Sample records for understand finite-size effects

  1. Finite-size effects from giant magnons

    Energy Technology Data Exchange (ETDEWEB)

    Arutyunov, Gleb [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands)]. E-mail:; Frolov, Sergey [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Potsdam (Germany)]. E-mail:; Zamaklar, Marija [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Potsdam (Germany)]. E-mail:


    In order to analyze finite-size effects for the gauge-fixed string sigma model on AdS{sub 5}xS{sup 5}, we construct one-soliton solutions carrying finite angular momentum J. In the infinite J limit the solutions reduce to the recently constructed one-magnon configuration of Hofman and Maldacena. The solutions do not satisfy the level-matching condition and hence exhibit a dependence on the gauge choice, which however disappears as the size J is taken to infinity. Interestingly, the solutions do not conserve all the global charges of the psu(2,2-vertical bar4) algebra of the sigma model, implying that the symmetry algebra of the gauge-fixed string sigma model is different from psu(2,2-vertical bar4) for finite J, once one gives up the level-matching condition. The magnon dispersion relation exhibits exponential corrections with respect to the infinite J solution. We also find a generalisation of our one-magnon configuration to a solution carrying two charges on the sphere. We comment on the possible implications of our findings for the existence of the Bethe ansatz describing the spectrum of strings carrying finite charges.

  2. Finite size effects in simulations of protein aggregation.

    Directory of Open Access Journals (Sweden)

    Amol Pawar

    Full Text Available It is becoming increasingly clear that the soluble protofibrillar species that proceed amyloid fibril formation are associated with a range of neurodegenerative disorders such as Alzheimer's and Parkinson diseases. Computer simulations of the processes that lead to the formation of these oligomeric species are starting to make significant contributions to our understanding of the determinants of protein aggregation. We simulate different systems at constant concentration but with a different number of peptides and we study the how the finite number of proteins affects the underlying free energy of the system and therefore the relative stability of the species involved in the process. If not taken into account, this finite size effect can undermine the validity of theoretical predictions regarding the relative stability of the species involved and the rates of conversion from one to the other. We discuss the reasons that give rise to this finite size effect form both a probabilistic and energy fluctuations point of view and also how this problem can be dealt by a finite size scaling analysis.

  3. Finite-size effects for anisotropic bootstrap percolation : Logarithmic corrections

    NARCIS (Netherlands)

    van Enter, Aernout C. D.; Hulshof, Tim

    In this note we analyse an anisotropic, two-dimensional bootstrap percolation model introduced by Gravner and Griffeath. We present upper and lower bounds on the finite-size effects. We discuss the similarities with the semi-oriented model introduced by Duarte.

  4. Finite-size effects in a cellular automaton for diffusion

    International Nuclear Information System (INIS)

    Froboese, K.


    The question whether diffusion in the hard-square lattice gas is blocked in the thermodynamic limit is mapped to the problem whether percolation occurs in the time evolution of a cellular automaton. The final states of the cellular automaton are investigated for varying lattice sizes from 6 x 6 up to 20,035 x 20,032. The results seem to indicate that there is a percolation threshold, i.e., a range of concentrations for which diffusion is blocked. However, since this cannot be true for the infinite system, as proven rigorously, it is concluded that finite-size effects persist for this system up to very large sizes

  5. Finite size effects in lattice QCD with dynamical Wilson fermions

    Energy Technology Data Exchange (ETDEWEB)

    Orth, B.


    Due to limited computing resources choosing the parameters for a full lattice QCD simulation always amounts to a compromise between the competing objectives of a lattice spacing as small, quarks as light, and a volume as large as possible. Aiming at pushing unquenched simulations with the standard Wilson action towards the computationally expensive regime of small quark masses, the GRAL project addresses the question whether computing time can be saved by sticking to lattices with rather modest numbers of grid sites and extrapolating the finite-volume results to the infinite volume (prior to the usual chiral and continuum extrapolations). In this context we investigate in this work finite-size effects in simulated light hadron masses. Understanding their systematic volume dependence may not only help saving computer time in light quark simulations with the Wilson action, but also guide future simulations with dynamical chiral fermions which for a foreseeable time will be restricted to rather small lattices. We analyze data from hybrid Monte Carlo simulations with the N{sub f} = 2 Wilson action at two values of the coupling parameter, {beta} = 5.6 (lattice spacing {alpha} {approx} 0.08 fm) and {beta} = 5.32144 ({alpha} {approx} 0.13 fm). The larger {beta} corresponds to the coupling used previously by SESAM/T{chi}L. The considered hopping parameters {kappa} = 0.1575, 0.158 (at the larger {beta}) and {kappa} = 0.1665 (at the smaller {beta}) correspond to quark masses of 85, 50 and 36% of the strange quark mass, respectively. At each quark mass we study at least three different lattice extents in the range from L = 10 to L = 24 (0.85-2.04 fm). Estimates of autocorrelation times in the stochastic updating process and of the computational cost of every run are given. For each simulated sea quark mass we calculate quark propagators and hadronic correlation functions in order to extract the pion, rho and nucleon masses as well as the pion decay constant and the quark mass

  6. Simulation of finite size effects of the fiber bundle model (United States)

    Hao, Da-Peng; Tang, Gang; Xun, Zhi-Peng; Xia, Hui; Han, Kui


    In theory, the macroscopic fracture of materials should correspond with the thermodynamic limit of the fiber bundle model. However, the simulation of a fiber bundle model with an infinite size is unrealistic. To study the finite size effects of the fiber bundle model, fiber bundle models of various size are simulated in detail. The effects of system size on the constitutive behavior, critical stress, maximum avalanche size, avalanche size distribution, and increased step number of external load are explored. The simulation results imply that there is no feature size or cut size for macroscopic mechanical and statistical properties of the model. The constitutive curves near the macroscopic failure for various system size can collapse well with a simple scaling relationship. Simultaneously, the introduction of a simple extrapolation method facilitates the acquisition of more accurate simulation results in a large-limit system, which is better for comparison with theoretical results.

  7. Finite-size effects on multibody neutrino exchange

    CERN Document Server

    Abada, A; Rodríguez-Quintero, J; Abada, As


    The effect of multibody massless neutrino exchanges between neutrons inside a finite-size neutron star is studied. We use an effective Lagrangian, which incorporates the effect of the neutrons on the neutrinos. Following Schwinger, it is shown that the total interaction energy density is computed by comparing the zero point energy of the neutrino sea with and without the star. It has already been shown that in an infinite-size star the total energy due to neutrino exchange vanishes exactly. The opposite claim that massless neutrino exchange would produce a huge energy is due to an improper summation of an infrared-divergent quantity. The same vanishing of the total energy has been proved exactly in the case of a finite star in a one-dimensional toy model. Here we study the three-dimensional case. We first consider the effect of a sharp star border, assumed to be a plane. We find that there is a non- vanishing of the zero point energy density difference between the inside and the outside due to the refraction ...

  8. Finite-Size Effects for Some Bootstrap Percolation Models

    NARCIS (Netherlands)

    Enter, A.C.D. van; Adler, Joan; Duarte, J.A.M.S.

    The consequences of Schonmann's new proof that the critical threshold is unity for certain bootstrap percolation models are explored. It is shown that this proof provides an upper bound for the finite-size scaling in these systems. Comparison with data for one case demonstrates that this scaling

  9. Dynamic finite size effects in spiking neural networks.

    Directory of Open Access Journals (Sweden)

    Michael A Buice

    Full Text Available We investigate the dynamics of a deterministic finite-sized network of synaptically coupled spiking neurons and present a formalism for computing the network statistics in a perturbative expansion. The small parameter for the expansion is the inverse number of neurons in the network. The network dynamics are fully characterized by a neuron population density that obeys a conservation law analogous to the Klimontovich equation in the kinetic theory of plasmas. The Klimontovich equation does not possess well-behaved solutions but can be recast in terms of a coupled system of well-behaved moment equations, known as a moment hierarchy. The moment hierarchy is impossible to solve but in the mean field limit of an infinite number of neurons, it reduces to a single well-behaved conservation law for the mean neuron density. For a large but finite system, the moment hierarchy can be truncated perturbatively with the inverse system size as a small parameter but the resulting set of reduced moment equations that are still very difficult to solve. However, the entire moment hierarchy can also be re-expressed in terms of a functional probability distribution of the neuron density. The moments can then be computed perturbatively using methods from statistical field theory. Here we derive the complete mean field theory and the lowest order second moment corrections for physiologically relevant quantities. Although we focus on finite-size corrections, our method can be used to compute perturbative expansions in any parameter.

  10. Theory of critical phenomena in finite-size systems scaling and quantum effects

    CERN Document Server

    Brankov, Jordan G; Tonchev, Nicholai S


    The aim of this book is to familiarise the reader with the rich collection of ideas, methods and results available in the theory of critical phenomena in systems with confined geometry. The existence of universal features of the finite-size effects arising due to highly correlated classical or quantum fluctuations is explained by the finite-size scaling theory. This theory (1) offers an interpretation of experimental results on finite-size effects in real systems; (2) gives the most reliable tool for extrapolation to the thermodynamic limit of data obtained by computer simulations; (3) reveals

  11. Effects of finite size on spin glass dynamics (United States)

    Sato, Tetsuya; Komatsu, Katsuyoshi


    In spite of comprehensive studies to clarify a variety of interesting phenomena of spin glasses, their understanding has been insufficiently established. To overcome such a problem, fabrication of a mesoscopic spin glass system, whose dynamics can be observed over the entire range to the equilibrium, is useful. In this review the challenges of research that has been performed up to now in this direction and our recent related studies are introduced. We have established to study the spin glass behaviour in terms of droplet picture using nanofabricated mesoscopic samples to some extent, but some problems that should be clarified have been left. Finally, the direction of some new studies is proposed to solve the problems.

  12. Finite size effects on textured surfaces: recovering contact angles from vagarious drop edges. (United States)

    Gauthier, Anaïs; Rivetti, Marco; Teisseire, Jérémie; Barthel, Etienne


    A clue to understand wetting hysteresis on superhydrophobic surfaces is the relation between receding contact angle and surface textures. When the surface textures are large, there is a significant distribution of local contact angles around the drop. As seen from the cross section, the apparent contact angle oscillates as the triple line recedes. Our experiments demonstrate that the origin of these oscillations is a finite size effect. Combining side and bottom views of the drop, we take into account the 3D conformation of the surface near the edge to evaluate an intrinsic contact angle from the oscillations of the apparent contact angle. We find that for drops receding on axisymmetric textures the intrinsic receding contact angle is the minimum value of the oscillation while for a square lattice it is the maximum.

  13. Finite size effects on pion spectra in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Ayala, Alejandro; Cuautle, Eleazar; Magnin, J.; Montano, Luis Manuel; Raya, Alfredo


    We compute the pion inclusive transverse momentum distribution assuming thermal equilibrium together with transverse flow and accounting for finite size effects and energy loss at the time of decoupling. We compare to data on mid-rapidity pions produced in central collisions in RHIC at s NN =200 GeV. We find that a finite size for the system of emitting particles results in a power-like fall-off of the spectra that follows the data up to larger p t values, as compared to a simple thermal model

  14. Finite size and dynamical effects in pair production by an external field

    International Nuclear Information System (INIS)

    Martin, C.; Vautherin, D.


    We evaluate the rate of pair production in a uniform electric field confined into a bounded region in space. Using the Balian-Bloch expansion of Green's functions we obtain explicit expressions for finite size corrections to Schwinger's formula. The case of a time-dependent boundary, relevant to describe energy deposition by quark-antiquark pair production in ultrarelativistic collisions, is also investigated. We find that finite size effects are important in nuclear collisions. They decrease when the strength of the chromo-electric field between the nuclei is large. As a result, the rate of energy deposition increases sharply with the mass number A of the colliding nuclei

  15. Finite size effects on the helical edge states on the Lieb lattice

    International Nuclear Information System (INIS)

    Chen Rui; Zhou Bin


    For a two-dimensional Lieb lattice, that is, a line-centered square lattice, the inclusion of the intrinsic spin–orbit (ISO) coupling opens a topologically nontrivial gap, and gives rise to the quantum spin Hall (QSH) effect characterized by two pairs of gapless helical edge states within the bulk gap. Generally, due to the finite size effect in QSH systems, the edge states on the two sides of a strip of finite width can couple together to open a gap in the spectrum. In this paper, we investigate the finite size effect of helical edge states on the Lieb lattice with ISO coupling under three different kinds of boundary conditions, i.e., the straight, bearded and asymmetry edges. The spectrum and wave function of edge modes are derived analytically for a tight-binding model on the Lieb lattice. For a strip Lieb lattice with two straight edges, the ISO coupling induces the Dirac-like bulk states to localize at the edges to become the helical edge states with the same Dirac-like spectrum. Moreover, it is found that in the case with two straight edges the gapless Dirac-like spectrum remains unchanged with decreasing the width of the strip Lieb lattice, and no gap is opened in the edge band. It is concluded that the finite size effect of QSH states is absent in the case with the straight edges. However, in the other two cases with the bearded and asymmetry edges, the energy gap induced by the finite size effect is still opened with decreasing the width of the strip. It is also proposed that the edge band dispersion can be controlled by applying an on-site potential energy on the outermost atoms. (paper)

  16. Finite-size effects in Luther-Emery phases of Holstein and Hubbard models (United States)

    Greitemann, J.; Hesselmann, S.; Wessel, S.; Assaad, F. F.; Hohenadler, M.


    The one-dimensional Holstein model and its generalizations have been studied extensively to understand the effects of electron-phonon interaction. The half-filled case is of particular interest, as it describes a transition from a metallic phase with a spin gap due to attractive backscattering to a Peierls insulator with charge-density-wave order. Our quantum Monte Carlo results support the existence of a metallic phase with dominant power-law charge correlations, as described by the Luther-Emery fixed point. We demonstrate that for Holstein and also for purely fermionic models the spin gap significantly complicates finite-size numerical studies, and explains inconsistent previous results for Luttinger parameters and phase boundaries. On the other hand, no such complications arise in spinless models. The correct low-energy theory of the spinful Holstein model is argued to be that of singlet bipolarons with a repulsive, mutual interaction. This picture naturally explains the existence of a metallic phase, but also implies that gapless Luttinger liquid theory is not applicable.

  17. Finite-size effect and the components of multifractality in financial volatility

    International Nuclear Information System (INIS)

    Zhou Weixing


    Highlights: ► The apparent multifractality can be decomposed quantitatively. ► There is a marked finite-size effect in the detection of multifractality. ► The effective multifractality can be further decomposed into two components. ► A time series exhibits effective multifractality only if it possesses nonlinearity. ► The daily DJIA volatility is analyzed as an example. - Abstract: Many financial variables are found to exhibit multifractal nature, which is usually attributed to the influence of temporal correlations and fat-tailedness in the probability distribution (PDF). Based on the partition function approach of multifractal analysis, we show that there is a marked finite-size effect in the detection of multifractality, and the effective multifractality is the apparent multifractality after removing the finite-size effect. We find that the effective multifractality can be further decomposed into two components, the PDF component and the nonlinearity component. Referring to the normal distribution, we can determine the PDF component by comparing the effective multifractality of the original time series and the surrogate data that have a normal distribution and keep the same linear and nonlinear correlations as the original data. We demonstrate our method by taking the daily volatility data of Dow Jones Industrial Average from 26 May 1896 to 27 April 2007 as an example. Extensive numerical experiments show that a time series exhibits effective multifractality only if it possesses nonlinearity and the PDF has an impact on the effective multifractality only when the time series possesses nonlinearity. Our method can also be applied to judge the presence of multifractality and determine its components of multifractal time series in other complex systems.

  18. Finite size effects in the static structure factor of dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Davletov, A. E., E-mail:; Yerimbetova, L. T.; Mukhametkarimov, Ye. S.; Ospanova, A. K. [Department of Physics and Technology, Al-Farabi Kazakh National University, Al-Farabi av. 71, 050040 Almaty (Kazakhstan)


    Based on the previously developed pseudopotential model of the dust particles interaction, which takes into account both the finite size and screening effects, the equilibrium distribution functions are investigated in a broad range of plasma parameters. The treatment stems entirely from the renormalization theory of plasma particles interactions which leads to the so-called generalized Poisson-Boltzmann equation. In particular, an analytical expression for the static structure factor of the dust particles is proposed and its non-monotonic behavior in the hyper-netted chain approximation is found in a specified domain of plasma parameters to indicate the formation of short- or even long-range order in the system.

  19. Leading order finite size effects with spins for inspiralling compact binaries

    International Nuclear Information System (INIS)

    Levi, Michele; Steinhoff, Jan


    The leading order finite size effects due to spin, namely that of the cubic and quartic in spin interactions, are derived for the first time for generic compact binaries via the effective field theory for gravitating spinning objects. These corrections enter at the third and a half and fourth post-Newtonian orders, respectively, for rapidly rotating compact objects. Hence, we complete the leading order finite size effects with spin up to the fourth post-Newtonian accuracy. We arrive at this by augmenting the point particle effective action with new higher dimensional nonminimal coupling worldline operators, involving higher-order derivatives of the gravitational field, and introducing new Wilson coefficients, corresponding to constants, which describe the octupole and hexadecapole deformations of the object due to spin. These Wilson coefficients are fixed to unity in the black hole case. The nonminimal coupling worldline operators enter the action with the electric and magnetic components of the Weyl tensor of even and odd parity, coupled to even and odd worldline spin tensors, respectively. Moreover, the non relativistic gravitational field decomposition, which we employ, demonstrates a coupling hierarchy of the gravito-magnetic vector and the Newtonian scalar, to the odd and even in spin operators, respectively, which extends that of minimal coupling. This observation is useful for the construction of the Feynman diagrams, and provides an instructive analogy between the leading order spin-orbit and cubic in spin interactions, and between the leading order quadratic and quartic in spin interactions.

  20. Bulk vs nanoscale WS2: finite size effects and solid-state lubrication. (United States)

    Brown, S; Musfeldt, J L; Mihut, I; Betts, J B; Migliori, A; Zak, A; Tenne, R


    To investigate phonon confinement in nanoscale metal dichalcogenides, we measured the low-temperature specific heat of layered and nanoparticle WS2. Below 9 K, the specific heat of the nanoparticles deviates from that of the bulk counterpart. Further, it deviates from the usual T 3 dependence below 4 K due to finite size effects that eliminate long wavelength acoustic phonons and interparticle-motion entropy. This separation of nanoscale effects from T 3 dependence can be modeled by assuming that the phonon density of states is flexible, changing with size and shape. We invoke relationships between the low-temperature T 3 phonon term, Young's modulus, and friction coefficient to assess the difference in the tribological properties. On the basis of this analysis, we conclude that the improved lubrication properties of the nanoparticles are extrinsic.

  1. Equilibrium between a Droplet and Surrounding Vapor: A Discussion of Finite Size Effects. (United States)

    Tröster, Andreas; Schmitz, Fabian; Virnau, Peter; Binder, Kurt


    In a theoretical description of homogeneous nucleation one frequently assumes an "equilibrium" coexistence of a liquid droplet with surrounding vapor of a density exceeding that of a saturated vapor at bulk vapor-liquid two-phase coexistence. Thereby one ignores the caveat that in the thermodynamic limit, for which the vapor would be called supersaturated, such states will at best be metastable with finite lifetime, and thus not be well-defined within equilibrium statistical mechanics. In contrast, in a system of finite volume stable equilibrium coexistence of droplet and supersaturated vapor at constant total density is perfectly possible, and numerical analysis of equilibrium free energies of finite systems allows to obtain physically relevant results. In particular, such an analysis can be used to derive the dependence of the droplet surface tension γ(R) on the droplet radius R by computer simulations. Unfortunately, however, the precision of the results produced by this approach turns out to be seriously affected by a hitherto unexplained spurious dependence of γ(R) on the total volume V of the simulation box. These finite size effects are studied here for the standard Ising/lattice gas model in d = 2 dimensions and an Ising model on the face-centered cubic lattice with 3-spin interaction, lacking symmetry between vapor and liquid phases. There also the analogous case of bubbles surrounded by undersaturated liquid is treated. It is argued that (at least a large part of) the finite size effects result from the translation entropy of the droplet or bubble in the system. This effect has been shown earlier to occur also for planar interfaces for simulations in the slab geometry. Consequences for the estimation of the Tolman length are briefly discussed. In particular, we find clear evidence that in d = 2 the leading correction of the curvature-dependent interface tension is a logarithmic term, compatible with theoretical expectations, and we show that then the

  2. Finite size effects in the intermittency analysis of the fragment-size correlations

    International Nuclear Information System (INIS)

    Bozek, P.; Ploszajczak, M.; Tucholski, A.


    An influence of the finite size effect on the fragment-size correlations in the nuclear multifragmentation is studied using the method of scaled factorial moments for a 1 - dim percolation model and for a statistical model of the fragmentation process, which for a certain value of a tuning parameter yields the power-law behaviour of the fragment-size distribution. It is shown that the statistical models of this type contain only repulsive correlations due to the conservation laws. The comparison of the results with those obtained in the non-critical 1 - dim percolation and in the 3 - dim percolation at around the critical point is presented. Correlations in the 1 - dim percolation model are analysed analytically and the mechanism of the attractive correlations in 1 - dim and 3 - dim is identified. (author) 30 refs., 7 figs

  3. Finite-size effects in the three-state quantum asymmetric clock model

    International Nuclear Information System (INIS)

    Gehlen, G. v.; Rittenberg, V.


    The one-dimensional quantum Hamiltonian of the asymmetric three-state clock model is studied using finite-size scaling. Various boundary conditions are considered on chains containing up to eight sites. We calculate the boundary of the commensurate phase and the mass gap index. The model shows an interesting finite-size dependence in connexion with the presence of the incommensurate phase indicating that for the infinite system there is no Lifshitz point. (orig.)

  4. Theoretical studies of finite size effects and screening effects caused by a STM tip in Luettinger liquids

    International Nuclear Information System (INIS)

    Guigou, Marine


    This thesis takes place in the field of condensed matter. More precisely, we focus on the finite size effects and the screening effects caused by a STM tip in a quantum wire. For that, we use, first, the Luettinger liquid theory, which allows to describe strongly correlated systems and secondly, the Keldysh formalism, which is necessary to treat the out-of-equilibrium systems. For these studies, we consider, the currant, the noise and the conductance. The noise presents a non-Poissonian behaviour, when finite size effects appear. Through the photo-assisted transport, it is shown that those effects hide the effects of the Coulomb interactions. Considering the proximity between the STM tip, used as a probe or as an injector, and a quantum wire, screening effects appear. We can conclude that they play a similar role to those of Coulomb interactions. (author) [fr

  5. Finite size effects on magnetic flux penetration into YBCO/LSMO hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Uspenskaya, L S [Institute of Solid State Physics RAS, Chernogolovka (Russian Federation); Nurgaliev, T; Miteva, S, E-mail: [Institute of Electronica BAS, Sofia (Bulgaria)


    The attractive idea to create artificial superconductor/ferromagnet heterostructures (SC/FM) for easy control of the superconductor properties by magnetic field is widely considered last decade. Of a special interest for applications are the HTSC/FM heterostructures, particularly the YBCO/LSMO, where the magnetization value of LSMO could be adjusted by doping, by variation of oxygen content, and magnetic domain structure could be controlled by reasonable magnetic field. We concentrate on the in-plane field penetration into the YBCO/LSMO hybrid film, which is of practical interest as the in-plane field easier saturates the magnetic film. The study is performed by the magneto-optic visualization technique at T down to 7 K. We found a striking transformation of the in-plane external field into a wave of alternating perpendicular flux, the particular features of which depended on the temperature and magnetic prehistory at temperature above superconducting transition. To shed light on the mechanism of the effect, we have investigated the magnetic domain pattern of manganite film and it's transformations due to variation of temperature and the field. The results are discussed taking into account the finite size of the hybrid structure and the magnetostatic field distribution.

  6. Importance of elastic finite-size effects: Neutral defects in ionic compounds (United States)

    Burr, P. A.; Cooper, M. W. D.


