WorldWideScience

Sample records for understand finite-size effects

  1. Characterization of resonances using finite size effects

    International Nuclear Information System (INIS)

    Pozsgay, B.; Takacs, G.

    2006-01-01

    We develop methods to extract resonance widths from finite volume spectra of (1+1)-dimensional quantum field theories. Our two methods are based on Luscher's description of finite size corrections, and are dubbed the Breit-Wigner and the improved ''mini-Hamiltonian'' method, respectively. We establish a consistent framework for the finite volume description of sufficiently narrow resonances that takes into account the finite size corrections and mass shifts properly. Using predictions from form factor perturbation theory, we test the two methods against finite size data from truncated conformal space approach, and find excellent agreement which confirms both the theoretical framework and the numerical validity of the methods. Although our investigation is carried out in 1+1 dimensions, the extension to physical 3+1 space-time dimensions appears straightforward, given sufficiently accurate finite volume spectra

  2. Finite size effects of a pion matrix element

    International Nuclear Information System (INIS)

    Guagnelli, M.; Jansen, K.; Palombi, F.; Petronzio, R.; Shindler, A.; Wetzorke, I.

    2004-01-01

    We investigate finite size effects of the pion matrix element of the non-singlet, twist-2 operator corresponding to the average momentum of non-singlet quark densities. Using the quenched approximation, they come out to be surprisingly large when compared to the finite size effects of the pion mass. As a consequence, simulations of corresponding nucleon matrix elements could be affected by finite size effects even stronger which could lead to serious systematic uncertainties in their evaluation

  3. Finite size effects in simulations of protein aggregation.

    Directory of Open Access Journals (Sweden)

    Amol Pawar

    Full Text Available It is becoming increasingly clear that the soluble protofibrillar species that proceed amyloid fibril formation are associated with a range of neurodegenerative disorders such as Alzheimer's and Parkinson diseases. Computer simulations of the processes that lead to the formation of these oligomeric species are starting to make significant contributions to our understanding of the determinants of protein aggregation. We simulate different systems at constant concentration but with a different number of peptides and we study the how the finite number of proteins affects the underlying free energy of the system and therefore the relative stability of the species involved in the process. If not taken into account, this finite size effect can undermine the validity of theoretical predictions regarding the relative stability of the species involved and the rates of conversion from one to the other. We discuss the reasons that give rise to this finite size effect form both a probabilistic and energy fluctuations point of view and also how this problem can be dealt by a finite size scaling analysis.

  4. Finite size effects in neutron star and nuclear matter simulations

    Energy Technology Data Exchange (ETDEWEB)

    Giménez Molinelli, P.A., E-mail: pagm@df.uba.ar; Dorso, C.O.

    2015-01-15

    In this work we study molecular dynamics simulations of symmetric nuclear and neutron star matter using a semi-classical nucleon interaction model. Our aim is to gain insight on the nature of the so-called “finite size effects”, unavoidable in this kind of simulations, and to understand what they actually affect. To do so, we explore different geometries for the periodic boundary conditions imposed on the simulation cell: cube, hexagonal prism and truncated octahedron. For nuclear matter simulations we show that, at sub-saturation densities and low temperatures, the solutions are non-homogeneous structures reminiscent of the “nuclear pasta” phases expected in neutron star matter simulations, but only one structure per cell and shaped by specific artificial aspects of the simulations—for the same physical conditions (i.e. number density and temperature) different cells yield different solutions. The particular shape of the solution at low enough temperature and a given density can be predicted analytically by surface minimization. We also show that even if this behavior is due to the imposition of periodic boundary conditions on finite systems, this does not mean that it vanishes for very large systems, and it is actually independent of the system size. We conclude that, for nuclear matter simulations, the cells' size sets the only characteristic length scale for the inhomogeneities, and the geometry of the periodic cell determines the shape of those inhomogeneities. To model neutron star matter we add a screened Coulomb interaction between protons, and perform simulations in the three cell geometries. Our simulations indeed produce the well known nuclear pasta, with (in most cases) several structures per cell. However, we find that for systems not too large results are affected by finite size in different ways depending on the geometry of the cell. In particular, at the same certain physical conditions and system size, the hexagonal prism yields a

  5. Finite-size effects for anisotropic bootstrap percolation : Logarithmic corrections

    NARCIS (Netherlands)

    van Enter, Aernout C. D.; Hulshof, Tim

    In this note we analyse an anisotropic, two-dimensional bootstrap percolation model introduced by Gravner and Griffeath. We present upper and lower bounds on the finite-size effects. We discuss the similarities with the semi-oriented model introduced by Duarte.

  6. Finite-size effects for anisotropic bootstrap percolation: logerithmic corrections

    NARCIS (Netherlands)

    Enter, van A.C.D.; Hulshof, T.

    2007-01-01

    In this note we analyse an anisotropic, two-dimensional bootstrap percolation model introduced by Gravner and Griffeath. We present upper and lower bounds on the finite-size effects. We discuss the similarities with the semi-oriented model introduced by Duarte.

  7. Finite size effects on hydrogen bonds in confined water

    International Nuclear Information System (INIS)

    Musat, R.; Renault, J.P.; Le Caer, S.; Pommeret, S.; Candelaresi, M.; Palmer, D.J.; Righini, R.

    2008-01-01

    Femtosecond IR spectroscopy was used to study water confined in 1-50 nm pores. The results show that even large pores induce significant changes (for example excited-state lifetimes) to the hydrogen-bond network, which are independent of pore diameter between 1 and 50 nm. Thus, the changes are not surface-induced but rather finite size effects, and suggest a confinement-induced enhancement of the acidic character of water. (authors)

  8. Finite size effects and symmetry breaking in the evolution of networks of competing Boolean nodes

    International Nuclear Information System (INIS)

    Liu, M; Bassler, K E

    2011-01-01

    Finite size effects on the evolutionary dynamics of Boolean networks are analyzed. In the model considered, Boolean networks evolve via a competition between nodes that punishes those in the majority. Previous studies have found that large networks evolve to a statistical steady state that is both critical and highly canalized, and that the evolution of canalization, which is a form of robustness found in genetic regulatory networks, is associated with a particular symmetry of the evolutionary dynamics. Here, it is found that finite size networks evolve in a fundamentally different way than infinitely large networks do. The symmetry of the evolutionary dynamics of infinitely large networks that selects for canalizing Boolean functions is broken in the evolutionary dynamics of finite size networks. In finite size networks, there is an additional selection for input-inverting Boolean functions that output a value opposite to the majority of input values. The reason for the symmetry breaking in the evolutionary dynamics is found to be due to the need for nodes in finite size networks to behave differently in order to cooperate so that the system collectively performs as efficiently as possible. The results suggest that both finite size effects and symmetry are fundamental for understanding the evolution of real-world complex networks, including genetic regulatory networks.

  9. Finite size effects in quark-gluon plasma formation

    International Nuclear Information System (INIS)

    Gopie, Andy; Ogilvie, Michael C.

    1999-01-01

    Using lattice simulations of quenched QCD we estimate the finite size effects present when a gluon plasma equilibrates in a slab geometry, i.e., finite width but large transverse dimensions. Significant differences are observed in the free energy density for the slab when compared with bulk behavior. A small shift in the critical temperature is also seen. The free energy required to liberate heavy quarks relative to bulk is measured using Polyakov loops; the additional free energy required is on the order of 30 - 40 MeV at 2 - 3 T c

  10. fB from finite size effects in lattice QCD

    International Nuclear Information System (INIS)

    Guagnelli, M.; Palombi, F.; Petronzio, R.; Tantalo, N.

    2003-01-01

    We discuss a novel method to calculate f B on the lattice, introduced in [1], based on the study of the dependence of finite size effects upon the heavy quark mass of flavoured mesons and on a non-perturbative recursive finite size technique. This method avoids the systematic errors related to extrapolations from the static limit or to the tuning of the coefficients of effective Lagrangian and the results admit an extrapolation to the continuum limit. We show the results of a first estimate at finite lattice spacing, but close to the continuum limit, giving f B = 170(11)(5)(22) MeV. We also obtain f B s = 192(9)(5)(24)MeV. The first error is statistical, the second is our estimate of the systematic error from the method and the third the systematic error from the specific approximations adopted in this first exploratory calculation. The method can be generalized to two-scale problems in lattice QCD

  11. Finite size effects in lattice QCD with dynamical Wilson fermions

    Energy Technology Data Exchange (ETDEWEB)

    Orth, B.

    2004-06-01

    Due to limited computing resources choosing the parameters for a full lattice QCD simulation always amounts to a compromise between the competing objectives of a lattice spacing as small, quarks as light, and a volume as large as possible. Aiming at pushing unquenched simulations with the standard Wilson action towards the computationally expensive regime of small quark masses, the GRAL project addresses the question whether computing time can be saved by sticking to lattices with rather modest numbers of grid sites and extrapolating the finite-volume results to the infinite volume (prior to the usual chiral and continuum extrapolations). In this context we investigate in this work finite-size effects in simulated light hadron masses. Understanding their systematic volume dependence may not only help saving computer time in light quark simulations with the Wilson action, but also guide future simulations with dynamical chiral fermions which for a foreseeable time will be restricted to rather small lattices. We analyze data from hybrid Monte Carlo simulations with the N{sub f} = 2 Wilson action at two values of the coupling parameter, {beta} = 5.6 (lattice spacing {alpha} {approx} 0.08 fm) and {beta} = 5.32144 ({alpha} {approx} 0.13 fm). The larger {beta} corresponds to the coupling used previously by SESAM/T{chi}L. The considered hopping parameters {kappa} = 0.1575, 0.158 (at the larger {beta}) and {kappa} = 0.1665 (at the smaller {beta}) correspond to quark masses of 85, 50 and 36% of the strange quark mass, respectively. At each quark mass we study at least three different lattice extents in the range from L = 10 to L = 24 (0.85-2.04 fm). Estimates of autocorrelation times in the stochastic updating process and of the computational cost of every run are given. For each simulated sea quark mass we calculate quark propagators and hadronic correlation functions in order to extract the pion, rho and nucleon masses as well as the pion decay constant and the quark mass

  12. Simulation of finite size effects of the fiber bundle model

    Science.gov (United States)

    Hao, Da-Peng; Tang, Gang; Xun, Zhi-Peng; Xia, Hui; Han, Kui

    2018-01-01

    In theory, the macroscopic fracture of materials should correspond with the thermodynamic limit of the fiber bundle model. However, the simulation of a fiber bundle model with an infinite size is unrealistic. To study the finite size effects of the fiber bundle model, fiber bundle models of various size are simulated in detail. The effects of system size on the constitutive behavior, critical stress, maximum avalanche size, avalanche size distribution, and increased step number of external load are explored. The simulation results imply that there is no feature size or cut size for macroscopic mechanical and statistical properties of the model. The constitutive curves near the macroscopic failure for various system size can collapse well with a simple scaling relationship. Simultaneously, the introduction of a simple extrapolation method facilitates the acquisition of more accurate simulation results in a large-limit system, which is better for comparison with theoretical results.

  13. Finite-size effect on optimal efficiency of heat engines.

    Science.gov (United States)

    Tajima, Hiroyasu; Hayashi, Masahito

    2017-07-01

    The optimal efficiency of quantum (or classical) heat engines whose heat baths are n-particle systems is given by the strong large deviation. We give the optimal work extraction process as a concrete energy-preserving unitary time evolution among the heat baths and the work storage. We show that our optimal work extraction turns the disordered energy of the heat baths to the ordered energy of the work storage, by evaluating the ratio of the entropy difference to the energy difference in the heat baths and the work storage, respectively. By comparing the statistical mechanical optimal efficiency with the macroscopic thermodynamic bound, we evaluate the accuracy of the macroscopic thermodynamics with finite-size heat baths from the statistical mechanical viewpoint. We also evaluate the quantum coherence effect on the optimal efficiency of the cycle processes without restricting their cycle time by comparing the classical and quantum optimal efficiencies.

  14. Finite-size effects on current correlation functions

    Science.gov (United States)

    Chen, Shunda; Zhang, Yong; Wang, Jiao; Zhao, Hong

    2014-02-01

    We study why the calculation of current correlation functions (CCFs) still suffers from finite-size effects even when the periodic boundary condition is taken. Two important one-dimensional, momentum-conserving systems are investigated as examples. Intriguingly, it is found that the state of a system recurs in the sense of microcanonical ensemble average, and such recurrence may result in oscillations in CCFs. Meanwhile, we find that the sound mode collisions induce an extra time decay in a current so that its correlation function decays faster (slower) in a smaller (larger) system. Based on these two unveiled mechanisms, a procedure for correctly evaluating the decay rate of a CCF is proposed, with which our analysis suggests that the global energy CCF decays as ˜t-2/3 in the diatomic hard-core gas model and in a manner close to ˜t-1/2 in the Fermi-Pasta-Ulam-β model.

  15. Finite-size effects on multibody neutrino exchange

    CERN Document Server

    Abada, A; Rodríguez-Quintero, J; Abada, As

    1998-01-01

    The effect of multibody massless neutrino exchanges between neutrons inside a finite-size neutron star is studied. We use an effective Lagrangian, which incorporates the effect of the neutrons on the neutrinos. Following Schwinger, it is shown that the total interaction energy density is computed by comparing the zero point energy of the neutrino sea with and without the star. It has already been shown that in an infinite-size star the total energy due to neutrino exchange vanishes exactly. The opposite claim that massless neutrino exchange would produce a huge energy is due to an improper summation of an infrared-divergent quantity. The same vanishing of the total energy has been proved exactly in the case of a finite star in a one-dimensional toy model. Here we study the three-dimensional case. We first consider the effect of a sharp star border, assumed to be a plane. We find that there is a non- vanishing of the zero point energy density difference between the inside and the outside due to the refraction ...

  16. Finite size effects for giant magnons on physical strings

    International Nuclear Information System (INIS)

    Minahan, J.A.; Ohlsson Sax, O.

    2008-01-01

    Using finite gap methods, we find the leading order finite size corrections for an arbitrary number of giant magnons on physical strings, where the sum of the momenta is a multiple of 2π. Our results are valid for the Hofman-Maldacena fundamental giant magnons as well as their dyonic generalizations. The energy corrections turn out to be surprisingly simple, especially if all the magnons are fundamental, and at leading order are independent of the magnon flavors. We also show how to use the Bethe ansatz to find finite size corrections for dyonic giant magnons with large R-charges

  17. Finite-Size Effects for Some Bootstrap Percolation Models

    NARCIS (Netherlands)

    Enter, A.C.D. van; Adler, Joan; Duarte, J.A.M.S.

    The consequences of Schonmann's new proof that the critical threshold is unity for certain bootstrap percolation models are explored. It is shown that this proof provides an upper bound for the finite-size scaling in these systems. Comparison with data for one case demonstrates that this scaling

  18. Finite size effects and chiral symmetry breaking in quenched three-dimensional QED

    International Nuclear Information System (INIS)

    Hands, S.; Kogut, J.B.

    1990-01-01

    Finite size effects and the chiral condensate are studied in three-dimensional QED by the Lanczos and the conjugate-gradient algorithms. Very substantial finite size effects are observed, but studies on L 3 lattices with L ranging from 8 to 80 indicate the development of a non-vanishing chiral condensate in the continuum limit of the theory. The systematics of the finite size effects and the fermion mass dependence in the conjugate-gradient algorithm are clarified in this extensive study. (orig.)

  19. Theory of critical phenomena in finite-size systems scaling and quantum effects

    CERN Document Server

    Brankov, Jordan G; Tonchev, Nicholai S

    2000-01-01

    The aim of this book is to familiarise the reader with the rich collection of ideas, methods and results available in the theory of critical phenomena in systems with confined geometry. The existence of universal features of the finite-size effects arising due to highly correlated classical or quantum fluctuations is explained by the finite-size scaling theory. This theory (1) offers an interpretation of experimental results on finite-size effects in real systems; (2) gives the most reliable tool for extrapolation to the thermodynamic limit of data obtained by computer simulations; (3) reveals

  20. Effects of finite size on spin glass dynamics

    Science.gov (United States)

    Sato, Tetsuya; Komatsu, Katsuyoshi

    2010-12-01

    In spite of comprehensive studies to clarify a variety of interesting phenomena of spin glasses, their understanding has been insufficiently established. To overcome such a problem, fabrication of a mesoscopic spin glass system, whose dynamics can be observed over the entire range to the equilibrium, is useful. In this review the challenges of research that has been performed up to now in this direction and our recent related studies are introduced. We have established to study the spin glass behaviour in terms of droplet picture using nanofabricated mesoscopic samples to some extent, but some problems that should be clarified have been left. Finally, the direction of some new studies is proposed to solve the problems.

  1. Addendum to "Finite-size effects on multibody neutrino exchange"

    CERN Document Server

    Abada, A; Rodríguez-Quintero, J

    1999-01-01

    The interaction energy of the neutrons due to massless neutrino exchange in a neutron star has recently been proved, using an effective theory, to be extremely small and infrared-safe. Our comment here is of conceptual order: two approaches to compute the total interaction energy density have recently been proposed. Here, we study the connection between these two approaches. From CP invariance, we argue that the resulting interaction energy has to be even in the parameter $b=-G_F n_n /\\sqrt{2}$, which expresses the static neutrino potential created by a neutron medium of density $n_n$.

  2. The finite-size effect in thin liquid crystal systems

    Science.gov (United States)

    Śliwa, I.

    2018-05-01

    Effects of surface ordering in liquid crystal systems confined between cell plates are of great theoretical and experimental interest. Liquid crystals introduced in thin cells are known to be strongly stabilized and ordered by cell plates. We introduce a new theoretical method for analyzing the effect of surfaces on local molecular ordering in thin liquid crystal systems with planar geometry of the smectic layers. Our results show that, due to the interplay between pair long-range intermolecular forces and nonlocal, relatively short-range, surface interactions, both orientational and translational orders of liquid crystal molecules across confining cells are very complex. In particular, it is demonstrated that the SmA, nematic, and isotropic phases can coexist. The phase transitions from SmA to nematic, as well as from nematic to isotropic phases, occur not simultaneously in the whole volume of the system but begin to appear locally in some regions of the LC sample. Phase transition temperatures are demonstrated to be strongly affected by the thickness of the LC system. The dependence of the corresponding shifts of phase transition temperatures on the layer number is shown to exhibit a power law character. This new type of scaling behavior is concerned with the coexistence of local phases in finite systems. The influence of a specific character of interactions of molecules with surfaces and other molecules on values of the resulting critical exponents is also analyzed.

  3. Finite size and dynamical effects in pair production by an external field

    International Nuclear Information System (INIS)

    Martin, C.; Vautherin, D.

    1988-12-01

    We evaluate the rate of pair production in a uniform electric field confined into a bounded region in space. Using the Balian-Bloch expansion of Green's functions we obtain explicit expressions for finite size corrections to Schwinger's formula. The case of a time-dependent boundary, relevant to describe energy deposition by quark-antiquark pair production in ultrarelativistic collisions, is also investigated. We find that finite size effects are important in nuclear collisions. They decrease when the strength of the chromo-electric field between the nuclei is large. As a result, the rate of energy deposition increases sharply with the mass number A of the colliding nuclei

  4. Finite size effects in the evaporation rate of 3He clusters

    International Nuclear Information System (INIS)

    Guirao, A.; Pi, M.; Barranco, M.

    1991-01-01

    We have computed the density of states and the evaporation rate of 3 He clusters, paying special attention to finite size effects which modify the 3 He level density parameter and chemical potential from their bulk values. Ready-to-use liquid-drop expansions of these quantities are given. (orig.)

  5. Effects of diffraction and target finite size on coherent transition radiation spectra in bunch length measurements

    Energy Technology Data Exchange (ETDEWEB)

    Castellano, M.; Cianchi, A.; Verzilov, V.A. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori Nazionali di Frascati; Orlandi, G. [Istituto Nazionale di Fisica Nucleare, Rome (Italy)]|[Rome Univ., Tor Vergata, Rome (Italy)

    1999-07-01

    Effects of diffraction and the size of the target on TR in the context of CTR-based bunch length measurements are studied on the basis of Kirchhoff diffraction theory. Spectra of TR from the finite-size target for several schemes of measurements are calculated in the far-infrared region showing strong distortion at low frequencies. Influence of the effect on the accuracy of bunch length measurements is estimated.

  6. Transient hydrodynamic finite-size effects in simulations under periodic boundary conditions

    Science.gov (United States)

    Asta, Adelchi J.; Levesque, Maximilien; Vuilleumier, Rodolphe; Rotenberg, Benjamin

    2017-06-01

    We use lattice-Boltzmann and analytical calculations to investigate transient hydrodynamic finite-size effects induced by the use of periodic boundary conditions. These effects are inevitable in simulations at the molecular, mesoscopic, or continuum levels of description. We analyze the transient response to a local perturbation in the fluid and obtain the local velocity correlation function via linear response theory. This approach is validated by comparing the finite-size effects on the steady-state velocity with the known results for the diffusion coefficient. We next investigate the full time dependence of the local velocity autocorrelation function. We find at long times a crossover between the expected t-3 /2 hydrodynamic tail and an oscillatory exponential decay, and study the scaling with the system size of the crossover time, exponential rate and amplitude, and oscillation frequency. We interpret these results from the analytic solution of the compressible Navier-Stokes equation for the slowest modes, which are set by the system size. The present work not only provides a comprehensive analysis of hydrodynamic finite-size effects in bulk fluids, which arise regardless of the level of description and simulation algorithm, but also establishes the lattice-Boltzmann method as a suitable tool to investigate such effects in general.

  7. Finite size effects on the helical edge states on the Lieb lattice

    International Nuclear Information System (INIS)

    Chen Rui; Zhou Bin

    2016-01-01

    For a two-dimensional Lieb lattice, that is, a line-centered square lattice, the inclusion of the intrinsic spin–orbit (ISO) coupling opens a topologically nontrivial gap, and gives rise to the quantum spin Hall (QSH) effect characterized by two pairs of gapless helical edge states within the bulk gap. Generally, due to the finite size effect in QSH systems, the edge states on the two sides of a strip of finite width can couple together to open a gap in the spectrum. In this paper, we investigate the finite size effect of helical edge states on the Lieb lattice with ISO coupling under three different kinds of boundary conditions, i.e., the straight, bearded and asymmetry edges. The spectrum and wave function of edge modes are derived analytically for a tight-binding model on the Lieb lattice. For a strip Lieb lattice with two straight edges, the ISO coupling induces the Dirac-like bulk states to localize at the edges to become the helical edge states with the same Dirac-like spectrum. Moreover, it is found that in the case with two straight edges the gapless Dirac-like spectrum remains unchanged with decreasing the width of the strip Lieb lattice, and no gap is opened in the edge band. It is concluded that the finite size effect of QSH states is absent in the case with the straight edges. However, in the other two cases with the bearded and asymmetry edges, the energy gap induced by the finite size effect is still opened with decreasing the width of the strip. It is also proposed that the edge band dispersion can be controlled by applying an on-site potential energy on the outermost atoms. (paper)

  8. Coulomb systems seen as critical systems: Finite-size effects in two dimensions

    International Nuclear Information System (INIS)

    Jancovici, B.; Manificat, G.; Pisani, C.

    1994-01-01

    It is known that the free energy at criticality of a finite two-dimensional system of characteristic size L has in general a term which behaves like log L as L → ∞; the coefficient of this term is universal. There are solvable models of two-dimensional classical Coulomb systems which exhibit the same finite-size correction (except for its sign) although the particle correlations are short-ranged, i.e., noncritical. Actually, the electrical potential and electrical field correlations are critical at all temperatures (as long as the Coulomb system is a conductor), as a consequence of the perfect screening property of Coulomb systems. This is why Coulomb systems have to exhibit critical finite-size effects

  9. Finite-size effect and the components of multifractality in financial volatility

    International Nuclear Information System (INIS)

    Zhou Weixing

    2012-01-01

    Highlights: ► The apparent multifractality can be decomposed quantitatively. ► There is a marked finite-size effect in the detection of multifractality. ► The effective multifractality can be further decomposed into two components. ► A time series exhibits effective multifractality only if it possesses nonlinearity. ► The daily DJIA volatility is analyzed as an example. - Abstract: Many financial variables are found to exhibit multifractal nature, which is usually attributed to the influence of temporal correlations and fat-tailedness in the probability distribution (PDF). Based on the partition function approach of multifractal analysis, we show that there is a marked finite-size effect in the detection of multifractality, and the effective multifractality is the apparent multifractality after removing the finite-size effect. We find that the effective multifractality can be further decomposed into two components, the PDF component and the nonlinearity component. Referring to the normal distribution, we can determine the PDF component by comparing the effective multifractality of the original time series and the surrogate data that have a normal distribution and keep the same linear and nonlinear correlations as the original data. We demonstrate our method by taking the daily volatility data of Dow Jones Industrial Average from 26 May 1896 to 27 April 2007 as an example. Extensive numerical experiments show that a time series exhibits effective multifractality only if it possesses nonlinearity and the PDF has an impact on the effective multifractality only when the time series possesses nonlinearity. Our method can also be applied to judge the presence of multifractality and determine its components of multifractal time series in other complex systems.

  10. Finite-Size Effects in Single Chain Magnets: An Experimental and Theoretical Study

    Science.gov (United States)

    Bogani, L.; Caneschi, A.; Fedi, M.; Gatteschi, D.; Massi, M.; Novak, M. A.; Pini, M. G.; Rettori, A.; Sessoli, R.; Vindigni, A.

    2004-05-01

    The problem of finite-size effects in s=1/2 Ising systems showing slow dynamics of the magnetization is investigated introducing diamagnetic impurities in a Co2+-radical chain. The static magnetic properties have been measured and analyzed considering the peculiarities induced by the ferrimagnetic character of the compound. The dynamic susceptibility shows that an Arrhenius law is observed with the same energy barrier for the pure and the doped compounds while the prefactor decreases, as theoretically predicted. Multiple spin reversal has also been investigated.

  11. Finite-size effects on band structure of CdS nanocrystallites studied by positron annihilation

    International Nuclear Information System (INIS)

    Kar, Soumitra; Biswas, Subhajit; Chaudhuri, Subhadra; Nambissan, P.M.G.

    2005-01-01

    Quantum confinement effects in nanocrystalline CdS were studied using positrons as spectroscopic probes to explore the defect characteristics. The lifetime of positrons annihilating at the vacancy clusters on nanocrystalline grain surfaces increased remarkably consequent to the onset of such finite-size effects. The Doppler broadened line shape was also found to reflect rather sensitively such distinct changes in the electron momentum redistribution scanned by the positrons, owing to the widening of the band gap. The nanocrystalline sizes of the samples used were confirmed from x-ray diffraction and high resolution transmission electron microscopy and the optical absorption results supported the quantum size effects. Positron annihilation results indicated distinct qualitative changes between CdS nanorods and the bulk sample, notwithstanding the identical x-ray diffraction pattern and close resemblance of the optical absorption spectra. The results are promising in the event of positron annihilation being proved to be a very successful tool for the study of such finite-size effects in semiconductor nanoparticles

  12. Leading order finite size effects with spins for inspiralling compact binaries

    Energy Technology Data Exchange (ETDEWEB)

    Levi, Michele [Université Pierre et Marie Curie-Paris VI, CNRS-UMR 7095, Institut d’Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Sorbonne Universités, Institut Lagrange de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan [Max-Planck-Institute for Gravitational Physics - Albert-Einstein-Institute,Am Mühlenberg 1, 14476 Potsdam-Golm (Germany); Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2015-06-10

    The leading order finite size effects due to spin, namely that of the cubic and quartic in spin interactions, are derived for the first time for generic compact binaries via the effective field theory for gravitating spinning objects. These corrections enter at the third and a half and fourth post-Newtonian orders, respectively, for rapidly rotating compact objects. Hence, we complete the leading order finite size effects with spin up to the fourth post-Newtonian accuracy. We arrive at this by augmenting the point particle effective action with new higher dimensional nonminimal coupling worldline operators, involving higher-order derivatives of the gravitational field, and introducing new Wilson coefficients, corresponding to constants, which describe the octupole and hexadecapole deformations of the object due to spin. These Wilson coefficients are fixed to unity in the black hole case. The nonminimal coupling worldline operators enter the action with the electric and magnetic components of the Weyl tensor of even and odd parity, coupled to even and odd worldline spin tensors, respectively. Moreover, the non relativistic gravitational field decomposition, which we employ, demonstrates a coupling hierarchy of the gravito-magnetic vector and the Newtonian scalar, to the odd and even in spin operators, respectively, which extends that of minimal coupling. This observation is useful for the construction of the Feynman diagrams, and provides an instructive analogy between the leading order spin-orbit and cubic in spin interactions, and between the leading order quadratic and quartic in spin interactions.

  13. Finite Size Effects in Submonolayer Catalysts Investigated by CO Electrosorption on PtsML/Pd(100).

    Science.gov (United States)

    Yuan, Qiuyi; Doan, Hieu A; Grabow, Lars C; Brankovic, Stanko R

    2017-10-04

    A combination of scanning tunneling microscopy, subtractively normalized interfacial Fourier transform infrared spectroscopy (SNIFTIRS), and density functional theory (DFT) is used to quantify the local strain in 2D Pt clusters on the 100 facet of Pd and its effect on CO chemisorption. Good agreement between SNIFTIRS experiments and DFT simulations provide strong evidence that, in the absence of coherent strain between Pt and Pd, finite size effects introduce local compressive strain, which alters the chemisorption properties of the surface. Though this effect has been widely neglected in prior studies, our results suggest that accurate control over cluster sizes in submonolayer catalyst systems can be an effective approach to fine-tune their catalytic properties.

  14. Finite-size effects on two-particle production in continuous and discrete spectrum

    CERN Document Server

    Lednicky, R

    2005-01-01

    The effect of a finite space-time extent of particle production region on the lifetime measurement of hadronic atoms produced by a high energy beam in a thin target is discussed. Particularly, it is found that the neglect of this effect on the pionium lifetime measurement in the experiment DIRAC at CERN could lead to the lifetime overestimation on the level of the expected 10% statistical error. It is argued that the data on correlations of identical particles obtained in the same experimental conditions, together with transport code simulation, allow to diminish the systematic error in the extracted lifetime to an acceptable level. The theoretical systematic errors arising in the calculation of the finite-size effect due to the neglect of non-equal emission times in the pair c.m.s., the space-time coherence and the residual charge are shown to be negligible.

  15. Finite size effects in the intermittency analysis of the fragment-size correlations

    International Nuclear Information System (INIS)

    Bozek, P.; Ploszajczak, M.; Tucholski, A.

    1991-01-01

    An influence of the finite size effect on the fragment-size correlations in the nuclear multifragmentation is studied using the method of scaled factorial moments for a 1 - dim percolation model and for a statistical model of the fragmentation process, which for a certain value of a tuning parameter yields the power-law behaviour of the fragment-size distribution. It is shown that the statistical models of this type contain only repulsive correlations due to the conservation laws. The comparison of the results with those obtained in the non-critical 1 - dim percolation and in the 3 - dim percolation at around the critical point is presented. Correlations in the 1 - dim percolation model are analysed analytically and the mechanism of the attractive correlations in 1 - dim and 3 - dim is identified. (author) 30 refs., 7 figs

  16. Finite-size effects in the three-state quantum asymmetric clock model

    International Nuclear Information System (INIS)

    Gehlen, G. v.; Rittenberg, V.

    1983-04-01

    The one-dimensional quantum Hamiltonian of the asymmetric three-state clock model is studied using finite-size scaling. Various boundary conditions are considered on chains containing up to eight sites. We calculate the boundary of the commensurate phase and the mass gap index. The model shows an interesting finite-size dependence in connexion with the presence of the incommensurate phase indicating that for the infinite system there is no Lifshitz point. (orig.)

  17. Theoretical studies of finite size effects and screening effects caused by a STM tip in Luettinger liquids

    International Nuclear Information System (INIS)

    Guigou, Marine

    2009-01-01

    This thesis takes place in the field of condensed matter. More precisely, we focus on the finite size effects and the screening effects caused by a STM tip in a quantum wire. For that, we use, first, the Luettinger liquid theory, which allows to describe strongly correlated systems and secondly, the Keldysh formalism, which is necessary to treat the out-of-equilibrium systems. For these studies, we consider, the currant, the noise and the conductance. The noise presents a non-Poissonian behaviour, when finite size effects appear. Through the photo-assisted transport, it is shown that those effects hide the effects of the Coulomb interactions. Considering the proximity between the STM tip, used as a probe or as an injector, and a quantum wire, screening effects appear. We can conclude that they play a similar role to those of Coulomb interactions. (author) [fr

  18. Mechanisms of self-organization and finite size effects in a minimal agent based model

    International Nuclear Information System (INIS)

    Alfi, V; Cristelli, M; Pietronero, L; Zaccaria, A

    2009-01-01

    We present a detailed analysis of the self-organization phenomenon in which the stylized facts originate from finite size effects with respect to the number of agents considered and disappear in the limit of an infinite population. By introducing the possibility that agents can enter or leave the market depending on the behavior of the price, it is possible to show that the system self-organizes in a regime with a finite number of agents which corresponds to the stylized facts. The mechanism for entering or leaving the market is based on the idea that a too stable market is unappealing for traders, while the presence of price movements attracts agents to enter and speculate on the market. We show that this mechanism is also compatible with the idea that agents are scared by a noisy and risky market at shorter timescales. We also show that the mechanism for self-organization is robust with respect to variations of the exit/entry rules and that the attempt to trigger the system to self-organize in a region without stylized facts leads to an unrealistic dynamics. We study the self-organization in a specific agent based model but we believe that the basic ideas should be of general validity

  19. Importance of elastic finite-size effects: Neutral defects in ionic compounds

    Science.gov (United States)

    Burr, P. A.; Cooper, M. W. D.

    2017-09-01

    Small system sizes are a well-known source of error in density functional theory (DFT) calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite-size effects have been well characterized, but self-interaction of charge-neutral defects is often discounted or assumed to follow an asymptotic behavior and thus easily corrected with linear elastic theory. Here we show that elastic effects are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequately small supercells are used; moreover, the spurious self-interaction does not follow the behavior predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground-state structure of (charge-neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768, and 1500 atoms), and careful analysis determines that elastic, not electrostatic, effects are responsible. The spurious self-interaction was also observed in nonoxide ionic compounds irrespective of the computational method used, thereby resolving long-standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects is a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g., hybrid functionals) or when modeling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studied oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells: greater than 96 atoms.

  20. Exploiting finite-size-effects to simulate full QCD with light quarks - a progress report

    International Nuclear Information System (INIS)

    Orth, B.; Eicker, N.; Lippert, Th.; Schilling, K.; Schroers, W.; Sroczynski, Z.

    2002-01-01

    We present a report on the status of the GRAL project (Going Realistic And Light), which aims at simulating full QCD with two dynamical Wilson quarks below the vector meson decay threshold, m ps /m v < 0.5, making use of finite-size-scaling techniques

  1. Finite size effects in liquid-gas phase transition of asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Pawlowski, P.

    2001-01-01

    Full text: Since the nuclear equation of state has been studied in astrophysical context as an element of neutron star or super-nova theories - a call for an evidence was produced in experimental nuclear physics. Heavy-ion collisions became a tool of study on thermodynamic properties of nuclear matter. A particular interest has been inspired here by critical behavior of nuclear systems, as a phase transition of liquid-gas type. A lot of efforts was put to obtain an experimental evidence of such a phenomenon in heavy-ion collisions. With the use of radioactive beams and high performance identification systems in a near future it will be possible to extend experimental investigation to asymmetric nuclear systems, where neutron-to-proton ratio is far from the stability line. This experimental development needs a corresponding extension of theoretical studies. To obtain a complete theory of the liquid-gas phase transition in small nuclear systems, produced in violent heavy-ion collisions, one should take into account two facts. First, that the nuclear matter forming nuclei is composed of protons and neutrons; this complicates the formalism of phase transitions because one has to deal with two separate, proton and neutron, densities and chemical potentials. The second and more important is that the surface effects are very strong in a system composed of a few hundreds of nucleons. This point is especially difficult to hold, because surface becomes an additional, independent state parameter, depending strongly on the geometrical configuration of the system, and introducing a non-local term in the equation of state. In this presentation we follow the recent calculation by Lee and Mekjian on the finite-size effects in small (A = 10 2 -10 3 ) asymmetric nuclear systems. A zero-range isospin-dependent Skyrme force is used to obtain a density and isospin dependent potential. The potential is then completed by additional terms giving contributions from surface and Coulomb

  2. Fermi surface of the one-dimensional Hubbard model. Finite-size effects

    Energy Technology Data Exchange (ETDEWEB)

    Bourbonnais, C.; Nelisse, H.; Reid, A.; Tremblay, A.M.S. (Dept. de Physique and Centre de Recherche en Physique du Solide (C.R.P.S.), Univ. de Sherbrooke, Quebec (Canada))

    1989-12-01

    The results reported here, using a standard numerical algorithm and a simple low temperature extrapolation, appear consistent with numerical results of Sorella et al. for the one-dimensional Hubbard model in the half-filled and quarter-filled band cases. However, it is argued that the discontinuity at the Fermi level found in the quarter-filled case is likely to come from the zero-temperature finite-size dependence of the quasiparticle weight Z, which is also discussed here. (orig.).

  3. Surface and finite size effect on fluctuations dynamics in nanoparticles with long-range order

    Science.gov (United States)

    Morozovska, A. N.; Eliseev, E. A.

    2010-02-01

    The influence of surface and finite size on the dynamics of the order parameter fluctuations and critical phenomena in the three-dimensional (3D)-confined systems with long-range order was not considered theoretically. In this paper, we study the influence of surface and finite size on the dynamics of the order parameter fluctuations in the particles of arbitrary shape. We consider concrete examples of the spherical and cylindrical ferroic nanoparticles within Landau-Ginzburg-Devonshire phenomenological approach. Allowing for the strong surface energy contribution in micro and nanoparticles, the analytical expressions derived for the Ornstein-Zernike correlator of the long-range order parameter spatial-temporal fluctuations, dynamic generalized susceptibility, relaxation times, and correlation radii discrete spectra are different from those known for bulk systems. Obtained analytical expressions for the correlation function of the order parameter spatial-temporal fluctuations in micro and nanosized systems can be useful for the quantitative analysis of the dynamical structural factors determined from magnetic resonance diffraction and scattering spectra. Besides the practical importance of the correlation function for the analysis of the experimental data, derived expressions for the fluctuations strength determine the fundamental limits of phenomenological theories applicability for 3D-confined systems.

  4. Excited-state quantum phase transitions in systems with two degrees of freedom: II. Finite-size effects

    Energy Technology Data Exchange (ETDEWEB)

    Stránský, Pavel [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic); Macek, Michal [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic); Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06520-8120 (United States); Leviatan, Amiram [Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel); Cejnar, Pavel, E-mail: pavel.cejnar@mff.cuni.cz [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic)

    2015-05-15

    This article extends our previous analysis Stránský et al. (2014) of Excited-State Quantum Phase Transitions (ESQPTs) in systems of dimension two. We focus on the oscillatory component of the quantum state density in connection with ESQPT structures accompanying a first-order ground-state transition. It is shown that a separable (integrable) system can develop rather strong finite-size precursors of ESQPT expressed as singularities in the oscillatory component of the state density. The singularities originate in effectively 1-dimensional dynamics and in some cases appear in multiple replicas with increasing excitation energy. Using a specific model example, we demonstrate that these precursors are rather resistant to proliferation of chaotic dynamics. - Highlights: • Oscillatory components of state density and spectral flow studied near ESQPTs. • Enhanced finite-size precursors of ESQPT caused by fully/partly separable dynamics. • These precursors appear due to criticality of a subsystem with lower dimension. • Separability-induced finite-size effects disappear in case of fully chaotic dynamics.

  5. Fluctuations, Finite-Size Effects and the Thermodynamic Limit in Computer Simulations: Revisiting the Spatial Block Analysis Method

    Directory of Open Access Journals (Sweden)

    Maziar Heidari

    2018-03-01

    Full Text Available The spatial block analysis (SBA method has been introduced to efficiently extrapolate thermodynamic quantities from finite-size computer simulations of a large variety of physical systems. In the particular case of simple liquids and liquid mixtures, by subdividing the simulation box into blocks of increasing size and calculating volume-dependent fluctuations of the number of particles, it is possible to extrapolate the bulk isothermal compressibility and Kirkwood–Buff integrals in the thermodynamic limit. Only by explicitly including finite-size effects, ubiquitous in computer simulations, into the SBA method, the extrapolation to the thermodynamic limit can be achieved. In this review, we discuss two of these finite-size effects in the context of the SBA method due to (i the statistical ensemble and (ii the finite integration domains used in computer simulations. To illustrate the method, we consider prototypical liquids and liquid mixtures described by truncated and shifted Lennard–Jones (TSLJ potentials. Furthermore, we show some of the most recent developments of the SBA method, in particular its use to calculate chemical potentials of liquids in a wide range of density/concentration conditions.

  6. Finite-size effects in the spectrum of the OSp (3 | 2) superspin chain

    Science.gov (United States)

    Frahm, Holger; Martins, Márcio J.

    2015-05-01

    The low energy spectrum of a spin chain with OSp (3 | 2) supergroup symmetry is studied based on the Bethe ansatz solution of the related vertex model. This model is a lattice realization of intersecting loops in two dimensions with loop fugacity z = 1 which provides a framework to study the critical properties of the unusual low temperature Goldstone phase of the O (N) sigma model for N = 1 in the context of an integrable model. Our finite-size analysis provides strong evidence for the existence of continua of scaling dimensions, the lowest of them starting at the ground state. Based on our data we conjecture that the so-called watermelon correlation functions decay logarithmically with exponents related to the quadratic Casimir operator of OSp (3 | 2). The presence of a continuous spectrum is not affected by a change to the boundary conditions although the density of states in the continua appears to be modified.

  7. Finite-size effects in the spectrum of the OSp(3|2 superspin chain

    Directory of Open Access Journals (Sweden)

    Holger Frahm

    2015-05-01

    Full Text Available The low energy spectrum of a spin chain with OSp(3|2 supergroup symmetry is studied based on the Bethe ansatz solution of the related vertex model. This model is a lattice realization of intersecting loops in two dimensions with loop fugacity z=1 which provides a framework to study the critical properties of the unusual low temperature Goldstone phase of the O(N sigma model for N=1 in the context of an integrable model. Our finite-size analysis provides strong evidence for the existence of continua of scaling dimensions, the lowest of them starting at the ground state. Based on our data we conjecture that the so-called watermelon correlation functions decay logarithmically with exponents related to the quadratic Casimir operator of OSp(3|2. The presence of a continuous spectrum is not affected by a change to the boundary conditions although the density of states in the continua appears to be modified.

  8. Finite-size effect of the dyonic giant magnons in N=6 super Chern-Simons theory

    International Nuclear Information System (INIS)

    Ahn, Changrim; Bozhilov, P.

    2009-01-01

    We consider finite-size effects for the dyonic giant magnon of the type IIA string theory on AdS 4 xCP 3 by applying the Luescher μ-term formula which is derived from a recently proposed S matrix for the N=6 super Chern-Simons theory. We compute explicitly the effect for the case of a symmetric configuration where the two external bound states, each of A and B particles, have the same momentum p and spin J 2 . We compare this with the classical string theory result which we computed by reducing it to the Neumann-Rosochatius system. The two results match perfectly.

  9. Finite-size, chemical-potential and magnetic effects on the phase transition in a four-fermion interacting model

    Energy Technology Data Exchange (ETDEWEB)

    Correa, E.B.S. [Universidade Federal do Sul e Sudeste do Para, Instituto de Ciencias Exatas, Maraba (Brazil); Centro Brasileiro de Pesquisas Fisicas-CBPF/MCTI, Rio de Janeiro (Brazil); Linhares, C.A. [Universidade do Estado do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro (Brazil); Malbouisson, A.P.C. [Centro Brasileiro de Pesquisas Fisicas-CBPF/MCTI, Rio de Janeiro (Brazil); Malbouisson, J.M.C. [Universidade Federal da Bahia, Instituto de Fisica, Salvador (Brazil); Santana, A.E. [Universidade de Brasilia, Instituto de Fisica, Brasilia, DF (Brazil)

    2017-04-15

    We study effects coming from finite size, chemical potential and from a magnetic background on a massive version of a four-fermion interacting model. This is performed in four dimensions as an application of recent developments for dealing with field theories defined on toroidal spaces. We study effects of the magnetic field and chemical potential on the size-dependent phase structure of the model, in particular, how the applied magnetic field affects the size-dependent critical temperature. A connection with some aspects of the hadronic phase transition is established. (orig.)

  10. Finite-size effect of η-deformed AdS5×S5 at strong coupling

    Directory of Open Access Journals (Sweden)

    Changrim Ahn

    2017-04-01

    Full Text Available We compute Lüscher corrections for a giant magnon in the η-deformed (AdS5×S5η using the su(2|2q-invariant S-matrix at strong coupling and compare with the finite-size effect of the corresponding string state, derived previously. We find that these two results match and confirm that the su(2|2q-invariant S-matrix is describing world-sheet excitations of the η-deformed background.

  11. Thermodynamic theory of intrinsic finite-size effects in PbTiO3 nanocrystals. I. Nanoparticle size-dependent tetragonal phase stability

    Science.gov (United States)

    Akdogan, E. K.; Safari, A.

    2007-03-01

    We propose a phenomenological intrinsic finite-size effect model for single domain, mechanically free, and surface charge compensated ΔG-P ⃗s-ξ space, which describes the decrease in tetragonal phase stability with decreasing ξ rigorously.

  12. Finite-size effect on the dynamic and sensing performances of graphene resonators: the role of edge stress.

    Science.gov (United States)

    Kim, Chang-Wan; Dai, Mai Duc; Eom, Kilho

    2016-01-01

    We have studied the finite-size effect on the dynamic behavior of graphene resonators and their applications in atomic mass detection using a continuum elastic model such as modified plate theory. In particular, we developed a model based on von Karman plate theory with including the edge stress, which arises from the imbalance between the coordination numbers of bulk atoms and edge atoms of graphene. It is shown that as the size of a graphene resonator decreases, the edge stress depending on the edge structure of a graphene resonator plays a critical role on both its dynamic and sensing performances. We found that the resonance behavior of graphene can be tuned not only through edge stress but also through nonlinear vibration, and that the detection sensitivity of a graphene resonator can be controlled by using the edge stress. Our study sheds light on the important role of the finite-size effect in the effective design of graphene resonators for their mass sensing applications.

  13. Molecular finite-size effects in stochastic models of equilibrium chemical systems.

    Science.gov (United States)

    Cianci, Claudia; Smith, Stephen; Grima, Ramon

    2016-02-28

    The reaction-diffusion master equation (RDME) is a standard modelling approach for understanding stochastic and spatial chemical kinetics. An inherent assumption is that molecules are point-like. Here, we introduce the excluded volume reaction-diffusion master equation (vRDME) which takes into account volume exclusion effects on stochastic kinetics due to a finite molecular radius. We obtain an exact closed form solution of the RDME and of the vRDME for a general chemical system in equilibrium conditions. The difference between the two solutions increases with the ratio of molecular diameter to the compartment length scale. We show that an increase in the fraction of excluded space can (i) lead to deviations from the classical inverse square root law for the noise-strength, (ii) flip the skewness of the probability distribution from right to left-skewed, (iii) shift the equilibrium of bimolecular reactions so that more product molecules are formed, and (iv) strongly modulate the Fano factors and coefficients of variation. These volume exclusion effects are found to be particularly pronounced for chemical species not involved in chemical conservation laws. Finally, we show that statistics obtained using the vRDME are in good agreement with those obtained from Brownian dynamics with excluded volume interactions.

  14. Insights on finite size effects in ab initio study of CO adsorption and dissociation on Fe 110 surface

    International Nuclear Information System (INIS)

    Chakrabarty, Aurab; Bouhali, Othmane; Mousseau, Normand; Becquart, Charlotte S.; El-Mellouhi, Fedwa

    2016-01-01

    Adsorption and dissociation of hydrocarbons on metallic surfaces represent crucial steps on the path to carburization, eventually leading to dusting corrosion. While adsorption of CO molecules on Fe surface is a barrier-less exothermic process, this is not the case for the dissociation of CO into C and O adatoms and the diffusion of C beneath the surface that are found to be associated with large energy barriers. In practice, these barriers can be affected by numerous factors that combine to favour the CO-Fe reaction such as the abundance of CO and other hydrocarbons as well as the presence of structural defects. From a numerical point of view, studying these factors is challenging and a step-by-step approach is necessary to assess, in particular, the influence of the finite box size on the reaction parameters for adsorption and dissociation of CO on metal surfaces. Here, we use density functional theory (DFT) total energy calculations with the climbing-image nudged elastic band method to estimate the adsorption energies and dissociation barriers for different CO coverages with surface supercells of different sizes. We further compute the effect of periodic boundary condition for DFT calculations and find that the contribution from van der Waals interaction in the computation of adsorption parameters is important as they contribute to correcting the finite-size error in small systems. The dissociation process involves carbon insertion into the Fe surface causing a lattice deformation that requires a larger surface system for unrestricted relaxation. We show that, in the larger surface systems associated with dilute CO-coverages, C-insertion is energetically more favourable, leading to a significant decrease in the dissociation barrier. This observation suggests that a large surface system with dilute coverage is necessary for all similar metal-hydrocarbon reactions in order to study their fundamental electronic mechanisms, as an isolated phenomenon, free from

  15. Insights on finite size effects in ab initio study of CO adsorption and dissociation on Fe 110 surface

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, Aurab, E-mail: aurab.chakrabarty@qatar.tamu.edu; Bouhali, Othmane [Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Mousseau, Normand [Département de Physique and RQMP, Université de Montréal, Case Postale 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7 (Canada); Becquart, Charlotte S. [UMET, UMR CNRS 8207, ENSCL, Université Lille I, 59655 Villeneuve d' Ascq Cédex (France); El-Mellouhi, Fedwa [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825, Doha (Qatar)

    2016-08-07

    Adsorption and dissociation of hydrocarbons on metallic surfaces represent crucial steps on the path to carburization, eventually leading to dusting corrosion. While adsorption of CO molecules on Fe surface is a barrier-less exothermic process, this is not the case for the dissociation of CO into C and O adatoms and the diffusion of C beneath the surface that are found to be associated with large energy barriers. In practice, these barriers can be affected by numerous factors that combine to favour the CO-Fe reaction such as the abundance of CO and other hydrocarbons as well as the presence of structural defects. From a numerical point of view, studying these factors is challenging and a step-by-step approach is necessary to assess, in particular, the influence of the finite box size on the reaction parameters for adsorption and dissociation of CO on metal surfaces. Here, we use density functional theory (DFT) total energy calculations with the climbing-image nudged elastic band method to estimate the adsorption energies and dissociation barriers for different CO coverages with surface supercells of different sizes. We further compute the effect of periodic boundary condition for DFT calculations and find that the contribution from van der Waals interaction in the computation of adsorption parameters is important as they contribute to correcting the finite-size error in small systems. The dissociation process involves carbon insertion into the Fe surface causing a lattice deformation that requires a larger surface system for unrestricted relaxation. We show that, in the larger surface systems associated with dilute CO-coverages, C-insertion is energetically more favourable, leading to a significant decrease in the dissociation barrier. This observation suggests that a large surface system with dilute coverage is necessary for all similar metal-hydrocarbon reactions in order to study their fundamental electronic mechanisms, as an isolated phenomenon, free from

  16. Finite size effects in a model for platicity of amorphous composites

    DEFF Research Database (Denmark)

    Tyukodi, Botond; Lemarchand, Claire A.; Hansen, Jesper Schmidt

    2016-01-01

    We discuss the plastic behavior of an amorphous matrix reinforced by hard particles. A mesoscopic depinning-like model accounting for Eshelby elastic interactions is implemented. Only the effect of a plastic disorder is considered. Numerical results show a complex size dependence of the effective...

  17. A review of finite size effects in quasi-zero dimensional superconductors.

    Science.gov (United States)

    Bose, Sangita; Ayyub, Pushan

    2014-11-01

    Quantum confinement and surface effects (SEs) dramatically modify most solid state phenomena as one approaches the nanometer scale, and superconductivity is no exception. Though we may expect significant modifications from bulk superconducting properties when the system dimensions become smaller than the characteristic length scales for bulk superconductors-such as the coherence length or the penetration depth-it is now established that there is a third length scale which ultimately determines the critical size at which Cooper pairing is destroyed. In quasi-zero-dimensional (0D) superconductors (e.g. nanocrystalline materials, isolated or embedded nanoparticles), one may define a critical particle diameter below which the mean energy level spacing arising from quantum confinement becomes equal to the bulk superconducting energy gap. The so-called Anderson criterion provides a remarkably accurate estimate of the limiting size for the destabilization of superconductivity in nanosystems. This review of size effects in quasi-0D superconductors is organized as follows. A general summary of size effects in nanostructured superconductors (section 1) is followed by a brief overview of their synthesis (section 2) and characterization using a variety of techniques (section 3). Section 4 reviews the size-evolution of important superconducting parameters-the transition temperature, critical fields and critical current-as the Anderson limit is approached from above. We then discuss the effect of thermodynamic fluctuations (section 5), which become significant in confined systems. Improvements in fabrication methods and the increasing feasibility of addressing individual nanoparticles using scanning probe techniques have lately opened up new directions in the study of nanoscale superconductivity. Section 6 reviews both experimental and theoretical aspects of the recently discovered phenomena of 'parity effect' and 'shell effect' that lead to a strong, non-monotonic size

  18. A review of finite size effects in quasi-zero dimensional superconductors

    International Nuclear Information System (INIS)

    Bose, Sangita; Ayyub, Pushan

    2014-01-01

    Quantum confinement and surface effects (SEs) dramatically modify most solid state phenomena as one approaches the nanometer scale, and superconductivity is no exception. Though we may expect significant modifications from bulk superconducting properties when the system dimensions become smaller than the characteristic length scales for bulk superconductors—such as the coherence length or the penetration depth—it is now established that there is a third length scale which ultimately determines the critical size at which Cooper pairing is destroyed. In quasi-zero-dimensional (0D) superconductors (e.g. nanocrystalline materials, isolated or embedded nanoparticles), one may define a critical particle diameter below which the mean energy level spacing arising from quantum confinement becomes equal to the bulk superconducting energy gap. The so-called Anderson criterion provides a remarkably accurate estimate of the limiting size for the destabilization of superconductivity in nanosystems. This review of size effects in quasi-0D superconductors is organized as follows. A general summary of size effects in nanostructured superconductors (section 1) is followed by a brief overview of their synthesis (section 2) and characterization using a variety of techniques (section 3). Section 4 reviews the size-evolution of important superconducting parameters—the transition temperature, critical fields and critical current—as the Anderson limit is approached from above. We then discuss the effect of thermodynamic fluctuations (section 5), which become significant in confined systems. Improvements in fabrication methods and the increasing feasibility of addressing individual nanoparticles using scanning probe techniques have lately opened up new directions in the study of nanoscale superconductivity. Section 6 reviews both experimental and theoretical aspects of the recently discovered phenomena of ‘parity effect’ and ‘shell effect’ that lead to a strong, non

  19. Finite size effects in phase transformation kinetics in thin films and surface layers

    International Nuclear Information System (INIS)

    Trofimov, Vladimir I.; Trofimov, Ilya V.; Kim, Jong-Il

    2004-01-01

    In studies of phase transformation kinetics in thin films, e.g. crystallization of amorphous films, until recent time is widely used familiar Kolmogorov-Johnson-Mehl-Avrami (KJMA) statistical model of crystallization despite it is applicable only to an infinite medium. In this paper a model of transformation kinetics in thin films based on a concept of the survival probability for randomly chosen point during transformation process is presented. Two model versions: volume induced transformation (VIT) when the second-phase grains nucleate over a whole film volume and surface induced transformation (SIT) when they form on an interface with two nucleation mode: instantaneous nucleation at transformation onset and continuous one during all the process are studied. At VIT-process due to the finite film thickness effects the transformation profile has a maximum in a film middle, whereas that of the grains population reaches a minimum inhere, the grains density is always higher than in a volume material, and the thinner film the slower it transforms. The transformation kinetics in a thin film obeys a generalized KJMA equation with parameters depending on a film thickness and in limiting cases of extremely thin and thick film it reduces to classical KJMA equation for 2D- and 3D-system, respectively

  20. Impact of high-frequency pumping on anomalous finite-size effects in three-dimensional topological insulators

    Science.gov (United States)

    Pervishko, Anastasiia A.; Yudin, Dmitry; Shelykh, Ivan A.

    2018-02-01

    Lowering of the thickness of a thin-film three-dimensional topological insulator down to a few nanometers results in the gap opening in the spectrum of topologically protected two-dimensional surface states. This phenomenon, which is referred to as the anomalous finite-size effect, originates from hybridization between the states propagating along the opposite boundaries. In this work, we consider a bismuth-based topological insulator and show how the coupling to an intense high-frequency linearly polarized pumping can further be used to manipulate the value of a gap. We address this effect within recently proposed Brillouin-Wigner perturbation theory that allows us to map a time-dependent problem into a stationary one. Our analysis reveals that both the gap and the components of the group velocity of the surface states can be tuned in a controllable fashion by adjusting the intensity of the driving field within an experimentally accessible range and demonstrate the effect of light-induced band inversion in the spectrum of the surface states for high enough values of the pump.

  1. Finite size scaling theory

    International Nuclear Information System (INIS)

    Rittenberg, V.

    1983-01-01

    Fischer's finite-size scaling describes the cross over from the singular behaviour of thermodynamic quantities at the critical point to the analytic behaviour of the finite system. Recent extensions of the method--transfer matrix technique, and the Hamiltonian formalism--are discussed in this paper. The method is presented, with equations deriving scaling function, critical temperature, and exponent v. As an application of the method, a 3-states Hamiltonian with Z 3 global symmetry is studied. Diagonalization of the Hamiltonian for finite chains allows one to estimate the critical exponents, and also to discover new phase transitions at lower temperatures. The critical points lambda, and indices v estimated for finite-scaling are given

  2. Finite-size effects on the vortex-glass transition in thin YBa2Cu3O7-δ films

    International Nuclear Information System (INIS)

    Woeltgens, P.J.M.; Dekker, C.; Koch, R.H.; Hussey, B.W.; Gupta, A.

