, information analysis, and evaluate of evidence and arguments. This study involved a total of 68 students grade 12 science state secondary school (SMAN in Bone District of South Sulawesi, Indonesia in academic year 2014-2015. The sample consists of 38 students in the city and 30 rural students. The design of the study was quasi experimental one group pretest-posttest. The data was analysed using the inferential t-test with SPSS 20.0 for windows. The study found that there are effects of the use of mathematical learning module based PBL to enhance the ability of critical thinking skills in mathematics students in all three components, namely, identifying and interpreting information, information analysis, and evaluate of evidence and argument.
Implementing CRA with Secondary Students with Learning Disabilities in Mathematics
Witzel, Bradley S.; Riccomini, Paul J.; Schneider, Elke
2008-01-01
Students with learning disabilities struggle to acquire essential mathematical concepts and skills, especially at the secondary level. One effective approach to improving secondary math performance supported by research is the concrete-to-representational-to-abstract (CRA) sequence of instruction. Although CRA is an evidenced-based instructional…
Opportunity to learn English and mathematics in Ghanaian primary ...
African Journals Online (AJOL)
Opportunity to learn English and mathematics in Ghanaian primary schools: implications for teacher education programmes. ... teachers' instructional practices and management of instructional time, and • teachers' preparedness to implement the content standards. These inefficiencies could be attributed to the fact that the ...
Teaching and Learning Mathematics from Primary Historical Sources
Barnett, Janet Heine; Lodder, Jerry; Pengelley, David
2016-01-01
Why would anyone think of teaching and learning mathematics directly from primary historical sources? We aim to answer this question while sharing our own experiences, and those of our students across several decades. We will first describe the evolution of our motivation for teaching with primary sources, and our current view of the advantages…
GeoGebra and eXe Learning: applicability in the teaching of Physics and Mathematics
Directory of Open Access Journals (Sweden)
Eunice Maria Mussoi
2011-04-01
Full Text Available Today, education in the field of sciences is still characterized by excessive attention to repetitive exercises at the expense of understanding and visualizing the concepts of mathematical and physical phenomena. This article will show the potential of the software GeoGebra to build content and / or activities in Physics and Mathematics usable in isolation or engaged in other activities, such as eXe Learning. For this we constructed two activities: a mathematical content - Application of successive derivatives, and a content of physics - Application of uniform rectilinear motion. These contents were built in eXe Learning, and the graphics was built in GeoGebra and imported into the eXe by Java Applet. The content was done with the exported SCORM to Moodle, it is within this framework that the student will study the movement and display of graphic content.
Prospective Mathematics Teachers' Understanding of the Base Concept
Horzum, Tugba; Ertekin, Erhan
2018-01-01
The purpose of this study is to analyze what kind of conceptions prospective mathematics teachers (PMTs) have about the base concept (BC). One-hundred and thirty-nine PMTs participated in the study. In this qualitative research, data were obtained through open-ended questions, the semi-structured interviews and pictures of geometric figures drawn…
Self-Regulated Learning: A Motivational Approach for Learning Mathematics
K., Abdul Gafoor; Kurukkan, Abidha
2016-01-01
Self-regulated learning is identified as a fruitful learning strategy as evidenced from the increase in the number of researches in academic self-regulation since year 2000. Knowing to manage one's own learning is helpful in attaining the goals. This analysis of literature on self-regulated learning focuses on the factors that affect…
Barton, James M.
2016-01-01
Carnegie Learning's Cognitive Tutor®The purpose of this study is to determine whether there is a statistically significant difference between pre-test and post-test achievement scores when Compass Learning's Odyssey Math® is used together with Carnegie Learning's Math Cognitive Tutor® in a mathematics intervention program at ABC Middle School. The…
Spreadsheets as a Transparent Resource for Learning the Mathematics of Annuities
Pournara, Craig
2009-01-01
The ability of mathematics teachers to decompress mathematics and to move between representations are two key features of mathematical knowledge that is usable for teaching. This article reports on four pre-service secondary mathematics teachers learning the mathematics of annuities. In working with spreadsheets students began to make sense of…
Collateral Learning and Mathematical Education of Teachers
Abramovich, Sergei
2012-01-01
This article explores the notion of collateral learning in the context of classic ideas about the summation of powers of the first "n" counting numbers. Proceeding from the well-known legend about young Gauss, this article demonstrates the value of reflection under the guidance of "the more knowledgeable other" as a pedagogical method of making…
Students' Perceptions of Learning Mode in Mathematics
Krishnan, Saras
2016-01-01
Blended courses or hybrid courses have gained popularity over the years because of their flexibility and convenience. Technology use in the online component of the blended/hybrid courses is another influence particularly to the younger generation of learners who enjoy learning interactively in a virtual environment. However, depending on the…
Robiansyah, S. T. U.; Nanang, F.; Hidayat
2018-01-01
The purpose of this study was to introduce about mathematic assessment is a process of obtaining data or information about the mastery of a student's mathematical skills as an ingredient in preparing a learning program. With this mathematics assessment can be known obstacles, difficulties and needs of students especially in the field of mathematic, so that the learning program will be in accordance with the potential students because it is tailored to what is required of students. This research study was conducted at elementary school of inclusive precisely at SDN Sukagalih I Bandung City based learning in setting of inclusive education. This research study is motivated by the existence of a first-grade student who has disabilities learning in mathematics, the ability of the mathematical prerequisite mastery of the classification of objects by color. The results of the research can provide a profile picture of student data information, the data obtained from the results of the development of systematic and formal mathematical assessment. After doing the development of mathematics assessment then the teacher gets important related information: 1. process the analysis of students’ learning needs, especially in the field of mathematics, 2. preparing the learning program planning according to student learning needs, 3. Designing procedural of method remedial program.
Hamid, H.
2018-01-01
The purpose of this study is to analyze an improvement of students’ mathematical critical thinking (CT) ability in Real Analysis course by using Rigorous Teaching and Learning (RTL) model with informal argument. In addition, this research also attempted to understand students’ CT on their initial mathematical ability (IMA). This study was conducted at a private university in academic year 2015/2016. The study employed the quasi-experimental method with pretest-posttest control group design. The participants of the study were 83 students in which 43 students were in the experimental group and 40 students were in the control group. The finding of the study showed that students in experimental group outperformed students in control group on mathematical CT ability based on their IMA (high, medium, low) in learning Real Analysis. In addition, based on medium IMA the improvement of mathematical CT ability of students who were exposed to RTL model with informal argument was greater than that of students who were exposed to CI (conventional instruction). There was also no effect of interaction between RTL model and CI model with both (high, medium, and low) IMA increased mathematical CT ability. Finally, based on (high, medium, and low) IMA there was a significant improvement in the achievement of all indicators of mathematical CT ability of students who were exposed to RTL model with informal argument than that of students who were exposed to CI.
Directory of Open Access Journals (Sweden)
Somayeh Karimi
2013-11-01
Full Text Available Recent studies show that mathematics disorder is a learning disorder. Children with this disorder have math skills is much lower than mean for their age, intelligence, and education. The disorder affects the child's success at school. It is thought that up to 7% of children have this disorder. It affects boys and girls equally. It is also caused dyscalculia. The cause of this disorder is not known. Like other learning disorders, it occurs more in some families. Mathematics disorder may also be the result of damage in certain parts of the brain. It also has led to a weak understanding of mathematical concepts and increased realization of mathematics. In this study, it is tried that studied gender difference between learning disabled students' performances in mathematical activities. Findings indicated that there is not meaningful difference between genders. Since this research was case study, it seems that this difference will be indicated in vast studies. Then it suggests that have to do more study in this field for its causes.
Pattanayak, Santanu
2017-01-01
Deploy deep learning solutions in production with ease using TensorFlow. You'll also develop the mathematical understanding and intuition required to invent new deep learning architectures and solutions on your own. Pro Deep Learning with TensorFlow provides practical, hands-on expertise so you can learn deep learning from scratch and deploy meaningful deep learning solutions. This book will allow you to get up to speed quickly using TensorFlow and to optimize different deep learning architectures. All of the practical aspects of deep learning that are relevant in any industry are emphasized in this book. You will be able to use the prototypes demonstrated to build new deep learning applications. The code presented in the book is available in the form of iPython notebooks and scripts which allow you to try out examples and extend them in interesting ways. You will be equipped with the mathematical foundation and scientific knowledge to pursue research in this field and give back to the community.
Understanding the Advising Learning Process Using Learning Taxonomies
Muehleck, Jeanette K.; Smith, Cathleen L.; Allen, Janine M.
2014-01-01
To better understand the learning that transpires in advising, we used Anderson et al.'s (2001) revision of Bloom's (1956) taxonomy and Krathwohl, Bloom, and Masia's (1964) affective taxonomy to analyze eight student-reported advising outcomes from Smith and Allen (2014). Using the cognitive processes and knowledge domains of Anderson et al.'s…
Viholainen, Antti; Asikainen, Mervi; Hirvonen, Pekka E.
2014-01-01
This article examines Finnish mathematics student teachers' epistemological beliefs concerning the nature of mathematics and the goals of mathematics teaching and learning solely in the beginning of their studies at university. A total of 18 students participated in a study consisting of a short questionnaire and interviews. The data was analyzed…
Mekarina, M.; Ningsih, Y. P.
2017-09-01
This classroom action research is based by the facts that the students motivation and achievement mathematics learning is less. One of the factors causing is learning that does not provide flexibility to students to empower the potential of the brain optimally. The aim of this research was to improve the student motivation and achievement in mathematics learning by implementing brain based learning approach. The subject of this research was student of grade XI in senior high school. The research consisted of two cycles. Data of student achievement from test, and the student motivation through questionnaire. Furthermore, the finding of this research showed the result of the analysis was the implementation of brain based learning approach can improve student’s achievement and motivation in mathematics learning.
Investigating students' perceptions of graduate learning outcomes in mathematics
King, Deborah; Varsavsky, Cristina; Belward, Shaun; Matthews, Kelly
2017-11-01
The purpose of this study is to explore the perceptions mathematics students have of the knowledge and skills they develop throughout their programme of study. It addresses current concerns about the employability of mathematics graduates by contributing much needed insight into how degree programmes are developing broader learning outcomes for students majoring in mathematics. Specifically, the study asked students who were close to completing a mathematics major (n = 144) to indicate the extent to which opportunities to develop mathematical knowledge along with more transferable skills (communication to experts and non-experts, writing, working in teams and thinking ethically) were included and assessed in their major. Their perceptions were compared to the importance they assign to each of these outcomes, their own assessment of improvement during the programme and their confidence in applying these outcomes. Overall, the findings reveal a pattern of high levels of students' agreement that these outcomes are important, but evidence a startling gap when compared to students' perceptions of the extent to which many of these - communication, writing, teamwork and ethical thinking - are actually included and assessed in the curriculum, and their confidence in using such learning.
Mathematics, anxiety, and the brain.
Moustafa, Ahmed A; Tindle, Richard; Ansari, Zaheda; Doyle, Margery J; Hewedi, Doaa H; Eissa, Abeer
2017-05-24
Given that achievement in learning mathematics at school correlates with work and social achievements, it is important to understand the cognitive processes underlying abilities to learn mathematics efficiently as well as reasons underlying the occurrence of mathematics anxiety (i.e. feelings of tension and fear upon facing mathematical problems or numbers) among certain individuals. Over the last two decades, many studies have shown that learning mathematical and numerical concepts relies on many cognitive processes, including working memory, spatial skills, and linguistic abilities. In this review, we discuss the relationship between mathematical learning and cognitive processes as well as the neural substrates underlying successful mathematical learning and problem solving. More importantly, we also discuss the relationship between these cognitive processes, mathematics anxiety, and mathematics learning disabilities (dyscalculia). Our review shows that mathematical cognition relies on a complex brain network, and dysfunction to different segments of this network leads to varying manifestations of mathematical learning disabilities.
Mutholib, Ahmad Abdul; Sujadi, Imam; Subanti, Sri
2017-08-01
SA is the approach used for the exploration of research and answer questions. Teachers' beliefs have a greater influence than the teacher's knowledge of designing lesson plans in the classroom. The objectives of this study are to explore the teachers' beliefs in SA, to reveal how the beliefs are reflected in classroom practices; and to figure out the factors affecting their beliefs and practices of SA to the teaching of mathematics. This qualitative research applied case study. The data was gained from classroom observation, face-to-face interview, and documentation. Interactive models from Miles and Huberman were used to examine the data. Results of the study: 1) The teachers believe about the conception of SA. They also believe that the SA is important and gives impact to students' progress. They believe that by applying SA, the target of mathematics learning is acquired. As to learning procedure, they believe that SA steps are conducted in sequence by combining some steps for each. 2) Teachers formulate their beliefs of applying the five scientific step of integrating all steps by keeping the sequence. Teachers argue that target of mathematics learning can be attained by some ways, namely presence of theoretical and practical support, teachers' guidance, providing variety of media and motivation to students. 3) There are five factors which influence teachers' beliefs and practices of SA, namely learning and teaching experience, teachers' motivation, sharing with colleagues and facility. This study concludes that teachers believe in the importance of SA, therefore they implement it in the classroom.
Algebraic Reasoning in Solving Mathematical Problem Based on Learning Style
Indraswari, N. F.; Budayasa, I. K.; Ekawati, R.
2018-01-01
This study aimed to describe algebraic reasoning of secondary school’s pupils with different learning styles in solving mathematical problem. This study begins by giving the questionnaire to find out the learning styles and followed by mathematical ability test to get three subjects of 8th-grade whereas the learning styles of each pupil is visual, auditory, kinesthetic and had similar mathematical abilities. Then it continued with given algebraic problems and interviews. The data is validated using triangulation of time. The result showed that in the pattern of seeking indicator, subjects identified the things that were known and asked based on them observations. The visual and kinesthetic learners represented the known information in a chart, whereas the auditory learner in a table. In addition, they found the elements which makes the pattern and made a relationship between two quantities. In the pattern recognition indicator, they created conjectures on the relationship between two quantities and proved it. In the generalization indicator, they were determining the general rule of pattern found on each element of pattern using algebraic symbols and created a mathematical model. Visual and kinesthetic learners determined the general rule of equations which was used to solve problems using algebraic symbols, but auditory learner in a sentence.
Mathematical disposition of junior high school students viewed from learning styles
Putra, Arief Karunia; Budiyono, Slamet, Isnandar
2017-08-01
The relevance of this study is the growth of character values for students in Indonesia. Mathematics is a subject that builds the character values for students. It can be seen from the students' confidence in answering mathematics problems, their persistent and resilience in mathematics task. In addition, students have a curiosity in mathematics and appreciate the usefulness of mathematics. In mathematics, it is called a mathematical disposition. One of the factors that can affect students' mathematical disposition is learning style. Each student has a dominant learning style. Three of the most popular ones are visual, auditory, and kinesthetic. The most important uses of learning styles is that it makes it easy for teachers to incorporate them into their teaching. The purpose of this study was to determine which one that gives better mathematical dispositions among students with learning styles of visual, auditory, or kinesthetic. The subjects were 150 students in Sleman regency. Data obtained through questionnaires. Based on data analysis that has been done with benchmark assessment method, it can be concluded that students with visual learning style has a mathematical disposition better than students with auditory and kinesthetic learning styles, while students with kinesthetic learning style has a mathematical disposition better than students with auditory learning style. These results can be used as a reference for students with individual learning styles to improve the mathematical positive disposition in the learning process of mathematics.
Wang, Aubrey H.; Firmender, Janine M.; Power, Joshua R.; Byrnes, James P.
2016-01-01
Research Findings: The early childhood years are critical in developing early mathematics skills, but the opportunities one has to learn mathematics tend to be limited, preventing the development of significant mathematics learning. By conducting a meta-analysis of 29 experimental and quasi-experimental studies that have been published since 2000,…
Bouck, Emily C.; Bouck, Mary K.; Joshi, Gauri S.; Johnson, Linley
2016-01-01
Students with learning disabilities struggle with word problems in mathematics classes. Understanding the type of errors students make when working through such mathematical problems can further describe student performance and highlight student difficulties. Through the use of error codes, researchers analyzed the type of errors made by 14 sixth…
Using Science to Promote Preservice Teacher Understanding of Problem Solving in Mathematics
Tobias, Jennifer M.; Ortiz, Enrique
2007-01-01
Preservice elementary teachers need to be given the experiences of integrating mathematics with other subjects. They need to go into the classroom with the understanding that mathematics is not an isolated topic. This article describes a paper airplane activity that was presented in a class of preservice elementary education teachers to show how…
Wekesa, Duncan Wasike
2006-01-01
Mathematical knowledge and understanding is important not only for scientific progress and development but also for its day-to-day application in social sciences and arts, government, business and management studies and household chores. But the general performance in school mathematics in Kenya has been poor over the years. There is evidence that…
Patel, Rita Manubhai
2013-01-01
This dissertation examined understanding of slope and derivative concepts and mathematical dispositions of first-semester college calculus students, who are recent high school graduates, transitioning to university mathematics. The present investigation extends existing research in the following ways. First, based on this investigation, the…
Flevares, Lucia M.; Schiff, Jamie R.