    Small system sizes are a well-known source of error in density functional theory (DFT) calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite-size effects have been well characterized, but self-interaction of charge-neutral defects is often discounted or assumed to follow an asymptotic behavior and thus easily corrected with linear elastic theory. Here we show that elastic effects are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequately small supercells are used; moreover, the spurious self-interaction does not follow the behavior predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground-state structure of (charge-neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768, and 1500 atoms), and careful analysis determines that elastic, not electrostatic, effects are responsible. The spurious self-interaction was also observed in nonoxide ionic compounds irrespective of the computational method used, thereby resolving long-standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects is a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g., hybrid functionals) or when modeling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studied oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells: greater than 96 atoms.

  7. Finite-size effects for the gap in the excitation spectrum of the one-dimensional Hubbard model

    NARCIS (Netherlands)

    Colomé-Tatché, M.; Matveenko, S.I.; Shlyapnikov, G.V.


    We study finite-size effects for the gap of the quasiparticle excitation spectrum in the weakly interacting regime one-dimensional Hubbard model with on-site attraction. Two types of corrections to the result of the thermodynamic limit are obtained. Aside from a power law (conformal) correction due

  8. Rational three-spin string duals and non-anomalous finite size effects

    DEFF Research Database (Denmark)

    Freyhult, Lisa; Kristjansen, Charlotte


    We determine by a one line computation the one-loop conformal dimension and the associated non-anomalous finite size correction for all operators dual to spinning strings of rational type having three angular momenta (J_1,J_2,J_3) on S^5. Finite size corrections are conjectured to encode informat......We determine by a one line computation the one-loop conformal dimension and the associated non-anomalous finite size correction for all operators dual to spinning strings of rational type having three angular momenta (J_1,J_2,J_3) on S^5. Finite size corrections are conjectured to encode...... information about string sigma model loop corrections to the spectrum of type IIB superstrings on AdS_5xS^5. We compare our result to the zero-mode contribution to the leading quantum string correction derived for the stable three-spin string with two out of the three spin labels identical and observe...... agreement. As a side result we clarify the relation between the Bethe root description of three-spin strings of the type (J,J',J') with respectively J>J' and JJ....

  9. Wave functions and finite size effects in a two-dimensional lattice field theory

    International Nuclear Information System (INIS)

    Thacker, H.B.


    A study of finite size corrections to the masses of fermions and bound states in the Baxter/massive Thirring/sine Gordon lattice field theory is discussed. It is shown that information on bound tate wave functions may be used to extrapolate Monte Carlo mass calculations to infinite volume. 10 refs., 4 figs

  10. Exploiting finite-size-effects to simulate full QCD with light quarks - a progress report

    International Nuclear Information System (INIS)

    Orth, B.; Eicker, N.; Lippert, Th.; Schilling, K.; Schroers, W.; Sroczynski, Z.


    We present a report on the status of the GRAL project (Going Realistic And Light), which aims at simulating full QCD with two dynamical Wilson quarks below the vector meson decay threshold, m ps /m v < 0.5, making use of finite-size-scaling techniques

  11. Finite-size effects for anisotropic 2D Ising model with various boundary conditions (United States)

    Izmailian, N. Sh


    We analyze the exact partition function of the anisotropic Ising model on finite M × N rectangular lattices under four different boundary conditions (periodic-periodic (pp), periodic-antiperiodic (pa), antiperiodic-periodic (ap) and antiperiodic-antiperiodic (aa)) obtained by Kaufman (1949 Phys. Rev. 76 1232), Wu and Hu (2002 J. Phys. A: Math. Gen. 35 5189) and Kastening (2002 Phys. Rev. E 66 057103)). We express the partition functions in terms of the partition functions Zα, β(J, k) with (α, β) = (0, 0), (1/2, 0), (0, 1/2) and (1/2, 1/2), J is an interaction coupling and k is an anisotropy parameter. Based on such expressions, we then extend the algorithm of Ivashkevich et al (2002 J. Phys. A: Math. Gen. 35 5543) to derive the exact asymptotic expansion of the logarithm of the partition function for all boundary conditions mentioned above. Our result is f = fbulk + ∑∞p = 0fp(ρ, k)S-p - 1, where f is the free energy of the system, fbulk is the free energy of the bulk, S = MN is the area of the lattice and ρ = M/N is the aspect ratio. All coefficients in this expansion are expressed through analytical functions. We have introduced the effective aspect ratio ρeff = ρ/sinh 2Jc and show that for pp and aa boundary conditions all finite size correction terms are invariant under the transformation ρeff → 1/ρeff. This article is part of ‘Lattice models and integrability’, a special issue of Journal of Physics A: Mathematical and Theoretical in honour of F Y Wu's 80th birthday.

  12. Fluctuations, Finite-Size Effects and the Thermodynamic Limit in Computer Simulations: Revisiting the Spatial Block Analysis Method

    Directory of Open Access Journals (Sweden)

    Maziar Heidari


    Full Text Available The spatial block analysis (SBA method has been introduced to efficiently extrapolate thermodynamic quantities from finite-size computer simulations of a large variety of physical systems. In the particular case of simple liquids and liquid mixtures, by subdividing the simulation box into blocks of increasing size and calculating volume-dependent fluctuations of the number of particles, it is possible to extrapolate the bulk isothermal compressibility and Kirkwood–Buff integrals in the thermodynamic limit. Only by explicitly including finite-size effects, ubiquitous in computer simulations, into the SBA method, the extrapolation to the thermodynamic limit can be achieved. In this review, we discuss two of these finite-size effects in the context of the SBA method due to (i the statistical ensemble and (ii the finite integration domains used in computer simulations. To illustrate the method, we consider prototypical liquids and liquid mixtures described by truncated and shifted Lennard–Jones (TSLJ potentials. Furthermore, we show some of the most recent developments of the SBA method, in particular its use to calculate chemical potentials of liquids in a wide range of density/concentration conditions.

  13. Excited-state quantum phase transitions in systems with two degrees of freedom: II. Finite-size effects

    Energy Technology Data Exchange (ETDEWEB)

    Stránský, Pavel [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic); Macek, Michal [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic); Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06520-8120 (United States); Leviatan, Amiram [Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel); Cejnar, Pavel, E-mail: [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic)


    This article extends our previous analysis Stránský et al. (2014) of Excited-State Quantum Phase Transitions (ESQPTs) in systems of dimension two. We focus on the oscillatory component of the quantum state density in connection with ESQPT structures accompanying a first-order ground-state transition. It is shown that a separable (integrable) system can develop rather strong finite-size precursors of ESQPT expressed as singularities in the oscillatory component of the state density. The singularities originate in effectively 1-dimensional dynamics and in some cases appear in multiple replicas with increasing excitation energy. Using a specific model example, we demonstrate that these precursors are rather resistant to proliferation of chaotic dynamics. - Highlights: • Oscillatory components of state density and spectral flow studied near ESQPTs. • Enhanced finite-size precursors of ESQPT caused by fully/partly separable dynamics. • These precursors appear due to criticality of a subsystem with lower dimension. • Separability-induced finite-size effects disappear in case of fully chaotic dynamics.

  14. Finite-size effects in the spectrum of the OSp (3 | 2) superspin chain (United States)

    Frahm, Holger; Martins, Márcio J.


    The low energy spectrum of a spin chain with OSp (3 | 2) supergroup symmetry is studied based on the Bethe ansatz solution of the related vertex model. This model is a lattice realization of intersecting loops in two dimensions with loop fugacity z = 1 which provides a framework to study the critical properties of the unusual low temperature Goldstone phase of the O (N) sigma model for N = 1 in the context of an integrable model. Our finite-size analysis provides strong evidence for the existence of continua of scaling dimensions, the lowest of them starting at the ground state. Based on our data we conjecture that the so-called watermelon correlation functions decay logarithmically with exponents related to the quadratic Casimir operator of OSp (3 | 2). The presence of a continuous spectrum is not affected by a change to the boundary conditions although the density of states in the continua appears to be modified.

  15. Finite-size effects in the spectrum of the OSp(3|2 superspin chain

    Directory of Open Access Journals (Sweden)

    Holger Frahm


    Full Text Available The low energy spectrum of a spin chain with OSp(3|2 supergroup symmetry is studied based on the Bethe ansatz solution of the related vertex model. This model is a lattice realization of intersecting loops in two dimensions with loop fugacity z=1 which provides a framework to study the critical properties of the unusual low temperature Goldstone phase of the O(N sigma model for N=1 in the context of an integrable model. Our finite-size analysis provides strong evidence for the existence of continua of scaling dimensions, the lowest of them starting at the ground state. Based on our data we conjecture that the so-called watermelon correlation functions decay logarithmically with exponents related to the quadratic Casimir operator of OSp(3|2. The presence of a continuous spectrum is not affected by a change to the boundary conditions although the density of states in the continua appears to be modified.

  16. Finite-size, chemical-potential and magnetic effects on the phase transition in a four-fermion interacting model

    Energy Technology Data Exchange (ETDEWEB)

    Correa, E.B.S. [Universidade Federal do Sul e Sudeste do Para, Instituto de Ciencias Exatas, Maraba (Brazil); Centro Brasileiro de Pesquisas Fisicas-CBPF/MCTI, Rio de Janeiro (Brazil); Linhares, C.A. [Universidade do Estado do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro (Brazil); Malbouisson, A.P.C. [Centro Brasileiro de Pesquisas Fisicas-CBPF/MCTI, Rio de Janeiro (Brazil); Malbouisson, J.M.C. [Universidade Federal da Bahia, Instituto de Fisica, Salvador (Brazil); Santana, A.E. [Universidade de Brasilia, Instituto de Fisica, Brasilia, DF (Brazil)


    We study effects coming from finite size, chemical potential and from a magnetic background on a massive version of a four-fermion interacting model. This is performed in four dimensions as an application of recent developments for dealing with field theories defined on toroidal spaces. We study effects of the magnetic field and chemical potential on the size-dependent phase structure of the model, in particular, how the applied magnetic field affects the size-dependent critical temperature. A connection with some aspects of the hadronic phase transition is established. (orig.)

  17. Finite-size effect of η-deformed AdS5×S5 at strong coupling

    Directory of Open Access Journals (Sweden)

    Changrim Ahn


    Full Text Available We compute Lüscher corrections for a giant magnon in the η-deformed (AdS5×S5η using the su(2|2q-invariant S-matrix at strong coupling and compare with the finite-size effect of the corresponding string state, derived previously. We find that these two results match and confirm that the su(2|2q-invariant S-matrix is describing world-sheet excitations of the η-deformed background.

  18. Finite-size effect of η-deformed AdS5 × S5 at strong coupling (United States)

    Ahn, Changrim


    We compute Lüscher corrections for a giant magnon in the η-deformed (AdS5×S5)η using the su(2 | 2) q-invariant S-matrix at strong coupling and compare with the finite-size effect of the corresponding string state, derived previously. We find that these two results match and confirm that the su(2 | 2) q-invariant S-matrix is describing world-sheet excitations of the η-deformed background.

  19. Thermodynamic theory of intrinsic finite-size effects in PbTiO3 nanocrystals. I. Nanoparticle size-dependent tetragonal phase stability (United States)

    Akdogan, E. K.; Safari, A.


    We propose a phenomenological intrinsic finite-size effect model for single domain, mechanically free, and surface charge compensated ΔG-P ⃗s-ξ space, which describes the decrease in tetragonal phase stability with decreasing ξ rigorously.

  20. Finite-size effect on the dynamic and sensing performances of graphene resonators: the role of edge stress. (United States)

    Kim, Chang-Wan; Dai, Mai Duc; Eom, Kilho


    We have studied the finite-size effect on the dynamic behavior of graphene resonators and their applications in atomic mass detection using a continuum elastic model such as modified plate theory. In particular, we developed a model based on von Karman plate theory with including the edge stress, which arises from the imbalance between the coordination numbers of bulk atoms and edge atoms of graphene. It is shown that as the size of a graphene resonator decreases, the edge stress depending on the edge structure of a graphene resonator plays a critical role on both its dynamic and sensing performances. We found that the resonance behavior of graphene can be tuned not only through edge stress but also through nonlinear vibration, and that the detection sensitivity of a graphene resonator can be controlled by using the edge stress. Our study sheds light on the important role of the finite-size effect in the effective design of graphene resonators for their mass sensing applications.

  1. Molecular finite-size effects in stochastic models of equilibrium chemical systems. (United States)

    Cianci, Claudia; Smith, Stephen; Grima, Ramon


    The reaction-diffusion master equation (RDME) is a standard modelling approach for understanding stochastic and spatial chemical kinetics. An inherent assumption is that molecules are point-like. Here, we introduce the excluded volume reaction-diffusion master equation (vRDME) which takes into account volume exclusion effects on stochastic kinetics due to a finite molecular radius. We obtain an exact closed form solution of the RDME and of the vRDME for a general chemical system in equilibrium conditions. The difference between the two solutions increases with the ratio of molecular diameter to the compartment length scale. We show that an increase in the fraction of excluded space can (i) lead to deviations from the classical inverse square root law for the noise-strength, (ii) flip the skewness of the probability distribution from right to left-skewed, (iii) shift the equilibrium of bimolecular reactions so that more product molecules are formed, and (iv) strongly modulate the Fano factors and coefficients of variation. These volume exclusion effects are found to be particularly pronounced for chemical species not involved in chemical conservation laws. Finally, we show that statistics obtained using the vRDME are in good agreement with those obtained from Brownian dynamics with excluded volume interactions.

  2. Finite size effects in a model for platicity of amorphous composites

    DEFF Research Database (Denmark)

    Tyukodi, Botond; Lemarchand, Claire A.; Hansen, Jesper Schmidt


    We discuss the plastic behavior of an amorphous matrix reinforced by hard particles. A mesoscopic depinning-like model accounting for Eshelby elastic interactions is implemented. Only the effect of a plastic disorder is considered. Numerical results show a complex size dependence of the effective...... numerically. Predictions of the effective flow stress accounting for further logarithmic corrections show a very good agreement with numerical results.......We discuss the plastic behavior of an amorphous matrix reinforced by hard particles. A mesoscopic depinning-like model accounting for Eshelby elastic interactions is implemented. Only the effect of a plastic disorder is considered. Numerical results show a complex size dependence of the effective...... flow stress of the amorphous composite. In particular, the departure from the mixing law shows opposite trends associated to the competing effects of the matrix and the reinforcing particles, respectively. The reinforcing mechanisms and their effects on localization are discussed. Plastic strain...

  3. Loss of acoustic black hole effect in a structure of finite size

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Liling; Cheng, Li, E-mail: [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)


    The Acoustic Black Hole (ABH) effect takes place in thin-walled structures with diminishing thickness as a result of the reduction in the bending wave speed. It was shown to exist as a broadband phenomenon, based on wave propagation theory in structures of semi-infinite size. The ABH effect exhibits appealing features for various applications, such as passive vibration control, energy harvesting, and sound radiation control. In this paper, we demonstrate the disappearance of the ABH effect in a finite beam at specific frequency ranges above the cut-on frequency, both experimentally and theoretically. Analyses show that the phenomenon takes place at frequencies which are close to the low order local resonant frequencies of the portion of the beam demarcated by the position of the excitation force. These frequencies can be predicted so that the phenomenon can be avoided for the targeted frequency ranges in ABH applications.

  4. Finite-size effects in the nuclear magnetic resonance of epitaxial palladium thin films (United States)

    MacFarlane, W. A.; Parolin, T. J.; Larkin, T. I.; Richter, G.; Chow, K. H.; Hossain, M. D.; Kiefl, R. F.; Levy, C. D. P.; Morris, G. D.; Ofer, O.; Pearson, M. R.; Saadaoui, H.; Song, Q.; Wang, D.


    We have measured the NMR of 8Li+ implanted in a set of thin epitaxial films of Pd. We find a large, negative, strongly temperature-dependent Knight shift K consistent with previous measurements on polycrystalline films. The temperature dependence of the shift exhibits a characteristic deviation from the susceptibility χ(T). In particular, at low temperature, K(T) continues to follow a simple Curie-Weiss dependence. This result provides important insight into the origin of the low-temperature behavior of χ(T) in strongly paramagnetic metals. In addition, we find the room temperature shift depends on film thickness, with changes on the order of 20% between films 100 nm and 30 nm thick. We also observe a surface-related resonance in both Au-capped and uncapped films with a small positive shift. These features bear a striking similarity to the Pt NMR line shapes in much smaller Pt particles. However, they seem to originate, not from adsorbed species, but rather in confinement effects on the highly exhange-enhanced Pd d band.

  5. Density Propagator for Many-Body Localization: Finite-Size Effects, Transient Subdiffusion, and Exponential Decay (United States)

    Bera, Soumya; De Tomasi, Giuseppe; Weiner, Felix; Evers, Ferdinand


    We investigate charge relaxation in quantum wires of spinless disordered fermions (t -V model). Our observable is the time-dependent density propagator Πɛ(x ,t ), calculated in windows of different energy density ɛ of the many-body Hamiltonian and at different disorder strengths W , not exceeding the critical value Wc. The width Δx ɛ(t ) of Πɛ(x ,t ) exhibits a behavior d ln Δx ɛ(t )/d ln t =βɛ(t ), where the exponent function βɛ(t )≲1 /2 is seen to depend strongly on L at all investigated parameter combinations. (i) We confirm the existence of a region in phase space that exhibits subdiffusive dynamics in the sense that βɛ(t )body mobility edges even in regions of the phase diagram that have been reported to be deep in the delocalized phase. (iii) (Transient) subdiffusion 0 phenomenological level, our findings are broadly consistent with the effects of strong disorder and (fractal) Griffiths regions.

  6. Impact of high-frequency pumping on anomalous finite-size effects in three-dimensional topological insulators (United States)

    Pervishko, Anastasiia A.; Yudin, Dmitry; Shelykh, Ivan A.


    Lowering of the thickness of a thin-film three-dimensional topological insulator down to a few nanometers results in the gap opening in the spectrum of topologically protected two-dimensional surface states. This phenomenon, which is referred to as the anomalous finite-size effect, originates from hybridization between the states propagating along the opposite boundaries. In this work, we consider a bismuth-based topological insulator and show how the coupling to an intense high-frequency linearly polarized pumping can further be used to manipulate the value of a gap. We address this effect within recently proposed Brillouin-Wigner perturbation theory that allows us to map a time-dependent problem into a stationary one. Our analysis reveals that both the gap and the components of the group velocity of the surface states can be tuned in a controllable fashion by adjusting the intensity of the driving field within an experimentally accessible range and demonstrate the effect of light-induced band inversion in the spectrum of the surface states for high enough values of the pump.

  7. Influence of surface and finite size effects on the structural and magnetic properties of nanocrystalline lanthanum strontium perovskite manganites

    Energy Technology Data Exchange (ETDEWEB)

    Žvátora, Pavel [Department of Analytical Chemistry, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague (Czech Republic); Veverka, Miroslav; Veverka, Pavel; Knížek, Karel; Závěta, Karel; Pollert, Emil [Department of Magnetism and Superconductors, Institute of Physics AS CR, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Král, Vladimír [Department of Analytical Chemistry, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague (Czech Republic); Zentiva Development (Part of Sanofi Group), U Kabelovny 130, 102 37 Prague (Czech Republic); Goglio, Graziella; Duguet, Etienne [CNRS, University of Bordeaux, ICMCB, UPR 9048, 33600 Pessac (France); Kaman, Ondřej, E-mail: [Department of Magnetism and Superconductors, Institute of Physics AS CR, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 40 Prague (Czech Republic)


    Syntheses of nanocrystalline perovskite phases of the general formula La{sub 1−x}Sr{sub x}MnO{sub 3+δ} were carried out employing sol–gel technique followed by thermal treatment at 700–900 °C under oxygen flow. The prepared samples exhibit a rhombohedral structure with space group R3{sup ¯}c in the whole investigated range of composition 0.20≤x≤0.45. The studies were aimed at the chemical composition including oxygen stoichiometry and extrinsic properties, i.e. size of the particles, both influencing the resulting structural and magnetic properties. The oxygen stoichiometry was determined by chemical analysis revealing oxygen excess in most of the studied phases. The excess was particularly high for the samples with the smallest crystallites (12–28 nm) while comparative bulk materials showed moderate non-stoichiometry. These differences are tentatively attributed to the surface effects in view of the volume fraction occupied by the upper layer whose atomic composition does not comply with the ideal bulk stoichiometry. - Graphical abstract: Evolution of the particle size with annealing temperature in the nanocrystalline La{sub 0.70}Sr{sub 0.30}MnO{sub 3+δ} phase. Display Omitted - Highlights: • The magnetic behaviour of nanocrystalline La{sub 1−x}Sr{sub x}MnO{sub 3+δ} phases was analyzed on the basis of their crystal structure, chemical composition and size of the particles. • Their Curie temperature and magnetization are markedly affected by finite size and surface effects. • The oxygen excess observed in the La{sub 1−x}Sr{sub x}MnO{sub 3+δ} nanoparticles might be generated by the surface layer with deviated oxygen stoichiometry.

  8. Inherent stress correlations in a quiescent two-dimensional liquid: Static analysis including finite-size effects (United States)

    Lemaître, Anaël


    After constructing a formalism to analyze spatial stress correlations in two-dimensional equilibrated liquids, we show that the sole conjunction of mechanical balance and material isotropy demands all anisotropic components of the inherent state (IS) stress autocorrelation matrix to decay at long range as 1 /r2 in the large system size limit. Furthermore, analyzing numerical simulation data for an equilibrated supercooled liquid, we bring evidence that, in finite-sized periodic systems, the autocorrelations of pressure and shear stresses present uniform backgrounds of amplitudes proportional to the inverse cell area. These backgrounds bring relevant contributions to macroscopic IS stress fluctuations, with the consequence that the latter scale as inverse area, yet in an anomalous way, inconsistent with viewing an IS as equivalent, in the thermodynamic limit, to an ensemble of independent finite-sized subsystems. In that sense, ISs are not spatially ergodic.

  9. Finite size effects of ionic species sensitively determine load bearing capacities of lubricated systems under combined influence of electrokinetics and surface compliance. (United States)

    Naik, Kaustubh Girish; Chakraborty, Suman; Chakraborty, Jeevanjyoti


    The behaviour and health of lubricated systems in various natural and artificial settings are often characterized by their load bearing capacity. This capacity stemming from the lift force associated with confined fluid flow can be significantly altered due to surface compliance and electrokinetic effects. Here, we highlight the influence of finite size of the ionic species participating in electrokinetic transport with substrate compliance in determining the electromechanical characteristics of lubricated systems. With these new considerations, anomalous trends previously observed for the load bearing capacity corresponding to high values of zeta potential are corrected. Simultaneously, trends associated with the finite ionic size are also found to be reversed, but fall in line with the consistent theory. Importantly, despite an intricate interplay among the various influences - electrokinetic, hydrodynamic, geometric, and elastic - previously established trends due to geometric (non-parallel slider geometry) and elastic effects are found to persist. Specifically, in the presence of electrokinetic effects, an increase in the obliqueness of the slider geometry results in lower values of load bearing capacity while an increase in the stiffness leads to higher values. These results point to a certain robustness in the overall theory and it is hoped that they can contribute to better practical designs of slider bearings and an improved understanding of lubricated sliding surfaces in biological settings.

  10. Proton and pion transverse spectra at the BNL Relativistic Heavy Ion Collider from radial flow and finite size effects

    International Nuclear Information System (INIS)

    Ayala, Alejandro; Cuautle, Eleazar; Magnin, J.; Montano, Luis Manuel


    We show that the proton and pion transverse momentum distributions measured at BNL Relativistic Heavy Ion Collider (RHIC), for all collision centralities for pions and most of the collision centralities for protons, can be simultaneously described in terms of a thermal model with common values for the radial flow and temperature, when accounting for the finite size of the interaction region at the time of decoupling. We show that this description is obtained in terms of a simple scaling law of the size of the interaction region with the number of participants in the collision. The behavior of the proton to pion ratio at mid-rapidity can also be understood as a consequence of the strength of the radial flow and system size reached at RHIC energies

  11. Thermodynamic theory of intrinsic finite size effects in PbTiO3 nanocrystals. II. Dielectric and piezoelectric properties (United States)

    Akdogan, E. K.; Safari, A.