    1995-01-01

    Nonlinear current-voltage characteristics have been measured at high magnetic fields in YBa 2 Cu 3 O 7-δ films of a thickness t ranging from 3000 down to 16 A. Critical-scaling analyses of the data for the thinner films (t≤400 A) reveal deviations from the vortex-glass critical scaling appropriate for three-dimensional (3D) systems. This is argued to be a finite-size effect. At large current densities J, the vortices are probed at length scales smaller than the film thickness, i.e., 3D vortex-glass behavior is observed. At low J by contrast, the vortex excitations involve typical length scales exceeding the film thickness, resulting in 2D behavior. Further evidence for this picture is found directly from the 3D vortex-glass correlation length, which, upon approach of the glass transition temperature, appears to level off at the film thickness. The results indicate that a vortex-glass phase transition does occur at finite temperature in 3D systems, but not in 2D systems. In the latter an onset of 2D correlations occurs towards zero temperature. This is demonstrated in our thinnest film (16 A), which, in a magnetic field, displays a 2D vortex-glass correlation length which critically diverges at zero temperature

  3. Unexpected finite size effects in interfacial systems: Why bigger is not always better—Increase in uncertainty of surface tension with bulk phase width

    Science.gov (United States)

    Longford, Francis G. J.; Essex, Jonathan W.; Skylaris, Chris-Kriton; Frey, Jeremy G.

    2018-06-01

    We present an unexpected finite size effect affecting interfacial molecular simulations that is proportional to the width-to-surface-area ratio of the bulk phase Ll/A. This finite size effect has a significant impact on the variance of surface tension values calculated using the virial summation method. A theoretical derivation of the origin of the effect is proposed, giving a new insight into the importance of optimising system dimensions in interfacial simulations. We demonstrate the consequences of this finite size effect via a new way to estimate the surface energetic and entropic properties of simulated air-liquid interfaces. Our method is based on macroscopic thermodynamic theory and involves comparing the internal energies of systems with varying dimensions. We present the testing of these methods using simulations of the TIP4P/2005 water forcefield and a Lennard-Jones fluid model of argon. Finally, we provide suggestions of additional situations, in which this finite size effect is expected to be significant, as well as possible ways to avoid its impact.

  4. Finite-size scaling a collection of reprints

    CERN Document Server

    1988-01-01

    Over the past few years, finite-size scaling has become an increasingly important tool in studies of critical systems. This is partly due to an increased understanding of finite-size effects by analytical means, and partly due to our ability to treat larger systems with large computers. The aim of this volume was to collect those papers which have been important for this progress and which illustrate novel applications of the method. The emphasis has been placed on relatively recent developments, including the use of the &egr;-expansion and of conformal methods.

  5. Influence of surface and finite size effects on the structural and magnetic properties of nanocrystalline lanthanum strontium perovskite manganites

    Energy Technology Data Exchange (ETDEWEB)

    Žvátora, Pavel [Department of Analytical Chemistry, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague (Czech Republic); Veverka, Miroslav; Veverka, Pavel; Knížek, Karel; Závěta, Karel; Pollert, Emil [Department of Magnetism and Superconductors, Institute of Physics AS CR, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Král, Vladimír [Department of Analytical Chemistry, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague (Czech Republic); Zentiva Development (Part of Sanofi Group), U Kabelovny 130, 102 37 Prague (Czech Republic); Goglio, Graziella; Duguet, Etienne [CNRS, University of Bordeaux, ICMCB, UPR 9048, 33600 Pessac (France); Kaman, Ondřej, E-mail: kamano@seznam.cz [Department of Magnetism and Superconductors, Institute of Physics AS CR, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 40 Prague (Czech Republic)

    2013-08-15

    Syntheses of nanocrystalline perovskite phases of the general formula La{sub 1−x}Sr{sub x}MnO{sub 3+δ} were carried out employing sol–gel technique followed by thermal treatment at 700–900 °C under oxygen flow. The prepared samples exhibit a rhombohedral structure with space group R3{sup ¯}c in the whole investigated range of composition 0.20≤x≤0.45. The studies were aimed at the chemical composition including oxygen stoichiometry and extrinsic properties, i.e. size of the particles, both influencing the resulting structural and magnetic properties. The oxygen stoichiometry was determined by chemical analysis revealing oxygen excess in most of the studied phases. The excess was particularly high for the samples with the smallest crystallites (12–28 nm) while comparative bulk materials showed moderate non-stoichiometry. These differences are tentatively attributed to the surface effects in view of the volume fraction occupied by the upper layer whose atomic composition does not comply with the ideal bulk stoichiometry. - Graphical abstract: Evolution of the particle size with annealing temperature in the nanocrystalline La{sub 0.70}Sr{sub 0.30}MnO{sub 3+δ} phase. Display Omitted - Highlights: • The magnetic behaviour of nanocrystalline La{sub 1−x}Sr{sub x}MnO{sub 3+δ} phases was analyzed on the basis of their crystal structure, chemical composition and size of the particles. • Their Curie temperature and magnetization are markedly affected by finite size and surface effects. • The oxygen excess observed in the La{sub 1−x}Sr{sub x}MnO{sub 3+δ} nanoparticles might be generated by the surface layer with deviated oxygen stoichiometry.

  6. Capillary condensation in cylindrical pores: Monte Carlo study of the interplay of surface and finite size effects.

    Science.gov (United States)

    Winkler, A; Wilms, D; Virnau, P; Binder, K

    2010-10-28

    When a fluid that undergoes a vapor to liquid transition in the bulk is confined to a long cylindrical pore, the phase transition is shifted (mostly due to surface effects at the walls of the pore) and rounded (due to finite size effects). The nature of the phase coexistence at the transition depends on the length of the pore: for very long pores, the system is axially homogeneous at low temperatures. At the chemical potential where the transition takes place, fluctuations occur between vapor- and liquidlike states of the cylinder as a whole. At somewhat higher temperatures (but still far below bulk criticality), the system at phase coexistence is in an axially inhomogeneous multidomain state, where long cylindrical liquid- and vaporlike domains alternate. Using Monte Carlo simulations for the Ising/lattice gas model and the Asakura-Oosawa model of colloid-polymer mixtures, the transition between these two different scenarios is characterized. It is shown that the density distribution changes gradually from a double-peak structure to a triple-peak shape, and the correlation length in the axial direction (measuring the equilibrium domain length) becomes much smaller than the cylinder length. The (rounded) transition to the disordered phase of the fluid occurs when the axial correlation length has decreased to a value comparable to the cylinder diameter. It is also suggested that adsorption hysteresis vanishes when the transition from the simple domain state to the multidomain state of the cylindrical pore occurs. We predict that the difference between the pore critical temperature and the hysteresis critical temperature should increase logarithmically with the length of the pore.

  7. Using the volumetric effect of a finite-sized detector for routine quality assurance of multileaf collimator leaf positioning

    International Nuclear Information System (INIS)

    Yang Yong; Xing Lei

    2003-01-01

    Intensity modulated radiation therapy (IMRT) is an advanced form of radiation therapy and promises to improve dose conformation while reducing the irradiation to the sensitive structures. The modality is, however, more complicated than conventional treatment and requires much more stringent quality assurance (QA) to ensure what has been planned can be achieved accurately. One of the main QA tasks is the assurance of positioning accuracy of multileaf collimator (MLC) leaves during IMRT delivery. Currently, the routine quality assurance of MLC in most clinics is being done using radiographic films with specially designed MLC leaf sequences. Besides being time consuming, the results of film measurements are difficult to quantify and interpret. In this work, we propose a new and effective technique for routine MLC leaf positioning QA. The technique utilizes the fact that, when a finite-sized detector is placed under a leaf, the relative output of the detector will depend on the relative fractional volume irradiated. A small error in leaf positioning would change the fractional volume irradiated and lead to a deviation of the relative output from the normal reading. For a given MLC and detector system, the relation between the relative output and the leaf displacement can be easily established through experimental measurements and used subsequently as a quantitative means for detecting possible leaf positional errors. The method was tested using a linear accelerator with an 80-leaf MLC. Three different locations, including two locations on central plane (X1=X2=0) and one point on an off-central plane location (X1=-7.5, X=7.5), were studied. Our results indicated that the method could accurately detect a leaf positional change of ∼0.1 mm. The method was also used to monitor the stability of MLC leaf positioning for five consecutive weeks. In this test, we intentionally introduced two positional errors in the testing MLC leaf sequences: -0.2 mm and 1.2 mm. The technique

  8. Thermodynamic theory of intrinsic finite size effects in PbTiO3 nanocrystals. II. Dielectric and piezoelectric properties

    Science.gov (United States)

    Akdogan, E. K.; Safari, A.

    2007-03-01

    We compute the intrinsic dielectric and piezoelectric properties of single domain, mechanically free, and surface charge compensated PbTiO3 nanocrystals (n-Pt) with no depolarization fields, undergoing a finite size induced first order tetragonal→cubic ferrodistortive phase transition. By using a Landau-Devonshire type free energy functional, in which Landau coefficients are a function of nanoparticle size, we demonstrate substantial deviations from bulk properties in the range <150 nm. We find a decrease in dielectric susceptibility at the transition temperature with decreasing particle size, which we verify to be in conformity with predictions of lattice dynamics considerations. We also find an anomalous increase in piezocharge coefficients near ˜15 nm , the critical size for n-Pt.

  9. Finite Size Scaling of Perceptron

    OpenAIRE

    Korutcheva, Elka; Tonchev, N.

    2000-01-01

    We study the first-order transition in the model of a simple perceptron with continuous weights and large, bit finite value of the inputs. Making the analogy with the usual finite-size physical systems, we calculate the shift and the rounding exponents near the transition point. In the case of a general perceptron with larger variety of inputs, the analysis only gives bounds for the exponents.

  10. Quark bag coupling to finite size pions

    International Nuclear Information System (INIS)

    De Kam, J.; Pirner, H.J.

    1982-01-01

    A standard approximation in theories of quark bags coupled to a pion field is to treat the pion as an elementary field ignoring its substructure and finite size. A difficulty associated with these treatments in the lack of stability of the quark bag due to the rapid increase of the pion pressure on the bad as the bag size diminishes. We investigate the effects of the finite size of the qanti q pion on the pion quark bag coupling by means of a simple nonlocal pion quark interaction. With this amendment the pion pressure on the bag vanishes if the bag size goes to zero. No stability problems are encountered in this description. Furthermore, for extended pions, no longer a maximum is set to the bag parameter B. Therefore 'little bag' solutions may be found provided that B is large enough. We also discuss the possibility of a second minimum in the bag energy function. (orig.)

  11. Finite-size effects on the dynamic susceptibility of CoPhOMe single-chain molecular magnets in presence of a static magnetic field

    Science.gov (United States)

    Pini, M. G.; Rettori, A.; Bogani, L.; Lascialfari, A.; Mariani, M.; Caneschi, A.; Sessoli, R.

    2011-09-01

    The static and dynamic properties of the single-chain molecular magnet Co(hfac)2NITPhOMe (CoPhOMe) (hfac = hexafluoroacetylacetonate, NITPhOMe = 4'-methoxy-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) are investigated in the framework of the Ising model with Glauber dynamics, in order to take into account both the effect of an applied magnetic field and a finite size of the chains. For static fields of moderate intensity and short chain lengths, the approximation of a monoexponential decay of the magnetization fluctuations is found to be valid at low temperatures; for strong fields and long chains, a multiexponential decay should rather be assumed. The effect of an oscillating magnetic field, with intensity much smaller than that of the static one, is included in the theory in order to obtain the dynamic susceptibility χ(ω). We find that, for an open chain with N spins, χ(ω) can be written as a weighted sum of N frequency contributions, with a sum rule relating the frequency weights to the static susceptibility of the chain. Very good agreement is found between the theoretical dynamic susceptibility and the ac susceptibility measured in moderate static fields (Hdc≤2 kOe), where the approximation of a single dominating frequency for each segment length turns out to be valid. For static fields in this range, data for the relaxation time, τ versus Hdc, of the magnetization of CoPhOMe at low temperature are also qualitatively reproduced by theory, provided that finite-size effects are included.

  12. Finite-size effects in transcript sequencing count distribution: its power-law correction necessarily precedes downstream normalization and comparative analysis.

    Science.gov (United States)

    Wong, Wing-Cheong; Ng, Hong-Kiat; Tantoso, Erwin; Soong, Richie; Eisenhaber, Frank

    2018-02-12

    Though earlier works on modelling transcript abundance from vertebrates to lower eukaroytes have specifically singled out the Zip's law, the observed distributions often deviate from a single power-law slope. In hindsight, while power-laws of critical phenomena are derived asymptotically under the conditions of infinite observations, real world observations are finite where the finite-size effects will set in to force a power-law distribution into an exponential decay and consequently, manifests as a curvature (i.e., varying exponent values) in a log-log plot. If transcript abundance is truly power-law distributed, the varying exponent signifies changing mathematical moments (e.g., mean, variance) and creates heteroskedasticity which compromises statistical rigor in analysis. The impact of this deviation from the asymptotic power-law on sequencing count data has never truly been examined and quantified. The anecdotal description of transcript abundance being almost Zipf's law-like distributed can be conceptualized as the imperfect mathematical rendition of the Pareto power-law distribution when subjected to the finite-size effects in the real world; This is regardless of the advancement in sequencing technology since sampling is finite in practice. Our conceptualization agrees well with our empirical analysis of two modern day NGS (Next-generation sequencing) datasets: an in-house generated dilution miRNA study of two gastric cancer cell lines (NUGC3 and AGS) and a publicly available spike-in miRNA data; Firstly, the finite-size effects causes the deviations of sequencing count data from Zipf's law and issues of reproducibility in sequencing experiments. Secondly, it manifests as heteroskedasticity among experimental replicates to bring about statistical woes. Surprisingly, a straightforward power-law correction that restores the distribution distortion to a single exponent value can dramatically reduce data heteroskedasticity to invoke an instant increase in

  13. Proximity induced ferromagnetism, superconductivity, and finite-size effects on the surface states of topological insulator nanostructures

    Science.gov (United States)

    Sengupta, Parijat; Kubis, Tillmann; Tan, Yaohua; Klimeck, Gerhard

    2015-01-01

    Bi2Te3 and Bi2Se3 are well known 3D-topological insulators (TI). Films made of these materials exhibit metal-like surface states with a Dirac dispersion and possess high mobility. The high mobility metal-like surface states can serve as building blocks for a variety of applications that involve tuning their dispersion relationship and opening a band gap. A band gap can be opened either by breaking time reversal symmetry, the proximity effect of a superconductor or ferromagnet or adjusting the dimensionality of the TI material. In this work, methods that can be employed to easily open a band gap for the TI surface states are assessed. Two approaches are described: (1) Coating the surface states with a ferromagnet which has a controllable magnetization axis. The magnetization strength of the ferromagnet is incorporated as an exchange interaction term in the Hamiltonian. (2) An s-wave superconductor, because of the proximity effect, when coupled to a 3D-TI opens a band gap on the surface. Finally, the hybridization of the surface Dirac cones can be controlled by reducing the thickness of the topological insulator film. It is shown that this alters the band gap significantly.

  14. Friction tensor for a pair of Brownian particles: Spurious finite-size effects and molecular dynamics estimates

    International Nuclear Information System (INIS)

    Bocquet, L.; Hansen, J.P.; Piasecki, J.

    1997-01-01

    In this work, we show that in any finite system, the binary friction tenser for two Brownian particles cannot be directly estimated from an evaluation of the microscopic Green Kubo formula, involving the time integral of force-force autocorrelation functions. This pitfall is associated with a subtle inversion of the thermodynamic and long-time limits and leads to spurious results for the estimates of the friction matrix based on molecular dynamics simulations. Starting from a careful analysis of the coupled Langevin equations for two interacting Brownian particles, we derive a method to circumvent these effects and extract the binary friction tenser from the correlation function matrix of the instantaneous forces exerted by the bath particles on the fixed Brownian particles, and from the relaxation of the total momentum of the bath in a finite system. The general methodology is applied to the case of two hard or soft Brownian spheres in a bath of light particles. Numerical estimates of the relevant correlation functions and of the resulting self and mutual components of the matrix of friction tensors are obtained by molecular dynamics simulations for various spacings between the Brownian particles

  15. Finite size and geometrical non-linear effects during crack pinning by heterogeneities: An analytical and experimental study

    Science.gov (United States)

    Vasoya, Manish; Unni, Aparna Beena; Leblond, Jean-Baptiste; Lazarus, Veronique; Ponson, Laurent

    2016-04-01

    Crack pinning by heterogeneities is a central toughening mechanism in the failure of brittle materials. So far, most analytical explorations of the crack front deformation arising from spatial variations of fracture properties have been restricted to weak toughness contrasts using first order approximation and to defects of small dimensions with respect to the sample size. In this work, we investigate the non-linear effects arising from larger toughness contrasts by extending the approximation to the second order, while taking into account the finite sample thickness. Our calculations predict the evolution of a planar crack lying on the mid-plane of a plate as a function of material parameters and loading conditions, especially in the case of a single infinitely elongated obstacle. Peeling experiments are presented which validate the approach and evidence that the second order term broadens its range of validity in terms of toughness contrast values. The work highlights the non-linear response of the crack front to strong defects and the central role played by the thickness of the specimen on the pinning process.

  16. Pore-scale simulations of drainage in granular materials: Finite size effects and the representative elementary volume

    Science.gov (United States)

    Yuan, Chao; Chareyre, Bruno; Darve, Félix

    2016-09-01

    A pore-scale model is introduced for two-phase flow in dense packings of polydisperse spheres. The model is developed as a component of a more general hydromechanical coupling framework based on the discrete element method, which will be elaborated in future papers and will apply to various processes of interest in soil science, in geomechanics and in oil and gas production. Here the emphasis is on the generation of a network of pores mapping the void space between spherical grains, and the definition of local criteria governing the primary drainage process. The pore space is decomposed by Regular Triangulation, from which a set of pores connected by throats are identified. A local entry capillary pressure is evaluated for each throat, based on the balance of capillary pressure and surface tension at equilibrium. The model reflects the possible entrapment of disconnected patches of the receding wetting phase. It is validated by a comparison with drainage experiments. In the last part of the paper, a series of simulations are reported to illustrate size and boundary effects, key questions when studying small samples made of spherical particles be it in simulations or experiments. Repeated tests on samples of different sizes give evolution of water content which are not only scattered but also strongly biased for small sample sizes. More than 20,000 spheres are needed to reduce the bias on saturation below 0.02. Additional statistics are generated by subsampling a large sample of 64,000 spheres. They suggest that the minimal sampling volume for evaluating saturation is one hundred times greater that the sampling volume needed for measuring porosity with the same accuracy. This requirement in terms of sample size induces a need for efficient computer codes. The method described herein has a low algorithmic complexity in order to satisfy this requirement. It will be well suited to further developments toward coupled flow-deformation problems in which evolution of the

  17. Polyelectrolyte Bundles: Finite size at thermodynamic equilibrium?

    Science.gov (United States)

    Sayar, Mehmet

    2005-03-01

    Experimental observation of finite size aggregates formed by polyelectrolytes such as DNA and F-actin, as well as synthetic polymers like poly(p-phenylene), has created a lot of attention in recent years. Here, bundle formation in rigid rod-like polyelectrolytes is studied via computer simulations. For the case of hydrophobically modified polyelectrolytes finite size bundles are observed even in the presence of only monovalent counterions. Furthermore, in the absence of a hydrophobic backbone, we have also observed formation of finite size aggregates via multivalent counterion condensation. The size distribution of such aggregates and the stability is analyzed in this study.

  18. Dynamic properties of epidemic spreading on finite size complex networks

    Science.gov (United States)

    Li, Ying; Liu, Yang; Shan, Xiu-Ming; Ren, Yong; Jiao, Jian; Qiu, Ben

    2005-11-01

    The Internet presents a complex topological structure, on which computer viruses can easily spread. By using theoretical analysis and computer simulation methods, the dynamic process of disease spreading on finite size networks with complex topological structure is investigated. On the finite size networks, the spreading process of SIS (susceptible-infected-susceptible) model is a finite Markov chain with an absorbing state. Two parameters, the survival probability and the conditional infecting probability, are introduced to describe the dynamic properties of disease spreading on finite size networks. Our results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks. Also, knowledge about the dynamic character of virus spreading is helpful for adopting immunity policy.

  19. Finite size scaling and spectral density studies

    International Nuclear Information System (INIS)

    Berg, B.A.

    1991-01-01

    Finite size scaling (FSS) and spectral density (SD) studies are reported for the deconfining phase transition. This talk concentrates on Monte Carlo (MC) results for pure SU(3) gauge theory, obtained in collaboration with Alves and Sanielevici, but the methods are expected to be useful for full QCD as well. (orig.)

  20. Finite size scaling and phenomenological renormalization

    International Nuclear Information System (INIS)

    Derrida, B.; Seze, L. de; Vannimenus, J.

    1981-05-01

    The basic equations of the phenomenological renormalization method are recalled. A simple derivation using finite-size scaling is presented. The convergence of the method is studied analytically for the Ising model. Using this method we give predictions for the 2d bond percolation. Finally we discuss how the method can be applied to random systems

  1. Stochastic synchronization in finite size spiking networks

    Science.gov (United States)

    Doiron, Brent; Rinzel, John; Reyes, Alex

    2006-09-01

    We study a stochastic synchronization of spiking activity in feedforward networks of integrate-and-fire model neurons. A stochastic mean field analysis shows that synchronization occurs only when the network size is sufficiently small. This gives evidence that the dynamics, and hence processing, of finite size populations can be drastically different from that observed in the infinite size limit. Our results agree with experimentally observed synchrony in cortical networks, and further strengthen the link between synchrony and propagation in cortical systems.

  2. Finite size scaling and lattice gauge theory

    International Nuclear Information System (INIS)

    Berg, B.A.

    1986-01-01

    Finite size (Fisher) scaling is investigated for four dimensional SU(2) and SU(3) lattice gauge theories without quarks. It allows to disentangle violations of (asymptotic) scaling and finite volume corrections. Mass spectrum, string tension, deconfinement temperature and lattice β-function are considered. For appropriate volumes, Monte Carlo investigations seem to be able to control the finite volume continuum limit. Contact is made with Luescher's small volume expansion and possibly also with the asymptotic large volume behavior. 41 refs., 19 figs

  3. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects.

    Science.gov (United States)

    Rocklin, Gabriel J; Mobley, David L; Dill, Ken A; Hünenberger, Philippe H

    2013-11-14

    The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges -5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol(-1)) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB

  4. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: An accurate correction scheme for electrostatic finite-size effects

    Energy Technology Data Exchange (ETDEWEB)

    Rocklin, Gabriel J. [Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th St., San Francisco, California 94143-2550, USA and Biophysics Graduate Program, University of California San Francisco, 1700 4th St., San Francisco, California 94143-2550 (United States); Mobley, David L. [Departments of Pharmaceutical Sciences and Chemistry, University of California Irvine, 147 Bison Modular, Building 515, Irvine, California 92697-0001, USA and Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, Louisiana 70148 (United States); Dill, Ken A. [Laufer Center for Physical and Quantitative Biology, 5252 Stony Brook University, Stony Brook, New York 11794-0001 (United States); Hünenberger, Philippe H., E-mail: phil@igc.phys.chem.ethz.ch [Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093 Zürich (Switzerland)

    2013-11-14

    The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges −5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol{sup −1}) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non

  5. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: An accurate correction scheme for electrostatic finite-size effects

    Science.gov (United States)

    Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.; Hünenberger, Philippe H.

    2013-11-01

    The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges -5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol-1) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB

  6. Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution

    Science.gov (United States)

    Zhang, Xueying; Zhang, Yichen; Zhao, Yijia; Wang, Xiangyu; Yu, Song; Guo, Hong

    2017-10-01

    We study the impact of the finite-size effect on the continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) protocol, mainly considering the finite-size effect on the parameter estimation procedure. The central-limit theorem and maximum likelihood estimation theorem are used to estimate the parameters. We also analyze the relationship between the number of exchanged signals and the optimal modulation variance in the protocol. It is proved that when Charlie's position is close to Bob, the CV-MDI QKD protocol has the farthest transmission distance in the finite-size scenario. Finally, we discuss the impact of finite-size effects related to the practical detection in the CV-MDI QKD protocol. The overall results indicate that the finite-size effect has a great influence on the secret-key rate of the CV-MDI QKD protocol and should not be ignored.

  7. Finite-size scaling of survival probability in branching processes.

    Science.gov (United States)

    Garcia-Millan, Rosalba; Font-Clos, Francesc; Corral, Álvaro

    2015-04-01

    Branching processes pervade many models in statistical physics. We investigate the survival probability of a Galton-Watson branching process after a finite number of generations. We derive analytically the existence of finite-size scaling for the survival probability as a function of the control parameter and the maximum number of generations, obtaining the critical exponents as well as the exact scaling function, which is G(y)=2ye(y)/(e(y)-1), with y the rescaled distance to the critical point. Our findings are valid for any branching process of the Galton-Watson type, independently of the distribution of the number of offspring, provided its variance is finite. This proves the universal behavior of the finite-size effects in branching processes, including the universality of the metric factors. The direct relation to mean-field percolation is also discussed.

  8. Chiral anomaly and anomalous finite-size conductivity in graphene

    Science.gov (United States)

    Shen, Shun-Qing; Li, Chang-An; Niu, Qian

    2017-09-01

    Graphene is a monolayer of carbon atoms packed into a hexagon lattice to host two spin degenerate pairs of massless two-dimensional Dirac fermions with different chirality. It is known that the existence of non-zero electric polarization in reduced momentum space which is associated with a hidden chiral symmetry will lead to the zero-energy flat band of a zigzag nanoribbon and some anomalous transport properties. Here it is proposed that the Adler-Bell-Jackiw chiral anomaly or non-conservation of chiral charges of Dirac fermions at different valleys can be realized in a confined ribbon of finite width, even in the absence of a magnetic field. In the laterally diffusive regime, the finite-size correction to conductivity is always positive and is inversely proportional to the square of the lateral dimension W, which is different from the finite-size correction inversely proportional to W from the boundary modes. This anomalous finite-size conductivity reveals the signature of the chiral anomaly in graphene, and it is measurable experimentally. This finding provides an alternative platform to explore the purely quantum mechanical effect in graphene.

  9. Isobaric expansion coefficient and isothermal compressibility for a finite-size ideal Fermi gas system

    International Nuclear Information System (INIS)

    Su, Guozhen; Chen, Liwei; Chen, Jincan

    2014-01-01

    Due to quantum size effects (QSEs), the isobaric thermal expansion coefficient and isothermal compressibility well defined for macroscopic systems are invalid for finite-size systems. The two parameters are redefined and calculated for a finite-size ideal Fermi gas confined in a rectangular container. It is found that the isobaric thermal expansion coefficient and isothermal compressibility are generally anisotropic, i.e., they are generally different in different directions. Moreover, it is found the thermal expansion coefficient may be negative in some directions under the condition that the pressures in all directions are kept constant. - Highlights: • Isobaric thermal expansion coefficient and isothermal compressibility are redefined. • The two parameters are calculated for a finite-size ideal Fermi gas. • The two parameters are generally anisotropic for a finite-size system. • Isobaric thermal expansion coefficient may be negative in some directions

  10. Diffusion of Finite-Size Particles in Confined Geometries

    KAUST Repository

    Bruna, Maria

    2013-05-10

    The diffusion of finite-size hard-core interacting particles in two- or three-dimensional confined domains is considered in the limit that the confinement dimensions become comparable to the particle\\'s dimensions. The result is a nonlinear diffusion equation for the one-particle probability density function, with an overall collective diffusion that depends on both the excluded-volume and the narrow confinement. By including both these effects, the equation is able to interpolate between severe confinement (for example, single-file diffusion) and unconfined diffusion. Numerical solutions of both the effective nonlinear diffusion equation and the stochastic particle system are presented and compared. As an application, the case of diffusion under a ratchet potential is considered, and the change in transport properties due to excluded-volume and confinement effects is examined. © 2013 Society for Mathematical Biology.

  11. Diffusion of Finite-Size Particles in Confined Geometries

    KAUST Repository

    Bruna, Maria; Chapman, S. Jonathan

    2013-01-01

    The diffusion of finite-size hard-core interacting particles in two- or three-dimensional confined domains is considered in the limit that the confinement dimensions become comparable to the particle's dimensions. The result is a nonlinear diffusion equation for the one-particle probability density function, with an overall collective diffusion that depends on both the excluded-volume and the narrow confinement. By including both these effects, the equation is able to interpolate between severe confinement (for example, single-file diffusion) and unconfined diffusion. Numerical solutions of both the effective nonlinear diffusion equation and the stochastic particle system are presented and compared. As an application, the case of diffusion under a ratchet potential is considered, and the change in transport properties due to excluded-volume and confinement effects is examined. © 2013 Society for Mathematical Biology.

  12. Finite-size modifications of the magnetic properties of clusters

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Linderoth, Søren; Lindgård, Per-Anker

    1993-01-01

    relative to the bulk, and the consequent neutron-scattering cross section exhibits discretely spaced wave-vector-broadened eigenstates. The implications of the finite size on thermodynamic properties, like the temperature dependence of the magnetization and the critical temperature, are also elucidated. We...... find the temperature dependence of the cluster magnetization to be well described by an effective power law, M(mean) is-proportional-to 1 - BT(alpha), with a size-dependent, but structure-independent, exponent larger than the bulk value. The critical temperature of the clusters is calculated from...... the spin-wave spectrum by a method based on the correlation theory and the spherical approximation generalized to the case of finite systems. A size-dependent reduction of the critical temperature by up to 50% for the smallest clusters is found. The trends found for the model clusters are extrapolated...

  13. Multipartite geometric entanglement in finite size XY model

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Giampaolo, Salvatore Marco; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2009-06-01

    We investigate the behavior of the multipartite entanglement in the finite size XY model by means of the hierarchical geometric measure of entanglement. By selecting specific components of the hierarchy, we study both global entanglement and genuinely multipartite entanglement.

  14. Holographic relaxation of finite size isolated quantum systems

    International Nuclear Information System (INIS)

    Abajo-Arrastia, Javier; Silva, Emilia da; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre

    2014-01-01

    We study holographically the out of equilibrium dynamics of a finite size closed quantum system in 2+1 dimensions, modelled by the collapse of a shell of a massless scalar field in AdS_4. In global coordinates there exists a variety of evolutions towards final black hole formation which we relate with different patterns of relaxation in the dual field theory. For large scalar initial data rapid thermalization is achieved as a priori expected. Interesting phenomena appear for small enough amplitudes. Such shells do not generate a black hole by direct collapse, but quite generically, an apparent horizon emerges after enough bounces off the AdS boundary. We relate this bulk evolution with relaxation processes at strong coupling which delay in reaching an ergodic stage. Besides the dynamics of bulk fields, we monitor the entanglement entropy, finding that it oscillates quasi-periodically before final equilibration. The radial position of the travelling shell is brought in correspondence with the evolution of the pattern of entanglement in the dual field theory. We propose, thereafter, that the observed oscillations are the dual counterpart of the quantum revivals studied in the literature. The entanglement entropy is not only able to portrait the streaming of entangled excitations, but it is also a useful probe of interaction effects

  15. The Optimal Inhomogeneity for Superconductivity: Finite Size Studies

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, W-F.

    2010-04-06

    We report the results of exact diagonalization studies of Hubbard models on a 4 x 4 square lattice with periodic boundary conditions and various degrees and patterns of inhomogeneity, which are represented by inequivalent hopping integrals t and t{prime}. We focus primarily on two patterns, the checkerboard and the striped cases, for a large range of values of the on-site repulsion U and doped hole concentration, x. We present evidence that superconductivity is strongest for U of order the bandwidth, and intermediate inhomogeneity, 0 < t{prime} < t. The maximum value of the 'pair-binding energy' we have found with purely repulsive interactions is {Delta}{sub pb} = 0.32t for the checkerboard Hubbard model with U = 8t and t{prime} = 0.5t. Moreover, for near optimal values, our results are insensitive to changes in boundary conditions, suggesting that the correlation length is sufficiently short that finite size effects are already unimportant.

  16. A stochastic-field description of finite-size spiking neural networks.

    Science.gov (United States)

    Dumont, Grégory; Payeur, Alexandre; Longtin, André

    2017-08-01

    Neural network dynamics are governed by the interaction of spiking neurons. Stochastic aspects of single-neuron dynamics propagate up to the network level and shape the dynamical and informational properties of the population. Mean-field models of population activity disregard the finite-size stochastic fluctuations of network dynamics and thus offer a deterministic description of the system. Here, we derive a stochastic partial differential equation (SPDE) describing the temporal evolution of the finite-size refractory density, which represents the proportion of neurons in a given refractory state at any given time. The population activity-the density of active neurons per unit time-is easily extracted from this refractory density. The SPDE includes finite-size effects through a two-dimensional Gaussian white noise that acts both in time and along the refractory dimension. For an infinite number of neurons the standard mean-field theory is recovered. A discretization of the SPDE along its characteristic curves allows direct simulations of the activity of large but finite spiking networks; this constitutes the main advantage of our approach. Linearizing the SPDE with respect to the deterministic asynchronous state allows the theoretical investigation of finite-size activity fluctuations. In particular, analytical expressions for the power spectrum and autocorrelation of activity fluctuations are obtained. Moreover, our approach can be adapted to incorporate multiple interacting populations and quasi-renewal single-neuron dynamics.

  17. Distribution of quantum states in enclosures of finite size I

    International Nuclear Information System (INIS)

    Souto, J.H.; Chaba, A.N.

    1989-01-01

    The expression for the density of states of a particle in a three-dimensional rectangular box of finite size can be obtained directly by Poissons's Summation formula. The expression for the case of an enclosure in the form of an infinite rectangular slab is derived. (A.C.A.S.) [pt

  18. Finite-size polyelectrolyte bundles at thermodynamic equilibrium

    Science.gov (United States)

    Sayar, M.; Holm, C.

    2007-01-01

    We present the results of extensive computer simulations performed on solutions of monodisperse charged rod-like polyelectrolytes in the presence of trivalent counterions. To overcome energy barriers we used a combination of parallel tempering and hybrid Monte Carlo techniques. Our results show that for small values of the electrostatic interaction the solution mostly consists of dispersed single rods. The potential of mean force between the polyelectrolyte monomers yields an attractive interaction at short distances. For a range of larger values of the Bjerrum length, we find finite-size polyelectrolyte bundles at thermodynamic equilibrium. Further increase of the Bjerrum length eventually leads to phase separation and precipitation. We discuss the origin of the observed thermodynamic stability of the finite-size aggregates.

  19. Finite-size scaling of survival probability in branching processes

    OpenAIRE

    Garcia-Millan, Rosalba; Font-Clos, Francesc; Corral, Alvaro

    2014-01-01

    Branching processes pervade many models in statistical physics. We investigate the survival probability of a Galton-Watson branching process after a finite number of generations. We reveal the finite-size scaling law of the survival probability for a given branching process ruled by a probability distribution of the number of offspring per element whose standard deviation is finite, obtaining the exact scaling function as well as the critical exponents. Our findings prove the universal behavi...

  20. Length and temperature dependence of the mechanical properties of finite-size carbyne

    Science.gov (United States)

    Yang, Xueming; Huang, Yanhui; Cao, Bingyang; To, Albert C.

    2017-09-01

    Carbyne is an ideal one-dimensional conductor and the thinnest interconnection in an ultimate nano-device and it requires an understanding of the mechanical properties that affect device performance and reliability. Here, we report the mechanical properties of finite-size carbyne, obtained by a molecular dynamics simulation study based on the adaptive intermolecular reactive empirical bond order potential. To avoid confusion in assigning the effective cross-sectional area of carbyne, the value of the effective cross-sectional area of carbyne (4.148 Å2) was deduced via experiment and adopted in our study. Ends-constraints effects on the ultimate stress (maximum force) of the carbyne chains are investigated, revealing that the molecular dynamics simulation results agree very well with the experimental results. The ultimate strength, Young's Modulus and maximum strain of carbyne are rather sensitive to the temperature and all decrease with the temperature. Opposite tendencies of the length dependence of the overall ultimate strength and maximum strain of carbyne at room temperature and very low temperature have been found, and analyses show that this originates in the ends effect of carbyne.

  1. Finite-size resonance dielectric cylinder in a rectangular waveguide

    International Nuclear Information System (INIS)

    Chuprina, V.N.; Khizhnyak, N.A.

    1988-01-01

    The problem on resonance spread of an electromagnetic wave by a dielectric circular cylinder of finite size in a rectangular waveguide is solved by a numerical-analytical method. The cylinder axes are parallel. The cylinder can be used as a resonance tuning element in accelerating SHF-sections. Problems on cutting off linear algebraic equation systems, to which relations of macroscopic electrodynamics in the integral differential form written for the concrete problem considered here are reduced by analytical transformations, are investigated in the stage of numerical analysis. Theoretical dependences of the insertion of the voltage standing wave coefficient on the generator wave length calculated for different values of problem parameters are constracted

  2. Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size

    Science.gov (United States)

    Gerstner, Wulfram

    2017-01-01

    Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50–2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations. PMID:28422957

  3. Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size.

    Science.gov (United States)

    Schwalger, Tilo; Deger, Moritz; Gerstner, Wulfram

    2017-04-01

    Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50-2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations.

  4. Finite-size scaling in two-dimensional superfluids

    International Nuclear Information System (INIS)

    Schultka, N.; Manousakis, E.

    1994-01-01

    Using the x-y model and a nonlocal updating scheme called cluster Monte Carlo, we calculate the superfluid density of a two-dimensional superfluid on large-size square lattices LxL up to 400x400. This technique allows us to approach temperatures close to the critical point, and by studying a wide range of L values and applying finite-size scaling theory we are able to extract the critical properties of the system. We calculate the superfluid density and from that we extract the renormalization-group beta function. We derive finite-size scaling expressions using the Kosterlitz-Thouless-Nelson renormalization group equations and show that they are in very good agreement with our numerical results. This allows us to extrapolate our results to the infinite-size limit. We also find that the universal discontinuity of the superfluid density at the critical temperature is in very good agreement with the Kosterlitz-Thouless-Nelson calculation and experiments

  5. Evaluation of Kirkwood-Buff integrals via finite size scaling: a large scale molecular dynamics study

    Science.gov (United States)

    Dednam, W.; Botha, A. E.

    2015-01-01

    Solvation of bio-molecules in water is severely affected by the presence of co-solvent within the hydration shell of the solute structure. Furthermore, since solute molecules can range from small molecules, such as methane, to very large protein structures, it is imperative to understand the detailed structure-function relationship on the microscopic level. For example, it is useful know the conformational transitions that occur in protein structures. Although such an understanding can be obtained through large-scale molecular dynamic simulations, it is often the case that such simulations would require excessively large simulation times. In this context, Kirkwood-Buff theory, which connects the microscopic pair-wise molecular distributions to global thermodynamic properties, together with the recently developed technique, called finite size scaling, may provide a better method to reduce system sizes, and hence also the computational times. In this paper, we present molecular dynamics trial simulations of biologically relevant low-concentration solvents, solvated by aqueous co-solvent solutions. In particular we compare two different methods of calculating the relevant Kirkwood-Buff integrals. The first (traditional) method computes running integrals over the radial distribution functions, which must be obtained from large system-size NVT or NpT simulations. The second, newer method, employs finite size scaling to obtain the Kirkwood-Buff integrals directly by counting the particle number fluctuations in small, open sub-volumes embedded within a larger reservoir that can be well approximated by a much smaller simulation cell. In agreement with previous studies, which made a similar comparison for aqueous co-solvent solutions, without the additional solvent, we conclude that the finite size scaling method is also applicable to the present case, since it can produce computationally more efficient results which are equivalent to the more costly radial distribution

  6. Evaluation of Kirkwood-Buff integrals via finite size scaling: a large scale molecular dynamics study

    International Nuclear Information System (INIS)

    Dednam, W; Botha, A E

    2015-01-01

    Solvation of bio-molecules in water is severely affected by the presence of co-solvent within the hydration shell of the solute structure. Furthermore, since solute molecules can range from small molecules, such as methane, to very large protein structures, it is imperative to understand the detailed structure-function relationship on the microscopic level. For example, it is useful know the conformational transitions that occur in protein structures. Although such an understanding can be obtained through large-scale molecular dynamic simulations, it is often the case that such simulations would require excessively large simulation times. In this context, Kirkwood-Buff theory, which connects the microscopic pair-wise molecular distributions to global thermodynamic properties, together with the recently developed technique, called finite size scaling, may provide a better method to reduce system sizes, and hence also the computational times. In this paper, we present molecular dynamics trial simulations of biologically relevant low-concentration solvents, solvated by aqueous co-solvent solutions. In particular we compare two different methods of calculating the relevant Kirkwood-Buff integrals. The first (traditional) method computes running integrals over the radial distribution functions, which must be obtained from large system-size NVT or NpT simulations. The second, newer method, employs finite size scaling to obtain the Kirkwood-Buff integrals directly by counting the particle number fluctuations in small, open sub-volumes embedded within a larger reservoir that can be well approximated by a much smaller simulation cell. In agreement with previous studies, which made a similar comparison for aqueous co-solvent solutions, without the additional solvent, we conclude that the finite size scaling method is also applicable to the present case, since it can produce computationally more efficient results which are equivalent to the more costly radial distribution

  7. Precision of quantization of the hall conductivity in a finite-size sample: Power law

    International Nuclear Information System (INIS)

    Greshnov, A. A.; Kolesnikova, E. N.; Zegrya, G. G.

    2006-01-01

    A microscopic calculation of the conductivity in the integer quantum Hall effect (IQHE) mode is carried out. The precision of quantization is analyzed for finite-size samples. The precision of quantization shows a power-law dependence on the sample size. A new scaling parameter describing this dependence is introduced. It is also demonstrated that the precision of quantization linearly depends on the ratio between the amplitude of the disorder potential and the cyclotron energy. The data obtained are compared with the results of magnetotransport measurements in mesoscopic samples

  8. Finite-size scaling of clique percolation on two-dimensional Moore lattices

    Science.gov (United States)

    Dong, Jia-Qi; Shen, Zhou; Zhang, Yongwen; Huang, Zi-Gang; Huang, Liang; Chen, Xiaosong

    2018-05-01

    Clique percolation has attracted much attention due to its significance in understanding topological overlap among communities and dynamical instability of structured systems. Rich critical behavior has been observed in clique percolation on Erdős-Rényi (ER) random graphs, but few works have discussed clique percolation on finite dimensional systems. In this paper, we have defined a series of characteristic events, i.e., the historically largest size jumps of the clusters, in the percolating process of adding bonds and developed a new finite-size scaling scheme based on the interval of the characteristic events. Through the finite-size scaling analysis, we have found, interestingly, that, in contrast to the clique percolation on an ER graph where the critical exponents are parameter dependent, the two-dimensional (2D) clique percolation simply shares the same critical exponents with traditional site or bond percolation, independent of the clique percolation parameters. This has been corroborated by bridging two special types of clique percolation to site percolation on 2D lattices. Mechanisms for the difference of the critical behaviors between clique percolation on ER graphs and on 2D lattices are also discussed.

  9. Finite-size corrections in simulation of dipolar fluids

    Science.gov (United States)

    Belloni, Luc; Puibasset, Joël

    2017-12-01

    Monte Carlo simulations of dipolar fluids are performed at different numbers of particles N = 100-4000. For each size of the cubic cell, the non-spherically symmetric pair distribution function g(r,Ω) is accumulated in terms of projections gmnl(r) onto rotational invariants. The observed N dependence is in very good agreement with the theoretical predictions for the finite-size corrections of different origins: the explicit corrections due to the absence of fluctuations in the number of particles within the canonical simulation and the implicit corrections due to the coupling between the environment around a given particle and that around its images in the neighboring cells. The latter dominates in fluids of strong dipolar coupling characterized by low compressibility and high dielectric constant. The ability to clean with great precision the simulation data from these corrections combined with the use of very powerful anisotropic integral equation techniques means that exact correlation functions both in real and Fourier spaces, Kirkwood-Buff integrals, and bridge functions can be derived from box sizes as small as N ≈ 100, even with existing long-range tails. In the presence of dielectric discontinuity with the external medium surrounding the central box and its replica within the Ewald treatment of the Coulombic interactions, the 1/N dependence of the gmnl(r) is shown to disagree with the, yet well-accepted, prediction of the literature.

  10. Asymmetric fluid criticality. II. Finite-size scaling for simulations.

    Science.gov (United States)

    Kim, Young C; Fisher, Michael E

    2003-10-01

    The vapor-liquid critical behavior of intrinsically asymmetric fluids is studied in finite systems of linear dimensions L focusing on periodic boundary conditions, as appropriate for simulations. The recently propounded "complete" thermodynamic (L--> infinity) scaling theory incorporating pressure mixing in the scaling fields as well as corrections to scaling [Phys. Rev. E 67, 061506 (2003)] is extended to finite L, initially in a grand canonical representation. The theory allows for a Yang-Yang anomaly in which, when L--> infinity, the second temperature derivative (d2musigma/dT2) of the chemical potential along the phase boundary musigmaT diverges when T-->Tc-. The finite-size behavior of various special critical loci in the temperature-density or (T,rho) plane, in particular, the k-inflection susceptibility loci and the Q-maximal loci--derived from QL(T,L) is identical with 2L/L where m is identical with rho-L--is carefully elucidated and shown to be of value in estimating Tc and rhoc. Concrete illustrations are presented for the hard-core square-well fluid and for the restricted primitive model electrolyte including an estimate of the correlation exponent nu that confirms Ising-type character. The treatment is extended to the canonical representation where further complications appear.

  11. Finite size scaling analysis of disordered electron systems

    International Nuclear Information System (INIS)

    Markos, P.

    2012-01-01

    We demonstrated the application of the finite size scaling method to the analysis of the transition of the disordered system from the metallic to the insulating regime. The method enables us to calculate the critical point and the critical exponent which determines the divergence of the correlation length in the vicinity of the critical point. The universality of the metal-insulator transition was verified by numerical analysis of various physical parameters and the critical exponent was calculated with high accuracy for different disordered models. Numerically obtained value of the critical exponent for the three dimensional disordered model (1) has been recently supported by the semi-analytical work and verified by experimental optical measurements equivalent to the three dimensional disordered model (1). Another unsolved problem of the localization is the disagreement between numerical results and predictions of the analytical theories. At present, no analytical theory confirms numerically obtained values of critical exponents. The reason for this disagreement lies in the statistical character of the process of localization. The theory must consider all possible scattering processes on randomly distributed impurities. All physical variables are statistical quantities with broad probability distributions. It is in general not know how to calculate analytically their mean values. We believe that detailed numerical analysis of various disordered systems bring inspiration for the formulation of analytical theory. (authors)

  12. Many-body localization in disorder-free systems: The importance of finite-size constraints

    Energy Technology Data Exchange (ETDEWEB)

    Papić, Z., E-mail: zpapic@perimeterinstitute.ca [School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT (United Kingdom); Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada); Stoudenmire, E. Miles [Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada); Abanin, Dmitry A. [Department of Theoretical Physics, University of Geneva, 24 quai Ernest-Ansermet, 1211 Geneva (Switzerland); Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada)

    2015-11-15

    Recently it has been suggested that many-body localization (MBL) can occur in translation-invariant systems, and candidate 1D models have been proposed. We find that such models, in contrast to MBL systems with quenched disorder, typically exhibit much more severe finite-size effects due to the presence of two or more vastly different energy scales. In a finite system, this can artificially split the density of states (DOS) into bands separated by large gaps. We argue for such models to faithfully represent the thermodynamic limit behavior, the ratio of relevant coupling must exceed a certain system-size depedent cutoff, chosen such that various bands in the DOS overlap one another. Setting the parameters this way to minimize finite-size effects, we study several translation-invariant MBL candidate models using exact diagonalization. Based on diagnostics including entanglement and local observables, we observe thermal (ergodic), rather than MBL-like behavior. Our results suggest that MBL in translation-invariant systems with two or more very different energy scales is less robust than perturbative arguments suggest, possibly pointing to the importance of non-perturbative effects which induce delocalization in the thermodynamic limit.

  13. Finite size scaling analysis on Nagel-Schreckenberg model for traffic flow

    Science.gov (United States)

    Balouchi, Ashkan; Browne, Dana

    2015-03-01

    The traffic flow problem as a many-particle non-equilibrium system has caught the interest of physicists for decades. Understanding the traffic flow properties and though obtaining the ability to control the transition from the free-flow phase to the jammed phase plays a critical role in the future world of urging self-driven cars technology. We have studied phase transitions in one-lane traffic flow through the mean velocity, distributions of car spacing, dynamic susceptibility and jam persistence -as candidates for an order parameter- using the Nagel-Schreckenberg model to simulate traffic flow. The length dependent transition has been observed for a range of maximum velocities greater than a certain value. Finite size scaling analysis indicates power-law scaling of these quantities at the onset of the jammed phase.

  14. Wake-Driven Dynamics of Finite-Sized Buoyant Spheres in Turbulence

    Science.gov (United States)

    Mathai, Varghese; Prakash, Vivek N.; Brons, Jon; Sun, Chao; Lohse, Detlef

    2015-09-01

    Particles suspended in turbulent flows are affected by the turbulence and at the same time act back on the flow. The resulting coupling can give rise to rich variability in their dynamics. Here we report experimental results from an investigation of finite-sized buoyant spheres in turbulence. We find that even a marginal reduction in the particle's density from that of the fluid can result in strong modification of its dynamics. In contrast to classical spatial filtering arguments and predictions of particle models, we find that the particle acceleration variance increases with size. We trace this reversed trend back to the growing contribution from wake-induced forces, unaccounted for in current particle models in turbulence. Our findings highlight the need for improved multiphysics based models that account for particle wake effects for a faithful representation of buoyant-sphere dynamics in turbulence.

  15. Finite-size-scaling analysis of subsystem data in the dilute Ising model

    International Nuclear Information System (INIS)

    Hennecke, M.

    1993-01-01

    Monte Carlo simulation results for the magnetization of subsystems of finite lattices are used to determine the critical temperature and a critical exponent of the simple-cubic Ising model with quenched site dilution, at a concentration of p=40%. Particular attention is paid to the effect of the finite size of the systems from which the subsystem results are obtained. This finiteness of the lattices involved is shown to be a source of large deviations of critical temperatures and exponents estimated from subsystem data from their values in the thermodynamic limit. By the use of different lattice sizes, the results T c (40%)=1.209±0.002 and ν(40%)=0.78±0.01 could be extrapolated

  16. Deconfinement phase transition and finite-size scaling in SU(2) lattice gauge theory

    International Nuclear Information System (INIS)

    Mogilevskij, O.A.

    1988-01-01

    Calculation technique for deconfinement phase transition parameters based on application of finite-size scaling theory is suggested. The essence of the technique lies in plotting of universal scaling function on the basis of numerical data obtained at different-size final lattices and discrimination of phase transition parameters for infinite lattice system. Finite-size scaling technique was developed as applied to spin system theory. β critical index for Polyakov loop and SU(2) deconfinement temperature of lattice gauge theory are calculated on the basis of finite-size scaling technique. The obtained value agrees with critical index of magnetization in Ising three-dimensional model

  17. Layout Optimization of Structures with Finite-size Features using Multiresolution Analysis

    DEFF Research Database (Denmark)

    Chellappa, S.; Diaz, A. R.; Bendsøe, Martin P.

    2004-01-01

    A scheme for layout optimization in structures with multiple finite-sized heterogeneities is presented. Multiresolution analysis is used to compute reduced operators (stiffness matrices) representing the elastic behavior of material distributions with heterogeneities of sizes that are comparable...

  18. Finite-time and finite-size scalings in the evaluation of large-deviation functions: Numerical approach in continuous time.

    Science.gov (United States)

    Guevara Hidalgo, Esteban; Nemoto, Takahiro; Lecomte, Vivien

    2017-06-01

    Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provides a numerical tool allowing their study, by means of simulating a large number of copies of the system, which are subjected to selection rules that favor the rare trajectories of interest. Such algorithms are plagued by finite simulation time and finite population size, effects that can render their use delicate. In this paper, we present a numerical approach which uses the finite-time and finite-size scalings of estimators of the large deviation functions associated to the distribution of rare trajectories. The method we propose allows one to extract the infinite-time and infinite-size limit of these estimators, which-as shown on the contact process-provides a significant improvement of the large deviation function estimators compared to the standard one.

  19. Finite-time and finite-size scalings in the evaluation of large-deviation functions: Numerical approach in continuous time

    Science.gov (United States)

    Guevara Hidalgo, Esteban; Nemoto, Takahiro; Lecomte, Vivien

    2017-06-01

    Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provides a numerical tool allowing their study, by means of simulating a large number of copies of the system, which are subjected to selection rules that favor the rare trajectories of interest. Such algorithms are plagued by finite simulation time and finite population size, effects that can render their use delicate. In this paper, we present a numerical approach which uses the finite-time and finite-size scalings of estimators of the large deviation functions associated to the distribution of rare trajectories. The method we propose allows one to extract the infinite-time and infinite-size limit of these estimators, which—as shown on the contact process—provides a significant improvement of the large deviation function estimators compared to the standard one.

  20. Dynamic response in a finite size composite multiferroic thin film

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zidong, E-mail: Zidong.Wang@auckland.ac.nz; Grimson, Malcolm J. [Department of Physics, The University of Auckland, Auckland 1010 (New Zealand)

    2016-03-28

    Composite multiferroics, heterostructures of ferromagnetic and ferroelectric materials, are characterized by a remarkable magnetoelectric effect at the interface. Previous work has supported the ferromagnetic structure with magnetic spins and the ferroelectric with pseudospins which act as electric dipoles in a microscopic model, coupled with a magnetoelectric interaction [Wang and Grimson, J. Appl. Phys. 118, 124109 (2015)]. In this work, by solving the stochastic Landau-Lifshitz-Gilbert equation, the electric-field-induced magnetization switching in a twisted boundary condition has been studied, and a behavior of domain wall in the ferromagnetic structure is discussed.

  1. Finite size and Coulomb corrections: from nuclei to nuclear liquid vapor phase diagram

    International Nuclear Information System (INIS)

    Moretto, L.G.; Elliott, J.B.; Phair, L.

    2003-01-01

    In this paper we consider the problem of obtaining the infinite symmetric uncharged nuclear matter phase diagram from a thermal nuclear reaction. In the first part we shall consider the Coulomb interaction which, because of its long range makes the definition of phases problematic. This Coulomb effect seems truly devastating since it does not allow one to define nuclear phase transitions much above A ∼ 30. However there may be a solution to this difficulty. If we consider the emission of particles with a sizable charge, we notice that a large Coulomb barrier Bc is present. For T << Bc these channels may be considered effectively closed. Consequently the unbound channels may not play a role on a suitably short time scale. Then a phase transition may still be definable in an approximate way. In the second part of the article we shall deal with the finite size problem by means of a new method, the complement method, which shall permit a straightforward extrapolation to the infinite system. The complement approach consists of evaluating the change in free energy occurring when a particle or cluster is moved from one (finite) phase to another. In the case of a liquid drop in equilibrium with its vapor, this is done by extracting a vapor particle of any given size from the drop and evaluating the energy and entropy changes associated with both the vapor particle and the residual liquid drop (complement)

  2. Charge and finite size corrections for virtual photon spectra in second order Born approximation

    International Nuclear Information System (INIS)

    Durgapal, P.

    1982-01-01

    The purpose of this work is to investigate the effects of finite nuclear size and charge on the spectrum of virtual photons emitted when a relativistic electron is scattered in the field of an atomic nucleus. The method consisted in expanding the scattering cross section in terms of integrals over the nuclear inelastic form factor with a kernel which was evaluated in second order Born approximation and was derived from the elastic-electron scattering form factor. The kernel could be evaluated analytically provided the elastic form factor contained only poles. For this reason the author used a Yukawa form factor. Before calculating the second order term the author studied the first order term containing finite size effects in the inelastic form factor. The author observed that the virtual photon spectrum is insensitive to the details of the inelastic distribution over a large range of energies and depends only on the transition radius. This gave the author the freedom of choosing an inelastic distribution for which the form factor has only poles and the author chose a modified form of the exponential distribution, which enabled the author to evaluate the matrix element analytically. The remaining integral over the physical momentum transfer was performed numerically. The author evaluated the virtual photon spectra for E1 and M1 transitions for a variety of electron energies using several nuclei and compared the results with the distorted wave calculations. Except for low energy and high Z, the second order results compared well with the distorted wave calculations

  3. An improved Landauer principle with finite-size corrections

    International Nuclear Information System (INIS)

    Reeb, David; Wolf, Michael M

    2014-01-01

    Landauer's principle relates entropy decrease and heat dissipation during logically irreversible processes. Most theoretical justifications of Landauer's principle either use thermodynamic reasoning or rely on specific models based on arguable assumptions. Here, we aim at a general and minimal setup to formulate Landauer's principle in precise terms. We provide a simple and rigorous proof of an improved version of the principle, which is formulated in terms of an equality rather than an inequality. The proof is based on quantum statistical mechanics concepts rather than on thermodynamic argumentation. From this equality version, we obtain explicit improvements of Landauer's bound that depend on the effective size of the thermal reservoir and reduce to Landauer's bound only for infinite-sized reservoirs. (paper)

  4. Density functional approach for pairing in finite size systems

    International Nuclear Information System (INIS)

    Hupin, G.