2014-01-01
In the past 25 years an identifiable interest in using children’s literature in mathematics learning emerged (Clyne and Griffiths, 1991; Welchman-Tischler, 1992; Hong, 1996; Hellwig etal., 2000; Haury, 2001). We critically review the rationales given for the use of picture books in mathematics learning, with a special focus on geometry due to its underrepresentation in this body of literature and the need for greater focus on this topic. The benefits and effectiveness of using picture books for children’s mathematics learning and interest have been documented (Hong, 1996; O’Neill etal., 2004; Young-Loveridge, 2004). For geometry, although much learning of shape ideas should be hands-on, two-dimensional figures are essential to develop children’s understanding of plane geometry. Books may effectively engage pre-literate children with plane shapes (van den Heuvel-Panhuizen and van den Boogaard, 2008; Skoumpourdi and Mpakopoulou, 2011) and shapes as gestalt wholes or prototypes (van Hiele, 1986; Clements etal., 1999; Hannibal, 1999). We review several guidelines and evaluative criteria for book selection, including Cianciolo (2000), Schiro (1997), Hunsader (2004), and van den Heuvel-Panhuizen and Elia (2012). Geometry concepts have proven challenging for young students, but their difficulties may stem, in part, from inadequate teacher training and professional development (Clements and Sarama, 2000; Chard etal., 2008) which lead to misconceptions (Oberdorf and Taylor-Cox, 1999; Inan and Dogan-Temur, 2010). Using picture books in teacher training may be an inviting way for early childhood teachers to enhance their own knowledge. We will examine the literature for guidance on incorporating children’s literature into teacher training. In closing we will outline a comprehensive, multi-pronged agenda for best instructional practices for selection and use of children’s books in mathematics activities and for teacher training. PMID:24904475
Directory of Open Access Journals (Sweden)
Lucia M. Flevares
2014-05-01
Full Text Available In the past 25 years an identifiable interest in using children’s literature in mathematics learning emerged (Clyne & Griffiths, 1991; Haury, 2001; Hellwig, Monroe, & Jacobs, 2000; Hong, 1996; Welchman-Tischler, 1992. We critically review the rationales given for the use of picture books in mathematics learning, with a special focus on geometry due to its underrepresentation in this body of literature and the need for greater focus on this topic. The benefits and effectiveness of using picture books for children’s mathematics learning and interest have been documented (Hong, 1996; O’Neill, Pearce & Pick, 2004; Young-Loveridge, 2004. For geometry, although much learning of shape ideas should be hands-on, two-dimensional figures are essential to develop children’s understanding of plane geometry. Books may effectively engage pre-literate children with plane shapes (Skoumpourdi & Mpakopoulou, 2011; van den Heuvel-Panhuizen & Van den Boogaard, 2008 and shapes as gestalt wholes or prototypes (Clements et al., 1999; Hannibal, 1999; van Hiele, 1986. We review several guidelines and evaluative criteria for book selection, including Cianciolo (2000, Schiro (1997, Hunsader (2004 and Van den Heuvel-Panhuizen and Elia (2012. Geometry concepts have proven challenging for young students, but their difficulties may stem, in part, from inadequate teacher training and professional development (Chard, Baker & Clarke, 2008; Clements & Sarama, 2000 which lead to misconceptions (Inan & Dogan-Temur, 2010; Oberdorf & Taylor-Cox, 1999. Using picture books in teacher training may be an inviting way for early childhood teachers to enhance their own knowledge. We will examine the literature for guidance on incorporating children’s literature into teacher training. In closing we will outline a comprehensive, multi-pronged agenda for best instructional practices for selection and use of children’s books in mathematics activities and for teacher training.
Umphrey, Jan
2011-01-01
The National Council of Teachers of Mathematics (NCTM) is a voice and advocate for mathematics educators, working to ensure that all students receive equitable mathematics learning of the highest quality. To help teachers and school leaders understand the Common Core State Standards for Mathematics (CCSSM) and to point out how the CCSSM can be…
COMPUTER MATHEMATICS SYSTEMS IN STUDENTS’ LEARNING OF "INFORMATIСS"
Directory of Open Access Journals (Sweden)
Taras P. Kobylnyk
2014-04-01
Full Text Available The article describes the general characteristics of the most popular computer mathematics systems such as commercial (Maple, Mathematica, Matlab and open source (Scilab, Maxima, GRAN, Sage, as well as the conditions of use of these systems as means of fundamentalization of the educational process of bachelor of informatics. It is considered the role of CMS in bachelor of informatics training. It is identified the approaches of CMS pedagogical use while learning information and physics and mathematics disciplines. There are presented some tasks, in which we must carefully use the «responses» have been received using CMS. It is identified the promising directions of development of computer mathematics systems in high-tech environment.
The zone of proximal development in the learning of mathematics
Directory of Open Access Journals (Sweden)
Sibawu Siyepu
2013-01-01
Full Text Available South Africa has a huge shortage of skilled workers in various fields such as engineering, applied sciences, accountancy, architecture, medicine and law. Mathematics is a requirement for entry in these careers to enable learners to grasp the content of various subjects in these disciplines. Despite that, in South Africa, learners' performance in mathematics is shocking. This article highlights the high failure rate of mathematics in a South African context. It suggests possible causes of learners' poor performance based on the literature. The article brings a socio-cultural theory of learning focusing on the zone ofproximal development as a possible solution in the development of instructional practices. It makes recommendations on what should be done to tackle anticipated problems as suggested in the discussion.
Effect of Writing-to-Learn Strategy on Undergraduates' Conceptual Understanding of Electrostatics
Atasoy, Sengül
2013-01-01
The purpose of this study is to explore the effect of Writing-to-Learn (WTL) strategy on undergraduates' conceptual understanding of electrostatics. The sample of the study was 54 university students registered at elementary school mathematics education department. While the experimental group was asked to conduct WTL activities like explanatory…
Liu, Yingyi
2017-09-08
Prior studies on fraction magnitude understanding focused mainly on students with relatively sufficient formal instruction on fractions whose fraction magnitude understanding is relatively mature. This study fills a research gap by investigating fraction magnitude understanding in the early stages of fraction instruction. It extends previous findings to children with limited and primary formal fraction instruction. Thirty-five fourth graders with limited fraction instruction and forty fourth graders with primary fraction instruction were recruited from a Chinese primary school. Children's fraction magnitude understanding was assessed with a fraction number line estimation task. Approximate number system (ANS) acuity was assessed with a dot discrimination task. Whole number knowledge was assessed with a whole number line estimation task. General reading and mathematics achievements were collected concurrently and 1 year later. In children with limited fraction instruction, fraction representation was linear and fraction magnitude understanding was concurrently related to both ANS and whole number knowledge. In children with primary fraction instruction, fraction magnitude understanding appeared to (marginally) significantly predict general mathematics achievement 1 year later. Fraction magnitude understanding emerged early during formal instruction of fractions. ANS and whole number knowledge were related to fraction magnitude understanding when children first began to learn about fractions in school. The predictive value of fraction magnitude understanding is likely constrained by its sophistication level. © 2017 The British Psychological Society.
Newton, Lawrence R.
This project (1) identifies basic and functional mathematics skills (shop mathematics skills), (2) provides pretests on these functional mathematics skills, and (3) provides student learning projects (project sheets) that prepare metal trades students to read, understand, and apply mathematics and measuring skills that meet entry-level job…
Dahm, Rebecca; De Angelis, Gessica
2018-01-01
The present study examines the multilingual benefit in relation to language learning and mathematical learning. The objective is to assess whether speakers of three or more languages, depending on language profile and personal histories, show significant advantages in language learning and/or mathematical learning, and whether mother tongue…
Using Writing in Mathematics to Deepen Student Learning
Urquhart, Vicki
2009-01-01
Writing is the ability to compose text effectively for different purposes and audiences. When many of us reflect on our own school experiences, we recall writing in English and history classes, but not in mathematics. Math classes previously relied on skill-building and conceptual understanding activities. Today, teachers are realizing that…
Knowledge. Progression and the Understanding of Workplace Learning
DEFF Research Database (Denmark)
Laursen, Erik
2006-01-01
The book explores new ways of thinking about learning at work, and the understanding of its role and purpose.......The book explores new ways of thinking about learning at work, and the understanding of its role and purpose....
Students’ Mathematical Creative Thinking through Problem Posing Learning
Ulfah, U.; Prabawanto, S.; Jupri, A.
2017-09-01
The research aims to investigate the differences in enhancement of students’ mathematical creative thinking ability of those who received problem posing approach assisted by manipulative media and students who received problem posing approach without manipulative media. This study was a quasi experimental research with non-equivalent control group design. Population of this research was third-grade students of a primary school in Bandung city in 2016/2017 academic year. Sample of this research was two classes as experiment class and control class. The instrument used is a test of mathematical creative thinking ability. Based on the results of the research, it is known that the enhancement of the students’ mathematical creative thinking ability of those who received problem posing approach with manipulative media aid is higher than the ability of those who received problem posing approach without manipulative media aid. Students who get learning problem posing learning accustomed in arranging mathematical sentence become matter of story so it can facilitate students to comprehend about story
The use of mobile technologies for mathematical engagement in informal learning environments
2014-01-01
M.Ed. (Ict in Education) South African learners are underperforming in Mathematics. Annual National Assessments for grade 9 and grade 12 results in Mathematics are shocking according to the Ministry of Education. This study investigates informal learning as an alternative method of addressing underperformance in Mathematics in South African schools. Informal learning with the use of mobile technology enhances engagement in Mathematics learning. The participants of this study had access to ...
SIGNIFICANCE OF EARLY-AGE LEARNING OF MATHEMATICAL SKILLS
Directory of Open Access Journals (Sweden)
Sead Rešić
2011-12-01
Full Text Available It is a fact that only hereditary, i.e. genetic factors are not sufficient for development of a child’s brain; on the contrary, a child needs external stimuli expressed through touch, speech, images, which lead to the conclusion that immediate and extended surroundings shape the brain, meaning that the external stimuli, stronger or weaker, mutually connect the brain cells and neurons. Questions regarding the development of mathematical manner of thinking are mostly based on the natural process of learning, however, this paper deals with deeper set of problems, which are not only difficult to resolve but possibly there is no resolution. Namely, a question is posed what is the appropriate age when a child is ready and able to solve certain mathematical problems or notice mathematical principles, that is, whether they are actually exist clearly defined age boundaries based on which a conclusion could be made about the time and individual is ready to solve mathematical problems of a concrete difficulty level or to notice mathematical laws.
Learning by experience on the example of mathematic pendulum
Horváth, Peter
2017-01-01
The very suitable topic for independent student activities is the investigation of factors influencing an oscillation period of the mathematic pendulum. The article describes the experience from particular lessons. Students themselves were discovering new facts. They learned about the physics practice of acquiring new knowledge. The knowledge quality and retention was compared between the experimental classes and classes with a traditional instruction one year after the experiment.
Tuminaro, Jonathan
Many introductory, algebra-based physics students perform poorly on mathematical problem solving tasks in physics. There are at least two possible, distinct reasons for this poor performance: (1) students simply lack the mathematical skills needed to solve problems in physics, or (2) students do not know how to apply the mathematical skills they have to particular problem situations in physics. While many students do lack the requisite mathematical skills, a major finding from this work is that the majority of students possess the requisite mathematical skills, yet fail to use or interpret them in the context of physics. In this thesis I propose a theoretical framework to analyze and describe students' mathematical thinking in physics. In particular, I attempt to answer two questions. What are the cognitive tools involved in formal mathematical thinking in physics? And, why do students make the kinds of mistakes they do when using mathematics in physics? According to the proposed theoretical framework there are three major theoretical constructs: mathematical resources, which are the knowledge elements that are activated in mathematical thinking and problem solving; epistemic games, which are patterns of activities that use particular kinds of knowledge to create new knowledge or solve a problem; and frames, which are structures of expectations that determine how individuals interpret situations or events. The empirical basis for this study comes from videotaped sessions of college students solving homework problems. The students are enrolled in an algebra-based introductory physics course. The videotapes were transcribed and analyzed using the aforementioned theoretical framework. Two important results from this work are: (1) the construction of a theoretical framework that offers researchers a vocabulary (ontological classification of cognitive structures) and grammar (relationship between the cognitive structures) for understanding the nature and origin of
Directory of Open Access Journals (Sweden)
Yuliana Yuliana
2017-01-01
Full Text Available The objectives of this research are (1 to develop Guided Discovery Learning in integral calculus subject; (2 to identify the effectiveness of Guided Discovery Learning in improving the students’ understanding toward integral calculus subject. This research was quasy experimental research with the students of even semester in Mathematics Education Widya Dharma University as the sample. Cluster Random sampling was conducted to determine control group that was taught using Conventional model and experimental group that was taught using Guided Discovery Learning model. The instruments of this research included pre-test, post-test, and student’s response questionnaire. The data of post-test was analyzed using T-test. The result was H0 was rejected for the level of significance The result of this data analysis found out that Guide Discovery Learning was more effective than Conventional Model. It was supported by the result questionnaire. The result of questionnaire that more than 75% questionnaire items got 67.65% positive response. It means Guided Discovery Learning can increase students’ interest in joining integral calculus class.
Student’s mathematical understanding ability based on self-efficacy
Ramdhani, M. R.; Usodo, B.; Subanti, S.
2017-11-01
Materials in mathematics are provided not only as an ability to memorize, but also to train the ability of mathematical understanding. Students’ mathematical understanding ability is influenced by the students’ belief in solving the given problems. This research aim to determine the mathematical understanding ability of junior high school students. This research is descriptive qualitative research. Data collection was done through a test, questionnaire, and interview. The result showed that students with high self-efficacy category could master the three indicators of students’ mathematical understanding ability well, namely translation, interpretation, and exploration. Students with moderate self-efficacy category can master translation indicator and able to achieve interpretation indicator but they unable to reach exploration indicator. Students with low self-efficacy category only master the translation, but they cannot achieve the interpretation and exploration indicators. So, the students who have high, moderate or low self-efficacy master the indicator of mathematical understanding based on the level of understanding capabilities on each student.
Mathematics and science teachers' understanding and practices of ...
African Journals Online (AJOL)
Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives ... school level understand and implement learner-centered pedagogy. ... prove that teachers' knowledge and skills as regard learner-centred pedagogical ...
Mathematics and science Teachers' Understanding and Practices of ...
African Journals Online (AJOL)
Amy Stambach
It employed qualitative methods of data collection including in-depth interviews and ... Education, Science, Technology, Scientific Research, 2003; Rwanda Education .... Rwandan science teachers were not having common understanding of ...
Fonger, Nicole L.; Stephens, Ana; Blanton, Maria; Isler, Isil; Knuth, Eric; Gardiner, Angela Murphy
2018-01-01
Learning progressions have been demarcated by some for science education, or only concerned with levels of sophistication in student thinking as determined by logical analyses of the discipline. We take the stance that learning progressions can be leveraged in mathematics education as a form of curriculum research that advances a linked…
The Effects of Digital Learning Material on Students' Mathematics Learning in Vocational Education
Zwart, Diana P.; Van Luit, Johannes E. H.; Noroozi, Omid; Goei, Sui Lin
2017-01-01
This study investigates the effects of Digital Learning Material (DLM) including instructional clips, online guidance, structuring of content, and a collaboration tool on students' mathematics learning in Dutch vocational education. A pretest-posttest design was used. Apprenticeship students were asked to complete assignments and to discuss them…
Nakamura, Yasuyuki; Nishi, Shinnosuke; Muramatsu, Yuta; Yasutake, Koichi; Yamakawa, Osamu; Tagawa, Takahiro
2014-01-01
In this paper, we introduce a mathematical model for collaborative learning and the answering process for multiple-choice questions. The collaborative learning model is inspired by the Ising spin model and the model for answering multiple-choice questions is based on their difficulty level. An intensive simulation study predicts the possibility of…
Using e-Learning Platforms for Mastery Learning in Developmental Mathematics Courses
Boggs, Stacey; Shore, Mark; Shore, JoAnna
2004-01-01
Many colleges and universities have adopted e-learning platforms to utilize computers as an instructional tool in developmental (i.e., beginning and intermediate algebra) mathematics courses. An e-learning platform is a computer program used to enhance course instruction via computers and the Internet. Allegany College of Maryland is currently…
The Effect of Formative Testing and Self-Directed Learning on Mathematics Learning Outcomes
Sumantri, Mohamad Syarif; Satriani, Retni
2016-01-01
The purpose of this research was to determine the effect of formative testing and self-directed learning on mathematics learning outcomes. The research was conducted at an elementary school in central Jakarta during the 2014/2015 school year. Seventy-two fourth-grade students who were selected using random sampling participated in this study. Data…
The development of mathematics courseware for learning line and angle
Halim, Noor Dayana Abd; Han, Ong Boon; Abdullah, Zaleha; Yusup, Junaidah
2015-05-01
Learning software is a teaching aid which is often used in schools to increase students' motivation, attract students' attention and also improve the quality of teaching and learning process. However, the development of learning software should be followed the phases in Instructional Design (ID) Model, therefore the process can be carried out systematic and orderly. Thus, this concept paper describes the application of ADDIE model in the development of mathematics learning courseware for learning Line and Angle named CBL-Math. ADDIE model consists of five consecutive phases which are Analysis, Design, Development, Implementation and Evaluation. Each phase must be properly planned in order to achieve the objectives stated. Other than to describe the processes occurring in each phase, this paper also demonstrating how cognitive theory of multimedia learning principles are integrated in the developed courseware. The principles that applied in the courseware reduce the students' cognitive load while learning the topic of line and angle. With well prepared development process and the integration of appropriate principles, it is expected that the developed software can help students learn effectively and also increase students' achievement in the topic of Line and Angle.
Is Mathematical Anxiety Always Bad for Math Learning: The Role of Math Motivation
Wang, Zhe; Lukowski, Sarah L.; Hart, Sara Ann; Lyons, Ian M.; Thompson, Lee A.; Kovas, Yulia; Mazzocco, Michèle M.; Plomin, Robert; Petrill, Stephen A.