    We compute the intrinsic dielectric and piezoelectric properties of single domain, mechanically free, and surface charge compensated PbTiO3 nanocrystals (n-Pt) with no depolarization fields, undergoing a finite size induced first order tetragonal→cubic ferrodistortive phase transition. By using a Landau-Devonshire type free energy functional, in which Landau coefficients are a function of nanoparticle size, we demonstrate substantial deviations from bulk properties in the range <150 nm. We find a decrease in dielectric susceptibility at the transition temperature with decreasing particle size, which we verify to be in conformity with predictions of lattice dynamics considerations. We also find an anomalous increase in piezocharge coefficients near ˜15 nm , the critical size for n-Pt.

  12. Flow adjustment inside large finite-size wind farms approaching the infinite wind farm regime (United States)

    Wu, Ka Ling; Porté-Agel, Fernando


    Due to the increasing number and the growing size of wind farms, the distance among them continues to decrease. Thus, it is necessary to understand how these large finite-size wind farms and their wakes could interfere the atmospheric boundary layer (ABL) dynamics and adjacent wind farms. Fully-developed flow inside wind farms has been extensively studied through numerical simulations of infinite wind farms. The transportation of momentum and energy is only vertical and the advection of them is neglected in these infinite wind farms. However, less attention has been paid to examine the length of wind farms required to reach such asymptotic regime and the ABL dynamics in the leading and trailing edges of the large finite-size wind farms. Large eddy simulations are performed in this study to investigate the flow adjustment inside large finite-size wind farms in conventionally-neutral boundary layer with the effect of Coriolis force and free-atmosphere stratification from 1 to 5 K/km. For the large finite-size wind farms considered in the present work, when the potential temperature lapse rate is 5 K/km, the wind farms exceed the height of the ABL by two orders of magnitude for the incoming flow inside the farms to approach the fully-developed regime. An entrance fetch of approximately 40 times of the ABL height is also required for such flow adjustment. At the fully-developed flow regime of the large finite-size wind farms, the flow characteristics match those of infinite wind farms even though they have different adjustment length scales. The role of advection at the entrance and exit regions of the large finite-size wind farms is also examined. The interaction between the internal boundary layer developed above the large finite-size wind farms and the ABL under different potential temperature lapse rates are compared. It is shown that the potential temperature lapse rate plays a role in whether the flow inside the large finite-size wind farms adjusts to the fully

  13. Finite Size Scaling of Perceptron


    Korutcheva, Elka; Tonchev, N.


    We study the first-order transition in the model of a simple perceptron with continuous weights and large, bit finite value of the inputs. Making the analogy with the usual finite-size physical systems, we calculate the shift and the rounding exponents near the transition point. In the case of a general perceptron with larger variety of inputs, the analysis only gives bounds for the exponents.

  14. Quark bag coupling to finite size pions

    International Nuclear Information System (INIS)

    De Kam, J.; Pirner, H.J.


    A standard approximation in theories of quark bags coupled to a pion field is to treat the pion as an elementary field ignoring its substructure and finite size. A difficulty associated with these treatments in the lack of stability of the quark bag due to the rapid increase of the pion pressure on the bad as the bag size diminishes. We investigate the effects of the finite size of the qanti q pion on the pion quark bag coupling by means of a simple nonlocal pion quark interaction. With this amendment the pion pressure on the bag vanishes if the bag size goes to zero. No stability problems are encountered in this description. Furthermore, for extended pions, no longer a maximum is set to the bag parameter B. Therefore 'little bag' solutions may be found provided that B is large enough. We also discuss the possibility of a second minimum in the bag energy function. (orig.)

  15. Finite-size effects in transcript sequencing count distribution: its power-law correction necessarily precedes downstream normalization and comparative analysis. (United States)

    Wong, Wing-Cheong; Ng, Hong-Kiat; Tantoso, Erwin; Soong, Richie; Eisenhaber, Frank


    Though earlier works on modelling transcript abundance from vertebrates to lower eukaroytes have specifically singled out the Zip's law, the observed distributions often deviate from a single power-law slope. In hindsight, while power-laws of critical phenomena are derived asymptotically under the conditions of infinite observations, real world observations are finite where the finite-size effects will set in to force a power-law distribution into an exponential decay and consequently, manifests as a curvature (i.e., varying exponent values) in a log-log plot. If transcript abundance is truly power-law distributed, the varying exponent signifies changing mathematical moments (e.g., mean, variance) and creates heteroskedasticity which compromises statistical rigor in analysis. The impact of this deviation from the asymptotic power-law on sequencing count data has never truly been examined and quantified. The anecdotal description of transcript abundance being almost Zipf's law-like distributed can be conceptualized as the imperfect mathematical rendition of the Pareto power-law distribution when subjected to the finite-size effects in the real world; This is regardless of the advancement in sequencing technology since sampling is finite in practice. Our conceptualization agrees well with our empirical analysis of two modern day NGS (Next-generation sequencing) datasets: an in-house generated dilution miRNA study of two gastric cancer cell lines (NUGC3 and AGS) and a publicly available spike-in miRNA data; Firstly, the finite-size effects causes the deviations of sequencing count data from Zipf's law and issues of reproducibility in sequencing experiments. Secondly, it manifests as heteroskedasticity among experimental replicates to bring about statistical woes. Surprisingly, a straightforward power-law correction that restores the distribution distortion to a single exponent value can dramatically reduce data heteroskedasticity to invoke an instant increase in

  16. Finite-size effects on the chiral phase diagram of four-fermion models in four dimensions

    International Nuclear Information System (INIS)

    Abreu, L.M.; Malbouisson, A.P.C.; Malbouisson, J.M.C.; Santana, A.E.


    We study the size dependence of the dynamical symmetry breaking in the four-dimensional Nambu-Jona-Lasinio model. We show that the presence of boundaries reduces the chiral breaking region, and this effect is strengthened for a larger number of compactified dimensions. A critical value for the length of the compactified dimensions exists, below which the dynamical symmetry breaking is not possible. Considering finite temperature and chemical potential, the chiral phase structure for the system with compactified dimensions is obtained. A gradual decreasing of the chiral breaking region with increasing of chemical potential is found. Also, at fixed chemical potential, the decreasing of the size of the system changes the order of the chiral phase transition.

  17. Surface and finite size effects impact on the phase diagrams, polar, and dielectric properties of (Sr,Bi)Ta2O9 ferroelectric nanoparticles

    International Nuclear Information System (INIS)

    Eliseev, E. A.; Fomichov, Y. M.; Glinchuk, M. D.; Semchenko, A. V.; Sidsky, V. V.; Kolos, V. V.; Pleskachevsky, Yu. M.; Silibin, M. V.; Morozovsky, N. V.; Morozovska, A. N.


    In the framework of the thermodynamic approach Landau-Ginzburg-Devonshire (LGD) combined with the equations of electrostatics, we investigated the effect of polarization surface screening on finite size effects of the phase diagrams, polar, and dielectric properties of ferroelectric nanoparticles of different shapes. We obtained and analyzed the analytical results for the dependences of the ferroelectric phase transition temperature, critical size, spontaneous polarization, and thermodynamic coercive field on the shape and size of the nanoparticles. The pronounced size effect of these characteristics on the scaling parameter, the ratio of the particle characteristic size to the length of the surface screening, was revealed. Also our modeling predicts a significant impact of the flexo-chemical effect (that is a joint action of flexoelectric effect and chemical pressure) on the temperature of phase transition, polar, and dielectric properties of nanoparticles when their chemical composition deviates from the stoichiometric one. We showed on the example of the stoichiometric nanosized SrBi 2 Ta 2 O 9 particles that except the vicinity of the critical size, where the system splitting into domains has an important role, results of analytical calculation of the spontaneous polarization have a little difference from the numerical ones. We revealed a strong impact of the flexo-chemical effect on the phase transition temperature, polar, and dielectric properties of Sr y Bi 2+x Ta 2 O 9 nanoparticles when the ratio Sr/Bi deviates from the stoichiometric value of 0.5 within the range from 0.35 to 0.65. From the analysis of experimental data, we derived the parameters of the theory, namely, the coefficients of expansion of the LGD functional, the contribution of flexo-chemical effect, and the length of the surface screening.

  18. Optimization of finite-size errors in finite-temperature calculations of unordered phases. (United States)

    Iyer, Deepak; Srednicki, Mark; Rigol, Marcos


    It is common knowledge that the microcanonical, canonical, and grand-canonical ensembles are equivalent in thermodynamically large systems. Here, we study finite-size effects in the latter two ensembles. We show that contrary to naive expectations, finite-size errors are exponentially small in grand canonical ensemble calculations of translationally invariant systems in unordered phases at finite temperature. Open boundary conditions and canonical ensemble calculations suffer from finite-size errors that are only polynomially small in the system size. We further show that finite-size effects are generally smallest in numerical linked cluster expansions. Our conclusions are supported by analytical and numerical analyses of classical and quantum systems.

  19. Finite size scaling and lattice gauge theory

    International Nuclear Information System (INIS)

    Berg, B.A.


    Finite size (Fisher) scaling is investigated for four dimensional SU(2) and SU(3) lattice gauge theories without quarks. It allows to disentangle violations of (asymptotic) scaling and finite volume corrections. Mass spectrum, string tension, deconfinement temperature and lattice β-function are considered. For appropriate volumes, Monte Carlo investigations seem to be able to control the finite volume continuum limit. Contact is made with Luescher's small volume expansion and possibly also with the asymptotic large volume behavior. 41 refs., 19 figs

  20. Finite-size scaling of survival probability in branching processes. (United States)

    Garcia-Millan, Rosalba; Font-Clos, Francesc; Corral, Álvaro


    Branching processes pervade many models in statistical physics. We investigate the survival probability of a Galton-Watson branching process after a finite number of generations. We derive analytically the existence of finite-size scaling for the survival probability as a function of the control parameter and the maximum number of generations, obtaining the critical exponents as well as the exact scaling function, which is G(y)=2ye(y)/(e(y)-1), with y the rescaled distance to the critical point. Our findings are valid for any branching process of the Galton-Watson type, independently of the distribution of the number of offspring, provided its variance is finite. This proves the universal behavior of the finite-size effects in branching processes, including the universality of the metric factors. The direct relation to mean-field percolation is also discussed.

  1. Static phantom wormholes of finite size (United States)

    Cataldo, Mauricio; Orellana, Fabian


    In this paper we derive new static phantom traversable wormholes by assuming a shape function with a quadratic dependence on the radial coordinate r . We mainly focus our study on wormholes sustained by exotic matter with positive energy density (as seen by any static observer) and a variable equation of state pr/ρ wormhole spacetimes extending to infinity, we show that a quadratic shape function allows us to construct static spacetimes of finite size, composed of a phantom wormhole connected to an anisotropic spherically symmetric distribution of dark energy. The wormhole part of the full spacetime does not fulfill the dominant energy condition, while the dark energy part does.

  2. Finite-size scaling in silver nanowire films: design considerations for practical devices. (United States)

    Large, Matthew J; Cann, Maria; Ogilvie, Sean P; King, Alice A K; Jurewicz, Izabela; Dalton, Alan B


    We report the first application of finite-size scaling theory to nanostructured percolating networks, using silver nanowire (AgNW) films as a model system for experiment and simulation. AgNWs have been shown to be a prime candidate for replacing Indium Tin Oxide (ITO) in applications such as capacitive touch sensing. While their performance as large area films is well-studied, the production of working devices involves patterning of the films to produce isolated electrode structures, which exhibit finite-size scaling when these features are sufficiently small. We demonstrate a generalised method for understanding this behaviour in practical rod percolation systems, such as AgNW films, and study the effect of systematic variation of the length distribution of the percolating material. We derive a design rule for the minimum viable feature size in a device pattern, relating it to parameters which can be derived from a transmittance-sheet resistance data series for the material in question. This understanding has direct implications for the industrial adoption of silver nanowire electrodes in applications where small features are required including single-layer capacitive touch sensors, LCD and OLED display panels.

  3. Diffusion of finite-size particles in confined geometries. (United States)

    Bruna, Maria; Chapman, S Jonathan


    The diffusion of finite-size hard-core interacting particles in two- or three-dimensional confined domains is considered in the limit that the confinement dimensions become comparable to the particle's dimensions. The result is a nonlinear diffusion equation for the one-particle probability density function, with an overall collective diffusion that depends on both the excluded-volume and the narrow confinement. By including both these effects, the equation is able to interpolate between severe confinement (for example, single-file diffusion) and unconfined diffusion. Numerical solutions of both the effective nonlinear diffusion equation and the stochastic particle system are presented and compared. As an application, the case of diffusion under a ratchet potential is considered, and the change in transport properties due to excluded-volume and confinement effects is examined.

  4. Diffusion of Finite-Size Particles in Confined Geometries

    KAUST Repository

    Bruna, Maria


    The diffusion of finite-size hard-core interacting particles in two- or three-dimensional confined domains is considered in the limit that the confinement dimensions become comparable to the particle\\'s dimensions. The result is a nonlinear diffusion equation for the one-particle probability density function, with an overall collective diffusion that depends on both the excluded-volume and the narrow confinement. By including both these effects, the equation is able to interpolate between severe confinement (for example, single-file diffusion) and unconfined diffusion. Numerical solutions of both the effective nonlinear diffusion equation and the stochastic particle system are presented and compared. As an application, the case of diffusion under a ratchet potential is considered, and the change in transport properties due to excluded-volume and confinement effects is examined. © 2013 Society for Mathematical Biology.

  5. Finite-size scaling on the Ising coexistence line

    CERN Document Server

    Gupta, Sourendu


    We report tests of finite-size scaling ansatzes in the low temperature phase of the two-dimensional Ising model. For moments of the magnetisation density, we find good agreement with the new ansatz of Borgs and Koteck\\'y, and clear evi consequences of the convexity of the free energy are not adequately treated in either of these approaches.\\lb {\\it Keywords}\\/: Finite-size scaling, 2-d Ising, pure-phase susceptibility.

  6. Kaellen-Sabry energy shift for hydrogen-like atoms with finite size nuclei

    International Nuclear Information System (INIS)

    Schneider, S.M.


    The vacuum polarization potential of order α 2 (Zα) is evaluated numerically for elements with 1 ≤Z≤100. The finite size of nuclei is taken into account. The nuclear charge distribution is described by a homogeneously charged sphere. We compare the resulting energy shift for finite size nuclei with point nucleus values and find a maximum effect of 0.1 eV for K-shell electrons in 100 Fm, which represents a 8% modification. This nuclear size effect might be of relevance for future Lamb-shift measurements. (orig.)

  7. Holographic relaxation of finite size isolated quantum systems

    International Nuclear Information System (INIS)

    Abajo-Arrastia, Javier; Silva, Emilia da; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre


    We study holographically the out of equilibrium dynamics of a finite size closed quantum system in 2+1 dimensions, modelled by the collapse of a shell of a massless scalar field in AdS 4 . In global coordinates there exists a variety of evolutions towards final black hole formation which we relate with different patterns of relaxation in the dual field theory. For large scalar initial data rapid thermalization is achieved as a priori expected. Interesting phenomena appear for small enough amplitudes. Such shells do not generate a black hole by direct collapse, but quite generically, an apparent horizon emerges after enough bounces off the AdS boundary. We relate this bulk evolution with relaxation processes at strong coupling which delay in reaching an ergodic stage. Besides the dynamics of bulk fields, we monitor the entanglement entropy, finding that it oscillates quasi-periodically before final equilibration. The radial position of the travelling shell is brought in correspondence with the evolution of the pattern of entanglement in the dual field theory. We propose, thereafter, that the observed oscillations are the dual counterpart of the quantum revivals studied in the literature. The entanglement entropy is not only able to portrait the streaming of entangled excitations, but it is also a useful probe of interaction effects

  8. The Optimal Inhomogeneity for Superconductivity: Finite Size Studies

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, W-F.


    We report the results of exact diagonalization studies of Hubbard models on a 4 x 4 square lattice with periodic boundary conditions and various degrees and patterns of inhomogeneity, which are represented by inequivalent hopping integrals t and t{prime}. We focus primarily on two patterns, the checkerboard and the striped cases, for a large range of values of the on-site repulsion U and doped hole concentration, x. We present evidence that superconductivity is strongest for U of order the bandwidth, and intermediate inhomogeneity, 0 < t{prime} < t. The maximum value of the 'pair-binding energy' we have found with purely repulsive interactions is {Delta}{sub pb} = 0.32t for the checkerboard Hubbard model with U = 8t and t{prime} = 0.5t. Moreover, for near optimal values, our results are insensitive to changes in boundary conditions, suggesting that the correlation length is sufficiently short that finite size effects are already unimportant.

  9. Finite Size Corrections to the Parisi Overlap Function in the GREM (United States)

    Derrida, Bernard; Mottishaw, Peter


    We investigate the effects of finite size corrections on the overlap probabilities in the Generalized Random Energy Model in two situations where replica symmetry is broken in the thermodynamic limit. Our calculations do not use replicas, but shed some light on what the replica method should give for finite size corrections. In the gradual freezing situation, which is known to exhibit full replica symmetry breaking, we show that the finite size corrections lead to a modification of the simple relations between the sample averages of the overlaps Y_k between k configurations predicted by replica theory. This can be interpreted as fluctuations in the replica block size with a negative variance. The mechanism is similar to the one we found recently in the random energy model in Derrida and Mottishaw (J Stat Mech 2015(1): P01021, 2015). We also consider a simultaneous freezing situation, which is known to exhibit one step replica symmetry breaking. We show that finite size corrections lead to full replica symmetry breaking and give a more complete derivation of the results presented in Derrida and Mottishaw (Europhys Lett 115(4): 40005, 2016) for the directed polymer on a tree.

  10. Length and temperature dependence of the mechanical properties of finite-size carbyne (United States)

    Yang, Xueming; Huang, Yanhui; Cao, Bingyang; To, Albert C.


    Carbyne is an ideal one-dimensional conductor and the thinnest interconnection in an ultimate nano-device and it requires an understanding of the mechanical properties that affect device performance and reliability. Here, we report the mechanical properties of finite-size carbyne, obtained by a molecular dynamics simulation study based on the adaptive intermolecular reactive empirical bond order potential. To avoid confusion in assigning the effective cross-sectional area of carbyne, the value of the effective cross-sectional area of carbyne (4.148 Å2) was deduced via experiment and adopted in our study. Ends-constraints effects on the ultimate stress (maximum force) of the carbyne chains are investigated, revealing that the molecular dynamics simulation results agree very well with the experimental results. The ultimate strength, Young's Modulus and maximum strain of carbyne are rather sensitive to the temperature and all decrease with the temperature. Opposite tendencies of the length dependence of the overall ultimate strength and maximum strain of carbyne at room temperature and very low temperature have been found, and analyses show that this originates in the ends effect of carbyne.

  11. Finite-size scaling of survival probability in branching processes


    Garcia-Millan, Rosalba; Font-Clos, Francesc; Corral, Alvaro


    Branching processes pervade many models in statistical physics. We investigate the survival probability of a Galton-Watson branching process after a finite number of generations. We reveal the finite-size scaling law of the survival probability for a given branching process ruled by a probability distribution of the number of offspring per element whose standard deviation is finite, obtaining the exact scaling function as well as the critical exponents. Our findings prove the universal behavi...

  12. Finite-size analysis of measurement-device-independent quantum cryptography with continuous variables (United States)

    Papanastasiou, Panagiotis; Ottaviani, Carlo; Pirandola, Stefano


    We study the impact of finite-size effects on the key rate of continuous-variable (CV) measurement-device-independent (MDI) quantum key distribution (QKD), considering two-mode Gaussian attacks. Inspired by the parameter estimation technique developed in by Ruppert et al. [Phys. Rev. A 90, 062310 (2014), 10.1103/PhysRevA.90.062310], we adapt it to study CV-MDI-QKD and, assuming realistic experimental conditions, we analyze the impact of finite-size effects on the key rate. We find that the performance of the protocol approaches the ideal one, increasing the block size, and, most importantly, that blocks between 106 and 109 data points may provide key rates ˜10-2 bit/use over metropolitan distances.

  13. Finite-Size Conformational Transitions: A Unifying Concept Underlying Chromosome Dynamics

    International Nuclear Information System (INIS)

    Caré, Bertrand R.; Victor, Jean-Marc; Lesne, Annick; Carrivain, Pascal; Forné, Thierry


    Investigating average thermodynamic quantities is not sufficient to understand conformational transitions of a finite-size polymer. We propose that such transitions are better described in terms of the probability distribution of some finite-size order parameter, and the evolution of this distribution as a control parameter varies. We demonstrate this claim for the coil-globule transition of a linear polymer and its mapping onto a two-state model. In a biological context, polymer models delineate the physical constraints experienced by the genome at different levels of organization, from DNA to chromatin to chromosome. We apply our finite-size approach to the formation of plectonemes in a DNA segment submitted to an applied torque and the ensuing helix-coil transition that can be numerically observed, with a coexistence of the helix and coil states in a range of parameters. Polymer models are also essential to analyze recent in vivo experiments providing the frequency of pairwise contacts between genomic loci. The probability distribution of these contacts yields quantitative information on the conformational fluctuations of chromosome regions. The changes observed in the shape of the distribution when the cell type or the physiological conditions vary may reveal an epigenetic modulation of the conformational constraints experienced by the chromosomes. (condensed matter: structural, mechanical, and thermal properties)

  14. Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size. (United States)

    Schwalger, Tilo; Deger, Moritz; Gerstner, Wulfram


    Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50-2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations.

  15. Do Reichenbachian Common Cause Systems of Arbitrary Finite Size Exist? (United States)

    Mazzola, Claudio; Evans, Peter W.


    The principle of common cause asserts that positive correlations between causally unrelated events ought to be explained through the action of some shared causal factors. Reichenbachian common cause systems are probabilistic structures aimed at accounting for cases where correlations of the aforesaid sort cannot be explained through the action of a single common cause. The existence of Reichenbachian common cause systems of arbitrary finite size for each pair of non-causally correlated events was allegedly demonstrated by Hofer-Szabó and Rédei in 2006. This paper shows that their proof is logically deficient, and we propose an improved proof.

  16. Finite-size scaling in the system of coupled oscillators with heterogeneity in coupling strength. (United States)

    Hong, Hyunsuk


    We consider a mean-field model of coupled phase oscillators with random heterogeneity in the coupling strength. The system that we investigate here is a minimal model that contains randomness in diverse values of the coupling strength, and it is found to return to the original Kuramoto model [Y. Kuramoto, Prog. Theor. Phys. Suppl. 79, 223 (1984)10.1143/PTPS.79.223] when the coupling heterogeneity disappears. According to one recent paper [H. Hong, H. Chaté, L.-H. Tang, and H. Park, Phys. Rev. E 92, 022122 (2015)10.1103/PhysRevE.92.022122], when the natural frequency of the oscillator in the system is "deterministically" chosen, with no randomness in it, the system is found to exhibit the finite-size scaling exponent ν[over ¯]=5/4. Also, the critical exponent for the dynamic fluctuation of the order parameter is found to be given by γ=1/4, which is different from the critical exponents for the Kuramoto model with the natural frequencies randomly chosen. Originally, the unusual finite-size scaling behavior of the Kuramoto model was reported by Hong et al. [H. Hong, H. Chaté, H. Park, and L.-H. Tang, Phys. Rev. Lett. 99, 184101 (2007)10.1103/PhysRevLett.99.184101], where the scaling behavior is found to be characterized by the unusual exponent ν[over ¯]=5/2. On the other hand, if the randomness in the natural frequency is removed, it is found that the finite-size scaling behavior is characterized by a different exponent, ν[over ¯]=5/4 [H. Hong, H. Chaté, L.-H. Tang, and H. Park, Phys. Rev. E 92, 022122 (2015)10.1103/PhysRevE.92.022122]. Those findings brought about our curiosity and led us to explore the effects of the randomness on the finite-size scaling behavior. In this paper, we pay particular attention to investigating the finite-size scaling and dynamic fluctuation when the randomness in the coupling strength is considered.

  17. Lagrangian evolution of deformation of finite-size bubbles in turbulent multiphase flow (United States)

    Masuk, Ashik Ullah Mohammad; Salibindla, Ashwanth; Ni, Rui


    Finite-size bubbles tend to deform in a strong turbulent environment because of the complex interfacial momentum transfer between them. We have utilized the new V-ONSET turbulence multiphase flow facility to track the deformation and the couplings between two phases in a 3D Lagrangian framework. This rich dataset allows us to understand the roles played by the dynamic pressure and viscous stress, as well as different forces that contribute to the interfacial momentum transfer. Financial support for this project was provided by National Science Foundation under Grant Number: 1653389 and 1705246.