    2011-09-01

    The combination of functional theory where the energy is written as a functional of the density, and the configuration mixing method, provides an efficient description of nuclear ground and excited state properties. The specific pathologies that have been recently observed, show the lack of a clear underlying justification associated to the breaking and the restoration of symmetries within density functional theory. This thesis focuses on alternative treatments of pairing correlations in finite many body systems that consider the breaking and the restoration of the particle number conservation. The energy is written as a functional of a projected quasi-particle vacuum and can be linked to the one obtained within the configuration mixing framework. This approach has been applied to make the projection either before or after the application of the variational principle. It is more flexible than the usual configuration mixing method since it can handle more general effective interactions than the latter. The application to the Krypton isotopes shows the feasibility and the efficiency of the method to describe pairing near closed shell nuclei. Following a parallel path, a theory where the energy is written as a functional of the occupation number and natural orbitals is proposed. The new functional is benchmarked in an exactly solvable model, the pairing Hamiltonian. The efficiency and the applicability of the new theory have been tested for various pairing strengths, single particle energy spectra and numbers of particles. (author)

  5. Discrete and mesoscopic regimes of finite-size wave turbulence

    International Nuclear Information System (INIS)

    L'vov, V. S.; Nazarenko, S.

    2010-01-01

    Bounding volume results in discreteness of eigenmodes in wave systems. This leads to a depletion or complete loss of wave resonances (three-wave, four-wave, etc.), which has a strong effect on wave turbulence (WT) i.e., on the statistical behavior of broadband sets of weakly nonlinear waves. This paper describes three different regimes of WT realizable for different levels of the wave excitations: discrete, mesoscopic and kinetic WT. Discrete WT comprises chaotic dynamics of interacting wave 'clusters' consisting of discrete (often finite) number of connected resonant wave triads (or quarters). Kinetic WT refers to the infinite-box theory, described by well-known wave-kinetic equations. Mesoscopic WT is a regime in which either the discrete and the kinetic evolutions alternate or when none of these two types is purely realized. We argue that in mesoscopic systems the wave spectrum experiences a sandpile behavior. Importantly, the mesoscopic regime is realized for a broad range of wave amplitudes which typically spans over several orders on magnitude, and not just for a particular intermediate level.

  6. Simulation of the electron acoustic instability for a finite-size electron beam system

    International Nuclear Information System (INIS)

    Lin, C.S.; Winske, D.

    1987-01-01

    Satellite observations at midlatitudes (≅20,000 km) near the earth's dayside polar cusp boundary layer indicate that the upward electron beams have a narrow latitudinal width up to 0.1 0 . In the cusp boundary layer where the electron population consists of a finite-size electron beam in a background of uniform cold and hot electrons, the electron acoustic mode is unstable inside the electron beam but damped outside the electron beam. Simulations of the electron acoustic instability for a finite-size beam system are carried out with a particle-in-cell code to investigate the heating phenomena associated with the instability and the width of the heating region. The simulations show that the finite-size electron beam radiates electrostatic electron acoustic waves. The decay length of the electron acoustic waves outside the beam in the simulation agrees with the spatial decay length derived from the linear dispersion equation

  7. Three-point correlation functions of giant magnons with finite size

    International Nuclear Information System (INIS)

    Ahn, Changrim; Bozhilov, Plamen

    2011-01-01

    We compute holographic three-point correlation functions or structure constants of a zero-momentum dilaton operator and two (dyonic) giant magnon string states with a finite-size length in the semiclassical approximation. We show that the semiclassical structure constants match exactly with the three-point functions between two su(2) magnon single trace operators with finite size and the Lagrangian in the large 't Hooft coupling constant limit. A special limit J>>√(λ) of our result is compared with the relevant result based on the Luescher corrections.

  8. Finite-size corrections to the free energies of crystalline solids

    NARCIS (Netherlands)

    Polson, J.M.; Trizac, E.; Pronk, S.; Frenkel, D.

    2000-01-01

    We analyze the finite-size corrections to the free energy of crystals with a fixed center of mass. When we explicitly correct for the leading (ln N/N) corrections, the remaining free energy is found to depend linearly on 1/N. Extrapolating to the thermodynamic limit (N → ∞), we estimate the free

  9. Solving wave propagation within finite-sized composite media with linear embedding via Green's operators

    NARCIS (Netherlands)

    Lancellotti, V.; Tijhuis, A.G.

    2012-01-01

    The calculation of electromagnetic (EM) fields and waves inside finite-sized structures comprised of different media can benefit from a diakoptics method such as linear embedding via Green's operators (LEGO). Unlike scattering problems, the excitation of EM waves within the bulk dielectric requires

  10. A finite size scaling test of an SU(2) gauge-spin system

    International Nuclear Information System (INIS)

    Tomiya, M.; Hattori, T.

    1984-01-01

    We calculate the correlation functions in the SU(2) gauge-spin system with spins in the fundamental representation. We analyze the result making use of finite size scaling. There is a possibility that there are no second order phase transition lines in this model, contrary to previous assertions. (orig.)

  11. Finite-size scaling for quantum chains with an oscillatory energy gap

    International Nuclear Information System (INIS)

    Hoeger, C.; Gehlen, G. von; Rittenberg, V.

    1984-07-01

    We show that the existence of zeroes of the energy gap for finite quantum chains is related to a nonvanishing wavevector. Finite-size scaling ansaetze are formulated for incommensurable and oscillatory structures. The ansaetze are verified in the one-dimensional XY model in a transverse field. (orig.)

  12. Pyroelectric properties of finite size ferroelectric thin films with structural transition zones

    International Nuclear Information System (INIS)

    Zhou Jing; Lue Tianquan; Sun Punan; Xie Wenguang; Cao Wenwu

    2009-01-01

    A Fermi-type Green's function is used to study pyroelectric properties of the thin film with finite sizes in three dimensions based on a modified transverse Ising model. The results demonstrate that a decrease in the lateral size of the film has a disadvantageous influence on the pyroelectric coefficient of the thin film.

  13. Overcoming time scale and finite size limitations to compute nucleation rates from small scale well tempered metadynamics simulations

    Science.gov (United States)

    Salvalaglio, Matteo; Tiwary, Pratyush; Maggioni, Giovanni Maria; Mazzotti, Marco; Parrinello, Michele

    2016-12-01

    Condensation of a liquid droplet from a supersaturated vapour phase is initiated by a prototypical nucleation event. As such it is challenging to compute its rate from atomistic molecular dynamics simulations. In fact at realistic supersaturation conditions condensation occurs on time scales that far exceed what can be reached with conventional molecular dynamics methods. Another known problem in this context is the distortion of the free energy profile associated to nucleation due to the small, finite size of typical simulation boxes. In this work the problem of time scale is addressed with a recently developed enhanced sampling method while contextually correcting for finite size effects. We demonstrate our approach by studying the condensation of argon, and showing that characteristic nucleation times of the order of magnitude of hours can be reliably calculated. Nucleation rates spanning a range of 10 orders of magnitude are computed at moderate supersaturation levels, thus bridging the gap between what standard molecular dynamics simulations can do and real physical systems.

  14. Guided wave radiation in a finite-sized metallic or composite plate-like structure for its nondestructive testing

    International Nuclear Information System (INIS)

    Stevenin, Mathilde

    2016-01-01

    Different models are developed to provide generic tools for simulating nondestructive methods relying on elastic guided waves applied to metallic or composite plates. Various inspection methods of these structures exist or are under study. Most of them make use of ultrasonic sources of finite size; all are sensitive to reflection phenomena resulting from the finite size of the monitored objects. The developed models deal with transducer diffraction effects and edge reflection. As the interpretation of signals measured in guided wave inspection often uses the concept of modes, the models themselves are explicitly modal. The case of isotropic plates (metal) and anisotropic (multilayer composites) are considered; a general approach under the stationary phase approximation allows us to consider all the cases of interest. For the first, the validity of a Fraunhofer-like approximation leads to a very efficient computation of the direct and reflected fields radiated by a source. For the second, special attention is paid to the treatment of caustics. The stationary phase approximation being difficult to generalize, a model (so-called 'pencil model') of more geometrical nature is proposed with a high degree of genericity. It chains terms of isotropic or anisotropic propagation and terms of interaction with a boundary. The equivalence of the stationary phase approximation and the pencil model is demonstrated in the case of the radiation and reflection in an isotropic plate, for which an experimental validation is proceeded. (author) [fr

  15. Finite-size scaling method for the Berezinskii–Kosterlitz–Thouless transition

    International Nuclear Information System (INIS)

    Hsieh, Yun-Da; Kao, Ying-Jer; Sandvik, Anders W

    2013-01-01

    We test an improved finite-size scaling method for reliably extracting the critical temperature T BKT of a Berezinskii–Kosterlitz–Thouless (BKT) transition. Using known single-parameter logarithmic corrections to the spin stiffness ρ s at T BKT in combination with the Kosterlitz–Nelson relation between the transition temperature and the stiffness, ρ s (T BKT ) = 2T BKT /π, we define a size-dependent transition temperature T BKT (L 1 ,L 2 ) based on a pair of system sizes L 1 ,L 2 , e.g., L 2 = 2L 1 . We use Monte Carlo data for the standard two-dimensional classical XY model to demonstrate that this quantity is well behaved and can be reliably extrapolated to the thermodynamic limit using the next expected logarithmic correction beyond the ones included in defining T BKT (L 1 ,L 2 ). For the Monte Carlo calculations we use GPU (graphical processing unit) computing to obtain high-precision data for L up to 512. We find that the sub-leading logarithmic corrections have significant effects on the extrapolation. Our result T BKT = 0.8935(1) is several error bars above the previously best estimates of the transition temperature, T BKT ≈ 0.8929. If only the leading log-correction is used, the result is, however, consistent with the lower value, suggesting that previous works have underestimated T BKT because of the neglect of sub-leading logarithms. Our method is easy to implement in practice and should be applicable to generic BKT transitions. (paper)

  16. Percolation through voids around overlapping spheres: A dynamically based finite-size scaling analysis

    Science.gov (United States)

    Priour, D. J.

    2014-01-01

    The percolation threshold for flow or conduction through voids surrounding randomly placed spheres is calculated. With large-scale Monte Carlo simulations, we give a rigorous continuum treatment to the geometry of the impenetrable spheres and the spaces between them. To properly exploit finite-size scaling, we examine multiple systems of differing sizes, with suitable averaging over disorder, and extrapolate to the thermodynamic limit. An order parameter based on the statistical sampling of stochastically driven dynamical excursions and amenable to finite-size scaling analysis is defined, calculated for various system sizes, and used to determine the critical volume fraction ϕc=0.0317±0.0004 and the correlation length exponent ν =0.92±0.05.

  17. Finite-size scaling theory and quantum hamiltonian Field theory: the transverse Ising model

    International Nuclear Information System (INIS)

    Hamer, C.J.; Barber, M.N.

    1979-01-01

    Exact results for the mass gap, specific heat and susceptibility of the one-dimensional transverse Ising model on a finite lattice are generated by constructing a finite matrix representation of the Hamiltonian using strong-coupling eigenstates. The critical behaviour of the limiting infinite chain is analysed using finite-size scaling theory. In this way, excellent estimates (to within 1/2% accuracy) are found for the critical coupling and the exponents α, ν and γ

  18. Asymptotic investigation of the nonlinear boundary value dynamic problem for the systems with finite sizes

    International Nuclear Information System (INIS)

    Andrianov, I.V.; Danishevsky, V.V.

    1994-01-01

    Asymptotic approaches for nonlinear dynamics of continual system are developed well for the infinite in spatial variables. For the systems with finite sizes we have an infinite number of resonance, and Poincare-Lighthill-Go method does riot work. Using of averaging procedure or method of multiple scales leads to the infinite systems of nonlinear algebraic or ordinary differential equations systems and then using truncation method. which does not gives possibility to obtain all important properties of the solutions

  19. Geometric measures of multipartite entanglement in finite-size spin chains

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, M; Dell' Anno, F; De Siena, S; Giampaolo, S M; Illuminati, F, E-mail: illuminati@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2010-09-01

    We investigate the behaviour of multipartite entanglement in finite-size quantum spin systems, resorting to a hierarchy of geometric measures of multipartite entanglement recently introduced in the literature. In particular, we investigate the ground-state entanglement in the XY model defined on finite chains of N sites with periodic boundary conditions. We analyse the behaviour of the geometric measures of (N- 1)-partite and (N/2)-partite entanglement and compare them with the Wei-Goldbart geometric measure of global entanglement.

  20. Geometric measures of multipartite entanglement in finite-size spin chains

    International Nuclear Information System (INIS)

    Blasone, M; Dell'Anno, F; De Siena, S; Giampaolo, S M; Illuminati, F

    2010-01-01

    We investigate the behaviour of multipartite entanglement in finite-size quantum spin systems, resorting to a hierarchy of geometric measures of multipartite entanglement recently introduced in the literature. In particular, we investigate the ground-state entanglement in the XY model defined on finite chains of N sites with periodic boundary conditions. We analyse the behaviour of the geometric measures of (N- 1)-partite and (N/2)-partite entanglement and compare them with the Wei-Goldbart geometric measure of global entanglement.

  1. The King model for electrons in a finite-size ultracold plasma

    Energy Technology Data Exchange (ETDEWEB)

    Vrinceanu, D; Collins, L A [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Balaraman, G S [School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2008-10-24

    A self-consistent model for a finite-size non-neutral ultracold plasma is obtained by extending a conventional model of globular star clusters. This model describes the dynamics of electrons at quasi-equilibrium trapped within the potential created by a cloud of stationary ions. A random sample of electron positions and velocities can be generated with the statistical properties defined by this model.

  2. Finite-size scaling of the entanglement entropy of the quantum Ising chain with homogeneous, periodically modulated and random couplings

    International Nuclear Information System (INIS)

    Iglói, Ferenc; Lin, Yu-Cheng

    2008-01-01

    Using free-fermionic techniques we study the entanglement entropy of a block of contiguous spins in a large finite quantum Ising chain in a transverse field, with couplings of different types: homogeneous, periodically modulated and random. We carry out a systematic study of finite-size effects at the quantum critical point, and evaluate subleading corrections both for open and for periodic boundary conditions. For a block corresponding to a half of a finite chain, the position of the maximum of the entropy as a function of the control parameter (e.g. the transverse field) can define the effective critical point in the finite sample. On the basis of homogeneous chains, we demonstrate that the scaling behavior of the entropy near the quantum phase transition is in agreement with the universality hypothesis, and calculate the shift of the effective critical point, which has different scaling behaviors for open and for periodic boundary conditions

  3. Exchange bias in finite sized NiO nanoparticles with Ni clusters

    Energy Technology Data Exchange (ETDEWEB)

    Gandhi, Ashish Chhaganlal; Lin, Jauyn Grace, E-mail: jglin@ntu.edu.tw

    2017-02-15

    Structural and magnetic properties of finite sized NiO nanoparticles are investigated with synchrotron X-ray diffraction (XRD), transmission electron microscopy, magnetometer and ferromagnetic resonance (FMR) spectroscopy. A minor Ni phase is detected with synchrotron XRD, attributed to the oxygen defects in the NiO core. A considerable exchange bias of ~100 Oe is observed at 50 K and it drops abruptly and vanishes above 150 K, in association with the reduction of frozen spins. FMR data indicate a strong interaction between ferromagnetic (FM) and antiferromagnetic (AFM) phases below 150 K, consistent with the picture of isolated FM clusters in AFM matrix. - Highlights: • Structural and magnetic properties of finite sized NiO nanoparticles are systematically investigated with several advanced techniques. • A strong interaction between ferromagnetic and antiferromagnetic phases is found below 150 K. • Exchange bias field in finite sized NiO nanoparticles is due to anisotropy energy of Ni clusters over riding the domain wall energy of NiO.

  4. Exchange bias in finite sized NiO nanoparticles with Ni clusters

    International Nuclear Information System (INIS)

    Gandhi, Ashish Chhaganlal; Lin, Jauyn Grace

    2017-01-01

    Structural and magnetic properties of finite sized NiO nanoparticles are investigated with synchrotron X-ray diffraction (XRD), transmission electron microscopy, magnetometer and ferromagnetic resonance (FMR) spectroscopy. A minor Ni phase is detected with synchrotron XRD, attributed to the oxygen defects in the NiO core. A considerable exchange bias of ~100 Oe is observed at 50 K and it drops abruptly and vanishes above 150 K, in association with the reduction of frozen spins. FMR data indicate a strong interaction between ferromagnetic (FM) and antiferromagnetic (AFM) phases below 150 K, consistent with the picture of isolated FM clusters in AFM matrix. - Highlights: • Structural and magnetic properties of finite sized NiO nanoparticles are systematically investigated with several advanced techniques. • A strong interaction between ferromagnetic and antiferromagnetic phases is found below 150 K. • Exchange bias field in finite sized NiO nanoparticles is due to anisotropy energy of Ni clusters over riding the domain wall energy of NiO.

  5. Finite-size fluctuations and photon statistics near the polariton condensation transition in a single-mode microcavity

    International Nuclear Information System (INIS)

    Eastham, P. R.; Littlewood, P. B.

    2006-01-01

    We consider polariton condensation in a generalized Dicke model, describing a single-mode cavity containing quantum dots, and extend our previous mean-field theory to allow for finite-size fluctuations. Within the fluctuation-dominated regime the correlation functions differ from their (trivial) mean-field values. We argue that the low-energy physics of the model, which determines the photon statistics in this fluctuation-dominated crossover regime, is that of the (quantum) anharmonic oscillator. The photon statistics at the crossover are different in the high-temperature and low-temperature limits. When the temperature is high enough for quantum effects to be neglected we recover behavior similar to that of a conventional laser. At low enough temperatures, however, we find qualitatively different behavior due to quantum effects

  6. Finite-size and asymptotic behaviors of the gyration radius of knotted cylindrical self-avoiding polygons.

    Science.gov (United States)

    Shimamura, Miyuki K; Deguchi, Tetsuo

    2002-05-01

    Several nontrivial properties are shown for the mean-square radius of gyration R2(K) of ring polymers with a fixed knot type K. Through computer simulation, we discuss both finite size and asymptotic behaviors of the gyration radius under the topological constraint for self-avoiding polygons consisting of N cylindrical segments with radius r. We find that the average size of ring polymers with the knot K can be much larger than that of no topological constraint. The effective expansion due to the topological constraint depends strongly on the parameter r that is related to the excluded volume. The topological expansion is particularly significant for the small r case, where the simulation result is associated with that of random polygons with the knot K.

  7. The square lattice Ising model on the rectangle II: finite-size scaling limit

    Science.gov (United States)

    Hucht, Alfred

    2017-06-01

    Based on the results published recently (Hucht 2017 J. Phys. A: Math. Theor. 50 065201), the universal finite-size contributions to the free energy of the square lattice Ising model on the L× M rectangle, with open boundary conditions in both directions, are calculated exactly in the finite-size scaling limit L, M\\to∞ , T\\to Tc , with fixed temperature scaling variable x\\propto(T/Tc-1)M and fixed aspect ratio ρ\\propto L/M . We derive exponentially fast converging series for the related Casimir potential and Casimir force scaling functions. At the critical point T=Tc we confirm predictions from conformal field theory (Cardy and Peschel 1988 Nucl. Phys. B 300 377, Kleban and Vassileva 1991 J. Phys. A: Math. Gen. 24 3407). The presence of corners and the related corner free energy has dramatic impact on the Casimir scaling functions and leads to a logarithmic divergence of the Casimir potential scaling function at criticality.

  8. Dependence of exponents on text length versus finite-size scaling for word-frequency distributions

    Science.gov (United States)

    Corral, Álvaro; Font-Clos, Francesc

    2017-08-01

    Some authors have recently argued that a finite-size scaling law for the text-length dependence of word-frequency distributions cannot be conceptually valid. Here we give solid quantitative evidence for the validity of this scaling law, using both careful statistical tests and analytical arguments based on the generalized central-limit theorem applied to the moments of the distribution (and obtaining a novel derivation of Heaps' law as a by-product). We also find that the picture of word-frequency distributions with power-law exponents that decrease with text length [X. Yan and P. Minnhagen, Physica A 444, 828 (2016), 10.1016/j.physa.2015.10.082] does not stand with rigorous statistical analysis. Instead, we show that the distributions are perfectly described by power-law tails with stable exponents, whose values are close to 2, in agreement with the classical Zipf's law. Some misconceptions about scaling are also clarified.

  9. Generic finite size scaling for discontinuous nonequilibrium phase transitions into absorbing states

    Science.gov (United States)

    de Oliveira, M. M.; da Luz, M. G. E.; Fiore, C. E.

    2015-12-01

    Based on quasistationary distribution ideas, a general finite size scaling theory is proposed for discontinuous nonequilibrium phase transitions into absorbing states. Analogously to the equilibrium case, we show that quantities such as response functions, cumulants, and equal area probability distributions all scale with the volume, thus allowing proper estimates for the thermodynamic limit. To illustrate these results, five very distinct lattice models displaying nonequilibrium transitions—to single and infinitely many absorbing states—are investigated. The innate difficulties in analyzing absorbing phase transitions are circumvented through quasistationary simulation methods. Our findings (allied to numerical studies in the literature) strongly point to a unifying discontinuous phase transition scaling behavior for equilibrium and this important class of nonequilibrium systems.

  10. Finite size scaling of the Higgs-Yukawa model near the Gaussian fixed point

    Energy Technology Data Exchange (ETDEWEB)

    Chu, David Y.J.; Lin, C.J. David [National Chiao-Tung Univ., Hsinchu, Taiwan (China); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Knippschild, Bastian [HISKP, Bonn (Germany); Nagy, Attila [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Univ. Berlin (Germany)

    2016-12-15

    We study the scaling properties of Higgs-Yukawa models. Using the technique of Finite-Size Scaling, we are able to derive scaling functions that describe the observables of the model in the vicinity of a Gaussian fixed point. A feasibility study of our strategy is performed for the pure scalar theory in the weak-coupling regime. Choosing the on-shell renormalisation scheme gives us an advantage to fit the scaling functions against lattice data with only a small number of fit parameters. These formulae can be used to determine the universality of the observed phase transitions, and thus play an essential role in future investigations of Higgs-Yukawa models, in particular in the strong Yukawa coupling region.

  11. Pairing mechanism in Bi-O superconductors: A finite-size chain calculation

    International Nuclear Information System (INIS)

    Aligia, A.A.; Nunez Regueiro, M.D.; Gagliano, E.R.

    1989-01-01

    We have studied the pairing mechanism in BiO 3 systems by calculating the binding energy of a pair of holes in finite Bi-O chains, for parameters that simulate three-dimensional behavior. In agreement with previous results using perturbation theory in the hopping t, for covalent Bi-O binding and parameters for which the parent compound has a disproportionate ground state, pairing induced by the presence of biexcitons is obtained for sufficiently large interatomic Coulomb repulsion. The analysis of appropriate correlation functions shows a rapid metallization of the system as t and the number of holes increase. This fact shrinks the region of parameters for which the finite-size calculations can be trusted without further study. The same model for other parameters yields pairing in two other regimes: bipolaronic and magnetic excitonic

  12. 1/ f noise from the laws of thermodynamics for finite-size fluctuations.

    Science.gov (United States)

    Chamberlin, Ralph V; Nasir, Derek M

    2014-07-01

    Computer simulations of the Ising model exhibit white noise if thermal fluctuations are governed by Boltzmann's factor alone; whereas we find that the same model exhibits 1/f noise if Boltzmann's factor is extended to include local alignment entropy to all orders. We show that this nonlinear correction maintains maximum entropy during equilibrium fluctuations. Indeed, as with the usual way to resolve Gibbs' paradox that avoids entropy reduction during reversible processes, the correction yields the statistics of indistinguishable particles. The correction also ensures conservation of energy if an instantaneous contribution from local entropy is included. Thus, a common mechanism for 1/f noise comes from assuming that finite-size fluctuations strictly obey the laws of thermodynamics, even in small parts of a large system. Empirical evidence for the model comes from its ability to match the measured temperature dependence of the spectral-density exponents in several metals and to show non-Gaussian fluctuations characteristic of nanoscale systems.

  13. A Markov model for the temporal dynamics of balanced random networks of finite size

    Science.gov (United States)

    Lagzi, Fereshteh; Rotter, Stefan

    2014-01-01

    The balanced state of recurrent networks of excitatory and inhibitory spiking neurons is characterized by fluctuations of population activity about an attractive fixed point. Numerical simulations show that these dynamics are essentially nonlinear, and the intrinsic noise (self-generated fluctuations) in networks of finite size is state-dependent. Therefore, stochastic differential equations with additive noise of fixed amplitude cannot provide an adequate description of the stochastic dynamics. The noise model should, rather, result from a self-consistent description of the network dynamics. Here, we consider a two-state Markovian neuron model, where spikes correspond to transitions from the active state to the refractory state. Excitatory and inhibitory input to this neuron affects the transition rates between the two states. The corresponding nonlinear dependencies can be identified directly from numerical simulations of networks of leaky integrate-and-fire neurons, discretized at a time resolution in the sub-millisecond range. Deterministic mean-field equations, and a noise component that depends on the dynamic state of the network, are obtained from this model. The resulting stochastic model reflects the behavior observed in numerical simulations quite well, irrespective of the size of the network. In particular, a strong temporal correlation between the two populations, a hallmark of the balanced state in random recurrent networks, are well represented by our model. Numerical simulations of such networks show that a log-normal distribution of short-term spike counts is a property of balanced random networks with fixed in-degree that has not been considered before, and our model shares this statistical property. Furthermore, the reconstruction of the flow from simulated time series suggests that the mean-field dynamics of finite-size networks are essentially of Wilson-Cowan type. We expect that this novel nonlinear stochastic model of the interaction between

  14. Finite-size giant magnons on η-deformed AdS{sub 5}×S{sup 5}

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Changrim, E-mail: ahn@ewha.ac.kr; Bozhilov, Plamen, E-mail: bozhilov@inrne.bas.bg

    2014-10-07

    We consider strings moving in the R{sub t}×S{sub η}{sup 3} subspace of the η-deformed AdS{sub 5}×S{sup 5} and obtain a class of solutions depending on several parameters. They are characterized by the string energy and two angular momenta. Finite-size dyonic giant magnon belongs to this class of solutions. Further on, we restrict ourselves to the case of giant magnon with one nonzero angular momentum, and obtain the leading finite-size correction to the dispersion relation.

  15. Finite-size giant magnons on η-deformed AdS5×S5

    Directory of Open Access Journals (Sweden)

    Changrim Ahn

    2014-10-01

    Full Text Available We consider strings moving in the Rt×Sη3 subspace of the η-deformed AdS5×S5 and obtain a class of solutions depending on several parameters. They are characterized by the string energy and two angular momenta. Finite-size dyonic giant magnon belongs to this class of solutions. Further on, we restrict ourselves to the case of giant magnon with one nonzero angular momentum, and obtain the leading finite-size correction to the dispersion relation.

  16. Extreme value statistics and finite-size scaling at the ecological extinction/laminar-turbulence transition

    Science.gov (United States)

    Shih, Hong-Yan; Goldenfeld, Nigel

    Experiments on transitional turbulence in pipe flow seem to show that turbulence is a transient metastable state since the measured mean lifetime of turbulence puffs does not diverge asymptotically at a critical Reynolds number. Yet measurements reveal that the lifetime scales with Reynolds number in a super-exponential way reminiscent of extreme value statistics, and simulations and experiments in Couette and channel flow exhibit directed percolation type scaling phenomena near a well-defined transition. This universality class arises from the interplay between small-scale turbulence and a large-scale collective zonal flow, which exhibit predator-prey behavior. Why is asymptotically divergent behavior not observed? Using directed percolation and a stochastic individual level model of predator-prey dynamics related to transitional turbulence, we investigate the relation between extreme value statistics and power law critical behavior, and show that the paradox is resolved by carefully defining what is measured in the experiments. We theoretically derive the super-exponential scaling law, and using finite-size scaling, show how the same data can give both super-exponential behavior and power-law critical scaling.

  17. An exact solution to the extended Hubbard model in 2D for finite size system

    Science.gov (United States)

    Harir, S.; Bennai, M.; Boughaleb, Y.

    2008-08-01

    An exact analytical diagonalization is used to solve the two-dimensional extended Hubbard model (EHM) for a system with finite size. We have considered an EHM including on-site and off-site interactions with interaction energies U and V, respectively, for a square lattice containing 4×4 sites at one-eighth filling with periodic boundary conditions, recently treated by Kovacs and Gulacsi (2006 Phil. Mag. 86 2073). Taking into account the symmetric properties of this square lattice and using a translation linear operator, we have constructed a r-space basis only with 85 state-vectors which describe all possible distributions for four electrons in the 4×4 square lattice. The diagonalization of the 85×85 matrix energy allows us to study the local properties of the above system as a function of the on-site and off-site interactions energies, where we have shown that the off-site interaction encourages the existence of the double occupancies at the first excited state and induces a supplementary conductivity of the system.

  18. Neutron density decay constant in a non-multiplying lattice of finite size

    International Nuclear Information System (INIS)

    Deniz, V.C.

    1965-01-01

    This report presents a general theory, using the integral transport method, for obtaining the neutron density decay constant in a finite non-multiplying lattice. The theory is applied to obtain the expression for the diffusion coefficient. The case of a homogeneous medium with 1/v absorption and of finite size in all directions is treated in detail, assuming an isotropic scattering law. The decay constant is obtained up to the B 6 term. The expressions for the diffusion coefficient and for the diffusion cooling coefficient are the same as those obtained for a slab geometry by Nelkin, using the expansion in spherical harmonics of the Fourier transform in the spatial variable. Furthermore, explicit forms are obtained for the flux and the current. It is shown that the deviation of the actual flux from a Maxwellian is the flux generated in the medium, extended to infinity and deprived of its absorbing power, by various sources, each of which has a zero integral over all velocities. The study of the current permits the generalization of Fick's law. An independent integral method, valid for homogeneous media, is also presented. (author) [fr

  19. Finite-size behaviour of generalized susceptibilities in the whole phase plane of the Potts model

    Science.gov (United States)

    Pan, Xue; Zhang, Yanhua; Chen, Lizhu; Xu, Mingmei; Wu, Yuanfang

    2018-01-01

    We study the sign distribution of generalized magnetic susceptibilities in the temperature-external magnetic field plane using the three-dimensional three-state Potts model. We find that the sign of odd-order susceptibility is opposite in the symmetric (disorder) and broken (order) phases, but that of the even-order one remains positive when it is far away from the phase boundary. When the critical point is approached from the crossover side, negative fourth-order magnetic susceptibility is observable. It is also demonstrated that non-monotonic behavior occurs in the temperature dependence of the generalized susceptibilities of the energy. The finite-size scaling behavior of the specific heat in this model is mainly controlled by the critical exponent of the magnetic susceptibility in the three-dimensional Ising universality class. Supported by Fund Project of National Natural Science Foundation of China (11647093, 11405088, 11521064), Fund Project of Sichuan Provincial Department of Education (16ZB0339), Fund Project of Chengdu Technological University (2016RC004) and the Major State Basic Research Development Program of China (2014CB845402)

  20. Avalanching Systems with Longer Range Connectivity: Occurrence of a Crossover Phenomenon and Multifractal Finite Size Scaling

    Directory of Open Access Journals (Sweden)

    Simone Benella

    2017-07-01

    Full Text Available Many out-of-equilibrium systems respond to external driving with nonlinear and self-similar dynamics. This near scale-invariant behavior of relaxation events has been modeled through sand pile cellular automata. However, a common feature of these models is the assumption of a local connectivity, while in many real systems, we have evidence for longer range connectivity and a complex topology of the interacting structures. Here, we investigate the role that longer range connectivity might play in near scale-invariant systems, by analyzing the results of a sand pile cellular automaton model on a Newman–Watts network. The analysis clearly indicates the occurrence of a crossover phenomenon in the statistics of the relaxation events as a function of the percentage of longer range links and the breaking of the simple Finite Size Scaling (FSS. The more complex nature of the dynamics in the presence of long-range connectivity is investigated in terms of multi-scaling features and analyzed by the Rank-Ordered Multifractal Analysis (ROMA.

  1. Synchronization of finite-size particles by a traveling wave in a cylindrical flow

    Science.gov (United States)

    Melnikov, D. E.; Pushkin, D. O.; Shevtsova, V. M.

    2013-09-01

    Motion of small finite-size particles suspended in a cylindrical thermocapillary flow with an azimuthally traveling wave is studied experimentally and numerically. At certain flow regimes the particles spontaneously align in dynamic accumulation structures (PAS) of spiral shape. We find that long-time trajectories of individual particles in this flow fall into three basic categories that can be described, borrowing the dynamical systems terminology, as the stable periodic, the quasiperiodic, and the quasistable periodic orbits. Besides these basic types of orbits, we observe the "doubled" periodic orbits and shuttle-like particle trajectories. We find that ensembles of particles having periodic orbits give rise to one-dimensional spiral PAS, while ensembles of particles having quasiperiodic orbits form two-dimensional PAS of toroidal shape. We expound the reasons why these types of orbits and the emergence of the corresponding accumulation structures should naturally be anticipated based on the phase locking theory of PAS formation. We give a further discussion of PAS features, such as the finite thickness of PAS spirals and the probable scenarios of the spiral PAS destruction. Finally, in numerical simulations of inertial particles we observe formation of the spiral structures corresponding to the 3:1 "resonance" between the particle turnover frequency and the wave oscillations frequency, thus confirming another prediction of the phase locking theory. In view of the generality of the arguments involved, we expect the importance of this structure-forming mechanism to go far beyond the realm of the laboratory-friendly thermocapillary flows.

  2. Characterization of coherent structures in three-dimensional turbulent flows using the finite-size Lyapunov exponent

    International Nuclear Information System (INIS)

    Bettencourt, João H; López, Cristóbal; Hernández-García, Emilio

    2013-01-01

    In this paper, we use the finite-size Lyapunov exponent (FSLE) to characterize Lagrangian coherent structures in three-dimensional (3D) turbulent flows. Lagrangian coherent structures act as the organizers of transport in fluid flows and are crucial to understand their stirring and mixing properties. Generalized maxima (ridges) of the FSLE fields are used to locate these coherent structures. 3D FSLE fields are calculated in two phenomenologically distinct turbulent flows: a wall-bounded flow (channel flow) and a regional oceanic flow obtained by the numerical solution of the primitive equations where two-dimensional (2D) turbulence dominates. In the channel flow, autocorrelations of the FSLE field show that the structure is substantially different from the near wall to the mid-channel region and relates well to the more widely studied Eulerian coherent structure of the turbulent channel flow. The ridges of the FSLE field have complex shapes due to the 3D character of the turbulent fluctuations. In the oceanic flow, strong horizontal stirring is present and the flow regime is similar to that of 2D turbulence where the domain is populated by coherent eddies that interact strongly. This in turn results in the presence of high FSLE lines throughout the domain leading to strong non-local mixing. The ridges of the FSLE field are quasi-vertical surfaces, indicating that the horizontal dynamics dominates the flow. Indeed, due to rotation and stratification, vertical motions in the ocean are much less intense than horizontal ones. This suppression is absent in the channel flow, as the 3D character of the FSLE ridges shows. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’. (paper)

  3. Non-conventional screening of the Coulomb interaction in low-dimensional and finite-size systems

    NARCIS (Netherlands)

    van den Brink, J.; Sawatzky, G.A.

    2000-01-01

    We study the screening of the Coulomb interaction in non-polar systems by polarizable atoms. We show that in low dimensions and small finite-size systems this screening deviates strongly from that conventionally assumed. In fact in one dimension the short-range interaction is strongly screened and

  4. Migration of finite sized particles in a laminar square channel flow from low to high Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, M., E-mail: micheline.abbas@ensiacet.fr [Laboratoire de Génie Chimique, Université de Toulouse INPT-UPS, 31030, Toulouse (France); CNRS, Fédération de recherche FERMaT, CNRS, 31400, Toulouse (France); Magaud, P. [CNRS, Fédération de recherche FERMaT, CNRS, 31400, Toulouse (France); Institut Clément Ader, Université de Toulouse UPS-INSA-ISAE-Mines Albi, 31400, Toulouse (France); Gao, Y. [Institut Clément Ader, Université de Toulouse UPS-INSA-ISAE-Mines Albi, 31400, Toulouse (France); Geoffroy, S. [CNRS, Fédération de recherche FERMaT, CNRS, 31400, Toulouse (France); Laboratoire Matériaux et Durabilité des Constructions, Université de Toulouse (France); UPS, INSA, 31077, Toulouse (France)

    2014-12-15

    The migration of neutrally buoyant finite sized particles in a Newtonian square channel flow is investigated in the limit of very low solid volumetric concentration, within a wide range of channel Reynolds numbers Re = [0.07-120]. In situ microscope measurements of particle distributions, taken far from the channel inlet (at a distance several thousand times the channel height), revealed that particles are preferentially located near the channel walls at Re > 10 and near the channel center at Re < 1. Whereas the cross-streamline particle motion is governed by inertia-induced lift forces at high inertia, it seems to be controlled by shear-induced particle interactions at low (but finite) Reynolds numbers, despite the low solid volume fraction (<1%). The transition between both regimes is observed in the range Re = [1-10]. In order to exclude the effect of multi-body interactions, the trajectories of single freely moving particles are calculated thanks to numerical simulations based on the force coupling method. With the deployed numerical tool, the complete particle trajectories are accessible within a reasonable computational time only in the inertial regime (Re > 10). In this regime, we show that (i) the particle undergoes cross-streamline migration followed by a cross-lateral migration (parallel to the wall) in agreement with previous observations, and (ii) the stable equilibrium positions are located at the midline of the channel faces while the diagonal equilibrium positions are unstable. At low flow inertia, the first instants of the numerical simulations (carried at Re = O(1)) reveal that the cross-streamline migration of a single particle is oriented towards the channel wall, suggesting that the particle preferential positions around the channel center, observed in the experiments, are rather due to multi-body interactions.

  5. Migration of finite sized particles in a laminar square channel flow from low to high Reynolds numbers

    International Nuclear Information System (INIS)

    Abbas, M.; Magaud, P.; Gao, Y.; Geoffroy, S.

    2014-01-01

    The migration of neutrally buoyant finite sized particles in a Newtonian square channel flow is investigated in the limit of very low solid volumetric concentration, within a wide range of channel Reynolds numbers Re = [0.07-120]. In situ microscope measurements of particle distributions, taken far from the channel inlet (at a distance several thousand times the channel height), revealed that particles are preferentially located near the channel walls at Re > 10 and near the channel center at Re < 1. Whereas the cross-streamline particle motion is governed by inertia-induced lift forces at high inertia, it seems to be controlled by shear-induced particle interactions at low (but finite) Reynolds numbers, despite the low solid volume fraction (<1%). The transition between both regimes is observed in the range Re = [1-10]. In order to exclude the effect of multi-body interactions, the trajectories of single freely moving particles are calculated thanks to numerical simulations based on the force coupling method. With the deployed numerical tool, the complete particle trajectories are accessible within a reasonable computational time only in the inertial regime (Re > 10). In this regime, we show that (i) the particle undergoes cross-streamline migration followed by a cross-lateral migration (parallel to the wall) in agreement with previous observations, and (ii) the stable equilibrium positions are located at the midline of the channel faces while the diagonal equilibrium positions are unstable. At low flow inertia, the first instants of the numerical simulations (carried at Re = O(1)) reveal that the cross-streamline migration of a single particle is oriented towards the channel wall, suggesting that the particle preferential positions around the channel center, observed in the experiments, are rather due to multi-body interactions

  6. Exact solution for the inhomogeneous Dicke model in the canonical ensemble: Thermodynamical limit and finite-size corrections

    Energy Technology Data Exchange (ETDEWEB)

    Pogosov, W.V., E-mail: walter.pogosov@gmail.com [N.L. Dukhov All-Russia Research Institute of Automatics, Moscow (Russian Federation); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation); Shapiro, D.S. [N.L. Dukhov All-Russia Research Institute of Automatics, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow (Russian Federation); National University of Science and Technology MISIS, Moscow (Russian Federation); Bork, L.V. [N.L. Dukhov All-Russia Research Institute of Automatics, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Onishchenko, A.I. [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation); Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow (Russian Federation)

    2017-06-15

    We consider an exactly solvable inhomogeneous Dicke model which describes an interaction between a disordered ensemble of two-level systems with single mode boson field. The existing method for evaluation of Richardson–Gaudin equations in the thermodynamical limit is extended to the case of Bethe equations in Dicke model. Using this extension, we present expressions both for the ground state and lowest excited states energies as well as leading-order finite-size corrections to these quantities for an arbitrary distribution of individual spin energies. We then evaluate these quantities for an equally-spaced distribution (constant density of states). In particular, we study evolution of the spectral gap and other related quantities. We also reveal regions on the phase diagram, where finite-size corrections are of particular importance.

  7. Analytical realization of finite-size scaling for Anderson localization. Does the band of critical states exist for d > 2?

    International Nuclear Information System (INIS)

    Suslov, I. M.

    2006-01-01

    An analytical realization is suggested for the finite-size scaling algorithm based on the consideration of auxiliary quasi-1D systems. Comparison of the obtained analytical results with the results of numerical calculations indicates that the Anderson transition point splits into the band of critical states. This conclusion is supported by direct numerical evidence (Edwards, Thouless, 1972; Last, Thouless, 1974; Schreiber, 1985). The possibility of restoring the conventional picture still exists but requires a radical reinterpretation of the raw numerical data

  8. Synchronization of oscillators with long range interaction: Phase transition and anomalous finite size effects

    DEFF Research Database (Denmark)

    Marodi, M.; D'ovidio, Francesco; Vicsek, T.

    2002-01-01

    of elements. For large number of oscillators and small coupling constant, numerical simulations and analytical arguments indicate that a phase transition separating synchronization from incoherence appears at a decay exponent value equal to the number of dimensions of the lattice. In contrast with earlier......Synchronization in a lattice of a finite population of phase oscillators with algebraically decaying, non-normalized coupling is studied by numerical simulations. A critical level of decay is found, below which full locking takes place if the population contains a sufficiently large number...

  9. Finite Size Effects in Chemical Bonding: From Small Clusters to Solids

    DEFF Research Database (Denmark)

    Kleis, Jesper; Greeley, Jeffrey Philip; Romero, N. A.

    2011-01-01

    We address the fundamental question of which size a metallic nano-particle needs to have before its surface chemical properties can be considered to be those of a solid, rather than those of a large molecule. Calculations of adsorption energies for carbon monoxide and oxygen on a series of gold...

  10. Finite size effects on the experimental observables of the Glauber model: a theoretical and experimental investigation

    International Nuclear Information System (INIS)

    Vindigni, A.; Bogani, L.; Gatteschi, D.; Sessoli, R.; Rettori, A.; Novak, M.A.

    2004-01-01

    We investigate the relaxation time, τ, of a dilute Glauber kinetic Ising chain obtained by ac susceptibility and SQUID magnetometry on a Co(II)-organic radical Ising 1D ferrimagnet doped with Zn(II). Theoretically we predicted a crossover in the temperature-dependence of τ, when the average segment is of the same order of the correlation length. Comparing the experimental results with theory we conclude that in the investigated temperature range the correlation length exceeds the finite length also in the pure sample

  11. Finite size effects on the experimental observables of the Glauber model: a theoretical and experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Vindigni, A. E-mail: alessandro.vindigni@unifi.it; Bogani, L.; Gatteschi, D.; Sessoli, R.; Rettori, A.; Novak, M.A

    2004-05-01

    We investigate the relaxation time, {tau}, of a dilute Glauber kinetic Ising chain obtained by ac susceptibility and SQUID magnetometry on a Co(II)-organic radical Ising 1D ferrimagnet doped with Zn(II). Theoretically we predicted a crossover in the temperature-dependence of {tau}, when the average segment is of the same order of the correlation length. Comparing the experimental results with theory we conclude that in the investigated temperature range the correlation length exceeds the finite length also in the pure sample.

  12. Finite size effects in the thermodynamics of a free neutral scalar field

    Science.gov (United States)

    Parvan, A. S.

    2018-04-01

    The exact analytical lattice results for the partition function of the free neutral scalar field in one spatial dimension in both the configuration and the momentum space were obtained in the framework of the path integral method. The symmetric square matrices of the bilinear forms on the vector space of fields in both configuration space and momentum space were found explicitly. The exact lattice results for the partition function were generalized to the three-dimensional spatial momentum space and the main thermodynamic quantities were derived both on the lattice and in the continuum limit. The thermodynamic properties and the finite volume corrections to the thermodynamic quantities of the free real scalar field were studied. We found that on the finite lattice the exact lattice results for the free massive neutral scalar field agree with the continuum limit only in the region of small values of temperature and volume. However, at these temperatures and volumes the continuum physical quantities for both massive and massless scalar field deviate essentially from their thermodynamic limit values and recover them only at high temperatures or/and large volumes in the thermodynamic limit.

  13. Finite-size effects in thermodynamics: Negative compressibility and global instability in two-phase systems

    Science.gov (United States)

    Todoshchenko, I.

    2018-04-01

    We have measured the equilibrium melting pressure of helium-4 as a function of the crystal size. Negative compressibility of a liquid with an inclusion of solid seed is predicted theoretically and verified experimentally with helium-4 crystal-superfluid system at 0.15 K. This two-phase system is shown to be stable if the crystal size is large enough, which is proven by the experiment. Crystal seeds that are too small spontaneously either melt completely or grow to a large enough size.

  14. Directional anisotropy, finite size effect and elastic properties of hexagonal boron nitride

    International Nuclear Information System (INIS)

    Thomas, Siby; Ajith, K M; Valsakumar, M C

    2016-01-01

    Classical molecular dynamics simulations have been performed to analyze the elastic and mechanical properties of two-dimensional (2D) hexagonal boron nitride (h-BN) using a Tersoff-type interatomic empirical potential. We present a systematic study of h-BN for various system sizes. Young’s modulus and Poisson’s ratio are found to be anisotropic for finite sheets whereas they are isotropic for the infinite sheet. Both of them increase with system size in accordance with a power law. It is concluded from the computed values of elastic constants that h-BN sheets, finite or infinite, satisfy Born’s criterion for mechanical stability. Due to the the strong in-plane sp 2 bonds and the small mass of boron and nitrogen atoms, h-BN possesses high longitudinal and shear velocities. The variation of bending rigidity with system size is calculated using the Foppl–von Karman approach by coupling the in-plane bending and out-of-plane stretching modes of the 2D h-BN. (paper)

  15. Random sequential adsorption with two components: asymptotic analysis and finite size effects

    International Nuclear Information System (INIS)

    Reeve, Louise; Wattis, Jonathan A D

    2015-01-01

    We consider the model of random sequential adsorption (RSA) in which two lengths of rod-like polymer compete for binding on a long straight rigid one-dimensional substrate. We take all lengths to be discrete, assume that binding is irreversible, and short or long polymers are chosen at random with some probability. We consider both the cases where the polymers have similar lengths and when the lengths are vastly different. We use a combination of numerical simulations, computation and asymptotic analysis to study the adsorption process, specifically, analysing how competition between the two polymer lengths affects the final coverage, and how the coverage depends on the relative sizes of the two species and their relative binding rates. We find that the final coverage is always higher than in the one-species RSA, and that the highest coverage is achieved when the rate of binding of the longer polymer is higher. We find that for many binding rates and relative lengths of binding species, the coverage due to the shorter species decreases with increasing substrate length, although there is a small region of parameter space in which all coverages increase with substrate length. (paper)

  16. Finite-size effects on the static properties of a single-chain magnet

    Science.gov (United States)

    Bogani, L.; Sessoli, R.; Pini, M. G.; Rettori, A.; Novak, M. A.; Rosa, P.; Massi, M.; Fedi, M. E.; Giuntini, L.; Caneschi, A.; Gatteschi, D.

    2005-08-01

    We study the role of defects in the “single-chain magnet” CoPhOMe by inserting a controlled number of diamagnetic impurities. The samples are analyzed with unprecedented accuracy with the particle induced x-ray emission technique, and with ac and dc magnetic measurements. In an external applied field the system shows an unexpected behavior, giving rise to a double peak in the susceptibility. The static thermodynamic properties of the randomly diluted Ising chain with alternating g values are then exactly obtained via a transfer matrix approach. These results are compared to the experimental behavior of CoPhOMe, showing qualitative agreement.

  17. Finite size effects on the experimental observables of the Glauber model: a theoretical and experimental investigation

    Science.gov (United States)

    Vindigni, A.; Bogani, L.; Gatteschi, D.; Sessoli, R.; Rettori, A.; Novak, M. A.

    2004-05-01

    We investigate the relaxation time, τ, of a dilute Glauber kinetic Ising chain obtained by ac susceptibility and SQUID magnetometry on a Co(II)-organic radical Ising 1D ferrimagnet doped with Zn(II). Theoretically we predicted a crossover in the temperature-dependence of τ, when the average segment is of the same order of the correlation length. Comparing the experimental results with theory we conclude that in the investigted temperature range the correlation length exceeds the finite length also in the pure sample.

  18. Renormalization group and finite size effects in scalar lattice field theories

    International Nuclear Information System (INIS)

    Bernreuther, W.; Goeckeler, M.

    1988-01-01

    Binder's phenomenological renormalization group is studied in the context of the O(N)-symmetric euclidean lattice φ 4 theory in dimensions d ≤ 4. By means of the field theoretical formulation of the renormalization group we analyse suitable ratios of Green functions on finite lattices in the limit where the dimensionless lattice length L >> 1 and where the dimensionless bare mass approaches the critical point of the corresponding infinite volume model. If the infrared-stable fixed point which controls this limit is a simple zero of the β-function we are led to formulae which allow the extraction of the critical exponents ν and η. For the gaussian fixed point in four dimensions, discussed as a known example for a multiple zero of the β-function, we derive for these ratios the leading logarithmic corrections to mean field scaling. (orig.)

  19. Phase transition in the rich-get-richer mechanism due to finite-size effects

    International Nuclear Information System (INIS)

    Bagrow, James P; Ben-Avraham, Daniel; Sun Jie

    2008-01-01

    The rich-get-richer mechanism (agents increase their 'wealth' randomly at a rate proportional to their holdings) is often invoked to explain the Pareto power-law distribution observed in many physical situations, such as the degree distribution of growing scale-free nets. We use two different analytical approaches, as well as numerical simulations, to study the case where the number of agents is fixed and finite (but large), and the rich-get-richer mechanism is invoked a fraction r of the time (the remainder of the time wealth is disbursed by a homogeneous process). At short times, we recover the Pareto law observed for an unbounded number of agents. In later times, the (moving) distribution can be scaled to reveal a phase transition with a Gaussian asymptotic form for r<1/2, and a Pareto-like tail (on the positive side) and a novel stretched exponential decay (on the negative side) for r<1/2

  20. Finite-size effects in the dynamics of few bosons in a ring potential

    Science.gov (United States)

    Eriksson, G.; Bengtsson, J.; Karabulut, E. Ö.; Kavoulakis, G. M.; Reimann, S. M.

    2018-02-01

    We study the temporal evolution of a small number N of ultra-cold bosonic atoms confined in a ring potential. Assuming that initially the system is in a solitary-wave solution of the corresponding mean-field problem, we identify significant differences in the time evolution of the density distribution of the atoms when it instead is evaluated with the many-body Schrödinger equation. Three characteristic timescales are derived: the first is the period of rotation of the wave around the ring, the second is associated with a ‘decay’ of the density variation, and the third is associated with periodic ‘collapses’ and ‘revivals’ of the density variations, with a factor of \\sqrt{N} separating each of them. The last two timescales tend to infinity in the appropriate limit of large N, in agreement with the mean-field approximation. These findings are based on the assumption of the initial state being a mean-field state. We confirm this behavior by comparison to the exact solutions for a few-body system stirred by an external potential. We find that the exact solutions of the driven system exhibit similar dynamical features.

  1. Anomalous hydrodynamical dispersion and the Coats-Smith equation: the finite size effects

    International Nuclear Information System (INIS)

    Caceres, Manuel O.

    2003-09-01

    We investigate a family of probability distributions that shows anomalous hydrodynamics dispersion, by solving a particular class of coupled generalized master equations. The Fourier-Laplace solution is obtained analytically in terms of the matrix Green function method; then the Coats-Smith concentration profile is revisited in a particular case. Two models of disorder are worked out explicitly, and the mean current is asymptotically calculated. We present an approximation method to calculate the first passage time distribution for this stochastic transport process, and as an example an exact Markovian result is worked out; scaling results are also shown. We discuss the comparison with other different methods to work out complex diffusion phenomena in the presence of disordered multiple transport paths. Extensions when the models are non diffusive can also be solved in the Fourier-Laplace representation. (author)

  2. Finite size effects in the anisotropic λ/4!(φ14 + φ24)d model

    International Nuclear Information System (INIS)

    Fosco, C.D.

    1999-09-01

    We consider the λ/4!(φ 1 4 + φ 2 4 ) model on a d-dimensional Euclidean space, where all but one the coordinates are unbounded. Translation invariance along the bounded coordinate, z, which lies in the interval [0, L],is broken because of the boundary conditions (BC's) chosen for the hyperplanes z = 0 and z = L. Two different possibilities for these BC's boundary conditions are considered: DD and NN, where D denotes Dirichlet and N Newmann, respectively. the renormalization procedure up to one-loop order is applied, obtaining two main results. The first is the fact that the renormalization program requires the introduction of counterterms which are surface interactions. The second one is that the tadpole graphs for DD and NN have the same z dependent part in modulus but with opposite signs. We investigate the relevance of this fact to the elimination of surface divergences. (author)

  3. Synchronization in scale-free networks: The role of finite-size effects

    Science.gov (United States)

    Torres, D.; Di Muro, M. A.; La Rocca, C. E.; Braunstein, L. A.

    2015-06-01

    Synchronization problems in complex networks are very often studied by researchers due to their many applications to various fields such as neurobiology, e-commerce and completion of tasks. In particular, scale-free networks with degree distribution P(k)∼ k-λ , are widely used in research since they are ubiquitous in Nature and other real systems. In this paper we focus on the surface relaxation growth model in scale-free networks with 2.5< λ <3 , and study the scaling behavior of the fluctuations, in the steady state, with the system size N. We find a novel behavior of the fluctuations characterized by a crossover between two regimes at a value of N=N* that depends on λ: a logarithmic regime, found in previous research, and a constant regime. We propose a function that describes this crossover, which is in very good agreement with the simulations. We also find that, for a system size above N* , the fluctuations decrease with λ, which means that the synchronization of the system improves as λ increases. We explain this crossover analyzing the role of the network's heterogeneity produced by the system size N and the exponent of the degree distribution.

  4. Finite-size effects in Monte Carlo simulations of two stock market models

    Science.gov (United States)

    Egenter, E.; Lux, T.; Stauffer, D.

    The microscopic market models of Kim-Markowitz and of Lux-Marchesi are simulated for varying number of investors. If this number goes to infinity, in some quantities nearly periodic oscillations occur.

  5. Finite-size effects and switching times for Moran process with mutation.

    Science.gov (United States)

    DeVille, Lee; Galiardi, Meghan

    2017-04-01

    We consider the Moran process with two populations competing under an iterated Prisoner's Dilemma in the presence of mutation, and concentrate on the case where there are multiple evolutionarily stable strategies. We perform a complete bifurcation analysis of the deterministic system which arises in the infinite population size. We also study the Master equation and obtain asymptotics for the invariant distribution and metastable switching times for the stochastic process in the case of large but finite population. We also show that the stochastic system has asymmetries in the form of a skew for parameter values where the deterministic limit is symmetric.

  6. Electronic states in crystals of finite size quantum confinement of bloch waves

    CERN Document Server

    Ren, Shang Yuan

    2017-01-01

    This book presents an analytical theory of the electronic states in ideal low dimensional systems and finite crystals based on a differential equation theory approach. It provides precise and fundamental understandings on the electronic states in ideal low-dimensional systems and finite crystals, and offers new insights into some of the basic problems in low-dimensional systems, such as the surface states and quantum confinement effects, etc., some of which are quite different from what is traditionally believed in the solid state physics community. Many previous predictions have been confirmed in subsequent investigations by other authors on various relevant problems. In this new edition, the theory is further extended to one-dimensional photonic crystals and phononic crystals, and a general theoretical formalism for investigating the existence and properties of surface states/modes in semi-infinite one-dimensional crystals is developed. In addition, there are various revisions and improvements, including us...

  7. Radiative nonrecoil nuclear finite size corrections of order α(Zα)5 to the Lamb shift in light muonic atoms

    Science.gov (United States)

    Faustov, R. N.; Martynenko, A. P.; Martynenko, F. A.; Sorokin, V. V.

    2017-12-01

    On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα) 5 to the Lamb shift in muonic hydrogen and helium. To construct the interaction potential of particles, which gives the necessary contributions to the energy spectrum, we use the method of projection operators to states with a definite spin. Separate analytic expressions for the contributions of the muon self-energy, the muon vertex operator and the amplitude with spanning photon are obtained. We present also numerical results for these contributions using modern experimental data on the electromagnetic form factors of light nuclei.

  8. The exact solution and the finite-size behaviour of the Osp(1vertical stroke 2)-invariant spin chain

    International Nuclear Information System (INIS)

    Martins, M.J.

    1995-01-01

    We have solved exactly the Osp(1vertical stroke 2) spin chain by the Bethe ansatz approach. Our solution is based on an equivalence between the Osp(1vertical stroke 2) chain and a certain special limit of the Izergin-Korepin vertex model. The completeness of the Bethe ansatz equations is discussed for a system with four sites and the appearance of special string structures is noted. The Bethe ansatz presents an important phase factor which distinguishes the even and odd sectors of the theory. The finite-size properties are governed by a conformal field theory with central charge c=1. (orig.)

  9. Finite size giant magnons in the SU(2) x SU(2) sector of AdS4 x CP3

    International Nuclear Information System (INIS)

    Lukowski, Tomasz; Sax, Olof Ohlsson

    2008-01-01

    We use the algebraic curve and Luescher's μ-term to calculate the leading order finite size corrections to the dispersion relation of giant magnons in the SU(2) x SU(2) sector of AdS 4 x CP 3 . We consider a single magnon as well as one magnon in each SU(2). In addition the algebraic curve computation is generalized to give the leading order correction for an arbitrary multi-magnon state in the SU(2) x SU(2) sector.

  10. The critical behaviour of self-dual Z(N) spin systems - Finite size scaling and conformal invariance

    International Nuclear Information System (INIS)

    Alcaraz, F.C.