2015-01-01
The linear relations between math anxiety and math cognition have been frequently studied. However, the relations between anxiety and performance on complex cognitive tasks have been repeatedly demonstrated to follow a curvilinear fashion. Given the lack of attention to the possibility of such complex interplay between emotion and cognition in the math learning literature, the current study aimed to address this gap via exploring the relations between math anxiety, math motivation, and math cognition. The current study consisted of two samples. One sample included 262 pairs of young adolescent twins and the other included 237 adult college students. Participants self-reported their math anxiety and math motivation. Math cognition was assessed using a comprehensive battery of mathematics tasks. In both samples, results showed inverted-U relations between math anxiety and math performance in students with high intrinsic math motivation, and modest negative associations between math anxiety and math performance in students with low intrinsic math motivation. However, this pattern was not observed in tasks assessing student’s nonsymbolic and symbolic number estimation. These findings may help advance our understanding of mathematics learning processes and may provide important insights for treatment programs that target improving mathematics learning experiences and mathematical skills. PMID:26518438
Understanding space weather with new physical, mathematical and philosophical approaches
Mateev, Lachezar; Velinov, Peter; Tassev, Yordan
2016-07-01
The actual problems of solar-terrestrial physics, in particular of space weather are related to the prediction of the space environment state and are solved by means of different analyses and models. The development of these investigations can be considered also from another side. This is the philosophical and mathematical approach towards this physical reality. What does it constitute? We have a set of physical processes which occur in the Sun and interplanetary space. All these processes interact with each other and simultaneously participate in the general process which forms the space weather. Let us now consider the Leibniz's monads (G.W. von Leibniz, 1714, Monadologie, Wien; Id., 1710, Théodicée, Amsterdam) and use some of their properties. There are total 90 theses for monads in the Leibniz's work (1714), f.e. "(1) The Monad, of which we shall here speak, is nothing but a simple substance, which enters into compounds. By 'simple' is meant 'without parts'. (Theod. 10.); … (56) Now this connexion or adaptation of all created things to each and of each to all, means that each simple substance has relations which express all the others, and, consequently, that it is a perpetual living mirror of the universe. (Theod. 130, 360.); (59) … this universal harmony, according to which every substance exactly expresses all others through the relations it has with them. (63) … every Monad is, in its own way, a mirror of the universe, and the universe is ruled according to a perfect order. (Theod. 403.)", etc. Let us introduce in the properties of monads instead of the word "monad" the word "process". We obtain the following statement: Each process reflects all other processes and all other processes reflect this process. This analogy is not formal at all, it reflects accurately the relation between the physical processes and their unity. The category monad which in the Leibniz's Monadology reflects generally the philosophical sense is fully identical with the
DEFF Research Database (Denmark)
Blomhøj, Morten
2004-01-01
Developing competences for setting up, analysing and criticising mathematical models are normally seen as relevant only from and above upper secondary level. The general belief among teachers is that modelling activities presuppose conceptual understanding of the mathematics involved. Mathematical...... roots for the construction of important mathematical concepts. In addition competences for setting up, analysing and criticising modelling processes and the possible use of models is a formative aim in this own right for mathematics teaching in general education. The paper presents a theoretical...... modelling, however, can be seen as a practice of teaching that place the relation between real life and mathematics into the centre of teaching and learning mathematics, and this is relevant at all levels. Modelling activities may motivate the learning process and help the learner to establish cognitive...
HOW MATHEMATICS TEACHERS DEVELOP THEIR PUPILS’ SELF-REGULATED LEARNING SKILLS
Directory of Open Access Journals (Sweden)
Iuliana Marchis
2011-11-01
Full Text Available Self-regulated learning skills are important in mathematical problem solving. The aim of the paper is to present a research on how mathematics teachers guide their pupils’ mathematical problem-solving activities in order to increase self-regulation. 62 teachers have filled in a questionnaire developed for this research. The results are show that more than two third of the teachers promote the methods of understanding the problem; develop pupils’ self-efficacy and self-control. But only one third of the teachers ask pupils to use different strategies for solving a problem; ask students to explain the solution to their colleagues. In case of unsuccessful problem solving only one third of the respondents ask pupils to present previous knowledge about the problem or/and recall and try different methods.
Prospective mathematics teachers' understanding of the base concept
Horzum, Tuğba; Ertekin, Erhan
2018-02-01
The purpose of this study is to analyze what kind of conceptions prospective mathematics teachers(PMTs) have about the base concept(BC). One-hundred and thirty-nine PMTs participated in the study. In this qualitative research, data were obtained through open-ended questions, the semi-structured interviews and pictures of geometric figures drawn by PMTs. As a result, it was determined that PMTs dealt with the BC in a broad range of seven different images. It was also determined that the base perception of PMTs was limited mostly to their usage in daily life and in this context, they have position-dependent and word-dependent images. It was also determined that PMTs named the base to explain the BC or paid attention to the naming of three-dimensional geometric figures through the statement: 'objects are named according to their bases'. At the same time, it was also determined that PMTs had more than one concept imageswhich were contradicting with each other. According to these findings, potential explanations and advices were given.
Kuneni, Erna; Mardiyana, Pramudya, Ikrar
2017-08-01
Geometry is the most important branch in mathematics. The purpose of teaching this material is to develop students' level of thinking for a better understanding. Otherwise, geometry in particular, has contributed students' failure in mathematics examinations. This problem occurs due to special feature in geometry which has complexity of correlation among its concept. This relates to mathematical connection. It is still difficult for students to improve this ability. This is because teachers' lack in facilitating students towards it. Eventhough, facilitating students can be in the form of teaching material. A learning module can be a solution because it consists of series activities that should be taken by students to achieve a certain goal. A series activities in this case is adopted by the phases of discovery-based learning model. Through this module, students are facilitated to discover concept by deep instruction and guidance. It can build the mathematical habits of mind and also strengthen the mathematical connection. Method used in this research was ten stages of research and development proposed by Bord and Gall. The research purpose is to create a valid learning module to improve students' mathematical connection in teaching quadrilateral. The retrieved valid module based on media expert judgment is 2,43 for eligibility chart aspect, 2,60 for eligibility presentation aspect, and 3,00 for eligibility contents aspect. Then the retrieved valid module based on material expert judgment is 3,10 for eligibility content aspect, 2,87 for eligibility presentation aspect, and 2,80 for eligibility language and legibility aspect.
Gender Differences in Lunar-Related Scientific and Mathematical Understandings
Wilhelm, Jennifer
2009-01-01
This paper reports an examination on gender differences in lunar phases understanding of 123 students (70 females and 53 males). Middle-level students interacted with the Moon through observations, sketching, journalling, two-dimensional and three-dimensional modelling, and classroom discussions. These lunar lessons were adapted from the Realistic…
Kim, Sun Hee; Kim, Soojin
2010-01-01
What should we do to educate the mathematically gifted and how should we do it? In this research, to satisfy diverse mathematical and cognitive demands of the gifted who have excellent learning ability and task tenacity in mathematics, we sought to apply mathematical modeling. One of the objectives of the gifted education in Korea is cultivating…
What Is the Long-Run Impact of Learning Mathematics during Preschool?
Watts, Tyler W.; Duncan, Greg J.; Clements, Douglas H.; Sarama, Julie
2018-01-01
The current study estimated the causal links between preschool mathematics learning and late elementary school mathematics achievement using variation in treatment assignment to an early mathematics intervention as an instrument for preschool mathematics change. Estimates indicate (n = 410) that a standard deviation of intervention-produced change…
The Effects of Constructivist Learning Environment on Prospective Mathematics Teachers' Opinions
Narli, Serkan; Baser, Nes'e
2010-01-01
To explore the effects of constructivist learning environment on prospective teachers' opinions about "mathematics, department of mathematics, discrete mathematics, countable and uncountable infinity" taught under the subject of Cantorian Set Theory in discrete mathematics class, 60 first-year students in the Division of Mathematics…
Developing a learning environment on realistic mathematics education for Indonesian student teachers
Zulkardi, Z.
2002-01-01
The CASCADE-IMEI study was started to explore the role of a learning environment (LE) in assisting mathematics student teachers learning Realistic Mathematics Education (RME) as a new instructional approach in mathematics education in Indonesia. The LE for this study has been developed and evaluated
Computational Psychiatry: towards a mathematically informed understanding of mental illness
Huys, Quentin J M; Roiser, Jonathan P
2016-01-01
Computational Psychiatry aims to describe the relationship between the brain's neurobiology, its environment and mental symptoms in computational terms. In so doing, it may improve psychiatric classification and the diagnosis and treatment of mental illness. It can unite many levels of description in a mechanistic and rigorous fashion, while avoiding biological reductionism and artificial categorisation. We describe how computational models of cognition can infer the current state of the environment and weigh up future actions, and how these models provide new perspectives on two example disorders, depression and schizophrenia. Reinforcement learning describes how the brain can choose and value courses of actions according to their long-term future value. Some depressive symptoms may result from aberrant valuations, which could arise from prior beliefs about the loss of agency (‘helplessness’), or from an inability to inhibit the mental exploration of aversive events. Predictive coding explains how the brain might perform Bayesian inference about the state of its environment by combining sensory data with prior beliefs, each weighted according to their certainty (or precision). Several cortical abnormalities in schizophrenia might reduce precision at higher levels of the inferential hierarchy, biasing inference towards sensory data and away from prior beliefs. We discuss whether striatal hyperdopaminergia might have an adaptive function in this context, and also how reinforcement learning and incentive salience models may shed light on the disorder. Finally, we review some of Computational Psychiatry's applications to neurological disorders, such as Parkinson's disease, and some pitfalls to avoid when applying its methods. PMID:26157034
Fuson, Karen C.
2009-01-01
This article provides an overview of some perspectives about special issues in classroom mathematical teaching and learning that have stemmed from the huge explosion of research in children's mathematical thinking stimulated by Piaget. It concentrates on issues that are particularly important for less-advanced learners and for those who might be…
Understanding Interorganizational Learning Based on Social Spaces and Learning Episodes
Directory of Open Access Journals (Sweden)
Anelise Rebelato Mozzato
2014-07-01
Full Text Available Different organizational settings have been gaining ground in the world economy, resulting in a proliferation of different forms of strategic alliances that translate into a growth in the number of organizations that have started to deal with interorganizational relationships with different actors. These circumstances reinforce Crossan, Lane, White and Djurfeldt (1995 and Crossan, Mauer and White (2011 in exploring what authors refer to as the fourth, interorganizational, level of learning. These authors, amongst others, suggest that the process of interorganizational learning (IOL warrants investigation, as its scope of analysis needs widening and deepening. Therefore, this theoretical essay is an attempt to understand IOL as a dynamic process found in interorganizational cooperative relationships that can take place in different structured and unstructured social spaces and that can generate learning episodes. According to this view, IOL is understood as part of an organizational learning continuum and is analyzed within the framework of practical rationality in an approach that is less cognitive and more social-behavioral.
Directory of Open Access Journals (Sweden)
Farkhatu Sikhah
2017-03-01
Full Text Available Tujuan penelitian ini adalah (1 Untuk mengetahui hubungan antara tingkat kecerdasan dengan prestasi belajar matematika (2 Untuk mengetahui hubungan antara motivasi berprestasi dengan prestasi belajar matematika (3 Untuk mengetahui hubungan antara kebiasaan belajar dengan prestasi belajar matematika (4 Untuk mengetahui hubungan antara tingkat kecerdasan, motivasi berprestasi, dan kebiasaan belajar matematika dengan prestasi belajar matematika siswa semester 1 kelas XI IPA SMAN 1 Bojong. Jumlah sampel dalam penelitian ini sebanyak 40 orang siswa. Penelitian ini merupakan penelitian deskriptif korelatif sehingga data dianalisa untuk mendeskripsikan hubungan antara tingkat kecerdasan, motivasi berprestasi, dan kebiasaan belajar matematika dengan prestasi belajar matematika siswa. Instrumen pengambilan data menggunakan dokumentasi dan angket, dan dianalisa menggunakan regresi dan korelasi linier sederhana, serta regresi dan korelasi linier berganda. Hasil penelitian menunjukkan bahwa terdapat hubungan yang signifikan antara : (1 tingkat kecerdasan dengan prestasi belajar matematika siswa, (2 motivasi berprestasi dengan prestasi belajar matematika siswa, (3 kebiasaan belajar dengan prestasi belajar matematika siswa (4 tingkat kecerdasan, motivasi berprestasi dan kebiasaan belajar matematika dengan prestasi belajar matematika siswa. The purpose of this study is (1 To determine the relationship between the level of intelligence and academic achievement of mathematics (2 To determine the relationship between achievement motivation and learning achievement in mathematics (3 To determine the relationship between study habits and academic achievement of mathematics (4 To determine the relationship between level of intelligence, achievement motivation and study habits mathematics learning achievement of student mathematics 1st semester of grade XI IPA SMAN 1 Bojong. The number of samples in this study were 40 students.This research was descriptive
Lira, Matthew
This dissertation explores the Knowledge in Pieces (KiP) theory to account for how students learn to coordinate knowledge of mathematical and physical models in biology education. The KiP approach characterizes student knowledge as a fragmented collection of knowledge elements as opposed to stable and theory-like knowledge. This dissertation sought to use this theoretical lens to account for how students understand and learn with mathematical models and representations, such as equations. Cellular physiology provides a quantified discipline that leverages concepts from mathematics, physics, and chemistry to understand cellular functioning. Therefore, this discipline provides an exemplary context for assessing how biology students think and learn with mathematical models. In particular, the resting membrane potential provides an exemplary concept well defined by models of dynamic equilibrium borrowed from physics and chemistry. In brief, membrane potentials, or voltages, "rest" when the electrical and chemical driving forces for permeable ionic species are equal in magnitude but opposite in direction. To assess students' understandings of this concept, this dissertation employed three studies: the first study employed the cognitive clinical interview to assess student thinking in the absence and presence of equations. The second study employed an intervention to assess student learning and the affordances of an innovative assessment. The third student employed a human-computer-interaction paradigm to assess how students learn with a novel multi-representational technology. Study 1 revealed that students saw only one influence--the chemical gradient--and that students coordinated knowledge of only this gradient with the related equations. Study 2 revealed that students benefited from learning with the multi-representational technology and that the assessment detected performance gains across both calculation and explanation tasks. Last, Study 3 revealed how students
Learning to observe mathematical learning in lesson studies
DEFF Research Database (Denmark)
Rasmussen, Klaus; Østergaard, Camilla Hellsten; Foss, Kristian Kildemoes
2016-01-01
This poster deals with lesson study (LS) in pre-service teacher education. In particular how to prepare for, carry out, and reflect upon, observations of pupil learning. Observation is of crucial importance to the lesson study process, and here we present a study of observation features which ena...... enable or hinder fruitful lesson study. While substantial research has been carried out in the general field of bserving pupils’ learning processes and teachers’ pedagogical practice, little is known about this in the particular setting of lesson study....
The social competence of Latino kindergartners and growth in mathematical understanding.
Galindo, Claudia; Fuller, Bruce
2010-05-01
We know that social competence contributes to young children's adaptation to, and cognitive learning within, classroom settings. Yet initial evidence is mixed on the social competencies that Latino children bring to kindergarten and the extent to which these skills advance cognitive growth. Building from ecocultural and developmental-risk theory, this paper shows children's social competence to be adaptive to the normative expectations and cognitive requirements of culturally bounded settings in both the home and classroom. Latino socialization in the home may yield social competencies that teachers value rather than reflect "risk factors" that constrain children's school readiness. We draw on the Early Childhood Longitudinal Study, kindergarten cohort (N = 19,590) to detail 5 social competencies at entry to school--self-control, interpersonal skills, approaches to learning, internalizing and externalizing problem behaviors--and to examine variability among Latino subgroups. We then test the extent to which baseline variation in social competence accounts for children's cognitive growth during the kindergarten year. We find that Latino children from poor, but not middle-class, families display weaker social competencies vis-à-vis White children (all relationships p cognitive growth, which is shaped most strongly by positive approaches to learning. The disparities in competencies observed for Latino children from poor families, relative to White children, are significant yet much smaller than gaps in baseline levels of mathematical understanding. We discuss how the consonance or mismatch between competencies acquired at home and those valued by teachers must consider cultural differences, social-class position, and variation among diverse Latino subgroups. 2010 APA, all rights reserved
Pepin, Birgit; Xu, Binyan; Trouche, Luc; Wang, Chongyang
2017-01-01
In order to develop a deeper understanding of mathematics teaching expertise, in this study we use the Documentational Approach to Didactics to explore the resource systems of three Chinese mathematics "expert" teachers. Exploiting the Western and Eastern literature we examine the notion of "mathematics teaching expertise", as…
Think3d!: Improving mathematics learning through embodied spatial training.
Burte, Heather; Gardony, Aaron L; Hutton, Allyson; Taylor, Holly A
2017-01-01
Spatial thinking skills positively relate to Science, Technology, Engineering, and Math (STEM) outcomes, but spatial training is largely absent in elementary school. Elementary school is a time when children develop foundational cognitive skills that will support STEM learning throughout their education. Spatial thinking should be considered a foundational cognitive skill. The present research examined the impact of an embodied spatial training program on elementary students' spatial and mathematical thinking. Students in rural elementary schools completed spatial and math assessments prior to and after participating in an origami and pop-up paper engineering-based program, called Think3d!. Think3d! uses embodied tasks, such as folding and cutting paper, to train two-dimensional to three-dimensional spatial thinking. Analyses explored spatial thinking gains, mathematics gains - specifically for problem types expected to show gains from spatial training - and factors predicting mathematics gains. Results showed spatial thinking gains in two assessments. Using a math categorization to target problems more and less likely to be impacted by spatial training, we found that all students improved on real-world math problems and older students improved on visual and spatial math problems. Further, the results are suggestive of developmental time points for implementing embodied spatial training related to applying spatial thinking to math. Finally, the spatial thinking assessment that was most highly related to training activities also predicted math performance gains. Future research should explore developmental issues related to how embodied spatial training might support STEM learning and outcomes.