  18. Finite size scaling analysis of disordered electron systems

    International Nuclear Information System (INIS)

    Markos, P.


    We demonstrated the application of the finite size scaling method to the analysis of the transition of the disordered system from the metallic to the insulating regime. The method enables us to calculate the critical point and the critical exponent which determines the divergence of the correlation length in the vicinity of the critical point. The universality of the metal-insulator transition was verified by numerical analysis of various physical parameters and the critical exponent was calculated with high accuracy for different disordered models. Numerically obtained value of the critical exponent for the three dimensional disordered model (1) has been recently supported by the semi-analytical work and verified by experimental optical measurements equivalent to the three dimensional disordered model (1). Another unsolved problem of the localization is the disagreement between numerical results and predictions of the analytical theories. At present, no analytical theory confirms numerically obtained values of critical exponents. The reason for this disagreement lies in the statistical character of the process of localization. The theory must consider all possible scattering processes on randomly distributed impurities. All physical variables are statistical quantities with broad probability distributions. It is in general not know how to calculate analytically their mean values. We believe that detailed numerical analysis of various disordered systems bring inspiration for the formulation of analytical theory. (authors)

  19. Finite size specimens with cracks of icosahedral Al—Pd—Mn quasicrystals

    International Nuclear Information System (INIS)

    Yang Lian-Zhi; Gao Yang; Andreas Ricoeur; He Fan-Min


    Icosahedral quasicrystals are the most important and thermodynamically stable in all about 200 kinds of quasicrystals currently observed. Beyond the scope of classical elasticity, apart from a phonon displacement field, there is a phason displacement field in the elasticity of the quasicrystal, which induces an important effect on the mechanical properties of the material and makes an analytical solution difficult to obtain. In this paper, a finite element algorithm for the static elasticity of icosahedral quasicrystals is developed by transforming the elastic boundary value problem of the icosahedral quasicrystals into an equivalent variational problem. Analytical and numerical solutions for an icosahedral Al—Pd—Mn quasicrystal cuboid subjected to a uniaxial tension with different phonon—phason coupling parameters are given to verify the validity of the numerical approach. A comparison between the analytical and numerical solutions of the specimen demonstrates the accuracy and efficiency of the present algorithm. Finally, in order to reveal the fracture behavior of the icosahedral Al—Pd—Mn quasicrystal, a cracked specimen with a finite size of matter is investigated, both with and without phonon—phason coupling. Meanwhile, the geometry factors are calculated, including the stress intensity factor and the crack opening displacement for the finite-size specimen. Computational results reveal the importance of phonon—phason coupling effect on the icosahedral Al—Pd—Mn quasicrystal. Furthermore, the finite element procedure can be used to solve more complicated boundary value problems. (condensed matter: structural, mechanical, and thermal properties)

  20. Deconfinement phase transition and finite-size scaling in SU(2) lattice gauge theory

    International Nuclear Information System (INIS)

    Mogilevskij, O.A.


    Calculation technique for deconfinement phase transition parameters based on application of finite-size scaling theory is suggested. The essence of the technique lies in plotting of universal scaling function on the basis of numerical data obtained at different-size final lattices and discrimination of phase transition parameters for infinite lattice system. Finite-size scaling technique was developed as applied to spin system theory. β critical index for Polyakov loop and SU(2) deconfinement temperature of lattice gauge theory are calculated on the basis of finite-size scaling technique. The obtained value agrees with critical index of magnetization in Ising three-dimensional model

  1. Layout Optimization of Structures with Finite-size Features using Multiresolution Analysis

    DEFF Research Database (Denmark)

    Chellappa, S.; Diaz, A. R.; Bendsøe, Martin P.


    A scheme for layout optimization in structures with multiple finite-sized heterogeneities is presented. Multiresolution analysis is used to compute reduced operators (stiffness matrices) representing the elastic behavior of material distributions with heterogeneities of sizes that are comparable...

  2. Finite-time and finite-size scalings in the evaluation of large-deviation functions: Numerical approach in continuous time (United States)

    Guevara Hidalgo, Esteban; Nemoto, Takahiro; Lecomte, Vivien


    Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provides a numerical tool allowing their study, by means of simulating a large number of copies of the system, which are subjected to selection rules that favor the rare trajectories of interest. Such algorithms are plagued by finite simulation time and finite population size, effects that can render their use delicate. In this paper, we present a numerical approach which uses the finite-time and finite-size scalings of estimators of the large deviation functions associated to the distribution of rare trajectories. The method we propose allows one to extract the infinite-time and infinite-size limit of these estimators, which—as shown on the contact process—provides a significant improvement of the large deviation function estimators compared to the standard one.

  3. Finite-time and finite-size scalings in the evaluation of large-deviation functions: Numerical approach in continuous time. (United States)

    Guevara Hidalgo, Esteban; Nemoto, Takahiro; Lecomte, Vivien


    Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provides a numerical tool allowing their study, by means of simulating a large number of copies of the system, which are subjected to selection rules that favor the rare trajectories of interest. Such algorithms are plagued by finite simulation time and finite population size, effects that can render their use delicate. In this paper, we present a numerical approach which uses the finite-time and finite-size scalings of estimators of the large deviation functions associated to the distribution of rare trajectories. The method we propose allows one to extract the infinite-time and infinite-size limit of these estimators, which-as shown on the contact process-provides a significant improvement of the large deviation function estimators compared to the standard one.

  4. Fast, accurate and stable scattering calculation method with application to finite sized photonic crystal waveguides

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Lodahl, Peter; Mørk, Jesper


    We present a multipole solution to the Lippmann-Schwinger equation for electromagnetic scattering in inhomogeneous geometries. The method is illustrated by calculating the Green’s function for a finite sized two-dimensional photonic crystal waveguide.......We present a multipole solution to the Lippmann-Schwinger equation for electromagnetic scattering in inhomogeneous geometries. The method is illustrated by calculating the Green’s function for a finite sized two-dimensional photonic crystal waveguide....

  5. Finite size and Coulomb corrections: from nuclei to nuclear liquid vapor phase diagram

    International Nuclear Information System (INIS)

    Moretto, L.G.; Elliott, J.B.; Phair, L.


    In this paper we consider the problem of obtaining the infinite symmetric uncharged nuclear matter phase diagram from a thermal nuclear reaction. In the first part we shall consider the Coulomb interaction which, because of its long range makes the definition of phases problematic. This Coulomb effect seems truly devastating since it does not allow one to define nuclear phase transitions much above A ∼ 30. However there may be a solution to this difficulty. If we consider the emission of particles with a sizable charge, we notice that a large Coulomb barrier Bc is present. For T << Bc these channels may be considered effectively closed. Consequently the unbound channels may not play a role on a suitably short time scale. Then a phase transition may still be definable in an approximate way. In the second part of the article we shall deal with the finite size problem by means of a new method, the complement method, which shall permit a straightforward extrapolation to the infinite system. The complement approach consists of evaluating the change in free energy occurring when a particle or cluster is moved from one (finite) phase to another. In the case of a liquid drop in equilibrium with its vapor, this is done by extracting a vapor particle of any given size from the drop and evaluating the energy and entropy changes associated with both the vapor particle and the residual liquid drop (complement)

  6. Charge and finite size corrections for virtual photon spectra in second order Born approximation

    International Nuclear Information System (INIS)

    Durgapal, P.


    The purpose of this work is to investigate the effects of finite nuclear size and charge on the spectrum of virtual photons emitted when a relativistic electron is scattered in the field of an atomic nucleus. The method consisted in expanding the scattering cross section in terms of integrals over the nuclear inelastic form factor with a kernel which was evaluated in second order Born approximation and was derived from the elastic-electron scattering form factor. The kernel could be evaluated analytically provided the elastic form factor contained only poles. For this reason the author used a Yukawa form factor. Before calculating the second order term the author studied the first order term containing finite size effects in the inelastic form factor. The author observed that the virtual photon spectrum is insensitive to the details of the inelastic distribution over a large range of energies and depends only on the transition radius. This gave the author the freedom of choosing an inelastic distribution for which the form factor has only poles and the author chose a modified form of the exponential distribution, which enabled the author to evaluate the matrix element analytically. The remaining integral over the physical momentum transfer was performed numerically. The author evaluated the virtual photon spectra for E1 and M1 transitions for a variety of electron energies using several nuclei and compared the results with the distorted wave calculations. Except for low energy and high Z, the second order results compared well with the distorted wave calculations

  7. Finite-size modifications of the magnetic properties of clusters

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Linderoth, Søren; Lindgård, Per-Anker


    The spin-wave spectrum of Heisenberg spin clusters of various structures (bcc, fcc, and disordered) ranging in size between 9 and 749 spins is calculated by a self-consistent diagonalization of the equation of motion of S+ in real space. The spin-wave spectrum of the clusters is strongly modified...... find the temperature dependence of the cluster magnetization to be well described by an effective power law, M(mean) is-proportional-to 1 - BT(alpha), with a size-dependent, but structure-independent, exponent larger than the bulk value. The critical temperature of the clusters is calculated from...

  8. Spin stiffness of frustrated Heisenberg antiferromagnets: Finite size scaling

    International Nuclear Information System (INIS)

    Feiguin, A.E.; Gazza, C.J.; Trumper, A.E.


    We calculate the spin stiffness of the S = 1/2 frustrated Heisenberg antiferromagnet on finite square lattices by means of the Schwinger - boson approach. COmparison with recent exact numerical results reveals that the observed lack of scaling with lattice size for intermediate to large frustration cannot be taken as an indication of absence of Neel order. This lack of scaling is already apparent for small frustration and is a finite lattice effect. Our results also indicate that the expected behaviour is regained for larger lattices than those considered in numerical studies. (author). 18 refs, 2 figs

  9. Strange scaling and relaxation of finite-size fluctuation in thermal equilibrium. (United States)

    Yamaguchi, Yoshiyuki Y


    We numerically exhibit two strange phenomena of finite-size fluctuation in thermal equilibrium of a paradigmatic long-range interacting system having a second-order phase transition. One is a nonclassical finite-size scaling at the critical point, which differs from the prediction by statistical mechanics. With the aid of this strange scaling, the scaling theory for infinite-range models conjectures the nonclassical values of critical exponents for the correlation length. The other is relaxation of the fluctuation strength from one level to another in spite of being in thermal equilibrium. A scenario is proposed to explain these phenomena from the viewpoint of the Casimir invariants and their nonexactness in finite-size systems, where the Casimir invariants are conserved in the Vlasov dynamics describing the long-range interacting systems in the limit of large population. This scenario suggests appearance of the reported phenomena in a wide class of isolated long-range interacting systems.

  10. Reflection of sound from finite-size plane and curved surfaces

    DEFF Research Database (Denmark)

    Rindel, Jens Holger


    The author’s research on reflectors over nearly 25 years is summarized. The influence of curvature was analyzed by a geometrical model in order to quantify the attenuation by a simple expression. Reflection from a finite size plate was studied using the Kirchhoff-Fresnel approximation and the des......The author’s research on reflectors over nearly 25 years is summarized. The influence of curvature was analyzed by a geometrical model in order to quantify the attenuation by a simple expression. Reflection from a finite size plate was studied using the Kirchhoff-Fresnel approximation...... in the refurbishment of the concert hall of the Danish Radio in Copenhagen 1989, and later in many other halls. In order to describe the scattering due to edge diffraction the directional characteristic of reflections from a finite-size plate has been studied and a simple approximation valid for octave bands has been...

  11. Finite-size Lagrangian coherent particle structures in thermocapillary liquid bridges (United States)

    Romano, Francesco; Kuhlmann, Hendrik


    A surprisingly rapid accumulation of small but finite-size particles taking curious shapes is observed in travelling hydrothermal waves in liquid bridges. The phenomenon has been termed particle accumulation structure (PAS) and belongs to the wider class of Lagrangian coherent structures. In PAS, particles are transferred from chaotic to regular regions of the flow by way of collision with the boundaries. Lubrication forces cause a dissipation of kinetic energy of the particle and give rise to particle motion attractors in the incompressible flow. Since the mechanism relies solely on the particle size, PAS is nothing but a finite-size Lagrangian coherent structure. Different theoretical models are investigated to find a minimum model for the simulation of Lagrangian finite-size coherent structures. Corresponding numerical simulations compare very well with experiments on SL-I and SL-II PAS.

  12. An improved Landauer principle with finite-size corrections

    International Nuclear Information System (INIS)

    Reeb, David; Wolf, Michael M


    Landauer's principle relates entropy decrease and heat dissipation during logically irreversible processes. Most theoretical justifications of Landauer's principle either use thermodynamic reasoning or rely on specific models based on arguable assumptions. Here, we aim at a general and minimal setup to formulate Landauer's principle in precise terms. We provide a simple and rigorous proof of an improved version of the principle, which is formulated in terms of an equality rather than an inequality. The proof is based on quantum statistical mechanics concepts rather than on thermodynamic argumentation. From this equality version, we obtain explicit improvements of Landauer's bound that depend on the effective size of the thermal reservoir and reduce to Landauer's bound only for infinite-sized reservoirs. (paper)

  13. Locating the QCD critical endpoint through finite-size scaling (United States)

    Antoniou, N. G.; Diakonos, F. K.; Maintas, X. N.; Tsagkarakis, C. E.


    Considering the 3D Ising universality class of the QCD critical endpoint, we use a universal effective action for the description of the baryon-number density fluctuations around the critical region. Calculating the baryon-number multiplicity moments and determining their scaling with system's size, we show that the critical region is very narrow in the direction of the baryon chemical potential μ and wider in the temperature (T ) direction. In this context, published experimental results on local proton density-fluctuation measurements, obtained by intermittency analysis in transverse momentum space in NA49 central A +A collisions at √{sN N }=17.2 GeV (A =C ,Si ,Pb ), restrict significantly the location (μc,Tc) of the QCD critical endpoint. The main constraint is provided by the freeze-out chemical potential of the Si +Si system, which shows nonconventional baryon density fluctuations. An indicative solution, ignoring experimental uncertainties, is 119 MeV ≤Tc≤162 MeV , 252 MeV ≤μc≤258 MeV .

  14. Finite-size corrections for logarithmic representations in critical dense polymers

    Energy Technology Data Exchange (ETDEWEB)

    Izmailian, Nickolay Sh., E-mail: [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Yerevan Physics Institute, Alikhanian Br. 2, 375036 Yerevan (Armenia); National Center for Theoretical Sciences, Physics Division, National Taiwan University, Taipei 10617, Taiwan (China); Ruelle, Philippe, E-mail: [Institut de Recherche en Mathematique et Physique, Universite catholique de Louvain, B-1348 Louvain-La-Neuve (Belgium); Hu, Chin-Kun, E-mail: [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China)


    We study (analytic) finite-size corrections in the dense polymer model on the strip by perturbing the critical Hamiltonian with irrelevant operators belonging to the tower of the identity. We generalize the perturbation expansion to include Jordan cells, and examine whether the finite-size corrections are sensitive to the properties of indecomposable representations appearing in the conformal spectrum, in particular their indecomposability parameters. We find, at first order, that the corrections do not depend on these parameters nor even on the presence of Jordan cells. Though the corrections themselves are not universal, the ratios are universal and correctly reproduced by the conformal perturbative approach, to first order.

  15. Three-point correlation functions of giant magnons with finite size

    International Nuclear Information System (INIS)

    Ahn, Changrim; Bozhilov, Plamen


    We compute holographic three-point correlation functions or structure constants of a zero-momentum dilaton operator and two (dyonic) giant magnon string states with a finite-size length in the semiclassical approximation. We show that the semiclassical structure constants match exactly with the three-point functions between two su(2) magnon single trace operators with finite size and the Lagrangian in the large 't Hooft coupling constant limit. A special limit J>>√(λ) of our result is compared with the relevant result based on the Luescher corrections.

  16. Finite size scaling in disordered systems: Mean field analysis and self-averaging

    International Nuclear Information System (INIS)

    Chamati, H.; Korutcheva, E.; Tonchev, N.S.


    The critical behavior of a quenched random hypercubic sample of linear size L is considered, within the 'random-T c ' field theoretical model and the mean-field approximation. A finite-size scaling behavior is established and analyzed and the problem of self-averaging is clarified for different critical regimes. (author)

  17. Finite-size corrections to the free energies of crystalline solids

    NARCIS (Netherlands)

    Polson, J.M.; Trizac, E.; Pronk, S.; Frenkel, D.


    We analyze the finite-size corrections to the free energy of crystals with a fixed center of mass. When we explicitly correct for the leading (ln N/N) corrections, the remaining free energy is found to depend linearly on 1/N. Extrapolating to the thermodynamic limit (N → ∞), we estimate the free

  18. Lower Bounds on Q for Finite Size Antennas of Arbitrary Shape

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.


    The problem of the lower bound on the radiation Q for an arbitrarily shaped finite size antenna of non-zero volume is formulated in terms of equivalent electric and magnetic currents densities distributed on a closed surface coinciding with antenna exterior surface. When these equivalent currents...

  19. Guided wave radiation in a finite-sized metallic or composite plate-like structure for its nondestructive testing

    International Nuclear Information System (INIS)

    Stevenin, Mathilde


    Different models are developed to provide generic tools for simulating nondestructive methods relying on elastic guided waves applied to metallic or composite plates. Various inspection methods of these structures exist or are under study. Most of them make use of ultrasonic sources of finite size; all are sensitive to reflection phenomena resulting from the finite size of the monitored objects. The developed models deal with transducer diffraction effects and edge reflection. As the interpretation of signals measured in guided wave inspection often uses the concept of modes, the models themselves are explicitly modal. The case of isotropic plates (metal) and anisotropic (multilayer composites) are considered; a general approach under the stationary phase approximation allows us to consider all the cases of interest. For the first, the validity of a Fraunhofer-like approximation leads to a very efficient computation of the direct and reflected fields radiated by a source. For the second, special attention is paid to the treatment of caustics. The stationary phase approximation being difficult to generalize, a model (so-called 'pencil model') of more geometrical nature is proposed with a high degree of genericity. It chains terms of isotropic or anisotropic propagation and terms of interaction with a boundary. The equivalence of the stationary phase approximation and the pencil model is demonstrated in the case of the radiation and reflection in an isotropic plate, for which an experimental validation is proceeded. (author) [fr

  20. Overcoming time scale and finite size limitations to compute nucleation rates from small scale well tempered metadynamics simulations (United States)

    Salvalaglio, Matteo; Tiwary, Pratyush; Maggioni, Giovanni Maria; Mazzotti, Marco; Parrinello, Michele


    Condensation of a liquid droplet from a supersaturated vapour phase is initiated by a prototypical nucleation event. As such it is challenging to compute its rate from atomistic molecular dynamics simulations. In fact at realistic supersaturation conditions condensation occurs on time scales that far exceed what can be reached with conventional molecular dynamics methods. Another known problem in this context is the distortion of the free energy profile associated to nucleation due to the small, finite size of typical simulation boxes. In this work the problem of time scale is addressed with a recently developed enhanced sampling method while contextually correcting for finite size effects. We demonstrate our approach by studying the condensation of argon, and showing that characteristic nucleation times of the order of magnitude of hours can be reliably calculated. Nucleation rates spanning a range of 10 orders of magnitude are computed at moderate supersaturation levels, thus bridging the gap between what standard molecular dynamics simulations can do and real physical systems.

  1. Percolation through voids around overlapping spheres: A dynamically based finite-size scaling analysis (United States)

    Priour, D. J.


    The percolation threshold for flow or conduction through voids surrounding randomly placed spheres is calculated. With large-scale Monte Carlo simulations, we give a rigorous continuum treatment to the geometry of the impenetrable spheres and the spaces between them. To properly exploit finite-size scaling, we examine multiple systems of differing sizes, with suitable averaging over disorder, and extrapolate to the thermodynamic limit. An order parameter based on the statistical sampling of stochastically driven dynamical excursions and amenable to finite-size scaling analysis is defined, calculated for various system sizes, and used to determine the critical volume fraction ϕc=0.0317±0.0004 and the correlation length exponent ν =0.92±0.05.

  2. Finite-size scaling of the entanglement entropy of the quantum Ising chain with homogeneous, periodically modulated and random couplings

    International Nuclear Information System (INIS)

    Iglói, Ferenc; Lin, Yu-Cheng


    Using free-fermionic techniques we study the entanglement entropy of a block of contiguous spins in a large finite quantum Ising chain in a transverse field, with couplings of different types: homogeneous, periodically modulated and random. We carry out a systematic study of finite-size effects at the quantum critical point, and evaluate subleading corrections both for open and for periodic boundary conditions. For a block corresponding to a half of a finite chain, the position of the maximum of the entropy as a function of the control parameter (e.g. the transverse field) can define the effective critical point in the finite sample. On the basis of homogeneous chains, we demonstrate that the scaling behavior of the entropy near the quantum phase transition is in agreement with the universality hypothesis, and calculate the shift of the effective critical point, which has different scaling behaviors for open and for periodic boundary conditions

  3. Asymptotic investigation of the nonlinear boundary value dynamic problem for the systems with finite sizes

    International Nuclear Information System (INIS)

    Andrianov, I.V.; Danishevsky, V.V.


    Asymptotic approaches for nonlinear dynamics of continual system are developed well for the infinite in spatial variables. For the systems with finite sizes we have an infinite number of resonance, and Poincare-Lighthill-Go method does riot work. Using of averaging procedure or method of multiple scales leads to the infinite systems of nonlinear algebraic or ordinary differential equations systems and then using truncation method. which does not gives possibility to obtain all important properties of the solutions

  4. On a cluster expansion for lattice spin systems: A finite-size condition for the convergence (United States)

    Olivieri, Enzo


    A study is made of the statistical mechanics of classical lattice spin systems with finite-range interactions in two dimensions. By means of a decimation procedure, a finite-size condition is given for the convergence of a cluster expansion that is believed to be useful for treating the range of temperature between the critical one T c and the estimated threshold T 0 of convergence of the usual high-temperature expansion.

  5. Comparison study of finite element and basis set methods for finite size scaling

    International Nuclear Information System (INIS)

    Antillon, Edwin; Moy, Winton; Wei Qi; Kais, Sabre


    We compare two methods of obtaining critical parameters for a quantum Hamiltonian using a finite size scaling approach. A finite element and basis set method were used in conjunction with the finite size scaling to obtain the critical parameters for the Hulthen potential. The critical parameters obtained analytically were the coupling constant λ c =(1/2), the critical exponents for the energy α=2 and for the 'correlation length 'ν=1. The extrapolated results for finite size scaling with the basis set method are λ c =0.499 99, α=1.9960, and ν=0.999 10. The results for the finite element solutions are λ c =0.501 84, α=1.999 93, and ν=1.000 79 for the linear interpolation and λ c =0.500 00, α=2.000 11, and ν=1.000 32 for the Hermite interpolation. The results for each method compare very well with the analytical results obtained for the Hulthen potential. However, the finite element method is easier to implement and may be combined with ab initio and density functional theory to obtain quantum critical parameters for more complex systems.

  6. Exchange bias in finite sized NiO nanoparticles with Ni clusters

    Energy Technology Data Exchange (ETDEWEB)

    Gandhi, Ashish Chhaganlal; Lin, Jauyn Grace, E-mail:


    Structural and magnetic properties of finite sized NiO nanoparticles are investigated with synchrotron X-ray diffraction (XRD), transmission electron microscopy, magnetometer and ferromagnetic resonance (FMR) spectroscopy. A minor Ni phase is detected with synchrotron XRD, attributed to the oxygen defects in the NiO core. A considerable exchange bias of ~100 Oe is observed at 50 K and it drops abruptly and vanishes above 150 K, in association with the reduction of frozen spins. FMR data indicate a strong interaction between ferromagnetic (FM) and antiferromagnetic (AFM) phases below 150 K, consistent with the picture of isolated FM clusters in AFM matrix. - Highlights: • Structural and magnetic properties of finite sized NiO nanoparticles are systematically investigated with several advanced techniques. • A strong interaction between ferromagnetic and antiferromagnetic phases is found below 150 K. • Exchange bias field in finite sized NiO nanoparticles is due to anisotropy energy of Ni clusters over riding the domain wall energy of NiO.