    1986-01-01

    Critical properties of a family of self-dual two dimensional Z(N) models whose bulk free energy is exacly known at the self-dual point are studied. The analysis is performed by studing the finite size behaviour of the corresponding one dimensional quantum Hamiltonians which also possess an exact solution at their self-dual point. By exploring finite size scaling ideas and the conformal invariance of the critical infinite system the critical temperature and critical exponents as well as the central charge associated with the underlying conformal algebra are calculated for N up to 8. The results strongly suggest that the recently constructed Z(N) quantum field theory of Zamolodchikov and Fateev (1985) is the underlying field theory associated with these statistical mechanical systems. It is also tested, for the Z(5) case, the conjecture that these models correspond to the bifurcation points, in the phase diagram of the general Z(N) spin model, where a massless phase originates. (Author) [pt

  11. Forced sound transmission through a finite-sized single leaf panel subject to a point source excitation.

    Science.gov (United States)

    Wang, Chong

    2018-03-01

    In the case of a point source in front of a panel, the wavefront of the incident wave is spherical. This paper discusses spherical sound waves transmitting through a finite sized panel. The forced sound transmission performance that predominates in the frequency range below the coincidence frequency is the focus. Given the point source located along the centerline of the panel, forced sound transmission coefficient is derived through introducing the sound radiation impedance for spherical incident waves. It is found that in addition to the panel mass, forced sound transmission loss also depends on the distance from the source to the panel as determined by the radiation impedance. Unlike the case of plane incident waves, sound transmission performance of a finite sized panel does not necessarily converge to that of an infinite panel, especially when the source is away from the panel. For practical applications, the normal incidence sound transmission loss expression of plane incident waves can be used if the distance between the source and panel d and the panel surface area S satisfy d/S>0.5. When d/S ≈0.1, the diffuse field sound transmission loss expression may be a good approximation. An empirical expression for d/S=0  is also given.

  12. Dynamics of an assembly of finite-size Lennard-Jones spheres

    International Nuclear Information System (INIS)

    Singh, P.

    1996-01-01

    The time-averaged Fourier spectra of the number density, velocity, and force fields are obtained numerically for an assembly of spherical particles interacting via the Lennard-Jones potential. The magnitude spectra determine the dominant wave numbers, and the phase difference between the Lennard-Jones force and number density spectra determines the nature of the particle dynamics. The latter is used to show that for every wave number k there is a critical frequency ω c (k), such that when ω c (k) the phase difference is π/2 and when ω approx-gt ω c (k) the phase difference is -π/2. The ratio of the frequency and the wave number at which the phase difference changes sign is used to define an effective sound speed for the particle system. The effective sound speed is shown to be a function of the dimensionless wave number, and is locally minimum at the same dimensionless wave numbers for which the static structure factor is minimum. It is also shown that the dynamical response of the particle system for waves with speeds greater than the effective sound speed is similar to the response of the hyperbolic systems of equations, and for waves with speeds smaller than the effective sound speed the response is similar to the response of the elliptic systems. The convection effects are shown to be of the same order of magnitude as the Lennard-Jones forces, and the change of type of the equations from hyperbolic to elliptic occurs when the magnitude of the convection term is comparable to the magnitude of the Lennard-Jones force term. It is also shown that the change of type cannot occur in a theory where the convection term is neglected. copyright 1996 The American Physical Society

  13. Modeling of finite-size droplets and particles in multiphase flows

    Directory of Open Access Journals (Sweden)

    Prashant Khare

    2015-08-01

    Full Text Available The conventional point-particle approach for treating the dispersed phase in a continuous flowfield is extended by taking into account the effect of finite particle size, using a Gaussian interpolation from Lagrangian points to the Eulerian field. The inter-phase exchange terms in the conservation equations are distributed over the volume encompassing the particle size, as opposed to the Dirac delta function generally used in the point-particle approach. The proposed approach is benchmarked against three different flow configurations in a numerical framework based on large eddy simulation (LES turbulence closure. First, the flow over a circular cylinder is simulated for a Reynolds number of 3900 at 1 atm pressure. Results show good agreement with experimental data for the mean streamwise velocity and the vortex shedding frequency in the wake region. The calculated flowfield exhibits correct physics, which the conventional point-particle approach fails to capture. The second case deals with diesel jet injection in quiescent environment over a pressure range of 1.1–5.0 MPa. The calculated jet penetration depth closely matches measurements. It decreases with increasing chamber pressure, due to enhanced drag force in a denser fluid environment. Finally, water and acetone jet injection normal to air crossflow is studied at 1 atm. The calculated jet penetration and Sauter mean diameter of liquid droplets compare very well with measurements.

  14. Finite-size anomalies of the Drude weight: Role of symmetries and ensembles

    Science.gov (United States)

    Sánchez, R. J.; Varma, V. K.

    2017-12-01

    We revisit the numerical problem of computing the high temperature spin stiffness, or Drude weight, D of the spin-1 /2 X X Z chain using exact diagonalization to systematically analyze its dependence on system symmetries and ensemble. Within the canonical ensemble and for states with zero total magnetization, we find D vanishes exactly due to spin-inversion symmetry for all but the anisotropies Δ˜M N=cos(π M /N ) with N ,M ∈Z+ coprimes and N >M , provided system sizes L ≥2 N , for which states with different spin-inversion signature become degenerate due to the underlying s l2 loop algebra symmetry. All these loop-algebra degenerate states carry finite currents which we conjecture [based on data from the system sizes and anisotropies Δ˜M N (with N magnetic flux not only breaks spin-inversion in the zero magnetization sector but also lifts the loop-algebra degeneracies in all symmetry sectors—this effect is more pertinent at smaller Δ due to the larger contributions to D coming from the low-magnetization sectors which are more sensitive to the system's symmetries. Thus we generically find a finite D for fluxed rings and arbitrary 0 lifted.

  15. Understanding Self-Effects in Social Media

    NARCIS (Netherlands)

    Valkenburg, P.M.

    2017-01-01

    The aim of this article is to improve understanding of self-effects in social media, and to compare self-effects with reception effects. Self-effects are the effects of messages the cognitions, emotions, attitudes, and behaviors of the message creators/senders themselves. A total of 4 theories have

  16. Adaptive beamlet-based finite-size pencil beam dose calculation for independent verification of IMRT and VMAT.

    Science.gov (United States)

    Park, Justin C; Li, Jonathan G; Arhjoul, Lahcen; Yan, Guanghua; Lu, Bo; Fan, Qiyong; Liu, Chihray

    2015-04-01

    The use of sophisticated dose calculation procedure in modern radiation therapy treatment planning is inevitable in order to account for complex treatment fields created by multileaf collimators (MLCs). As a consequence, independent volumetric dose verification is time consuming, which affects the efficiency of clinical workflow. In this study, the authors present an efficient adaptive beamlet-based finite-size pencil beam (AB-FSPB) dose calculation algorithm that minimizes the computational procedure while preserving the accuracy. The computational time of finite-size pencil beam (FSPB) algorithm is proportional to the number of infinitesimal and identical beamlets that constitute an arbitrary field shape. In AB-FSPB, dose distribution from each beamlet is mathematically modeled such that the sizes of beamlets to represent an arbitrary field shape no longer need to be infinitesimal nor identical. As a result, it is possible to represent an arbitrary field shape with combinations of different sized and minimal number of beamlets. In addition, the authors included the model parameters to consider MLC for its rounded edge and transmission. Root mean square error (RMSE) between treatment planning system and conventional FSPB on a 10 × 10 cm(2) square field using 10 × 10, 2.5 × 2.5, and 0.5 × 0.5 cm(2) beamlet sizes were 4.90%, 3.19%, and 2.87%, respectively, compared with RMSE of 1.10%, 1.11%, and 1.14% for AB-FSPB. This finding holds true for a larger square field size of 25 × 25 cm(2), where RMSE for 25 × 25, 2.5 × 2.5, and 0.5 × 0.5 cm(2) beamlet sizes were 5.41%, 4.76%, and 3.54% in FSPB, respectively, compared with RMSE of 0.86%, 0.83%, and 0.88% for AB-FSPB. It was found that AB-FSPB could successfully account for the MLC transmissions without major discrepancy. The algorithm was also graphical processing unit (GPU) compatible to maximize its computational speed. For an intensity modulated radiation therapy (∼12 segments) and a volumetric modulated arc

  17. A GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation

    International Nuclear Information System (INIS)

    Gu Xuejun; Jia Xun; Jiang, Steve B; Jelen, Urszula; Li Jinsheng

    2011-01-01

    Targeting at the development of an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite-size pencil beam (FSPB) algorithm with a 3D-density correction method on graphics processing unit (GPU). This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework (Gu et al 2009 Phys. Med. Biol. 54 6287-97). Dosimetric evaluations against Monte Carlo dose calculations are conducted on ten IMRT treatment plans (five head-and-neck cases and five lung cases). For all cases, there is improvement with the 3D-density correction over the conventional FSPB algorithm and for most cases the improvement is significant. Regarding the efficiency, because of the appropriate arrangement of memory access and the usage of GPU intrinsic functions, the dose calculation for an IMRT plan can be accomplished well within 1 s (except for one case) with this new GPU-based FSPB algorithm. Compared to the previous GPU-based FSPB algorithm without 3D-density correction, this new algorithm, though slightly sacrificing the computational efficiency (∼5-15% lower), has significantly improved the dose calculation accuracy, making it more suitable for online IMRT replanning.

  18. Adaptive beamlet-based finite-size pencil beam dose calculation for independent verification of IMRT and VMAT

    International Nuclear Information System (INIS)

    Park, Justin C.; Li, Jonathan G.; Arhjoul, Lahcen; Yan, Guanghua; Lu, Bo; Fan, Qiyong; Liu, Chihray

    2015-01-01

    Purpose: The use of sophisticated dose calculation procedure in modern radiation therapy treatment planning is inevitable in order to account for complex treatment fields created by multileaf collimators (MLCs). As a consequence, independent volumetric dose verification is time consuming, which affects the efficiency of clinical workflow. In this study, the authors present an efficient adaptive beamlet-based finite-size pencil beam (AB-FSPB) dose calculation algorithm that minimizes the computational procedure while preserving the accuracy. Methods: The computational time of finite-size pencil beam (FSPB) algorithm is proportional to the number of infinitesimal and identical beamlets that constitute an arbitrary field shape. In AB-FSPB, dose distribution from each beamlet is mathematically modeled such that the sizes of beamlets to represent an arbitrary field shape no longer need to be infinitesimal nor identical. As a result, it is possible to represent an arbitrary field shape with combinations of different sized and minimal number of beamlets. In addition, the authors included the model parameters to consider MLC for its rounded edge and transmission. Results: Root mean square error (RMSE) between treatment planning system and conventional FSPB on a 10 × 10 cm 2 square field using 10 × 10, 2.5 × 2.5, and 0.5 × 0.5 cm 2 beamlet sizes were 4.90%, 3.19%, and 2.87%, respectively, compared with RMSE of 1.10%, 1.11%, and 1.14% for AB-FSPB. This finding holds true for a larger square field size of 25 × 25 cm 2 , where RMSE for 25 × 25, 2.5 × 2.5, and 0.5 × 0.5 cm 2 beamlet sizes were 5.41%, 4.76%, and 3.54% in FSPB, respectively, compared with RMSE of 0.86%, 0.83%, and 0.88% for AB-FSPB. It was found that AB-FSPB could successfully account for the MLC transmissions without major discrepancy. The algorithm was also graphical processing unit (GPU) compatible to maximize its computational speed. For an intensity modulated radiation therapy (∼12 segments) and a

  19. Diffusion of finite-sized hard-core interacting particles in a one-dimensional box: Tagged particle dynamics.

    Science.gov (United States)

    Lizana, L; Ambjörnsson, T

    2009-11-01

    We solve a nonequilibrium statistical-mechanics problem exactly, namely, the single-file dynamics of N hard-core interacting particles (the particles cannot pass each other) of size Delta diffusing in a one-dimensional system of finite length L with reflecting boundaries at the ends. We obtain an exact expression for the conditional probability density function rhoT(yT,t|yT,0) that a tagged particle T (T=1,...,N) is at position yT at time t given that it at time t=0 was at position yT,0. Using a Bethe ansatz we obtain the N -particle probability density function and, by integrating out the coordinates (and averaging over initial positions) of all particles but particle T , we arrive at an exact expression for rhoT(yT,t|yT,0) in terms of Jacobi polynomials or hypergeometric functions. Going beyond previous studies, we consider the asymptotic limit of large N , maintaining L finite, using a nonstandard asymptotic technique. We derive an exact expression for rhoT(yT,t|yT,0) for a tagged particle located roughly in the middle of the system, from which we find that there are three time regimes of interest for finite-sized systems: (A) for times much smaller than the collision time tparticle concentration and D is the diffusion constant for each particle, the tagged particle undergoes a normal diffusion; (B) for times much larger than the collision time t >taucoll but times smaller than the equilibrium time ttaue , rhoT(yT,t|yT,0) approaches a polynomial-type equilibrium probability density function. Notably, only regimes (A) and (B) are found in the previously considered infinite systems.

  20. SU-F-T-428: An Optimization-Based Commissioning Tool for Finite Size Pencil Beam Dose Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y; Tian, Z; Song, T; Jia, X; Gu, X; Jiang, S [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: Finite size pencil beam (FSPB) algorithms are commonly used to pre-calculate the beamlet dose distribution for IMRT treatment planning. FSPB commissioning, which usually requires fine tuning of the FSPB kernel parameters, is crucial to the dose calculation accuracy and hence the plan quality. Yet due to the large number of beamlets, FSPB commissioning could be very tedious. This abstract reports an optimization-based FSPB commissioning tool we have developed in MatLab to facilitate the commissioning. Methods: A FSPB dose kernel generally contains two types of parameters: the profile parameters determining the dose kernel shape, and a 2D scaling factors accounting for the longitudinal and off-axis corrections. The former were fitted using the penumbra of a reference broad beam’s dose profile with Levenberg-Marquardt algorithm. Since the dose distribution of a broad beam is simply a linear superposition of the dose kernel of each beamlet calculated with the fitted profile parameters and scaled using the scaling factors, these factors could be determined by solving an optimization problem which minimizes the discrepancies between the calculated dose of broad beams and the reference dose. Results: We have commissioned a FSPB algorithm for three linac photon beams (6MV, 15MV and 6MVFFF). Dose of four field sizes (6*6cm2, 10*10cm2, 15*15cm2 and 20*20cm2) were calculated and compared with the reference dose exported from Eclipse TPS system. For depth dose curves, the differences are less than 1% of maximum dose after maximum dose depth for most cases. For lateral dose profiles, the differences are less than 2% of central dose at inner-beam regions. The differences of the output factors are within 1% for all the three beams. Conclusion: We have developed an optimization-based commissioning tool for FSPB algorithms to facilitate the commissioning, providing sufficient accuracy of beamlet dose calculation for IMRT optimization.

  1. Radiative nonrecoil nuclear finite size corrections of order $\\alpha(Z \\alpha)^5$ to the Lamb shift in light muonic atoms

    OpenAIRE

    Faustov, R. N.; Martynenko, A. P.; Martynenko, F. A.; Sorokin, V. V.

    2017-01-01

    On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα)5 to the Lamb shift in muonic hydrogen and helium. To construct the interaction potential of particles, which gives the necessary contributions to the energy spectrum, we use the method of projection operators to states with a definite spin. Separate analytic expressions for the contributions of the muon self-energy, the muon vertex operator and the amplitude...

  2. Finite size vertex correction to the strong decay of ηc and χc states and a determination of αs(mc)

    International Nuclear Information System (INIS)

    Ping Ronggang; Jiang Huanqing; Zou Bingsong

    2002-01-01

    In previous calculations of the strong decay of a charmonium, the first-order momentum dependence of the quark propagator is kept. It was found that the finite-size vertex correction to the Γ(J/ψ→3g) process is large. The authors calculate the two-gluon decay widths of η e , χ c0 and χ c2 by including the full momentum dependence of the quark propagator. Comparing to the zero-order calculation the authors find that the finite-size vertex correction factor to the two-gluon decay widths of η c is 1.32, and for the two-gluon decays of χ c0 and χ c2 , the vertex correction factors are 1.45 and 1.26, respectively. With the corrected decay widths Γ(η c →2g) authors extract the value as α s (m c ) = 0.28 +- 0.05 which agrees with that calculated from the Γ(J/ψ→3g) process with the same correction. The finite-size vertex correction to the process Γ(η c →3g) is not as large as that to the process Γ(J/ψ→3g)

  3. Understanding Citizenship, Understanding Social Media? The effects of digital media on citizenship understanding and political participation

    DEFF Research Database (Denmark)

    Ohme, Jakob; Albæk, Erik

    Is there a connection between increased use of digital media and changing patterns of political participation? This study tests how use of online media for different purposes (social interaction, creative expression, online news use, social media news use) is related to three types of political...... participation. It examines whether mobilizing effects are partly indirect due to different understandings of citizenship (dutiful, optional, individual, collective) that may be fostered by digital media use. The study is based on a survey of a sample of the Danish population (n=1322), including data from two...... online survey waves and a smartphone-based media diary that documents respondents’ social media use. Results indicate support for a new pathway to participation, but the relationship depends on whether citizens are socialized in a digital media environment....

  4. Power-law correlations and finite-size effects in silica particle aggregates studied by small-angle neutron scattering

    DEFF Research Database (Denmark)

    Freltoft, T.; Kjems, Jørgen; Sinha, S. K.

    1986-01-01

    Small-angle neutron scattering from normal, compressed, and water-suspended powders of aggregates of fine silica particles has been studied. The samples possessed average densities ranging from 0.008 to 0.45 g/cm3. Assuming power-law correlations between particles and a finite correlation length ξ......, the authors derive the scattering function S(q) from specific models for particle-particle correlation in these systems. S(q) was found to provide a satisfactory fit to the data for all samples studied. The fractal dimension df corresponding to the power-law correlation was 2.61±0.1 for all dry samples, and 2...

  5. Finite-size effects in the short-time height distribution of the Kardar-Parisi-Zhang equation

    Science.gov (United States)

    Smith, Naftali R.; Meerson, Baruch; Sasorov, Pavel

    2018-02-01

    We use the optimal fluctuation method to evaluate the short-time probability distribution P(H, L, t) of height at a single point, H=h(x=0, t) , of the evolving Kardar-Parisi-Zhang (KPZ) interface h(x, t) on a ring of length 2L. The process starts from a flat interface. At short times typical (small) height fluctuations are unaffected by the KPZ nonlinearity and belong to the Edwards-Wilkinson universality class. The nonlinearity, however, strongly affects the (asymmetric) tails of P(H) . At large L/\\sqrt{t} the faster-decaying tail has a double structure: it is L-independent, -\\lnP˜≤ft\\vert H\\right\\vert 5/2/t1/2 , at intermediately large \\vert H\\vert , and L-dependent, -\\lnP˜ ≤ft\\vert H\\right\\vert 2L/t , at very large \\vert H\\vert . The transition between these two regimes is sharp and, in the large L/\\sqrt{t} limit, behaves as a fractional-order phase transition. The transition point H=Hc+ depends on L/\\sqrt{t} . At small L/\\sqrt{t} , the double structure of the faster tail disappears, and only the very large-H tail, -\\lnP˜ ≤ft\\vert H\\right\\vert 2L/t , is observed. The slower-decaying tail does not show any L-dependence at large L/\\sqrt{t} , where it coincides with the slower tail of the GOE Tracy-Widom distribution. At small L/\\sqrt{t} this tail also has a double structure. The transition between the two regimes occurs at a value of height H=Hc- which depends on L/\\sqrt{t} . At L/\\sqrt{t} \\to 0 the transition behaves as a mean-field-like second-order phase transition. At \\vert H\\vert c-\\vert the slower tail behaves as -\\lnP˜ ≤ft\\vert H\\right\\vert 2L/t , whereas at \\vert H\\vert >\\vert H_c-\\vert it coincides with the slower tail of the GOE Tracy-Widom distribution.

  6. Finite-size effects on electronic structure and local properties in passivated AA -stacked bilayer armchair-edge graphene nanoribbons

    International Nuclear Information System (INIS)

    Chen, Xiongwen; Shi, Zhengang; Xiang, Shaohua; Song, Kehui; Zhou, Guanghui

    2017-01-01

    Based on the tight-binding model and dual-probe scanning tunneling microscopy technology, we theoretically investigate the electronic structure and local property in the passivated AA -stacked bilayer armchair-edge graphene nanoribbons (AABLAGNRs). We show that they are highly sensitive to the size of the ribbons, which is evidently different from the single-layer armchair-edge graphene nanoribbons. The ‘3 p ’ rule only applies to the narrow AABLGNRs. Namely, in the passivated 3 p - and (3 p   +  1)-AABLGNRs, the narrow ribbons are semiconducting while the medium and wide ribbons are metallic. Although the passivated (3 p   +  2)-AABLGNRs are metallic, the ‘3 j ’ rule only applies to the narrow and medium ribbons. Namely, electrons are in the semiconducting states at sites of line 3 j while they are in the metallic states at other sites. This induces a series of parallel and discrete metallic channels, consisting of lines 3 j   −  1 and 3 j   −  2, for the low-energy electronic transports. In the passivated wide (3 p   +  2)-AABLGNRs, all electrons are in the metallic states. Additionally, the ‘3 p ’ and ‘3 j ’ rules are controllable to disappear and reappear by applying an external perpendicular electric field. Resultantly, an electric filed-driven current switch can be realized in the passivated narrow and medium (3 p   +  2)-AABLGNRs. (paper)

  7. Understanding placebo, nocebo, and iatrogenic treatment effects.

    Science.gov (United States)

    Bootzin, Richard R; Bailey, Elaine T

    2005-07-01

    Placebo and nonplacebo treatments have both positive and negative effects on patient outcomes. To better understand the patterning of treatment effects, three specific interventions will be discussed that are reported to produce more harm than benefit: critical incident stress debriefing, group therapy for adolescents with conduct disorders, and psychotherapy for dissociative identity disorder. In each case, there is an interaction between mechanisms thought to underlie both placebo and specific treatment effects. Mechanisms hypothesized to underlie placebo and nocebo effects include patient expectancy, self-focused attention to symptoms, motivation to change, and sociocultural role-enactment cues. In the three treatments discussed, specific mechanisms interact with nonspecific mechanisms to produce iatrogenic effects. To advance knowledge, it is important both to specify the theory of treatment and its expected outcomes and to put the theory to test. Only with attention to the empirical findings from programmatic research of specific and nonspecific effects and their interaction is it possible to improve the outcomes of treatment beyond the status quo.

  8. Radiative nonrecoil nuclear finite size corrections of order α(Zα){sup 5} to the hyperfine splitting of S-states in muonic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Faustov, R.N. [Dorodnicyn Computing Centre, Russian Academy of Science, Vavilov Str. 40, 119991 Moscow (Russian Federation); Martynenko, A.P. [Samara State University, Pavlov Str. 1, 443011 Samara (Russian Federation); Samara State Aerospace University named after S.P. Korolyov, Moskovskoye Shosse 34, 443086 Samara (Russian Federation); Martynenko, G.A.; Sorokin, V.V. [Samara State University, Pavlov Str. 1, 443011 Samara (Russian Federation)

    2014-06-02

    On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα){sup 5} to the hyperfine structure of S-wave energy levels in muonic hydrogen and muonic deuterium. For the construction of the particle interaction operator we employ the projection operators on the particle bound states with definite spins. The calculation is performed in the infrared safe Fried–Yennie gauge. Modern experimental data on the electromagnetic form factors of the proton and deuteron are used.

  9. Radiative nonrecoil nuclear finite size corrections of order α(Zα)5 to the hyperfine splitting of S-states in muonic hydrogen

    International Nuclear Information System (INIS)

    Faustov, R.N.; Martynenko, A.P.; Martynenko, G.A.; Sorokin, V.V.

    2014-01-01

    On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα) 5 to the hyperfine structure of S-wave energy levels in muonic hydrogen and muonic deuterium. For the construction of the particle interaction operator we employ the projection operators on the particle bound states with definite spins. The calculation is performed in the infrared safe Fried–Yennie gauge. Modern experimental data on the electromagnetic form factors of the proton and deuteron are used.

  10. Radiative nonrecoil nuclear finite size corrections of order α(Zα5 to the Lamb shift in light muonic atoms

    Directory of Open Access Journals (Sweden)

    R.N. Faustov

    2017-12-01

    Full Text Available On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα5 to the Lamb shift in muonic hydrogen and helium. To construct the interaction potential of particles, which gives the necessary contributions to the energy spectrum, we use the method of projection operators to states with a definite spin. Separate analytic expressions for the contributions of the muon self-energy, the muon vertex operator and the amplitude with spanning photon are obtained. We present also numerical results for these contributions using modern experimental data on the electromagnetic form factors of light nuclei. Keywords: Lamb shift, Muonic atoms, Quantum electrodynamics

  11. Universal Signatures of Quantum Critical Points from Finite-Size Torus Spectra: A Window into the Operator Content of Higher-Dimensional Conformal Field Theories.

    Science.gov (United States)

    Schuler, Michael; Whitsitt, Seth; Henry, Louis-Paul; Sachdev, Subir; Läuchli, Andreas M

    2016-11-18

    The low-energy spectra of many body systems on a torus, of finite size L, are well understood in magnetically ordered and gapped topological phases. However, the spectra at quantum critical points separating such phases are largely unexplored for (2+1)D systems. Using a combination of analytical and numerical techniques, we accurately calculate and analyze the low-energy torus spectrum at an Ising critical point which provides a universal fingerprint of the underlying quantum field theory, with the energy levels given by universal numbers times 1/L. We highlight the implications of a neighboring topological phase on the spectrum by studying the Ising* transition (i.e. the transition between a Z_{2} topological phase and a trivial paramagnet), in the example of the toric code in a longitudinal field, and advocate a phenomenological picture that provides qualitative insight into the operator content of the critical field theory.

  12. Understanding the Effectiveness of Performance Management Practices

    Science.gov (United States)

    2010-03-01

    practitioners.” Priem and Rosenstein (2001) and Rynes, Bartunek, and Daft (2001) have documented the science- practice gap between OB and other...provided the foundation for effective leadership and project management. Informally the author sought ways to motivate and focus the efforts of...predominate part of his leadership and project management philosophy. This thesis further investigates leadership and management practices focused

  13. Effectiveness of CAM therapy: understanding the evidence.

    Science.gov (United States)

    Staud, Roland

    2011-02-01

    By definition, complementary and alternative medicine (CAM) attempts to diagnose and treat illnesses in unconventional ways. CAM has been classified as: (1) alternative medical systems (eg, traditional Chinese medicine [including acupuncture], naturopathic medicine, ayurvedic medicine, and homeopathy); (2) biologic-based therapies (eg, herbal, special dietary, and individual biologic treatments); (3) energy therapies (eg, Reiki, therapeutic touch, magnet therapy, Qi Gong, and intercessory prayer); (4) manipulative and body-based systems (eg, chiropractic, osteopathy, and massage); and (5) mind-body interventions (eg, meditation, biofeedback, hypnotherapy, and the relaxation response). This review focuses on how to assess the effectiveness of CAM therapies for chronic musculoskeletal pains, emphasizing the role of specific and nonspecific analgesic mechanisms, including placebo. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Understanding Digital Learning and Its Variable Effects

    Science.gov (United States)

    Means, B.

    2016-12-01

    An increasing proportion of undergraduate courses use an online or blended learning format. This trend signals major changes in the kind of instruction students receive in their STEM courses, yet evidence about the effectiveness of these new approaches is sparse. Existing syntheses and meta-analyses summarize outcomes from experimental or quasi-experimental studies of online and blended courses and document how few studies incorporate proper controls for differences in student characteristics, instructor behaviors, and other course conditions. The evidence that is available suggests that on average blended courses are equal to or better than traditional face-to-face courses and that online courses are equivalent in terms of learning outcomes. But these averages conceal a tremendous underlying variability. Results vary markedly from course to course, even when the same technology is used in both. Some research suggests that online instruction puts lower-achieving students at a disadvantage. It is clear that introducing digital learning per se is no guarantee that student engagement and learning will be enhanced. Getting more consistently positive impacts out of learning technologies is going to require systematic characterization of the features of learning technologies and associated instructional practices as well as attention to context and student characteristics. This presentation will present a framework for characterizing essential features of digital learning resources, implementation practices, and conditions. It will also summarize the research evidence with respect to the learning impacts of specific technology features including spaced practice, immediate feedback, mastery learning based pacing, visualizations and simulations, gaming features, prompts for explanations and reflection, and tools for online collaboration.

  15. Fast mean and variance computation of the diffuse sound transmission through finite-sized thick and layered wall and floor systems

    Science.gov (United States)

    Decraene, Carolina; Dijckmans, Arne; Reynders, Edwin P. B.

    2018-05-01

    A method is developed for computing the mean and variance of the diffuse field sound transmission loss of finite-sized layered wall and floor systems that consist of solid, fluid and/or poroelastic layers. This is achieved by coupling a transfer matrix model of the wall or floor to statistical energy analysis subsystem models of the adjacent room volumes. The modal behavior of the wall is approximately accounted for by projecting the wall displacement onto a set of sinusoidal lateral basis functions. This hybrid modal transfer matrix-statistical energy analysis method is validated on multiple wall systems: a thin steel plate, a polymethyl methacrylate panel, a thick brick wall, a sandwich panel, a double-leaf wall with poro-elastic material in the cavity, and a double glazing. The predictions are compared with experimental data and with results obtained using alternative prediction methods such as the transfer matrix method with spatial windowing, the hybrid wave based-transfer matrix method, and the hybrid finite element-statistical energy analysis method. These comparisons confirm the prediction accuracy of the proposed method and the computational efficiency against the conventional hybrid finite element-statistical energy analysis method.

  16. Benford analysis of quantum critical phenomena: First digit provides high finite-size scaling exponent while first two and further are not much better

    Science.gov (United States)

    Bera, Anindita; Mishra, Utkarsh; Singha Roy, Sudipto; Biswas, Anindya; Sen(De), Aditi; Sen, Ujjwal

    2018-06-01

    Benford's law is an empirical edict stating that the lower digits appear more often than higher ones as the first few significant digits in statistics of natural phenomena and mathematical tables. A marked proportion of such analyses is restricted to the first significant digit. We employ violation of Benford's law, up to the first four significant digits, for investigating magnetization and correlation data of paradigmatic quantum many-body systems to detect cooperative phenomena, focusing on the finite-size scaling exponents thereof. We find that for the transverse field quantum XY model, behavior of the very first significant digit of an observable, at an arbitrary point of the parameter space, is enough to capture the quantum phase transition in the model with a relatively high scaling exponent. A higher number of significant digits do not provide an appreciable further advantage, in particular, in terms of an increase in scaling exponents. Since the first significant digit of a physical quantity is relatively simple to obtain in experiments, the results have potential implications for laboratory observations in noisy environments.

  17. Understanding and Utilizing the Effectiveness of e‐Learning

    DEFF Research Database (Denmark)

    Noesgaard, Signe Schack; Ørngreen, Rikke

    2014-01-01

    , the research brings valuable input to the discussion of the validity of self-assessments suggesting that participants are able to report on their own practices provided certain qualitative survey approaches. Understanding the many ways to define effectiveness can help learning and development professionals...

  18. Evaluating the substantive effectiveness of SEA: Towards a better understanding

    Energy Technology Data Exchange (ETDEWEB)

    Doren, D. van [Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, P.O. Box 80115, 3508 TC Utrecht (Netherlands); Driessen, P.P.J., E-mail: p.driessen@uu.nl [Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, P.O. Box 80115, 3508 TC Utrecht (Netherlands); Schijf, B. [Netherlands Commission for Environmental Assessment, P.O. Box 2345, 3500 GH Utrecht (Netherlands); Runhaar, H.A.C. [Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, P.O. Box 80115, 3508 TC Utrecht (Netherlands)

    2013-01-15

    Evaluating the substantive effectiveness of strategic environmental assessment (SEA) is vital in order to know to what extent the tool fulfills its purposes and produces expected results. However, the studies that have evaluated the substantive effectiveness of SEA produce varying outcomes as regards the tool's contribution to decision-making and have used a variety of approaches to appraise its effectiveness. The aim of this article is to discuss the theoretical concept of SEA substantive effectiveness and to present a new approach that can be applied for evaluation studies. The SEA effectiveness evaluation framework that will be presented is composed of concepts of, and approaches to, SEA effectiveness derived from SEA literature and planning theory. Lessons for evaluation can be learned from planning theory in particular, given its long history of analyzing and understanding how sources of information and decisions affect (subsequent) decision-making. Key concepts of this new approach are 'conformance' and 'performance'. In addition, this article presents a systematic overview of process and context factors that can explain SEA effectiveness, derived from SEA literature. To illustrate the practical value of our framework for the assessment and understanding of substantive effectiveness of SEA, three Dutch SEA case studies are examined. The case studies have confirmed the usefulness of the SEA effectiveness assessment framework. The framework proved helpful in order to describe the cumulative influence of the three SEAs on decision-making and the ultimate plan. - Highlights: Black-Right-Pointing-Pointer A new framework to evaluate the substantive effectiveness of SEA is presented. Black-Right-Pointing-Pointer The framework is based on two key concepts: 'conformance' and 'performance.' Black-Right-Pointing-Pointer The practical applicability of the framework is demonstrated by three Dutch cases. Black

  19. Evaluating the substantive effectiveness of SEA: Towards a better understanding

    International Nuclear Information System (INIS)

    Doren, D. van; Driessen, P.P.J.; Schijf, B.; Runhaar, H.A.C.

    2013-01-01

    Evaluating the substantive effectiveness of strategic environmental assessment (SEA) is vital in order to know to what extent the tool fulfills its purposes and produces expected results. However, the studies that have evaluated the substantive effectiveness of SEA produce varying outcomes as regards the tool's contribution to decision-making and have used a variety of approaches to appraise its effectiveness. The aim of this article is to discuss the theoretical concept of SEA substantive effectiveness and to present a new approach that can be applied for evaluation studies. The SEA effectiveness evaluation framework that will be presented is composed of concepts of, and approaches to, SEA effectiveness derived from SEA literature and planning theory. Lessons for evaluation can be learned from planning theory in particular, given its long history of analyzing and understanding how sources of information and decisions affect (subsequent) decision-making. Key concepts of this new approach are ‘conformance’ and ‘performance’. In addition, this article presents a systematic overview of process and context factors that can explain SEA effectiveness, derived from SEA literature. To illustrate the practical value of our framework for the assessment and understanding of substantive effectiveness of SEA, three Dutch SEA case studies are examined. The case studies have confirmed the usefulness of the SEA effectiveness assessment framework. The framework proved helpful in order to describe the cumulative influence of the three SEAs on decision-making and the ultimate plan. - Highlights: ► A new framework to evaluate the substantive effectiveness of SEA is presented. ► The framework is based on two key concepts: ‘conformance’ and ‘performance.’ ► The practical applicability of the framework is demonstrated by three Dutch cases. ► The framework allows for a more systematic understanding of SEA effectiveness. ► Finally, this paper presents explanations

  20. Influence of external magnetic field, finite-size effects and chemical potential on the phase transition of a complex scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti, E.; Castro, E.; Malbouisson, A.P.C. [Centro Brasileiro de Pesquisas Fisicas/MCTI, Rio de Janeiro, RJ (Brazil); Linhares, C.A. [Universidade do Estado do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ (Brazil)

    2017-10-15

    A scalar model is built, as a quantum field theory defined on a toroidal topology, to describe a phase transition in films subjected to periodic boundary conditions and influenced by an external and constant magnetic field. Criticality is studied and the relations between the critical temperature, the film thickness, the magnetic field strength and the chemical potential are investigated. Since the model describes a second-order phase transition a comparison with the Ginzburg-Landau theory is made. (orig.)

  1. Understanding the edge effect in wetting: a thermodynamic approach.

    Science.gov (United States)

    Fang, Guoping; Amirfazli, A

    2012-06-26

    Edge effect is known to hinder spreading of a sessile drop. However, the underlying thermodynamic mechanisms responsible for the edge effect still is not well-understood. In this study, a free energy model has been developed to investigate the energetic state of drops on a single pillar (from upright frustum to inverted frustum geometries). An analysis of drop free energy levels before and after crossing the edge allows us to understand the thermodynamic origin of the edge effect. In particular, four wetting cases for a drop on a single pillar with different edge angles have been determined by understanding the characteristics of FE plots. A wetting map describing the four wetting cases is given in terms of edge angle and intrinsic contact angle. The results show that the free energy barrier observed near the edge plays an important role in determining the drop states, i.e., (1) stable or metastable drop states at the pillar's edge, and (2) drop collapse by liquid spilling over the edge completely or staying at an intermediate sidewall position of the pillar. This thermodynamic model presents an energetic framework to describe the functioning of the so-called "re-entrant" structures. Results show good consistency with the literature and expand the current understanding of Gibbs' inequality condition.

  2. Understanding local residents of Korea using nuclear effective safety

    International Nuclear Information System (INIS)

    Chung, Yun Hyung; Lee, Gey Hwi; Hah, Yeonhee; Kim, Beom Jun

    2010-01-01

    The risk perception gap between experts and lay people is based on the use of different concept on risk. It is getting increasingly important for nuclear practitioners to understand the lay people's subjective perception on nuclear safety. We proposed the nuclear effective safety index (NESI) which is based on data of the public survey of local inhabitants. We extracted the four factors for effective safety indicators; communication, trust, plant emergency response capability, and personal emergency coping skills. The latest NESI was 41.54, which was increased from 38.22 but still low. The three-year data of NESI showed the differences between genders and between sites as well as trend. The survey of antecedents of effective safety showed some meaningful events and profound differences between plant employees and local inhabitants. The NESI can be utilized as useful communication tool between the local inhabitants and nuclear practitioners. (authors)

  3. On the Conceptual Understanding of the Photoelectric Effect

    Science.gov (United States)

    Foong, S. K.; Lee, P.; Wong, D.; Chee, Y. P.

    2010-07-01

    We attempt an in-depth literature review that focuses on some finer aspects of the photoelectric effect that will help build a more coherent understanding of the phenomenon. These include the angular distribution of photoelectrons, multi-photon photoelectron emission and the work function in the photoelectric equation as being that associated with the collector rather than the emitter. We attempt to explain the intricacies of the related concepts in a way that is accessible to teachers and students at the Singapore GCE A-level or pre-university level.

  4. Teamwork in perioperative nursing. Understanding team development, effectiveness, evaluation.

    Science.gov (United States)

    Farley, M J

    1991-03-01

    Teams are an essential part of perioperative nursing practice. Nurses who have a knowledge of teamwork and experience in working on teams have a greater understanding of the processes and problems involved as teams develop from new, immature teams to those that are mature and effective. This understanding will assist nurses in helping their teams achieve a higher level of productivity, and members will be more satisfied with team efforts. Team development progresses through several stages. Each stage has certain characteristics and desired outcomes. At each stage, team members and leaders have certain responsibilities. Team growth does not take place automatically and inevitably, but as a consequence of conscious and unconscious efforts of its leader and members to solve problems and satisfy needs. Building and maintaining a team is certainly work, but work that brings a great deal of satisfaction and feelings of pride in accomplishment. According to I Tenzer, RN, MS, teamwork "is not a panacea; it is a viable approach to developing a hospital's most valuable resource--people."

  5. Practical guide to understanding Comparative Effectiveness Research (CER).

    Science.gov (United States)

    Neely, J Gail; Sharon, Jeffrey D; Graboyes, Evan M; Paniello, Randal C; Nussenbaum, Brian; Grindler, David J; Dassopoulos, Themistocles

    2013-12-01

    "Comparative effectiveness research" (CER) is not a new concept; however, recently it has been popularized as a method to develop scientifically sound actionable data by which patients, physicians, payers, and policymakers may make informed health care decisions. Fundamental to CER is that the comparative data are derived from large diverse populations of patients assembled from point-of-care general primary care practices and that measured outcomes include patient value judgments. The challenge is to obtain scientifically valid data to be acted upon by decision-making stakeholders with potentially quite diversely different agenda. The process requires very thoughtful research designs modulated by complex statistical and analytic methods. This article is composed of a guiding narrative with an extensive set of tables outlining many of the details required in performing and understanding CER. It ends with short discussions of three example papers, limitations of the method, and how a practicing physician may view such reports.

  6. Understanding noise suppression in heterojunction field-effect transistors

    International Nuclear Information System (INIS)

    Green, F.

    1996-01-01

    Full text: The enhanced transport properties displayed by quantum-well-confined, two-dimensional, electron systems underpin the success of heterojunction, field-effect transistors. At cryogenic temperatures, these devices exhibit impressive mobilities and, as a result, high signal gain and low noise. Conventional wisdom has it that the same favourable conditions also hold for normal room-temperature operation. In that case, however, high mobilities are precluded by abundant electron-phonon scattering. Our recent study of nonequilibrium current noise shows that quantum confinement, not high mobility, is the principal source of noise in these devices; this opens up new and exciting opportunities in low-noise transistor design. As trends in millimetre-wave technology push frequencies beyond 100 GHz, it is essential to develop a genuine understanding of noise processes in heterojunction devices

  7. Compreendendo o Efeito Placebo / Understanding the Placebo Effect

    Directory of Open Access Journals (Sweden)

    Elayne Vieira Dias

    2015-12-01

    Full Text Available Placebo é definido em termos farmacológicos como uma substância inerte, sem propriedades farmacológicas intrínsecas. No entanto, essa definição é superficial, visto que o placebo pode gerar efeitos terapêuticos que dependem de diversos fatores como palavras, rituais, símbolos e significados que acompanham seu uso. Assim, o efeito placebo não diz respeito apenas a uma substância, mas, envolve fatores cognitivos, genéticos e mecanismos de aprendizagem implícita e explícita. Nessa revisão nós abordamos os aspectos gerais do efeito placebo apoiados em diversos estudos com diferentes enfoques, visando uma melhor compreensão desse fenômeno que pode se somar ao tratamento ativo e otimizar os resultados na prática médica. Placebo is pharmacologically defined as an inert substance, with nointrinsic pharmacological properties. However, this is a superficial definition, since placebo may trigger therapeutic effects and its effectiveness depends on various factors such as words, rituals, symbols and meanings following its use. Thus, placebo effect does not refer just to the substance, but it also involves cognitive and genetic factors and learning mechanisms. Here, we review general aspects of the placebo effect supported by several studies with different approaches, to better understand this phenomenon which may contribute to active treatment as well as optimize the results in the clinical practice.

  8. Effect of Linked Rules on Business Process Model Understanding

    DEFF Research Database (Denmark)

    Wang, Wei; Indulska, Marta; Sadiq, Shazia

    2017-01-01

    Business process models are widely used in organizations by information systems analysts to represent complex business requirements and by business users to understand business operations and constraints. This understanding is extracted from graphical process models as well as business rules. Prior...

  9. Interfacial scattering effect on anisotropic magnetoresistance and anomalous Hall effect in Ta/Fe multilayers

    KAUST Repository

    Zhang, Qiang; Zhang, Junwei; Zhao, Yuelei; Wen, Yan; Li, Peng; Zhang, Senfu; He, Xin; Zhang, Junli; Zhang, Xixiang

    2017-01-01

    effect. The skew-scattering, side-jump and intrinsic contributions to the AHE were separated successfully. As n increases from 1 to 12, the intrinsic contribution decreases because of the decaying crystallinity or finite size effect and the intrinsic

  10. A Life Course Approach to Understanding Neighbourhood Effects

    NARCIS (Netherlands)

    de Vuijst, E.; van Ham, M.; Kleinhans, R.J.

    2016-01-01

    Many theories on so-called neighbourhood effectseffects of the residential context on individual outcomes such as employment, education, and health – implicitly, or explicitly suggest lagged effects, duration effects, or for example, intergenerational effects of neighbourhoods. However, these

  11. Diffusion to finite-size traps

    International Nuclear Information System (INIS)

    Richards, P.M.

    1986-01-01

    The survival probability of a random-walking particle is derived for hopping in a random distribution of traps of arbitrary radius and concentration. The single-center approximation is shown to be valid for times of physical interest even when the fraction of volume occupied by traps approaches unity. The theory is based on computation of the number of different potential trap regions sampled in a random walk and is confirmed by simulations on a simple-cubic lattice

  12. Automated Traffic and the Finite Size Resonance

    Science.gov (United States)

    Veerman, J. J. P.; Stošić, B. D.; Tangerman, F. M.

    2009-10-01

    We investigate in detail what one might call the canonical (automated) traffic problem: A long string of N+1 cars (numbered from 0 to N) moves along a one-lane road "in formation" at a constant velocity and with a unit distance between successive cars. Each car monitors the relative velocity and position of only its neighboring cars. This information is then fed back to its own engine which decelerates (brakes) or accelerates according to the information it receives. The question is: What happens when due to an external influence—a traffic light turning green—the `zero'th' car (the "leader") accelerates? As a first approximation, we analyze linear(ized) equations and show that in this scenario the traffic flow has a tendency to be stop-and-go. We give approximate solutions for the global traffic as function of all the relevant parameters (the feed back parameters as well as cruise velocity and so on). We discuss general design principles for these algorithms, that is: how does the choice of parameters influence the performance.

  13. Local field in finite-size metamaterials

    DEFF Research Database (Denmark)

    Bordo, Vladimir

    2018-01-01

    The theory of the optical response of a metamaterial slab which is represented by metal nanoparticles embedded in a dielectric matrix is developed. It is demonstrated that the account of the reflections from the slab boundaries essentially modifies the local field in the slab and leads...

  14. Understanding Cost-Effectiveness of Energy Efficiency Programs

    Science.gov (United States)

    Discusses the five standard tests used to assess the cost-effectiveness of energy efficiency, how states are using these tests, and how the tests can be used to determine the cost-effectiveness of energy efficiency measures.

  15. Towards an understanding of staggering effects in dissipative binary collisions

    International Nuclear Information System (INIS)

    D'Agostino, M.; Bruno, M.; Gulminelli, F.; Morelli, L.; Baiocco, G.; Bardelli, L.; Barlini, S.; Cannata, F.; Casini, G.; Geraci, E.; Gramegna, F.; Kravchuk, V.L.; Marchi, T.; Moroni, A.; Ordine, A.; Raduta, Ad.R.

    2012-01-01

    The reactions 32 S+ 58,64 Ni are studied at 14.5 A MeV. Evidence is found for important odd–even effects in isotopic observables of selected peripheral collisions corresponding to the decay of a projectile-like source. The influence of secondary decays on the staggering is studied with a correlation function technique. It is shown that this method is a powerful tool to get experimental information on the evaporation chain, in order to constrain model calculations. Specifically, we show that odd–even effects are due to interplay between pairing effects in the nuclear masses and in the level densities.

  16. Understanding and Applying the Cognitive Foundations of Effective Teamwork

    National Research Council Canada - National Science Library

    Noble, David

    2004-01-01

    .... It reviews a theory describing the knowledge that teams need to work together effectively and summarizing how teams use this knowledge when making decisions about collecting and sharing information...

  17. Understanding Effectiveness in School Administration: A Discourse Analysis

    Science.gov (United States)

    Büyükgöze, Hilal

    2016-01-01

    The current paper primarily aims to investigate and interpret the observations, perceptions, and experiences of an effective school's principal through a qualitative approach. The study was designed as a case study. The participant of the study was a primary science education teacher with 17 years of experience in the profession who has been a…

  18. Understanding Graduate School Aspirations: The Effect of Good Teaching Practices

    Science.gov (United States)

    Hanson, Jana M.; Paulsen, Michael B.; Pascarella, Ernest T.

    2016-01-01

    This study examined the effects of good teaching practices on post-baccalaureate degree aspirations using logistic regression techniques on a multi-institutional, longitudinal sample of students at 4-year colleges and universities in the USA. We examined whether eight good teaching practices (non-classroom interactions with faculty, prompt…

  19. The Effect of Math Modeling on Student's Emerging Understanding

    Science.gov (United States)

    Sokolowski, Andrzej

    2015-01-01

    This study investigated the effects of applying mathematical modeling on revising students' preconception of the process of optimizing area enclosed by a string of a fixed length. A group of 28 high school pre-calculus students were immersed in modeling activity that included direct measurements, data collecting, and formulating algebraic…

  20. Understanding the variable effect of instructional innovations on student learning

    Science.gov (United States)

    Iverson, Heidi L.

    2012-02-01

    As a result of dissatisfaction with the traditional lecture-based model of education a large number of reform-oriented instructional innovations have been developed, enacted, and studied in undergraduate physics courses. While previous work has shown that the impact of instructional innovations on student learning has been overwhelmingly positive, it has also been highly variable. The purpose of this analysis is to investigate this variability. For this analysis, 79 published studies on undergraduate physics instructional innovations were analyzed with respect to the types of innovations used and the methodological characteristics of the studies themselves. The findings of this analysis have indicated that nearly half of the variability in effect size can be accounted for by study design characteristics rather than by the characteristics of the innovations used. However, a subsequent analysis illustrated that one specific innovation, Workshop/Studio Physics, appears to be particularly effective within the observed sample of studies.

  1. Understanding the effects of violent video games on violent crime

    OpenAIRE

    Cunningham, A. Scott; Engelstätter, Benjamin; Ward, Michael R.

    2011-01-01

    Psychological studies invariably find a positive relationship between violent video game play and aggression. However, these studies cannot account for either aggressive effects of alternative activities video game playing substitutes for or the possible selection of relatively violent people into playing violent video games. That is, they lack external validity. We investigate the relationship between the prevalence of violent video games and violent crimes. Our results are consistent with t...

  2. Retention in STEM: Understanding the Effectiveness of Science Posse

    Science.gov (United States)

    Godsoe, Kimberly

    One of the major areas of debate in higher education is how to best support underrepresented racial minority students in their study of Science, Technology, Engineering, and Math. In 2008, Brandeis University began a new program in conjunction with the Posse Foundation for students interested in studying science at the college-level. The research used a mixed methods design. A detailed quantitative analysis was conducted to understand how being part of Science Posse impacted the probability of doing well in initial science classes, influenced perceptions of the difficulty of studying science, and predicted the probability of majoring in STEM at Brandeis. The qualitative data was drawn from 89 student interviews, including 38 Science Posse Scholars, 24 students from backgrounds similar to the Scholars, and 25 students from well-resourced families. The qualitative analysis demonstrated how students had been exposed to the sciences prior to enrollment, how they navigated the sciences at Brandeis, and how they demonstrated resilience when science becomes challenging. This research study had four key findings. The first was in the quantitative analysis which demonstrated that Science Posse Scholars experience strong feelings of doubt about their academic abilities; based on previous research, this should have resulted in their not declaring majors in STEM disciplines. Instead, Science Posse Scholars were more likely to earn a B+ or above in their entry level science courses and declare a major in a STEM discipline, even when factors such as math and verbal SAT scores were included in the analysis. The second finding was in the qualitative analysis, which demonstrated that the cohort model in which Science Posse Scholars participate was instrumental to their success. The third finding was that students who attended academically less rigorous high schools could succeed in the sciences at a highly selective research institution such as Brandeis without academic remediation

  3. Excluded-volume effects in the diffusion of hard spheres

    KAUST Repository

    Bruna, Maria; Chapman, S. Jonathan

    2012-01-01

    Excluded-volume effects can play an important role in determining transport properties in diffusion of particles. Here, the diffusion of finite-sized hard-core interacting particles in two or three dimensions is considered systematically using

  4. Understanding Soliton Spectral Tunneling as a Spectral Coupling Effect

    DEFF Research Database (Denmark)

    Guo, Hairun; Wang, Shaofei; Zeng, Xianglong

    2013-01-01

    Soliton eigenstate is found corresponding to a dispersive phase profile under which the soliton phase changes induced by the dispersion and nonlinearity are instantaneously counterbalanced. Much like a waveguide coupler relying on a spatial refractive index profile that supports mode coupling...... between channels, here we suggest that the soliton spectral tunneling effect can be understood supported by a spectral phase coupler. The dispersive wave number in the spectral domain must have a coupler-like symmetric profile for soliton spectral tunneling to occur. We show that such a spectral coupler...

  5. Understanding the Effects of Marriage and Divorce on Financial Investments

    DEFF Research Database (Denmark)

    Christiansen, Charlotte; Joensen, Juanne S.; Rangvid, Jesper

    2015-01-01

    We investigate how changes in marital status affect financial investments and how these effects vary with background risk. We use detailed register-based panel data and difference-in-differences estimatiors to benchmark common unobserved influences on financial investments. Women increase...... the fraction of wealth invested in stocks after marriage and decrease it after divorce, whereas men show the opposite behavior. Households whose joint labor income risk is reduced more by marriage have a higher increase in their exposure to risky assets in marriage. Thus income risk sharing in the household...... is important for financial risk taking and investment responses to marital transitions...

  6. Current Understanding of the Health Effects of Electromagnetic Fields.

    Science.gov (United States)

    Miah, Tayaba; Kamat, Deepak

    2017-04-01

    There has been an exponential increase in the use of electronic devices over the past few decades. This has led to increased exposure to electromagnetic fields (EMF). Electric fields result from differences in voltage, whereas magnetic fields result from the flow of electric current. Higher-frequency waves of EMF have more energy than lower-frequency waves, and thus generally tend to be more harmful. An EMF activates cellular stress response and also causes breaks in DNA strands. There are many methodological barriers to effectively measuring the associations of EMF and childhood cancers. The consensus from multiple studies is that there is no causal role of extremely low-frequency EMFs in childhood cancers, including brain cancer. A recent study showed a link between EMF radiation and the development of malignant tumors in rats. In light of that study, the American Academy of Pediatrics set out new recommendations to decrease the adverse effects of cellphone exposure on children. [Pediatr Ann. 2017;46(4):e172-e174.]. Copyright 2017, SLACK Incorporated.

  7. Understanding the "Weekend Effect" for Emergency General Surgery.

    Science.gov (United States)

    Hoehn, Richard S; Go, Derek E; Dhar, Vikrom K; Kim, Young; Hanseman, Dennis J; Wima, Koffi; Shah, Shimul A

    2018-02-01

    Several studies have identified a "weekend effect" for surgical outcomes, but definitions vary and the cause is unclear. Our aim was to better characterize the weekend effect for emergency general surgery using mortality as a primary endpoint. Using data from the University HealthSystem Consortium from 2009 to 2013, we identified urgent/emergent hospital admissions for seven procedures representing 80% of the national burden of emergency general surgery. Patient characteristics and surgical outcomes were compared between cases that were performed on weekdays vs weekends. Hospitals varied widely in the proportion of procedures performed on the weekend. Of the procedures examined, four had higher mortality for weekend cases (laparotomy, lysis of adhesions, partial colectomy, and small bowel resection; p < 0.01), while three did not (appendectomy, cholecystectomy, and peptic ulcer disease repair). Among the four procedures with increased weekend mortality, patients undergoing weekend procedures also had increased severity of illness and shorter time from admission to surgery (p < 0.01). Multivariate analysis adjusting for patient characteristics demonstrated independently higher mortality on weekends for these same four procedures (p < 0.01). For the first time, we have identified specific emergency general surgery procedures that incur higher mortality when performed on weekends. This may be due to acute changes in patient status that require weekend surgery or indications for urgent procedures (ischemia, obstruction) compared to those without a weekend mortality difference (infection). Hospitals that perform weekend surgery must acknowledge and identify ways to manage this increased risk.

  8. The Complexity in Defining Leadership: How Gifted Students' Backgrounds Influence Their Understanding of Effective Leadership

    Science.gov (United States)

    Jackson, Shawon; Sakuma, Satoe; DeVol, Purva

    2015-01-01

    There is no universally accepted definition of what it means to be an effective leader. Individuals understand leadership differently based on their own identities and lived experiences. The purpose of this investigation is to determine how one's ethnicity, class, and gender identities influence their understanding of effective leadership,…

  9. Neutron density decay constant in a non-multiplying lattice of finite size; Constante de decroissance de la densite neutronique dans un reseau non-multiplicateur de dimensions finies

    Energy Technology Data Exchange (ETDEWEB)

    Deniz, V C [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1965-07-01

    This report presents a general theory, using the integral transport method, for obtaining the neutron density decay constant in a finite non-multiplying lattice. The theory is applied to obtain the expression for the diffusion coefficient. The case of a homogeneous medium with 1/v absorption and of finite size in all directions is treated in detail, assuming an isotropic scattering law. The decay constant is obtained up to the B{sup 6} term. The expressions for the diffusion coefficient and for the diffusion cooling coefficient are the same as those obtained for a slab geometry by Nelkin, using the expansion in spherical harmonics of the Fourier transform in the spatial variable. Furthermore, explicit forms are obtained for the flux and the current. It is shown that the deviation of the actual flux from a Maxwellian is the flux generated in the medium, extended to infinity and deprived of its absorbing power, by various sources, each of which has a zero integral over all velocities. The study of the current permits the generalization of Fick's law. An independent integral method, valid for homogeneous media, is also presented. (author) [French] Ce rapport presente une theorie generale, par methode integrale du transport, pour determiner la constante de decroissance de la densite neutronique dans un reseau non-multiplicateur de dimensions finies. La theorie est appliquee pour obtenir l'expression du coefficient de diffusion. Le cas d'un milieu homogene avec absorption en 1/v et de dimensions finies dans toutes les directions est etudie en detail, en admettant une loi de choc isotrope. La constante de decroissance est obtenue jusqu'au terme en B{sup 6}. Les expressions pour le coefficient de diffusion et pour le coefficient de refroidissement par diffusion sont les memes que celles obtenues pour une geometrie 'plaque' par NELKIN qui utilise le developpement en harmoniques spheriques de la transformee de Fourier dans la variable d'espace. De plus, on obtient les

  10. Effect of problem type toward students’ conceptual understanding level on heat and temperature

    Science.gov (United States)

    Ratnasari, D.; Sukarmin; Suparmi, S.