Directory of Open Access Journals (Sweden)
Camilla Gilmore
2017-12-01
Full Text Available Large individual differences in children’s mathematics achievement are observed from the start of schooling. Previous research has identified three cognitive skills that are independent predictors of mathematics achievement: procedural skill, conceptual understanding and working memory. However, most studies have only tested independent effects of these factors and failed to consider moderating effects. We explored the procedural skill, conceptual understanding and working memory capacity of 75 children aged 5 to 6 years as well as their overall mathematical achievement. We found that, not only were all three skills independently associated with mathematics achievement, but there was also a significant interaction between them. We found that levels of conceptual understanding and working memory moderated the relationship between procedural skill and mathematics achievement such that there was a greater benefit of good procedural skill when associated with good conceptual understanding and working memory. Cluster analysis also revealed that children with equivalent levels of overall mathematical achievement had differing strengths and weaknesses across these skills. This highlights the importance of considering children’s skill profile, rather than simply their overall achievement.
Adaptation of mathematical educational content in e-learning resources
Directory of Open Access Journals (Sweden)
Yuliya V. Vainshtein
2017-01-01
Full Text Available Modern trends in the world electronic educational system development determine the necessity of adaptive learning intellectual environments and resources’ development and implementation. An upcoming trend in improvement the quality of studying mathematical disciplines is the development and application of adaptive electronic educational resources. However, the development and application experience of adaptive technologies in higher education is currently extremely limited and does not imply the usage flexibility. Adaptive educational resources in the electronic environment are electronic educational resources that provide the student with a personal educational space, filled with educational content that “adapts” to the individual characteristics of the students and provides them with the necessary information.This article focuses on the mathematical educational content adaptation algorithms development and their implementation in the e-learning system. The peculiarity of the proposed algorithms is the possibility of their application and distribution for adaptive e-learning resources construction. The novelty of the proposed approach is the three-step content organization of the adaptive algorithms for the educational content: “introductory adaptation of content”, “the current adaptation of content”, “estimative and a corrective adaptation”. For each stage of the proposed system, mathematical algorithms for educational content adaptation in adaptive e-learning resources are presented.Due to the high level of abstraction and complexity perception of mathematical disciplines, educational content is represented in the various editions of presentation that correspond to the levels of assimilation of the course material. Adaptation consists in the selection of the optimal edition of the material that best matches the individual characteristics of the student. The introduction of a three-step content organization of the adaptive
Kartika, H.
2018-03-01
The issue related to making mistake while learning such as negative emotion is found while students learn mathematics with the aid of a computer. When the computer output showed a mistake message, the students considered it as a computer software malfunction. Based on this issue, the writer designs an instructional model based on learning by mistake approach and which is Scilab assisted. The method used in this research is research design involving undergraduate students in matrix algebra courses. The data collected throught survey with questionnaire to gain feedback about the approach implemented. The data analyzed using quantitative descriptive. The instructional design proposed is the student act as a mistake corrector while the teacher acts as a mistake maker. Teacher deliberately makes mistakes with the help of Scilab software. On the other hand, students correct, analyze and explain errors resulting from Scilab software. The result of this research is an ICT based instructional design which is expected to be applicable as an alternative learning in directing students to think positively about mistakes in learning. Furthermore, students are also expected to improve their ability in understanding and thinking critically while solving problems and improving themselves in learning mathematics.
Geiger, Vince; Mulligan, Joanne; Date-Huxtable, Liz; Ahlip, Rehez; Jones, D. Heath; May, E. Julian; Rylands, Leanne; Wright, Ian
2018-01-01
In this article we describe and evaluate processes utilized to develop an online learning module on mathematical modelling for pre-service teachers. The module development process involved a range of professionals working within the STEM disciplines including mathematics and science educators, mathematicians, scientists, in-service and pre-service…
Ozgen, Kemal; Tataroglu, Berna; Alkan, Huseyin
2011-01-01
The present study aims to identify pre-service mathematics teachers' multiple intelligence domains and learning style profiles, and to establish relationships between them. Employing the survey model, the study was conducted with the participation of 243 pre-service mathematics teachers. The study used the "multiple intelligence domains…
DEFF Research Database (Denmark)
Triantafyllou, Evangelia; Misfeldt, Morten; Timcenko, Olga
2016-01-01
This article explores student attitudes and preferences in learning and teaching of mathematics in engineering studies that transcend the division between technical, scientific and artistic disciplines. For observing such attitudes, we have developed a model that relates the attitude towards...... by a teacher. We propose that these findings inspire reforming mathematical education for such engineering students....
Directory of Open Access Journals (Sweden)
Karlimah
2018-01-01
Full Text Available Many studies suggest that classical music can inccrease the listeners’ intelligence, including mathematical intelligence [3, 12, 2, 11]. In this research, we used the classical music of Baroque era as the backsound during math learning. The research method used was quasi experiment with nonequivalent pretest-posttest control group design to grade V SD students in Tasikmalaya city. The results show that the use of classical music of Baroque era during the learning of mathematics gave a high contribution to the mathematical intelligence of fifth grade elementary school students. The student's mathematical intelligence can be seen in the cognitive abilities which were at the high level in the knowledge up to analysis, and at the low level in the synthesis and evaluation. Low mathematical intelligence was shown by students in calculating amount and difference of time, and projecting word problem into the form of mathematical problems. High mathematical intelligence arose in reading and writing integers in words and numbers. Thus, the mathematical intelligence of fifth grade Elementary School students will be better if classical music of Baroque era is used as the backsound in mathematics learning about solving math problems.
Andriani, Ade; Dewi, Izwita; Halomoan, Budi
2018-03-01
In general, this research is conducted to improve the quality of lectures on mathematics learning strategy in Mathematics Department. The specific objective of this research is to develop learning instrument of mathematics learning strategy based on Higher Order Thinking Skill (HOTS) that can be used to improve mathematical communication and self efficacy of mathematics education students. The type of research is development research (Research & Development), where this research aims to develop a new product or improve the product that has been made. This development research refers to the four-D Model, which consists of four stages: defining, designing, developing, and disseminating. The instrument of this research is the validation sheet and the student response sheet of the instrument.
Schäfer, Andreas; Holz, Jan; Leonhardt, Thiemo; Schroeder, Ulrik; Brauner, Philipp; Ziefle, Martina
2013-06-01
In this study, we address the problem of low retention and high dropout rates of computer science university students in early semesters of the studies. Complex and high abstract mathematical learning materials have been identified as one reason for the dropout rate. In order to support the understanding and practicing of core mathematical concepts, we developed a game-based multitouch learning environment in which the need for a suitable learning environment for mathematical logic was combined with the ability to train cooperation and collaboration in a learning scenario. As application domain, the field of mathematical logic had been chosen. The development process was accomplished along three steps: First, ethnographic interviews were run with 12 students of computer science revealing typical problems with mathematical logic. Second, a multitouch learning environment was developed. The game consists of multiple learning and playing modes in which teams of students can collaborate or compete against each other. Finally, a twofold evaluation of the environment was carried out (user study and cognitive walk-through). Overall, the evaluation showed that the game environment was easy to use and rated as helpful: The chosen approach of a multiplayer game supporting competition, collaboration, and cooperation is perceived as motivating and "fun."
The roles of games in teaching and learning of mathematics in junior ...
African Journals Online (AJOL)
The roles of games in teaching and learning of mathematics in junior secondary schools. ... The research seeks to enhance the status of games in teaching mathematics in junior secondary schools curriculum ... AJOL African Journals Online.
Early Foundations for Mathematics Learning and Their Relations to Learning Disabilities.
Geary, David C
2013-02-01
Children's quantitative competencies upon entry into school can have lifelong consequences. Children who start behind generally stay behind, and mathematical skills at school completion influence employment prospects and wages in adulthood. I review the current debate over whether early quantitative learning is supported by (a) an inherent system for representing approximate magnitudes, (b) an attentional-control system that enables explicit processing of quantitative symbols, such as Arabic numerals, or (c) the logical problem-solving abilities that facilitate learning of the relations among numerals. Studies of children with mathematical learning disabilities and difficulties have suggested that each of these competencies may be involved, but to different degrees and at different points in the learning process. Clarifying how and when these competencies facilitate early quantitative learning and developing interventions to address their impact on children have the potential to yield substantial benefits for individuals and for society.
Misnasanti; Dien, C. A.; Azizah, F.
2018-03-01
This study is aimed to describe Lesson Study (LS) activity and its roles in the development of mathematics learning instruments based on Learning Trajectory (LT). This study is a narrative study of teacher’s experiences in joining LS activity. Data collecting in this study will use three methods such as observation, documentations, and deep interview. The collected data will be analyzed with Milles and Huberman’s model that consists of reduction, display, and verification. The study result shows that through LS activity, teachers know more about how students think. Teachers also can revise their mathematics learning instrument in the form of lesson plan. It means that LS activity is important to make a better learning instruments and focus on how student learn not on how teacher teach.
Challenges in Teaching Mathematics: Perspectives From Students’ Learning Difficulties
Directory of Open Access Journals (Sweden)
Steve Chinn
2016-04-01
Full Text Available Alcock et al (2016, this issue have set out and discussed a potential research agenda for mathematical cognition. It is timely that research topics, along with knowledge uncovered to date, should be incorporated into a coordinated agenda for further research. This commentary focuses on the perspectives that learning difficulties, and dyscalculia, reveal. These perspectives potentially add much to that research agenda. [Commentary on: Alcock, L., Ansari, D., Batchelor, S., Bisson, M.-J., De Smedt, B., Gilmore, C., . . . Weber, K. (2016. Challenges in mathematical cognition: A collaboratively-derived research agenda. Journal of Numerical Cognition, 2, 20-41. doi:10.5964/jnc.v2i1.10
Karlimah
2018-01-01
Many studies suggest that classical music can inccrease the listeners’ intelligence, including mathematical intelligence [3, 12, 2, 11]. In this research, we used the classical music of Baroque era as the backsound during math learning. The research method used was quasi experiment with nonequivalent pretest-posttest control group design to grade V SD students in Tasikmalaya city. The results show that the use of classical music of Baroque era during the learning of mathematics gave a high co...
E-Learning and Affective Student’s Profile in Mathematics
Directory of Open Access Journals (Sweden)
Giovannina Albano
2008-12-01
Full Text Available This paper is concerned with the personalisation of teaching/learning paths in mathematics education. Such personalisation would exploit the research results on the connection between the affective experience of the student learning mathematics and his/her success or failure in mathematics, which produces the learner’s attitude towards mathematics. We present a model for the learner’s affective profile in mathematics, which would extend the current user profile in an e-learning platform taking into account the learner’s attitude, to be used in order to offer and manage a Unit of Learning in mathematics better tailored on the global student’ needs. Tools for the implementation of the model in an e-learning platform have been devised. Activities templates suitable to various attitudes towards mathematics have been designed and their experimentation is in progress.
Mathematics and metacognition in adolescents and adults with learning disabilities
Directory of Open Access Journals (Sweden)
Annemie Desoete
2009-10-01
Full Text Available A majority of studies on learning disabilities have focused on elementary grades. Although problems with learning disabilities are life-affecting only a few studies focus on deficits in adults. In this study adults with isolated mathematical disabilities (n=101 and adults with combined mathematical and reading disabilities (n=130 solved tests on procedural calculation and number knowledge, numerical facility and visuospatial skills. Metacognitive skilfulness was assessed through calibration measures, a questionnaire, stimulated recall, and thematic analyses after a qualitative interactive interview with a flexible agenda to discover the interviewee’s own framework of meanings and to avoid imposing the researcher’s structures and assumptions. In our dataset the isolated group (MD did worse than the comorbid group (M+RD on mental representation, dealing with contextual information and number knowledge. However the comorbid group did worse on the number sense tasks. No significant differences were found between the MD and M+RD adults for fact retrieval, procedural calculation and visuo spatial tasks. In addition adults with MD overestimated their mathematics results, whereas individuals with M+RD underestimated their results in the calibration task. Moreover, adults with M+RD thought that they were worse on the evaluation of the own results, the evaluation of the own capacities and on monitoring when things went wrong compared with adults in the M+RD group. Thematic analyses revealed that many adults had problems with planning and keeping track of steps and that supporting surroundings were important protective factors towards the chances of success. Consequences for the assessment of metacognition in adults and for the support of adults with mathematical disabilities are discussed.
Crawford, Amy K.
2017-01-01
The purpose of this phenomenological research study was to use Self-Determination Theory as a framework to analyze middle school mathematics teachers' motivation to attain effective professional development concerning Ohio's Learning Standards as well as other instructional aspects that affect the classroom. Teachers are exceptionally busy meeting…
Randahl, Mira
2016-01-01
Doktorgradsavhandling It is usually assumed that the students at tertiary level work intensively and individually with the new mathematical concepts (Wood, 2001). In this context the mathematics textbook might be an important learning tool. This thesis addresses the issue of what factors might influence the role of the mathematics textbook as a learning tool. The study is situated in the context of the basic mathematics course taken by first-year engineering students. A b...
İNAN, CEMİL
2014-01-01
In this experimental study, the influence of the constructivist learning approach on students’ levels of learning trigonometry and on their attitudes towards mathematics was examined in comparison with the traditional methods of instruction. The constructivist learning approach was the independent variable, while mathematics achievement, the lessons of trigonometry and the attitudes towards mathematics constituted the dependent variables. The study was designed as the pretest-posttest control...
Agaç, Gülay; MASAL, Ercan
2017-01-01
Related literature emphasizes that affective factors are impactful on cognitive factors. For this reason, this study aims at revealing the relationship between problem solving, which is one of metacognitive characteristics, beliefs about mathematics and learned hopelessness, which are two affective characteristics. Therefore, addressing emotional aspects together with cognitive abilities will give rise to understanding of the students’ current situation and predicting ab...
A Reflective Journey through Theory and Research in Mathematical Learning and Development
Belbase, Shashidhar
2010-01-01
This paper is an attempt to reflect on class sessions during the fall 2010 in a course "Theory and Research in Mathematical Learning and Development". This reflection as a learning journey portrays discussions based on foundational perspectives (FP), historical highlights (HH), and guiding questions (GQ) related to mathematics learning and…
Mixed Methods Study Using Constructive Learning Team Model for Secondary Mathematics Teachers
Ritter, Kristy L.
2010-01-01
The constructive learning team model for secondary mathematics teachers (CLTM) was created to provide students with learning opportunities and experiences that address deficiencies in oral and written communication, logical processes and analysis, mathematical operations, independent learning, teamwork, and technology utilization. This study…
Asri, Dahlia Novarianing; Setyosari, Punaji; Hitipeuw, Imanuel; Chusniyah, Tutut
2017-01-01
Among the main causes of low learning achievement in mathematics learning is a delayed behavior to do tasks, commonly called academic procrastination. The objectives of this research are to describe and to explain the causal factors and consequences of academic procrastination in learning mathematics for junior high school students. This research…
Examining Teaching Based on Errors in Mathematics Amongst Pupils with Learning Disabilities
Magen-Nagar, Noga
2016-01-01
Teaching mathematics while learning from students' mistakes, errors and misconceptions, is most important for meaningful learning. This study was based on intervention programs prepared by preservice teachers. It aimed to examine their knowledge of assessment of errors in mathematics amongst pupils with learning disabilities, and their use as a…
Negreiros, Melissa
2017-01-01
Many elementary mathematics teachers hold beliefs about the teaching and learning of mathematics and enact practices that are not aligned with the recommendations of reform efforts in the field of mathematics education (Stigler & Hiebert, 2009). For standards-based reform to gain any significant success, many teachers will have to alter the…
Using Data to Understand How to Better Design Adaptive Learning
Liu, Min; Kang, Jina; Zou, Wenting; Lee, Hyeyeon; Pan, Zilong; Corliss, Stephanie
2017-01-01
There is much enthusiasm in higher education about the benefits of adaptive learning and using big data to investigate learning processes to make data-informed educational decisions. The benefits of adaptive learning to achieve personalized learning are obvious. Yet, there lacks evidence-based research to understand how data such as user behavior…
Active learning increases student performance in science, engineering, and mathematics.
Freeman, Scott; Eddy, Sarah L; McDonough, Miles; Smith, Michelle K; Okoroafor, Nnadozie; Jordt, Hannah; Wenderoth, Mary Pat
2014-06-10
To test the hypothesis that lecturing maximizes learning and course performance, we metaanalyzed 225 studies that reported data on examination scores or failure rates when comparing student performance in undergraduate science, technology, engineering, and mathematics (STEM) courses under traditional lecturing versus active learning. The effect sizes indicate that on average, student performance on examinations and concept inventories increased by 0.47 SDs under active learning (n = 158 studies), and that the odds ratio for failing was 1.95 under traditional lecturing (n = 67 studies). These results indicate that average examination scores improved by about 6% in active learning sections, and that students in classes with traditional lecturing were 1.5 times more likely to fail than were students in classes with active learning. Heterogeneity analyses indicated that both results hold across the STEM disciplines, that active learning increases scores on concept inventories more than on course examinations, and that active learning appears effective across all class sizes--although the greatest effects are in small (n ≤ 50) classes. Trim and fill analyses and fail-safe n calculations suggest that the results are not due to publication bias. The results also appear robust to variation in the methodological rigor of the included studies, based on the quality of controls over student quality and instructor identity. This is the largest and most comprehensive metaanalysis of undergraduate STEM education published to date. The results raise questions about the continued use of traditional lecturing as a control in research studies, and support active learning as the preferred, empirically validated teaching practice in regular classrooms.
Nurhasanah, F.; Kusumah, Y. S.; Sabandar, J.; Suryadi, D.
2018-05-01
As one of the non-conventional mathematics concepts, Parallel Coordinates is potential to be learned by pre-service mathematics teachers in order to give them experiences in constructing richer schemes and doing abstraction process. Unfortunately, the study related to this issue is still limited. This study wants to answer a research question “to what extent the abstraction process of pre-service mathematics teachers in learning concept of Parallel Coordinates could indicate their performance in learning Analytic Geometry”. This is a case study that part of a larger study in examining mathematical abstraction of pre-service mathematics teachers in learning non-conventional mathematics concept. Descriptive statistics method is used in this study to analyze the scores from three different tests: Cartesian Coordinate, Parallel Coordinates, and Analytic Geometry. The participants in this study consist of 45 pre-service mathematics teachers. The result shows that there is a linear association between the score on Cartesian Coordinate and Parallel Coordinates. There also found that the higher levels of the abstraction process in learning Parallel Coordinates are linearly associated with higher student achievement in Analytic Geometry. The result of this study shows that the concept of Parallel Coordinates has a significant role for pre-service mathematics teachers in learning Analytic Geometry.