  7. Exchange bias in finite sized NiO nanoparticles with Ni clusters

    International Nuclear Information System (INIS)

    Gandhi, Ashish Chhaganlal; Lin, Jauyn Grace


    Structural and magnetic properties of finite sized NiO nanoparticles are investigated with synchrotron X-ray diffraction (XRD), transmission electron microscopy, magnetometer and ferromagnetic resonance (FMR) spectroscopy. A minor Ni phase is detected with synchrotron XRD, attributed to the oxygen defects in the NiO core. A considerable exchange bias of ~100 Oe is observed at 50 K and it drops abruptly and vanishes above 150 K, in association with the reduction of frozen spins. FMR data indicate a strong interaction between ferromagnetic (FM) and antiferromagnetic (AFM) phases below 150 K, consistent with the picture of isolated FM clusters in AFM matrix. - Highlights: • Structural and magnetic properties of finite sized NiO nanoparticles are systematically investigated with several advanced techniques. • A strong interaction between ferromagnetic and antiferromagnetic phases is found below 150 K. • Exchange bias field in finite sized NiO nanoparticles is due to anisotropy energy of Ni clusters over riding the domain wall energy of NiO.

  8. Nonvariational calculation of the relativistic, finite-size, and QED corrections for the 2 1S excited state of the helium atom

    International Nuclear Information System (INIS)

    Haftel, M.I.; Mandelzweig, V.B.


    Relativistic and QED corrections are calculated by using a direct solution of the Schroedinger equation for the 2 1 S excited state of the helium atom obtained with the correlation-function hyperspherical-harmonic method. Our extremely accurate nonvariational results for relativistic, QED, and finite-size corrections coincide exactly (up to 0.000 03 cm -1 ) with the values obtained in precision variational calculations of Drake [Nucl. Instrum. Methods Phys. Res. B 5, 2207 (1988)] and Baker, Hill, and Morgan [in Relativistic, Quantum Electrodynamic and Weak Interaction Effects in Atoms, edited by Walter Johnson, Peter Mohr, and Joseph Sucher, AIP Conf. Proc. No. 189 (AIP, New York, 1989), p. 123] for both infinite and finite nuclear masses. This confirms that a discrepancy of 0.0033 cm -1 between theory and experiment is not a result of an inaccuracy of variational wave functions, but is rooted in our inadequate knowledge of the QED operators. A better understanding of the different QED contributions to the operators (such as, for example, a more precise estimate of the Bethe logarithm) is therefore needed to explain the discrepancy

  9. Finite size scaling study of Nf=4 finite density QCD on the lattice (United States)

    Jin, Xiao-Yong; Kuramashi, Yoshinobu; Nakamura, Yoshifumi; Takeda, Shinji; Ukawa, Akira


    We explore the phase space spanned by the temperature and the chemical potential for four-flavor lattice QCD using the Wilson-clover quark action. In order to determine the order of the phase transition, we apply finite-size scaling analyses to gluonic and quark observables, including plaquette, Polyakov loop, and quark number density, and examine their susceptibility, skewness, kurtosis, and Challa-Landau-Binder cumulant. Simulations were carried out on lattices of a temporal size fixed at Nt=4 and spatial sizes chosen from 63 up to 103. Configurations were generated using the phase-reweighting approach, while the value of the phase of the quark determinant was carefully monitored. The μ-parameter reweighting technique is employed to precisely locate the point of the phase transition. Among various approximation schemes for calculating the ratio of quark determinants needed for μ reweighting, we found the Taylor expansion of the logarithm of the quark determinant to be the most reliable. Our finite-size analyses show that the transition is first order at (β,κ,μ/T)=(1.58,0.1385,0.584±0.008), where (mπ/mρ,T/mρ)=(0.822,0.154). It weakens considerably at (β,κ,μ/T)=(1.60,0.1371,0.821±0.008), where (mπ/mρ,T/mρ)=(0.839,0.150), and a crossover rather than a first-order phase transition cannot be ruled out.

  10. Finite size scaling of the Higgs-Yukawa model near the Gaussian fixed point

    Energy Technology Data Exchange (ETDEWEB)

    Chu, David Y.J.; Lin, C.J. David [National Chiao-Tung Univ., Hsinchu, Taiwan (China); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Knippschild, Bastian [HISKP, Bonn (Germany); Nagy, Attila [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Univ. Berlin (Germany)


    We study the scaling properties of Higgs-Yukawa models. Using the technique of Finite-Size Scaling, we are able to derive scaling functions that describe the observables of the model in the vicinity of a Gaussian fixed point. A feasibility study of our strategy is performed for the pure scalar theory in the weak-coupling regime. Choosing the on-shell renormalisation scheme gives us an advantage to fit the scaling functions against lattice data with only a small number of fit parameters. These formulae can be used to determine the universality of the observed phase transitions, and thus play an essential role in future investigations of Higgs-Yukawa models, in particular in the strong Yukawa coupling region.

  11. Dependence of exponents on text length versus finite-size scaling for word-frequency distributions (United States)

    Corral, Álvaro; Font-Clos, Francesc


    Some authors have recently argued that a finite-size scaling law for the text-length dependence of word-frequency distributions cannot be conceptually valid. Here we give solid quantitative evidence for the validity of this scaling law, using both careful statistical tests and analytical arguments based on the generalized central-limit theorem applied to the moments of the distribution (and obtaining a novel derivation of Heaps' law as a by-product). We also find that the picture of word-frequency distributions with power-law exponents that decrease with text length [X. Yan and P. Minnhagen, Physica A 444, 828 (2016), 10.1016/j.physa.2015.10.082] does not stand with rigorous statistical analysis. Instead, we show that the distributions are perfectly described by power-law tails with stable exponents, whose values are close to 2, in agreement with the classical Zipf's law. Some misconceptions about scaling are also clarified.

  12. A Markov model for the temporal dynamics of balanced random networks of finite size (United States)

    Lagzi, Fereshteh; Rotter, Stefan


    The balanced state of recurrent networks of excitatory and inhibitory spiking neurons is characterized by fluctuations of population activity about an attractive fixed point. Numerical simulations show that these dynamics are essentially nonlinear, and the intrinsic noise (self-generated fluctuations) in networks of finite size is state-dependent. Therefore, stochastic differential equations with additive noise of fixed amplitude cannot provide an adequate description of the stochastic dynamics. The noise model should, rather, result from a self-consistent description of the network dynamics. Here, we consider a two-state Markovian neuron model, where spikes correspond to transitions from the active state to the refractory state. Excitatory and inhibitory input to this neuron affects the transition rates between the two states. The corresponding nonlinear dependencies can be identified directly from numerical simulations of networks of leaky integrate-and-fire neurons, discretized at a time resolution in the sub-millisecond range. Deterministic mean-field equations, and a noise component that depends on the dynamic state of the network, are obtained from this model. The resulting stochastic model reflects the behavior observed in numerical simulations quite well, irrespective of the size of the network. In particular, a strong temporal correlation between the two populations, a hallmark of the balanced state in random recurrent networks, are well represented by our model. Numerical simulations of such networks show that a log-normal distribution of short-term spike counts is a property of balanced random networks with fixed in-degree that has not been considered before, and our model shares this statistical property. Furthermore, the reconstruction of the flow from simulated time series suggests that the mean-field dynamics of finite-size networks are essentially of Wilson-Cowan type. We expect that this novel nonlinear stochastic model of the interaction between

  13. Terahertz transmission enhancement in finite-size arrays of subwavelength holes modified with dielectric peg layer (United States)

    Whisenhunt, Brady Andrew

    Scope and Method of Study: This thesis investigates terahertz transmission through finite-size arrays of subwavelength holes perforated in a thin aluminum film modified with a periodic layer of dielectric pegs resting on the hole openings. Samples of differing patterns and numbers of holes were fabricated in a 350 nm thick layer of aluminum on top of a 640 µm thick silicon substrate layer. The dielectric peg layer (DPL) consisted of periodically-spaced pegs made out of negative photoresist material. Terahertz time-domain spectroscopy measurements of the transmission was taken both before and after fabrication of the DPL on top of the hole array samples. The results were analyzed and compared to simulation of an infinitely periodic hole array modified with a DPL. Findings and Conclusions: A peak in the transmission spectrum was observed at the predicted surface plasmon resonance frequency for the array. The transmission peak was enhanced 5%-20% with addition of the DPL, depending on the arrangement and number of holes in the sample. A weaker peak was observed in some samples at higher frequencies with addition of the DPL, which is attributed to a resonance of the DPL layer itself. Both resonant and nonresonant transmission was enhanced with addition of the DPL. Simulation showed a similar enhancement of the resonant and nonresonant transmission due to DPL. Varying the value of the dielectric constant of the simulated pegs changed the strength of the fundamental surface plasmon resonance as well as the location of the higher frequency peaks. A distinct Fano-like asymmetry was observed in the experimentally measured transmission spectra but not observed in simulation. The results suggest that a heterostructure consisting of a finite-size array of subwavelength holes combined with a DPL can be used to enhance the transmission of light through the holes as well as tune the asymmetry of the main surface plasmon resonance peak.

  14. Exact Derivation of a Finite-Size Scaling Law and Corrections to Scaling in the Geometric Galton-Watson Process (United States)

    Corral, Álvaro; Garcia-Millan, Rosalba; Font-Clos, Francesc


    The theory of finite-size scaling explains how the singular behavior of thermodynamic quantities in the critical point of a phase transition emerges when the size of the system becomes infinite. Usually, this theory is presented in a phenomenological way. Here, we exactly demonstrate the existence of a finite-size scaling law for the Galton-Watson branching processes when the number of offsprings of each individual follows either a geometric distribution or a generalized geometric distribution. We also derive the corrections to scaling and the limits of validity of the finite-size scaling law away the critical point. A mapping between branching processes and random walks allows us to establish that these results also hold for the latter case, for which the order parameter turns out to be the probability of hitting a distant boundary. PMID:27584596

  15. Excitation energy spectra of the Λc and Λb baryons in a finite-size diquark model (United States)

    Kumakawa, Kento; Jido, Daisuke


    The excitation energies of the Λc and Λb baryons are investigated in a finite-size diquark potential model, in which the heavy baryons are treated as bound states of a charm quark and a scalar-isoscalar diquark. The diquark is considered as a sizable object. The quark-diquark interaction is calculated as a sum of the quark-quark interaction that is assumed to be half of the quark-antiquark interaction for the color singlet. The potential parameters in the quark-antiquark interaction are fixed so as to reproduce the charmonium spectrum. We find the diquark size to be 1.1 fm for the diquark mass 0.5 GeV/c2 to reproduce the 1p excitation energy of Λc. In this model, the Λc and Λb excitation spectra are reproduced well, while this model does not explain Λc(2765), whose isospin and spin-parity are still unknown. Thus, the detailed properties of Λc(2765) are very important to the presence of the diquark in heavy baryons as an effective constituent. We also discuss the Ξc spectrum with the scalar strange diquark.

  16. Finite-size giant magnons on η-deformed AdS5×S5

    Directory of Open Access Journals (Sweden)

    Changrim Ahn


    Full Text Available We consider strings moving in the Rt×Sη3 subspace of the η-deformed AdS5×S5 and obtain a class of solutions depending on several parameters. They are characterized by the string energy and two angular momenta. Finite-size dyonic giant magnon belongs to this class of solutions. Further on, we restrict ourselves to the case of giant magnon with one nonzero angular momentum, and obtain the leading finite-size correction to the dispersion relation.

  17. Avalanching Systems with Longer Range Connectivity: Occurrence of a Crossover Phenomenon and Multifractal Finite Size Scaling

    Directory of Open Access Journals (Sweden)

    Simone Benella


    Full Text Available Many out-of-equilibrium systems respond to external driving with nonlinear and self-similar dynamics. This near scale-invariant behavior of relaxation events has been modeled through sand pile cellular automata. However, a common feature of these models is the assumption of a local connectivity, while in many real systems, we have evidence for longer range connectivity and a complex topology of the interacting structures. Here, we investigate the role that longer range connectivity might play in near scale-invariant systems, by analyzing the results of a sand pile cellular automaton model on a Newman–Watts network. The analysis clearly indicates the occurrence of a crossover phenomenon in the statistics of the relaxation events as a function of the percentage of longer range links and the breaking of the simple Finite Size Scaling (FSS. The more complex nature of the dynamics in the presence of long-range connectivity is investigated in terms of multi-scaling features and analyzed by the Rank-Ordered Multifractal Analysis (ROMA.

  18. GPU-based ultra-fast dose calculation using a finite size pencil beam model (United States)

    Gu, Xuejun; Choi, Dongju; Men, Chunhua; Pan, Hubert; Majumdar, Amitava; Jiang, Steve B.


    Online adaptive radiation therapy (ART) is an attractive concept that promises the ability to deliver an optimal treatment in response to the inter-fraction variability in patient anatomy. However, it has yet to be realized due to technical limitations. Fast dose deposit coefficient calculation is a critical component of the online planning process that is required for plan optimization of intensity-modulated radiation therapy (IMRT). Computer graphics processing units (GPUs) are well suited to provide the requisite fast performance for the data-parallel nature of dose calculation. In this work, we develop a dose calculation engine based on a finite-size pencil beam (FSPB) algorithm and a GPU parallel computing framework. The developed framework can accommodate any FSPB model. We test our implementation in the case of a water phantom and the case of a prostate cancer patient with varying beamlet and voxel sizes. All testing scenarios achieved speedup ranging from 200 to 400 times when using a NVIDIA Tesla C1060 card in comparison with a 2.27 GHz Intel Xeon CPU. The computational time for calculating dose deposition coefficients for a nine-field prostate IMRT plan with this new framework is less than 1 s. This indicates that the GPU-based FSPB algorithm is well suited for online re-planning for adaptive radiotherapy.

  19. Finite-size behaviour of generalized susceptibilities in the whole phase plane of the Potts model (United States)

    Pan, Xue; Zhang, Yanhua; Chen, Lizhu; Xu, Mingmei; Wu, Yuanfang


    We study the sign distribution of generalized magnetic susceptibilities in the temperature-external magnetic field plane using the three-dimensional three-state Potts model. We find that the sign of odd-order susceptibility is opposite in the symmetric (disorder) and broken (order) phases, but that of the even-order one remains positive when it is far away from the phase boundary. When the critical point is approached from the crossover side, negative fourth-order magnetic susceptibility is observable. It is also demonstrated that non-monotonic behavior occurs in the temperature dependence of the generalized susceptibilities of the energy. The finite-size scaling behavior of the specific heat in this model is mainly controlled by the critical exponent of the magnetic susceptibility in the three-dimensional Ising universality class. Supported by Fund Project of National Natural Science Foundation of China (11647093, 11405088, 11521064), Fund Project of Sichuan Provincial Department of Education (16ZB0339), Fund Project of Chengdu Technological University (2016RC004) and the Major State Basic Research Development Program of China (2014CB845402)

  20. Finite size scaling study of a two parameter percolation model: Constant and correlated growth (United States)

    Roy, Bappaditya; Santra, S. B.


    A new percolation model of enhanced parameter space with nucleation and growth is developed taking the initial seed concentration ρ and a growth parameter g as two tunable parameters. Percolation transition is determined by the final static configurations of spanning clusters once taking uniform growth probability for all the clusters and then taking a cluster size dependent dynamic growth probability. The uniform growth probability remains constant over time and leads to a constant growth model whereas the dynamically varying growth probability leads to a correlated growth model. In the first case, the growth of a cluster will encounter partial hindrance due to the presence of other clusters whereas in the second case the growth of a larger cluster will be further suppressed in comparison to the growth of smaller clusters. A finite size scaling theory for percolation transition is developed and numerically verified for both the models. The scaling functions are found to depend on both g and ρ. At the critical growth parameter gc, the values of the critical exponents are found to be same as that of the original percolation at all values of ρ for the constant growth model whereas in the case of correlated growth model the scaling behavior deviates from ordinary percolation in the dilute limit of ρ. The constant growth model then belongs to the same universality class of percolation for a wide range of ρ whereas the correlated growth model displays a continuously varying universality class as ρ decreases towards zero.

  1. Characterization of coherent structures in three-dimensional turbulent flows using the finite-size Lyapunov exponent

    International Nuclear Information System (INIS)

    Bettencourt, João H; López, Cristóbal; Hernández-García, Emilio


    In this paper, we use the finite-size Lyapunov exponent (FSLE) to characterize Lagrangian coherent structures in three-dimensional (3D) turbulent flows. Lagrangian coherent structures act as the organizers of transport in fluid flows and are crucial to understand their stirring and mixing properties. Generalized maxima (ridges) of the FSLE fields are used to locate these coherent structures. 3D FSLE fields are calculated in two phenomenologically distinct turbulent flows: a wall-bounded flow (channel flow) and a regional oceanic flow obtained by the numerical solution of the primitive equations where two-dimensional (2D) turbulence dominates. In the channel flow, autocorrelations of the FSLE field show that the structure is substantially different from the near wall to the mid-channel region and relates well to the more widely studied Eulerian coherent structure of the turbulent channel flow. The ridges of the FSLE field have complex shapes due to the 3D character of the turbulent fluctuations. In the oceanic flow, strong horizontal stirring is present and the flow regime is similar to that of 2D turbulence where the domain is populated by coherent eddies that interact strongly. This in turn results in the presence of high FSLE lines throughout the domain leading to strong non-local mixing. The ridges of the FSLE field are quasi-vertical surfaces, indicating that the horizontal dynamics dominates the flow. Indeed, due to rotation and stratification, vertical motions in the ocean are much less intense than horizontal ones. This suppression is absent in the channel flow, as the 3D character of the FSLE ridges shows. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’. (paper)

  2. Optimal performance of generalized heat engines with finite-size baths of arbitrary multiple conserved quantities beyond independent-and-identical-distribution scaling (United States)

    Ito, Kosuke; Hayashi, Masahito


    In quantum thermodynamics, effects of finiteness of the baths have been less considered. In particular, there is no general theory which focuses on finiteness of the baths of multiple conserved quantities. Then, we investigate how the optimal performance of generalized heat engines with multiple conserved quantities alters in response to the size of the baths. In the context of general theories of quantum thermodynamics, the size of the baths has been given in terms of the number of identical copies of a system, which does not cover even such a natural scaling as the volume. In consideration of the asymptotic extensivity, we deal with a generic scaling of the baths to naturally include the volume scaling. Based on it, we derive a bound for the performance of generalized heat engines reflecting finite-size effects of the baths, which we call fine-grained generalized Carnot bound. We also construct a protocol to achieve the optimal performance of the engine given by this bound. Finally, applying the obtained general theory, we deal with simple examples of generalized heat engines. As for an example of non-independent-and-identical-distribution scaling and multiple conserved quantities, we investigate a heat engine with two baths composed of an ideal gas exchanging particles, where the volume scaling is applied. The result implies that the mass of the particle explicitly affects the performance of this engine with finite-size baths.

  3. Phase transition in the rich-get-richer mechanism due to finite-size effects

    International Nuclear Information System (INIS)

    Bagrow, James P; Ben-Avraham, Daniel; Sun Jie


    The rich-get-richer mechanism (agents increase their 'wealth' randomly at a rate proportional to their holdings) is often invoked to explain the Pareto power-law distribution observed in many physical situations, such as the degree distribution of growing scale-free nets. We use two different analytical approaches, as well as numerical simulations, to study the case where the number of agents is fixed and finite (but large), and the rich-get-richer mechanism is invoked a fraction r of the time (the remainder of the time wealth is disbursed by a homogeneous process). At short times, we recover the Pareto law observed for an unbounded number of agents. In later times, the (moving) distribution can be scaled to reveal a phase transition with a Gaussian asymptotic form for r<1/2, and a Pareto-like tail (on the positive side) and a novel stretched exponential decay (on the negative side) for r<1/2

  4. Synchronization of oscillators with long range interaction: Phase transition and anomalous finite size effects

    DEFF Research Database (Denmark)

    Marodi, M.; D'ovidio, Francesco; Vicsek, T.


    of elements. For large number of oscillators and small coupling constant, numerical simulations and analytical arguments indicate that a phase transition separating synchronization from incoherence appears at a decay exponent value equal to the number of dimensions of the lattice. In contrast with earlier...

  5. Finite Size Effects in Chemical Bonding: From Small Clusters to Solids

    DEFF Research Database (Denmark)

    Kleis, Jesper; Greeley, Jeffrey Philip; Romero, N. A.


    We address the fundamental question of which size a metallic nano-particle needs to have before its surface chemical properties can be considered to be those of a solid, rather than those of a large molecule. Calculations of adsorption energies for carbon monoxide and oxygen on a series of gold...

  6. Investigation of Catalytic Finite-Size-Effects of Platinum Metal Clusters

    DEFF Research Database (Denmark)

    Li, Lin; Larsen, Ask Hjorth; Romero, Nichols A.


    In this paper, we use density functional theory (DFT) calculations on highly parallel computing resources to study size-dependent changes in the chemical and electronic properties of platinum (Pt) for a number of fixed freestanding clusters ranging from 13 to 1415 atoms, or 0.7–3.5 nm in diameter...

  7. Finite size effect on spread of resonance frequencies in arrays of coupled vortices

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Andreas; Drews, André; Im, Mi-Young; Fischer, Peter; Meier, Guido


    Dynamical properties of magnetic vortices in arrays of magnetostatically coupled ferromagnetic disks are studied by means of a broadband ferromagnetic-resonance (FMR) setup. Magnetic force microscopy and magnetic transmission soft X-ray microscopy are used to image the core polarizations and the chiralities which are both found to be randomly distributed. The resonance frequency of vortex-core motion strongly depends on the magnetostatic coupling between the disks. The parameter describing the relative broadening of the absorption peak observed in the FMR transmission spectra for a given normalized center-to-center distance between the elements is shown to depend on the size of the array.

  8. Finite-size effect on the Raman-active modes of double-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Sbai, K [Equipe de Physique Informatique et Modelisation des Systemes, Universite MY Ismail, Faculte des Sciences, BP 11201, Zitoune, 50000 Meknes (Morocco); Rahmani, A [Equipe de Physique Informatique et Modelisation des Systemes, Universite MY Ismail, Faculte des Sciences, BP 11201, Zitoune, 50000 Meknes (Morocco); Chadli, H [Equipe de Physique Informatique et Modelisation des Systemes, Universite MY Ismail, Faculte des Sciences, BP 11201, Zitoune, 50000 Meknes (Morocco); Sauvajol, J-L [Laboratoire des Colloides, Verres et Nanomateriaux (UMR CNRS 5587), Universite Montpellier II, 34095 Montpellier Cedex 5 (France)


    The dependence of the breathing-like phonon modes (BLM) and tangential-like phonon modes (TLM) of individual, finite and infinite bundles of double-walled carbon nanotubes (DWCNTs) as a function of the relative lengths of the inner (L{sub i}) and outer (L{sub o}) tubes is calculated by using the spectral moments method in the framework of the bond-polarization theory. Depending on the relative lengths of the inner (L{sub i}) and outer (L{sub o}) tubes, additional modes are evidenced in the BLM region. These modes must be considered in the analysis of the experimental data.

  9. Finite-size effects and analytical modeling of electrostatic force microscopy applied to dielectric films. (United States)

    Gomila, G; Gramse, G; Fumagalli, L


    A numerical analysis of the polarization force between a sharp conducting probe and a dielectric film of finite lateral dimensions on a metallic substrate is presented with the double objective of (i) determining the conditions under which the film can be approximated by a laterally infinite film and (ii) proposing an analytical model valid in this limit. We show that, for a given dielectric film, the critical diameter above which the film can be modeled as laterally infinite depends not only on the probe geometry, as expected, but mainly on the film thickness. In particular, for films with intermediate to large thicknesses (>100 nm), the critical diameter is nearly independent from the probe geometry and essentially depends on the film thickness and dielectric constant following a relatively simple phenomenological expression. For films that can be considered as laterally infinite, we propose a generalized analytical model valid in the thin-ultrathin limit (<20-50 nm) that reproduces the numerical calculations and the experimental data. Present results provide a general framework under which accurate quantification of electrostatic force microscopy measurements on dielectric films on metallic substrates can be achieved.