    2017-11-01

    The aim of this research is to analyze the level of students’ understanding of heat and temperature concept and effect of problem type toward students’ conceptual understanding of heat and temperature. This research is descriptive research with the subjects of the research are 96 students from high, medium, and low categorized school in Surakarta. Data of level of students’ conceptual understanding is from students’ test result using essay instrument (arranged by researcher and arranged by the teacher) and interview. Before being tested in the samples, essay instrument is validated by the experts. Based on the result and the data analysis, students’ conceptual understanding level of 10th grade students on heat and temperature is as follows: (1) Most students have conceptual understanding level at Partial Understanding with a Specific Misconception (PUSM) with percentage 28,85%; (2) Most students are able to solve mathematic problem from teacher, but don’t understand the underlying concept.

  11. Primary Student-Teachers' Conceptual Understanding of the Greenhouse Effect: A mixed method study

    Science.gov (United States)

    Ratinen, Ilkka Johannes

    2013-04-01

    The greenhouse effect is a reasonably complex scientific phenomenon which can be used as a model to examine students' conceptual understanding in science. Primary student-teachers' understanding of global environmental problems, such as climate change and ozone depletion, indicates that they have many misconceptions. The present mixed method study examines Finnish primary student-teachers' understanding of the greenhouse effect based on the results obtained via open-ended and closed-form questionnaires. The open-ended questionnaire considers primary student-teachers' spontaneous ideas about the greenhouse effect depicted by concept maps. The present study also uses statistical analysis to reveal respondents' conceptualization of the greenhouse effect. The concept maps and statistical analysis reveal that the primary student-teachers' factual knowledge and their conceptual understanding of the greenhouse effect are incomplete and even misleading. In the light of the results of the present study, proposals for modifying the instruction of climate change in science, especially in geography, are presented.

  12. Improving Elementary School Students' Understanding of Historical Time: Effects of Teaching with "Timewise"

    Science.gov (United States)

    de Groot-Reuvekamp, Marjan; Ros, Anje; van Boxtel, Carla

    2018-01-01

    The teaching of historical time is an important aspect in elementary school curricula. This study focuses on the effects of a curriculum intervention with "Timewise," a teaching approach developed to improve students' understanding of historical time using timelines as a basis with which students can develop their understanding of…

  13. Bernoulli's Principle: The Effects of Instruction on Young Children's Understanding of Flight.

    Science.gov (United States)

    Fleege, Pamela O.; And Others

    This study examined the effects of hands-on instruction on young children's understanding of an aspect of flight, specifically Bernoulli's principle. First, 137 public school children, ages 5 through 8 years, were interviewed about their understanding of how an airplane flies. Two weeks later, the subjects participated in two hands-on…

  14. The Effect of Computer Models as Formative Assessment on Student Understanding of the Nature of Models

    Science.gov (United States)

    Park, Mihwa; Liu, Xiufeng; Smith, Erica; Waight, Noemi

    2017-01-01

    This study reports the effect of computer models as formative assessment on high school students' understanding of the nature of models. Nine high school teachers integrated computer models and associated formative assessments into their yearlong high school chemistry course. A pre-test and post-test of students' understanding of the nature of…

  15. Understanding the Effects of Host Evolution and Skin Bacteria Composition on Disease Vector Choices

    Science.gov (United States)

    2016-04-14

    Distribution Unlimited UU UU UU UU 14-04-2016 1-Sep-2014 31-Dec-2015 Final Report: Understanding the effects of host evolution and skin bacteria ...S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 mosquito, skin, bacteria , primate REPORT...reviewed journals: Final Report: Understanding the effects of host evolution and skin bacteria composition on disease vector choices Report Title Here

  16. The effect of Phet Simulation media for physics teacher candidate understanding on photoelectric effect concept

    Directory of Open Access Journals (Sweden)

    Supurwoko Supurwoko

    2017-02-01

    Full Text Available Indonesian new Curriculum for senior high school students required student-centered learning. One of the curriculum implementation constraint was the difficulty of providing learning media. PhET simulations media is one of the options that can help implementation of new curriculum on learning. However, the use of this media in Indonesia still needs to be studied comprehensively. The learning was conducted on students of physics education Study Program in sebelas maret university in 2013. The sample consisted of 62 students that was taking quantum physics course. The method that was used in the research was descriptive qualitative.  The method that was used in learning was demonstration’s method that used PhET media and accompanied by a question and answer and groups discussion. The data was collected using multiple choice test and interview through email. We found that any students still did not understand about photoelectric effect concept. They were confused when asked about the thick material and cross section of the targets as related with the regardless of electrons in the photoelectric effect event. Other than that, the concept of the waves as a particle and its relation with the kinetic energy of the electrons was not understood by most students.

  17. Understanding the Greenhouse Effect by Embodiment - Analysing and Using Students' and Scientists' Conceptual Resources

    Science.gov (United States)

    Niebert, Kai; Gropengießer, Harald

    2014-01-01

    Over the last 20 years, science education studies have reported that there are very different understandings among students of science regarding the key aspects of climate change. We used the cognitive linguistic framework of experientialism to shed new light on this valuable pool of studies to identify the conceptual resources of understanding climate change. In our study, we interviewed 35 secondary school students on their understanding of the greenhouse effect and analysed the conceptions of climate scientists as drawn from textbooks and research reports. We analysed all data by metaphor analysis and qualitative content analysis to gain insight into students' and scientists' resources for understanding. In our analysis, we found that students and scientists refer to the same schemata to understand the greenhouse effect. We categorised their conceptions into three different principles the conceptions are based on: warming by more input, warming by less output, and warming by a new equilibrium. By interrelating students' and scientists' conceptions, we identified the students' learning demand: First, our students were afforded with experiences regarding the interactions of electromagnetic radiation and CO2. Second, our students reflected about the experience-based schemata they use as source domains for metaphorical understanding of the greenhouse effect. By uncovering the-mostly unconscious-deployed schemata, we gave students access to their source domains. We implemented these teaching guidelines in interventions and evaluated them in teaching experiments to develop evidence-based and theory-guided learning activities on the greenhouse effect.

  18. Using Interactive Technology to Support Students' Understanding of the Greenhouse Effect and Global Warming

    Science.gov (United States)

    Varma, Keisha; Linn, Marcia C.

    2012-01-01

    In this work, we examine middle school students' understanding of the greenhouse effect and global warming. We designed and refined a technology-enhanced curriculum module called "Global Warming: Virtual Earth". In the module activities, students conduct virtual experiments with a visualization of the greenhouse effect. They analyze data and draw…

  19. The Effect of Constructivist Science Teaching on 4th Grade Students' Understanding of Matter

    Science.gov (United States)

    Cakici, Yilmaz; Yavuz, Gulben

    2010-01-01

    In the last three decades, the constructivist approach has been the dominant ideology in the field of educational research. The aim of this study is to explore the effect of constructivist science teaching on the students' understanding about matter, and to compare the effectiveness of a constructivist approach over traditional teaching methods.…

  20. Practical and effective management of libraries integrating case studies, general management theory and self-understanding

    CERN Document Server

    Moniz, Jr, Richard

    2010-01-01

    Aimed at library science students and librarians with newly assigned administrative duties the book is about improving one's thinking and decision making in a role as a library manager. Most librarians get very little exposure to management issues prior to finding themselves in a management role. Furthermore, most library science students do not expect that they will need to understand management yet they quickly find that there is a need to understand this perspective to be effective at almost any library job. Effective library management is about having some tools to make decisions (such as

  1. How student teachers’ understanding of the greenhouse effect develops during a teacher education programme

    Directory of Open Access Journals (Sweden)

    Margareta Ekborg

    2012-10-01

    Full Text Available This paper reports on a longitudinal study on how student teachers’ understanding of the greenhouse effect developed through a teacher education programme in mathematics and science for pupils aged 7-13. All student teachers, who were accepted to the programme one year, were followed trough 2.5 years of the programme. The student teachers took science courses in which they were taught about the greenhouse effect.Data was collected by questionnaires three times. The results show that a majority of the student teachers developed an adequate understanding of the greenhouse effect during the teaching programme. Several of the students developed further in the second science course. However a rather big group of students with poor understanding did not develop any further in the second science course and no one demonstrated full understanding. Different ways of collecting data and categorising responses affected how the students’ understanding was interpreted.

  2. The Effect of Various Media Scaffolding on Increasing Understanding of Students' Geometry Concepts

    Science.gov (United States)

    Sutiarso, Sugeng; Coesamin, M.; Nurhanurawati

    2018-01-01

    This study is a quasi-experimental research with pretest-posttest control group design, which aims to determine (1) the tendency of students in using various media scaffolding based on gender, and (2) effect of media scaffolding on increasing understanding of students' geometry concepts. Media scaffolding used this study is chart, props, and…

  3. The Effect of a Conceptual Change Approach on Understanding of Students' Chemical Equilibrium Concepts

    Science.gov (United States)

    Atasoy, Basri; Akkus, Huseyin; Kadayifci, Hakki

    2009-01-01

    The purpose of this study was to compare the effects of a conceptual change approach over traditional instruction on tenth-grade students' conceptual achievement in understanding chemical equilibrium. The study was conducted in two classes of the same teacher with participation of a total of 44 tenth-grade students. In this study, a…

  4. The Effect of Herrmann Whole Brain Teaching Method on Students' Understanding of Simple Electric Circuits

    Science.gov (United States)

    Bawaneh, Ali Khalid Ali; Nurulazam Md Zain, Ahmad; Salmiza, Saleh

    2011-01-01

    The purpose of this study was to investigate the effect of Herrmann Whole Brain Teaching Method over conventional teaching method on eight graders in their understanding of simple electric circuits in Jordan. Participants (N = 273 students; M = 139, F = 134) were randomly selected from Bani Kenanah region-North of Jordan and randomly assigned to…

  5. Effects of a Co-operative Learning Strategy on Ninth-Graders' Understanding of Human Nutrition.

    Science.gov (United States)

    Soyibo, Kola; Evans, Hermel G.

    2002-01-01

    Looks at the effect of teaching strategies on a group's attitude toward biology and understanding human nutrition. Used an experimental group that participated in co-operative learning and a control group taught using the lecture method. Involves ninth graders (n=156) from two high schools in Jamaica. (Author/YDS)

  6. Effect of 5E Teaching Model on Student Teachers' Understanding of Weightlessness

    Science.gov (United States)

    Tural, Guner; Akdeniz, Ali Riza; Alev, Nedim

    2010-01-01

    Weight is one of the basic concepts of physics. Its gravitational definition accommodates difficulties for students to understand the state of weightlessness. The aim of this study is to investigate the effect of materials based on 5E teaching model and related to weightlessness on science student teachers' learning. The sample of the study was 9…

  7. Student Teacher Understanding of the Greenhouse Effect, Ozone Layer Depletion, and Acid Rain.

    Science.gov (United States)

    Dove, Jane

    1996-01-01

    Describes the results of a survey designed to ascertain details of student teachers' knowledge and misconceptions about the greenhouse effect, acid rain, and ozone layer depletion. Results indicate familiarity with the issues but little understanding of the concepts involved and many commonly held misconceptions. (JRH)

  8. The Effect of Guided Inquiry-Based Instruction on Middle School Students' Understanding of Lunar Concepts

    Science.gov (United States)

    Trundle, Kathy Cabe; Atwood, Ronald K.; Christopher, John E.; Sackes, Mesut

    2010-01-01

    This study investigated the effect of non-traditional guided inquiry instruction on middle school students' conceptual understandings of lunar concepts. Multiple data sources were used to describe participants' conceptions of lunar phases and their cause, including drawings, interviews, and a lunar shapes card sort. The data were analyzed via a…

  9. Children's experiences of food insecurity can assist in understanding its effect on their well-being

    Science.gov (United States)

    An understanding of the experience of food insecurity by children is essential for better measurement and assessment of its effect on children's nutritional, physical, and mental health. Our qualitative study explored children's perceptions of household food insecurity to identify these perceptions ...

  10. Understanding, Developing, and Writing Effective IEPs: A Step-by-Step Guide for Educators

    Science.gov (United States)

    Pierangelo, Roger; Giuliani, George A.

    2007-01-01

    Creating and evaluating Individualized Education Programs (IEPs) for students with disabilities is a major responsibility for teachers and school leaders, yet the process involves legal components not always understood by educators. In "Understanding, Developing, and Writing Effective IEPs," legal and special education experts Roger…

  11. The Effect of Using the History of Sciences on Conceptual Understanding and Intrinsic Motivation

    Science.gov (United States)

    Blizak, Djanette

    2017-01-01

    This study investigates the effect of using the history of science in teaching geometrical optics on the motivation and conceptual understanding of first year university students. For this purpose, 54 students were randomly selected, then divided into two groups: the experimental group was taught by using history of science before traditional…

  12. The Effects of Swedish Knife Model on Students' Understanding of the Digestive System

    Science.gov (United States)

    Cerrah Ozsevgec, Lale; Artun, Huseyin; Unal, Melike

    2012-01-01

    This study was designed to examine the effect of Swedish Knife Model on students' understanding of digestive system. A simple experimental design (pretest-treatment-posttest) was used in the study and internal comparison of the results of the one group was made. The sample consisted of 40 7th grade Turkish students whose ages range from 13 to 15.…

  13. Effect of Writing-to-Learn Strategy on Undergraduates' Conceptual Understanding of Electrostatics

    Science.gov (United States)

    Atasoy, Sengül

    2013-01-01

    The purpose of this study is to explore the effect of Writing-to-Learn (WTL) strategy on undergraduates' conceptual understanding of electrostatics. The sample of the study was 54 university students registered at elementary school mathematics education department. While the experimental group was asked to conduct WTL activities like explanatory…

  14. Understanding Unique Effects of Parental Incarceration on Children: Challenges, Progress, and Recommendations

    Science.gov (United States)

    Johnson, Elizabeth I.; Easterling, Beth

    2012-01-01

    Growth in U.S. incarceration rates during the 1980s and 1990s prompted a body of research focused on understanding the diverse effects of incarceration on individuals, families, and communities. An area of particular interest has been how the incarceration of a parent may affect child well-being. Despite what appears to be converging evidence that…

  15. Effect of Conceptual Change Approach on Students' Understanding of Reaction Rate Concepts

    Science.gov (United States)

    Kingir, Sevgi; Geban, Omer

    2012-01-01

    The purpose of the present study was to investigate the effect of conceptual change text oriented instruction compared to traditional instruction on 10th grade students' understanding of reaction rate concepts. 45 students from two classes of the same teacher in a public high school participated in this study. Students in the experimental group…

  16. Understanding the effectiveness of vegetated streamside management zones for protecting water quality (Chapter 5)

    Science.gov (United States)

    Philip Smethurst; Kevin Petrone; Daniel Neary

    2012-01-01

    We set out to improve understanding of the effectiveness of streamside management zones (SMZs) for protecting water quality in landscapes dominated by agriculture. We conducted a paired-catchment experiment that included water quality monitoring before and after the establishment of a forest plantation as an SMZ on cleared farmland that was used for extensive grazing....

  17. Effect of a Problem Based Simulation on the Conceptual Understanding of Undergraduate Science Education Students

    Science.gov (United States)

    Kumar, David Devraj; Sherwood, Robert D.

    2007-01-01

    A study of the effect of science teaching with a multimedia simulation on water quality, the "River of Life," on the science conceptual understanding of students (N = 83) in an undergraduate science education (K-9) course is reported. Teaching reality-based meaningful science is strongly recommended by the National Science Education Standards…

  18. The Effect of Biotechnology Education on Australian High School Students' Understandings and Attitudes about Biotechnology Processes

    Science.gov (United States)

    Dawson, Vaille; Soames, Christina

    2006-01-01

    Our education system aims to equip young people with the knowledge, problem-solving skills and values to cope with an increasingly technological society. The aim of this study was to determine the effect of biotechnology education on adolescents' understanding and attitudes about processes associated with biotechnology. Data were drawn from…

  19. Understanding Crowdsourcing: Effects of motivation and rewards on participation and performance in voluntary online activities

    NARCIS (Netherlands)

    W.A.M. Borst (Irma)

    2010-01-01

    textabstractCompanies increasingly outsource activities to volunteers that they approach via an open call on the internet. The phenomenon is called ‘crowdsourcing’. For an effective use of crowdsourcing it is important to understand what motivated these online volunteers and what is the influence of

  20. The Effect of Modeling and Visualization Resources on Student Understanding of Physical Hydrology

    Science.gov (United States)

    Marshall, Jilll A.; Castillo, Adam J.; Cardenas, M. Bayani

    2015-01-01

    We investigated the effect of modeling and visualization resources on upper-division, undergraduate and graduate students' performance on an open-ended assessment of their understanding of physical hydrology. The students were enrolled in one of five sections of a physical hydrology course. In two of the sections, students completed homework…

  1. Encouraging a "Romantic Understanding" of Science: The Effect of the Nikola Tesla Story

    Science.gov (United States)

    Hadzigeorgiou, Yannis; Klassen, Stephen; Klassen, Cathrine Froese

    2012-01-01

    The purpose of this paper is to discuss and apply the notion of romantic understanding by outlining its features and its potential role in science education, to identify its features in the story of Nikola Tesla, and to describe an empirical study conducted to determine the effect of telling such a story to Grade 9 students. Elaborated features of…

  2. Effectiveness of Instruction Based on the Constructivist Approach on Understanding Chemical Equilibrium Concepts

    Science.gov (United States)

    Akkus, Huseyin; Kadayifci, Hakki; Atasoy, Basri; Geban, Omer

    2003-01-01

    The purpose of this study was to identify misconceptions concerning chemical equilibrium concepts and to investigate the effectiveness of instruction based on the constructivist approach over traditional instruction on 10th grade students' understanding of chemical equilibrium concepts. The subjects of this study consisted of 71 10th grade…

  3. Effects of Jigsaw and Animation Techniques on Students' Understanding of Concepts and Subjects in Electrochemistry

    Science.gov (United States)

    Doymus, Kemal; Karacop, Ataman; Simsek, Umit

    2010-01-01

    This study investigated the effect of jigsaw cooperative learning and animation versus traditional teaching methods on students' understanding of electrochemistry in a first-year general chemistry course. This study was carried out in three different classes in the department of primary science education during the 2007-2008 academic year. The…

  4. Effect of science magic applied in interactive lecture demonstrations on conceptual understanding

    Science.gov (United States)

    Taufiq, Muhammad; Suhandi, Andi; Liliawati, Winny

    2017-08-01

    Research about the application of science magic-assisting Interactive Lecture Demonstrations (ILD) has been conducted. This research is aimed at providing description about the comparison of the improvement of the conceptual understanding of lesson on pressure between students who receive physics lesson through science magic-assisting ILD and students who receive physics lesson through ILD without science magic. This research used a quasi-experiment methods with Control Group Pretest-Posttest Design. The subject of the research is all students of class VIII in one of MTs (Islamic junior high school) in Pekalongan. Research samples were selected using random sampling technique. Data about students' conceptual understanding was collected using test instrument of conceptual understanding in the form of multiple choices. N-gain average calculation was performed in order to determine the improvement of students' conceptual understanding. The result of the research shows that conceptual understanding of students on lesson about pressure who received lesson with ILD using science magic is higher than students who received lesson with ILD without science magic . Therefore, the conclusion is that the application of science magic ILD is more effective to improve the conceptual understanding of lesson on pressure.

  5. The effect of background music and song texts on the emotional understanding of children with autism.

    Science.gov (United States)

    Katagiri, June

    2009-01-01

    The purpose of this study was to examine the effect of background music and song texts to teach emotional understanding to children with autism. Participants were 12 students (mean age 11.5 years) with a primary diagnosis of autism who were attending schools in Japan. Each participant was taught four emotions to decode and encode: happiness, sadness, anger, and fear by the counterbalanced treatment-order. The treatment consisted of the four conditions: (a) no contact control (NCC)--no purposeful teaching of the selected emotion, (b) contact control (CC)--teaching the selected emotion using verbal instructions alone, (c) background music (BM)--teaching the selected emotion by verbal instructions with background music representing the emotion, and singing songs (SS)--teaching the selected emotion by singing specially composed songs about the emotion. Participants were given a pretest and a posttest and received 8 individual sessions between these tests. The results indicated that all participants improved significantly in their understanding of the four selected emotions. Background music was significantly more effective than the other three conditions in improving participants' emotional understanding. The findings suggest that background music can be an effective tool to increase emotional understanding in children with autism, which is crucial to their social interactions.

  6. Photoelectric effect experiment for understanding the concept of quantization of radiation energy

    Directory of Open Access Journals (Sweden)

    Yeimy Gerardine Berrios Saavedra

    2016-09-01

    Full Text Available This study forms part of research on the teaching of physics. The question that directed it was: How a proposed classroom, based on the photoelectric effect experiment helps pres-service teachers of physics of the Universidad Pedagógica Nacional to expand their understanding of the concept of quantization energy of radiation? The construction of the theoretical framework developed on the one hand, with scientific ideas about the quantization of energy, and moreover, with the educational proposals of teaching for understanding. This pedagogical approach was guided by the investigative gaze of the study methodology based on design, taking as main element the use of learning tools such as the task to Predict, Experiment and Explain (PEE. It was found that these tasks fomented the initial understandings of students about the concept, while they enriched and transformed progressively their models and scientific ideas, promoting aspects of scientific work in developing curiosity, imagination and motivation.

  7. Effect of a Diagram on Primary Students' Understanding About Electric Circuits

    Science.gov (United States)

    Preston, Christine Margaret

    2017-09-01

    This article reports on the effect of using a diagram to develop primary students' conceptual understanding about electric circuits. Diagrammatic representations of electric circuits are used for teaching and assessment despite the absence of research on their pedagogical effectiveness with young learners. Individual interviews were used to closely analyse Years 3 and 5 (8-11-year-old) students' explanations about electric circuits. Data was collected from 20 students in the same school providing pre-, post- and delayed post-test dialogue. Students' thinking about electric circuits and changes in their explanations provide insights into the role of diagrams in understanding science concepts. Findings indicate that diagram interaction positively enhanced understanding, challenged non-scientific views and promoted scientific models of electric circuits. Differences in students' understanding about electric circuits were influenced by prior knowledge, meta-conceptual awareness and diagram conventions including a stylistic feature of the diagram used. A significant finding that students' conceptual models of electric circuits were energy rather than current based has implications for electricity instruction at the primary level.

  8. Effects of student choice on engagement and understanding in a junior high science class

    Science.gov (United States)

    Foreback, Laura Elizabeth

    The purpose of this study was to determine the effects of increasing individual student choice in assignments on student engagement and understanding of content. It was predicted that if students are empowered to choose learning activities based on individual readiness, learning style, and interests, they would be more engaged in the curriculum and consequently would develop deeper understanding of the material. During the 2009--2010 school year, I implemented differentiated instructional strategies that allowed for an increased degree of student choice in five sections of eighth grade science at DeWitt Junior High School. These strategies, including tiered lessons and student-led, project-based learning, were incorporated into the "Earth History and Geologic Time Scale" unit of instruction. The results of this study show that while offering students choices can be used as an effective motivational strategy, their academic performance was not increased compared to their performance during an instructional unit that did not offer choice.

  9. The Effect of 5E Teaching Model on Gifted Students’ Understanding of Evaporation and Condensation

    OpenAIRE

    DEMİRCİOĞLU, Gökhan; DEMİRCİOĞLU, Hülya; VURAL, Selma

    2016-01-01

    The purpose of this study was to investigate effect of activities based on 5E model on 6th grade gifted students’ understanding levels and alternative conceptions concerning evaporation and condensation. In this study, action research method was adopted. Two activities based on 5E model were developed. The activities were applied to 23 6th grade gifted-students enrolled at Ordu Science and Arts Center. A test consisting of three different sections and semi-structured interviews were used to c...

  10. Informing people about radiation risks: a review of obstacles to public understanding and effective risk communication

    International Nuclear Information System (INIS)

    Covello, V.T.

    1988-01-01

    This paper reviews the literature on informing people about radiation risks. The paper focuses on obstacles to public understanding and effective risk communication. The paper concludes with a set of guidelines for communicating information about radiation risks to the public. The paper also includes an appendix that reviews the literature on one of the most important tools for communicating information about radiation risks: risk comparisons

  11. Middle-School Understanding of the Greenhouse Effect using a NetLogo Computer Model

    Science.gov (United States)

    Schultz, L.; Koons, P. O.; Schauffler, M.

    2009-12-01

    We investigated the effectiveness of a freely available agent based, modeling program as a learning tool for seventh and eighth grade students to explore the greenhouse effect without added curriculum. The investigation was conducted at two Maine middle-schools with 136 seventh-grade students and 11 eighth-grade students in eight classes. Students were given a pre-test that consisted of a concept map, a free-response question, and multiple-choice questions about how the greenhouse effect influences the Earth's temperature. The computer model simulates the greenhouse effect and allows students to manipulate atmospheric and surface conditions to observe the effects on the Earth’s temperature. Students explored the Greenhouse Effect model for approximately twenty minutes with only two focus questions for guidance. After the exploration period, students were given a post-test that was identical to the pre-test. Parametric post-test analysis of the assessments indicated middle-school students gained in their understanding about how the greenhouse effect influences the Earth's temperature after exploring the computer model for approximately twenty minutes. The magnitude of the changes in pre- and post-test concept map and free-response scores were small (average free-response post-test score of 7.0) compared to an expert's score (48), indicating that students understood only a few of the system relationships. While students gained in their understanding about the greenhouse effect, there was evidence that students held onto their misconceptions that (1) carbon dioxide in the atmosphere deteriorates the ozone layer, (2) the greenhouse effect is a result of humans burning fossil fuels, and (3) infrared and visible light have similar behaviors with greenhouse gases. We recommend using the Greenhouse Effect computer model with guided inquiry to focus students’ investigations on the system relationships in the model.

  12. Understanding peer effects : on the nature, estimation and channels of peer effects

    NARCIS (Netherlands)

    Feld, J.F.; Zölitz, U.N.

    2016-01-01

    This paper estimates peer effects in a university context where students are randomly assigned to sections. While students benefit from better peers on average, lowachieving students are harmed by high-achieving peers. Analyzing students’ course evaluations suggests that peer effects are driven by

  13. Understanding peer effects - On the nature, estimation and channels of peer effects

    NARCIS (Netherlands)

    Feld, J.F.; Zölitz, U.N.

    2016-01-01

    This paper estimates peer effects in a university context where students are randomly assigned to sections. While students benefit from better peers on average, low-achieving students are harmed by high-achieving peers. Analyzing students’ course evaluations suggests that peer effects are driven by

  14. Analysis of the effect of specific vocabulary instruction on high school chemistry students' knowledge and understanding

    Science.gov (United States)

    Labrosse, Peggy

    The purpose of this study was to analyze the effects of specific vocabulary instruction on high school chemistry students' knowledge and understanding. Students might be able to formally recite a definition for a term without actually having understood the meaning of the term and its connection to other terms or to related concepts. Researchers (Cassels & Johnstone, 1983; Gabel, 1999; Johnstone, 1991) have been studying the difficulty students have in learning science, particularly chemistry. Gabel (1999) suggests that, "while research into misconceptions (also known as alternative conceptions) and problem-solving has dominated the field for the past 25 years, we are no closer to a solution that would improve the teaching and learning of chemistry" (P. 549). Gabel (1999) relates the difficulty in learning chemistry to use of language. She refers to student difficulty both with words that have more than one meaning in English and with words that are used to mean one idea in chemistry and another idea in every day language. The Frayer Model, a research-based teaching strategy, is a graphic organizer which students use to create meaningful definitions for terms in context (Frayer, Frederick, & Klausmeier, 1969). It was used as the treatment---the specific vocabulary instruction---in this research study. The researcher collected and analyzed data to answer three research questions that focused on the effect of using the Frayer model (a graphic organizer) on high school students' knowledge and understanding of academic language used in chemistry. The research took place in a New England high school. Four intact chemistry classes provided the student participants; two classes were assigned to the treatment group (TG) and two classes were assigned to the control group (CG). The TG received vocabulary instruction on 14 chosen terms using the Frayer Model. The CG received traditional vocabulary instruction with no special attention to the 14 terms selected for this study

  15. Understanding long-term variations in an elephant piosphere effect to manage impacts.

    Directory of Open Access Journals (Sweden)

    Marietjie Landman

    Full Text Available Surface water availability is a key driver of elephant impacts on biological diversity. Thus, understanding the spatio-temporal variations of these impacts in relation to water is critical to their management. However, elephant piosphere effects (i.e. the radial pattern of attenuating impact are poorly described, with few long-term quantitative studies. Our understanding is further confounded by the complexity of systems with elephant (i.e. fenced, multiple water points, seasonal water availability, varying population densities that likely limit the use of conceptual models to predict these impacts. Using 31 years of data on shrub structure in the succulent thickets of the Addo Elephant National Park, South Africa, we tested elephant effects at a single water point. Shrub structure showed a clear sigmoid response with distance from water, declining at both the upper and lower limits of sampling. Adjacent to water, this decline caused a roughly 300-m radial expansion of the grass-dominated habitats that replace shrub communities. Despite the clear relationship between shrub structure and ecological functioning in thicket, the extent of elephant effects varied between these features with distance from water. Moreover, these patterns co-varied with other confounding variables (e.g. the location of neighboring water points, which limits our ability to predict such effects in the absence of long-term data. We predict that elephant have the ability to cause severe transformation in succulent thicket habitats with abundant water supply and elevated elephant numbers. However, these piosphere effects are complex, suggesting that a more integrated understanding of elephant impacts on ecological heterogeneity may be required before water availability is used as a tool to manage impacts. We caution against the establishment of water points in novel succulent thicket habitats, and advocate a significant reduction in water provisioning at our study site

  16. Understanding long-term variations in an elephant piosphere effect to manage impacts.

    Science.gov (United States)

    Landman, Marietjie; Schoeman, David S; Hall-Martin, Anthony J; Kerley, Graham I H

    2012-01-01

    Surface water availability is a key driver of elephant impacts on biological diversity. Thus, understanding the spatio-temporal variations of these impacts in relation to water is critical to their management. However, elephant piosphere effects (i.e. the radial pattern of attenuating impact) are poorly described, with few long-term quantitative studies. Our understanding is further confounded by the complexity of systems with elephant (i.e. fenced, multiple water points, seasonal water availability, varying population densities) that likely limit the use of conceptual models to predict these impacts. Using 31 years of data on shrub structure in the succulent thickets of the Addo Elephant National Park, South Africa, we tested elephant effects at a single water point. Shrub structure showed a clear sigmoid response with distance from water, declining at both the upper and lower limits of sampling. Adjacent to water, this decline caused a roughly 300-m radial expansion of the grass-dominated habitats that replace shrub communities. Despite the clear relationship between shrub structure and ecological functioning in thicket, the extent of elephant effects varied between these features with distance from water. Moreover, these patterns co-varied with other confounding variables (e.g. the location of neighboring water points), which limits our ability to predict such effects in the absence of long-term data. We predict that elephant have the ability to cause severe transformation in succulent thicket habitats with abundant water supply and elevated elephant numbers. However, these piosphere effects are complex, suggesting that a more integrated understanding of elephant impacts on ecological heterogeneity may be required before water availability is used as a tool to manage impacts. We caution against the establishment of water points in novel succulent thicket habitats, and advocate a significant reduction in water provisioning at our study site, albeit with greater

  17. Framework for understanding LENR processes, using conventional condensed matter physics

    International Nuclear Information System (INIS)

    Chubb, Scott R.

    2006-01-01

    Conventional condensed matter physics provides a unifying framework for understanding low-energy nuclear reactions (LENRs) in solids. In the paper, standard many-body physics techniques are used to illustrate this fact. Specifically, the paper shows that formally the theories by Schwinger, Hagelstein, and Chubb and Chubb (C and C), all can be related to a common set of equations, associated with reaction rate and energy transfer, through a standard many-body physics procedure (R-matrix theory). In each case, particular forms of coherence are used that, implicitly provide a mechanism for understanding how LENRs can proceed without. the emission of high-energy particles. In addition, additional ideas, associated with Conventional Condensed Matter physics, are used to extend the earlier ion band state (IBS) model by C and C. The general model clarifies the origin of coherent. processes that initiate LENRs, through the onset of ion conduction that can occur through ionic fluctuations in nano-scale crystals. In the case of PdD x , these fluctuations begin to occur as x → 1 in sub-lattice structures with characteristic dimensions of 60 nm. The resulting LENRs are triggered by the polarization between injected d's and electrons (immediately above the Fermi energy) that takes place in finite-size PdD crystals. During the prolonged charging of PdD x the applied, external electric field induces these fluctuations through a form of Zener tunneling that mimics the kind of tunneling, predicted by Zener, that is responsible for possible conduction (referred to as Zener-electric breakdown) in insulators. But because the fluctuations are ionic and they occur in PdD, nano-scale structures, a more appropriate characterization is Zener-ionic breakdown in nano-crystalline PdD. Using the underlying dynamics, it is possible to relate triggering times that are required for the initiation of the effect, to crystal size and externally applied fields. (authors)

  18. Framework for understanding LENR processes, using conventional condensed matter physics

    Energy Technology Data Exchange (ETDEWEB)

    Chubb, Scott R. [Research Systems Inc., 9822 Pebble Weigh Ct., Burke VA 22015-3378 (United States)

    2006-07-01

    Conventional condensed matter physics provides a unifying framework for understanding low-energy nuclear reactions (LENRs) in solids. In the paper, standard many-body physics techniques are used to illustrate this fact. Specifically, the paper shows that formally the theories by Schwinger, Hagelstein, and Chubb and Chubb (C and C), all can be related to a common set of equations, associated with reaction rate and energy transfer, through a standard many-body physics procedure (R-matrix theory). In each case, particular forms of coherence are used that, implicitly provide a mechanism for understanding how LENRs can proceed without. the emission of high-energy particles. In addition, additional ideas, associated with Conventional Condensed Matter physics, are used to extend the earlier ion band state (IBS) model by C and C. The general model clarifies the origin of coherent. processes that initiate LENRs, through the onset of ion conduction that can occur through ionic fluctuations in nano-scale crystals. In the case of PdD{sub x}, these fluctuations begin to occur as x {yields} 1 in sub-lattice structures with characteristic dimensions of 60 nm. The resulting LENRs are triggered by the polarization between injected d's and electrons (immediately above the Fermi energy) that takes place in finite-size PdD crystals. During the prolonged charging of PdD{sub x} the applied, external electric field induces these fluctuations through a form of Zener tunneling that mimics the kind of tunneling, predicted by Zener, that is responsible for possible conduction (referred to as Zener-electric breakdown) in insulators. But because the fluctuations are ionic and they occur in PdD, nano-scale structures, a more appropriate characterization is Zener-ionic breakdown in nano-crystalline PdD. Using the underlying dynamics, it is possible to relate triggering times that are required for the initiation of the effect, to crystal size and externally applied fields. (authors)

  19. Understanding and tuning the quantum-confinement effect and edge magnetism in zigzag graphene nanoribbon.

    Science.gov (United States)

    Huang, Liang Feng; Zhang, Guo Ren; Zheng, Xiao Hong; Gong, Peng Lai; Cao, Teng Fei; Zeng, Zhi

    2013-02-06

    The electronic structure of zigzag graphene nanoribbon (ZGNR) is studied using density functional theory. The mechanisms underlying the quantum-confinement effect and edge magnetism in ZGNR are systematically investigated by combining the simulated results and some useful analytic models. The quantum-confinement effect and the inter-edge superexchange interaction can be tuned by varying the ribbon width, and the spin polarization and direct exchange splitting of the edge states can be tuned by varying their electronic occupations. The two edges of ZGNR can be equally or unequally tuned by charge doping or Li adsorption, respectively. The Li adatom has a site-selective adsorption on ZGNR, and it is a nondestructive and memorable approach to effectively modify the edge states in ZGNR. These systematic understanding and effective tuning of ZGNR electronics presented in this work are helpful for further investigation and application of ZGNR and other magnetic graphene systems.

  20. Effect of Collaborative Learning in Interactive Lecture Demonstrations (ILD on Student Conceptual Understanding of Motion Graphs

    Directory of Open Access Journals (Sweden)

    Erees Queen B. Macabebe

    2017-04-01

    Full Text Available To assess effectively the influence of peer discussion in understandingconcepts, and to evaluate if the conceptual understanding through Interactive Lecture Demonstrations (ILD and collaborative learning can be translated to actual situations, ten (10 questions on human and carts in motion were presented to 151 university students comprising mostly of science majors but of different year levels. Individual and group predictions were conducted to assess the students’ pre-conceptual understanding of motion graphs. During the ILD, real-time motion graphs were obtained and analysed after each demonstration and an assessment that integrates the ten situations into two scenarios was given to evaluate the conceptual understanding of the students. Collaborative learning produced a positive effect on the prediction scores of the students and the ILD with real-time measurement allowed the students to validate their prediction. However, when the given situations were incorporated to create a scenario, it posted a challenge to the students. The results of this activity identified the area where additional instruction and emphasis is necessary.

  1. The Effect of Brain Based Learning on Second Grade Junior Students’ Mathematics Conceptual Understanding on Polyhedron

    Directory of Open Access Journals (Sweden)

    I Made Suarsana

    2017-06-01

    Full Text Available The aim of this study is to examine the effect of Brain Based Learning on second grade junior high school students’ conceptual understanding on polyhedron. This study was conducted by using post-test only control group quasi-experimental design. The subjects of this study were 148 students that divided into three classes. Two classes were taken as sample by using cluster random sampling technique. One of the classes was randomly selected as an experimental group and the other as control group. There were 48 students in experimental group and 51 students in control group. The data were collected with post-test which contained mathematical conceptual understanding on fractions. The post-test consisted of 8 essay question types.  The normality and variance homogeny test result showed that the scores are normally distributed and have no difference in variance. The data were analyzed by using one tailed t-test with significance level of 5%. The result of data analysis revealed that the value of t-test = 6,7096 greater than t-table = 1,987, therefore; the null hypothesis is rejected. There is positive effect of of Brain Based Learning on second grade junior students’ conceptual understanding in polyhedron.

  2. "There is a chain of connections": using syndemics theory to understand HIV treatment side effects.

    Science.gov (United States)

    Gagnon, Marilou

    2018-07-01

    Side effects are central to the experience of living longer with HIV but rarely have they been studied alone. Unlike other aspects of that experience, like quality of life, treatment adherence, chronicity, episodic disability, aging, health, and viral load suppression, side effects have not benefited from the same level of empirical and theoretical engagement from qualitative researchers. In this paper, we draw on syndemics theory and 50 qualitative interviews to better understand the experience of HIV treatment side effects. Two main categories were identified in the data: side effects as a product and side effects as a risk factor. The first category suggests that side effects are not just the product of taking antiretroviral drugs. They are also the product of particular conditions and tend to cluster with other health problems. The second category puts forward the idea that side effects can act as a syndemic risk factor by exposing PLWH to a greater risk of developing health problems and creating conditions in which psychosocial issues are more likely to emerge. The paper concludes by calling for more research on the complex nature of side effects and for the development of comprehensive approaches for the assessment and management of side effects.

  3. The effect of biotechnology education on Australian high school students' understandings and attitudes about biotechnology processes

    Science.gov (United States)

    Dawson, Vaille; Soames, Christina

    2006-11-01

    Our education system aims to equip young people with the knowledge, problem-solving skills and values to cope with an increasingly technological society. The aim of this study was to determine the effect of biotechnology education on adolescents’ understanding and attitudes about processes associated with biotechnology. Data were drawn from teacher and student interviews and surveys in the context of innovative Year 10 biotechnology courses conducted in three Western Australian high schools. The results indicate that after completing a biotechnology course students’ understanding increased but their attitudes remained constant with the exception of their views about human uses of gene technology. The findings of this study have ramifications for the design and implementation of biotechnology education courses in high schools.

  4. The Effectiveness of learning materials based on multiple intelligence on the understanding of global warming

    Science.gov (United States)

    Liliawati, W.; Purwanto; Zulfikar, A.; Kamal, R. N.

    2018-05-01

    This study aims to examine the effectiveness of the use of teaching materials based on multiple intelligences on the understanding of high school students’ material on the theme of global warming. The research method used is static-group pretest-posttest design. Participants of the study were 60 high school students of XI class in one of the high schools in Bandung. Participants were divided into two classes of 30 students each for the experimental class and control class. The experimental class uses compound-based teaching materials while the experimental class does not use a compound intelligence-based teaching material. The instrument used is a test of understanding of the concept of global warming with multiple choices form amounted to 15 questions and 5 essay items. The test is given before and after it is applied to both classes. Data analysis using N-gain and effect size. The results obtained that the N-gain for both classes is in the medium category and the effectiveness of the use of teaching materials based on the results of effect-size test results obtained in the high category.

  5. Effective spacetime understanding emergence in effective field theory and quantum gravity

    CERN Document Server

    Crowther, Karen

    2016-01-01

    This book discusses the notion that quantum gravity may represent the "breakdown" of spacetime at extremely high energy scales. If spacetime does not exist at the fundamental level, then it has to be considered "emergent", in other words an effective structure, valid at low energy scales. The author develops a conception of emergence appropriate to effective theories in physics, and shows how it applies (or could apply) in various approaches to quantum gravity, including condensed matter approaches, discrete approaches, and loop quantum gravity.

  6. Understanding of radiation effect on sink in aluminum base structure materials

    International Nuclear Information System (INIS)

    Choi, Sang Il; Kim, Ji Hyun

    2014-01-01

    In case of aluminum, a slightly different approach is needed for the evaluation of radiation damage. Unlikely other structure materials such as zirconium alloy and iron based alloy, aluminum generate not only matrix defect but also much transmutation. Quantitative analysis of radiation damage of aluminum have been done in two research method. First research method is calculation of radiation damage quantity in the matrix. In this research, quantity of transmutation and matrix damage are evaluated by KMC simulation from ENDF database of IAEA. Most recently, radiation damage such as defect and transmutation are calculated in the MNSR reactor environment. The second research method is evaluation of sink morphology change by irradiation, which research method focus on accumulating behavior of radiation defects. Matrix defect and transmutation are clustering or dissolved by thermal diffusion and energy statue. These clustering defect such as dislocation loop, void and bubble directly affect mechanical properties. In this research area, it is hard to using deterministic method because it should describe envious and various reaction module in detail. However, in case of probabilistic method, it could be explained without detail reaction module. Most recently, there was KMC modeling about vacancy and helium cluster. From this cluster modeling, transmutation is quantitatively analyzed. After that cluster effect on swelling are explained. Unfortunately, silicon, which is another transmutation of aluminum, effect are neglected. Also primary cluster, which is generated by cascade, effect are neglected. For the fundamental understanding of radiation effect on aluminum alloy, it is needed that more various parameter such as alloy element and primary cluster effect should be researched. However, until now there was not general modeling which include alloy element and primary cluster effect on aluminum. However, there was not specified KMC platform for the quantitative analysis of

  7. Teaching Teaching & Understanding Understanding

    DEFF Research Database (Denmark)

    2006-01-01

    "Teaching Teaching & Understanding Understanding" is a 19-minute award-winning short-film about teaching at university and higher-level educational institutions. It is based on the "Constructive Alignment" theory developed by Prof. John Biggs. The film delivers a foundation for understanding what...

  8. Effects of Structural Transparency in System Dynamics Simulators on Performance and Understanding

    Directory of Open Access Journals (Sweden)

    Birgit Kopainsky

    2015-10-01

    Full Text Available Prior exploration is an instructional strategy that has improved performance and understanding in system-dynamics-based simulators, but only to a limited degree. This study investigates whether model transparency, that is, showing users the internal structure of models, can extend the prior exploration strategy and improve learning even more. In an experimental study, participants in a web-based simulation learned about and managed a small developing nation. All participants were provided the prior exploration strategy but only half received prior exploration embedded in a structure-behavior diagram intended to make the underlying model’s structure more transparent. Participants provided with the more transparent strategy demonstrated better understanding of the underlying model. Their performance, however, was the equivalent to those in the less transparent condition. Combined with previous studies, our results suggest that while prior exploration is a beneficial strategy for both performance and understanding, making the model structure transparent with structure-behavior diagrams is more limited in its effect.

  9. PCI compliance understand and implement effective PCI data security standard compliance

    CERN Document Server

    Williams, Branden R

    2012-01-01

    The credit card industry established the PCI Data Security Standards to provide a minimum standard for how vendors should protect data to ensure it is not stolen by fraudsters. PCI Compliance, 3e, provides the information readers need to understand the current PCI Data Security standards, which have recently been updated to version 2.0, and how to effectively implement security within your company to be compliant with the credit card industry guidelines and protect sensitive and personally identifiable information. Security breaches continue to occur on a regular basis, affecting millions of

  10. Understanding and Predicting Effect of Sodium Exposure on Microstructure of Grade 91 Steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meimei [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Chen, Wei-Ying [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-08-01

    This report provides an update on the understanding of the effect of sodium exposures on microstructure and tensile properties of Grade 91 (G91) steel in support of the design and operation of G91 components in sodium-cooled fast reactors (SFRs). The report is a Level 3 deliverable in FY17 (M3AT-17AN1602018), under the Work Package AT-17AN160201, “SFR Materials Testing” performed by the Argonne National Laboratory (ANL), as part of the Advanced Reactor Technologies Program.

  11. Contribution of local probes in the understanding of mechanical effect on localized corrosion

    International Nuclear Information System (INIS)

    Vignal, Vincent; Oltra, Roland; Mary, Nicolas

    2004-01-01

    Understanding the actual effects of mechanical stresses on the processes leading to pitting corrosion necessitates to develop both a mechanical approach and electrochemical experiments at a microscopic scale. Typical embrittlement can be observed after straining around MnS inclusions on a re-sulfurized 316 stainless steels and their corrosion sensitivity have been classified using the micro-capillary electrochemical cell technique. It has been shown that the numerical simulation of the location of stress gradients is possible before the local electrochemical analysis and could be a very interesting way to define the pitting susceptibility of micro-cracked areas during straining. (authors)

  12. Improving Students' Conceptual Understanding of the Greenhouse Effect Using Theory-Based Learning Materials that Promote Deep Learning

    Science.gov (United States)

    Reinfried, Sibylle; Aeschbacher, Urs; Rottermann, Benno

    2012-01-01

    Students' everyday ideas of the greenhouse effect are difficult to change. Environmental education faces the challenge of developing instructional settings that foster students' conceptual understanding concept of the greenhouse effect in order to understand global warming. To facilitate students' conceptual development with regard to the…

  13. Understanding reliance on automation: effects of error type, error distribution, age and experience

    Science.gov (United States)

    Sanchez, Julian; Rogers, Wendy A.; Fisk, Arthur D.; Rovira, Ericka

    2015-01-01

    An obstacle detection task supported by “imperfect” automation was used with the goal of understanding the effects of automation error types and age on automation reliance. Sixty younger and sixty older adults interacted with a multi-task simulation of an agricultural vehicle (i.e. a virtual harvesting combine). The simulator included an obstacle detection task and a fully manual tracking task. A micro-level analysis provided insight into the way reliance patterns change over time. The results indicated that there are distinct patterns of reliance that develop as a function of error type. A prevalence of automation false alarms led participants to under-rely on the automation during alarm states while over relying on it during non-alarms states. Conversely, a prevalence of automation misses led participants to over-rely on automated alarms and under-rely on the automation during non-alarm states. Older adults adjusted their behavior according to the characteristics of the automation similarly to younger adults, although it took them longer to do so. The results of this study suggest the relationship between automation reliability and reliance depends on the prevalence of specific errors and on the state of the system. Understanding the effects of automation detection criterion settings on human-automation interaction can help designers of automated systems make predictions about human behavior and system performance as a function of the characteristics of the automation. PMID:25642142

  14. Children's experiences of food insecurity can assist in understanding its effect on their well-being.

    Science.gov (United States)

    Connell, Carol L; Lofton, Kristi L; Yadrick, Kathy; Rehner, Timothy A

    2005-07-01

    An understanding of the experience of food insecurity by children is essential for better measurement and assessment of its effect on children's nutritional, physical, and mental health. Our qualitative study explored children's perceptions of household food insecurity to identify these perceptions and to use them to establish components of children's food insecurity experience. Children (n = 32; 11-16 y old) from after school programs and a middle school in low-income areas participated in individual semistructured in-depth interviews. Children as young as 11 y could describe behaviors associated with food insecurity if they had experienced it directly or indirectly. Using the constant comparative method of qualitative data analysis, children's descriptions of behaviors associated with food insecurity were categorized into components of quantity of food, quality of food, psychological aspects, and social aspects described in the household food insecurity literature. Aspects of quantity included eating less than usual and eating more or eating fast when food was available. Aspects of quality included use of a few kinds of low-cost foods. Psychological aspects included worry/anxiety/sadness about the family food supply, feelings of having no choice in the foods eaten, shame/fear of being labeled as poor, and attempts to shield children. Social aspects of food insecurity centered on using social networks to acquire food or money and social exclusion. These results provide valuable information in understanding the effect of food insecurity on children's well-being especially relative to the social and emotional aspects of well-being.

  15. The Effects of Conceptual Understanding Procedures (CUPs) Towards Critical Thinking Skills of Senior High School Students

    Science.gov (United States)

    Sukaesih, S.; Sutrisno

    2017-04-01

    The aim of the study was to analyse the effect of the application of Conceptual Understanding Procedures (CUPs) learning to the students’ critical thinking skills in the matter of categorisaed in SMA Negeri 1 Larangan. This study was quasi-experimental design using nonequivalent control group design. The population in this study was entire class X. The samples that were taken by convenience sampling were class X MIA 1 and X MIA 2. Primary data in the study was the student’s critical thinking skills, which was supported by student activity, the level of adherence to the CUPs learning model, student opinion and teacher opinion. N-gain test results showed that the students’ critical thinking skills of experimental class increased by 89.32%, while the control group increased by 57.14%. Activity grade of experimental class with an average value of 72.37 was better than that of the control class with an average of only 22.69 student and teacher opinions to the learning were excellegoodnt. Based on this study concluded that the model of Conceptual Understanding Procedures (CUPs) had an effect on the student’s critical thinking skills in the matter of protest in SMA Negeri 1 Larangan.

  16. Theory-based approaches to understanding public emergency preparedness: implications for effective health and risk communication.

    Science.gov (United States)

    Paek, Hye-Jin; Hilyard, Karen; Freimuth, Vicki; Barge, J Kevin; Mindlin, Michele

    2010-06-01

    Recent natural and human-caused disasters have awakened public health officials to the importance of emergency preparedness. Guided by health behavior and media effects theories, the analysis of a statewide survey in Georgia reveals that self-efficacy, subjective norm, and emergency news exposure are positively associated with the respondents' possession of emergency items and their stages of emergency preparedness. Practical implications suggest less focus on demographics as the sole predictor of emergency preparedness and more comprehensive measures of preparedness, including both a person's cognitive stage of preparedness and checklists of emergency items on hand. We highlight the utility of theory-based approaches for understanding and predicting public emergency preparedness as a way to enable more effective health and risk communication.

  17. Understanding the Doppler effect by analysing spectrograms of the sound of a passing vehicle

    Science.gov (United States)

    Lubyako, Dmitry; Martinez-Piedra, Gordon; Ushenin, Arthur; Denvir, Patrick; Dunlop, John; Hall, Alex; Le Roux, Gus; van Someren, Laurence; Weinberger, Harvey

    2017-11-01

    The purpose of this paper is to demonstrate how the Doppler effect can be analysed to deduce information about a moving source of sound waves. Specifically, we find the speed of a car and the distance of its closest approach to an observer using sound recordings from smartphones. A key focus of this paper is how this can be achieved in a classroom, both theoretically and experimentally, to deepen students’ understanding of the Doppler effect. Included are our own experimental data (48 sound recordings) to allow others to reproduce the analysis, if they cannot repeat the whole experiment themselves. In addition to its educational purpose, this paper examines the percentage errors in our results. This enabled us to determine sources of error, allowing those conducting similar future investigations to optimize their accuracy.

  18. Tobacco counter-advertising: a review of the literature and a conceptual model for understanding effects.

    Science.gov (United States)

    Agostinelli, Gina; Grube, Joel W

    2003-01-01

    The tobacco counter-advertising literature is reviewed as it relates to basic process questions concerning what makes counter-advertisements effective. Limitations in addressing (a) counter-advertisement content and the psychological mediators targeted, (b) counter-advertisement style and the affective reactions targeted, (c) prior smoking experience, and (d) other audience factors are enumerated. A theoretical model based on alcohol advertising research is presented to address those limitations. The model addresses the practical research question of predicting when tobacco counter-advertising will work by examining the independent influence of each of these enumerated factors, as well as how these factors operate in concert, qualifying each other. The model also addresses the process question of explaining how counter-advertising works by identifying affective and cognitive processes as mediators. By understanding the processes that underlie the qualified findings, one can better advise the designers of tobacco counter-advertisements how to be more effective.

  19. Multiple stressor effects in Chlamydomonas reinhardtii--toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants.

    Science.gov (United States)

    Korkaric, Muris; Behra, Renata; Fischer, Beat B; Junghans, Marion; Eggen, Rik I L

    2015-05-01

    The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Integrative relational machine-learning for understanding drug side-effect profiles.

    Science.gov (United States)

    Bresso, Emmanuel; Grisoni, Renaud; Marchetti, Gino; Karaboga, Arnaud Sinan; Souchet, Michel; Devignes, Marie-Dominique; Smaïl-Tabbone, Malika

    2013-06-26

    Drug side effects represent a common reason for stopping drug development during clinical trials. Improving our ability to understand drug side effects is necessary to reduce attrition rates during drug development as well as the risk of discovering novel side effects in available drugs. Today, most investigations deal with isolated side effects and overlook possible redundancy and their frequent co-occurrence. In this work, drug annotations are collected from SIDER and DrugBank databases. Terms describing individual side effects reported in SIDER are clustered with a semantic similarity measure into term clusters (TCs). Maximal frequent itemsets are extracted from the resulting drug x TC binary table, leading to the identification of what we call side-effect profiles (SEPs). A SEP is defined as the longest combination of TCs which are shared by a significant number of drugs. Frequent SEPs are explored on the basis of integrated drug and target descriptors using two machine learning methods: decision-trees and inductive-logic programming. Although both methods yield explicit models, inductive-logic programming method performs relational learning and is able to exploit not only drug properties but also background knowledge. Learning efficiency is evaluated by cross-validation and direct testing with new molecules. Comparison of the two machine-learning methods shows that the inductive-logic-programming method displays a greater sensitivity than decision trees and successfully exploit background knowledge such as functional annotations and pathways of drug targets, thereby producing rich and expressive rules. All models and theories are available on a dedicated web site. Side effect profiles covering significant number of drugs have been extracted from a drug ×side-effect association table. Integration of background knowledge concerning both chemical and biological spaces has been combined with a relational learning method for discovering rules which explicitly

  1. Immediate And Retention Effects Of Teaching Games For Understanding Approach On Basketball Knowledge

    Directory of Open Access Journals (Sweden)

    Olosová Gabriela

    2015-05-01

    Full Text Available Teaching Games for Understanding (TGfU links tactics and skills by emphasizing the appropriate timing and application within the tactical context of the game. It has been linked to the development of enhanced tactical knowledge. The purpose of the study was to determine immediate and delayed effects of TGfU on procedural and declarative knowledge of basketball and to compare it with a technical approach. Experimental group (EG (11 fifth graders + 18 sixth graders was taught by TGfU and a control group (CG (16 fifth graders + 24 sixth graders was taught by a technical approach for 8 weeks in Physical Education (PE classes, both. A written test was constructed to evaluate pupils’ declarative and procedural knowledge of basketball. The test was applied after the intervention to determine immediate effects and 8 months after the intervention to determine retention effects of the experimental programme. Shapiro-Wilk test, Wilcoxon T-test, Man-Whitney U-test were used for statistical analysis of obtained data. Cohen’s d was used to calculate effect size. Generally basketball knowledge was better in EG than in CG after the intervention (p<0.05 what confirms moderate effect size. When declarative and procedural knowledge were analysed separately there was no significant difference between EG and CG. Nevertheless, moderate effect sizes indicate that the data are particularly meaningful in terms of school practice. Retention effects of both approaches were similar. Total knowledge and declarative knowledge were worse after 8 months than immediately after the intervention in both groups (p<0.01. In both groups, there was no significant difference in procedural knowledge between the test written immediately after the intervention and 8 months later. Differences of changes were not significant between the groups.

  2. The effect of technology-enabled active learning on undergraduate students understanding of electromagnetism

    International Nuclear Information System (INIS)

    Dori, Y.J.

    2005-01-01

    Full Text:The Technology-Enabled Active Learning Project at the Massachusetts Institute of Technology (MIT) involves media-rich software for simulation and visualization in freshman physics carried out in a specially redesigned classroom to facilitate group interaction. These technology-based learning materials are especially useful in electromagnetism to help students conceptualize phenomena and processes. This study analyzes the effects of the unique learning environment of the Technology-Enabled Active Learning Project project on students cognitive and affective outcomes. The assessment of the project included examining students conceptual understanding before and after studying electromagnetism in a media-rich environment. We also investigated the effect of this environment on students preferences regarding the various teaching methods. As part of the project, we developed pre- and post-tests consisting of conceptual questions from standardized tests, as well as questions designed to assess the effect of visualizations and experiments. The research population consisted of 811 undergraduate students. It consisted of a small- and a large-scale experimental groups and a control group. Technology-Enabled Active Learning Project students improved their conceptual understanding concepts of the subject matter to a significantly higher extent than their control group peers. A majority of the students in the small-scale experiment noted that they would recommend the Technology-Enabled Active Learning Project course to fellow students, indicating the benefits of inter activity, visualization, and hands-on experiments, which the technology helped enable. In the large-scale implementation students expressed both positive and negative attitudes in the course survey

  3. Understanding of radiation effect on sinks in aluminum materials for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sang Il; Kim, Ji Hyun [UNIST, Daejeon (Korea, Republic of)

    2015-05-15

    Aluminum and its alloy are widely used in structural materials for research reactor such as guide tube and cladding because of its physical properties such as high thermal conductivity, neutron economy and corrosion resistant properties. Although aluminum and its alloy have excellent characteristic, radiation induced hardening and swelling are still important safety concern. From microstructural analysis, it was confirmed that dislocation loop, void and precipitate are major sinks which induced swelling and hardening. Among these defects, precipitation such as Mg{sub 2}Si and Si were generated by reaction between alloy elements and transmutations. Therefore, radiation induced swelling and hardening can be predicted by analyzing these defect. However, quantitative analysis of these defects has not been done by computational tools. Therefore, it is unclear that specific mechanism of alloy element effects on the irradiation swelling and hardening in aluminum alloys. Historically, radiation induced phenomena such as swelling, growth and hardening is simulated by Mean Field Radiation Damage Theory (MFRDT). From the MFRDT, reactions of irradiation defect and sink are calculated and then sink density is evolved at each type of sinks. The aim of this study is understanding of radiation effect on sink behavior. From the simplified reaction mechanism, defect concentration, sink density and irradiation hardening are calculated at each sink type. Transmutation effect was mostly dominant and dislocation loop and void effect were negligible.