Ma'rufi, Budayasa, I. Ketut; Juniati, Dwi
2017-02-01
Teacher is one of the key aspects of student's achievement. Teachers should master content material taught, how to teach it, and can interpret the students' thinking so that students easily understand the subject matter. This research was a qualitative research that aimed at describing profile of PCK's teachers in mathematics on limit algebraic functions in terms of the differences of teaching experience. Pedagogical Content Knowledge (PCK) and understanding of teachers is defined as involving the relationship between knowledge of teaching materials, how to transfer the subject matter, and the knowledge of students in mathematics on limit algebraic functions that the subject matter may be understood by students. The PCK components in this research were knowledge of subject matter, knowledge of pedagogy, and knowledge of students. Knowledge of pedagogy defines as knowledge and understanding of teachers about the planning and organization of the learning and teaching strategy of limit algebraic function. The subjects were two mathematics high school teachers who teach in class XI IPS. Data were collected through observation of learning during five meetings and interviews before and after the lesson continued with qualitative data analysis. Focus of this article was to describe novice teacher's knowledge of student in mathematics learning on limit algebraic function. Based on the results of the analysis of qualitative data the data concluded that novice teacher's knowledge of pedagogy in mathematics on limit algebraic function showed: 1) in teaching the definitions tend to identify prior knowledge of the student experience with the material to be studied, but not in the form of a problem, 2) in posing the questions tend to be monotonous non lead and dig, 3) in response to student questions preservice teachers do not take advantage of the characteristics or the potential of other students, 4) in addressing the problem of students, tend to use the drill approach and did
Teaching and Learning of Knot Theory in School Mathematics
Kawauchi, Akio
2012-01-01
This book is the result of a joint venture between Professor Akio Kawauchi, Osaka City University, well-known for his research in knot theory, and the Osaka study group of mathematics education, founded by Professor Hirokazu Okamori and now chaired by his successor Professor Tomoko Yanagimoto, Osaka Kyoiku University. The seven chapters address the teaching and learning of knot theory from several perspectives. Readers will find an extremely clear and concise introduction to the fundamentals of knot theory, an overview of curricular developments in Japan, and in particular a series of teaching
Игорь Николаевич Макарьев
2013-01-01
In this article the author dwells on the content and structure of the model of integration of system of distance learning to mathematics of senior pupils and traditional paradigm of education. This kind of integration is based on such principles as independence, individualization, flexibility, nonlinearity, openness. Specifics of the methodological support of distance mathematics learning are also analyzed. Particularly the author asserts that the system of distance mathematics learning can t...
Quantitative Deficits of Preschool Children at Risk for Mathematical Learning Disability
Directory of Open Access Journals (Sweden)
Felicia W. Chu
2013-05-01
Full Text Available The study tested the hypothesis that acuity of the potentially inherent approximate number system (ANS contributes to risk of mathematical learning disability (MLD. Sixty-eight (35 boys preschoolers at risk for school failure were assessed on a battery of quantitative tasks, and on intelligence, executive control, preliteracy skills, and parental education. Mathematics achievement scores at the end of one year of preschool indicated that 34 of these children were at high risk for MLD. Relative to the 34 typically achieving children, the at risk children were less accurate on the ANS task, and a one standard deviation deficit on this task resulted in a 2.4 fold increase in the odds of MLD status. The at risk children also had a poor understanding of ordinal relations, and had slower learning of Arabic numerals, number words, and their cardinal values. Poor performance on these tasks resulted in 3.6 to 4.5 fold increases in the odds of MLD status. The results provide some support for the ANS hypothesis but also suggest these deficits are not the primary source of poor mathematics learning.
The double-loop feedback for active learning with understanding
DEFF Research Database (Denmark)
Christensen, Hans Peter
2004-01-01
Learning is an active process, and in engineering education authentic projects is often used to activate the students and promote learning. However, it is not all activity that leads to deep learning; and in a rapid changing society deep understanding is necessary for life-long learning. Empirical...... findings at DTU question the direct link between high activity and a deep approach to learning. Active learning is important to obtain engineering competencies, but active learning requires more than activity. Feedback and reflection is crucial to the learning process, since new knowledge is built...... on the student’s existing understanding. A model for an active learning process with a double-loop feedback is suggested - the first loop gives the student experience through experimentation, the second conceptual understanding through reflection. Students often miss the second loop, so it is important...
Visual technology for the autonomous learning of mathematics
Directory of Open Access Journals (Sweden)
Helmut Linneweber‐Lammerskitten
2010-09-01
Full Text Available This paper describes a collaborative research and development project between the University of Applied Sciences Northwestern Switzerland and Rhodes University in South Africa. The project seeks to establish, disseminate and research the efficacy and use of short video clips designed specifically for the autonomous learning of mathematics. Specific to the South African context is our interest in capitalising on the ubiquity of cellphone technology and the autonomous affordances offered by mobile learning. This paper engages with a number of theoretical and pedagogical issues relating to the design, production and use of these video clips. Although the focus is specific to the contexts of South Africa and Switzerland, the discussion is of broad applicability.
Teachers’ interactions and mathematics learning within a virtual environment
Directory of Open Access Journals (Sweden)
Aline Terra Salles
2012-09-01
Full Text Available The use of information and communication technology brings new ways of enrolment and motivation of individuals. These technologies have been an important vehicle for sharing information and constitute various communities. For this reason, it is necessary analysis of learning in virtual environments. The aim of this article focuses on the analysis of teachers interactions in the environment Virtual Math Team (VMT-Chat in addressing one problem of taxicab geometry. We study learning through different forms of participation of individuals within the environment. The results shows that the identification of different types of interlocution (evaluative, interpretative, informative and negociative allows the teacher the creation of strategies to contribute with the continuity of the debate and to promote the development of mathematical ideas emerged from interlocutions. The analysis also illustrates how teachers interacted online with the use of combinatorial analysis on the metric in taxicab geometry.
Communitarian education and mathematics learning: A way of value diversity
Directory of Open Access Journals (Sweden)
Adamuz-Povedano Natividad
2016-01-01
Full Text Available In our society there is high diversity so we need educational methodologies that promote equal opportunities for personal success inside the difference. It is necessary to explore the role of non-formal educational practices in multicultural contexts and to implement a model of communitarian education that allows the practices of other cultures to become valued by and visible to the broader society. Nowadays there are not doubts about the importance of the developing of number sense in the early mathematics learning, however, the entrance to the scholar arithmetic is, in most cases, through the teaching of the four rules using the traditional algorithms. Here we show how to use open calculations based on numbers (ABN as an inclusive methodological alternative, based on the meaningful learning of the decimal system, the operations and their properties. We think the method fits very well with people from other ethnics as Romanian people.
Directory of Open Access Journals (Sweden)
Runisah Runisah
2017-02-01
Full Text Available This study aims to describe enhancement and achievement of mathematical critical thinking skills of students who received the 5E Learning Cycle with Metacognitive technique, the 5E Learning Cycle, and conventional learning. This study use experimental method with pretest-posttest control group design. Population are junior high school students in Indramayu city, Indonesia. Sample are three classes of eighth grade students from high level school and three classes from medium level school. The study reveal that in terms of overall, mathematical critical thinking skills enhancement and achievement of students who received the 5E Learning Cycle with Metacognitive technique is better than students who received the 5E Learning Cycle and conventional learning. Mathematical critical thinking skills of students who received the 5E Learning Cycle is better than students who received conventional learning. There is no interaction effect between learning model and school level toward enhancement and achievement of students’ mathematical critical thinking skills.
McLoughlin, M. Padraig M. M.
2008-01-01
The author of this paper submits the thesis that learning requires doing; only through inquiry is learning achieved, and hence this paper proposes a programme of use of a modified Moore method in a Probability and Mathematical Statistics (PAMS) course sequence to teach students PAMS. Furthermore, the author of this paper opines that set theory…
Socioeconomic variation, number competence, and mathematics learning difficulties in young children.
Jordan, Nancy C; Levine, Susan C
2009-01-01
As a group, children from disadvantaged, low-income families perform substantially worse in mathematics than their counterparts from higher-income families. Minority children are disproportionately represented in low-income populations, resulting in significant racial and social-class disparities in mathematics learning linked to diminished learning opportunities. The consequences of poor mathematics achievement are serious for daily functioning and for career advancement. This article provides an overview of children's mathematics difficulties in relation to socioeconomic status (SES). We review foundations for early mathematics learning and key characteristics of mathematics learning difficulties. A particular focus is the delays or deficiencies in number competencies exhibited by low-income children entering school. Weaknesses in number competence can be reliably identified in early childhood, and there is good evidence that most children have the capacity to develop number competence that lays the foundation for later learning.
Digital game based learning: A new method in teaching and learning mathematics
Hussain, Sayed Yusoff bin Syed; Hoe, Tan Wee; Idris, Muhammad Zaffwan bin
2017-05-01
Digital game-based learning (DGBL) had been regarded as a sound learning strategy in raising pupils' willingness and interest in many disciplines. Normally, video and digital games are used in the teaching and learning mathematics. based on literature, digital games have proven its capability in making pupils motivated and are more likely to contribute to effective learning mathematics. Hence this research aims to construct a DGBL in the teaching of Mathematics for Year 1 pupils. Then, a quasi-experimental study was carried out in a school located in Gua Musang, Kelantan, involving 39 pupils. Specifically, this article tests the effectiveness of the use of DGBL in the teaching of the topic Addition of Less than 100 on pupil's achievement. This research employed a quasi-experiment, Pre and Post Test of Non-equivalent Control Group design. The data were analysed using the Nonparametric test namely the Mann-Whitney U. The research finding shows the use of the DGBL could increase the pupils' achievement in the topic of Addition of Less than 100. In practice, this research indicates that the DBGL can utilized as an alternative reference strategy for Mathematics teacher.
DEFF Research Database (Denmark)
Fischetti, Martina; Fraccaro, Marco
2018-01-01
In this paper we propose a combination of Mathematical Optimization and Machine Learning to estimate the value of optimized solutions. In particular, we investigate if a machine, trained on a large number of optimized solutions, could accurately estimate the value of the optimized solution for new...... in production between optimized/non optimized solutions, it is not trivial to understand the potential value of a new site without running a complete optimization. This could be too time consuming if a lot of sites need to be evaluated, therefore we propose to use Machine Learning to quickly estimate...... the potential of new sites (i.e., to estimate the optimized production of a site without explicitly running the optimization). To do so, we trained and tested different Machine Learning models on a dataset of 3000+ optimized layouts found by the optimizer. Thanks to the close collaboration with a leading...
Yusepa, B. G. P.; Kusumah, Y. S.; Kartasasmita, B. G.
2018-01-01
The aim of this study is to get an in-depth understanding of students’ abstract-thinking ability in mathematics learning. This study was an experimental research with pre-test and post-test control group design. The subject of this study was eighth-grade students from two junior high schools in Bandung. In each schools, two parallel groups were selected and assigned into control and experimental groups. The experimental group was exposed to Cognitive Apprenticeship Instruction (CAI) treatment, whereas the control group was exposed to conventional learning. The results showed that abstract-thinking ability of students in experimental group was better than that of those in control group in which it could be observed from the overall and school level. It could be concluded that CAI could be a good alternative learning model to enhance students’ abstract-thinking ability.
Helping Education Students Understand Learning through Designing
Ronen-Fuhrmann, Tamar; Kali, Yael; Hoadley, Christopher
2008-01-01
This article describes a course in which graduate students in education learn practical and theoretical aspects of educational design by creating technologies for learning. The course was built around three themes: "Analyzing technologies," in which students study state-of- the-art technologies and interview their designers; "design studio," in…
Understanding the learning styles of undergraduate physiotherapy ...
African Journals Online (AJOL)
Background. Undergraduate students at universities have different learning styles. To perform optimally, both they and their educators should be made aware of their preferred learning styles and problem-solving abilities. Students have different backgrounds, strengths, weaknesses, interests, ambitions, levels of motivation ...
Designing Professional Learning Communities through Understanding the Beliefs of Learning
Ke, Jie; Kang, Rui; Liu, Di
2016-01-01
This study was designed to initiate the process of building professional development learning communities for pre-service math teachers through revealing those teachers' conceptions/beliefs of students' learning and their own learning in China. It examines Chinese pre-service math teachers' conceptions of student learning and their related…
Profiles of Opportunities to Learn for TEDS-M Future Secondary Mathematics Teachers
Wang, Ting-Ying; Tang, Shu-Jyh
2013-01-01
This study used the data set from the Teacher Education and Development Study in Mathematics to identify the profiles of opportunities to learn (OTL) regarding topics studied in teacher preparation programs by future secondary mathematics teachers from 15 participating countries. The topics of inquiry covered tertiary-level mathematics,…
Learning to Teach Mathematics Specialists in a Synchronous Online Course: A Self-Study
Hjalmarson, Margret A.
2017-01-01
This article uses a self-study research methodology to explore teaching an online course for mathematics specialists. The course included weekly videoconferencing sessions and focused on supporting their development as mathematics coaches working with K-8 teachers to enhance mathematics teaching and learning. The central question for the…
How Mathematics Teachers Develop Their Pupils' Self-Regulated Learning Skills
Marchis, Iuliana
2011-01-01
Self-regulated learning skills are important in mathematical problem solving. The aim of the paper is to present a research on how mathematics teachers guide their pupils' mathematical problem-solving activities in order to increase self-regulation. 62 teachers have filled in a questionnaire developed for this research. The results are show that…
What Is the Problem in Problem-Based Learning in Higher Education Mathematics
Dahl, Bettina
2018-01-01
Problem and Project-Based Learning (PBL) emphasise collaborate work on problems relevant to society and emphases the relation between theory and practice. PBL fits engineering students as preparation for their future professions but what about mathematics? Mathematics is not just applied mathematics, but it is also a body of abstract knowledge…
Project-Based Learning and Design-Focused Projects to Motivate Secondary Mathematics Students
Remijan, Kelly W.
2017-01-01
This article illustrates how mathematics teachers can develop design-focused projects, related to project-based learning, to motivate secondary mathematics students. With first-hand experience as a secondary mathematics teacher, I provide a series of steps related to the engineering design process, which are helpful to teachers in developing…
Cheshire, Daniel C.
2017-01-01
The introduction to general topology represents a challenging transition for students of advanced mathematics. It requires the generalization of their previous understanding of ideas from fields like geometry, linear algebra, and real or complex analysis to fit within a more abstract conceptual system. Students must adopt a new lexicon of…
Schwery, Denise; Hulac, David; Schweinle, Amy
2016-01-01
This literature review provides school psychologists with an understanding of the important issues related to the gender gap in mathematics achievement. The extant literature suggests that girls tend to receive lower scores than boys on standardized math tests, but in general these differences tend to be small. However, girls have better classroom…
"Complicando Algo Tan Sencillo": Bridging Mathematical Understanding of Latino Immigrant Parents
Colegrove, Kiyomi Sánchez-Suzuki; Krause, Gladys
2016-01-01
The purpose of this paper is to demonstrate the mathematical understanding of Latino immigrant parents in curricular and pedagogical practices in elementary school. The paper seeks to counter widely spread deficit discourses about the parental involvement of Latinos in education. Using data from the Agency and Young Children project, a video-cued…
Transitions between School and Work: Some New Understandings and Questions about Adult Mathematics.
Beach, King
There is dissonance between the lives of adult students in rural Nepal in a subsistence-level agrarian community and their participation in school. The concept of "transfer" has several shortcomings from the standpoint of understanding relations between mathematical reasoning in the classroom and in the workplace. It is more helpful to…
Huang, Rongjin; Gong, Zikun; Han, Xue
2016-01-01
Lesson study (LS) has been practiced in China as an effective way to advance teachers' professional development for decades. This study explores how LS improves teaching that promotes students' understanding. A LS group including didacticians (practice-based teaching research specialist and University-based mathematics educators) and mathematics…
Letwinsky, Karim Medico; Cavender, Monica
2018-01-01
Many preservice teacher (PST) programs throughout the world are preparing students to implement the Core Standards, which require deeper conceptual understandings of mathematics and an informed approach for teaching. In this qualitative multi-case study, researchers explored the teaching methods for two university instructors and changes in PSTs…
Understanding post-operative temperature drop in cardiac surgery: a mathematical model
Tindall, M. J.; Peletier, M. A.; Severens, N. M. W.; Veldman, D. J.; de Mol, B. A. J. M.
2008-01-01
A mathematical model is presented to understand heat transfer processes during the cooling and re-warming of patients during cardiac surgery. Our compartmental model is able to account for many of the qualitative features observed in the cooling of various regions of the body including the central
The kinds of questions asked by novice teachers in learning mathematics
Zahra, L.; Kusmayadi, T. A.; Usodo, B.
2018-05-01
This study describes the kinds of questions asked by novice teachers during mathematics learning process in senior high school. This study used descriptive analysis. The subjects of this study were two novice teachers who teach mathematics in 10th grade. The result showed that the frequently asked questions by novice teachers based on the objective were compliance questions, rethorical questions and sometimes prompting questions and probing questions. The frequently questions asked by novice teacher based on the cognitive process dimension of Revised Bloom’s Taxonomy were questions of remembering, questions of understanding, questions of applying, questions of analyzing and questions of evaluating. The novice teachers asked the routine questions which had same thinking level. The question with the highest level of thinking did not asked by the novice teachers.