  10. Finite-size effects in the dynamics of few bosons in a ring potential (United States)

    Eriksson, G.; Bengtsson, J.; Karabulut, E. Ö.; Kavoulakis, G. M.; Reimann, S. M.


    We study the temporal evolution of a small number N of ultra-cold bosonic atoms confined in a ring potential. Assuming that initially the system is in a solitary-wave solution of the corresponding mean-field problem, we identify significant differences in the time evolution of the density distribution of the atoms when it instead is evaluated with the many-body Schrödinger equation. Three characteristic timescales are derived: the first is the period of rotation of the wave around the ring, the second is associated with a ‘decay’ of the density variation, and the third is associated with periodic ‘collapses’ and ‘revivals’ of the density variations, with a factor of \\sqrt{N} separating each of them. The last two timescales tend to infinity in the appropriate limit of large N, in agreement with the mean-field approximation. These findings are based on the assumption of the initial state being a mean-field state. We confirm this behavior by comparison to the exact solutions for a few-body system stirred by an external potential. We find that the exact solutions of the driven system exhibit similar dynamical features.

  11. Anomalous hydrodynamical dispersion and the Coats-Smith equation: the finite size effects

    International Nuclear Information System (INIS)

    Caceres, Manuel O.


    We investigate a family of probability distributions that shows anomalous hydrodynamics dispersion, by solving a particular class of coupled generalized master equations. The Fourier-Laplace solution is obtained analytically in terms of the matrix Green function method; then the Coats-Smith concentration profile is revisited in a particular case. Two models of disorder are worked out explicitly, and the mean current is asymptotically calculated. We present an approximation method to calculate the first passage time distribution for this stochastic transport process, and as an example an exact Markovian result is worked out; scaling results are also shown. We discuss the comparison with other different methods to work out complex diffusion phenomena in the presence of disordered multiple transport paths. Extensions when the models are non diffusive can also be solved in the Fourier-Laplace representation. (author)

  12. Finite size effects in the thermodynamics of a free neutral scalar field (United States)

    Parvan, A. S.


    The exact analytical lattice results for the partition function of the free neutral scalar field in one spatial dimension in both the configuration and the momentum space were obtained in the framework of the path integral method. The symmetric square matrices of the bilinear forms on the vector space of fields in both configuration space and momentum space were found explicitly. The exact lattice results for the partition function were generalized to the three-dimensional spatial momentum space and the main thermodynamic quantities were derived both on the lattice and in the continuum limit. The thermodynamic properties and the finite volume corrections to the thermodynamic quantities of the free real scalar field were studied. We found that on the finite lattice the exact lattice results for the free massive neutral scalar field agree with the continuum limit only in the region of small values of temperature and volume. However, at these temperatures and volumes the continuum physical quantities for both massive and massless scalar field deviate essentially from their thermodynamic limit values and recover them only at high temperatures or/and large volumes in the thermodynamic limit.

  13. Finite-size effects in thermodynamics: Negative compressibility and global instability in two-phase systems (United States)

    Todoshchenko, I.


    We have measured the equilibrium melting pressure of helium-4 as a function of the crystal size. Negative compressibility of a liquid with an inclusion of solid seed is predicted theoretically and verified experimentally with helium-4 crystal-superfluid system at 0.15 K. This two-phase system is shown to be stable if the crystal size is large enough, which is proven by the experiment. Crystal seeds that are too small spontaneously either melt completely or grow to a large enough size.

  14. Electronic states in crystals of finite size quantum confinement of bloch waves

    CERN Document Server

    Ren, Shang Yuan


    This book presents an analytical theory of the electronic states in ideal low dimensional systems and finite crystals based on a differential equation theory approach. It provides precise and fundamental understandings on the electronic states in ideal low-dimensional systems and finite crystals, and offers new insights into some of the basic problems in low-dimensional systems, such as the surface states and quantum confinement effects, etc., some of which are quite different from what is traditionally believed in the solid state physics community. Many previous predictions have been confirmed in subsequent investigations by other authors on various relevant problems. In this new edition, the theory is further extended to one-dimensional photonic crystals and phononic crystals, and a general theoretical formalism for investigating the existence and properties of surface states/modes in semi-infinite one-dimensional crystals is developed. In addition, there are various revisions and improvements, including us...

  15. Lippmann-Schwinger integral equation approach to the emission of radiation by sources located inside finite-sized dielectric structures

    DEFF Research Database (Denmark)

    Søndergaard, T.; Tromborg, Bjarne


    A full-vectorial integral equation method is presented for calculating near fields and far fields generated by a given distribution of sources located inside finite-sized dielectric structures. Special attention is given to the treatment of the singularity of the dipole source field. A method...... uses for analyzing the emission of light by sources in some antennas and optical components such as vertical cavity surface emitting lasers, microdisk lasers, and light emitting diodes. The methods also have prospective uses in quantum electrodynamics for studies of spontaneous emission from, e...

  16. Radiative nonrecoil nuclear finite size corrections of order α(Zα)5 to the Lamb shift in light muonic atoms (United States)

    Faustov, R. N.; Martynenko, A. P.; Martynenko, F. A.; Sorokin, V. V.


    On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα) 5 to the Lamb shift in muonic hydrogen and helium. To construct the interaction potential of particles, which gives the necessary contributions to the energy spectrum, we use the method of projection operators to states with a definite spin. Separate analytic expressions for the contributions of the muon self-energy, the muon vertex operator and the amplitude with spanning photon are obtained. We present also numerical results for these contributions using modern experimental data on the electromagnetic form factors of light nuclei.

  17. The exact solution and the finite-size behaviour of the Osp(1vertical stroke 2)-invariant spin chain

    International Nuclear Information System (INIS)

    Martins, M.J.


    We have solved exactly the Osp(1vertical stroke 2) spin chain by the Bethe ansatz approach. Our solution is based on an equivalence between the Osp(1vertical stroke 2) chain and a certain special limit of the Izergin-Korepin vertex model. The completeness of the Bethe ansatz equations is discussed for a system with four sites and the appearance of special string structures is noted. The Bethe ansatz presents an important phase factor which distinguishes the even and odd sectors of the theory. The finite-size properties are governed by a conformal field theory with central charge c=1. (orig.)

  18. The critical behaviour of self-dual Z(N) spin systems - Finite size scaling and conformal invariance

    International Nuclear Information System (INIS)

    Alcaraz, F.C.


    Critical properties of a family of self-dual two dimensional Z(N) models whose bulk free energy is exacly known at the self-dual point are studied. The analysis is performed by studing the finite size behaviour of the corresponding one dimensional quantum Hamiltonians which also possess an exact solution at their self-dual point. By exploring finite size scaling ideas and the conformal invariance of the critical infinite system the critical temperature and critical exponents as well as the central charge associated with the underlying conformal algebra are calculated for N up to 8. The results strongly suggest that the recently constructed Z(N) quantum field theory of Zamolodchikov and Fateev (1985) is the underlying field theory associated with these statistical mechanical systems. It is also tested, for the Z(5) case, the conjecture that these models correspond to the bifurcation points, in the phase diagram of the general Z(N) spin model, where a massless phase originates. (Author) [pt

  19. Main transition in the Pink membrane model: finite-size scaling and the influence of surface roughness. (United States)

    Sadeghi, Sina; Vink, R L C


    We consider the main transition in single-component membranes using computer simulations of the Pink model [D. A. Pink et al., Biochemistry 19, 349 (1980)]. We first show that the accepted parameters of the Pink model yield a main transition temperature that is systematically below experimental values. This resolves an issue that was first pointed out by Corvera and co-workers [Phys. Rev. E 47, 696 (1993)]. In order to yield the correct transition temperature, the strength of the van der Waals coupling in the Pink model must be increased; by using finite-size scaling, a set of optimal values is proposed. We also provide finite-size scaling evidence that the Pink model belongs to the universality class of the two-dimensional Ising model. This finding holds irrespective of the number of conformational states. Finally, we address the main transition in the presence of quenched disorder, which may arise in situations where the membrane is deposited on a rough support. In this case, we observe a stable multidomain structure of gel and fluid domains, and the absence of a sharp transition in the thermodynamic limit.

  20. Cardiovascular effects of microgravity: evolution of understanding (United States)

    Short, H. D.


    The understanding of cardiovascular effects of spaceflight has evolved throughout the course of the American manned spaceflight program. Originally descriptive in nature, the present understanding is based on empiric measurements of vascular volume, cardiac output, vascular reflexes, and peripheral and central autonomic control. More detailed understanding of cardiovascular effects has allowed us to separate those symptoms from symptoms caused by musculoskeletal or neurovestibular abnormalities.

  1. Metastable configurations of a finite-size chain of classical spins within the one-dimensional chiral XY-model

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Alexander P., E-mail: [Department of Molecular Physics, National Research Nuclear University MEPhI, Kashirskoe shosse 31, 115409 Moscow (Russian Federation); Gloria Pini, Maria, E-mail: [Istituto dei Sistemi Complessi del CNR (CNR-ISC), Unità di Firenze, Via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); Rettori, Angelo [Dipartimento di Fisica ed Astronomia, Università di Firenze, Via G. Sansone 1, I-50019 Sesto Fiorentino (Italy)


    The metastable states of a finite-size chain of N classical spins described by the chiral XY-model on a discrete one-dimensional lattice are calculated by means of a general theoretical method recently developed by one of us. This method allows one to determine all the possible equilibrium magnetic states in an accurate and systematic way. The ground state of a chain consisting of N classical XY spins is calculated in the presence of (i) a symmetric ferromagnetic exchange interaction, favoring parallel alignment of nearest neighbor spins, (ii) a uniaxial anisotropy, favoring a given direction in the film plane, and (iii) an antisymmetric Dzyaloshinskii–Moriya interaction (DMI), favoring perpendicular alignment of nearest neighbor spins. In addition to the ground state with a non-uniform helical spin arrangement, which originates from the energy competition in the finite-size chain with open boundary conditions, we have found a considerable number of higher-energy equilibrium states. In the investigated case of a chain with N=10 spins and a DMI much smaller than the in-plane uniaxial anisotropy, it turns out that a metastable (unstable) state of the finite chain is characterized by a configuration where none (at least one) of the inner spins is nearly parallel to the hard axis. The role of the DMI is to establish a unique rotational sense for the helical ground state. Moreover, the number of both metastable and unstable equilibrium states is doubled with respect to the case of zero DMI. This produces modifications in the Peierls–Nabarro potential encountered by a domain wall during its displacement along the discrete spin chain. - Highlights: • A finite-size chain of N classical spins within the XY-chiral model is investigated. • Using a systematic theoretical method, all equilibrium states are calculated for N=10. • The ground state has a non-uniform helical order with unique rotational sense. • Metastable states contain a domain wall whose energy

  2. Exact finite-size corrections and corner free energies for the c=−2 universality class

    International Nuclear Information System (INIS)

    Izmailian, Nickolay; Kenna, Ralph; Guo, Wenan; Wu, Xintian


    We consider the partition functions of the anisotropic dimer model on the rectangular (2M−1)×(2N−1) lattice with (a) free and (b) cylindrical boundary conditions with a single monomer residing on the boundary. We express (a) and (b) in terms of a principal partition function with twisted boundary conditions. Based on these expressions, we derive the exact asymptotic expansions of the free energy for both cases (a) and (b). We confirm the conformal field theory prediction for the corner free energy of these models, and find the central charge is c=−2. We also show that the dimer model on the cylinder with an odd number of sites on the perimeter exhibits the same finite-size corrections as on the plane

  3. Energy landscape of the finite-size mean-field 2-spin spherical model and topology trivialization. (United States)

    Mehta, Dhagash; Hauenstein, Jonathan D; Niemerg, Matthew; Simm, Nicholas J; Stariolo, Daniel A


    Motivated by the recently observed phenomenon of topology trivialization of potential energy landscapes (PELs) for several statistical mechanics models, we perform a numerical study of the finite-size 2-spin spherical model using both numerical polynomial homotopy continuation and a reformulation via non-Hermitian matrices. The continuation approach computes all of the complex stationary points of this model while the matrix approach computes the real stationary points. Using these methods, we compute the average number of stationary points while changing the topology of the PEL as well as the variance. Histograms of these stationary points are presented along with an analysis regarding the complex stationary points. This work connects topology trivialization to two different branches of mathematics: algebraic geometry and catastrophe theory, which is fertile ground for further interdisciplinary research.

  4. Understanding the Effectiveness of Performance Management Practices (United States)


    Stragetic human resource management at Praxair. Human Resources Management , 38 (4), 315-320. Heathfield, S. (2007). Performance appraisals. The...UNDERSTANDING THE EFFECTIVENESS OF PERFORMANCE MANAGEMENT PRACTICES THESIS Ross T. Johnston, Major...M07 UNDERSTANDING THE EFFECTIVENESS OF PERFORMANCE MANAGEMENT PRACTICES AFIT-GRD-ENV-10-M07 Presented to the Faculty

  5. Local field in finite-size metamaterials: Application to composites of dielectrics and metal nanoparticles (United States)

    Bordo, V. G.


    The theory of the optical response of a metamaterial slab which is represented by metal nanoparticles embedded in a dielectric matrix is developed. It is demonstrated that the account of the reflections from the slab boundaries essentially modifies the local field in the slab and leads to the anisotropy and spatial dispersion of its dielectric function as well as to the emergence of modes which do not exist in an infinite metamaterial. It is shown that these features introduce the existence of self-excited normal waves (polaritons) and mechanical excitons (polarization waves). These findings reveal that the metamaterial slab can be regarded as an active device ("plasmonic oscillator") which generates sustained polaritons in the presence of dissipation. A relation of this effect with the phenomenon of a plasmonic blackbody or perfect absorber, observed in such structures, is discussed and a possible mechanism of this phenomenon is proposed.

  6. In situ measurements of the oblique incidence sound absorption coefficient for finite sized absorbers

    DEFF Research Database (Denmark)

    Ottink, Marco; Brunskog, Jonas; Jeong, Cheol-Ho


    for the finiteness of the absorber. A sound field model, which accounts for scattering from the finite absorber edges, assuming plane wave incidence is derived. A significant influence of the finiteness on the radiation impedance and the corresponding absorption coefficient is found. A finite surface method, which......Absorption coefficients are mostly measured in reverberation rooms or with impedance tubes. Since these methods are only suitable for measuring the random incidence and the normal incidence absorption coefficient, there exists an increasing need for absorption coefficient measurement of finite...... absorbers at oblique incidence in situ. Due to the edge diffraction effect, oblique incidence methods considering an infinite sample fail to measure the absorption coefficient at large incidence angles of finite samples. This paper aims for the development of a measurement method that accounts...

  7. Understanding Self-Effects in Social Media

    NARCIS (Netherlands)

    Valkenburg, P.M.


    The aim of this article is to improve understanding of self-effects in social media, and to compare self-effects with reception effects. Self-effects are the effects of messages the cognitions, emotions, attitudes, and behaviors of the message creators/senders themselves. A total of 4 theories have

  8. Finite-size scaling of flexoelectricity in Langmuir-Blodgett polymer thin films (United States)

    Poddar, Shashi; Foreman, Keith; Adenwalla, Shireen; Ducharme, Stephen


    The flexoelectric effect, which is a linear coupling between a strain gradient and electrical polarization, is a fundamental electromechanical property of all materials with potential for use in nanoscale devices, where strain gradients can be quite large. We report a study of the dependence of the flexoelectric response on thickness in ultrathin films of polar and non-polar polymers. The measurements of the flexoelectric response in non-polar polyethylene and the polar relaxor polymer polyvinylidene-co-trifluoroethylene-co-chlorofluoroethylene were made using a bent cantilever method and corrected for the contribution from the electrode oxide. The results show that the value of the flexoelectric coefficient increases with decreasing thickness, by up to a factor of 70 compared to the bulk value, reaching such enhanced values in films of only 10 nm thickness. These results are consistent with a model accounting for interfacial contributions, and underline how large electromechanical coupling can be produced at the nanoscale. The results also distinguish the surface flexoelectric response from that coming from the volume.

  9. In situ measurements of the oblique incidence sound absorption coefficient for finite sized absorbers. (United States)

    Ottink, Marco; Brunskog, Jonas; Jeong, Cheol-Ho; Fernandez-Grande, Efren; Trojgaard, Per; Tiana-Roig, Elisabet


    Absorption coefficients are mostly measured in reverberation rooms or with impedance tubes. Since these methods are only suitable for measuring the random incidence and the normal incidence absorption coefficient, there exists an increasing need for absorption coefficient measurement of finite absorbers at oblique incidence in situ. Due to the edge diffraction effect, oblique incidence methods considering an infinite sample fail to measure the absorption coefficient at large incidence angles of finite samples. This paper aims for the development of a measurement method that accounts for the finiteness of the absorber. A sound field model, which accounts for scattering from the finite absorber edges, assuming plane wave incidence is derived. A significant influence of the finiteness on the radiation impedance and the corresponding absorption coefficient is found. A finite surface method, which combines microphone array measurements over a finite sample with the sound field model in an inverse manner, is proposed. Besides, a temporal subtraction method, a microphone array method, impedance tube measurements, and an equivalent fluid model are used for validation. The finite surface method gives promising agreement with theory, especially at near grazing incidence. Thus, the finite surface method is proposed for further measurements at large incidence angles.

  10. Finite-size anomalies of the Drude weight: Role of symmetries and ensembles (United States)

    Sánchez, R. J.; Varma, V. K.


    We revisit the numerical problem of computing the high temperature spin stiffness, or Drude weight, D of the spin-1 /2 X X Z chain using exact diagonalization to systematically analyze its dependence on system symmetries and ensemble. Within the canonical ensemble and for states with zero total magnetization, we find D vanishes exactly due to spin-inversion symmetry for all but the anisotropies Δ˜M N=cos(π M /N ) with N ,M ∈Z+ coprimes and N >M , provided system sizes L ≥2 N , for which states with different spin-inversion signature become degenerate due to the underlying s l2 loop algebra symmetry. All these loop-algebra degenerate states carry finite currents which we conjecture [based on data from the system sizes and anisotropies Δ˜M N (with N magnetic flux not only breaks spin-inversion in the zero magnetization sector but also lifts the loop-algebra degeneracies in all symmetry sectors—this effect is more pertinent at smaller Δ due to the larger contributions to D coming from the low-magnetization sectors which are more sensitive to the system's symmetries. Thus we generically find a finite D for fluxed rings and arbitrary 0 lifted.

  11. Collision model for fully resolved simulations of flows laden with finite-size particles. (United States)

    Costa, Pedro; Boersma, Bendiks Jan; Westerweel, Jerry; Breugem, Wim-Paul


    We present a collision model for particle-particle and particle-wall interactions in interface-resolved simulations of particle-laden flows. Three types of interparticle interactions are taken into account: (1) long- and (2) short-range hydrodynamic interactions, and (3) solid-solid contact. Long-range interactions are incorporated through an efficient and second-order-accurate immersed boundary method (IBM). Short-range interactions are also partly reproduced by the IBM. However, since the IBM uses a fixed grid, a lubrication model is needed for an interparticle gap width smaller than the grid spacing. The lubrication model is based on asymptotic expansions of analytical solutions for canonical lubrication interactions between spheres in the Stokes regime. Roughness effects are incorporated by making the lubrication correction independent of the gap width for gap widths smaller than ∼1% of the particle radius. This correction is applied until the particles reach solid-solid contact. To model solid-solid contact we use a variant of a linear soft-sphere collision model capable of stretching the collision time. This choice is computationally attractive because it allows us to reduce the number of time steps required for integrating the collision force accurately and is physically realistic, provided that the prescribed collision time is much smaller than the characteristic time scale of particle motion. We verified the numerical implementation of our collision model and validated it against several benchmark cases for immersed head-on particle-wall and particle-particle collisions, and oblique particle-wall collisions. The results show good agreement with experimental data.

  12. Understanding Citizenship, Understanding Social Media? The effects of digital media on citizenship understanding and political participation

    DEFF Research Database (Denmark)

    Ohme, Jakob; Albæk, Erik

    Is there a connection between increased use of digital media and changing patterns of political participation? This study tests how use of online media for different purposes (social interaction, creative expression, online news use, social media news use) is related to three types of political...... online survey waves and a smartphone-based media diary that documents respondents’ social media use. Results indicate support for a new pathway to participation, but the relationship depends on whether citizens are socialized in a digital media environment....... participation. It examines whether mobilizing effects are partly indirect due to different understandings of citizenship (dutiful, optional, individual, collective) that may be fostered by digital media use. The study is based on a survey of a sample of the Danish population (n=1322), including data from two...

  13. Isotropic-Heisenberg to isotropic-dipolar crossover and finite-size scaling in Cr75-xFe25+x (x = 0, 5) thin films (United States)

    Ravi Kumar, B.; Kaul, S. N.


    'Zero-field' linear ac magnetic susceptibility, χ1 (T), of the Cr75-xFe25+x (x = 0, 5) thin films with thickness, t, ranging from 980 to 10 nm has been measured at temperatures close to Tc , the temperature at which the ferromagnetic-paramagnetic phase transition occurs. An elaborate analysis of χ1 (T ⩾Tc) for the films with t ⩾ 40nm yields the temperature dependence of the effective critical exponent for susceptibility, γeff (T) , that is characteristic of the three-dimensional (3D) isotropic Heisenberg-to-3D isotropic dipolar crossover. In the asymptotic critical region (ACR), these thin-film samples behave as a 3D isotropic dipolar (ID) ferromagnet. As the film thickness reduces from t ≃ 980 nm to 40 nm, ACR narrows down while the temperature, Tdip , at which a dip in γeff (T) occurs and the temperature, TIH∗, that marks the onset of the 3D isotropic Heisenberg (IH) behavior, shift to lower temperatures. For a given t, the width of ACR as well as the characteristic temperatures Tdip and TIH∗ increase with decreasing (increasing) Fe (Cr) concentration. Consistent with these observations, the ratios involving nonlinear ac magnetic susceptibilities obey the generalized magnetic equation of state with 3D ID critical exponents and the value of Tc same as that determined from χ1 (T). A quantitative comparison between theory and experiment highlights certain limitations of the existing theories. The films with t ≲ 20 nm do not exhibit 3D IH-to-3D ID crossover. Instead, the critical behavior of Cr70Fe30 thin films with t = 21 nm and t = 11 nm is that of a 3D IH and 3D Ising ferromagnet, respectively. By contrast, a 3D Ising (spin glass) critical behavior is observed in the Cr75Fe25 thin film with t = 19 nm (t = 12 nm). Curie temperature, Tc , decreases with film thickness in accordance with the finite-size scaling.

  14. Power-law correlations and finite-size effects in silica particle aggregates studied by small-angle neutron scattering

    DEFF Research Database (Denmark)

    Freltoft, T.; Kjems, Jørgen; Sinha, S. K.


    Small-angle neutron scattering from normal, compressed, and water-suspended powders of aggregates of fine silica particles has been studied. The samples possessed average densities ranging from 0.008 to 0.45 g/cm3. Assuming power-law correlations between particles and a finite correlation length ξ......, the authors derive the scattering function S(q) from specific models for particle-particle correlation in these systems. S(q) was found to provide a satisfactory fit to the data for all samples studied. The fractal dimension df corresponding to the power-law correlation was 2.61±0.1 for all dry samples, and 2...

  15. Influence of surface and finite size effects on the structural and magnetic properties of nanocrystalline lanthanum strontium perovskite manganites

    Czech Academy of Sciences Publication Activity Database

    Žvátora, P.; Veverka, Miroslav; Veverka, Pavel; Knížek, Karel; Závěta, Karel; Pollert, Emil; Král, V.; Goglio, G.; Duguet, E.; Kaman, Ondřej


    Roč. 204, AUG (2013), s. 373-379 ISSN 0022-4596 R&D Projects: GA ČR(CZ) GAP108/11/0807 Institutional support: RVO:68378271 Keywords : nanoparticles * manganese perovskite s * Curie temperature Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.200, year: 2013

  16. Numerical estimate of the finite-size corrections to the free energy of the Sherrington-Kirkpatrick model using Guerra-Toninelli interpolation (United States)

    Billoire, Alain


    I use an interpolation formula, introduced recently by Guerra and Toninelli, in order to prove the existence of the free energy of the Sherrington-Kirkpatrick spin glass model in the infinite volume limit, to investigate numerically the finite-size corrections to the free energy of this model. The results are compatible with a (1/12N)ln(N/N0) behavior at Tc , as predicted by Parisi, Ritort, and Slanina, and a 1/N2/3 behavior below Tc .