  4. Multiple stressor effects in Chlamydomonas reinhardtii – Toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Korkaric, Muris [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland); Behra, Renata; Fischer, Beat B. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); Junghans, Marion [Swiss Center for Applied Ecotoxicology Eawag-EPFL, 8600, Duebendorf (Switzerland); Eggen, Rik I.L., E-mail: rik.eggen@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland)

    2015-05-15

    Highlights: • Systematic study of multiple stressor effects of UVR and chemicals in C. reinhardtii. • UVR and chemicals did not act independently on algal photosynthesis and reproduction. • Multiple stressor effects of UVR and chemicals depended on chemical MOA. • Synergistic effect interactions not limited to oxidative stress inducing chemicals. • Multiple MOAs of UVR may limit applicability of current prediction models. - Abstract: The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are

  5. Multiple stressor effects in Chlamydomonas reinhardtii – Toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants

    International Nuclear Information System (INIS)

    Korkaric, Muris; Behra, Renata; Fischer, Beat B.; Junghans, Marion; Eggen, Rik I.L.

    2015-01-01

    Highlights: • Systematic study of multiple stressor effects of UVR and chemicals in C. reinhardtii. • UVR and chemicals did not act independently on algal photosynthesis and reproduction. • Multiple stressor effects of UVR and chemicals depended on chemical MOA. • Synergistic effect interactions not limited to oxidative stress inducing chemicals. • Multiple MOAs of UVR may limit applicability of current prediction models. - Abstract: The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are

  6. The effectiveness of 3D animations to enhance understanding of cranial cruciate ligament rupture.

    Science.gov (United States)

    Clements, Dylan N; Broadhurst, Henry; Clarke, Stephen P; Farrell, Michael; Bennett, David; Mosley, John R; Mellanby, Richard J

    2013-01-01

    Cranial cruciate ligament (CCL) rupture is one of the most important orthopedic diseases taught to veterinary undergraduates. The complexity of the anatomy of the canine stifle joint combined with the plethora of different surgical interventions available for the treatment of the disease means that undergraduate veterinary students often have a poor understanding of the pathophysiology and treatment of CCL rupture. We designed, developed, and tested a three dimensional (3D) animation to illustrate the pertinent clinical anatomy of the stifle joint, the effects of CCL rupture, and the mechanisms by which different surgical techniques can stabilize the joint with CCL rupture. When compared with a non-animated 3D presentation, students' short-term retention of functional anatomy improved although they could not impart a better explanation of how different surgical techniques worked. More students found the animation useful than those who viewed a comparable non-animated 3D presentation. Multiple peer-review testing is required to maximize the usefulness of 3D animations during development. Free and open access to such tools should improve student learning and client understanding through wide-spread uptake and use.

  7. Household structure vs. composition: Understanding gendered effects on educational progress in rural South Africa.

    Science.gov (United States)

    Madhavan, Sangeetha; Myroniuk, Tyler W; Kuhn, Randall; Collinson, Mark A

    2017-01-01

    Demographers have long been interested in the relationship between living arrangements and gendered outcomes for children in sub-Saharan Africa. Most extant research conflates household structure with composition and has revealed little about the pathways that link these components to gendered outcomes. First, we offer a conceptual approach that differentiates structure from composition with a focus on gendered processes that operate in the household; and second, we demonstrate the value of this approach through an analysis of educational progress for boys and girls in rural South Africa. We use data from the 2002 round of the Agincourt Health and Demographic Surveillance System. Our analytical sample includes 22,997 children aged 6-18 who were neither parents themselves nor lived with a partner or partner's family. We employ ordinary least squares regression models to examine the effects of structure and composition on educational progress of girls and boys. The results suggest that non-nuclear structures are associated with similar negative effects for both boys and girls compared to children growing up in nuclear households. However, the presence of other kin in the absence of one or both parents results in gendered effects favouring boys. The absence of any gendered effects when using a household structure typology suggests that secular changes to attitudes about gender equity trump any specific gendered processes stemming from particular configurations. On the other hand, gendered effects that appear when one or both parents are absent show that traditional gender norms and/or resource constraints continue to favour boys. Despite the wealth of literature on household structure and children's educational outcomes in sub-Saharan Africa, the conceptual basis of these effects has not been well articulated. We have shown the value of unpacking household structure to better understand how gender norms and gendered resource allocations impact education.

  8. Multiple intelligences and alternative teaching strategies: The effects on student academic achievement, conceptual understanding, and attitude

    Science.gov (United States)

    Baragona, Michelle

    The purpose of this study was to investigate the interactions between multiple intelligence strengths and alternative teaching methods on student academic achievement, conceptual understanding and attitudes. The design was a quasi-experimental study, in which students enrolled in Principles of Anatomy and Physiology, a developmental biology course, received lecture only, problem-based learning with lecture, or peer teaching with lecture. These students completed the Multiple Intelligence Inventory to determine their intelligence strengths, the Students' Motivation Toward Science Learning questionnaire to determine student attitudes towards learning in science, multiple choice tests to determine academic achievement, and open-ended questions to determine conceptual understanding. Effects of intelligence types and teaching methods on academic achievement and conceptual understanding were determined statistically by repeated measures ANOVAs. No significance occurred in academic achievement scores due to lab group or due to teaching method used; however, significant interactions between group and teaching method did occur in students with strengths in logical-mathematical, interpersonal, kinesthetic, and intrapersonal intelligences. Post-hoc analysis using Tukey HSD tests revealed students with strengths in logical-mathematical intelligence and enrolled in Group Three scored significantly higher when taught by problem-based learning (PBL) as compared to peer teaching (PT). No significance occurred in conceptual understanding scores due to lab group or due to teaching method used; however, significant interactions between group and teaching method did occur in students with strengths in musical, kinesthetic, intrapersonal, and spatial intelligences. Post-hoc analysis using Tukey HSD tests revealed students with strengths in logical-mathematical intelligence and enrolled in Group Three scored significantly higher when taught by lecture as compared to PBL. Students with

  9. Recent advances in understanding total-dose effects in bipolar transistors

    International Nuclear Information System (INIS)

    Schrimpf, R.D.

    1996-01-01

    Gain degradation in irradiated bipolar transistors can be a significant problem, particularly in linear integrated circuits. In many bipolar technologies, the degradation is greater for irradiation at low dose rates than it is for typical laboratory dose rates. Ionizing radiation causes the base current in bipolar transistors to increase, due to the presence of net positive charge in the oxides covering sensitive device areas and increases in surface recombination velocity. Understanding the mechanisms responsible for radiation-induced gain degradation in bipolar transistors is important in developing appropriate hardness assurance methods. This paper reviews recent modeling and experimental work, with the emphasis on low-dose-rate effects. A promising hardness assurance method based on irradiation at elevated temperatures is described

  10. Suggestibility, expectancy, trance state effects, and hypnotic depth: I. Implications for understanding hypnotism.

    Science.gov (United States)

    Pekala, Ronald J; Kumar, V K; Maurer, Ronald; Elliott-Carter, Nancy; Moon, Edward; Mullen, Karen

    2010-04-01

    This paper reviews the relationships between trance or altered state effects, suggestibility, and expectancy as these concepts are defined in the theorizing of Weitzenhoffer (2002), Holroyd (2003), Kirsch (1991), and others, for the purpose of demonstrating how these concepts can be assessed with the PCI-HAP (Phenomenology of Consciousness Inventory: Hypnotic Assessment Procedure; Pekala, 1995a, b). In addition, how the aforementioned variables may relate to the nature of hypnosis/hypnotism as a function of self-reported hypnotic depth are discussed, along with how the PCI-HAP may be used as a means to measure hypnotic responsivity from a more phenomenological state perspective, in contrast to more traditional behavioral trait assessment instruments like the Harvard, the Stanford C, or the HIP. A follow-up paper (Pekala, Kumar, Maurer, Elliott-Carter, Moon, & Mullen, 2010) will present research data on the PCI-HAP model and how this model can be useful for better understanding hypnotism.

  11. Modeling and understanding of effects of randomness in arrays of resonant meta-atoms

    DEFF Research Database (Denmark)

    Tretyakov, Sergei A.; Albooyeh, Mohammad; Alitalo, Pekka

    2013-01-01

    In this review presentation we will discuss approaches to modeling and understanding electromagnetic properties of 2D and 3D lattices of small resonant particles (meta-atoms) in transition from regular (periodic) to random (amorphous) states. Nanostructured metasurfaces (2D) and metamaterials (3D......) are arrangements of optically small but resonant particles (meta-atoms). We will present our results on analytical modeling of metasurfaces with periodical and random arrangements of electrically and magnetically resonant meta-atoms with identical or random sizes, both for the normal and oblique-angle excitations....... We show how the electromagnetic response of metasurfaces is related to the statistical parameters of the structure. Furthermore, we will discuss the phenomenon of anti-resonance in extracted effective parameters of metamaterials and clarify its relation to the periodicity (or amorphous nature...

  12. Updating citizenship? The effects of digital media use on citizenship understanding and political participation

    DEFF Research Database (Denmark)

    Ohme, Jakob

    2018-01-01

    Is there a connection between increased use of digital media and changing patterns of political participation? This study tests how the use of online media for different purposes (social interaction, creative expression, online news use, social media news use) is related to three types of political...... participation. It examines whether mobilizing effects are partly indirect due to different understandings of citizenship (dutiful, optional, individual, collective) that may be fostered by digital media use. The study is based on a survey of a sample of the Danish population (n = 1322), including data from two...... online survey waves and a smartphone-based media diary that documents respondents’ social media use. Results indicate support for a new pathway to participation, but the relationship depends on whether citizens are socialized in a digital media environment....

  13. Toward understanding the thermodynamics of TALSPEAK process. Medium effects on actinide complexation

    International Nuclear Information System (INIS)

    Zalupski, Peter R.; Martin, Leigh R.; Nash, Ken; Nakamura, Yoshinobu; Yamamoto, Masahiko

    2009-01-01

    The ingenious combination of lactate and diethylenetriamine-N,N,N',N(double p rime),N(double p rime)-pentaacetic acid (DTPA) as an aqueous actinide-complexing medium forms the basis of the successful separation of americium and curium from lanthanides known as the TALSPEAK process. While numerous reports in the prior literature have focused on the optimization of this solvent extraction system, considerably less attention has been devoted to the understanding of the basic thermodynamic features of the complex fluids responsible for the separation. The available thermochemical information of both lactate and DTPA protonation and metal complexation reactions are representative of the behavior of these ions under idealized conditions. Our previous studies of medium effects on lactate protonation suggest that significant departures from the speciation predicted based on reported thermodynamic values should be expected in the TALSPEAK aqueous environment. Thermodynamic parameters describing the separation chemistry of this process thus require further examination at conditions significantly removed from conventional ideal systems commonly employed in fundamental solution chemistry. Such thermodynamic characterization is the key to predictive modelling of TALSPEAK. Improved understanding will, in principle, allow process technologists to more efficiently respond to off-normal conditions during large scale process operation. In this report, the results of calorimetric and potentiometric investigations of the effects of aqueous electrolytes on the thermodynamic parameters for lactate protonation and lactate complexation of americium and neodymium will be presented. Studies on the lactate protonation equilibrium will clearly illustrate distinct thermodynamic variations between strong electrolyte aqueous systems and buffered lactate environment.

  14. Recent Advances in Understanding the Effects of Climate Change on Coral Reefs

    Directory of Open Access Journals (Sweden)

    Andrew S. Hoey

    2016-05-01

    Full Text Available Climate change is one of the greatest threats to the persistence of coral reefs. Sustained and ongoing increases in ocean temperatures and acidification are altering the structure and function of reefs globally. Here, we summarise recent advances in our understanding of the effects of climate change on scleractinian corals and reef fish. Although there is considerable among-species variability in responses to increasing temperature and seawater chemistry, changing temperature regimes are likely to have the greatest influence on the structure of coral and fish assemblages, at least over short–medium timeframes. Recent evidence of increases in coral bleaching thresholds, local genetic adaptation and inheritance of heat tolerance suggest that coral populations may have some capacity to respond to warming, although the extent to which these changes can keep pace with changing environmental conditions is unknown. For coral reef fishes, current evidence indicates increasing seawater temperature will be a major determinant of future assemblages, through both habitat degradation and direct effects on physiology and behaviour. The effects of climate change are, however, being compounded by a range of anthropogenic disturbances, which may undermine the capacity of coral reef organisms to acclimate and/or adapt to specific changes in environmental conditions.

  15. CALCULATING ROTATING HYDRODYNAMIC AND MAGNETOHYDRODYNAMIC WAVES TO UNDERSTAND MAGNETIC EFFECTS ON DYNAMICAL TIDES

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xing, E-mail: xing.wei@sjtu.edu.cn [Institute of Natural Sciences and Department of Physics and Astronomy, Shanghai Jiao Tong University (China); Princeton University Observatory, Princeton, NJ 08544 (United States)

    2016-09-01

    To understand magnetic effects on dynamical tides, we study the rotating magnetohydrodynamic (MHD) flow driven by harmonic forcing. The linear responses are analytically derived in a periodic box under the local WKB approximation. Both the kinetic and Ohmic dissipations at the resonant frequencies are calculated, and the various parameters are investigated. Although magnetic pressure may be negligible compared to thermal pressure, the magnetic field can be important for the first-order perturbation, e.g., dynamical tides. It is found that the magnetic field splits the resonant frequency, namely the rotating hydrodynamic flow has only one resonant frequency, but the rotating MHD flow has two, one positive and the other negative. In the weak field regime the dissipations are asymmetric around the two resonant frequencies and this asymmetry is more striking with a weaker magnetic field. It is also found that both the kinetic and Ohmic dissipations at the resonant frequencies are inversely proportional to the Ekman number and the square of the wavenumber. The dissipation at the resonant frequency on small scales is almost equal to the dissipation at the non-resonant frequencies, namely the resonance takes its effect on the dissipation at intermediate length scales. Moreover, the waves with phase propagation that is perpendicular to the magnetic field are much more damped. It is also interesting to find that the frequency-averaged dissipation is constant. This result suggests that in compact objects, magnetic effects on tidal dissipation should be considered.

  16. The Effect of Three-Dimensional Simulations on the Understanding of Chemical Structures and Their Properties

    Science.gov (United States)

    Urhahne, Detlef; Nick, Sabine; Schanze, Sascha

    2009-08-01

    In a series of three experimental studies, the effectiveness of three-dimensional computer simulations to aid the understanding of chemical structures and their properties was investigated. Arguments for the usefulness of three-dimensional simulations were derived from Mayer’s generative theory of multimedia learning. Simulations might lead to a decrease in cognitive load and thus support active learning. In our studies, the learning effectiveness of three-dimensional simulations was compared to two-dimensional illustrations by use of different versions of a computer programme concerning the modifications of carbon. The first and third study with freshman students of chemistry and biochemistry show that no more knowledge was acquired when participants learnt with three-dimensional simulations than with two-dimensional figures. In the second study with 16-year old secondary school students, use of simulations facilitated the acquisition of conceptual knowledge. It was concluded that three-dimensional simulations are more effective for younger students who lack the experience of learning with different visual representation formats in chemistry. In all three studies, a significant relationship between spatial ability and conceptual knowledge about the modifications of carbon was detected.

  17. Understanding the protective effects of wine components and their metabolites in the brain function

    Directory of Open Access Journals (Sweden)

    Esteban-Fernández A.

    2016-01-01

    Full Text Available Moderate wine consumption has been suggested to exert a positive effect in prevention of neurodegenerative process and cognitive impairment. With the ultimate aim of achieving a better understanding of the molecular mechanisms behind this benefit, we have investigated the role of certain wine- derived phenolic metabolites and aroma compounds in the MAPK cascade (including ERK1/2, p38, one of the routes directly related to inflammation in neuronal cells. Some of the tested phenolic compounds, especially in the case of 3,4-dihydroxyphenylacetic acid, showed a significant neuroprotective effect against SIN-1-induced neuronal death. Regarding their effect over MAPK phosphorylation, inmunoblotting technique revealed a beneficial and significant decrease on the phosphorylation of p38 and ERK1/2 kinases after incubation with wine constituents. In addition, activity of caspase3-like protease, an executor of neuronal apoptosis and a downstream signal of MAPK, was significantly diminished by 3-(3-hydroxyphenyl propionic acid and linalool, counterbalancing the increase produced by SIN-1. Altogether, these results suggest that wine aroma, phenolic compounds and their gut metabolites could exert neuroprotective actions by modulating MAPK signalling and caspase-3 proteases activation, which are known to play a key role in oxidative/ nitrosative stress-induced response.

  18. Understanding the relationships between molecule structure and imprinting effect of two acetyl-nitrogen heterocyclic compounds.

    Science.gov (United States)

    Wang, Jian; Dong, Xiao; Xue, Min; Dong, Xuemin; Xu, Zhibin; Meng, Zihui; Luo, Jun

    2016-06-01

    The molecularly imprinted polymers (MIPs) for two structural analogs, 1,3,5-triacetyl-1,3,5-triazacyclohexane (TRAT) and 1,3,5,7-tetraacetyl-1,3,5,7-tetraazacyclooctane (TAT), have been synthesized respectively under the same conditions. The TAT-MIP showed excellent imprinting effect, whereas the TRAT-MIP did not. To understand the different imprinting effects of the MIPs prepared from these two templates, the geometric structures and energetic properties of complexes formed around TAT and TRAT were studied computationally. The results indicate that in liquid phase, for the complexes formed with TAT and its nearest neighbor molecules, the magnitude of the binding energy increases with the number of surrounding TAT, methacrylic acid, and acetonitrile (ACT), whereas for the cases of TRAT, the magnitude of the binding energy increases with the number of surrounding TRAT and trimethylolpropane trimethacrylate. The studied systems form stronger and thus more stable networks encapsulating TAT than with TRAT. ACT may also play an important role in the polymerization phase in stabilizing the shapes of the cavities that TATs reside in. We propose these as the major factors that affect the different imprinting effects of the two MIPs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Optical spectroscopic characteristics of lactate and mitochondrion as new biomarkers in cancer diagnosis: understanding Warburg effect

    Science.gov (United States)

    Liu, C.-H.; Ni, X. H.; Pu, Yang; Yang, Y. L.; Zhou, F.; Zuzolo, R.; Wang, W. B.; Masilamani, V.; Rizwan, A.; Alfano, R. R.

    2012-01-01

    Cancer cells display high rates of glycolysis even under normoxia and mostly under hypoxia. Warburg proposed this effect of altered metabolism in cells more than 80 years ago. It is considered as a hallmark of cancer. Optical spectroscopy can be used to explore this effect. Pathophysiological studies indicate that mitochondria of cancer cells are enlarged and increased in number. Warburg observed that cancer cells tend to convert most glucose to lactate regardless of the presence of oxygen. Previous observations show increased lactate in breast cancer lines. The focus of this study is to investigate the relative content changes of lactate and mitochondria in human cancerous and normal breast tissue samples using optical spectroscopic techniques. The optical spectra were obtained from 30 cancerous and 25 normal breast tissue samples and five model components (Tryptophan, fat, collagen, lactate and mitochondrion) using fluorescence, Stokes shift and Raman spectroscopy. The basic biochemical component analysis model (BBCA) and a set of algorithm were used to analyze the spectra. Our analyses of fluorescence spectra showed a 14 percent increase in lactate content and 2.5 times increase in mitochondria number in cancerous breast tissue as compared with normal tissue. Our findings indicate that optical spectroscopic techniques may be used to understand Warburg effect. Lactate and mitochondrion content changes in tumors examined using optical spectroscopy may be used as a prognostic molecular marker in clinic applications.

  20. Passive sampling: A cost-effective method for understanding antibiotic fate, behaviour and impact.

    Science.gov (United States)

    Chen, Chang-Er; Zhang, Hao; Ying, Guang-Guo; Zhou, Li-Jun; Jones, Kevin C

    2015-12-01

    The occurrence of antibiotics in the environment has raised much concern in recent years. Understanding their release, fate and behaviour in the environment is vital to assess potential risks. In this study, a novel passive water sampler - diffusion gradients in thin-films for organics (o-DGT) - was employed to assess the occurrence and removal of antibiotics in two waste water treatment plants (WWTPs) - one in China and the other in the United Kingdom (UK). Of the targeted compounds, 11 of 19 were detected in the Chinese WWTP (ND-200ng/L) and 10 of 40 were found in the UK plant (ND-1380ng/L). Florfenicol, lincomycin, ofloxacin and roxithromycin were most abundant in the Chinese WWTP (influent), while anhydrous erythromycin, ciprofloxacin, trimethoprim, ofloxacin and sulfapyridine were the most abundant in the UK influent samples. Estimated Chinese and UK consumption data are used to interpret the results. Neither of the WWTPs was very effective at removing antibiotics: ~40-50% (overall) was removed by the two plants, with the rest being discharged into the receiving rivers. This is the first study using o-DGT to assess the occurrence and removal of antibiotics in WWTPs. o-DGT is a useful, cost-effective tool to assess WWTP performance and can highlight the effectiveness of treatment steps, which can be applied to wastewater based epidemiology studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Increasing the understanding of chemical concepts: The effectiveness of multiple exposures

    Science.gov (United States)

    Bius, Janet H.

    Chemistry is difficult because it has multilevels of knowledge with each level presenting challenges in vocabulary, abstract thinking, and symbolic language. Students have to be able to transfer between levels to understand the concepts and the theoretical models of chemistry. The cognitive theories of constructivism and cognitive-load theory are used to explain the difficulties novice learners have with the subject of chemistry and methods to increase success for students. The relationship between external representations, misconceptions and topics on the success of students are addressed. If students do not know the formalisms associated with chemical diagrams and graphs, the representations will decrease student success. Misconceptions can be formed when new information is interpreted based on pre-existing knowledge that is faulty. Topics with large amount of interacting elements that must be processed simultaneously are considered difficult to understand. New variables were created to measure the number of times a student is exposed to a chemical concept. Each variable was coded according to topic and learning environment, which are the lecture and laboratory components of the course, homework assignments and textbook examples. The exposure variables are used to measure the success rate of students on similar exam questions. Question difficulty scales were adapted for this project from those found in the chemical education literature. The exposure variables were tested on each level of the difficulty scales to determine their effect at decreasing the cognitive demand of these questions. The subjects of this study were freshmen science majors at a large Midwest university. The effects of the difficulty scales and exposure variables were measured for those students whose exam scores were in the upper one-fourth percentile, for students whose test scores were in the middle one-half percentile, and the lower one-fourth percentile are those students that scored the

  2. Household structure vs. composition: Understanding gendered effects on educational progress in rural South Africa

    Directory of Open Access Journals (Sweden)

    Sangeetha Madhavan

    2017-12-01

    Full Text Available Background: Demographers have long been interested in the relationship between living arrangements and gendered outcomes for children in sub-Saharan Africa. Most research conflates household structure with composition and has revealed little about the pathways that link these components to gendered outcomes. Objective: We offer a conceptual approach that differentiates structure from composition with a focus on gendered processes that operate in the household in rural South Africa. Methods: We use data from the 2002 round of the Agincourt Health and Socio-Demographic Surveillance System. Our analytical sample includes 22,997 children aged 6‒18 who were neither parents themselves nor lived with a partner or partner's family. We employ ordinary least squares regression models to examine the effects of structure and composition on educational progress of girls and boys. Results: Non-nuclear structures are associated with similar negative effects for both boys and girls compared to children growing up in nuclear households. However, the presence of other kin in the absence of one or both parents results in gendered effects favouring boys. Conclusions: The absence of any gendered effects when using a household structure typology suggests that secular changes to attitudes about gender equity trump any specific gendered processes stemming from particular configurations. On the other hand, gendered effects that appear when one or both parents are absent show that traditional gender norms and/or resource constraints continue to favour boys. Contribution: We have shown the value of unpacking household structure to better understand how gender norms and gendered resource allocations are linked to an important outcome for children in sub-Saharan Africa.

  3. The Effect of 7E Learning Model on Conceptual Understandings of Prospective Science Teachers on "de Broglie Matter Waves" Subject

    Science.gov (United States)

    Gorecek Baybars, Meryem; Kucukozer, Huseyin

    2018-01-01

    The object of this study is to determine the conceptual understanding that prospective Science teachers have relating "de Broglie: Matter waves" and to investigate the effect of the instruction performed, on the conceptual understanding. This study was performed at a state university located in the western part of Turkey, with the…

  4. Individual differences in children's emotion understanding: Effects of age and language

    DEFF Research Database (Denmark)

    Pons, Francisco; Lawson, J.: Harris, P.; Rosnay, M. de

    2003-01-01

    Over the last two decades, it has been established that children's emotion understanding changes as they develop. Recent studies have also begun to address individual differences in children's emotion understanding. The first goal of this study was to examine the development of these individual...... differences across a wide age range with a test assessing nine different components of emotion understanding. The second goal was to examine the relation between language ability and individual differences in emotion understanding. Eighty children ranging in age from 4 to 11 years were tested. Children...... displayed a clear improvement with age in both their emotion understanding and language ability. In each age group, there were clear individual differences in emotion understanding and language ability. Age and language ability together explained 72% of emotion understanding variance; 20% of this variance...

  5. Understanding non-equilibrium collisional and expansion effects in the solar wind with Parker Solar Probe

    Science.gov (United States)

    Korreck, K. E.; Klein, K. G.; Maruca, B.; Alterman, B. L.

    2017-12-01

    The evolution of the solar wind from the corona to the Earth and throughout the heliosphere is a complex interplay between local micro kinetics and large scale expansion effects. These processes in the solar wind need to be separated in order to understand and distinguish the dominant mechanism for heating and acceleration of the solar wind. With the upcoming launch in 2018 of Parker Solar Probe and the launch of Solar Orbiter after, addressing the local and global phenomena will be enabled with in situ measurements. Parker Solar Probe will go closer to the Sun than any previous mission enabling the ability to examine the solar wind at an early expansion age. This work examines the predictions for what will be seen inside of the 0.25 AU (54 solar radii) where Parker Solar Probe will take measurements and lays the groundwork for disentangling the expansion and collisional effects. In addition, methods of thermal plasma data analysis to determine the stability of the plasma in the Parker Solar Probe measurements will be discussed.

  6. Understanding the effects of electronic polarization and delocalization on charge-transport levels in oligoacene systems

    KAUST Repository

    Sutton, Christopher; Tummala, Naga Rajesh; Kemper, Travis; Aziz, Saadullah G.; Sears, John; Coropceanu, Veaceslav; Bredas, Jean-Luc

    2017-01-01

    Electronic polarization and charge delocalization are important aspects that affect the charge-transport levels in organic materials. Here, using a quantum mechanical/ embedded-charge (QM/EC) approach based on a combination of the long-range corrected omega B97X-D exchange-correlation functional (QM) and charge model 5 (CM5) point-charge model (EC), we evaluate the vertical detachment energies and polarization energies of various sizes of crystalline and amorphous anionic oligoacene clusters. Our results indicate that QM/EC calculations yield vertical detachment energies and polarization energies that compare well with the experimental values obtained from ultraviolet photoemission spectroscopy measurements. In order to understand the effect of charge delocalization on the transport levels, we considered crystalline naphthalene systems with QM regions including one or five-molecules. The results for these systems show that the delocalization and polarization effects are additive; therefore, allowing for electron delocalization by increasing the size of the QM region leads to the additional stabilization of the transport levels. Published by AIP Publishing.

  7. Understanding the effects of strain on morphological instabilities of a nanoscale island during heteroepitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Lu; Wang, Jing; Wang, Shibin; Li, Linan; Shen, Min; Wang, Zhiyong; Chen, Zhenfei; Zhao, Yang [Tianjin Key Laboratory of Modern Engineering Mechanics, Tianjin 300072 (China); Department of Mechanics, Tianjin University, Tianjin 300072 (China)

    2015-07-21

    A comprehensive morphological stability analysis of a nanoscale circular island during heteroepitaxial growth is presented based on continuum elasticity theory. The interplay between kinetic and thermodynamic mechanisms is revealed by including strain-related kinetic processes. In the kinetic regime, the Burton-Cabrera-Frank model is adopted to describe the growth front of the island. Together with kinetic boundary conditions, various kinetic processes including deposition flow, adatom diffusion, attachment-detachment kinetics, and the Ehrlich-Schwoebel barrier can be taken into account at the same time. In the thermodynamic regime, line tension, surface energy, and elastic energy are considered. As the strain relief in the early stages of heteroepitaxy is more complicated than commonly suggested by simple consideration of lattice mismatch, we also investigate the effects of external applied strain and elastic response due to perturbations on the island shape evolution. The analytical expressions for elastic fields induced by mismatch strain, external applied strain, and relaxation strain are presented. A systematic approach is developed to solve the system via a perturbation analysis which yields the conditions of film morphological instabilities. Consistent with previous experimental and theoretical work, parametric studies show the kinetic evolution of elastic relaxation, island morphology, and film composition under various conditions. Our present work offers an effective theoretical approach to get a comprehensive understanding of the interplay between different growth mechanisms and how to tailor the growth mode by controlling the nature of the crucial factors.

  8. Effectiveness of Conceptual Change Text-oriented Instruction on Students' Understanding of Energy in Chemical Reactions

    Science.gov (United States)

    Taştan, Özgecan; Yalçınkaya, Eylem; Boz, Yezdan

    2008-10-01

    The aim of this study is to compare the effectiveness of conceptual change text instruction (CCT) in the context of energy in chemical reactions. The subjects of the study were 60, 10th grade students at a high school, who were in two different classes and taught by the same teacher. One of the classes was randomly selected as the experimental group in which CCT instruction was applied, and the other as the control group in which traditional teaching method was used. The data were obtained through the use of Energy Concept Test (ECT), the Attitude Scale towards Chemistry (ASC) and Science Process Skill Test (SPST). In order to find out the effect of the conceptual change text on students' learning of energy concept, independent sample t-tests, ANCOVA (analysis of covariance) and ANOVA (analysis of variance) were used. Results revealed that there was a statistically significant mean difference between the experimental and control group in terms of students' ECT total mean scores; however, there was no statistically significant difference between the experimental and control group in terms of students' attitude towards chemistry. These findings suggest that conceptual change text instruction enhances the understanding and achievement.

  9. Effectiveness of the Wavelet Transform on the Surface EMG to Understand the Muscle Fatigue During Walk

    Science.gov (United States)

    Hussain, M. S.; Mamun, Md.

    2012-01-01

    Muscle fatigue is the decline in ability of a muscle to create force. Electromyography (EMG) is a medical technique for measuring muscle response to nervous stimulation. During a sustained muscle contraction, the power spectrum of the EMG shifts towards lower frequencies. These effects are due to muscle fatigue. Muscle fatigue is often a result of unhealthy work practice. In this research, the effectiveness of the wavelet transform applied to the surface EMG (SEMG) signal as a means of understanding muscle fatigue during walk is presented. Power spectrum and bispectrum analysis on the EMG signal getting from right rectus femoris muscle is executed utilizing various wavelet functions (WFs). It is possible to recognize muscle fatigue appreciably with the proper choice of the WF. The outcome proves that the most momentous changes in the EMG power spectrum are symbolized by WF Daubechies45. Moreover, this research has compared bispectrum properties to the other WFs. To determine muscle fatigue during gait, Daubechies45 is used in this research to analyze the SEMG signal.

  10. Understanding the effects of electronic polarization and delocalization on charge-transport levels in oligoacene systems

    KAUST Repository

    Sutton, Christopher

    2017-06-13

    Electronic polarization and charge delocalization are important aspects that affect the charge-transport levels in organic materials. Here, using a quantum mechanical/ embedded-charge (QM/EC) approach based on a combination of the long-range corrected omega B97X-D exchange-correlation functional (QM) and charge model 5 (CM5) point-charge model (EC), we evaluate the vertical detachment energies and polarization energies of various sizes of crystalline and amorphous anionic oligoacene clusters. Our results indicate that QM/EC calculations yield vertical detachment energies and polarization energies that compare well with the experimental values obtained from ultraviolet photoemission spectroscopy measurements. In order to understand the effect of charge delocalization on the transport levels, we considered crystalline naphthalene systems with QM regions including one or five-molecules. The results for these systems show that the delocalization and polarization effects are additive; therefore, allowing for electron delocalization by increasing the size of the QM region leads to the additional stabilization of the transport levels. Published by AIP Publishing.

  11. Streamflow depletion by wells--Understanding and managing the effects of groundwater pumping on streamflow

    Science.gov (United States)

    Barlow, Paul M.; Leake, Stanley A.

    2012-11-02

    Groundwater is an important source of water for many human needs, including public supply, agriculture, and industry. With the development of any natural resource, however, adverse consequences may be associated with its use. One of the primary concerns related to the development of groundwater resources is the effect of groundwater pumping on streamflow. Groundwater and surface-water systems are connected, and groundwater discharge is often a substantial component of the total flow of a stream. Groundwater pumping reduces the amount of groundwater that flows to streams and, in some cases, can draw streamflow into the underlying groundwater system. Streamflow reductions (or depletions) caused by pumping have become an important water-resource management issue because of the negative impacts that reduced flows can have on aquatic ecosystems, the availability of surface water, and the quality and aesthetic value of streams and rivers. Scientific research over the past seven decades has made important contributions to the basic understanding of the processes and factors that affect streamflow depletion by wells. Moreover, advances in methods for simulating groundwater systems with computer models provide powerful tools for estimating the rates, locations, and timing of streamflow depletion in response to groundwater pumping and for evaluating alternative approaches for managing streamflow depletion. The primary objective of this report is to summarize these scientific insights and to describe the various field methods and modeling approaches that can be used to understand and manage streamflow depletion. A secondary objective is to highlight several misconceptions concerning streamflow depletion and to explain why these misconceptions are incorrect.

  12. Understanding uncertainty in temperature effects on vector-borne disease: a Bayesian approach

    Science.gov (United States)

    Johnson, Leah R.; Ben-Horin, Tal; Lafferty, Kevin D.; McNally, Amy; Mordecai, Erin A.; Paaijmans, Krijn P.; Pawar, Samraat; Ryan, Sadie J.

    2015-01-01

    Extrinsic environmental factors influence the distribution and population dynamics of many organisms, including insects that are of concern for human health and agriculture. This is particularly true for vector-borne infectious diseases like malaria, which is a major source of morbidity and mortality in humans. Understanding the mechanistic links between environment and population processes for these diseases is key to predicting the consequences of climate change on transmission and for developing effective interventions. An important measure of the intensity of disease transmission is the reproductive number R0. However, understanding the mechanisms linking R0 and temperature, an environmental factor driving disease risk, can be challenging because the data available for parameterization are often poor. To address this, we show how a Bayesian approach can help identify critical uncertainties in components of R0 and how this uncertainty is propagated into the estimate of R0. Most notably, we find that different parameters dominate the uncertainty at different temperature regimes: bite rate from 15°C to 25°C; fecundity across all temperatures, but especially ~25–32°C; mortality from 20°C to 30°C; parasite development rate at ~15–16°C and again at ~33–35°C. Focusing empirical studies on these parameters and corresponding temperature ranges would be the most efficient way to improve estimates of R0. While we focus on malaria, our methods apply to improving process-based models more generally, including epidemiological, physiological niche, and species distribution models.

  13. When good is stickier than bad: Understanding gain/loss asymmetries in sequential framing effects.

    Science.gov (United States)

    Sparks, Jehan; Ledgerwood, Alison

    2017-08-01

    Considerable research has demonstrated the power of the current positive or negative frame to shape people's current judgments. But humans must often learn about positive and negative information as they encounter that information sequentially over time. It is therefore crucial to consider the potential importance of sequencing when developing an understanding of how humans think about valenced information. Indeed, recent work looking at sequentially encountered frames suggests that some frames can linger outside the context in which they are first encountered, sticking in the mind so that subsequent frames have a muted effect. The present research builds a comprehensive account of sequential framing effects in both the loss and the gain domains. After seeing information about a potential gain or loss framed in positive terms or negative terms, participants saw the same issue reframed in the opposing way. Across 5 studies and 1566 participants, we find accumulating evidence for the notion that in the gain domain, positive frames are stickier than negative frames for novel but not familiar scenarios, whereas in the loss domain, negative frames are always stickier than positive frames. Integrating regulatory focus theory with the literatures on negativity dominance and positivity offset, we develop a new and comprehensive account of sequential framing effects that emphasizes the adaptive value of positivity and negativity biases in specific contexts. Our findings highlight the fact that research conducted solely in the loss domain risks painting an incomplete and oversimplified picture of human bias and suggest new directions for future research. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. Understanding effects of topical ingredients on electrical measurement of skin hydration.

    Science.gov (United States)

    Crowther, J M

    2016-12-01

    Methods that assess skin hydration based on changes in its electrical properties are widely used in both cosmetic and medical research. However, the devices themselves often give results which are significantly different to each other. Although some work has previously been carried out to try and understand what these devices are actually reading, it was based on a technique for measuring the devices' responses to filter discs impregnated with different liquids, which could in itself be influencing the measurements. Presented here is a new method for measuring the devices' direct responses to different materials and solutions which removes any other confounding effects, thereby providing a clearer insight into their operation. The responses of a variety of different liquids and solutions were measured using the Corneometer ® and Skicon ® . A new method is presented, based on the use of a custom-designed PTFE block to hold the liquids, allowing their measurement without using a filter paper. This method was developed and tested against the existing filter paper-based approach. Differences were observed in results between filter paper- and PTFE block-based approach, indicating that the filter paper itself is capable of influencing the measurements and as such is not to be recommended for assessing how different liquids impact on results from the devices. A positive correlation was observed between Corneometer ® and Skicon ® readings for certain solutions and under certain conditions. A large influence of salt concentration was noted for the Skicon ® device with no or minimal impact from the actual water itself, humectants and emollients. Salts, emollients, water and humectants were observed to have an effect on Corneometer ® readings. Both the Corneometer ® and Skicon ® were influenced to different extents by chemicals other than water and therefore cannot be seen purely as measures of skin 'hydration'. Although there is strong evidence that the devices do

  15. Research Plans for Improving Understanding of Effects of Very Low-Frequency Noise of Heavy Lift Rotorcraft

    Science.gov (United States)

    Fidell, Sanford; Horonieff, Richard D.; Schmitz, Fredric H.

    2010-01-01

    This report reviews the English-language technical literature on infrasonic and low-frequency noise effects; identifies the most salient effects of noise produced by a future large civil tiltrotor aircraft on crew, passengers, and communities near landing areas; and recommends research needed to improve understanding of the effects of such noise on passengers, crew, and residents of areas near landing pads.

  16. Understanding effects in reviews of implementation interventions using the Theoretical Domains Framework.

    Science.gov (United States)

    Little, Elizabeth A; Presseau, Justin; Eccles, Martin P

    2015-06-17

    Behavioural theory can be used to better understand the effects of behaviour change interventions targeting healthcare professional behaviour to improve quality of care. However, the explicit use of theory is rarely reported despite interventions inevitably involving at least an implicit idea of what factors to target to implement change. There is a quality of care gap in the post-fracture investigation (bone mineral density (BMD) scanning) and management (bisphosphonate prescription) of patients at risk of osteoporosis. We aimed to use the Theoretical Domains Framework (TDF) within a systematic review of interventions to improve quality of care in post-fracture investigation. Our objectives were to explore which theoretical factors the interventions in the review may have been targeting and how this might be related to the size of the effect on rates of BMD scanning and osteoporosis treatment with bisphosphonate medication. A behavioural scientist and a clinician independently coded TDF domains in intervention and control groups. Quantitative analyses explored the relationship between intervention effect size and total number of domains targeted, and as number of different domains targeted. Nine randomised controlled trials (RCTs) (10 interventions) were analysed. The five theoretical domains most frequently coded as being targeted by the interventions in the review included "memory, attention and decision processes", "knowledge", "environmental context and resources", "social influences" and "beliefs about consequences". Each intervention targeted a combination of at least four of these five domains. Analyses identified an inverse relationship between both number of times and number of different domains coded and the effect size for BMD scanning but not for bisphosphonate prescription, suggesting that the more domains the intervention targeted, the lower the observed effect size. When explicit use of theory to inform interventions is absent, it is possible to

  17. Understanding Laterally Varying Path Effects on P/S Ratios and their Effectiveness for Event Discrimination at Local Distances

    Science.gov (United States)

    Pyle, M. L.; Walter, W. R.

    2017-12-01

    Discrimination between underground explosions and naturally occurring earthquakes is an important endeavor for global security and test-ban treaty monitoring, and ratios of seismic P to S-wave amplitudes at regional distances have proven to be an effective discriminant. The use of the P/S ratio is rooted in the idea that explosive sources should theoretically only generate compressional energy. While, in practice, shear energy is observed from explosions, generally when corrections are made for magnitude and distance, P/S ratios from explosions are higher than those from surrounding earthquakes. At local distances (chemical explosions at the Nevada National Security Site (NNSS) designed to improve our understanding and modeling capabilities of shear waves generated by explosions. Phase I consisted of 5 explosions in granite and Phase II will move to a contrasting dry alluvium geology. We apply a high-resolution 2D attenuation model to events near the NNSS to examine what effect path plays in local P/S ratios, and how well an earthquake-derived model can account for shallower explosion paths. The model incorporates both intrinsic attenuation and scattering effects and extends to 16 Hz, allowing us to make lateral path corrections and consider high-frequency ratios. Preliminary work suggests that while 2D path corrections modestly improve earthquake amplitude predictions, explosion amplitudes are not well matched, and so P/S ratios do not necessarily improve. Further work is needed to better understand the uses and limitation of 2D path corrections for local P/S ratios.

  18. Understanding effect of formulation and manufacturing variables on the critical quality attributes of warfarin sodium product.

    Science.gov (United States)

    Rahman, Ziyaur; Korang-Yeboah, Maxwell; Siddiqui, Akhtar; Mohammad, Adil; Khan, Mansoor A

    2015-11-10

    Warfarin sodium (WS) is a narrow therapeutic index drug and its product quality should be thoroughly understood and monitored in order to avoid clinical performance issues. This study was focused on understanding the effect of manufacturing and formulation variables on WS product critical quality attributes (CQAs). Eight formulations were developed with lactose monohydrate (LM) or lactose anhydrous (LA), and were either wet granulated or directly compressed. Formulations were granulated either with ethanol, isopropyl alcohol (IPA) and IPA-water mixture (50:50). Formulations were characterized for IPA, water content, hardness, disintegration time (DT), assay, dissolution and drug physical forms (scanning electron microscopy (SEM), near infrared chemical imaging (NIR-CI), X-ray powder diffraction (XRPD) and solid state nuclear magnetic resonance (ssNMR)), and performed accelerated stability studies at 40°C/75% RH for three days. The DT and dissolution of directly compressed formulations were faster than wet granulated formulations. This was due to phase transformation of crystalline drug into its amorphous form as indicated by SEM, NIR-CI, XRPD and ssNMR data which itself act as a binder. Similarly, LM showed faster disintegration and dissolution than LA containing formulations. Stability results indicated an increase in hardness and DT, and a decrease in dissolution rate and extent. This was due to phase transformation of the drug and consolidation with particles' bonding. In conclusion, the CQAs of WS product were significantly affected by manufacturing and formulation variables. Published by Elsevier B.V.

  19. Toward the understanding of annealing effects on (GaIn)2O3 films

    International Nuclear Information System (INIS)

    Zhang, Fabi; Jan, Hideki; Saito, Katsuhiko; Tanaka, Tooru; Nishio, Mitsuhiro; Nagaoka, Takashi; Arita, Makoto; Guo, Qixin

    2015-01-01

    (GaIn) 2 O 3 films with nominal indium content of 0.3 deposited at room temperature by pulsed laser deposition have been annealed in different gas ambient (N 2 , vacuum, Ar, O 2 ) and temperatures (700–1000 °C) in order to understand the annealing effects. X-ray diffraction and X-ray rocking curve revealed that the film annealed at 800 °C under O 2 ambient has best crystallinity. X-ray photoelectron spectroscopy analysis indicated that oxygen ambient annealing has greatly helped on decreasing the oxygen vacancy. (GaIn) 2 O 3 films with different nominal indium content varying from 0.2 to 0.7 annealed at 800 °C under O 2 ambient also showed high crystal quality, improved optical transmittance, and smooth surface. - Highlights: • (GaIn) 2 O 3 films have been annealed in different gas ambient and temperature. • Only oxygen ambient can crystallize (GaIn) 2 O 3 film. • Film annealed at 800 °C appears best crystal quality. • High quality films were obtained with wide indium content varying from 0.2 to 0.7

  20. Understanding E-Learning Adoption in Brazil: Major Determinants and Gender Effects

    Directory of Open Access Journals (Sweden)

    Shintaro Okazaki

    2012-10-01

    Full Text Available The objective of this study is to examine factors influencing e-learning adoption and the moderating role of gender. This study extends the technology acceptance model (TAM by adding attitude and social interaction. The new construct of social interaction is applied to the South American context. Gender effects on e-learning adoption from educators’ perspectives have seldom been explored. The data collection takes place in three major Brazilian universities. In total, 446 faculty members responded to the questionnaire. Our structural equation modeling reveals that ease of use and perceived usefulness are significant antecedents of attitude, which in turn affects intention. However, unlike the original TAM, perceived usefulness is not a direct driver of intention. In terms of moderation, gender affects three relationships: (1 ease of use –› perceived usefulness; (2 perceived usefulness –› attitude, and (3 intention –› actual behavior. The analysis is carried out in a single country; thus, caution should be taken in generalization of the results. The findings will help academics, educators, and policy makers to better understand the mechanism of e-learning adoption in Brazil.

  1. Challenging effective public outreach activities for increasing mutual understanding of nuclear energy

    International Nuclear Information System (INIS)

    Gunji, Ikuko

    2006-01-01

    An outreach activity is two-way communication for communicating information. The public outreach activities of USA and Japan for increasing mutual understanding of nuclear energy, and the effective outreach activities are stated. On USA, many communicators in the member of ANS (American Nuclear Society) play an active part in the outreach activities for the policy makers, educators, students, and stakeholders. NEI (Nuclear Energy Institute, USA) provides people with useful information such as benefits and safety control system of nuclear energy, and it has carried out an attitude survey. FPL (Florida Power and Light Company) selected the communicators by ten evaluation items and they made a group and a clear grasp of the goal, needs, and plans and then communicated residents, and sent out questionnaires. Some examples of the special education program for training the communicators in USA are described. In Japan, JAEA gave lessons of nuclear energy, radiation and disaster prevention at the primary, junior high and high schools, friendly talks with local residents, preparing the teaching materials with residents and training of communicators. (S.Y.)

  2. Reactive Molecular Dynamics Simulations to Understand Mechanical Response of Thaumasite under Temperature and Strain Rate Effects.

    Science.gov (United States)

    Hajilar, Shahin; Shafei, Behrouz; Cheng, Tao; Jaramillo-Botero, Andres

    2017-06-22

    Understanding the structural, thermal, and mechanical properties of thaumasite is of great interest to the cement industry, mainly because it is the phase responsible for the aging and deterioration of civil infrastructures made of cementitious materials attacked by external sources of sulfate. Despite the importance, effects of temperature and strain rate on the mechanical response of thaumasite had remained unexplored prior to the current study, in which the mechanical properties of thaumasite are fully characterized using the reactive molecular dynamics (RMD) method. With employing a first-principles based reactive force field, the RMD simulations enable the description of bond dissociation and formation under realistic conditions. From the stress-strain curves of thaumasite generated in the x, y, and z directions, the tensile strength, Young's modulus, and fracture strain are determined for the three orthogonal directions. During the course of each simulation, the chemical bonds undergoing tensile deformations are monitored to reveal the bonds responsible for the mechanical strength of thaumasite. The temperature increase is found to accelerate the bond breaking rate and consequently the degradation of mechanical properties of thaumasite, while the strain rate only leads to a slight enhancement of them for the ranges considered in this study.

  3. Understanding gas production mechanism and effectiveness of well stimulation in the Haynesville shale through reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Fan, L.; Thompson, J.W.; Robinson, J.R. [Schlumberger, Houston, TX (United States)

    2010-07-01

    The Haynesville Shale Basin is one of the large and most active shale gas plays in the United States, with 185 horizontal rigs currently in place. The Haynesville Shale is a very tight source rock and resource play. The gas resources are being converted into gas reserves with horizontal wells and hydraulic fracture treatments. A complex fracture network created during well stimulation is the main factor in generating superior early well performance in the area. The key to making better wells in all the gas shale plays is to understand how to create more surface area during hydraulic stimulation jobs and preserve the surface area for as long as possible. This paper presented a unique workflow and methodology that has enabled analysis of production data using reservoir simulation to explain the shale gas production mechanism and the effectiveness of stimulation treatments along laterals. Since 2008, this methodology has been used to analyze production data from more than 30 horizontal wells in the Haynesville Shale. Factors and parameters relating to short and long term well performance were investigated, including pore pressure, rock matrix quality, natural fractures, hydraulic fractures, and complex fracture networks. Operators can use the simulation results to determine where and how to spend resources to produce better wells and to reduce the uncertainties of developing these properties. 19 refs., 1 tab., 17 figs.

  4. Understanding Motivations for Abstinence among Adolescent Young Women: Insights into Effective Sexual Risk Reduction Strategies

    Science.gov (United States)

    Long-Middleton, Ellen R.; Burke, Pamela J.; Lawrence, Cheryl A. Cahill; Blanchard, Lauren B.; Amudala, Naomi H.; Rankin, Sally H.

    2012-01-01

    Introduction Pregnancy and sexually transmitted infections pose a significant threat to the health and wellbeing of adolescent young women. Abstinence when practiced provides the most effective means in preventing these problems, yet the perspective of abstinent young women is not well understood. The purpose of the investigation was to characterize female adolescents’ motivations for abstinence. Method As part of a larger, cross-sectional quantitative study investigating predictors of HIV risk reduction behaviors, qualitative responses from study participants who never had intercourse were analyzed in a consensus-based process using content analysis and frequency counts. An urban primary care site in a tertiary care center served as the setting, with adolescent young women ages 15–19 years included in the sample. Results Five broad topic categories emerged from the data that characterized motivations for abstinence in this sample: 1) Personal Readiness, 2) Fear, 3) Beliefs and Values, 4) Partner Worthiness and 5) Lack of Opportunity. Discussion A better understanding of the motivations for abstinence may serve to guide the development of interventions to delay intercourse. PMID:22525893

  5. Butterfly effect: understanding and mitigating the local consequences of climate change impacts

    International Nuclear Information System (INIS)

    Lorenz, Donna

    2007-01-01

    Full text: The Butterfly Effect is the notion that tiny differences in initial conditions are amplified in the evolution of a dynamic system and directly affect the eventual outcome. In 1963 mathematician and meteorologist Edward Lorenz proposed that the flapping of a butterfly's wing would cause a disturbance that becomes exponentially amplified so as to eventually affect large-scale atmospheric motion. This was to illustrate the 'sensitive dependence on initial conditions'; sensitivity also true in affecting the extent of damages experienced as a result of climate change. In a climate change context, The Butterfly Effect suggests the local consequences of climate change impacts will depend on their interaction with the economic, environmental, institutional, technological and demographic attributes unique to a city or region. It is this mix of factors that will determine the extent, both positively and negatively, to which climate change will be experienced locally. For a truly effective climate change response, it is imperative that regional risk assessments and adaptation strategies take into account not only the projected impacts but the full range of flow-on implications of those impacts and their sensitivity factors. Understanding of the sensitivity factors that will amplify or mitigate climate change impacts and implications enables government and business leaders to calculate the likely extent of localised damages if no adaptation is undertaken. This allows industries and communities to evaluate the likely significance of a particular impact and to consider how to adjust or counter the sensitivity factor to build resilience and reduce vulnerability. Thus, it also assists in the local prioritisation of issues and responses. Such a strategic response can also mean the required adaptation measures may be less extensive and thereby require less cost and time to implement. This paper discusses the flow-on implications of Australia's projected climate change

  6. Point source atom interferometry with a cloud of finite size

    Energy Technology Data Exchange (ETDEWEB)

    Hoth, Gregory W., E-mail: gregory.hoth@nist.gov; Pelle, Bruno; Riedl, Stefan; Kitching, John; Donley, Elizabeth A. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

    2016-08-15

    We demonstrate a two axis gyroscope by the use of light pulse atom interferometry with an expanding cloud of atoms in the regime where the cloud has expanded by 1.1–5 times its initial size during the interrogation. Rotations are measured by analyzing spatial fringe patterns in the atom population obtained by imaging the final cloud. The fringes arise from a correlation between an atom's initial velocity and its final position. This correlation is naturally created by the expansion of the cloud, but it also depends on the initial atomic distribution. We show that the frequency and contrast of these spatial fringes depend on the details of the initial distribution and develop an analytical model to explain this dependence. We also discuss several challenges that must be overcome to realize a high-performance gyroscope with this technique.

  7. Finite size melting of spherical solid-liquid aluminium interfaces

    DEFF Research Database (Denmark)

    Chang, J.; Johnson, Erik; Sakai, T.

    2009-01-01

    We have investigated the melting of nano-sized cone shaped aluminium needles coated with amorphous carbon using transmission electron microscopy. The interface between solid and liquid aluminium was found to have spherical topology. For needles with fixed apex angle, the depressed melting tempera...... to the conclusion that the depressed melting temperature is not controlled solely by the inverse radius 1/R. Instead, we found a direct relation between the depressed melting temperature and the ratio between the solid-liquid interface area and the molten volume.......We have investigated the melting of nano-sized cone shaped aluminium needles coated with amorphous carbon using transmission electron microscopy. The interface between solid and liquid aluminium was found to have spherical topology. For needles with fixed apex angle, the depressed melting...

  8. Characterization and understanding of ion irradiation effect on the microstructure of austenitic stainless steels

    International Nuclear Information System (INIS)

    Volgin, Alexandre

    2012-01-01

    Austenitic stainless steels are widely used in nuclear industry for internal structures. These structures are located close to the fuel assemblies, inside the pressure vessel. The exposure of these elements to high irradiation doses (the accumulated dose, after 40 years of operation, can reach 80 dpa), at temperature close to 350 C, modifies the macroscopic behavior of the steel: hardening, swelling, creep and corrosion are observed. Moreover, in-service inspections of some of the reactor internal structures have revealed the cracking of some baffle bolts. This cracking has been attributed to Irradiation Assisted Stress Corrosion Cracking (IASCC). In order to understand this complex phenomenon, a first step is to identify the microstructural changes occurring during irradiation, and to understand the mechanisms at the origin of this evolution. In this framework, a large part of the European project 'PERFORM 60' is dedicated to the study of the irradiation damage in austenitic stainless steels. The objective of this PhD work is to bring comprehensive data on the irradiation effects on microstructure. To reach this goal, two model alloys (FeNiCr and FeNiCrSi) and an industrial austenitic stainless steel (316 steel) are studied using Atom Probe Tomography (APT), Transmission Electron Microscope (TEM) and Positron Annihilation Spectroscopy (PAS). They are irradiated by Ni ions in CSNSM (Orsay) at two temperatures (200 and 450 C) and three doses (0.5, 1 and 5 dpa). TEM observations have shown the appearance of dislocation loops, cavities and staking fault tetrahedra. The dislocation loops in 316 steel were preferentially situated in the vicinity of dislocations, while they were randomly distributed in the FeNiCr alloy. APT study has shown the redistribution of Ni and Si under irradiation in FeNiCrSi model alloy and 316 steel, leading to the appearance of (a) Cottrell clouds along dislocation lines, dislocation loops and other non-identified crystalline defects and (b

  9. Understanding the effects of diffusion and relaxation in magnetic resonance imaging using computational modeling

    Science.gov (United States)

    Russell, Greg

    The work described in this dissertation was motivated by a desire to better understand the cellular pathology of ischemic stroke. Two of the three bodies of research presented herein address and issue directly related to the investigation of ischemic stroke through the use of diffusion weighted magnetic resonance imaging (DWMRI) methods. The first topic concerns the development of a computationally efficient finite difference method, designed to evaluate the impact of microscopic tissue properties on the formation of DWMRI signal. For the second body of work, the effect of changing the intrinsic diffusion coefficient of a restricted sample on clinical DWMRI experiments is explored. The final body of work, while motivated by the desire to understand stroke, addresses the issue of acquiring large amounts of MRI data well suited for quantitative analysis in reduced scan time. In theory, the method could be used to generate quantitative parametric maps, including those depicting information gleaned through the use of DWMRI methods. Chapter 1 provides an introduction to several topics. A description of the use of DWMRI methods in the study of ischemic stroke is covered. An introduction to the fundamental physical principles at work in MRI is also provided. In this section the means by which magnetization is created in MRI experiments, how MRI signal is induced, as well as the influence of spin-spin and spin-lattice relaxation are discussed. Attention is also given to describing how MRI measurements can be sensitized to diffusion through the use of qualitative and quantitative descriptions of the process. Finally, the reader is given a brief introduction to the use of numerical methods for solving partial differential equations. In Chapters 2, 3 and 4, three related bodies of research are presented in terms of research papers. In Chapter 2, a novel computational method is described. The method reduces the computation resources required to simulate DWMRI experiments. In

  10. Understanding Resilience

    Directory of Open Access Journals (Sweden)

    Gang eWu

    2013-02-01

    Full Text Available Resilience is the ability to adapt successfully in the face of stress and adversity. Stressful life events, trauma and chronic adversity can have a substantial impact on brain function and structure, and can result in the development of PTSD, depression and other psychiatric disorders. However, most individuals do not develop such illnesses after experiencing stressful life events, and are thus thought to be resilient. Resilience as successful adaptation relies on effective responses to environmental challenges and ultimate resistance to the deleterious effects of stress, therefore a greater understanding of the factors that promote such effects is of great relevance. This review focuses on recent findings regarding genetic, epigenetic, developmental, psychosocial and neurochemical factors that are considered essential contributors to the development of resilience. Neural circuits and pathways involved in mediating resilience are also discussed. The growing understanding of resilience factors will hopefully lead to the development of new pharmacological and psychological interventions for enhancing resilience and mitigating the untoward consequences.