Open access web technology for mathematics learning in higher education
Directory of Open Access Journals (Sweden)
Mari Carmen González-Videgaray
2016-05-01
Full Text Available Problems with mathematics learning, “math anxiety” or “statistics anxiety” among university students can be avoided by using teaching strategies and technological tools. Besides personal suffering, low achievement in mathematics reduces terminal efficiency and decreases enrollment in careers related to science, technology and mathematics. This paper has two main goals: 1 to offer an organized inventory of open access web resources for math learning in higher education, and 2 to explore to what extent these resources are currently known and used by students and teachers. The first goal was accomplished by running a search in Google and then classifying resources. For the second, we conducted a survey among a sample of students (n=487 and teachers (n=60 from mathematics and engineering within the largest public university in Mexico. We categorized 15 high-quality web resources. Most of them are interactive simulations and computer algebra systems. ResumenLos problemas en el aprendizaje de las matemáticas, como “ansiedad matemática” y “ansiedad estadística” pueden evitarse si se usan estrategias de enseñanza y herramientas tecnológicas. Además de un sufrimiento personal, el bajo rendimiento en matemáticas reduce la eficiencia terminal y decrementa la matrícula en carreras relacionadas con ciencia, tecnología y matemáticas. Este artículo tiene dos objetivos: 1 ofrecer un inventario organizado de recursos web de acceso abierto para aprender matemáticas en la universidad, y 2 explorar en qué medida estos recursos se usan actualmente entre alumnos y profesores. El primer objetivo se logró con un perfil de búsqueda en Google y una clasificación. Para el segundo, se condujo una encuesta en una muestra de estudiantes (n=487 y maestros (n=60 de matemáticas e ingeniería de la universidad más grande de México. Categorizamos 15 recursos web de alta calidad. La mayoría son simulaciones interactivas y
The Present Affairs and Issues of Research on Collaborative Learning in Mathematics Education
松島, 充
2014-01-01
In this research, at first, the previous work of collaborative learning and cooperative learning was investigated on learning sciences and cognitive psychology. It is clarified the difference of interde-pendent, of the epistemology and of the subject who construct knowledge. The secondly, investigation since 1990 of the collaborative learning research in mathematics educa-tion was conducted based on eight sorts of mathematics education academic journals, and the present affairs and the issues...
Platas, Linda M.
2015-01-01
The Mathematical Development Beliefs Survey was developed to measure early childhood teachers' beliefs about mathematics teaching and learning in the preschool classroom. This instrument was designed to measure beliefs concerning (a) age-appropriateness of mathematics instruction, (b) classroom locus of generation of mathematical knowledge…
Understanding Digital Learning and Its Variable Effects
Means, B.
2016-12-01
An increasing proportion of undergraduate courses use an online or blended learning format. This trend signals major changes in the kind of instruction students receive in their STEM courses, yet evidence about the effectiveness of these new approaches is sparse. Existing syntheses and meta-analyses summarize outcomes from experimental or quasi-experimental studies of online and blended courses and document how few studies incorporate proper controls for differences in student characteristics, instructor behaviors, and other course conditions. The evidence that is available suggests that on average blended courses are equal to or better than traditional face-to-face courses and that online courses are equivalent in terms of learning outcomes. But these averages conceal a tremendous underlying variability. Results vary markedly from course to course, even when the same technology is used in both. Some research suggests that online instruction puts lower-achieving students at a disadvantage. It is clear that introducing digital learning per se is no guarantee that student engagement and learning will be enhanced. Getting more consistently positive impacts out of learning technologies is going to require systematic characterization of the features of learning technologies and associated instructional practices as well as attention to context and student characteristics. This presentation will present a framework for characterizing essential features of digital learning resources, implementation practices, and conditions. It will also summarize the research evidence with respect to the learning impacts of specific technology features including spaced practice, immediate feedback, mastery learning based pacing, visualizations and simulations, gaming features, prompts for explanations and reflection, and tools for online collaboration.
the roles of games in teaching and learning of mathematics in junior ...
African Journals Online (AJOL)
users
The research seeks to enhance the status of games in teaching mathematics in ... that the use of games and activities can make the mathematics enjoyable. ... motivation, understanding and suppression of anxiety are some of the reasons ...
Peter Jarvis and the Understanding of Adult Learning
Illeris, Knud
2017-01-01
By comparing Peter Jarvis' understanding of learning with two other approaches--which Jarvis himself has referred to as "the most comprehensive": Etienne Wenger's "social theory of learning" and my own psychologically oriented theory of "the three dimensions of learning"--it becomes evident that Jarvis' understanding…
Framing discourse for optimal learning in science and mathematics
Megowan, Mary Colleen
2007-12-01
This study explored the collaborative thinking and learning that occurred in physics and mathematics classes where teachers practiced Modeling Instruction. Four different classes were videotaped---a middle school mathematics resource class, a 9th grade physical science class, a high school honors physics class and a community college engineering physics course. Videotapes and transcripts were analyzed to discover connections between the conceptual structures and spatial representations that shaped students' conversations about space and time. Along the way, it became apparent that students' and teachers' cultural models of schooling were a significant influence, sometimes positive and sometimes negative, in students' engagement and metaphor selection. A growing number of researchers are exploring the importance of semiotics in physics and mathematics, but typically their unit of analysis is the individual student. To examine the distributed cognition that occurred in this unique learning setting, not just among students but also in connection with their tools, artifacts and representations, I extended the unit of analysis for my research to include small groups and their collaborative work with whiteboarded representations of contextual problems and laboratory exercises. My data revealed a number of interesting insights. Students who constructed spatial representations and used them to assist their reasoning, were more apt to demonstrate a coherent grasp of the elements, operations, relations and rules that govern the model under investigation than those who relied on propositional algebraic representations of the model. In classrooms where teachers permitted and encouraged students to take and hold the floor during whole-group discussions, students learned to probe one another more deeply and conceptually. Shared representations (whether spatial or propositional/algebraic), such as those that naturally occurred when students worked together in small groups to
Statistical Learning as a Basis for Social Understanding in Children
Ruffman, Ted; Taumoepeau, Mele; Perkins, Chris
2012-01-01
Many authors have argued that infants understand goals, intentions, and beliefs. We posit that infants' success on such tasks might instead reveal an understanding of behaviour, that infants' proficient statistical learning abilities might enable such insights, and that maternal talk scaffolds children's learning about the social world as well. We…
Understanding of Foreign Language Learning of Generation Y
Bozavli, Ebubekir
2016-01-01
Different generations are constituted depending on social changes and they are designed sociologically as traditional, baby boomer, X, Y and Z. Many studies have been reported on understanding of foreign language learning generation Y. This study aims to realise the gap in and contribute to the research on language learning understanding of…
Karlimah
2018-05-01
This study examines the application of classical music backsound in mathematics learning. The method used is quasi experimental design nonequivalent pretest-posttest control group in elementary school students in Tasikmalaya city, Indonesia. The results showed that classical music contributed significantly to the mathematical intelligence of elementary school students. The mathematical intelligence shown is in the cognitive ability ranging from the level of knowledge to evaluation. High level mathematical intelligence is shown by students in reading and writing integers with words and numbers. The low level of mathematical intelligence exists in projecting the story into a mathematical problem. The implication of this research is the use of classical music backsound on learning mathematics should pay attention to the level of difficulty of mathematics material being studied.
Demitra; Sarjoko
2018-01-01
Indigenous people of Dayak tribe in Kalimantan, Indonesia have traditionally relied on a system of mutual cooperation called "handep." The cultural context has an influence on students mathematics learning. The "handep" system might be suitable for modern learning situations to develop mathematical problem-solving skill. The…
Apps for Mathematics Learning: A Review of "Educational" Apps from the iTunes App Store
Highfield, Kate; Goodwin, Kristy
2013-01-01
Increasingly iPads™ are being used in schools and prior-to-school settings, with a plethora of Apps available for mathematics learning. Despite the growing number of Apps available in the iTunes App Store, there has been limited systematic analysis of the pedagogic design of Apps designed for mathematics learning. This paper describes a content…
Scholz, Markus; Niesch, Harald; Steffen, Olaf; Ernst, Baerbel; Loeffler, Markus; Witruk, Evelin; Schwarz, Hans
2008-01-01
The aim of this study is to evaluate the benefit of chess in mathematics lessons for children with learning disabilities based on lower intelligence (IQ 70-85). School classes of four German schools for children with learning disabilities were randomly assigned to receive one hour of chess lesson instead of one hour of regular mathematics lessons…
Harper, Frances Kay
2017-01-01
This dissertation builds on and extends research on the relationship between equity-minded mathematics teaching, specifically teaching mathematics for social justice, complex instruction, and project-based learning, and students' learning and identity development. Although different in their structures and strategies, equity-minded mathematics…
Learning fraction comparison by using a dynamic mathematics software - GeoGebra
Poon, Kin Keung
2018-04-01
GeoGebra is a mathematics software system that can serve as a tool for inquiry-based learning. This paper deals with the application of a fraction comparison software, which is constructed by GeoGebra, for use in a dynamic mathematics environment. The corresponding teaching and learning issues have also been discussed.
Student Talk and Opportunities for Mathematical Learning in Small Group Interactions
Wood, Marcy B.; Kalinec, Crystal A.
2012-01-01
Small group interactions are an important tool for mathematical learning and yet researchers have neither examined small group talk across entire lessons nor have they focused on moments of mathematical learning in small groups. We examined such talk and identified kinds of interactions and connections between interactions and mathematical…
CASCADE-IMEI: A learning environment of realistic mathematics for student teachers in Indonesia
Zulkardi, Z.; Nieveen, N.M.
2001-01-01
This paper reports on the second phase of a four-year study which aims to develop a learning environment that supports prospective mathematics teachers learning realistic mathematics education (RME) in teacher education in Indonesia. The results suggest that by giving student teachers experiences in
Zulkardi, Z.; Nieveen, N.M.
2001-01-01
CASCADE-IMEI is a learning environment in the form of a face-to-face course and a web site (www.cascadeimei.com) which aims to support student teachers in Indonesia to learn Realistic Mathematics Education (RME). RME is an instructional theory in mathematics education that was originally developed
Gender Differences in the Use and Benefit of Advanced Learning Technologies for Mathematics
Arroyo, Ivon; Burleson, Winslow; Tai, Minghui; Muldner, Kasia; Woolf, Beverly Park
2013-01-01
We provide evidence of persistent gender effects for students using advanced adaptive technology while learning mathematics. This technology improves each gender's learning and affective predispositions toward mathematics, but specific features in the software help either female or male students. Gender differences were seen in the students' style…
Mahanin, Hajah Umisuzimah Haji; Shahrill, Masitah; Tan, Abby; Mahadi, Mar Aswandi
2017-01-01
This study investigated the use of interdisciplinary learning activity task to construct students' knowledge in Mathematics, specifically on the topic of scale drawing application. The learning activity task involved more than one academic discipline, which is Mathematics, English Language, Art, Geography and integrating the Brunei Darussalam…
Li, Qing; Vandermeiden, Elise; Lemieux, Collette; Nathoo, Shahista
2016-01-01
This study explored secondary students' learning experiences in mathematics through digital game building. In this study, students were asked to become designers and builders in order to coauthor their own mathematics learning. Grounded in enactivism, this study examined the impact of game building on students' achievement. In addition, it…
Learning Fraction Comparison by Using a Dynamic Mathematics Software--GeoGebra
Poon, Kin Keung
2018-01-01
GeoGebra is a mathematics software system that can serve as a tool for inquiry-based learning. This paper deals with the application of a fraction comparison software, which is constructed by GeoGebra, for use in a dynamic mathematics environment. The corresponding teaching and learning issues have also been discussed.
Teachers' Awareness of the Semio-Cognitive Dimension of Learning Mathematics
Iori, Maura
2018-01-01
While many semiotic and cognitive studies on learning mathematics have focused primarily on students, this study focuses mainly on teachers, by seeking to bring to light their awareness of the semiotic and cognitive aspects of learning mathematics. The aim is to highlight the degree of awareness that teachers show about: (1) the distinction…
Children's developing understanding of what and how they learn.
Sobel, David M; Letourneau, Susan M
2015-04-01
What do children know about learning? Children between 4 and 10 years of age were asked what they thought the word learning meant and then engaged in a structured interview about what kinds of things they learned and how they learned those things. Most of the 4- and 5-year-olds' responses to these questions indicated a lack of awareness about the nature of learning or how learning occurs. In contrast, the 8- to 10-year-olds showed a strong understanding of learning as a process and could often generate explicit metacognitive responses indicating that they understood under what circumstances learning would occur. The 6- and 7-year-olds were in a transitional stage between these two levels of understanding. We discuss the implications of this development with children's theory-of-mind development more generally. Copyright © 2015 Elsevier Inc. All rights reserved.
The SAMPLE experience: The development of a rich media online mathematics learning environment
Chang, Jen
2006-01-01
This report documents the development of Sample Architecture for Mathematically Productive Learning Experiences (SAMPLE), a rich media, online, mathematics learning environment created to meet the needs of middle school educators. It explores some of the current pedagogical challenges in mathematics education, and their amplified impacts when coupled with under-prepared teachers, a decidedly wide-spread phenomenon. The SAMPLE publishing experience is discussed in terms of its instructional de...
Adeneye Olarewaju Awofala
2016-01-01
This study investigated the effect of personalisation of instruction on the motivation to learn mathematics word problems of 450 senior secondary students in Nigeria within the blueprint of quasi-experimental research of Solomon Four non-equivalent control group design. It also examined the influence of gender on motivation to learn mathematics word problems and personalisation was accomplished by incorporating selected information with students’ personal preferences into their mathematics wo...
Cho, Moon-Heum; Heron, Michele L.
2015-01-01
Enrollment in online remedial mathematics courses has increased in popularity in institutions of higher learning; however, students unskilled in self-regulated learning (SRL) find online remedial mathematics courses particularly challenging. We investigated the role of SRL, specifically motivation, emotion, and learning strategies, in students'…
Moyer-Packenham, Patricia S.; Bullock, Emma K.; Shumway, Jessica F.; Tucker, Stephen I.; Watts, Christina M.; Westenskow, Arla; Anderson-Pence, Katie L.; Maahs-Fladung, Cathy; Boyer-Thurgood, Jennifer; Gulkilik, Hilal; Jordan, Kerry
2016-03-01
This paper focuses on understanding the role that affordances played in children's learning performance and efficiency during clinical interviews of their interactions with mathematics apps on touch-screen devices. One hundred children, ages 3 to 8, each used six different virtual manipulative mathematics apps during 30-40-min interviews. The study used a convergent mixed methods design, in which quantitative and qualitative data were collected concurrently to answer the research questions (Creswell and Plano Clark 2011). Videos were used to capture each child's interactions with the virtual manipulative mathematics apps, document learning performance and efficiency, and record children's interactions with the affordances within the apps. Quantitized video data answered the research question on differences in children's learning performance and efficiency between pre- and post-assessments. A Wilcoxon matched pairs signed-rank test was used to explore these data. Qualitative video data was used to identify affordance access by children when using each app, identifying 95 potential helping and hindering affordances among the 18 apps. The results showed that there were changes in children's learning performance and efficiency when children accessed a helping or a hindering affordance. Helping affordances were more likely to be accessed by children who progressed between the pre- and post-assessments, and the same affordances had helping and hindering effects for different children. These results have important implications for the design of virtual manipulative mathematics learning apps.
The Impact of the Flipped Classroom on Mathematics Concept Learning in High School
Bhagat, Kaushal Kumar; Chang, Cheng-Nan; Chang, Chun-Yen
2016-01-01
The present study aimed to examine the effectiveness of the flipped classroom learning environment on learner's learning achievement and motivation, as well as to investigate the effects of flipped classrooms on learners with different achievement levels in learning mathematics concepts. The learning achievement and motivation were measured by the…
Analysis of Self-Directed Learning upon Student of Mathematics Education Study Program
Kleden, Maria Agustina
2015-01-01
Various studies have rendered self-directed learning disposition to be significant in the learning of mathematics, however several previous studies have pointed the level of self-directed learning disposition to be at a low point. This research is aimed to enhance self-directed learning through implementing a metacognitive strategy in learning…
Adolescent literacy: learning and understanding content.
Goldman, Susan R
2012-01-01
Learning to read--amazing as it is to small children and their parents--is one thing. Reading to learn, explains Susan Goldman of the University of Illinois at Chicago, is quite another. Are today's students able to use reading and writing to acquire knowledge, solve problems, and make decisions in academic, personal, and professional arenas? Do they have the literacy skills necessary to meet the demands of the twenty-first century? To answer these questions, Goldman describes the increasingly complex comprehension, reasoning skills, and knowledge that students need as they progress through school and surveys what researchers and educators know about how to teach those skills. Successfully reading to learn requires the ability to analyze, synthesize, and evaluate information from multiple sources, Goldman writes. Effective readers must be able to apply different knowledge, reading, and reasoning processes to different types of content, from fiction to history and science, to news accounts and user manuals. They must assess sources of information for relevance, reliability, impartiality, and completeness. And they must connect information across multiple sources. In short, successful readers must not only use general reading skills but also pay close attention to discipline-specific processes. Goldman reviews the evidence on three different instructional approaches to reading to learn: general comprehension strategies, classroom discussion, and disciplinary content instruction. She argues that building the literacy skills necessary for U.S. students to read comprehensively and critically and to learn content in a variety of disciplines should be a primary responsibility for all of the nation's teachers. But outside of English, few subject-area teachers are aware of the need to teach subject-area reading comprehension skills, nor have they had opportunities to learn them themselves. Building the capacity of all teachers to meet the literacy needs of today's students
Pepin, B.E.U.; Xu, B.; Trouche, L.; Wang, C.
2017-01-01
In order to develop a deeper understanding of mathematics teaching expertise, in this study we use the Documentational Approach to Didactics to explore the resource systems of three Chinese mathematics “expert” teachers. Exploiting the Western and Eastern literature we examine the notion of
Ratnaningsih, N.; El Akbar, R. R.; Hidayat, E.