  17. Universal Signatures of Quantum Critical Points from Finite-Size Torus Spectra: A Window into the Operator Content of Higher-Dimensional Conformal Field Theories. (United States)

    Schuler, Michael; Whitsitt, Seth; Henry, Louis-Paul; Sachdev, Subir; Läuchli, Andreas M


    The low-energy spectra of many body systems on a torus, of finite size L, are well understood in magnetically ordered and gapped topological phases. However, the spectra at quantum critical points separating such phases are largely unexplored for (2+1)D systems. Using a combination of analytical and numerical techniques, we accurately calculate and analyze the low-energy torus spectrum at an Ising critical point which provides a universal fingerprint of the underlying quantum field theory, with the energy levels given by universal numbers times 1/L. We highlight the implications of a neighboring topological phase on the spectrum by studying the Ising* transition (i.e. the transition between a Z_{2} topological phase and a trivial paramagnet), in the example of the toric code in a longitudinal field, and advocate a phenomenological picture that provides qualitative insight into the operator content of the critical field theory.

  18. Effectiveness of CAM therapy: understanding the evidence. (United States)

    Staud, Roland


    By definition, complementary and alternative medicine (CAM) attempts to diagnose and treat illnesses in unconventional ways. CAM has been classified as: (1) alternative medical systems (eg, traditional Chinese medicine [including acupuncture], naturopathic medicine, ayurvedic medicine, and homeopathy); (2) biologic-based therapies (eg, herbal, special dietary, and individual biologic treatments); (3) energy therapies (eg, Reiki, therapeutic touch, magnet therapy, Qi Gong, and intercessory prayer); (4) manipulative and body-based systems (eg, chiropractic, osteopathy, and massage); and (5) mind-body interventions (eg, meditation, biofeedback, hypnotherapy, and the relaxation response). This review focuses on how to assess the effectiveness of CAM therapies for chronic musculoskeletal pains, emphasizing the role of specific and nonspecific analgesic mechanisms, including placebo. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Quantum effects in the understanding of consciousness. (United States)

    Hameroff, Stuart R; Craddock, Travis J A; Tuszynski, Jack A


    This paper presents a historical perspective on the development and application of quantum physics methodology beyond physics, especially in biology and in the area of consciousness studies. Quantum physics provides a conceptual framework for the structural aspects of biological systems and processes via quantum chemistry. In recent years individual biological phenomena such as photosynthesis and bird navigation have been experimentally and theoretically analyzed using quantum methods building conceptual foundations for quantum biology. Since consciousness is attributed to human (and possibly animal) mind, quantum underpinnings of cognitive processes are a logical extension. Several proposals, especially the Orch OR hypothesis, have been put forth in an effort to introduce a scientific basis to the theory of consciousness. At the center of these approaches are microtubules as the substrate on which conscious processes in terms of quantum coherence and entanglement can be built. Additionally, Quantum Metabolism, quantum processes in ion channels and quantum effects in sensory stimulation are discussed in this connection. We discuss the challenges and merits related to quantum consciousness approaches as well as their potential extensions.

  20. Understanding Digital Learning and Its Variable Effects (United States)

    Means, B.


    An increasing proportion of undergraduate courses use an online or blended learning format. This trend signals major changes in the kind of instruction students receive in their STEM courses, yet evidence about the effectiveness of these new approaches is sparse. Existing syntheses and meta-analyses summarize outcomes from experimental or quasi-experimental studies of online and blended courses and document how few studies incorporate proper controls for differences in student characteristics, instructor behaviors, and other course conditions. The evidence that is available suggests that on average blended courses are equal to or better than traditional face-to-face courses and that online courses are equivalent in terms of learning outcomes. But these averages conceal a tremendous underlying variability. Results vary markedly from course to course, even when the same technology is used in both. Some research suggests that online instruction puts lower-achieving students at a disadvantage. It is clear that introducing digital learning per se is no guarantee that student engagement and learning will be enhanced. Getting more consistently positive impacts out of learning technologies is going to require systematic characterization of the features of learning technologies and associated instructional practices as well as attention to context and student characteristics. This presentation will present a framework for characterizing essential features of digital learning resources, implementation practices, and conditions. It will also summarize the research evidence with respect to the learning impacts of specific technology features including spaced practice, immediate feedback, mastery learning based pacing, visualizations and simulations, gaming features, prompts for explanations and reflection, and tools for online collaboration.

  1. Fast mean and variance computation of the diffuse sound transmission through finite-sized thick and layered wall and floor systems (United States)

    Decraene, Carolina; Dijckmans, Arne; Reynders, Edwin P. B.


    A method is developed for computing the mean and variance of the diffuse field sound transmission loss of finite-sized layered wall and floor systems that consist of solid, fluid and/or poroelastic layers. This is achieved by coupling a transfer matrix model of the wall or floor to statistical energy analysis subsystem models of the adjacent room volumes. The modal behavior of the wall is approximately accounted for by projecting the wall displacement onto a set of sinusoidal lateral basis functions. This hybrid modal transfer matrix-statistical energy analysis method is validated on multiple wall systems: a thin steel plate, a polymethyl methacrylate panel, a thick brick wall, a sandwich panel, a double-leaf wall with poro-elastic material in the cavity, and a double glazing. The predictions are compared with experimental data and with results obtained using alternative prediction methods such as the transfer matrix method with spatial windowing, the hybrid wave based-transfer matrix method, and the hybrid finite element-statistical energy analysis method. These comparisons confirm the prediction accuracy of the proposed method and the computational efficiency against the conventional hybrid finite element-statistical energy analysis method.

  2. Simultaneous 3D measurement of the translation and rotation of finite-size particles and the flow field in a fully developed turbulent water flow (United States)

    Klein, Simon; Gibert, Mathieu; Bérut, Antoine; Bodenschatz, Eberhard


    We report a novel experimental technique that measures simultaneously in three dimensions the trajectories, the translation and the rotation of finite-size inertial particles together with the turbulent flow. The flow field is analyzed by tracking the temporal evolution of small fluorescent tracer particles. The inertial particles consist of a super-absorbent polymer that renders them index and density matched with water and thus invisible. The particles are marked by inserting at various locations tracer particles into the polymer. Translation and rotation, as well as the flow field around the particle are recovered dynamically from the analysis of the marker and tracer particle trajectories. We apply this technique to study the dynamics of inertial particles much larger in size (Rp/η ≈ 100) than the Kolmogorov length scale η in a von Kármán swirling water flow (Rλ ≈ 400). We show, using the mixed (particle/fluid) Eulerian second-order velocity structure function, that the interaction zone between the particle and the flow develops in a spherical shell of width 2Rp around the particle of radius Rp. This we interpret as an indication of a wake induced by the particle. This measurement technique has many additional advantages that will make it useful to address other problems such as particle collisions, dynamics of non-spherical solid objects, or even of wet granular matter.

  3. Simultaneous 3D measurement of the translation and rotation of finite size particles and the flow field in a fully developed turbulent water flow (United States)

    Gibert, Mathieu; Klein, Simon; Bodenschatz, Eberhard


    We report a novel experimental technique that measures simultaneously in three dimensions the trajectories, the translation, and the rotation of finite size inertial particles together with the turbulent flow. The flow field is analyzed by tracking the temporal evolution of small fluorescent tracer particles. The inertial particles consist of a super-absorbent polymer that renders them index and density matched with water and thus invisible. The particles are marked by inserting at various locations tracer particles into the polymer. Translation and rotation, as well as the flow field around the particle are recovered dynamically from the analysis of the marker and tracer particle trajectories. We apply this technique to study the dynamics of inertial particles much larger in size (Rp / η ~ 100) than the Kolmogorov length scale η in a von Kármán swirling water flow (Rλ ~ 400). We show, using the mixed (particle/fluid) Eulerian second order velocity structure function, that the interaction zone between the particle and the flow develops in a spherical shell of width 2Rp around the particle of radius Rp. This we interpret as an indication of a wake induced by the particle. ( This work was funded generously by the Max Planck Society and the Marie Curie Fellowship, Program PEOPLE - Call FP7-PEOPLE-IEF-2008 Proposal No 237521. Support from COST Action MP0806 is kindly acknowledged.

  4. Effect of Linked Rules on Business Process Model Understanding

    DEFF Research Database (Denmark)

    Wang, Wei; Indulska, Marta; Sadiq, Shazia


    of business processes has not been empirically evaluated. In this paper, we report on an experiment that investigates the effect of linked rules, a specific rule integration approach, on business process model understanding. Our results indicate that linked rules are associated with better time efficiency......Business process models are widely used in organizations by information systems analysts to represent complex business requirements and by business users to understand business operations and constraints. This understanding is extracted from graphical process models as well as business rules. Prior...... research advocated integrating business rules into business process models to improve the effectiveness of important organizational activities, such as developing shared understanding, effective communication, and process improvement. However, whether such integrated modeling can improve the understanding...

  5. Understanding the edge effect in wetting: a thermodynamic approach. (United States)

    Fang, Guoping; Amirfazli, A


    Edge effect is known to hinder spreading of a sessile drop. However, the underlying thermodynamic mechanisms responsible for the edge effect still is not well-understood. In this study, a free energy model has been developed to investigate the energetic state of drops on a single pillar (from upright frustum to inverted frustum geometries). An analysis of drop free energy levels before and after crossing the edge allows us to understand the thermodynamic origin of the edge effect. In particular, four wetting cases for a drop on a single pillar with different edge angles have been determined by understanding the characteristics of FE plots. A wetting map describing the four wetting cases is given in terms of edge angle and intrinsic contact angle. The results show that the free energy barrier observed near the edge plays an important role in determining the drop states, i.e., (1) stable or metastable drop states at the pillar's edge, and (2) drop collapse by liquid spilling over the edge completely or staying at an intermediate sidewall position of the pillar. This thermodynamic model presents an energetic framework to describe the functioning of the so-called "re-entrant" structures. Results show good consistency with the literature and expand the current understanding of Gibbs' inequality condition.

  6. Influence of external magnetic field, finite-size effects and chemical potential on the phase transition of a complex scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti, E.; Castro, E.; Malbouisson, A.P.C. [Centro Brasileiro de Pesquisas Fisicas/MCTI, Rio de Janeiro, RJ (Brazil); Linhares, C.A. [Universidade do Estado do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ (Brazil)


    A scalar model is built, as a quantum field theory defined on a toroidal topology, to describe a phase transition in films subjected to periodic boundary conditions and influenced by an external and constant magnetic field. Criticality is studied and the relations between the critical temperature, the film thickness, the magnetic field strength and the chemical potential are investigated. Since the model describes a second-order phase transition a comparison with the Ginzburg-Landau theory is made. (orig.)

  7. Lay understandings of the effects of poverty: a Canadian perspective. (United States)

    Reutter, Linda I; Veenstra, Gerry; Stewart, Miriam J; Raphael, Dennis; Love, Rhonda; Makwarimba, Edward; McMurray, Susan


    Although there is a large body of research dedicated to exploring public attributions for poverty, considerably less attention has been directed to public understandings about the effects of poverty. In this paper, we describe lay understandings of the effects of poverty and the factors that potentially influence these perceptions, using data from a telephone survey conducted in 2002 on a random sample (n=1671) of adults from eight neighbourhoods in two large Canadian cities (Edmonton and Toronto). These data were supplemented with interview data obtained from 153 people living in these same neighbourhoods. Multivariate linear and logistic regressions were used to determine the effects of basic demographic variables, exposure to poverty and attribution for poverty on three dependent variables relating to the effects of poverty: participation in community life, the relationship between poverty and health and challenges facing low-income people. Ninety-one per cent of survey respondents agreed that poverty is linked to health, while 68% agreed that low-income people are less likely to participate in community life. Affordable housing was deemed especially difficult to obtain by 96%, but other resources (obtaining healthy food, giving children a good start in life, and engaging in healthy behaviours) were also viewed as challenging by at least 70% of respondents. The regression models revealed that when controlling for demographics, exposure to poverty explained some of the variance in recognising the effects of poverty. Media exposure positively influenced recognition of the poverty-health link, and attending formal talks was strongly related to understanding challenges of poverty. Attributions for poverty accounted for slightly more of the variance in the dependent variables. Specifically, structural and sociocultural attributions predicted greater recognition of the effects of poverty, in particular the challenges of poverty, while individualistic attributions

  8. Understanding dementia: effective information access from the Deaf community's perspective. (United States)

    Young, Alys; Ferguson-Coleman, Emma; Keady, John


    This study concerns older Deaf sign language users in the UK. Its aim was to explore how to enable effective information access and promote awareness and understanding of dementia from a culturally Deaf perspective. A purposive sample of 26 Deaf people without dementia participated in one of three focus groups facilitated directly in British Sign Language (BSL) without an intermediate interpreter. The sample was differentiated by age, role in the Deaf community, and diversity of educational attainment and professional experience. A phenomenological approach underpinned the thematic analysis of data. The findings demonstrate: (i) translation into (BSL) is a necessary but not sufficient condition to support understanding. Attention to culturally preferred means of engagement with information is vital; (ii) the content of information is best presented utilising structures and formats which cohere with Deaf people's visual cognitive strengths; and (iii) the importance of cultural values and cultural practices in raising awareness and building understanding of dementia. These include collective rather than individual responsibility for knowledge transfer and the pan-national nature of knowledge transfer among Deaf people(s). The discussion demonstrates how these specific features of effective information access and awareness building have universal implications relevant to public engagement and the promotion of general knowledge consistent with the National Dementia Strategy (England). © 2014 The Authors. Health and Social Care in the Community Published by John Wiley & Sons Ltd.

  9. Toward Better Understanding of Turbulence Effects on Bridge Aerodynamics

    Directory of Open Access Journals (Sweden)

    Shuyang Cao


    Full Text Available With the trend of variable cross-sections for long-span bridges from truss-stiffened to quasi-streamlined, and then to multiple-box cross-section geometries, the importance of aeroelastic performance is becoming increasingly significant in wind-resistant design. This article shows that there is clearly insufficient qualitative as well as quantitative understanding of turbulence effects on bridge aerodynamics, particularly the mechanisms behind them. Although turbulence might help the stabilization of long-span bridges, and is thus not a conclusive parameter in wind-resistant design, turbulence effects on the aerodynamic and aeroelastic behaviors of a bridge need to be better understood because interaction between a bridge and turbulence always exists. This article also briefly introduces a newly developed multiple-fan wind tunnel that is designed to control turbulence to assist the study of turbulence effects.

  10. Understanding local residents of Korea using nuclear effective safety

    International Nuclear Information System (INIS)

    Chung, Yun Hyung; Lee, Gey Hwi; Hah, Yeonhee; Kim, Beom Jun


    The risk perception gap between experts and lay people is based on the use of different concept on risk. It is getting increasingly important for nuclear practitioners to understand the lay people's subjective perception on nuclear safety. We proposed the nuclear effective safety index (NESI) which is based on data of the public survey of local inhabitants. We extracted the four factors for effective safety indicators; communication, trust, plant emergency response capability, and personal emergency coping skills. The latest NESI was 41.54, which was increased from 38.22 but still low. The three-year data of NESI showed the differences between genders and between sites as well as trend. The survey of antecedents of effective safety showed some meaningful events and profound differences between plant employees and local inhabitants. The NESI can be utilized as useful communication tool between the local inhabitants and nuclear practitioners. (authors)

  11. On the Conceptual Understanding of the Photoelectric Effect (United States)

    Foong, S. K.; Lee, P.; Wong, D.; Chee, Y. P.


    We attempt an in-depth literature review that focuses on some finer aspects of the photoelectric effect that will help build a more coherent understanding of the phenomenon. These include the angular distribution of photoelectrons, multi-photon photoelectron emission and the work function in the photoelectric equation as being that associated with the collector rather than the emitter. We attempt to explain the intricacies of the related concepts in a way that is accessible to teachers and students at the Singapore GCE A-level or pre-university level.

  12. Understanding noise suppression in heterojunction field-effect transistors

    International Nuclear Information System (INIS)

    Green, F.


    Full text: The enhanced transport properties displayed by quantum-well-confined, two-dimensional, electron systems underpin the success of heterojunction, field-effect transistors. At cryogenic temperatures, these devices exhibit impressive mobilities and, as a result, high signal gain and low noise. Conventional wisdom has it that the same favourable conditions also hold for normal room-temperature operation. In that case, however, high mobilities are precluded by abundant electron-phonon scattering. Our recent study of nonequilibrium current noise shows that quantum confinement, not high mobility, is the principal source of noise in these devices; this opens up new and exciting opportunities in low-noise transistor design. As trends in millimetre-wave technology push frequencies beyond 100 GHz, it is essential to develop a genuine understanding of noise processes in heterojunction devices

  13. Compreendendo o Efeito Placebo / Understanding the Placebo Effect

    Directory of Open Access Journals (Sweden)

    Elayne Vieira Dias


    Full Text Available Placebo é definido em termos farmacológicos como uma substância inerte, sem propriedades farmacológicas intrínsecas. No entanto, essa definição é superficial, visto que o placebo pode gerar efeitos terapêuticos que dependem de diversos fatores como palavras, rituais, símbolos e significados que acompanham seu uso. Assim, o efeito placebo não diz respeito apenas a uma substância, mas, envolve fatores cognitivos, genéticos e mecanismos de aprendizagem implícita e explícita. Nessa revisão nós abordamos os aspectos gerais do efeito placebo apoiados em diversos estudos com diferentes enfoques, visando uma melhor compreensão desse fenômeno que pode se somar ao tratamento ativo e otimizar os resultados na prática médica. Placebo is pharmacologically defined as an inert substance, with nointrinsic pharmacological properties. However, this is a superficial definition, since placebo may trigger therapeutic effects and its effectiveness depends on various factors such as words, rituals, symbols and meanings following its use. Thus, placebo effect does not refer just to the substance, but it also involves cognitive and genetic factors and learning mechanisms. Here, we review general aspects of the placebo effect supported by several studies with different approaches, to better understand this phenomenon which may contribute to active treatment as well as optimize the results in the clinical practice.

  14. Thickness-shear vibration of AT-cut quartz plates carrying finite-size particles with rotational degree of freedom and rotatory inertia. (United States)

    Zhang, Chunli; Liu, Nan; Yang, Jiashi; Chen, Weiqiu


    We study thickness-shear (TSh) vibration of a rotated Y-cut quartz crystal resonator (QCR) carrying finitesize circular particles that have a rotational degree of freedom and rotatory inertia. The particles are elastically attached to the QCR and are allowed to roll without sliding on the QCR surface. An analytical solution for particle-induced frequency shifts in the QCR is obtained. Examination of the frequency shifts shows that although they can be used to measure geometric/physical properties of the particles, the frequency shifts can have relatively complicated behaviors that cause deviations from the Sauerbrey equation and other anomalies in mass sensing. A frequency-dependent effective particle mass is introduced to classify and characterize different aspects of the particle-induced frequency shifts.

  15. A Life Course Approach to Understanding Neighbourhood Effects

    NARCIS (Netherlands)

    de Vuijst, E.; van Ham, M.; Kleinhans, R.J.


    Many theories on so-called neighbourhood effectseffects of the residential context on individual outcomes such as employment, education, and health – implicitly, or explicitly suggest lagged effects, duration effects, or for example, intergenerational effects of neighbourhoods. However, these

  16. Automated Traffic and the Finite Size Resonance (United States)

    Veerman, J. J. P.; Stošić, B. D.; Tangerman, F. M.


    We investigate in detail what one might call the canonical (automated) traffic problem: A long string of N+1 cars (numbered from 0 to N) moves along a one-lane road "in formation" at a constant velocity and with a unit distance between successive cars. Each car monitors the relative velocity and position of only its neighboring cars. This information is then fed back to its own engine which decelerates (brakes) or accelerates according to the information it receives. The question is: What happens when due to an external influence—a traffic light turning green—the `zero'th' car (the "leader") accelerates? As a first approximation, we analyze linear(ized) equations and show that in this scenario the traffic flow has a tendency to be stop-and-go. We give approximate solutions for the global traffic as function of all the relevant parameters (the feed back parameters as well as cruise velocity and so on). We discuss general design principles for these algorithms, that is: how does the choice of parameters influence the performance.

  17. Understanding the inverse magnetocaloric effect in antiferro- and ferrimagnetic arrangements

    International Nuclear Information System (INIS)

    Von Ranke, P J; De Oliveira, N A; Alho, B P; Plaza, E J R; De Sousa, V S R; Caron, L; Reis, M S


    The inverse magnetocaloric effect occurs when a magnetic material cools down under applied magnetic field in an adiabatic process. Although the existence of the inverse magnetocaloric effect was recently reported experimentally, a theoretical microscopic description is almost nonexistent. In this paper we theoretically describe the inverse magnetocaloric effect in antiferro- and ferrimagnetic systems. The inverse magnetocaloric effects were systematically investigated as a function of the model parameters. The influence of the Neel and the compensation temperature on the magnetocaloric effect is also analyzed using a microscopic model.

  18. Understanding the inverse magnetocaloric effect in antiferro- and ferrimagnetic arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Von Ranke, P J; De Oliveira, N A; Alho, B P; Plaza, E J R; De Sousa, V S R [Instituto de Fisica ' Armando Dias Tavares' , Universidade do Estado do Rio de Janeiro-UERJ, Rua Sao Francisco Xavier, 524, 20550-013, RJ (Brazil); Caron, L [Instituto de Fisica ' Gleb Wataghin' , Universidade Estadual de Campinas-UNICAMP, 13083-970 Campinas, SP (Brazil); Reis, M S [CICECO, Universidade de Aveiro, 3810-193 Aveiro (Portugal)], E-mail:


    The inverse magnetocaloric effect occurs when a magnetic material cools down under applied magnetic field in an adiabatic process. Although the existence of the inverse magnetocaloric effect was recently reported experimentally, a theoretical microscopic description is almost nonexistent. In this paper we theoretically describe the inverse magnetocaloric effect in antiferro- and ferrimagnetic systems. The inverse magnetocaloric effects were systematically investigated as a function of the model parameters. The influence of the Neel and the compensation temperature on the magnetocaloric effect is also analyzed using a microscopic model.

  19. Understanding and Utilizing the Effectiveness of e‐Learning

    DEFF Research Database (Denmark)

    Noesgaard, Signe Schack; Ørngreen, Rikke


    . At the same time, learning and development professionals within public and private organizations are increasingly met with a demand to prove the effectiveness of their learning and development initiatives. This paper investigates the concepts of effectiveness in e-Learning. It broadens the definition......A structured search of librarian databases revealed that the research into the effectiveness of e-Learning has heavily increased within the last 5 years. Taking a closer look at the search results, the authors discovered that researchers define and investigate effectiveness in multiple ways...... of effectiveness and qualifies certain measurements of same. Preliminary results from a literature study and an empirical investigation of ‘the effectiveness of e-Learning’ for science teachers (K12) are combined. The paper discusses the following research questions: How is the effectiveness of e-Learning defined...

  20. Relativistic calculation of nuclear magnetic shielding tensor using the regular approximation to the normalized elimination of the small component. III. Introduction of gauge-including atomic orbitals and a finite-size nuclear model. (United States)

    Hamaya, S; Maeda, H; Funaki, M; Fukui, H


    The relativistic calculation of nuclear magnetic shielding tensors in hydrogen halides is performed using the second-order regular approximation to the normalized elimination of the small component (SORA-NESC) method with the inclusion of the perturbation terms from the metric operator. This computational scheme is denoted as SORA-Met. The SORA-Met calculation yields anisotropies, Delta sigma = sigma(parallel) - sigma(perpendicular), for the halogen nuclei in hydrogen halides that are too small. In the NESC theory, the small component of the spinor is combined to the large component via the operator sigma x piU/2c, in which pi = p + A, U is a nonunitary transformation operator, and c approximately = 137.036 a.u. is the velocity of light. The operator U depends on the vector potential A (i.e., the magnetic perturbations in the system) with the leading order c(-2) and the magnetic perturbation terms of U contribute to the Hamiltonian and metric operators of the system in the leading order c(-4). It is shown that the small Delta sigma for halogen nuclei found in our previous studies is related to the neglect of the U(0,1) perturbation operator of U, which is independent of the external magnetic field and of the first order with respect to the nuclear magnetic dipole moment. Introduction of gauge-including atomic orbitals and a finite-size nuclear model is also discussed.