  11. Clay modeling versus written modules as effective interventions in understanding human anatomy.

    Science.gov (United States)

    Bareither, Mary Lou; Arbel, Vered; Growe, Meghan; Muszczynski, Emily; Rudd, Adam; Marone, Jane R

    2013-01-01

    The effectiveness of clay modeling to written modules is examined to determine the degree of improvement in learning and retention of anatomical 3D relationships among students with different learning preferences. Thirty-nine undergraduate students enrolled in a cadaver dissection course completed a pre-assessment examination and the VARK questionnaire, classifying learning preference as visual, auditory, read/write, or kinesthetic. Students were divided into clay, module, and control groups with preference for learning style distributed among groups. The clay and module groups participated in weekly one-hour classes using either clay models or answering written questions (modules) about anatomical relationships, respectively. The control group received no intervention. Post-assessment and retention examinations were administered at the end of the semester, and three months later, respectively. Two variables (Δ1, Δ2) represented examination score differences between pre- and post-assessment and between post-assessment and retention examinations, respectively. The Δ1 for clay and module groups were each significantly higher than controls (21.46 ± 8.2 vs. 15.70 ± 7.5, P ≤ 0.05; and 21.31 ± 6.9 vs. 15.70 ± 7.5, P ≤0.05, respectively). The Δ2 for clay and module groups approached but did not achieve significance over controls (-6.09 ± 5.07 vs. -8.80 ± 4.60, P = 0.16 and -5.73 ± 4.47 vs. -8.80 ± 4.60, P = 0.12, respectively). No significant differences were seen between interventions or learning preferences in any group. However, students of some learning styles tended to perform better when engaging in certain modalities. Multiple teaching modalities may accommodate learning preferences and improve understanding of anatomy. Copyright © 2012 American Association of Anatomists.

  12. Understanding and using quality information for quality improvement: the effect of information presentation.

    NARCIS (Netherlands)

    Zwijnenberg, N.C.; Hendriks, M.; Delnoij, D.M.J.; Veer, A.J.E. de; Spreeuwenberg, P.; Wagner, C.

    2016-01-01

    Objective: To examine how information presentation affects the understanding and use of information for quality improvement. Design: An experimental design, testing 22 formats, and showing information on patient safety culture. Formats differed in visualization, outcomes and benchmark

  13. Understanding and using quality information for quality improvement : The effect of information presentation

    NARCIS (Netherlands)

    Zwijnenberg, N.C.; Hendriks, M.; Delnoij, D.; De Veer, A.J.; Spreeuwenberg, P.; Wagner, C.

    2016-01-01

    Objective To examine how information presentation affects the understanding and use of information for quality improvement. Design An experimental design, testing 22 formats, and showing information on patient safety culture. Formats differed in visualization, outcomes and benchmark information.

  14. A framework for understanding semi-permeable barrier effects on migratory ungulates

    Science.gov (United States)

    Sawyer, Hall; Kauffman, Matthew J.; Middleton, Arthur D.; Morrison, Thomas A.; Nielson, Ryan M.; Wyckoff, Teal B.

    2013-01-01

    1. Impermeable barriers to migration can greatly constrain the set of possible routes and ranges used by migrating animals. For ungulates, however, many forms of development are semi-permeable, and making informed management decisions about their potential impacts to the persistence of migration routes is difficult because our knowledge of how semi-permeable barriers affect migratory behaviour and function is limited. 2. Here, we propose a general framework to advance the understanding of barrier effects on ungulate migration by emphasizing the need to (i) quantify potential barriers in terms that allow behavioural thresholds to be considered, (ii) identify and measure behavioural responses to semi-permeable barriers and (iii) consider the functional attributes of the migratory landscape (e.g. stopovers) and how the benefits of migration might be reduced by behavioural changes. 3. We used global position system (GPS) data collected from two subpopulations of mule deer Odocoileus hemionus to evaluate how different levels of gas development influenced migratory behaviour, including movement rates and stopover use at the individual level, and intensity of use and width of migration route at the population level. We then characterized the functional landscape of migration routes as either stopover habitat or movement corridors and examined how the observed behavioural changes affected the functionality of the migration route in terms of stopover use. 4. We found migratory behaviour to vary with development intensity. Our results suggest that mule deer can migrate through moderate levels of development without any noticeable effects on migratory behaviour. However, in areas with more intensive development, animals often detoured from established routes, increased their rate of movement and reduced stopover use, while the overall use and width of migration routes decreased. 5. Synthesis and applications. In contrast to impermeable barriers that impede animal movement

  15. Understanding the effect of watershed characteristic on the runoff using SCS curve number

    Science.gov (United States)

    Damayanti, Frieta; Schneider, Karl

    2015-04-01

    Runoff modeling is a key component in watershed management. The temporal course and amount of runoff is a complex function of a multitude of parameters such as climate, soil, topography, land use, and water management. Against the background of the current rapid environmental change, which is due to both i) man-made changes (e.g. urban development, land use change, water management) as well as ii) changes in the natural systems (e.g. climate change), understanding and predicting the impacts of these changes upon the runoff is very important and affects the wellbeing of many people living in the watershed. A main tool for predictions is hydrologic models. Particularly process based models are the method of choice to assess the impact of land use and climate change. However, many regions which experience large changes in the watersheds can be described as rather data poor, which limits the applicability of such models. This is particularly also true for the Telomoyo Watershed (545 km2) which is located in southern part of Central Java province. The average annual rainfall of the study area reaches 2971 mm. Irrigated paddy field are the dominating land use (35%), followed by built-up area and dry land agriculture. The only available soil map is the FAO soil digital map of the world, which provides rather general soil information. A field survey accompanied by a lab analysis 65 soil samples of was carried out to provide more detailed soil texture information. The soil texture map is a key input in the SCS method to define hydrological soil groups. In the frame of our study on 'Integrated Analysis on Flood Risk of Telomoyo Watershed in Response to the Climate and Land Use Change' funded by the German Academic Exchange service (DAAD) we analyzed the sensitivity of the modeled runoff upon the choice of the method to estimate the CN values using the SCS-CN method. The goal of this study is to analyze the impact of different data sources on the curve numbers and the

  16. Understanding seafloor morphology using remote high frequency acoustic methods: An appraisal to modern techniques and its effectiveness

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.

    Content-Type text/plain; charset=UTF-8 179 Understanding seafloor morphology using remote high frequency acoustic methods: an appraisal to modern techniques and its effectiveness Bishwajit Chakraborty National institute of Oceanography.... The two third of the earth surface i.e. 362 million square km (70 %) is covered by the ocean. In order to understand the seafloor various methods like: application of remote acoustic techniques, seafloor photographic and geological sampling techniques...

  17. Understanding the Effects of Long-duration Space Flight on Astronant Functional Task Performance

    Science.gov (United States)

    Bloomberg, Jacob J.; Batson, Crystal D.; Buxton, Roxanne E.; Feiveson, Al H.; Kofman, Igor S.; Lee, Stuart M. C.; Miller, Chris A.; Mulavara, Ajitkumar P.; Peters, Brian T.; Phillips, Tiffany; hide

    2014-01-01

    Space flight is known to cause alterations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These physiological changes cause balance, gait and visual disturbances, cardiovascular deconditioning, and loss of muscle mass and strength. These changes may affect a crewmember's ability to perform critical mission tasks immediately after landing on a planetary surface. To understand how changes in physiological function affect functional performance, an interdisciplinary pre- and postflight testing regimen, Functional Task Test (FTT), was developed to systematically evaluate both astronaut functional performance and related physiological changes. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We are currently conducting the FTT study on International Space Station (ISS) crewmembers before and after 6-month expeditions. Additionally, in a corresponding study we are using the FTT protocol on subjects before and after 70 days of 6deg head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. Therefore, the bed rest analog allows us to investigate the impact of body unloading on both functional tasks and on the underlying physiological factors that lead to decrement in performance and then compare them with the results obtained in our space flight study. Functional tests included ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall and object translation tasks. Physiological measures included assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, heart rate, blood pressure

  18. Understanding how appraisal of doctors produces its effects: a realist review protocol.

    Science.gov (United States)

    Brennan, Nicola; Bryce, Marie; Pearson, Mark; Wong, Geoff; Cooper, Chris; Archer, Julian

    2014-06-23

    UK doctors are now required to participate in revalidation to maintain their licence to practise. Appraisal is a fundamental component of revalidation. However, objective evidence of appraisal changing doctors' behaviour and directly resulting in improved patient care is limited. In particular, it is not clear how the process of appraisal is supposed to change doctors' behaviour and improve clinical performance. The aim of this research is to understand how and why appraisal of doctors is supposed to produce its effect. Realist review is a theory-driven interpretive approach to evidence synthesis. It applies realist logic of inquiry to produce an explanatory analysis of an intervention that is, what works, for whom, in what circumstances, in what respects. Using a realist review approach, an initial programme theory of appraisal will be developed by consulting with key stakeholders in doctors' appraisal in expert panels (ethical approval is not required), and by searching the literature to identify relevant existing theories. The search strategy will have a number of phases including a combination of: (1) electronic database searching, for example, EMBASE, MEDLINE, the Cochrane Library, ASSIA, (2) 'cited by' articles search, (3) citation searching, (4) contacting authors and (5) grey literature searching. The search for evidence will be iteratively extended and refocused as the review progresses. Studies will be included based on their ability to provide data that enable testing of the programme theory. Data extraction will be conducted, for example, by note taking and annotation at different review stages as is consistent with the realist approach. The evidence will be synthesised using realist logic to interrogate the final programme theory of the impact of appraisal on doctors' performance. The synthesis results will be written up according to RAMESES guidelines and disseminated through peer-reviewed publication and presentations. The protocol is registered with

  19. Understanding the effects of sulfur on mercury capture from coal-fired utility flue gases

    Energy Technology Data Exchange (ETDEWEB)

    Morris, E.A.; Morita, K.; Jia, C.Q. [University of Toronto, Toronto, ON (Canada)

    2010-07-01

    Coal combustion continues to be a major source of energy throughout the world and is the leading contributor to anthropogenic mercury emissions. Effective control of these emissions requires a good understanding of how other flue gas constituents such as sulfur dioxide (SO{sub 2}) and sulfur trioxide (SO{sub 3}) may interfere in the removal process. Most of the current literature suggests that SO{sub 2} hinders elemental mercury (Hg{sup 0}) oxidation by scavenging oxidizing species such as chlorine (Cl2) and reduces the overall efficiency of mercury capture, while there is evidence to suggest that SO{sub 2} with oxygen (O{sub 2}) enhances Hg{sup 0} oxidation by promoting Cl2 formation below 100{sup o}C. However, studies in which SO{sub 2} was shown to have a positive correlation with Hg{sup 0} oxidation in full-scale utilities indicate that these interactions may be heavily dependent on operating conditions, particularly chlorine content of the coal and temperature. While bench-scale studies explicitly targeting SO{sub 3} are scarce, the general consensus among full-scale coal-fired utilities is that its presence in flue gas has a strong negative correlation with mercury capture efficiency. The exact reason behind this observed correlation is not completely clear, however. While SO{sub 3} is an inevitable product of SO{sub 2} oxidation by O{sub 2}, a reaction that hinders Hg{sup 0} oxidation, it readily reacts with water vapor, forms sulfuric acid (H{sub 2 }SO{sub 4}) at the surface of carbon, and physically blocks active sites of carbon. On the other hand, H{sub 2}SO{sub 4} on carbon surfaces may increase mercury capacity either through the creation of oxidation sites on the carbon surface or through a direct reaction of mercury with the acid. However, neither of these beneficial impacts is expected to be of practical significance for an activated carbon injection system in a real coal-fired utility flue gas.

  20. The Effects of Case-Based Instruction on Undergraduate Biology Students' Understanding of the Nature of Science

    Science.gov (United States)

    Burniston, Amy Lucinda

    Undergraduate science education is currently seeing a dramatic pedagogical push towards teaching the philosophies underpinning science as well as an increase in strategies that employ active learning. Many active learning strategies stem from constructivist ideals and have been shown to affect a student's understanding of how science operates and its impact on society- commonly referred to as the nature of science (NOS). One particular constructivist teaching strategy, case-based instruction (CBI), has been recommended by researchers and science education reformists as an effective instructional strategy for teaching NOS. Furthermore, when coupled with explicit-reflective instruction, CBI has been found to significantly increasing understanding of NOS in elementary and secondary students. However, few studies aimed their research on CBI and NOS towards higher education. Thus, this study uses a quasi-experimental, nonequivalent group design to study the effects of CBI on undergraduate science students understandings of NOS. Undergraduate biology student's understanding of NOS were assessed using the Views of Science Education (VOSE) instrument pre and post CBI intervention in Cellular and Molecular Biology and Human Anatomy and Physiology II. Data analysis indicated statistically significant differences between students NOS scores in experimental versus control sections for both courses, with experimental groups obtaining higher posttest scores. The results of this study indicate that undergraduate male and female students have similarly poor understandings of NOS and the use of historical case based instruction can be used as a means to increase undergraduate understanding of NOS.

  1. Entropic effects in formation of chromosome territories: towards understanding of radiation-induced gene translocation frequency

    Science.gov (United States)

    Gudowska-Nowak, Ewa; Ritter, Sylvia; Durante, Marco; Deperas-Standylo, Joanna; Ciesla, Michal

    2012-07-01

    A detailed understanding of structural organization of biological target, such as geometry of an inter-phase chromosome, is an essential prerequisite for gaining deeper insight into relationship between radiation track structure and radiation-induced biological damage [1]. In particular, coupling of biophysical models aimed to describe architecture of chromosomes and their positioning in a cell nucleus [2-4] with models of local distribution of ionizations caused by passing projectiles, are expected to result in more accurate estimates of aberration induction caused by radiation. There is abundant experimental evidence indicating that arrangements of chromosomes in eukaryotic cell nucleus is non-random and has been evolutionary conserved in specific cell types. Moreover, the radial position of a given chromosome territory (CT) within the cell nucleus has been shown to correlate with its size and gene density. Usually it is assumed that chromosomal geometry and positioning result from the action of specific forces acting locally, such as hydrogen bonds, electrostatic, Van der Waals or hydrophobic interactions operating between nucleosomes and within their interiors. However, it is both desirable and instructive to learn to what extend organization of inter-phase chromosomes is affected by nonspecific entropic forces. In this study we report results of a coarse-grained analysis of a chromatin structure modeled by two distinct approaches. In the first method, we adhere to purely statistical analysis of chromatin packing within a chromosome territory. On the basis of the polymer theory, the chromatin fiber of diameter 30nm is approximated by a chain of spheres, each corresponding to about 30 kbp. Random positioning of the center of the domain is repeated for 1000 spherical nuclei. Configuration of the domain is determined by a random packing of a polymer (a string of identical beads) in estimated fraction of space occupied by a chromosome of a given length and mass

  2. Integrated systems understanding using bayesian networks: measuring the effectiveness of a weapon system

    CSIR Research Space (South Africa)

    de Waal, A

    2006-02-27

    Full Text Available Complex systems can be described as systems-of-systems as they comprise a hierarchy of systems. The links between sub-systems are often obscure and non-linear and this results in a lack of a whole-systems view and appropriate understanding...

  3. Understanding the effect of adaptive preference elicitation methods on user satisfaction of a recommender system

    NARCIS (Netherlands)

    Knijnenburg, B.P.; Willemsen, M.C.

    2009-01-01

    In a recommender system that suggests options based on user attribute weights, the method of preference elicitation (PE) employed by a recommender system can influence users' satisfaction with the system, as well as the perceived usefulness and the understandability of the system. Specifically, we

  4. Students' Understanding of Genetics Concepts: The Effect of Reasoning Ability and Learning Approaches

    Science.gov (United States)

    Kiliç, Didem; Saglam, Necdet

    2014-01-01

    Students tend to learn genetics by rote and may not realise the interrelationships in daily life. Because reasoning abilities are necessary to construct relationships between concepts and rote learning impedes the students' sound understanding, it was predicted that having high level of formal reasoning and adopting meaningful learning orientation…

  5. The Effect of Guided Note Taking during Lectures on Thai University Students' Understanding of Electromagnetism

    Science.gov (United States)

    Narjaikaew, Pattawan; Emarat, Narumon; Cowie, Bronwen

    2009-01-01

    This paper reports on the implementation of a guided note taking strategy to promote Thai students' understanding of electromagnetism during a lecture course. The aim of the study was to enhance student learning of electromagnetism concepts. The developed guided notes contain quotations, diagrams, pictures, problems, and blank spaces to encourage…

  6. Students' Perceived Understanding Mediates the Effects of Teacher Clarity and Nonverbal Immediacy on Learner Empowerment

    Science.gov (United States)

    Finn, Amber N.; Schrodt, Paul

    2012-01-01

    This study examined students' perceived understanding as a mediator of the relationship between student perceptions of teacher clarity, nonverbal immediacy cues, and learner empowerment (i.e., meaningfulness, competence, and impact). Participants included 261 undergraduate students who completed survey instruments. Results of structural equation…

  7. Effectiveness of a Language Based Program in School Mathematics on Students' Understanding of Statistics

    Science.gov (United States)

    Wekesa, Duncan Wasike

    2006-01-01

    Mathematical knowledge and understanding is important not only for scientific progress and development but also for its day-to-day application in social sciences and arts, government, business and management studies and household chores. But the general performance in school mathematics in Kenya has been poor over the years. There is evidence that…

  8. Understanding the Greenhouse Effect by Embodiment--Analysing and Using Students' and Scientists' Conceptual Resources

    Science.gov (United States)

    Niebert, Kai; Gropengießer, Harald

    2014-01-01

    Over the last 20 years, science education studies have reported that there are very different understandings among students of science regarding the key aspects of climate change. We used the cognitive linguistic framework of experientialism to shed new light on this valuable pool of studies to identify the conceptual resources of understanding…

  9. Understanding Attitude Change in Developing Effective Substance Abuse Prevention Programs for Adolescents.

    Science.gov (United States)

    Scott, Cynthia G.

    1996-01-01

    Alcohol and drug use may be a significant part of the adolescent, high school experience. Programs should be based on an understanding of attitudes and patterns of use, and how change occurs. Elaboration Likelihood Model of Persuasion is a framework with which to examine attitude change and provide a base for building sound drug prevention…

  10. Can an Understanding of Basic Research Facilitate the Effectiveness of Practitioners? Reflections and Personal Perspectives

    Science.gov (United States)

    Sidman, Murray

    2011-01-01

    I have written before about the importance of applied behavior analysis to basic researchers. That relationship is, however, reciprocal; it is also critical for practitioners to understand and even to participate in basic research. Although applied problems are rarely the same as those investigated in the laboratory, practitioners who understand…

  11. Maternal Behavior Modifications during Pretense and Their Long-Term Effects on Toddlers' Understanding of Pretense

    Science.gov (United States)

    Nakamichi, Naoko

    2015-01-01

    Recent studies indicate the need to investigate the sources of toddlers' understanding of another person's pretense. The present study is a cultural and longitudinal extension of the work of Lillard and Witherington (2004), who claimed that mothers modify their behaviors during pretense and that the some of these behavior modifications help their…

  12. Using Oral Examination as a Technique to Assess Student Understanding and Teaching Effectiveness

    Science.gov (United States)

    Roecker, Lee

    2007-01-01

    This paper discusses the use of oral examinations to assess student understanding in a general chemistry course and in an advanced inorganic chemistry course. Examination design, administration, and grading are explored, as well as the benefits to both instructors and students. Students react positively to the oral examination format and generally…

  13. Effectiveness of Using GeoGebra on Students' Understanding in Learning Circles

    Science.gov (United States)

    Shadaan, Praveen; Leong, Kwan Eu

    2013-01-01

    The use of technology in the pedagogical process is growing at a phenomenal rate due to the vast availability of gadgets. As a result, educationists see the urgent need for integrating technology in students' mathematical activities. Therefore, the purpose of this quasi experimental study was to investigate students' understanding in learning…

  14. The Effect of Conceptual Change Model in the Senior High School Students’ Understanding and Character in Learning Physics

    Directory of Open Access Journals (Sweden)

    Santyasa I Wayan

    2018-01-01

    Full Text Available Learning physics for senior high school (SMA students is often coloured by misconceptions that hinder students in achieving deep understanding. So a relevant learning model is needed. This study aims to examine the effect of conceptual change model (CCM compared with direct instruction model (DIM on the students’ conceptual understanding and character in the subject area of motion and force. This quasi-experimental research using a non-equivalence pre-test post-test control groups design. The population is 20 classes (738 students of grade X consisted of 8 classes (272 students of SMA 1 Amlapura, 8 classes (256 students of SMA 2 Amlapura, and 6 classes (210 students of SMA 1 Manggis in Karangasem regency in Bali. The random assignment technique is used to assign 6 classes (202 students, or 26.5% of the population. In each school there are set 2 classes each as a CCM group and DIM groups. The data of students’ conceptual understanding is collected by tests, while the characters by questionnaires. To analyse the data a one way MANCOVA statistics was used. The result of the analysis showed that there was a significant difference of effect between CCM group and DIM group on the students’ conceptual understanding and character. The effect of the CCM group is higher than the DIM group on the students’ conceptual understanding and character in learning subject area of motion and force.

  15. Understanding the hepatitis C virus life cycle paves the way for highly effective therapies

    DEFF Research Database (Denmark)

    Scheel, Troels K H; Rice, Charles M

    2013-01-01

    More than two decades of intense research has provided a detailed understanding of hepatitis C virus (HCV), which chronically infects 2% of the world's population. This effort has paved the way for the development of antiviral compounds to spare patients from life-threatening liver disease......, such as HCV diversity, viral resistance, the influence of host genetics, advanced liver disease and other co-morbidities....

  16. Understanding Microbiome Effect on Immune Checkpoint Inhibition in Lung Cancer: Placing the Puzzle Pieces Together.

    Science.gov (United States)

    Swami, Umang; Zakharia, Yousef; Zhang, Jun

    2018-05-17

    Over the past couple of years, human microbiome has received increasing attention as a regulator and predictor of response to the therapies of various diseases. It is speculated that manipulating gut microbiome can modify response to cancer immunotherapies as well. Through this review, we have critically analyzed our current understanding of gut microbiome as a modulator of immunotherapies in lung cancer, explained conflicting data, evaluated current gaps and extrapolated our present knowledge to generate directions for future investigations.

  17. Organizing to Understand: How to Operate Effectively in the Human Domain

    Science.gov (United States)

    2015-05-21

    was both entering and creating when it overthrew Saddam Hussein and dismantled the Iraqi government and security forces. The research examines the...sponsored initiative to help tactical and operational level commanders understand the human terrain, the “social, ethnographic , cultural, economic, and...as an intelligence function within TRADOC “as the primary and enduring social science-based human domain research , analysis, and training capability

  18. Effects of Intervention to Improve At-Risk Fourth Graders' Understanding, Calculations, and Word Problems with Fractions

    Science.gov (United States)

    Fuchs, Lynn S.; Schumacher, Robin F.; Long, Jessica; Namkung, Jessica; Malone, Amelia S.; Wang, Amber; Hamlett, Carol L.; Jordan, Nancy C.; Siegler, Robert S.; Changas, Paul

    2016-01-01

    The purposes of this study were to (a) investigate the efficacy of a core fraction intervention program on understanding and calculation skill and (b) isolate the effects of different forms of fraction word-problem (WP) intervention. At-risk fourth graders (n = 213) were randomly assigned to the school's business-as-usual program, or one of two…

  19. Drama-Based Science Teaching and Its Effect on Students' Understanding of Scientific Concepts and Their Attitudes towards Science Learning

    Science.gov (United States)

    Abed, Osama H.

    2016-01-01

    This study investigated the effect of drama-based science teaching on students' understanding of scientific concepts and their attitudes towards science learning. The study also aimed to examine if there is an interaction between students' achievement level in science and drama-based instruction. The sample consisted of (87) of 7th grade students…

  20. Exploring Effects of High School Students' Mathematical Processing Skills and Conceptual Understanding of Chemical Concepts on Algorithmic Problem Solving

    Science.gov (United States)

    Gultepe, Nejla; Yalcin Celik, Ayse; Kilic, Ziya

    2013-01-01

    The purpose of the study was to examine the effects of students' conceptual understanding of chemical concepts and mathematical processing skills on algorithmic problem-solving skills. The sample (N = 554) included grades 9, 10, and 11 students in Turkey. Data were collected using the instrument "MPC Test" and with interviews. The MPC…

  1. Effects of Intervention to Improve At-Risk Fourth Graders' Understanding, Calculations, and Word Problems with Fractions

    Science.gov (United States)

    Fuchs, Lynn S.; Schumacher, Robin F.; Long, Jessica; Namkung, Jessica; Malone, Amelia S.; Wang, Amber; Hamlett, Carol L.; Jordan, Nancy C.; Siegler, Robert S.; Changas, Paul

    2016-01-01

    The purposes of this study were to (a) investigate the efficacy of a core fraction intervention program on understanding and calculation skill and (b) isolate the effects of different forms of fraction word-problem (WP) intervention delivered as part of the larger program. At-risk 4th graders (n = 213) were randomly assigned at the individual…

  2. The Effect of Using Virtual Laboratory on Grade 10 Students' Conceptual Understanding and Their Attitudes towards Physics

    Science.gov (United States)

    Faour, Malak Abou; Ayoubi, Zalpha

    2018-01-01

    This study investigated the effect of using (VL) on grade 10 students' conceptual understanding of the direct current electric circuit and their attitudes towards physics. The research used a quantitative experimental approach. The sample of the study was formed of 50 students of the tenth grade, aged 14 to 16 years old, of an official secondary…

  3. The Effect of Interactive Lecture Demonstrations on Students' Understanding of Heat and Temperature: A Study from Thailand

    Science.gov (United States)

    Tanahoung, Choksin; Chitaree, Ratchapak; Soankwan, Chernchok; Sharma, Manjula D.; Johnston, Ian D.

    2009-01-01

    The purpose of this study was to investigate the effectiveness of Interactive Lecture Demonstrations over traditional instruction on university students' understanding of heat and temperature. The participants were 327 first year undergraduate students from two science classes in two academic years from the same university in Thailand. One class…

  4. The Effect of Brain Based Learning on Second Grade Junior Students' Mathematics Conceptual Understanding on Polyhedron

    Science.gov (United States)

    Suarsana, I. Made; Widiasih, Ni Putu Santhi; Suparta, I. Nengah

    2018-01-01

    The aim of this study is to examine the effect of Brain Based Learning on second grade junior high school students? conceptual understanding on polyhedron. This study was conducted by using post-test only control group quasi-experimental design. The subjects of this study were 148 students that divided into three classes. Two classes were taken as…

  5. The Effectiveness of the Brain Based Teaching Approach in Enhancing Scientific Understanding of Newtonian Physics among Form Four Students

    Science.gov (United States)

    Saleh, Salmiza

    2012-01-01

    The aim of this study was to assess the effectiveness of Brain Based Teaching Approach in enhancing students' scientific understanding of Newtonian Physics in the context of Form Four Physics instruction. The technique was implemented based on the Brain Based Learning Principles developed by Caine & Caine (1991, 2003). This brain compatible…

  6. Forest landscape models, a tool for understanding the effect of the large-scale and long-term landscape processes

    Science.gov (United States)

    Hong S. He; Robert E. Keane; Louis R. Iverson

    2008-01-01

    Forest landscape models have become important tools for understanding large-scale and long-term landscape (spatial) processes such as climate change, fire, windthrow, seed dispersal, insect outbreak, disease propagation, forest harvest, and fuel treatment, because controlled field experiments designed to study the effects of these processes are often not possible (...

  7. Expression and function of nuclear receptor coregulators in brain : understanding the cell-specific effects of glucocorticoids

    NARCIS (Netherlands)

    Laan, Siem van der

    2008-01-01

    Currently, the raising awareness of the role of glucocorticoids in the onset of numerous (neuro)-pathologies constitutes the increasing necessity of understanding the mechanisms of action of glucocorticoids in bodily processes and brain functioning. Glucocorticoids mediate their effects by binding

  8. A Comparative Study on Power Point Presentation and Traditional Lecture Method in Material Understandability, Effectiveness and Attitude

    Science.gov (United States)

    Sewasew, Daniel; Mengestle, Missaye; Abate, Gebeyehu

    2015-01-01

    The aim of this study was to compare PPT and traditional lecture method in material understandability, effectiveness and attitude among university students. Comparative descriptive survey research design was employed to answer the research questions raised. Four hundred and twenty nine participants were selected randomly using stratified sampling…

  9. Effects of Maternal Negativity and of Early and Recent Recurrent Depressive Disorder on Children's False Belief Understanding

    Science.gov (United States)

    Rohrer, Lisa M.; Cicchetti, Dante; Rogosch, Fred A.; Toth, Sheree L.; Maughan, Angeline

    2011-01-01

    Research has shown that children of depressed mothers are at risk for problems in a variety of developmental domains; however, little is known about the effects of maternal depression on children's emerging understanding of false beliefs. In this study, 3 false belief tasks were administered to 5-year-old children whose mothers had either met…

  10. Understanding the biophysical effects of transcranial magnetic stimulation on brain tissue: the bridge between brain stimulation and cognition.

    Science.gov (United States)

    Neggers, Sebastiaan F W; Petrov, Petar I; Mandija, Stefano; Sommer, Iris E C; van den Berg, Nico A T

    2015-01-01

    Transcranial magnetic stimulation (TMS) is rapidly being adopted in neuroscience, medicine, psychology, and biology, for basic research purposes, diagnosis, and therapy. However, a coherent picture of how TMS affects neuronal processing, and especially how this in turn influences behavior, is still largely unavailable despite several studies that investigated aspects of the underlying neurophysiological effects of TMS. Perhaps as a result from this "black box approach," TMS studies show a large interindividual variability in applied paradigms and TMS treatment outcome can be quite variable, hampering its general efficacy and introduction into the clinic. A better insight into the biophysical, neuronal, and cognitive mechanisms underlying TMS is crucial in order to apply it effectively in the clinic and to increase our understanding of brain-behavior relationship. Therefore, computational and experimental efforts have been started recently to understand and control the effect TMS has on neuronal functioning. Especially, how the brain shapes magnetic fields induced by a TMS coil, how currents are generated locally in the cortical surface, and how they interact with complex functional neuronal circuits within and between brain areas are crucial to understand the observed behavioral changes and potential therapeutic effects resulting from TMS. Here, we review the current knowledge about the biophysical underpinnings of single-pulse TMS and argue how to move forward to fully understand and exploit the powerful technique that TMS can be. © 2015 Elsevier B.V. All rights reserved.

  11. The Effect of Three Levels of Inquiry on the Improvement of Science Concept Understanding of Elementary School Teacher Candidates

    Science.gov (United States)

    Artayasa, I. Putu; Susilo, Herawati; Lestari, Umie; Indriwati, Sri Endah

    2018-01-01

    This research aims to compare the effect of the implementation of three levels of inquiry: level 2 (structured inquiry), level 3 (guided inquiry), and level 4 (open inquiry) toward science concept understanding of elementary school teacher candidates. This is a quasi experiment research with pre-test post-test nonequivalent control group design.…

  12. The Effect of Process Oriented Guided Inquiry Learning (POGIL) on 11th Graders' Conceptual Understanding of Electrochemistry

    Science.gov (United States)

    Sen, Senol; Yilmaz, Ayhan; Geban, Ömer

    2016-01-01

    The purpose of this study was to investigate the effect of Process Oriented Guided Inquiry Learning (POGIL) method compared to traditional teaching method on 11th grade students' conceptual understanding of electrochemistry concepts. Participants were 115 students from a public school in Turkey. Nonequivalent control group design was used. Two…

  13. The Effect of Cooperative Learning Approach Based on Conceptual Change Condition on Students' Understanding of Chemical Equilibrium Concepts

    Science.gov (United States)

    Bilgin, Ibrahim; Geban, Omer

    2006-01-01

    The purpose of this study is to investigate the effects of the cooperative learning approach based on conceptual change conditions over traditional instruction on 10th grade students' conceptual understanding and achievement of computational problems related to chemical equilibrium concepts. The subjects of this study consisted of 87 tenth grade…

  14. Revised Sunspot Numbers and the Effects on Understanding the Sunspot Cycle

    Science.gov (United States)

    Hathaway, D. H.

    2014-12-01

    While sunspot numbers provide only limited information about the sunspot cycle, they provide that information for at least twice as many sunspot cycles as any other direct solar observation. In particular, sunspot numbers are available before, during, and immediately after the Maunder Minimum (1645-1715). The instruments and methods used to count sunspots have changed over the last 400+ years. This leads to systematic changes in the sunspot number that can mask, or artificially introduce, characteristics of the sunspot cycle. The most widely used sunspot number is the International (Wolf/Zurich) sunspot number which is now calculated at the Solar Influences Data Center in Brussels, Belgium. These numbers extend back to 1749. The Group sunspot number extends back to the first telescopic observations of the Sun in 1610. There are well-known and significant differences between these two numbers where they overlap. Recent work has helped us to understand the sources of these differences and has led to proposed revisions in the sunspot numbers. Independent studies now support many of these revisions. These revised sunspot numbers suggest changes to our understanding of the sunspot cycle itself and to our understanding of its connection to climate change.

  15. The effect of learning multimedia on students’ understanding of macroscopic, sub-microscopic, and symbolic levels in electrolyte and nonelectrolyte

    Science.gov (United States)

    Eliyawati; Rohman, I.; Kadarohman, A.

    2018-05-01

    This research aims to investigate the effect of learning multimedia on students’ understanding of macroscopic, sub-microscopic, and symbolic levels in electrolyte and nonelectrolyte topic. The quasi-experimental with one group pre-test post-test design was used. Thirty-five students were experimental class and another thirty-five were control class. The instrument was used is three representation levels. The t-test was performed on average level of 95% to identify the significant difference between experimental class and control class. The results show that the normalized gain average of experimental class is 0.75 (high) and the normalized gain average of control class is 0.45 (moderate). There is significant difference in students’ understanding in sub-microscopic and symbolic levels and there is not significant difference of students’ understanding in macroscopic level between experimental class and control class. The normalized gain of students’ understanding of macroscopic, sub-microscopic and symbolic in experimental class are 0.6 (moderate), 0.75 (high), and 0.64 (moderate), while the normalized gain of students’ understanding of macroscopic, sub-microscopic and symbolic in control class are 0.49 (moderate), 0.39 (high), and 0.3 (moderate). Therefore, it can be concluded that learning multimedia can help in improving students’ understanding especially in sub-microscopic and symbolic levels.

  16. THE EFFECTIVENESS OF E-LAB TO IMPROVE GENERIC SCIENCE SKILLS AND UNDERSTANDING THE CONCEPT OF PHYSICS

    Directory of Open Access Journals (Sweden)

    J. Siswanto

    2016-01-01

    Full Text Available The aimed of this sudy are: (1 investigate the effectiveness of E-Lab to improve generic science skills and understanding the concepts oh physics; and (2 investigate the effect of generic science skills towards understanding the concept of students after learning by using the E-Lab. The method used in this study is a pre-experimental design with one group pretest-posttest. Subjects were students of Physics Education in University PGRI Semarang with methode random sampling. The results showed that: (1 learning to use E-Lab effective to increase generic science skills of students; and (2 Generic science skills give positive effect on student conceptual understanding on the material of the photoelectric effect, compton effect, and electron diffraction. Tujuan penelitian ini yaitu: (1 menyelidiki efektifitas E-Lab untuk meningkatkan keterampilan generik sains dan pemahaman konsep mahasiswa; dan (2  menyelidiki pengaruh keterampilan generik sains terhadap pemahaman konsep mahasiswa setelah dilakukan pembelajaran dengan menggunakan E-Lab. Metode penelitian yang digunakan dalam penelitian ini adalah pre-experimental dengan desain one group pretest-posttest. Subjek penelitian adalah mahasiswa Program Studi Pendidikan  Fisika  Universitas PGRI Semarang, dengan metode pengambilan sampel penelitian secara random. Hasil penelitian menunjukkan bahwa bahwa: (1 pembelajaran menggunakan E-Lab efektif untuk meningkatkan keterampilan generik sains mahasiswa; dan  (2 Keterampilan generik sains berpengaruh positif terhadap pemahaman konsep mahasiswa pada materi efek fotolistrik, efek compton, dan difraksi elektron. 

  17. Children's Models of Understanding of Two Major Global Environmental Issues (Ozone Layer and Greenhouse Effect).

    Science.gov (United States)

    Boyes, Edward; Stanisstreet, Martin

    1997-01-01

    Aims to quantify the models that 13- and 14 year-old students hold about the causes of the greenhouse effect and ozone layer depletion. Assesses the prevalence of those ideas that link the two phenomena. Twice as many students think that holes in the ozone layer cause the greenhouse effect than think the greenhouse effect causes ozone depletion.…

  18. Future development of biological understanding of radiation protection: implications of nonstochastic effects

    International Nuclear Information System (INIS)

    Hahn, F.F.; McClellan, R.O.; Boecker, B.B.; Muggenburg, B.A.

    1988-01-01

    Radiation-protection standards are based on minimizing or preventing biological effects in exposed populations. Radiation-induced biological effects can be classified as stochastic--malignant and hereditary diseases for which the probability of an effect occurring is a function of dose without threshold--and nonstochastic--inflammatory and degenerative diseases for which the severity and frequency of the effect varies with the dose and for which a threshold is present. The current International Commission on Radiation Protection (ICRP) approach for setting limits for intakes of radionuclides by workers, which accounts for doses to significantly exposed organs of the body, is based on limitation of stochastic effects in most situations. When setting exposure limits, nonstochastic effects are generally considered to be unlikely at the limits for stochastic effects. In some situations, limits based on prevention of nonstochastic effects are lower than for stochastic effects. This review considers the threshold radiation doses for thyroid, bone, liver and lung and their relationship to the limits recommended by the ICRP and the cancer risks at the limits. This review indicates that the threshold dose for nonstochastic effects in thyroid and lung is much above the dose limit as advocated by ICRP. The threshold dose for nonstochastic effects in bone and liver is much closer to the dose limit, but protection from nonstochastic effects should still be afforded by the dose limits

  19. Demystifying the memory effect: A geometrical approach to understanding speckle correlations

    Science.gov (United States)

    Prunty, Aaron C.; Snieder, Roel K.

    2017-05-01

    The memory effect has seen a surge of research into its fundamental properties and applications since its discovery by Feng et al. [Phys. Rev. Lett. 61, 834 (1988)]. While the wave trajectories for which the memory effect holds are hidden implicitly in the diffusion probability function [Phys. Rev. B 40, 737 (1989)], the physical intuition of why these trajectories satisfy the memory effect has often been masked by the derivation of the memory correlation function itself. In this paper, we explicitly derive the specific trajectories through a random medium for which the memory effect holds. Our approach shows that the memory effect follows from a simple conservation argument, which imposes geometrical constraints on the random trajectories that contribute to the memory effect. We illustrate the time-domain effects of these geometrical constraints with numerical simulations of pulse transmission through a random medium. The results of our derivation and numerical simulations are consistent with established theory and experimentation.

  20. PCI Compliance Understand and Implement Effective PCI Data Security Standard Compliance

    CERN Document Server

    Chuvakin, Anton

    2010-01-01

    Identity theft and other confidential information theft have now topped the charts as the #1 cybercrime. In particular, credit card data is preferred by cybercriminals. Is your payment processing secure and compliant?. Now in its second edition, PCI Compliance has been revised to follow the new PCI DSS standard 1.2.1. Also new to this edition: Each chapter has how-to guidance to walk you through implementing concepts, and real-world scenarios to help you relate to the information and better grasp how it impacts your data. This book provides the information that you need to understand the curre

  1. Stories That Heal: Understanding the Effects of Creating Digital Stories With Pediatric and Adolescent/Young Adult Oncology Patients.

    Science.gov (United States)

    Laing, Catherine M; Moules, Nancy J; Estefan, Andrew; Lang, Mike

    The purpose of this philosophical hermeneutic study was to determine if, and understand how, digital stories might be effective therapeutic tools to use with children and adolescents/young adults (AYA) with cancer, thus helping mitigate suffering. Sixteen participants made digital stories with the help of a research assistant trained in digital storytelling and were interviewed following the completion of their stories. Findings from this research revealed that digital stories were a way to have others understand their experiences of cancer, allowed for further healing from their sometimes traumatic experiences, had unexpected therapeutic effects, and were a way to reconcile past experiences with current life. Digital stories, we conclude, show great promise with the pediatric and AYA oncology community and we believe are a way in which the psychosocial effects of cancer treatment may be addressed. Recommendations for incorporating digital stories into clinical practice and follow-up programs are offered.

  2. What do men understand about lifetime risk following genetic testing? The effect of context and numeracy.

    Science.gov (United States)

    Rolison, Jonathan J; Hanoch, Yaniv; Miron-Shatz, Talya

    2012-07-01

    Genetic testing for gene mutations associated with specific cancers provides an opportunity for early detection, surveillance, and intervention (Smith, Cokkinides, & Brawley, 2008). Lifetime risk estimates provided by genetic testing refer to the risk of developing a specific disease within one's lifetime, and evidence suggests that this is important for the medical choices people make, as well as their future family and financial plans. The present studies tested whether adult men understand the lifetime risks of prostate cancer informed by genetic testing. In 2 experiments, adult men were asked to interpret the lifetime risk information provided in statements about risks of prostate cancer. Statement format was manipulated such that the most appropriate interpretation of risk statements referred to an absolute risk of cancer in experiment 1 and a relative risk in experiment 2. Experiment 1 revealed that few men correctly interpreted the lifetime risks of cancer when these refer to an absolute risk of cancer, and numeracy levels positively predicted correct responding. The proportion of correct responses was greatly improved in experiment 2 when the most appropriate interpretation of risk statements referred instead to a relative rather than an absolute risk, and numeracy levels were less involved. Understanding of lifetime risk information is often poor because individuals incorrectly believe that these refer to relative rather than absolute risks of cancer.

  3. Trust, Mistrust, and Organizational Design: Understanding the Effects of Social Configurations

    National Research Council Canada - National Science Library

    Moonier III, James E; Baker, Spencer L; Greene, Mark L

    2008-01-01

    .... The formation of effective partnerships is influenced greatly by trust. Trust sets the stage for necessary factors for collaboration such as social interaction, communication, negotiation, and cooperation...

  4. The Effects of Maple Integrated Strategy on Engineering Technology Students' Understanding of Integral Calculus

    Science.gov (United States)

    Salleh, Tuan Salwani; Zakaria, Effandi

    2016-01-01

    The objective of this research is to investigate the effectiveness of a learning strategy using Maple in integral calculus. This research was conducted using a quasi-experimental nonequivalent control group design. One hundred engineering technology students at a technical university were chosen at random. The effectiveness of the learning…

  5. Global Warming: Understanding and Teaching the Forecast. Part A The Greenhouse Effect.

    Science.gov (United States)

    Andrews, Bill

    1993-01-01

    Provides information necessary for an interdisciplinary analysis of the greenhouse effect, enhanced greenhouse effect, global warming, global climate change, greenhouse gases, carbon dioxide, and scientific study of global warming for students grades 4-12. Several activity ideas accompany the information. (LZ)

  6. Understanding Effective High Schools: Evidence for Personalization for Academic and Social Emotional Learning

    Science.gov (United States)

    Rutledge, Stacey A.; Cohen-Vogel, Lora; Osborne-Lampkin, La'Tara; Roberts, Ronnie L.

    2015-01-01

    This article presents findings from a year-long multilevel comparative case study exploring the characteristics of effective urban high schools. We developed a comprehensive framework from the school effectiveness research that guided our data collection and analysis at the four high schools. Using value-added methodology, we identified two higher…

  7. Adolescent ethnic prejudice: understanding the effects of parental extrinsic versus intrinsic goal promotion.

    Science.gov (United States)

    Duriez, Bart

    2011-01-01

    Based on Self-Determination Theory, the role of parental extrinsic versus intrinsic (E / I) goal promotion for adolescent ethnic prejudice and the mechanisms underlying this effect were examined in a sample of adolescents and their parents. Results indicate that paternal and maternal E / I goal promotion had a significantly positive effect on ethnic prejudice. This effect could be accounted for by differences in adolescent right-wing authoritarianism (RWA) and social dominance orientation (SDO). In addition, differences in adolescent E / I goal pursuit fully mediated the effects of parental E / I goal promotion on RWA and SDO. Finally, the effects of adolescent E / I goal pursuits on ethnic prejudice were fully mediated by RWA and SDO. Implications of these findings will be discussed.

  8. Understanding the effects of the core on the nutation of the Earth

    Directory of Open Access Journals (Sweden)

    Véronique Dehant

    2017-11-01

    Full Text Available In this review paper, we examine the changes in the Earth orientation in space and focus on the nutation (shorter-term periodic variations, which is superimposed on precession (long-term trend on a timescale of years. We review the nutation modelling involving several coupling mechanisms at the core-mantle boundary using the Liouville angular momentum equations for a two-layered Earth with a liquid flattened core. The classical approach considers a Poincaré fluid for the core with an inertial pressure coupling mechanism at the core-mantle boundary. We examine possible additional coupling mechanisms to explain the observations. In particular, we examine how we can determine the flattening of the core as well as information on the magnetic field and the core flow from the nutation observations. The precision of the observations is shown to be high enough to increase our understanding on the coupling mechanisms at the core-mantle boundary.

  9. Understanding the Effect of Carbonate Ion on Cisplatin Binding to DNA

    Science.gov (United States)

    Todd, Ryan C.; Lovejoy, Katherine S.; Lippard, Stephen J.

    2008-01-01

    The role of carbonate in the binding of cis-diamminedichloroplatinum(II) to DNA was investigated in order to understand the potential involvement of carbonato-cisplatin species in the mechanism of action of platinum anticancer agents. Cisplatin was allowed to react with both double- and single-stranded DNA in carbonate, phosphate, and HEPES buffers, and the products were analyzed by agarose gel electrophoresis and enzymatic digestion/mass spectrometry, respectively. The data from these experiments demonstrate (1) that carbonate, like other biological nucleophiles, forms relatively inert complexes with platinum that inactivate cisplatin, and (2) that the major cisplatin-DNA adduct formed is a bifunctional cross-link. These results are in accord with previous studies of cisplatin-DNA binding and reveal that the presence of carbonate has no consequence on the nature of the resulting adducts. PMID:17465550

  10. Understanding and effectively addressing breast cancer in African American women: Unpacking the social context.

    Science.gov (United States)

    Williams, David R; Mohammed, Selina A; Shields, Alexandra E

    2016-07-15

    Black women have a higher incidence of breast cancer before the age of 40 years, more severe disease at all ages, and an elevated mortality risk in comparison with white women. There is limited understanding of the contribution of social factors to these patterns. Elucidating the role of the social determinants of health in breast cancer disparities requires greater attention to how risk factors for breast cancer unfold over the lifecourse and to the complex ways in which socioeconomic status and racism shape exposure to psychosocial, physical, chemical, and other individual and community-level assaults that increase the risk of breast cancer. Research that takes seriously the social context in which black women live is also needed to maximize the opportunities to prevent breast cancer in this underserved group. Cancer 2016;122:2138-49. © 2016 American Cancer Society. © 2016 American Cancer Society.

  11. Twentieth century North Atlantic climate change. Part II: Understanding the effect of Indian Ocean warming

    Energy Technology Data Exchange (ETDEWEB)

    Hoerling, M.P.; Xu, T.; Bates, G.T. [Climate Diagnostics Center NOAA, Boulder, CO 80305-3328 (United States); Hurrell, J.W.; Phillips, A.S. [National Center for Atmospheric Research, Boulder, CO (United States)

    2004-09-01

    Ensembles of atmospheric general circulation model (AGCM) experiments are used in an effort to understand the boreal winter Northern Hemisphere (NH) extratropical climate response to the observed warming of tropical sea surface temperatures (SSTs) over the last half of the twentieth Century. Specifically, we inquire about the origins of unusual, if not unprecedented, changes in the wintertime North Atlantic and European climate that are well described by a linear trend in most indices of the North Atlantic Oscillation (NAO). The simulated NH atmospheric response to the linear trend component of tropic-wide SST change since 1950 projects strongly onto the positive polarity of the NAO and is a hemispheric pattern distinguished by decreased (increased) Arctic (middle latitude) sea level pressure. Progressive warming of the Indian Ocean is the principal contributor to this wintertime extratropical response, as shown through additional AGCM ensembles forced with only the SST trend in that sector. The Indian Ocean influence is further established through the reproducibility of results across three different models forced with identical, idealized patterns of the observed warming. Examination of the transient atmospheric adjustment to a sudden ''switch-on'' of an Indian Ocean SST anomaly reveals that the North Atlantic response is not consistent with linear theory and most likely involves synoptic eddy feedbacks associated with changes in the North Atlantic storm track. The tropical SST control exerted over twentieth century regional climate underlies the importance of determining the future course of tropical SST for regional climate change and its uncertainty. Better understanding of the extratropical responses to different, plausible trajectories of the tropical oceans is key to such efforts. (orig.)

  12. Technical aspects in understanding effects of gamma irradiation on flower colour changes in Dendrobium Sonia

    International Nuclear Information System (INIS)

    Sakinah Ariffin; Azhar Mohammad; Ratnam, W.

    2012-01-01

    Colour is one of the most important traits in orchids and has created great interest in breeding programmes. Gamma irradiation is an alternative way for generation of somaclonal variation for new flower colours. Phenotypic changes are usually observed during screening and selection of mutants. Understanding of targeted gene expression level and evaluation of the changes facilitate in the development of functional markers for selection of desired flower colour mutants. Four Dendrobium orchid sequences (NCBI accessions: AM490639, AY41319, FM209429 and DQ462460) were selected to design gene specific primers based on information for chalcone synthase (CHS) from NCBI database. Quantitative real-time PCR (qPCR) was used to understand flower colour expression quantitatively derived from the CHS gene activities in different flower tissues (petal and sepal) from control Dendrobium Sonia (red purple), mutant DS 35-1/M (purple pink) and mutant DS 35-WhiteA. It was found that expression of CHS gene was highest in sepals of white flowers and lowest in both sepals and petals of purple pink flowers. Genomic DNA was amplified and PCR products were sequenced, aligned and compared. Sequence variations of CHS partial gene in Dendrobium Sonia mutants with different flower colour showed that two protein positions have been changed as compared to the control. These non-synonymous mutations may have contributed to the colour alterations in the white and purple pink mutants. This paper describes important procedures to quantify gene expression such as RNA isolation (quantity and quality), cDNA synthesis and primer design steps for CHS genes. (author)

  13. The Effect of 7E Learning Model on Conceptual Understandings of Prospective Science Teachers on 'de Broglie Matter Waves' Subject

    Directory of Open Access Journals (Sweden)

    Meryem Gorecek Baybars

    2018-04-01

    Full Text Available The object of this study is to determine the conceptual understanding that prospective Science teachers have relating "de Broglie: Matter waves" and to investigate the effect of the instruction performed, on the conceptual understanding. This study was performed at a state university located in the western part of Turkey, with the Faculty of Education-Science Teaching students (2nd year / 48 individual in the academic year of 2010-2011. The study was planned as a single group pretest-posttest design. A two-step question was used in the study, prior to and after the instruction. Lessons were conducted using the 7E learning model in the instruction process. When all these results are evaluated, it can be said that the conceptual understanding of the prospective teachers regarding "de Broglie; matter waves" has been taken place. In general, when all the sections are examined, it has been observed that the prospective teachers have more alternative concepts prior to the instruction and more scientific concepts after the instruction. In this process, besides instruction, the prospective teachers have not taken any place in a different application regarding the basic concepts of quantum physics. Therefore, it has been determined that the 7E learning model used in the research and the activities included in the 7E learning model are effective in conceptual understanding.

  14. The 3-year disease management effect: understanding the positive return on investment.

    Science.gov (United States)

    Nyman, John A; Jeffery, Molly Moore; Abraham, Jean M; Jutkowitz, Eric; Dowd, Bryan E

    2013-11-01

    Conventional wisdom suggests that health promotion programs yield a positive return on investment (ROI) in year 3. In the case of the University of Minnesota's program, a positive ROI was achieved in the third year, but it was due entirely to the effectiveness of the disease management (DM) program. The objective of this study is to investigate why. Differences-in-differences regression equations were estimated to determine the effect of DM participation on spending (overall and service specific), hospitalizations, and avoidable hospitalizations. Disease management participation reduced expenditures overall, and especially in the third year for employees, and reduced hospitalizations and avoidable hospitalizations. The positive ROI at Minnesota was due to increased effectiveness of DM in the third year (mostly due to fewer hospitalizations) but also to the simple durability of the average DM effect.

  15. A diffusion modelling approach to understanding contextual cueing effects in children with ADHD

    Science.gov (United States)

    Weigard, Alexander; Huang-Pollock, Cynthia

    2014-01-01

    Background Strong theoretical models suggest implicit learning deficits may exist among children with Attention Deficit Hyperactivity Disorder (ADHD). Method We examine implicit contextual cueing (CC) effects among children with ADHD (n=72) and non-ADHD Controls (n=36). Results Using Ratcliff’s drift diffusion model, we found that among Controls, the CC effect is due to improvements in attentional guidance and to reductions in response threshold. Children with ADHD did not show a CC effect; although they were able to use implicitly acquired information to deploy attentional focus, they had more difficulty adjusting their response thresholds. Conclusions Improvements in attentional guidance and reductions in response threshold together underlie the CC effect. Results are consistent with neurocognitive models of ADHD that posit sub-cortical dysfunction but intact spatial attention, and encourage the use of alternative data analytic methods when dealing with reaction time data. PMID:24798140

  16. A diffusion modeling approach to understanding contextual cueing effects in children with ADHD.

    Science.gov (United States)

    Weigard, Alexander; Huang-Pollock, Cynthia

    2014-12-01

    Strong theoretical models suggest implicit learning deficits may exist among children with Attention Deficit Hyperactivity Disorder (ADHD). We examine implicit contextual cueing (CC) effects among children with ADHD (n = 72) and non-ADHD Controls (n = 36). Using Ratcliff's drift diffusion model, we found that among Controls, the CC effect is due to improvements in attentional guidance and to reductions in response threshold. Children with ADHD did not show a CC effect; although they were able to use implicitly acquired information to deploy attentional focus, they had more difficulty adjusting their response thresholds. Improvements in attentional guidance and reductions in response threshold together underlie the CC effect. Results are consistent with neurocognitive models of ADHD that posit subcortical dysfunction but intact spatial attention, and encourage the use of alternative data analytic methods when dealing with reaction time data. © 2014 The Authors. Journal of Child Psychology and Psychiatry. © 2014 Association for Child and Adolescent Mental Health.

  17. Understanding the Effect of Audio Communication Delay on Distributed Team Interaction

    Science.gov (United States)

    2013-06-01

    means for members to socialize and learn about each other, engenders development cooperative relationships, and lays a foundation for future interaction...length will result in increases in task completion time and mental workload. 3. Audiovisual technology will moderate the effect of communication...than audio alone. 4. Audiovisual technology will moderate the effect of communication delays such that task completion time and mental workload will

  18. Understanding and predicting metallic whisker growth and its effects on reliability : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Michael, Joseph Richard; Grant, Richard P.; Rodriguez, Mark Andrew; Pillars, Jamin; Susan, Donald Francis; McKenzie, Bonnie Beth; Yelton, William Graham

    2012-01-01

    Tin (Sn) whiskers are conductive Sn filaments that grow from Sn-plated surfaces, such as surface finishes on electronic packages. The phenomenon of Sn whiskering has become a concern in recent years due to requirements for lead (Pb)-free soldering and surface finishes in commercial electronics. Pure Sn finishes are more prone to whisker growth than their Sn-Pb counterparts and high profile failures due to whisker formation (causing short circuits) in space applications have been documented. At Sandia, Sn whiskers are of interest due to increased use of Pb-free commercial off-the-shelf (COTS) parts and possible future requirements for Pb-free solders and surface finishes in high-reliability microelectronics. Lead-free solders and surface finishes are currently being used or considered for several Sandia applications. Despite the long history of Sn whisker research and the recently renewed interest in this topic, a comprehensive understanding of whisker growth remains elusive. This report describes recent research on characterization of Sn whiskers with the aim of understanding the underlying whisker growth mechanism(s). The report is divided into four sections and an Appendix. In Section 1, the Sn plating process is summarized. Specifically, the Sn plating parameters that were successful in producing samples with whiskers will be reviewed. In Section 2, the scanning electron microscopy (SEM) of Sn whiskers and time-lapse SEM studies of whisker growth will be discussed. This discussion includes the characterization of straight as well as kinked whiskers. In Section 3, a detailed discussion is given of SEM/EBSD (electron backscatter diffraction) techniques developed to determine the crystallography of Sn whiskers. In Section 4, these SEM/EBSD methods are employed to determine the crystallography of Sn whiskers, with a statistically significant number of whiskers analyzed. This is the largest study of Sn whisker crystallography ever reported. This section includes a

  19. Effects of Maternal Negativity and of Early and Recent Recurrent Depressive Disorder on Children’s False Belief Understanding

    Science.gov (United States)

    Rohrer, Lisa M.; Cicchetti, Dante; Rogosch, Fred A.; Toth, Sheree L.; Maughan, Angeline

    2015-01-01

    Research has shown that children of depressed mothers are at risk for problems in a variety of developmental domains; however, little is known about the effects of maternal depression on children’s emerging understanding of false beliefs. In this study, three false belief tasks were administered to five-year-old children whose mothers had either met criteria for major depressive disorder within the first 20 months of the child’s life (n = 91) or had never been depressed (n = 50). Significant difficulties in performance were found among the children of depressed mothers, especially those whose mothers had experienced early and recent recurrent depressive disorder. Regardless of diagnostic status, children whose mothers exhibited negativity during problem-solving tasks administered at an earlier developmental period also were less likely to demonstrate false belief understanding. These effects remained even after child verbal ability was controlled. PMID:21244156

  20. Effects of maternal negativity and of early and recent recurrent depressive disorder on children's false belief understanding.