2018-05-01
One of ways to improve students' learning ability is conduct a research, with purpose to obtain a method to improve students' ability. Research often carried out on the modification of teaching methods, uses of teaching media, motivation, interests and talents of students. Research related to the internal condition of students becomes very interesting to studied, including research on circadian rhythms. Every person in circadian rhythms has its own Chronotype, which divided into two types namely early type and night late type. Chronotype affects the comfort in activity, for example a person with Chronotype category of early type tends to be more comfort in daytime activities. The purpose of this study is to examine the conditions of students, related Chronotype suitable or appropriate for student learning time. This suitability then studied in relation to the ability of learning mathematics with self- regulated learning approach. This study consists of three stages; (i) student Chronotype measurement, (ii) data retrieval, and (iii) analysis of research results. The results show the relationship between the students' learning ability in mathematics to learning time corresponding to Chronotype.
Directory of Open Access Journals (Sweden)
Sri Rosepda Sebayang
2015-12-01
Full Text Available This study aims: 1 to determine whether the student learning outcomes using discovery learning is better than conventional learning 2 To determine whether the learning outcomes of students who have a high initial concept understanding better then of low initial concept understanding, and 3 to determine the effect of interaction discovery learning and understanding of the initial concept of the learning outcomes of students. The samples in this study was taken by cluster random sampling two classes where class X PIA 3 as a class experiment with applying discovery learning and class X PIA 2 as a control class by applying conventional learning. The instrument used in this study is a test of learning outcomes in the form of multiple-choice comprehension test initial concept description form. The results of research are: 1 learning outcomes of students who were taught with discovery learning is better than the learning outcomes of students who are taught by conventional learning, 2 student learning outcomes with high initial conceptual understanding better than the learning outcomes of students with low initial conceptual understanding, and 3 there was no interaction between discovery learning and understanding of initial concepts for the student learning outcomes.
Directory of Open Access Journals (Sweden)
Nadine Adams
2012-08-01
Full Text Available Globally, universities are striving to increase enrolment rates, especially for low socioeconomic status and mature-aged students. In order to meet these targets, universities are accepting a broader range of students, often resulting in a widening mathematical knowledge gap between secondary school and university (Hoyles, Newman & Noss, 2001. Therefore, even amid the growing trend of scaling back services, there exists a need for extra learning support in mathematics. Mathematics support services are recognised as vital in assisting students to both bridge the knowledge gap and become independent learners. Through a survey of students using the Mathematics Learning Centre at Central Queensland University Australia, it was found that the implementation of scaffolding, adult learning principles and the embedding of mathematics support provides students with not only fundamental mathematical knowledge but also the skills required to become self-directed learners.
Chotimah, Siti; Bernard, M.; Wulandari, S. M.
2018-01-01
The main problems of the research were the lack of reasoning ability and mathematical disposition of students to the learning of mathematics in high school students in Cimahi - West Java. The lack of mathematical reasoning ability in students was caused by the process of learning. The teachers did not train the students to do the problems of reasoning ability. The students still depended on each other. Sometimes, one of patience teacher was still guiding his students. In addition, the basic ability aspects of students also affected the ability the mathematics skill. Furthermore, the learning process with contextual approach aided by VBA Learning Media (Visual Basic Application for Excel) gave the positive influence to the students’ mathematical disposition. The students are directly involved in learning process. The population of the study was all of the high school students in Cimahi. The samples were the students of SMA Negeri 4 Cimahi class XIA and XIB. There were both of tested and non-tested instruments. The test instrument was a description test of mathematical reasoning ability. The non-test instruments were questionnaire-scale attitudes about students’ mathematical dispositions. This instrument was used to obtain data about students’ mathematical reasoning and disposition of mathematics learning with contextual approach supported by VBA (Visual Basic Application for Excel) and by conventional learning. The data processed in this study was from the post-test score. These scores appeared from both of the experimental class group and the control class group. Then, performing data was processed by using SPSS 22 and Microsoft Excel. The data was analyzed using t-test statistic. The final result of this study concluded the achievement and improvement of reasoning ability and mathematical disposition of students whose learning with contextual approach supported by learning media of VBA (Visual Basic Application for Excel) was better than students who got
Wardono; Mariani, S.
2018-03-01
Indonesia as a developing country in the future will have high competitiveness if its students have high mathematics literacy ability. The current reality from year to year rankings of PISA mathematics literacy Indonesian students are still not good. This research is motivated by the importance and low ability of the mathematics literacy. The purpose of this study is to: (1) analyze the effectiveness of PMRI learning with media Schoology, (2) describe the ability of students' mathematics literacy on PMRI learning with media Schoology which is reviewed based on seven components of mathematics literacy, namely communication, mathematizing, representation, reasoning, devising strategies, using symbols, and using mathematics tool. The method used in this research is the method of sequential design method mix. Techniques of data collection using observation, interviews, tests, and documentation. Data analysis techniques use proportion test, appellate test, and use descriptive analysis. Based on the data analysis, it can be concluded; (1) PMRI learning with media Schoology effectively improve the ability of mathematics literacy because of the achievement of classical completeness, students' mathematics literacy ability in PMRI learning with media Schoology is higher than expository learning, and there is increasing ability of mathematics literacy in PMRI learning with media Schoology of 30%. (2) Highly capable students attain excellent mathematics literacy skills, can work using broad thinking with appropriate resolution strategies. Students who are capable of achieving good mathematics literacy skills can summarize information, present problem-solving processes, and interpret solutions. low-ability students have reached the level of ability of mathematics literacy good enough that can solve the problem in a simple way.
Comparison of learning models based on mathematics logical intelligence in affective domain
Widayanto, Arif; Pratiwi, Hasih; Mardiyana
2018-04-01
The purpose of this study was to examine the presence or absence of different effects of multiple treatments (used learning models and logical-mathematical intelligence) on the dependent variable (affective domain of mathematics). This research was quasi experimental using 3x3 of factorial design. The population of this research was VIII grade students of junior high school in Karanganyar under the academic year 2017/2018. Data collected in this research was analyzed by two ways analysis of variance with unequal cells using 5% of significance level. The result of the research were as follows: (1) Teaching and learning with model TS lead to better achievement in affective domain than QSH, teaching and learning with model QSH lead to better achievement in affective domain than using DI; (2) Students with high mathematics logical intelligence have better achievement in affective domain than students with low mathematics logical intelligence have; (3) In teaching and learning mathematics using learning model TS, students with moderate mathematics logical intelligence have better achievement in affective domain than using DI; and (4) In teaching and learning mathematics using learning model TS, students with low mathematics logical intelligence have better achievement in affective domain than using QSH and DI.
Understanding feedback: A learning theory perspective
Thurlings, Marieke; Vermeulen, Marjan; Bastiaens, Theo; Stijnen, Sjef
2018-01-01
This article aims to review literature on feedback to teachers. Because research has hardly focused on feedback among teachers, the review’s scope also includes feedback in class- rooms. The review proposes that the effectiveness of feedback and feedback processes depend on the learning theory
Role of implicit learning abilities in metaphor understanding.
Drouillet, Luc; Stefaniak, Nicolas; Declercq, Christelle; Obert, Alexandre
2018-05-01
Although the use of metaphors is a central component of language, the processes that sustain their comprehension have yet to be specified. Work in the fields of both metaphors and implicit learning suggests that implicit learning abilities facilitate the comprehension of metaphors. However, to date, no study has directly explored the relationships between the understanding of metaphors and so-called implicit learning tasks. We used a meaning decision task comparing literal, metaphorical and meaningless expressions to assess metaphor understanding and a probabilistic serial reaction time task for assessing implicit learning. Our results show that implicit learning positively predicts the time gap between responses to literal and metaphorical expressions and negatively predicts the difference between metaphorical and meaningless expressions. Thus, when confronted with novel metaphors, participants with higher implicit learning abilities are better able to identify that the expressions have some meaning. These results are interpreted in the context of metaphor understanding and psycholinguistic theories. Copyright © 2018 Elsevier Inc. All rights reserved.
CREATING CRITICAL THINKING FROM AFFECTIVE DOMAIN IN SUCCESSFUL LEARNING OF MATHEMATICS.
Kholidah Sitanggang; Herman Mawengkang; Tulus.
2018-01-01
The success of the learning process can be seen from the results of learning that is visible from the change in behavior on students, both the attitude and skills which are better than before. Mathematics learning success is not only determined by cognitive abilities but also affective abilities. Successful learning in terms of cognitive and psychomotor is affected by the affective condition of the students. Students who have interest in learning and a positive attitude toward learning will b...
An investigation into the opportunity to learn that is available to Grade 12 mathematics learners
Directory of Open Access Journals (Sweden)
Gerrit Stols
2013-01-01
Full Text Available This study investigated the opportunity to learn (OTL that is available to Grade 12 mathematics learners. Learner workbooks were analysed in terms of time on task, curriculum coverage, curriculum coherence, and cognitive demand. Based on these elements, experienced mathematics teachers judged the opportunity that the learners have to achieve more than 60% for each topic. According to the workbooks, the average number of active learning days in this sample was 54.1 days per annum. This resulted in limited curriculum coverage in almost all sections in 16 of the 18 under-performing schools. In these schools, learners spent most of their time practising routine procedures. The high correlation of 0.95 (p < 0.001 between the experts'prediction about the opportunity to learn in the different schools (based on the learner workbooks and learners' actual performance in the Grade 12 exam shows that the number, the coverage, the cognitive level, and the coherence of activities play a major role in understanding learner performance.
Arnold, V I
2014-01-01
This collection of 39 short stories gives the reader a unique opportunity to take a look at the scientific philosophy of Vladimir Arnold, one of the most original contemporary researchers. Topics of the stories included range from astronomy, to mirages, to motion of glaciers, to geometry of mirrors and beyond. In each case Arnold's explanation is both deep and simple, which makes the book interesting and accessible to an extremely broad readership. Original illustrations hand drawn by the author help the reader to further understand and appreciate Arnold's view on the relationship between math
Huscroft-D'Angelo, Jacqueline; Higgins, Kristina N.; Crawford, Lindy L.
2014-01-01
Proficiency in mathematics, including mathematical reasoning skills, requires students to communicate their mathematical thinking. Mathematical reasoning involves making sense of mathematical concepts in a logical way to form conclusions or judgments, and is often underdeveloped in students with learning disabilities. Technology-based environments…
Didactic trajectory of research in mathematics education using research-based learning
Charitas Indra Prahmana, Rully; Kusumah, Yaya S.; Darhim
2017-10-01
This study aims to describe the role of research-based learning in design a learning trajectory of research in mathematics education to enhance research and academic writing skills for pre-service mathematics teachers. The method used is a design research with three stages, namely the preliminary design, teaching experiment, and retrospective analysis. The research subjects are pre-service mathematics teacher class of 2012 from one higher education institution in Tangerang - Indonesia. The use of research-based learning in designing learning trajectory of research in mathematics education plays a crucial role as a trigger to enhancing math department preservice teachers research and academic writing skills. Also, this study also describes the design principles and characteristics of the learning trajectory namely didactic trajectory generated by the role of research-based learning syntax.
Siblings' Understanding of Learning Disability: A Longitudinal Study
Hames, Annette
2008-01-01
Background: There is very little research on how and when siblings understand that they have a brother or sister with a learning disability. Research regarding young children's understanding of intelligence, suggests that they may not develop a clear understanding of ability until about 7 years of age. Method: Through interviewing parents and then…
Directory of Open Access Journals (Sweden)
Viktor Freiman
2011-12-01
Full Text Available Many educational systems consider using one-to-one access to the laptop as a way to improve teaching and learning. A two-year action research project on the use of laptop computers by New Brunswick (Canada grade 7 and 8 Francophone students aimed to better understand the impact of laptops on learning. Two problem-based learning (PBL interdisciplinary scenarios (math, science, language arts were implemented in eight experimental classes to measure and document students’ actual learning process, particularly in terms of their ability to scientifically investigate authentic problems, to reason mathematically, and to communicate. On-site observations, video-recording, journals, samples of students’ work, and interviews were used to collect qualitative data. Based on our findings, we argue that laptops in and of themselves may not automatically lead to better results on standardized tests, but rather create opportunities to enrich learning with more open-ended, constructive, collaborative, reflective, and cognitively complex learning tasks.
Yeh, Cathery
2016-01-01
Elementary school mathematics has gained increased attention in the last few decades. A growing field of research has studied the programmatic design and development of elementary mathematics teaching in teacher education, however, few studies have examined longitudinally the mathematics teaching of novice elementary teachers. Existing longitudinal studies on elementary mathematics teaching have generally focused on the effects of teacher preparation on their beginning practices and have exam...
Petters, Arlie O
2016-01-01
This textbook aims to fill the gap between those that offer a theoretical treatment without many applications and those that present and apply formulas without appropriately deriving them. The balance achieved will give readers a fundamental understanding of key financial ideas and tools that form the basis for building realistic models, including those that may become proprietary. Numerous carefully chosen examples and exercises reinforce the student’s conceptual understanding and facility with applications. The exercises are divided into conceptual, application-based, and theoretical problems, which probe the material deeper. The book is aimed toward advanced undergraduates and first-year graduate students who are new to finance or want a more rigorous treatment of the mathematical models used within. While no background in finance is assumed, prerequisite math courses include multivariable calculus, probability, and linear algebra. The authors introduce additional mathematical tools as needed. The entire...
Learning Analytics to Understand Cultural Impacts on Technology Enhanced Learning
Mittelmeier, Jenna; Tempelaar, Dirk; Rienties, Bart; Nguyen, Quan
2016-01-01
In this empirical study, we investigate the role of national cultural dimensions as distal antecedents of the use intensity of e-tutorials, which constitute the digital component within a blended learning course. Profiting from the context of a dispositional learning analytics application, we investigate cognitive processing strategies and…
Directory of Open Access Journals (Sweden)
Abdul Qohar
2013-01-01
Full Text Available This paper presents the findings from a posttest experiment control group design by using reciprocal teaching, conducted in Indonesia University of Education to investigate students’ ability in mathematical communication and self regulated learning. Subject of the study were 254 of 9th grade students from three junior high schools of high, medium, and low level in Bojonegoro, East Java. The instruments of the study were an essay mathematical communication test, and a self regulated learning scale. The study found that reciprocal teaching took the best role among school cluster and students’ prior mathematics ability on students’ mathematical communication ability and self regulated learning as well. The other finding were there was interaction between school cluster and teaching approaches, but was no interaction between students’ prior mathematics ability and teaching approaches on mathematical communication ability and self regulated learning. Moreover, there was association between mathematical communication and self regulated learningKeywords: Reciprocal Teaching, Mathematical Communication, Self Regulated Learning DOI: http://dx.doi.org/10.22342/jme.4.1.562.59-74
Rahayu, D. V.; Kusumah, Y. S.; Darhim
2018-05-01
This study examined to see the improvement of prospective teachers’ basic skills of teaching mathematics through search-solve-create-share learning strategy based on overall and Mathematical Prior Knowledge (MPK) and interaction of both. Quasi experiments with the design of this experimental-non-equivalent control group design involved 67 students at the mathematics program of STKIP Garut. The instrument used in this study included pre-test and post-test. The result of this study showed that: (1) The improvement and achievement of the basic skills of teaching mathematics of the prospective teachers who get the learning of search-solve-create-share strategy is better than the improvement and achievement of the prospective teachers who get the conventional learning as a whole and based on MPK; (2) There is no interaction between the learning used and MPK on improving and achieving basic skills of teaching mathematics.
Directory of Open Access Journals (Sweden)
Blaženka Divjak
2011-06-01
Full Text Available Normal 0 21 false false false SH X-NONE X-NONE Information technologies are an integral part of a contemporary society which bases its progress on knowledge being one goal of education. Beside acquiring knowledge, skills and routines, the goal of education is to create a complete individual who can rationally and timely make decisions, purposefully react in new situations and be trained for life-long learning. In order to accomplish all this, it is necessary to make educational process more creative, contemporary and adjusted to new generations of computer literate pupils who demand quicker and more frequent interactions, a lot of information at the same time, generations who quickly acquire rules of computer games. Computer games meeting pedagogical criteria should become an integral part of learning. Teaching with mathematical computer games, which fulfil pedagogical criteria, influences pupils’ motivation, learning, retention and forgetting. This paper provides a review of literature in this field and determines whether the use of mathematical computer games contributes to more efficient realisation of educational goals at all level of education. Furthermore, considering prior research we have attempted to establish whether the use of mathematical games for teaching has an impact on the formation of a positive attitude of pupils of different ages toward the subject of mathematics, their motivation and knowledge acquisition when compared to learning without computer games. Finally, we have analysed different research methods concerning this issue and assessed the impact of pedagogically designed mathematical computer games on the realisation of educational goals and quality improvement of teaching and learning.
Jamieson, Thad Spencer
2015-01-01
The use of mathematics performance tasks can provide a window into how a student is applying mathematics to various situations, how they are reasoning mathematically and how they are applying conceptual knowledge through problem solving and critical thinking. The purpose of this study was to investigate, according to the elementary mathematics…
Adams, Vicki
2012-01-01
Students do not pursue careers in science, technology, engineering, or mathematics (STEM) because of a lack of ability, but rather a lack of positive experiences with mathematics. Research has concluded that attitudes in math directly influence success in mathematics. As many as 75% of high school graduates in the United States suffer from mild to…
Opportunity to learn first year mathematics in teacher training ...
African Journals Online (AJOL)
African Journal of Educational Studies in Mathematics and Sciences ... topics in the first year teacher training mathematics syllabus were not taught by the end ... that the teacher training college tutors make efforts to complete the PS1 syllabus.
Li, Xin; Gray, Kathleen; Verspoor, Karin; Barnett, Stephen
2017-01-01
Online social networks (OSN) enable health professionals to learn informally, for example by sharing medical knowledge, or discussing practice management challenges and clinical issues. Understanding the learning context in OSN is necessary to get a complete picture of the learning process, in order to better support this type of learning. This study proposes critical contextual factors for understanding the learning context in OSN for health professionals, and demonstrates how these contextual factors can be used to analyse the learning context in a designated online learning environment for health professionals.
Directory of Open Access Journals (Sweden)
Delsika Pramata Sari
2017-06-01
Full Text Available The purpose of this study was to investigate the errors experienced by students learning with REACT strategy and traditional learning in solving problems of mathematical representation ability. This study used quasi experimental pattern with static-group comparison design. The subjects of this study were 47 eighth grade students of junior high school in Bandung consisting of two samples. The instrument used was a test to measure students' mathematical representation ability. The reliability coefficient about the mathematical representation ability was 0.56. The most prominent errors of mathematical representation ability of students learning with REACT strategy and traditional learning, was on indicator that solving problem involving arithmetic symbols (symbolic representation. In addition, errors were also experienced by many students with traditional learning on the indicator of making the image of a real world situation to clarify the problem and facilitate its completion (visual representation.
Understanding Productive Learning Through the Metaphorical Lens of Patchworking
DEFF Research Database (Denmark)
Ryberg, Thomas
2009-01-01
, which formed the basis of the author’s PhD thesis (Ryberg, 2007), the concept of understanding learning as a process of patchworking has emerged. The metaphor of patchworking is a perspective that emphasises the constructive, creative and productive aspects of learning. In this chapter the main aspects...
Understanding the Quality of Out-of-Class English Learning
Lai, Chun; Zhu, Weimin; Gong, Gang
2015-01-01
Out-of-class learning constitutes an important context for human development, and active engagement in out-of-class activities is associated with successful language development. However, not all out-of-class experiences are equally beneficial to learning, and it is of paramount importance to understand what quality out-of-class English language…
Understanding the Implications of Online Learning for Educational Productivity
Bakia, Marianne; Shear, Linda; Toyama, Yukie; Lasseter, Austin
2012-01-01
The purpose of this report is to support educational administrators and policymakers in becoming informed consumers of information about online learning and its potential impact on educational productivity. The report provides foundational knowledge needed to examine and understand the potential contributions of online learning to educational…
Understanding Game-Based Learning Cultures: Introduction to Special Issue
Engerman, Jason A.; Carr-Chellman, Alison
2017-01-01
This special issue expands our understanding of teaching and learning through video game play, with specific attention to culture. The issue gives insight into the ways educators, researchers, and developers should be discussing and designing for impactful learner-centered game-based learning experiences. The issue features forward-thinking…
Emotion, Identity and Teacher Learning: Becoming a Primary Mathematics Teacher
Hodgen, Jeremy; Askew, Mike
2007-01-01
Teacher change in mathematics education is recognised to be a difficult and at times painful process. This is particularly so in countries such as England where primary mathematics is taught by non-specialist teachers, who have often had negative experiences of their own school mathematics. In this paper we explore primary teachers' emotional…
Learning difficulties of senior high school students based on probability understanding levels
Anggara, B.; Priatna, N.; Juandi, D.
2018-05-01
Identifying students' difficulties in learning concept of probability is important for teachers to prepare the appropriate learning processes and can overcome obstacles that may arise in the next learning processes. This study revealed the level of students' understanding of the concept of probability and identified their difficulties as a part of the epistemological obstacles identification of the concept of probability. This study employed a qualitative approach that tends to be the character of descriptive research involving 55 students of class XII. In this case, the writer used the diagnostic test of probability concept learning difficulty, observation, and interview as the techniques to collect the data needed. The data was used to determine levels of understanding and the learning difficulties experienced by the students. From the result of students' test result and learning observation, it was found that the mean cognitive level was at level 2. The findings indicated that students had appropriate quantitative information of probability concept but it might be incomplete or incorrectly used. The difficulties found are the ones in arranging sample space, events, and mathematical models related to probability problems. Besides, students had difficulties in understanding the principles of events and prerequisite concept.
Integrated learning of mathematics, science and technology concepts through LEGO/Logo projects
Wu, Lina
This dissertation examined integrated learning in the domains of mathematics, science and technology based on Piaget's constructivism, Papert's constructionism, and project-based approach to education. Ten fifth grade students were involved in a two-month long after school program where they designed and built their own computer-controlled LEGO/Logo projects that required the use of gears, ratios and motion concepts. The design of this study centered on three notions of integrated learning: (1) integration in terms of what educational materials/settings provide, (2) integration in terms of students' use of those materials, and (3) integration in the psychological sense. In terms of the first notion, the results generally showed that the LEGO/Logo environment supported the integrated learning of math, science and technology concepts. Regarding the second notion, the students all completed impressive projects of their own design. They successfully combined gears, motors, and LEGO parts together to create motion and writing control commands to manipulate the motion. But contrary to my initial expectations, their successful designs did not require numerical reasoning about ratios in designing effective gear systems. When they did reason about gear relationships, they worked with "qualitative" ratios, e.g., "a larger driver gear with a smaller driven gear increases the speed." In terms of the third notion of integrated learning, there was evidence in all four case study students of the psychological processes involved in linking mathematical, scientific, and/or technological concepts together to achieve new conceptual units. The students not only made connections between ideas and experiences, but also recognized decisive patterns and relationships in their project work. The students with stronger overall project performances showed more evidence of synthesis than the students with relatively weaker performances did. The findings support the conclusion that all three
Directory of Open Access Journals (Sweden)
Wannaree Pansiri
2016-12-01
Full Text Available The objectives of this research were 1 to develop the assessment for learning model of Mathematics for Rajamangala University 2 to study the effectivness of assessment for learning model of Mathematics for Rajamagala University of Technology Rattanakosin. The research target group consisted of 72 students from 3 classes and 3 General Mathematics teachers. The data was gathered from observation, worksheets, achievement test and skill of assessment for learning, questionnaire of the assessment for learning model of Mathematics. The statistics that used in this research were Frequency, Percentage, Mean, Standard Deviation, and Growth Score. The results of this research were 1. The assessment of learning model of Mathematics for Rajamangala University of Technology Rattanakosin consisted of 3 components ; 1. Pre-assessment which consisted of 4 activities ; a Preparation b Teacher development c Design and creation the assessment plan and instrument for assessment and d Creation of the learning experience plan 2. The component for assessment process consisted of 4 steps which were a Identifying the learning objectives and criteria b Identifying the learning experience plan and assessment follow the plan c Learning reflection and giving feedback and d Learner development based on information and improve instruction and 3. Giving feedback component. 2. The effective of assessment for learning model found that most students had good score in concentration, honest, responsibilities, group work, task presentation, worksheets, and doing exercises. The development knowledge of learning and knowledge and skill of assessment for learning of lecturers were fairly good. The opinion to the assessment for learning of learners and assessment for learning model of Mathematics of teachers found that was in a good level.
Poell, R.F.; Moorsel, M.A.A.H. van
1996-01-01
This paper discusses the relevance of Van der Krogt's learning network theory (1995) for our understanding of the concepts of work-related learning projects and learning climate in organisations. The main assumptions of the learning network theory are presented and transferred to the level of learning groups in organisations. Four theoretical types of learning projects are distinguished. Four different approaches to the learning climate of work groups are compared to the approach offered by t...
Monaco, Nanci M.; Gentile, J. Ronald
1987-01-01
This study was designed to test whether a learned helplessness treatment would decrease performance on mathematical tasks and to extend learned helplessness findings to include the cognitive development dimension. Results showed no differential advantages to either sex in resisting effects of learned helplessness or in benefiting from strategy…
Power and Identity in Immigrant Parents' Involvement in Early Years Mathematics Learning
Takeuchi, Miwa Aoki
2018-01-01
This study examined immigrant parents' involvement in early years mathematics learning, focusing on learning of multiplication in in- and out-of-school settings. Ethnographic interviews and workshops were conducted in an urban city in Japan, to examine out-of-school practices of immigrant families. Drawing from sociocultural theory of learning and…
Sumarna, Nana; Sentryo, Izlan
2017-08-01
This research applies mathematical investigation approach in teaching geometry to improve mathematical reasoning abilities of prospective elementary teachers. Mathematical investigation in this study involved non-routine tasks through a mathematical investigation process, namely through a series of activities as an attribute of mathematical investigation. Developing the ability of mathematical reasoning of research subjects obtained through capability of research subjects in the analysis, generalization, synthesis, justify, and resolve non-routine, which is operationally constructed as an indicator of research and is used as a criterion for measuring the ability of mathematical reasoning. Research design using Quasi-Experimental design. Based on this type, the researchers apply a pre-and posttest design, which is divided into two study groups: control group and the treatment group. The number of research subjects were 111 students consisting of 56 students in the experimental group and 55 students in the control group. The conclusion of this study stated that (1) Investigation of mathematics as an approach to learning is able to give a positive response to the increasing ability of mathematical reasoning, and (2) There is no interaction effect of the factors of learning and prior knowledge of mathematics to the increased ability of mathematical reasoning.
Presentación-Herrero, M Jesús; Mercader-Ruiz, Jessica; Siegenthaler-Hierro, Rebeca; Fernández-Andrés, Inmaculada; Miranda-Casas, Ana
2015-02-25
Early identification of the factors involved in the development of learning difficulties in mathematics is essential to be able to understand their origin and implement successful interventions. This study analyses the capacity of executive functioning and of variables from the motivational belief system to differentiate and classify preschool children with and without risk of having difficulties in mathematics. A total of 146 subjects from the third year of preschool education took part in the study, divided into risk/no risk according to the score obtained on the operations subtest of the TEDI-MATH test. Working memory (verbal and visuospatial) and inhibition (with auditory and visual stimuli) neuropsychological tasks were applied. Teachers filled in a questionnaire on the children's motivation with regard to learning. Significant differences were found between the two groups on the working memory and inhibition-auditory factors, as well as on all the motivation variables. The results also show a similar power of classification, with percentages above 80%, for both groups of variables. The implications of these findings for educational practice are discussed.
Blended Learning, E-Learning and Mobile Learning in Mathematics Education
Borba, Marcelo C.; Askar, Petek; Engelbrecht, Johann; Gadanidis, George; Llinares, Salvador; Aguilar, Mario Sánchez
2016-01-01
In this literature survey we focus on identifying recent advances in research on digital technology in the field of mathematics education. To conduct the survey we have used internet search engines with keywords related to mathematics education and digital technology and have reviewed some of the main international journals, including the ones in…
Bailey, Judy
2013-01-01
Teacher education can provide opportunities for contributing towards a re-envisaging of the teaching and learning of mathematics in the primary classroom. This study documents the experiences of one student teacher who, during her mathematics education courses, embraced a perception of mathematics as a social, creative and experiential discipline.…
Mathematics, the Computer, and the Impact on Mathematics Education.
Tooke, D. James
2001-01-01
Discusses the connection between mathematics and the computer; mathematics curriculum; mathematics instruction, including teachers learning to use computers; and the impact of the computer on learning mathematics. (LRW)
Pagliaro, Claudia M.; Kritzer, Karen L.
2010-01-01
Using a multiple case-study design, this study compares the early learning behaviours of young deaf/hard-of-hearing (d/hh) children with high/low mathematics ability (as defined by test score on the Test of Early Mathematics Ability-3). Children's simultaneous use of multiple learning behaviours was also examined as were contributing adult…
Developing and Understanding Intelligent Contexts for Playing and Learning
DEFF Research Database (Denmark)
Larsen, Lasse Juel; Helms, Niels Henrik
of tangible learning media and develop didactic approaches for teachers in a primary school and furthermore to use the user experiences in a structured process where children participated in the innovation process. This has raised a fundamental question: How should we understand the relationship between....... This paper therefore aims at illustrating how and why the “Octopus” works and functions in a learning community (school) and discus the relations between distinctions, embodiment, intelligent contexts, structure and flow. This paper introduces a new reading of pervasive learning environments as the “Octopus......” through M.M. Bachtins concept of “Chronotopos” or how time and space influence and structure experience and learning. We have adapted this theory that originally is about literature in order to find new ways of understanding the time and place relation in learning....
Assessing Understanding of the Learning Cycle: The ULC
Marek, Edmund A.; Maier, Steven J.; McCann, Florence
2008-08-01
An 18-item, multiple choice, 2-tiered instrument designed to measure understanding of the learning cycle (ULC) was developed and field-tested from the learning cycle test (LCT) of Odom and Settlage ( Journal of Science Teacher Education, 7, 123 142, 1996). All question sets of the LCT were modified to some degree and 5 new sets were added, resulting in the ULC. The ULC measures (a) understandings and misunderstandings of the learning cycle, (b) the learning cycle’s association with Piaget’s ( Biology and knowledge theory: An essay on the relations between organic regulations and cognitive processes, 1975) theory of mental functioning, and (c) applications of the learning cycle. The resulting ULC instrument was evaluated for internal consistency with Cronbach’s alpha, yielding a coefficient of .791.
Adults' and Children's Understanding of How Expertise Influences Learning.
Danovitch, Judith H; Shenouda, Christine K
2018-01-01
Adults and children use information about expertise to infer what a person is likely to know, but it is unclear whether they realize that expertise also has implications for learning. We explore adults' and children's understanding that expertise in a particular category supports learning about a closely related category. In four experiments, 5-year-olds and adults (n = 160) judged which of two people would be better at learning about a new category. When faced with an expert and a nonexpert, adults consistently indicated that expertise supports learning in a closely related category; however, children's judgments were inconsistent and were strongly influenced by the description of the nonexpert. The results suggest that although children understand what it means to be an expert, they may judge an individual's learning capacity based on different considerations than adults.
Pegg, John; Panizzon, Debra
2011-06-01
When questioned, secondary mathematics teachers in rural and regional schools in Australia refer to their limited opportunities to engage and share experiences with peers in other schools as an under-utilised and cost-effective mechanism to support their professional learning and enhance their students' learning. The paper reports on the creation and evaluation of a network of learning communities of rural secondary mathematics teachers around a common purpose—enhancement and increased engagement of student learning in mathematics. To achieve this goal, teams of teachers from six rural schools identified an issue hindering improved student learning of mathematics in their school. Working collaboratively with support from university personnel with expertise in curriculum, assessment and quality pedagogy, teachers developed and implemented strategies to address an identified issue in ways that were relevant to their teaching contexts. The research study identifies issues in mathematics of major concern to rural teachers of mathematics, the successes and challenges the teachers faced in working in learning communities on the issue they identified, and the efficacy of the professional learning model.
A machine learning approach to understand business processes
Maruster, L.
2003-01-01
Business processes (industries, administration, hospitals, etc.) become nowadays more and more complex and it is difficult to have a complete understanding of them. The goal of the thesis is to show that machine learning techniques can be used successfully for understanding a process on the basis of
Posing Problems to Understand Children's Learning of Fractions
Cheng, Lu Pien
2013-01-01
In this study, ways in which problem posing activities aid our understanding of children's learning of addition of unlike fractions and product of proper fractions was examined. In particular, how a simple problem posing activity helps teachers take a second, deeper look at children's understanding of fraction concepts will be discussed. The…
Stultz, Sherry L.
2017-01-01
This review was conducted to evaluate the current body of scholarly research regarding the use of computer-assisted instruction (CAI) to teach mathematics to students with specific learning disability (SLD). For many years, computers are utilized for educational purposes. However, the effectiveness of CAI for teaching mathematics to this specific…
Examining Student Opinions on Computer Use Based on the Learning Styles in Mathematics Education
Ozgen, Kemal; Bindak, Recep
2012-01-01
The purpose of this study is to identify the opinions of high school students, who have different learning styles, related to computer use in mathematics education. High school students' opinions on computer use in mathematics education were collected with both qualitative and quantitative approaches in the study conducted with a survey model. For…
Effects of Attitudes and Behaviours on Learning Mathematics with Computer Tools
Reed, Helen C.; Drijvers, Paul; Kirschner, Paul A.
2010-01-01
This mixed-methods study investigates the effects of student attitudes and behaviours on the outcomes of learning mathematics with computer tools. A computer tool was used to help students develop the mathematical concept of function. In the whole sample (N = 521), student attitudes could account for a 3.4 point difference in test scores between…
Developing Student-Centered Learning Model to Improve High Order Mathematical Thinking Ability
Saragih, Sahat; Napitupulu, Elvis
2015-01-01
The purpose of this research was to develop student-centered learning model aiming to improve high order mathematical thinking ability of junior high school students of based on curriculum 2013 in North Sumatera, Indonesia. The special purpose of this research was to analyze and to formulate the purpose of mathematics lesson in high order…
Marshall, Neil; Buteau, Chantal
2014-01-01
As part of their undergraduate mathematics curriculum, students at Brock University learn to create and use computer-based tools with dynamic, visual interfaces, called Exploratory Objects, developed for the purpose of conducting pure or applied mathematical investigations. A student's Development Process Model of creating and using an Exploratory…
Creativity in Unique Problem-Solving in Mathematics and Its Influence on Motivation for Learning
Bishara, Saied
2016-01-01
This research study investigates the ability of students to tackle the solving of unique mathematical problems in the domain of numerical series, verbal and formal, and its influence on the motivation of junior high students with learning disabilities in the Arab sector. Two instruments were used to collect the data: mathematical series were…
Modeling Achievement in Mathematics: The Role of Learner and Learning Environment Characteristics
Nasser-Abu Alhija, Fadia; Amasha, Marcel
2012-01-01
This study examined a structural model of mathematics achievement among Druze 8th graders in Israel. The model integrates 2 psychosocial theories: goal theory and social learning theory. Variables in the model included gender, father's and mother's education, classroom mastery and performance goal orientation, mathematics self-efficacy and…
Effects of Teaching Strategies on Student Motivation to Learn in High School Mathematics Classes
Toles, Ann
2010-01-01
To succeed in an increasing technological and global society, students need to develop strong mathematical and problem-solving skills. This qualitative grounded theory study examined student perceptions of the ways in which teaching strategies in high school mathematics classes affect student motivation to learn the subject. Study participants…