    Science.gov (United States)

    Rohrer, Lisa M; Cicchetti, Dante; Rogosch, Fred A; Toth, Sheree L; Maughan, Angeline

    2011-01-01

    Research has shown that children of depressed mothers are at risk for problems in a variety of developmental domains; however, little is known about the effects of maternal depression on children's emerging understanding of false beliefs. In this study, 3 false belief tasks were administered to 5-year-old children whose mothers had either met criteria for major depressive disorder within the first 20 months of the child's life (n = 91) or had never been depressed (n = 50). Significant difficulties in performance were found among the children of depressed mothers, especially those whose mothers had experienced early and recent recurrent depressive disorder. Regardless of diagnostic status, children whose mothers exhibited negativity during problem-solving tasks administered at an earlier developmental period also were less likely to demonstrate false belief understanding. These effects remained even after child verbal ability was controlled.

  1. Evaluating the effects of ideology on public understanding of climate change science: how to improve communication across ideological divides?

    Science.gov (United States)

    Zia, Asim; Todd, Anne Marie

    2010-11-01

    While ideology can have a strong effect on citizen understanding of science, it is unclear how ideology interacts with other complicating factors, such as college education, which influence citizens' comprehension of information. We focus on public understanding of climate change science and test the hypotheses: [H1] as citizens' ideology shifts from liberal to conservative, concern for global warming decreases; [H2] citizens with college education and higher general science literacy tend to have higher concern for global warming; and [H3] college education does not increase global warming concern for conservative ideologues. We implemented a survey instrument in California's San Francisco Bay Area, and employed regression models to test the effects of ideology and other socio-demographic variables on citizen concern about global warming, terrorism, the economy, health care and poverty. We are able to confirm H1 and H3, but reject H2. Various strategies are discussed to improve the communication of climate change science across ideological divides.

  2. Understanding the Effect of Workload on Automation Use for Younger and Older Adults

    Science.gov (United States)

    McBride, Sara E.; Rogers, Wendy A.; Fisk, Arthur D.

    2018-01-01

    Objective This study examined how individuals, younger and older, interacted with an imperfect automated system. The impact of workload on performance and automation use was also investigated. Background Automation is used in situations characterized by varying levels of workload. As automated systems spread to domains such as transportation and the home, a diverse population of users will interact with automation. Research is needed to understand how different segments of the population use automation. Method Workload was systematically manipulated to create three levels (low, moderate, high) in a dual-task scenario in which participants interacted with a 70% reliable automated aid. Two experiments were conducted to assess automation use for younger and older adults. Results Both younger and older adults relied on the automation more than they complied with it. Among younger adults, high workload led to poorer performance and higher compliance, even when that compliance was detrimental. Older adults’ performance was negatively affected by workload, but their compliance and reliance were unaffected. Conclusion Younger and older adults were both able to use and double-check an imperfect automated system. Workload affected how younger adults complied with automation, particularly with regard to detecting automation false alarms. Older adults tended to comply and rely at fairly high rates overall, and this did not change with increased workload. Application Training programs for imperfect automated systems should vary workload and provide feedback about error types, and strategies for identifying errors. The ability to identify automation errors varies across individuals, thereby necessitating training. PMID:22235529

  3. Understanding the Socioeconomic Effects of Wildfires on Western U.S. Public Lands

    Science.gov (United States)

    Sanchez, J. J.; Srivastava, L.; Marcos-Martinez, R.

    2017-12-01

    Climate change has resulted in the increased severity and frequency of forest disturbances due to wildfires, droughts, pests and diseases that compromise the sustainable provision of forest ecosystem services (e.g., water quantity and quality, carbon sequestration, recreation). A better understanding of the environmental and socioeconomic consequences of forest disturbances (i.e., wildfires) could improve the management and protection of public lands. We used a single-site benefit transfer function and spatially explicit information for demographic, socioeconomic, and site-specific characteristics to estimate the monetized value of market and non-market ecosystem services provided by forests on Western US public lands. These estimates are then used to approximate the costs of forest disturbances caused by wildfires of varying frequency and intensity, and across sites with heterogeneous characteristics and protection and management strategies. Our analysis provides credible estimates of the benefits of the forest for land management by the United States Forest Service, thereby assisting forest managers in planning resourcing and budgeting priorities.

  4. Understanding the effect of workload on automation use for younger and older adults.

    Science.gov (United States)

    McBride, Sara E; Rogers, Wendy A; Fisk, Arthur D

    2011-12-01

    This study examined how individuals, younger and older, interacted with an imperfect automated system. The impact of workload on performance and automation use was also investigated. Automation is used in situations characterized by varying levels of workload. As automated systems spread to domains such as transportation and the home, a diverse population of users will interact with automation. Research is needed to understand how different segments of the population use automation. Workload was systematically manipulated to create three levels (low, moderate, high) in a dual-task scenario in which participants interacted with a 70% reliable automated aid. Two experiments were conducted to assess automation use for younger and older adults. Both younger and older adults relied on the automation more than they complied with it. Among younger adults, high workload led to poorer performance and higher compliance, even when that compliance was detrimental. Older adults' performance was negatively affected by workload, but their compliance and reliance were unaffected. Younger and older adults were both able to use and double-check an imperfect automated system. Workload affected how younger adults complied with automation, particularly with regard to detecting automation false alarms. Older adults tended to comply and rely at fairly high rates overall, and this did not change with increased workload. Training programs for imperfect automated systems should vary workload and provide feedback about error types, and strategies for identifying errors. The ability to identify automation errors varies across individuals, thereby necessitating training.

  5. The effects of bariatric surgery: will understanding its mechanism render the knife unnecessary?

    Science.gov (United States)

    Browning, Kirsteen N; Hajnal, Andras

    2014-01-01

    The incidence of obesity is increasing worldwide at a dramatic rate, accompanied by an associated increase in comorbid conditions. Bariatric surgery is the most effective treatment for morbid obesity with Roux-en-Y gastric bypass being the most commonly performed procedure, yet the underlying mechanisms by which it induces a wide-array of beneficial effects remains obscure. From basic science as well as clinical standpoints, there are several areas of current interest that warrant continued investigation. Several major focus areas have also emerged in current research that may guide future efforts in this field, particularly with regards to using novel, non-surgical approaches to mimic the success of bariatric surgery while minimizing its adverse side effects.

  6. Managing a new collaborative entity in business organizations: understanding organizational communities of practice effectiveness.

    Science.gov (United States)

    Kirkman, Bradley L; Mathieu, John E; Cordery, John L; Rosen, Benson; Kukenberger, Michael

    2011-11-01

    Companies worldwide are turning to organizational communities of practice (OCoPs) as vehicles to generate learning and enhance organizational performance. OCoPs are defined as groups of employees who share a concern, a set of problems, or a passion about a topic and who strengthen their knowledge and expertise by interacting on a consistent basis. To date, OCoP research has drawn almost exclusively from the community of practice (CoP) literature, even though the organizational form of CoPs shares attributes of traditional CoPs and of organizational teams. Drawing on Lave and Wenger's (1991) original theory of legitimate peripheral participation, we integrate theory and research from CoPs and organizational teams to develop and empirically examine a model of OCoP effectiveness that includes constructs such as leadership, empowerment, the structure of tasks, and OCoP relevance to organizational effectiveness. Using data from 32 OCoPs in a U.S.-based multinational mining and minerals processing firm, we found that external community leaders play an important role in enhancing OCoP empowerment, particularly to the extent that task interdependence is high. Empowerment, in turn, was positively related to OCoP effectiveness. We also found that OCoPs designated as "core" by the organization (e.g., working on critical issues) were more effective than those that were noncore. Task interdependence also was positively related to OCoP effectiveness. We provide scholars and practitioners with insights on how to effectively manage OCoPs in today's organizations. (c) 2011 APA, all rights reserved.

  7. Understanding the positive and negative effects of emotional expressions in organizations: EASI does it

    NARCIS (Netherlands)

    van Kleef, G.A.

    2014-01-01

    Emotions have a pervasive impact on organizational behavior. They do not just influence people’s own actions; when expressed, emotions may also exert influence on other organization members who perceive the expressions. Sometimes emotional expressions have ‘symmetrical’ effects, in that positive

  8. Combining Emotion Appraisal Dimensions and Individual Differences to Understand Emotion Effects on Gift Giving

    NARCIS (Netherlands)

    Hooge, De I.E.

    2017-01-01

    Multiple studies have revealed that emotion appraisal dimensions can predict the effects of emotions on decision making. For example, givers' intention to buy gifts depends on whether they feel positive or negative (valence) and on whether the feeling is caused by the givers themselves or by gift

  9. Understanding and valuing environmental issues: the effects of availability and anchoring on judgment.

    Science.gov (United States)

    van der Pligt, J; van Schie, E C; Hoevenagel, R

    1998-01-01

    This paper addresses the effects of availability and anchoring-and-adjustment on people's beliefs and values concerning environmental issues. The first three studies focus on lay people's perceptions of the causes of large scale environmental risks, the second series of three studies deals with how people value environmental goods and how much they are prepared to pay to mitigate environmental risks. In studies 1-3 we investigate the effects of availability and anchoring-and-adjustment on estimating the contribution of various factors to large scale environmental risks. Highly complex risks such as acid rain and global warming tend to be associated with multiple causes, and our results show that estimating the role of these causes is clearly affected by availability and anchoring-and-adjustment. Both have sizeable effects and persist over time. Moreover, corrective procedures only seem to have a limited effect. Availability and anchoring-and-adjustment not only play a role in judging the possible causes of risks; they also play a role in research attempting to assess the public's willingness to pay (WTP) to protect our environment. The outcomes of WTP surveys are often used as a tool to help policy decision making. In the second part of this article we present three studies on this issue. Results provide further evidence of the impact of the two heuristics on the outcomes of WTP research. Implications for research and practice are briefly discussed.

  10. Clay Modeling versus Written Modules as Effective Interventions in Understanding Human Anatomy

    Science.gov (United States)

    Bareither, Mary Lou; Arbel, Vered; Growe, Meghan; Muszczynski, Emily; Rudd, Adam; Marone, Jane R.

    2013-01-01

    The effectiveness of clay modeling to written modules is examined to determine the degree of improvement in learning and retention of anatomical 3D relationships among students with different learning preferences. Thirty-nine undergraduate students enrolled in a cadaver dissection course completed a pre-assessment examination and the VARK…

  11. Understanding the Effect of Loneliness on Academic Participation and Success among International University Students

    Science.gov (United States)

    Bek, Hafiz

    2017-01-01

    The purpose of this study was to assess the effect of loneliness on academic participation and success among 213 students studying at Usak University. A total of 213 international students studying at Usak University, including 151 males and 62 females, were selected and participated in the research voluntarily. In the study, feelings of…

  12. Understanding Effective Higher Education Programs in Prisons: Considerations from the Incarcerated Individuals Program in North Carolina

    Science.gov (United States)

    Anders, Allison Daniel; Noblit, George W.

    2011-01-01

    The North Carolina Workplace and Community Transition Youth Offender Program (YOP), recently renamed the Incarcerated Individuals Program (IPP), has proven to be effective in terms of its growth and expansion, the support of education directors across the correctional facilities, university collaboration, student evaluations, and a low recidivism…

  13. Educator Effectiveness Research Alliance: Using Research and Data to Understand and Improve Educator Preparation and Evaluation

    Science.gov (United States)

    Regional Educational Laboratory Southwest, 2018

    2018-01-01

    Research shows that teachers affect student learning more than any other factor. The Educator Effectiveness Research Alliance, a collaborative partnership of educators, policymakers, and researchers, seeks to improve educator quality through research and analytic technical support. Initially focused on Texas, the alliance has expanded to include…

  14. Understanding E-Learning Adoption in Brazil: Major Determinants and Gender Effects

    Science.gov (United States)

    Okazaki, Shintaro; dos Santos, Luiz Miguel Renda

    2012-01-01

    The objective of this study is to examine factors influencing e-learning adoption and the moderating role of gender. This study extends the technology acceptance model (TAM) by adding attitude and social interaction. The new construct of social interaction is applied to the South American context. Gender effects on e-learning adoption from…

  15. Understanding Decision-Making, Communication Rules, and Communication Satisfaction as Culture: Implications for Organizational Effectiveness.

    Science.gov (United States)

    Shockley-Zalabak, Pamela

    A study of decision making processes and communication rules, in a corporate setting undergoing change as a result of organizational ineffectiveness, examined whether (1) decisions about formal communication reporting systems were linked to management assumptions about technical creativity/effectiveness, (2) assumptions about…

  16. Principal Stratification: A Tool for Understanding Variation in Program Effects across Endogenous Subgroups

    Science.gov (United States)

    Page, Lindsay C.; Feller, Avi; Grindal, Todd; Miratrix, Luke; Somers, Marie-Andree

    2015-01-01

    Increasingly, researchers are interested in questions regarding treatment-effect variation across partially or fully latent subgroups defined not by pretreatment characteristics but by postrandomization actions. One promising approach to address such questions is principal stratification. Under this framework, a researcher defines endogenous…

  17. Understanding the Uncertainty of an Effectiveness-Cost Ratio in Educational Resource Allocation: A Bayesian Approach

    Science.gov (United States)

    Pan, Yilin

    2016-01-01

    Given the necessity to bridge the gap between what happened and what is likely to happen, this paper aims to explore how to apply Bayesian inference to cost-effectiveness analysis so as to capture the uncertainty of a ratio-type efficiency measure. The first part of the paper summarizes the characteristics of the evaluation data that are commonly…

  18. Understanding the Doppler Effect by Analysing Spectrograms of the Sound of a Passing Vehicle

    Science.gov (United States)

    Lubyako, Dmitry; Martinez-Piedra, Gordon; Ushenin, Arthur; Ushenin, Arthur; Denvir, Patrick; Dunlop, John; Hall, Alex; Le Roux, Gus; van Someren, Laurence; Weinberger, Harvey

    2017-01-01

    The purpose of this paper is to demonstrate how the Doppler effect can be analysed to deduce information about a moving source of sound waves. Specifically, we find the speed of a car and the distance of its closest approach to an observer using sound recordings from smartphones. A key focus of this paper is how this can be achieved in a…

  19. Understanding effects of BIM on collaborative design and construction : An empirical study in China

    NARCIS (Netherlands)

    Liu, Y.; van Nederveen, G.A.; Hertogh, M.J.C.M.

    2016-01-01

    In construction projects, Building Information Modeling (BIM) influences on the common way of collaboration, including the roles of different participants. The goal of this research is to explore current practices and identify the critical effects of BIM on collaborative design and construction.

  20. Understanding Effective Program Improvement Schools through a Distributed Leadership Task Context Model

    Science.gov (United States)

    Gipson, Frances Marie

    2012-01-01

    Federal, state, and local agencies face challenges organizing resources that create the conditions necessary to create, sustain, and replicate effective high performing schools. Knowing that leadership does impact achievement outcomes and that school districts tackle growing numbers of sanctioned Program Improvement schools, a distributed…

  1. Understanding the effects of lignosulfonate on enzymatic saccharification of pure cellulose

    Science.gov (United States)

    Hongming Lou; Haifeng Zhou; Xiuli Li; Mengxia Wang; J.Y. Zhu; Xueqing Qiu

    2014-01-01

    The effects of lignosulfonate (LS) on enzymatic saccharification of pure cellulose were studied. Four fractions of LS with different molecular weight (MW) prepared by ultrafiltration of a commercial LS were applied at different loadings to enzymatic hydrolysis of Whatman paper under different pH. Using LS fractions with low MW and high degree of sulfonation can enhance...

  2. The Influence of Values and Policy Vocabularies on Understandings of Leadership Effectiveness

    Science.gov (United States)

    Carpenter, Bradley W.; Diem, Sarah; Young, Michelle D.

    2014-01-01

    During the past two decades, shifting discourses have significantly altered professional expectations for educational leaders. Driven by a globalized reconfiguration of the values defining educational purpose, definitions of effective leadership, processes for evaluating them, and the very boundaries of educational policy have narrowed and…

  3. Age Effects in Second Language Learning: Stepping Stones toward Better Understanding

    Science.gov (United States)

    DeKeyser, Robert M.

    2013-01-01

    The effect of age of acquisition on ultimate attainment in second language learning has been a controversial topic for years. After providing a very brief overview of the ideas that are at the core of the controversy, I discuss the two main reasons why these issues are so controversial: conceptual misunderstandings and methodological difficulties.…

  4. Towards the understanding of non-thermal airplasma action: effects on bacteria and fibroblasts

    Czech Academy of Sciences Publication Activity Database

    Lunov, Oleg; Zablotskyy, Vitaliy A.; Churpita, Olexandr; Jäger, Aleš; Polívka, Leoš; Syková, Eva; Terebova, N.; Kulikov, A.; Kubinová, Šárka; Dejneka, Alexandr

    2016-01-01

    Roč. 6, č. 30 (2016), 25286-25292 ISSN 2046-2069 R&D Projects: GA MŠk(CZ) LM2011026; GA MŠk(CZ) LO1309 Institutional support: RVO:68378271 ; RVO:68378041 Keywords : non-thermal plasma * bactericidal effects * medical applications Subject RIV: BO - Biophysics Impact factor: 3.108, year: 2016

  5. Toward a Better Understanding of the Effects of Hindrance and Challenge Stressors on Work Behavior

    Science.gov (United States)

    Webster, Jennica R.; Beehr, Terry A.; Christiansen, Neil D.

    2010-01-01

    This study investigated the processes whereby hindrance and challenge stressors may affect work behavior. Three mechanisms were examined to explain the differential effects these stressors have demonstrated: job satisfaction, strains, and work self-efficacy. A model is proposed in which both types of stressors will result in increases in strains,…

  6. Understanding motion of twin boundary - a key to magnetic shape memory effect

    Czech Academy of Sciences Publication Activity Database

    Heczko, Oleg

    2014-01-01

    Roč. 50, č. 11 (2014), s. 2505807 ISSN 0018-9464 R&D Projects: GA ČR(CZ) GAP107/11/0391 Institutional support: RVO:68378271 Keywords : magnetic field-induced strain * magnetic field-induced twin boundary motion * magnetoelasticity * magnetomechanical effects * martensitic transformation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.386, year: 2014

  7. Towards Understanding the Two Way Interaction Effects of Extraversion and Openness to Experience on Career Commitment

    Science.gov (United States)

    Arora, Ridhi; Rangnekar, Santosh

    2016-01-01

    In this study, we examined potential two-way interaction effects of the Big Five personality traits extraversion and openness to experience on career commitment measured in terms of three components of career identity, career resilience, and career planning. Participants included 450 managers from public and private sector organizations in North…

  8. Understanding the solid phase chemical fractionation of uranium in soil and effect of ageing

    Energy Technology Data Exchange (ETDEWEB)

    Rout, Sabyasachi, E-mail: srout.barc@gmail.com [Health Physics Division, Bhabha Atomic Research Centre, Mumbai (India); Kumar, Ajay [Health Physics Division, Bhabha Atomic Research Centre, Mumbai (India); Ravi, P.M.; Tripathi, R.M. [Homi Bhabha National Institute Anushaktinagar, Mumbai (India)

    2016-11-05

    Highlights: • Apart of U(VI) converted to U(IV) during adsorption to soil. • Ageing leads to rearrangement of chemical fractionation of U in soil. • Organic matter and carbonate minerals responsible for Surface enrichment of U. • There occurs Occlusion of U-Fe-Oxides (Hydroxide) in to silica. - Abstract: The aim of the present work is to understand the solid phase chemical fractionation of Uranium (U) in soil and the mechanism involved. This study integrated batch experiments of U(VI) adsorption to soil, study of U in different soil fractions, ageing impact on fractionation of U and spectroscopic investigation of adsorbed U(VI) using X-ray Photoelectron Spectroscopy (XPS). For the study three soils, pedogenically different (S1: Igneous, S2: Sedimentary and S3: Metamorphic) were amended with U(VI) and chemical fractionation of U was studied by sequential extraction after an interval of one month and 12 months. It was found that there occurs a significant rearrangement of U in different fractions with ageing and no correlation was observed between the U content in different fractions and the adsorbents of respective fractions such as soil organic matter (SOM), Fe/Mn oxides (hydroxides) carbonates, soil cation exchange capacity (CEC). XPS study revealed that surface enrichment of U mainly governed by the carbonate minerals and SOM, whereas bulk concentration was controlled by the oxides (hydroxides) of Si and Al. Occlusion of U-Fe-oxides (hydroxides) on silica was identified as an important mechanism for bulk enrichment (Increase in residual fraction) and depletion of U concentration in reducible fraction.

  9. The Lusi seismic experiment: An initial study to understand the effect of seismic activity to Lusi

    Energy Technology Data Exchange (ETDEWEB)

    Karyono, E-mail: karyonosu@gmail.com [Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta (Indonesia); OSLO University (Norway); Padjadjaran University (UNPAD), Bandung (Indonesia); Mazzini, Adriano; Sugiharto, Anton [OSLO University (Norway); Lupi, Matteo [ETH Zurich (Switzerland); Syafri, Ildrem [Padjadjaran University (UNPAD), Bandung (Indonesia); Masturyono,; Rudiyanto, Ariska; Pranata, Bayu; Muzli,; Widodo, Handi Sulistyo; Sudrajat, Ajat [Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta (Indonesia)

    2015-04-24

    The spectacular Lumpur Sidoarjo (Lusi) eruption started in northeast Java on the 29 of May 2006 following a M6.3 earthquake striking the island [1,2]. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system [3] and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. The Lusi seismic experiment is a project aims to begin a detailed study of seismicity around the Lusi area. In this initial phase we deploy 30 seismometers strategically distributed in the area around Lusi and along the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. The purpose of the initial monitoring is to conduct a preliminary seismic campaign aiming to identify the occurrence and the location of local seismic events in east Java particularly beneath Lusi.This network will locate small event that may not be captured by the existing BMKG network. It will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-AW region and spatial and temporal variations of vp/vs ratios. The goal of this study is to understand how the seismicity occurring along the Sunda subduction zone affects to the behavior of the Lusi eruption. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. In this study, we will extract Green’s functions from ambient seismic noise data in order to image the shallow subsurface structure beneath LUSI area. The waveform cross-correlation technique will be apply to all of recordings of ambient seismic noise at 30 seismographic stations around the LUSI area. We use the dispersive behaviour of the retrieved Rayleigh waves to infer velocity structures in the shallow subsurface.

  10. Using Electroencephalogram (EEG to Understand The Effect of Price Perception on Consumer Preference

    Directory of Open Access Journals (Sweden)

    Fitri Aprilianty

    2016-06-01

    Full Text Available The research examines the influence of price as product cues on consumer’s perception and evaluation by using the application of electroencephalogram (EEG. This method can give objective information about consumer reactions towards product cues that will drive consumer’s choice. The main research objective was to observe and evaluate consumer’s brain activity in different brain regions while they were being exposed by several price levels (low, medium, high of underwear as stimuli and focused mainly on liking/disliking the stimuli. The participants consist of 10 female and 10 male consumers within 18-24 years old, have normal vision, right handed, and considered as potential purchasers of underwear. The participant’s brain activity was collected using Emotiv EPOC neuroheadset (EEG with international 10/20 system and was obtained in Beta frequency bands (13–30 Hz. The result indicated that there was a clear and significant change (p<0.05 in the EEG brain spectral activities of right and left hemisphere in the frontal (F3 & F4, temporal (T7 & T8, and parietal (P7 & P8 regions when participants indicated their attentiveness towards each price level stimulus. The results show, the male and female participant’s tactile sensations in parietal lobe does not give more favorable attention towards particular price stimulus, but the difference price perceptions in parietal lobe can lead to rational preference and give most favored response towards high price stimulus. Analyzing of price perception may help to understand the differences in price-related emotions and preference, which can gain insights into an alternative pricing strategy that can lead to influence consumers buying decision.

  11. Understanding the solid phase chemical fractionation of uranium in soil and effect of ageing

    International Nuclear Information System (INIS)

    Rout, Sabyasachi; Kumar, Ajay; Ravi, P.M.; Tripathi, R.M.

    2016-01-01

    Highlights: • Apart of U(VI) converted to U(IV) during adsorption to soil. • Ageing leads to rearrangement of chemical fractionation of U in soil. • Organic matter and carbonate minerals responsible for Surface enrichment of U. • There occurs Occlusion of U-Fe-Oxides (Hydroxide) in to silica. - Abstract: The aim of the present work is to understand the solid phase chemical fractionation of Uranium (U) in soil and the mechanism involved. This study integrated batch experiments of U(VI) adsorption to soil, study of U in different soil fractions, ageing impact on fractionation of U and spectroscopic investigation of adsorbed U(VI) using X-ray Photoelectron Spectroscopy (XPS). For the study three soils, pedogenically different (S1: Igneous, S2: Sedimentary and S3: Metamorphic) were amended with U(VI) and chemical fractionation of U was studied by sequential extraction after an interval of one month and 12 months. It was found that there occurs a significant rearrangement of U in different fractions with ageing and no correlation was observed between the U content in different fractions and the adsorbents of respective fractions such as soil organic matter (SOM), Fe/Mn oxides (hydroxides) carbonates, soil cation exchange capacity (CEC). XPS study revealed that surface enrichment of U mainly governed by the carbonate minerals and SOM, whereas bulk concentration was controlled by the oxides (hydroxides) of Si and Al. Occlusion of U-Fe-oxides (hydroxides) on silica was identified as an important mechanism for bulk enrichment (Increase in residual fraction) and depletion of U concentration in reducible fraction.

  12. Experimental and Modeling Approaches for Understanding the Effect of Gene Expression Noise in Biological Development

    Directory of Open Access Journals (Sweden)

    David M. Holloway

    2018-04-01

    Full Text Available Biological development involves numerous chemical and physical processes which must act in concert to reliably produce a cell, a tissue, or a body. To be successful, the developing organism must be robust to variability at many levels, such as the environment (e.g., temperature, moisture, upstream information (such as long-range positional information gradients, or intrinsic noise due to the stochastic nature of low concentration chemical kinetics. The latter is especially relevant to the regulation of gene expression in cell differentiation. The temporal stochasticity of gene expression has been studied in single celled organisms for nearly two decades, but only recently have techniques become available to gather temporally-resolved data across spatially-distributed gene expression patterns in developing multicellular organisms. These demonstrate temporal noisy “bursting” in the number of gene transcripts per cell, raising the question of how the transcript number defining a particular cell type is produced, such that one cell type can reliably be distinguished from a neighboring cell of different type along a tissue boundary. Stochastic spatio-temporal modeling of tissue-wide expression patterns can identify signatures for specific types of gene regulation, which can be used to extract regulatory mechanism information from experimental time series. This Perspective focuses on using this type of approach to study gene expression noise during the anterior-posterior segmentation of the fruit fly embryo. Advances in experimental and theoretical techniques will lead to an increasing quantification of expression noise that can be used to understand how regulatory mechanisms contribute to embryonic robustness across a range of developmental processes.

  13. Aging memory for pictures: Using high-density event-related potentials to understand the effect of aging on the picture superiority effect

    OpenAIRE

    Ally, Brandon A.; Waring, Jill D.; Beth, Ellen H.; McKeever, Joshua D.; Milberg, William P.; Budson, Andrew E.

    2007-01-01

    High-density event-related potentials (ERPs) were used to understand the effect of aging on the neural correlates of the picture superiority effect. Pictures and words were systematically varied at study and test while ERPs were recorded at retrieval. Here, the results of the word-word and picture-picture study-test conditions are presented. Behavioral results showed that older adults demonstrated the picture superiority effect to a greater extent than younger adults. The ERP data helped to e...

  14. Effects of Message Framing on Influenza Vaccination: Understanding the Role of Risk Disclosure, Perceived Vaccine Efficacy, and Felt Ambivalence.

    Science.gov (United States)

    Kim, Sungsu; Pjesivac, Ivanka; Jin, Yan

    2017-10-20

    The current study examined the effects of framing in promotional health messages on intention to vaccinate against seasonal influenza virus. The findings of an experimental study (N = 86) indicated that exposure to both benefits and side effects of vaccination (gain-framed with risk disclosure message) led to lower intention to receive the flu vaccine. This relationship was mediated by both perceived vaccine efficacy and felt ambivalence in a serial order, revealing the underlying psychological mechanisms important for understanding health-related behaviors. Theoretical implications of constructing sub-framed messages are discussed and the concept of second-order framing is introduced.

  15. Towards a probabilistic definition of entropy: An investigation of the effects of a new curriculum on students' understanding of thermodynamics

    Science.gov (United States)

    Colon-Garcia, Evy B.

    Thermodynamics is a vital tool in understanding why reactions happen; nevertheless, it is often considered a difficult topic. Prior studies have shown that students struggle with fundamental thermodynamic concepts such as entropy, enthalpy and Gibbs energy even in upper level physical chemistry courses. Thermodynamics, as a general chemistry topic, can be more math-intensive than other topics such as bonding or intermolecular forces. As a result, it is possible for students to get lost in the algorithms and overlook the important underlying theoretical concepts. Students' difficulties in understanding thermodynamics may be contributing to their inability to explain phenomena such as phase changes and manipulations of equilibrium systems. Current chemistry curricula split the thermodynamic chapters over a span of two semesters as well as splitting it over different units. This division fails to make explicit the connection between Enthalpy, Entropy and Gibbs Energy and how they affect how and why every reaction or process happens. The reason for this division of topics is not based on any educational research rather than opinions as to what will not overwhelm the students. Additionally, students who take only one semester of General Chemistry will leave without being instructed in what is considered to be one of the most fundamental concepts in Chemistry, Thermodynamics. Chemistry, Life, the Universe and Everything (CLUE) is a general chemistry course developed with the explicit goal of addressing the major obstacles that inhibit students from acquiring an appreciation and mastery of the chemical principles upon which other sciences depend. Using a control and treatment group, the effectiveness of this new curriculum was evaluated for two main aspects: 1. What is students' understanding of entropy?, 2. Can an alternative instructional approach to teaching Thermodynamics (Chemistry, Life, the Universe and Everything - CLUE) improve students' understanding of Entropy

  16. The effect of problem posing and problem solving with realistic mathematics education approach to the conceptual understanding and adaptive reasoning

    Science.gov (United States)

    Mahendra, Rengga; Slamet, Isnandar; Budiyono

    2017-12-01

    One of the difficulties of students in learning mathematics is on the subject of geometry that requires students to understand abstract things. The aim of this research is to determine the effect of learning model Problem Posing and Problem Solving with Realistic Mathematics Education Approach to conceptual understanding and students' adaptive reasoning in learning mathematics. This research uses a kind of quasi experimental research. The population of this research is all seventh grade students of Junior High School 1 Jaten, Indonesia. The sample was taken using stratified cluster random sampling technique. The test of the research hypothesis was analyzed by using t-test. The results of this study indicate that the model of Problem Posing learning with Realistic Mathematics Education Approach can improve students' conceptual understanding significantly in mathematics learning. In addition tu, the results also showed that the model of Problem Solving learning with Realistic Mathematics Education Approach can improve students' adaptive reasoning significantly in learning mathematics. Therefore, the model of Problem Posing and Problem Solving learning with Realistic Mathematics Education Approach is appropriately applied in mathematics learning especially on the subject of geometry so as to improve conceptual understanding and students' adaptive reasoning. Furthermore, the impact can improve student achievement.

  17. Learning algebra on screen and on paper: The effect of using a digital tool on students' understanding

    Science.gov (United States)

    Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja

    2016-02-01

    The use of digital tools in algebra education is expected to not only contribute to master skill, but also to acquire conceptual understanding. The question is how digital tools affect students" thinking and understanding. This paper presents an analysis of data of one group of three grade seventh students (12-13 year-old) on the use of a digital tool for algebra, the Cover-up applet for solving equations in particular. This case study was part of a larger teaching experiment on initial algebra enriched with digital technology which aimed to improve students" conceptual understanding and skills in solving equations in one variable. The qualitative analysis of a video observation, digital and written work showed that the use of the applet affects student thinking in terms of strategies used by students while dealing with the equations. We conclude that the effects of the use of the digital tool can be traced from student problem solving strategies on paper-and-pencil environment which are similar to strategies while working with the digital tool. In future research, we recommend to use specific theoretical lenses, such as the theory of instrumental genesis and the onto-semiotic approach, to reveal more explicit relationships between students" conceptual understanding and the use of a digital tool.

  18. Understanding heterogeneity in the effects of birth weight on adult cognition and wages.

    Science.gov (United States)

    Justin Cook, C; Fletcher, Jason M

    2015-05-01

    A large economics literature has shown long term impacts of birth weight on adult outcomes, including IQ and earnings that are often robust to sibling or twin fixed effects. We examine potential mechanisms underlying these effects by incorporating findings from the genetics and neuroscience literatures. We use a sample of siblings combined with an "orchids and dandelions hypothesis", where the IQ of genetic dandelions is not affected by in utero nutrition variation but genetic orchids thrive under advantageous conditions and wilt in poor conditions. Indeed, using variation in three candidate genes related to neuroplasticity (APOE, BDNF, and COMT), we find substantial heterogeneity in the associations between birth weight and adult outcomes, where part of the population (i.e., "dandelions") is not affected by birth weight variation. Our results help uncover why birth weight affects adult outcomes. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A quantitative understanding on effects of finest nanograins on nanovoid growth in nanocrystalline materials

    International Nuclear Information System (INIS)

    He, Tongyang; Zhou, Jianqiu; Liu, Hongxi

    2015-01-01

    For evaluating the effects of finest nanograins, whose grain size ranging from 2 to 4 nm, on nanovoid growth in nanocrystalline (NC) materials, we proposed a new theoretical model composed of finest nanograins evenly located at the triple junctions of conventional NC materials (grain size ranging from 10 to 100 nm). In the framework of the model, the mechanism of nanovoid growth is the dislocation emission. The blocking effect of finest nanograin on the motion of dislocations emitted from the nanovoid surface was taken into consideration. The critical condition required for dislocations emitted from the nanovoid surface and the influences of the finest nanograin on the nanovoid growth were calculated separately. The quantitatively analyzed results showed that finest nanograins could significantly suppress the growth of nanovoids compared with the triple junctions without finest nanograins. Therefore, the fracture toughness of the NC materials could be enhanced by finest nanograins

  20. Tin in canned food: a review and understanding of occurrence and effect.

    Science.gov (United States)

    Blunden, Steve; Wallace, Tony

    2003-12-01

    Tinplate is light gauge, steel sheet or strip, coated on both sides with commercially pure tin and has been used for well over a hundred years as a robust form of food packaging. Altogether, about 25,000 million food cans are produced and filled in Europe per annum, about 20% of these having plain internal (unlacquered) tin-coated steel bodies. Worldwide, the total for food packaging is approximately 80,000 million cans. Tinplate is also extensively used for the production of beverage cans. Europe produces and fills over 15,000 million tinplate beverage cans per annum all of which are internally lacquered. The use of tinplate for food and beverage packaging, will result in some tin dissolving into the food content, particularly when plain uncoated internal surfaces are used. The Provisional Tolerable Weekly Intake for tin is 14 mg/kg body weight and recommended maximum permissible levels of tin in food are typically 250 mg/kg (200 mg/kg UK) for solid foods and 150 mg/kg for beverages. However, the question arises as to whether evidence exists that such elevated levels of tin in food in any way constitute a risk to human health. This review considers the factors affecting the dissolution of tin, the reported measurements/surveys of actual levels of tin in canned foods and the studies and reports of acute (short term) toxicity relating to the ingestion of elevated levels of tin in food products. Chronic studies are mentioned, but are not covered in detail, since the review is mainly concerned with possible effects from the ingestion of single high doses. From published data, there appears to be a small amount of evidence suggesting that consumption of food or beverages containing tin at concentrations at or below 200 ppm has caused adverse gastrointestinal effects in an unknown but possibly small proportion of those exposed. However, the evidence supporting this assertion is derived from reports of adverse effects which offer data that are limited, incomplete or of

  1. Variables separation of the spectral BRDF for better understanding color variation in special effect pigment coatings.

    Science.gov (United States)

    Ferrero, Alejandro; Rabal, Ana María; Campos, Joaquín; Pons, Alicia; Hernanz, María Luisa

    2012-06-01

    A type of representation of the spectral bidirectional reflectance distribution function (BRDF) is proposed that distinctly separates the spectral variable (wavelength) from the geometrical variables (spherical coordinates of the irradiation and viewing directions). Principal components analysis (PCA) is used in order to decompose the spectral BRDF in decorrelated spectral components, and the weight that they have at every geometrical configuration of irradiation/viewing is established. This method was applied to the spectral BRDF measurement of a special effect pigment sample, and four principal components with relevant variance were identified. These four components are enough to reproduce the great diversity of spectral reflectances observed at different geometrical configurations. Since this representation is able to separate spectral and geometrical variables, it facilitates the interpretation of the color variation of special effect pigments coatings versus the geometrical configuration of irradiation/viewing.

  2. How to understand the radiation effects of small dose - some critical comments on ICRP recommendations

    International Nuclear Information System (INIS)

    Matsuura, T.

    1997-01-01

    The widespread feeling of 'radiophobia' by the general public has its basis on the ICRP's 'linear no-threshold' hypothesis in dose-response relationship for low dose radiation from the standpoint of radiation protection. Although this common feeling served as a merit for constructing the 'safety culture' of society, it has now become a large obstacle for the development of peaceful uses of nuclear technology as a demerit. Recently many data have been accumulated for the radiation effects of low dose, both epidemiologically and experimentally. Although in general it is very difficult to obtain clear evidence of presence or absence of threshold, it seems to be true that the risk by radiation exposure at low level (the definition of which is below 0.2 Gy) is not so large as that of extrapolation from the high or medium dose range. In fact, many data suggest that some quite different mechanisms are working in low dose from high dose, such as 'adaptive response', and a new concept, 'radiation hormesis', has emerged, that the low level radiation is not only quite harmless but is rather necessary for living cells or beneficial for human health. In this paper, some critical comments on ICRP recommendations are given as a personal view by the author. These include: (1) a question of exact assessment of exposed dose by A-bomb survivors used for the epidemiological data, which are regarded to be the most authentic and important; (2) a brief summary of effects at the natural radiation level, including the high background area data; (3) the importance of dose rate effect, which reflects the living matter's repairability from radiation injury, and (4) the proposal of new paradigm by adopting the reasonable 'de minimis' level (below which there is no harm) both for low dose and at low dose rate. A simple mathematical analysis for representative data of dose rate effect was shown as an appendix

  3. How to understand the radiation effects of small dose - some critical comments on ICRP recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, T. [Radiation Education Forum, Minato-ku, Tokyo (Japan)

    1997-10-01

    The widespread feeling of `radiophobia` by the general public has its basis on the ICRP`s `linear no-threshold` hypothesis in dose-response relationship for low dose radiation from the standpoint of radiation protection. Although this common feeling served as a merit for constructing the `safety culture` of society, it has now become a large obstacle for the development of peaceful uses of nuclear technology as a demerit. Recently many data have been accumulated for the radiation effects of low dose, both epidemiologically and experimentally. Although in general it is very difficult to obtain clear evidence of presence or absence of threshold, it seems to be true that the risk by radiation exposure at low level (the definition of which is below 0.2 Gy) is not so large as that of extrapolation from the high or medium dose range. In fact, many data suggest that some quite different mechanisms are working in low dose from high dose, such as `adaptive response`, and a new concept, `radiation hormesis`, has emerged, that the low level radiation is not only quite harmless but is rather necessary for living cells or beneficial for human health. In this paper, some critical comments on ICRP recommendations are given as a personal view by the author. These include: (1) a question of exact assessment of exposed dose by A-bomb survivors used for the epidemiological data, which are regarded to be the most authentic and important; (2) a brief summary of effects at the natural radiation level, including the high background area data; (3) the importance of dose rate effect, which reflects the living matter`s repairability from radiation injury, and (4) the proposal of new paradigm by adopting the reasonable `de minimis` level (below which there is no harm) both for low dose and at low dose rate. A simple mathematical analysis for representative data of dose rate effect was shown as an appendix 50 refs., 2 tabs., 4 figs.

  4. Toward understanding subtle instrumentation effects associated with weak seismic events in the near field

    Czech Academy of Sciences Publication Activity Database

    Zahradník, J.; Plešinger, Axel

    2010-01-01

    Roč. 100, č. 1 (2010), s. 59-73 ISSN 0037-1106 R&D Projects: GA AV ČR IAA300120911 Grant - others:GA ČR(CZ) GA205/07/0502 Institutional research plan: CEZ:AV0Z30120515 Keywords : instrumentation effects * broadband seismology * weak earthquakes Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.027, year: 2010

  5. Understanding the Effect of Atmospheric Density on the Cosmic Ray Flux Variations at the Earth Surface

    OpenAIRE

    Dayananda, Mathes; Zhang, Xiaohang; Butler, Carola; He, Xiaochun

    2013-01-01

    We report in this letter for the first time the numerical simulations of muon and neutron flux variations at the surface of the earth with varying air densities in the troposphere and stratosphere. The simulated neutron and muon flux variations are in very good agreement with the measured neutron flux variation in Oulu and the muon flux variation in Atlanta. We conclude from this study that the stratosphere air density variation dominates the effects on the muon flux changes while the density...

  6. Understanding the proton radius puzzle: Nuclear structure effects in light muonic atoms

    Directory of Open Access Journals (Sweden)

    Ji Chen

    2016-01-01

    Full Text Available We present calculations of nuclear structure effects to the Lamb shift in light muonic atoms. We adopt a modern ab-initio approach by combining state-of-the-art nuclear potentials with the hyperspherical harmonics method. Our calculations are instrumental to the determination of nuclear charge radii in the Lamb shift measurements, which will shed light on the proton radius puzzle.

  7. Understanding the dynamic effects of returning patients toward emergency department density

    Science.gov (United States)

    Ahmad, Norazura; Zulkepli, Jafri; Ramli, Razamin; Ghani, Noraida Abdul; Teo, Aik Howe

    2017-11-01

    This paper presents the development of a dynamic hypothesis for the effect of returning patients to the emergency department (ED). A logical tree from the Theory of Constraint known as Current Reality Tree was used to identify the key variables. Then, a hypothetical framework portraying the interrelated variables and its influencing relationships was developed using causal loop diagrams (CLD). The conceptual framework was designed as the basis for the development of a system dynamics model.

  8. Understanding size effects on the strength of single crystals through high-temperature micropillar compression

    International Nuclear Information System (INIS)

    Soler, Rafael; Wheeler, Jeffrey M.; Chang, Hyung-Jun; Segurado, Javier; Michler, Johann; Llorca, Javier; Molina-Aldareguia, Jon M.

    2014-01-01

    Compression tests of 〈1 1 1〉-oriented LiF single-crystal micropillars 1–5 μm in diameter were carried out from 25 °C to 250 °C. While the flow stress at ambient temperature was independent of the micropillar diameter, a strong size effect developed with elevated temperature. This behavior was explained by rigorously accounting for the different contributions to the flow stress of the micropillars as a function of temperature and pillar diameter: the lattice resistance, the forest hardening; and the size-dependent contribution as a result of the operation of single-arm dislocation sources. This was possible because the micropillars were obtained by chemically etching away the surrounding matrix in directionally solidified LiF–NaCl and LiF–KCl eutectics, avoiding any use of focused ion beam methods, yielding micropillars with a controlled dislocation density, independent of the sample preparation technique. In particular, the role of the lattice resistance on the size effect of micrometer-size single crystals was demonstrated unambiguously for the first time. This result rationalizes the different values of power-law exponent for the size effect found in the literature for face-centered cubic and body-centered cubic metals as well as for covalent and ionic solids

  9. Understanding gender bias in face recognition: effects of divided attention at encoding.

    Science.gov (United States)

    Palmer, Matthew A; Brewer, Neil; Horry, Ruth

    2013-03-01

    Prior research has demonstrated a female own-gender bias in face recognition, with females better at recognizing female faces than male faces. We explored the basis for this effect by examining the effect of divided attention during encoding on females' and males' recognition of female and male faces. For female participants, divided attention impaired recognition performance for female faces to a greater extent than male faces in a face recognition paradigm (Study 1; N=113) and an eyewitness identification paradigm (Study 2; N=502). Analysis of remember-know judgments (Study 2) indicated that divided attention at encoding selectively reduced female participants' recollection of female faces at test. For male participants, divided attention selectively reduced recognition performance (and recollection) for male stimuli in Study 2, but had similar effects on recognition of male and female faces in Study 1. Overall, the results suggest that attention at encoding contributes to the female own-gender bias by facilitating the later recollection of female faces. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Understanding the toxic potencies of xenobiotics inducing TCDD/TCDF-like effects.

    Science.gov (United States)

    Şahin, A D; Saçan, M T

    2018-02-01

    Toxic potencies of xenobiotics such as halogenated aromatic hydrocarbons inducing 2,3,7,8-tetrachlorodibenzo-p-dioxin/2,3,7,8-tetrachlorodibenzofuran (TCDD/TCDF)-like effects were investigated by quantitative structure-toxicity relationships (QSTR) using their aryl hydrocarbon receptor (AhR) binding affinity data. A descriptor pool was created using the SPARTAN 10, DRAGON 6.0 and ADMET 8.0 software packages, and the descriptors were selected using QSARINS (v.2.2.1) software. The QSTR models generated for AhR binding affinities of chemicals with TCDD/TCDF-like effects were internally and externally validated in line with the Organization of Economic Co-operation and Development (OECD) principles. The TCDD-based model had six descriptors from DRAGON 6.0 and ADMET 8.0, whereas the TCDF-based model had seven descriptors from DRAGON 6.0. The predictive ability of the generated models was tested on a diverse group of chemicals including polychlorinated/brominated biphenyls, dioxins/furans, ethers, polyaromatic hydrocarbons with fused heterocyclic rings (i.e. phenoxathiins, thianthrenes and dibenzothiophenes) and polyaromatic hydrocarbons (i.e. halogenated naphthalenes and phenanthrenes) with no AhR binding data. For the external set chemicals, the structural coverage of the generated models was 90% and 89% for TCDD and TCDF-like effects, respectively.

  11. Understanding the Effectiveness of Natural Compound Mixtures in Cancer through Their Molecular Mode of Action

    Directory of Open Access Journals (Sweden)

    Thazin Nwe Aung

    2017-03-01

    Full Text Available Many approaches to cancer management are often ineffective due to adverse reactions, drug resistance, or inadequate target specificity of single anti-cancer agents. In contrast, a combinatorial approach with the application of two or more anti-cancer agents at their respective effective dosages can achieve a synergistic effect that boosts cytotoxicity to cancer cells. In cancer, aberrant apoptotic pathways allow cells that should be killed to survive with genetic abnormalities, leading to cancer progression. Mutations in apoptotic mechanism arising during the treatment of cancer through cancer progression can consequently lead to chemoresistance. Natural compound mixtures that are believed to have multiple specific targets with minimal acceptable side-effects are now of interest to many researchers due to their cytotoxic and chemosensitizing activities. Synergistic interactions within a drug mixture enhance the search for potential molecular targets in cancer cells. Nonetheless, biased/flawed scientific evidence from natural products can suggest false positive therapeutic benefits during drug screening. In this review, we have taken these factors into consideration when discussing the evidence for these compounds and their synergistic therapeutic benefits in cancer. While there is limited evidence for clinical efficacy for these mixtures, in vitro data suggest that these preparations merit further investigation, both in vitro and in vivo.

  12. The importance of context dependency for understanding the effects of low flow events on fish

    Science.gov (United States)

    Walters, Annika W.

    2014-01-01

    The natural hydrology of streams and rivers has been extensively altered by dam construction, water diversion, and climate change. An increased frequency of low-flow events will affect fish by changing habitat availability, resource availability, and reproductive cues. I reviewed the literature to characterize the approaches taken to assess low-flow events and fish, the main effects of low-flow events on fish, and the associated mechanistic drivers. Most studies are focused on temperate streams and are comparative in nature. Decreased stream flow is associated with decreased survival, growth, and abundance of fish populations and shifts in community composition, but effects are variable. This variability in effects is probably caused by context dependence. I propose 3 main sources of context dependence that drive the variation in fish responses to low-flow events: attributes of the low-flow event, attributes of the habitat, and attributes of the fish. Awareness of these sources of context dependence can help managers interpret and explain data, predict vulnerability of fish communities, and prioritize appropriate management actions.

  13. Understanding negative impacts of perceived cognitive load on job learning effectiveness: a social capital solution.

    Science.gov (United States)

    Lin, Chieh-Peng

    2010-12-01

    This study proposes a model explaining how social capital helps ease excessively required mental effort. Although organizational researchers have studied both social capital and cognitive load, no prior research has critically examined the role of social capital in improving individuals' mental load and effort and consequently enhancing job learning effectiveness. This study surveys participants made up of professionals in Taiwan's information technology industry. It measures the constructs with the use of 5-point Likert-type scale items modified from existing literature. The survey data were analyzed with the use of structural equation modeling. Job learning effectiveness is negatively influenced by role ambiguity and role conflict. Time pressure has a positive influence on role ambiguity and role conflict Although the relationship between task complexity and role ambiguity is insignificant, task complexity has a positive influence on role conflict. Because the relationship between network ties and role conflict is insignificant, trust has a negative influence on role conflict. Last, shared vision has a negative influence on role ambiguity. This study provides an example of how social capital can be applied as a useful remedy to ease the negative impact of perceived cognitive load on job learning effectiveness. The negative relationship between shared vision and role ambiguity suggests that a shared vision helps in disseminating organizationally common goals and directions among employees to alleviate individuals' mental efforts in dealing with the ambiguity of their job roles. A firm's management team should take actions to decrease role conflict by strengthening trust among employees.

  14. Understanding physics

    CERN Document Server

    Cassidy, David; Rutherford, James

    2002-01-01

    Understanding Physics provides a thorough grounding in contemporary physics while placing physics into its social and historical context Based in large part on the highly respected Project Physics Course developed by two of the authors, it also integrates the results of recent pedagogical research The text thus - teaches about the basic phenomena in the physical world and the concepts developed to explain them - shows that science is a rational human endeavor with a long and continuing tradition, involving many different cultures and people - develops facility in critical thinking, reasoned argumentation, evaluation of evidence, mathematical modeling, and ethical values The treatment emphasizes not only what we know but also how we know it, why we believe it, and what effects that knowledge has - Why do we believe the Earth and planets revolve around the Sun? - Why do we believe that matter is made of atoms? - How do relativity theory and quantum mechanics alter our conception of Nature and in what ways do th...

  15. Current understandings and perspectives on non-cancer health effects of benzene: A global concern

    Energy Technology Data Exchange (ETDEWEB)

    Bahadar, Haji [International Campus, Tehran University of Medical Sciences (Iran, Islamic Republic of); Pharmaceutical Sciences Research Center and Faculty of Pharmacy, Tehran University of Medical Sciences (Iran, Islamic Republic of); Mostafalou, Sara [Pharmaceutical Sciences Research Center and Faculty of Pharmacy, Tehran University of Medical Sciences (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: Mohammad.Abdollahi@UToronto.Ca [Pharmaceutical Sciences Research Center and Faculty of Pharmacy, Tehran University of Medical Sciences (Iran, Islamic Republic of)

    2014-04-15

    Objective: Benzene, as a volatile organic compound, is known as one of the main air pollutants in the environment. The aim of this review is to summarize all available evidences on non-cancerous health effects of benzene providing an overview of possible association of exposure to benzene with human chronic diseases, specially, in those regions of the world where benzene concentration is being poorly monitored. Methodology: A bibliographic search of scientific databases including PubMed, Google Scholar, and Scirus was conducted with key words of “benzene toxic health effects”, “environmental volatile organic compounds”, “diabetes mellitus and environmental pollutants”, “breast cancer and environmental pollution”, “prevalence of lung cancer”, and “diabetes prevalence”. More than 300 peer reviewed papers were examined. Experimental and epidemiologic studies reporting health effects of benzene and volatile organic compounds were included in the study. Results: Epidemiologic and experimental studies suggest that benzene exposure can lead to numerous non-cancerous health effects associated with functional aberration of vital systems in the body like reproductive, immune, nervous, endocrine, cardiovascular, and respiratory. Conclusion: Chronic diseases have become a health burden of global dimension with special emphasis in regions with poor monitoring over contents of benzene in petrochemicals. Benzene is a well known carcinogen of blood and its components, but the concern of benzene exposure is more than carcinogenicity of blood components and should be evaluated in both epidemiologic and experimental studies. Aspect of interactions and mechanism of toxicity in relation to human general health problems especially endocrine disturbances with particular reference to diabetes, breast and lung cancers should be followed up. - Highlights: • Benzene is a volatile organic compound and established blood carcinogen. • Exposure to benzene needs to be

  16. Understanding the effects of different social data on selecting priority conservation areas.

    Science.gov (United States)

    Karimi, Azadeh; Tulloch, Ayesha I T; Brown, Greg; Hockings, Marc

    2017-12-01

    Conservation success is contingent on assessing social and environmental factors so that cost-effective implementation of strategies and actions can be placed in a broad social-ecological context. Until now, the focus has been on how to include spatially explicit social data in conservation planning, whereas the value of different kinds of social data has received limited attention. In a regional systematic conservation planning case study in Australia, we examined the spatial concurrence of a range of spatially explicit social values and land-use preferences collected using a public participation geographic information system and biological data. We used Zonation to integrate the social data with the biological data in a series of spatial-prioritization scenarios to determine the effect of the different types of social data on spatial prioritization compared with biological data alone. The type of social data (i.e., conservation opportunities or constraints) significantly affected spatial prioritization outcomes. The integration of social values and land-use preferences under different scenarios was highly variable and generated spatial prioritizations 1.2-51% different from those based on biological data alone. The inclusion of conservation-compatible values and preferences added relatively few new areas to conservation priorities, whereas including noncompatible economic values and development preferences as costs significantly changed conservation priority areas (48.2% and 47.4%, respectively). Based on our results, a multifaceted conservation prioritization approach that combines spatially explicit social data with biological data can help conservation planners identify the type of social data to collect for more effective and feasible conservation actions. © 2017 Society for Conservation Biology.

  17. Understanding resistant effect of mosquito on fumigation strategy in dengue control program

    Science.gov (United States)

    Aldila, D.; Situngkir, N.; Nareswari, K.

    2018-01-01

    A mathematical model of dengue disease transmission will be introduced in this talk with involving fumigation intervention into mosquito population. Worsening effect of uncontrolled fumigation in the form of resistance of mosquito to fumigation chemicals will also be included into the model to capture the reality in the field. Deterministic approach in a 9 dimensional of ordinary differential equation will be used. Analytical result about the existence and local stability of the equilibrium points followed with the basic reproduction number will be discussed. Some numerical result will be performed for some scenario to give a better interpretation for the analytical results.

  18. Effect of Process-Oriented Guided-Inquiry Learning on Non-majors Biology Students' Understanding of Biological Classification

    Science.gov (United States)

    Wozniak, Breann M.

    The purpose of this study was to examine the effect of process-oriented guided-inquiry learning (POGIL) on non-majors college biology students' understanding of biological classification. This study addressed an area of science instruction, POGIL in the non-majors college biology laboratory, which has yet to be qualitatively and quantitatively researched. A concurrent triangulation mixed methods approach was used. Students' understanding of biological classification was measured in two areas: scores on pre and posttests (consisting of 11 multiple choice questions), and conceptions of classification as elicited in pre and post interviews and instructor reflections. Participants were Minnesota State University, Mankato students enrolled in BIOL 100 Summer Session. One section was taught with the traditional curriculum (n = 6) and the other section in the POGIL curriculum (n = 10) developed by the researcher. Three students from each section were selected to take part in pre and post interviews. There were no significant differences within each teaching method (p familiar animal categories and aquatic habitats, unfamiliar organisms, combining and subdividing initial groupings, and the hierarchical nature of classification. The POGIL students were the only group to surpass these challenges after the teaching intervention. This study shows that POGIL is an effective technique at eliciting students' misconceptions, and addressing these misconceptions, leading to an increase in student understanding of biological classification.

  19. Commentary on two classroom observation systems: moving toward a shared understanding of effective teaching.

    Science.gov (United States)

    Connor, Carol McDonald

    2013-12-01

    In this commentary, I make five points: that designing observation systems that actually predict students' outcomes is challenging; second that systems that capture the complex and dynamic nature of the classroom learning environment are more likely to be able to meet this challenge; three, that observation tools are most useful when developed to serve a particular purpose and are put to that purpose; four that technology can help; and five, there are policy implications for valid and reliable classroom observation tools. The two observation systems presented in this special issue represent an important step forward and a move toward policy that promises to make a true difference in what is defined as high quality and effective teaching, what it looks like in the classroom, and how these practices can be more widely disseminated so that all children, including those attending under-resourced schools, can experience effective instruction, academic success and the lifelong accomplishment that follows. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  20. Shame in decision making under risk conditions: Understanding the effect of transparency

    Science.gov (United States)

    2018-01-01

    The role played by the emotion of shame in the area of decision-making in situations of risk has hardly been studied. In this article, we show how the socio-moral emotions and the anticipated feeling of shame associated with different options can determine our decisions, even overriding the cognitive choice tendency proposed by the certainty effect. To do so, we carried out an experiment with university students as participants, dividing them into four experimental conditions. Our findings suggest that people avoid making unethical decisions, both when these decisions are made public to others and when they remain in the private sphere. This result seems to indicate that the main factor in not making unethical decisions is related to the need to avoid transgressing an internal moral standard of behavior, and that the role of transparency is less relevant than expected. However, we propose that, although the effect of transparency is limited in reducing unethical economic decisions, it should continue to be taken into account in theoretical models that address the reasons people behave unethically. PMID:29444107