  1. Towards an understanding of staggering effects in dissipative binary collisions

    International Nuclear Information System (INIS)

    D'Agostino, M.; Bruno, M.; Gulminelli, F.; Morelli, L.; Baiocco, G.; Bardelli, L.; Barlini, S.; Cannata, F.; Casini, G.; Geraci, E.; Gramegna, F.; Kravchuk, V.L.; Marchi, T.; Moroni, A.; Ordine, A.; Raduta, Ad.R.


    The reactions 32 S+ 58,64 Ni are studied at 14.5 A MeV. Evidence is found for important odd–even effects in isotopic observables of selected peripheral collisions corresponding to the decay of a projectile-like source. The influence of secondary decays on the staggering is studied with a correlation function technique. It is shown that this method is a powerful tool to get experimental information on the evaporation chain, in order to constrain model calculations. Specifically, we show that odd–even effects are due to interplay between pairing effects in the nuclear masses and in the level densities.

  2. Understanding and Applying the Cognitive Foundations of Effective Teamwork

    National Research Council Canada - National Science Library

    Noble, David


    .... It reviews a theory describing the knowledge that teams need to work together effectively and summarizing how teams use this knowledge when making decisions about collecting and sharing information...

  3. Understanding the inverse magnetocaloric effect through a simple theoretical model

    Energy Technology Data Exchange (ETDEWEB)

    Ranke, P.J. von, E-mail: [Instituto de Fisica Armando Dias Tavares-Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier, 524, Rio de Janeiro 20550-013 (Brazil); Alho, B.P.; Nobrega, E.P.; Oliveira, N.A. de [Instituto de Fisica Armando Dias Tavares-Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier, 524, Rio de Janeiro 20550-013 (Brazil)


    We investigated the inverse magnetocaloric effect using a theoretical magnetic model formed by two coupled magnetic lattices to describe a ferrimagnetic system. The influence of the compensation temperature, and the ferrimagnetic-paramagnetic phase transition on the magnetocaloric effect was analyzed. Also, a relation between the area under the magnetocaloric curve and the net magnetic moment of a ferrimagnetic system was established in this work.

  4. The Placebo Effect in Cardiology: Understanding and Using It. (United States)

    Sheldon, Robert; Opie-Moran, Morwenna


    The placebo effect is the clinical benefit caused by interaction with a caregiver and health care system in the absence of a biologically active intervention and has been used successfully for millennia. The placebo response results from the interaction of psychosocial mechanisms, human relationships, and preconceptions functioning in specific neuroanatomic locations with known genes and neurotransmitters. It occurs with or without the administration of an inactive substance to deliberately deceive patients. Our purpose is to review the history, benefits, and mechanisms of the placebo effect. The placebo response results from classic conditioning and positive expectations about outcome expressed by the caregiver. The outcomes are usually symptoms such as pain rather than biological outcomes such as death, and the powerful placebo may account for more than half the effect of treatment in many situations. The placebo effect results from activation of opioid, cannabinoid, and dopaminergic pathways involved in reward, expectancy, conditioning, and pain modulation. Eleven specific anatomic features in the brain identified by positron emission tomography and magnetic resonance imaging are involved. Polymorphisms in the structural genes for catecholamine O-methyltransferase and fatty acid amide oxidase significantly influence the placebo response. The placebo effect may be important in symptom suppression in angina, paroxysmal atrial fibrillation, and congestive heart failure. In the absence of deliberate deception, there are no ethical issues and given its potency, the time has come to consider how best to use the placebo in clinical practice. Copyright © 2017 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  5. Understanding Graduate School Aspirations: The Effect of Good Teaching Practices (United States)

    Hanson, Jana M.; Paulsen, Michael B.; Pascarella, Ernest T.


    This study examined the effects of good teaching practices on post-baccalaureate degree aspirations using logistic regression techniques on a multi-institutional, longitudinal sample of students at 4-year colleges and universities in the USA. We examined whether eight good teaching practices (non-classroom interactions with faculty, prompt…

  6. Understanding the stabilizing effects of IT on organizations

    NARCIS (Netherlands)

    Boogaard, Martin; Huysman, Marleen H.


    In the literature, two distinct ways in which the application of IT stabilizes organizations are indicated. The first stabilizing effect concerns the difficult, time-consuming, and costly adjustments of existing ISs when changes to ISs have to be made. Consequently, when circumstances change

  7. Assessing Teacher Quality: Understanding Teacher Effects on Instruction and Achievement (United States)

    Kelly, Sean, Ed.


    Recent educational reforms have promoted accountability systems which attempt to identify "teacher effects" on student outcomes and hold teachers accountable for producing learning gains. But in the complex world of classrooms, it may be difficult to attribute "success" or "failure" to teachers. In this timely…

  8. Understanding the Effects of Climate on Airfield Pavement Deterioration Rates (United States)


    eliminating frost susceptible materials frost heave effects can be minimized. Using properly designed asphalt binders that perform well in cold...processes that operate on or near the surface of our planet ” (de Smith, Goodchild, & Longley, 2007). Spatial interpolation is a spatial analysis

  9. Understanding why probiotic therapies can be effective in treating IBD. (United States)

    Fedorak, Richard N


    Probiotics, for the treatment of inflammatory bowel disease, are a group of specific nonpathogenic bacteria that are functionally and genetically defined by their ability to reduce inflammation in the intestine. Although probiotics also seem to have broad beneficial effects in humans, both as a food and as a therapeutic agent, there are specific identified mechanisms in some, but not all, of these bacteria that are important relative to the pathogenesis of inflammatory bowel disease. Recently, studies relative to the mechanism of action of probiotics have identified that these organisms can have a direct effect on epithelial cell function and intestinal health, including enhancing epithelial barrier function, modulating epithelial cytokine secretion into an anti-inflammatory dominant profile, altering mucus production, changing bacterial luminal flora, modifying the innate and systemic immune system, and inducing regulatory T-cell effects. For probiotics to have a therapeutic role in the management of clinical inflammatory bowel disease, their therapeutic mechanism of action must be aligned with the pathogenic mechanism of action of the disease. In this regard, the role of probiotics for the clinical treatment of inflammatory bowel disease is emerging as the mechanisms and pathogenesis are being unraveled. It remains clear that probiotics are able to reduce gastrointestinal inflammation by exerting positive effects on epithelial cell and mucosal immune dysfunction.

  10. Improving Food Production by Understanding the Effects of ...

    African Journals Online (AJOL)

    This paper quantifies the effects of population density and intercropping on the development and growth of nitrogen fixing attributes of soybean and explains how these attributes influence food through yielding process. Information for this study was obtained from a field study conducted over two rainy seasons comprising of ...

  11. Understanding Effectiveness in School Administration: A Discourse Analysis (United States)

    Büyükgöze, Hilal


    The current paper primarily aims to investigate and interpret the observations, perceptions, and experiences of an effective school's principal through a qualitative approach. The study was designed as a case study. The participant of the study was a primary science education teacher with 17 years of experience in the profession who has been a…

  12. Understanding electromagnetic effects using printed circuit board demos

    NARCIS (Netherlands)

    Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes


    Electromagnetic fields are considered by many students as a difficult subject. Unwanted electromagnetic fields are even tougher for students. We have developed many experiments as demonstrations (demos) to show the effect of electromagnetic fields in real life products. This paper gives a brief

  13. Understanding the effects of end-loss on linear Fresnelcollectors (United States)

    Ma, Jing; Chang, Zheng


    In this paper, the end loss effect of linear Fresnel collector was analyzed. The aim of this work was to investigate the seasonal effects of end losses on the linear Fresnel collectors deployed, and analyze the change of the month average for end loss at different locations. Furthermore, a end loss compensated approach is proposed, and the increased instantaneous thermal efficiency of the experimental system is measured. A two-meter long linear Fresnel collector experimental system with horizontal north-south axis is performed, The result that compensation of the end loss of the linear Fresnel reflector system stands a good improvement for thermal performance. Meanwhile, in comparison with the reflector field prior to the change, an instantaneous thermal efficiency has increased by approximately 50%, and it increased by almost 20% at the afternoon time. All this work can offer some valuable references to the further study on high-efficiency linear Fresnel concentrating system.

  14. Understanding substituent effects in noncovalent interactions involving aromatic rings. (United States)

    Wheeler, Steven E


    Noncovalent interactions involving aromatic rings such as π-stacking, cation/π, and anion/π interactions are central to many areas of modern chemistry. Decades of experimental studies have provided key insights into the impact of substituents on these interactions, leading to the development of simple intuitive models. However, gas-phase computational studies have raised some doubts about the physical underpinnings of these widespread models. In this Account we review our recent efforts to unravel the origin of substituent effects in π-stacking and ion/π interactions through computational studies of model noncovalent dimers. First, however, we dispel the notion that so-called aromatic interactions depend on the aromaticity of the interacting rings by studying model π-stacked dimers in which the aromaticity of one of the monomers can be "switched off". Somewhat surprisingly, the results show that not only is aromaticity unnecessary for π-stacking interactions, but it actually hinders these interactions to some extent. Consequently, when thinking about π-stacking interactions, researchers should consider broader classes of planar molecules, not just aromatic systems. Conventional models maintain that substituent effects in π-stacking interactions result from changes in the aryl π-system. This view suggests that π-stacking interactions are maximized when one ring is substituted with electron-withdrawing groups and the other with electron donors. In contrast to these prevailing models, we have shown that substituent effects in π-stacking interactions can be described in terms of direct, local interactions between the substituents and the nearby vertex of the other arene. As a result, in polysubstituted π-stacked dimers the substituents operate independently unless they are in each other's local environment. This means that in π-stacked dimers in which one arene is substituted with electron donors and the other with electron acceptors the interactions will

  15. Understanding the effects of violent video games on violent crime


    Cunningham, A. Scott; Engelstätter, Benjamin; Ward, Michael R.


    Psychological studies invariably find a positive relationship between violent video game play and aggression. However, these studies cannot account for either aggressive effects of alternative activities video game playing substitutes for or the possible selection of relatively violent people into playing violent video games. That is, they lack external validity. We investigate the relationship between the prevalence of violent video games and violent crimes. Our results are consistent with t...

  16. Retention in STEM: Understanding the Effectiveness of Science Posse (United States)

    Godsoe, Kimberly

    One of the major areas of debate in higher education is how to best support underrepresented racial minority students in their study of Science, Technology, Engineering, and Math. In 2008, Brandeis University began a new program in conjunction with the Posse Foundation for students interested in studying science at the college-level. The research used a mixed methods design. A detailed quantitative analysis was conducted to understand how being part of Science Posse impacted the probability of doing well in initial science classes, influenced perceptions of the difficulty of studying science, and predicted the probability of majoring in STEM at Brandeis. The qualitative data was drawn from 89 student interviews, including 38 Science Posse Scholars, 24 students from backgrounds similar to the Scholars, and 25 students from well-resourced families. The qualitative analysis demonstrated how students had been exposed to the sciences prior to enrollment, how they navigated the sciences at Brandeis, and how they demonstrated resilience when science becomes challenging. This research study had four key findings. The first was in the quantitative analysis which demonstrated that Science Posse Scholars experience strong feelings of doubt about their academic abilities; based on previous research, this should have resulted in their not declaring majors in STEM disciplines. Instead, Science Posse Scholars were more likely to earn a B+ or above in their entry level science courses and declare a major in a STEM discipline, even when factors such as math and verbal SAT scores were included in the analysis. The second finding was in the qualitative analysis, which demonstrated that the cohort model in which Science Posse Scholars participate was instrumental to their success. The third finding was that students who attended academically less rigorous high schools could succeed in the sciences at a highly selective research institution such as Brandeis without academic remediation

  17. Understanding the Effects of Marriage and Divorce on Financial Investments

    DEFF Research Database (Denmark)

    Christiansen, Charlotte; Joensen, Juanna Schröter; Rangvid, Jesper


    We investigate how changes in marital status affect financial investments and how these effects vary with background risk. We use detailed register-based panel data and difference-in-differences estimators to benchmark common unobserved influences on financial investments. Women increase...... is important for financial risk taking and investment responses to marital transitions....... the fraction of wealth invested in stocks after marriage and decrease it after divorce, whereas men show the opposite behavior. Households whose joint labor income risk is reduced more by marriage have a higher increase in their exposure to risky assets in marriage. Thus income risk sharing in the household...

  18. Understanding cavity QED effects from cavity classical electrodynamics

    International Nuclear Information System (INIS)

    Taddei, M.M.; Kort-Kamp, W.J.M.; Farina, C.


    Full text: Our work intends to show how cavity classical electrodynamics can be used for achieving results with direct quantum analogues. It is shown how the classical interaction between a real radiating electric dipole and a perfectly-conducting surface can be used to obtain information about some cavity quantum electrodynamics effects related to radiative properties of atomic systems. Based on the case of an oscillating electric dipole (a classical representation of an excited atom) in front of a perfectly-conducting sphere, two main physical quantities can be computed, the classical dipole frequency shift and the change in the rate of energy loss from radiation reaction, both due to the presence of the sphere. The link from classical to quantum can be made via interpreting, for example, the dipole frequency as the atom's dominant transition frequency. The frequency shift due to the sphere can be related through E = (h/2π) to the energy shift of the system, i.e., the dispersive interaction between the atom and the sphere; while the change in energy loss can be related to the alteration of the atom's spontaneous emission due to the sphere. The amazing result is that this classical method, once corresponded classical quantities to quantum ones such as exemplified above with frequency, can predict the two above-mentioned quantum effects analytically with the correct functional dependencies on all geometric and atomic parameters, being off only by a constant pre factor. (author)

  19. Understanding the "Weekend Effect" for Emergency General Surgery. (United States)

    Hoehn, Richard S; Go, Derek E; Dhar, Vikrom K; Kim, Young; Hanseman, Dennis J; Wima, Koffi; Shah, Shimul A


    Several studies have identified a "weekend effect" for surgical outcomes, but definitions vary and the cause is unclear. Our aim was to better characterize the weekend effect for emergency general surgery using mortality as a primary endpoint. Using data from the University HealthSystem Consortium from 2009 to 2013, we identified urgent/emergent hospital admissions for seven procedures representing 80% of the national burden of emergency general surgery. Patient characteristics and surgical outcomes were compared between cases that were performed on weekdays vs weekends. Hospitals varied widely in the proportion of procedures performed on the weekend. Of the procedures examined, four had higher mortality for weekend cases (laparotomy, lysis of adhesions, partial colectomy, and small bowel resection; p surgery (p surgery procedures that incur higher mortality when performed on weekends. This may be due to acute changes in patient status that require weekend surgery or indications for urgent procedures (ischemia, obstruction) compared to those without a weekend mortality difference (infection). Hospitals that perform weekend surgery must acknowledge and identify ways to manage this increased risk.

  20. Current Understanding of the Health Effects of Electromagnetic Fields. (United States)

    Miah, Tayaba; Kamat, Deepak


    There has been an exponential increase in the use of electronic devices over the past few decades. This has led to increased exposure to electromagnetic fields (EMF). Electric fields result from differences in voltage, whereas magnetic fields result from the flow of electric current. Higher-frequency waves of EMF have more energy than lower-frequency waves, and thus generally tend to be more harmful. An EMF activates cellular stress response and also causes breaks in DNA strands. There are many methodological barriers to effectively measuring the associations of EMF and childhood cancers. The consensus from multiple studies is that there is no causal role of extremely low-frequency EMFs in childhood cancers, including brain cancer. A recent study showed a link between EMF radiation and the development of malignant tumors in rats. In light of that study, the American Academy of Pediatrics set out new recommendations to decrease the adverse effects of cellphone exposure on children. [Pediatr Ann. 2017;46(4):e172-e174.]. Copyright 2017, SLACK Incorporated.

  1. Understanding Soliton Spectral Tunneling as a Spectral Coupling Effect

    DEFF Research Database (Denmark)

    Guo, Hairun; Wang, Shaofei; Zeng, Xianglong


    Soliton eigenstate is found corresponding to a dispersive phase profile under which the soliton phase changes induced by the dispersion and nonlinearity are instantaneously counterbalanced. Much like a waveguide coupler relying on a spatial refractive index profile that supports mode coupling...... between channels, here we suggest that the soliton spectral tunneling effect can be understood supported by a spectral phase coupler. The dispersive wave number in the spectral domain must have a coupler-like symmetric profile for soliton spectral tunneling to occur. We show that such a spectral coupler...... exactly implies phase as well as group-velocity matching between the input soliton and tunneled soliton, namely a soliton phase matching condition. Examples in realistic photonic crystal fibers are also presented....

  2. Molecular Modeling of Enzyme Dynamics Towards Understanding Solvent Effects

    DEFF Research Database (Denmark)

    Wedberg, Nils Hejle Rasmus Ingemar

    ) in water and organic solvents. The effects of solvent on structural and dynamical enzyme properties are studied, and special attention is given to how enzyme properties in organic solvents are affected by the hydration level, which is shown to be related to the water activity. In experimental studies...... of enzyme kinetics in non-aqueous media, it has been a fruitful approach to fix the enzyme hydration level by controlling the water activity of the medium. In this work, a protocol is therefore developed for determining the water activity in non-aqueous protein simulations. The method relies on determining......This thesis describes the development of a molecular simulation methodology to study properties of enzymes in non-aqueous media at fixed thermodynamic water activities. The methodology is applied in a molecular dynamics study of the industrially important enzyme Candida antarctica lipase B (CALB...

  3. Understanding ligand effects in gold clusters using mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Laskin, Julia


    This review summarizes recent research on the influence of phosphine ligands on the size, stability, and reactivity of gold clusters synthesized in solution. Sub-nanometer clusters exhibit size- and composition-dependent properties that are unique from those of larger nanoparticles. The highly tunable properties of clusters and their high surface-to-volume ratio make them promising candidates for a variety of technological applications. However, because “each-atom-counts” toward defining cluster properties it is critically important to develop robust synthesis methods to efficiently prepare clusters of predetermined size. For decades phosphines have been known to direct the size-selected synthesis of gold clusters. Despite the preparation of numerous species it is still not understood how different functional groups at phosphine centers affect the size and properties of gold clusters. Using electrospray ionization mass spectrometry (ESI-MS) it is possible to characterize the effect of ligand substitution on the distribution of clusters formed in solution at defined reaction conditions. In addition, ligand exchange reactions on preformed clusters may be monitored using ESI-MS. Collision induced dissociation (CID) may also be employed to obtain qualitative insight into the fragmentation of mixed ligand clusters and the relative binding energies of differently substituted phosphines. Quantitative ligand binding energies and cluster stability may be determined employing surface induced dissociation (SID) in a custom-built Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Rice-Ramsperger-Kassel-Marcus (RRKM) based modeling of the SID data allows dissociation energies and entropy values to be extracted that may be compared with the results of high-level theoretical calculations. The charge reduction and reactivity of atomically precise gold clusters, including partially ligated species generated in the gas-phase by in source CID, on well

  4. Understanding ligand effects in gold clusters using mass spectrometry. (United States)

    Johnson, Grant E; Laskin, Julia


    This review summarizes recent research on the influence of phosphine ligands on the size, stability, and reactivity of gold clusters synthesized in solution. Sub-nanometer clusters exhibit size- and composition-dependent properties that are unique from those of larger nanoparticles. The highly tunable properties of clusters and their high surface-to-volume ratio make them promising candidates for a variety of technological applications. However, because "each-atom-counts" toward defining cluster properties it is critically important to develop robust synthesis methods to efficiently prepare clusters of predetermined size. For decades phosphines have been known to direct the size-selected synthesis of gold clusters. Despite the preparation of numerous species it is still not understood how different functional groups at phosphine centers affect the size and properties of gold clusters. Using electrospray ionization mass spectrometry (ESI-MS) it is possible to characterize the effect of ligand substitution on the distribution of clusters formed in solution at defined reaction conditions. In addition, ligand exchange reactions on preformed clusters may be monitored using ESI-MS. Collision induced dissociation (CID) may also be employed to obtain qualitative insight into the fragmentation of mixed ligand clusters and the relative binding energies of differently substituted phosphines. Quantitative ligand binding energies and cluster stability may be determined employing surface induced dissociation (SID) in a custom-built Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Rice-Ramsperger-Kassel-Marcus (RRKM) based modeling of the SID data allows dissociation energies and entropy values to be extracted. The charge reduction and reactivity of atomically precise gold clusters, including partially ligated species generated in the gas-phase by in source CID, on well-defined surfaces may be explored using ion soft landing (SL) in a custom

  5. Understanding the Effects of Host Evolution and Skin Bacteria Composition on Disease Vector Choices (United States)


    Distribution Unlimited UU UU UU UU 14-04-2016 1-Sep-2014 31-Dec-2015 Final Report: Understanding the effects of host evolution and skin bacteria...reviewed journals: Final Report: Understanding the effects of host evolution and skin bacteria composition on disease vector choices Report Title Here...SECURITY CLASSIFICATION OF: Here we sought to understand how host biology influences the composition of skin microbes, how skin microbes influence

  6. Primary Student-Teachers' Conceptual Understanding of the Greenhouse Effect: A mixed method study (United States)

    Ratinen, Ilkka Johannes


    The greenhouse effect is a reasonably complex scientific phenomenon which can be used as a model to examine students' conceptual understanding in science. Primary student-teachers' understanding of global environmental problems, such as climate change and ozone depletion, indicates that they have many misconceptions. The present mixed method study examines Finnish primary student-teachers' understanding of the greenhouse effect based on the results obtained via open-ended and closed-form questionnaires. The open-ended questionnaire considers primary student-teachers' spontaneous ideas about the greenhouse effect depicted by concept maps. The present study also uses statistical analysis to reveal respondents' conceptualization of the greenhouse effect. The concept maps and statistical analysis reveal that the primary student-teachers' factual knowledge and their conceptual understanding of the greenhouse effect are incomplete and even misleading. In the light of the results of the present study, proposals for modifying the instruction of climate change in science, especially in geography, are presented.

  7. Bernoulli's Principle: The Effects of Instruction on Young Children's Understanding of Flight. (United States)

    Fleege, Pamela O.; And Others

    This study examined the effects of hands-on instruction on young children's understanding of an aspect of flight, specifically Bernoulli's principle. First, 137 public school children, ages 5 through 8 years, were interviewed about their understanding of how an airplane flies. Two weeks later, the subjects participated in two hands-on…

  8. Improving Elementary School Students' Understanding of Historical Time: Effects of Teaching with "Timewise" (United States)

    de Groot-Reuvekamp, Marjan; Ros, Anje; van Boxtel, Carla


    The teaching of historical time is an important aspect in elementary school curricula. This study focuses on the effects of a curriculum intervention with "Timewise," a teaching approach developed to improve students' understanding of historical time using timelines as a basis with which students can develop their understanding of…

  9. The effect of Phet Simulation media for physics teacher candidate understanding on photoelectric effect concept

    Directory of Open Access Journals (Sweden)

    Supurwoko Supurwoko


    Full Text Available Indonesian new Curriculum for senior high school students required student-centered learning. One of the curriculum implementation constraint was the difficulty of providing learning media. PhET simulations media is one of the options that can help implementation of new curriculum on learning. However, the use of this media in Indonesia still needs to be studied comprehensively. The learning was conducted on students of physics education Study Program in sebelas maret university in 2013. The sample consisted of 62 students that was taking quantum physics course. The method that was used in the research was descriptive qualitative.  The method that was used in learning was demonstration’s method that used PhET media and accompanied by a question and answer and groups discussion. The data was collected using multiple choice test and interview through email. We found that any students still did not understand about photoelectric effect concept. They were confused when asked about the thick material and cross section of the targets as related with the regardless of electrons in the photoelectric effect event. Other than that, the concept of the waves as a particle and its relation with the kinetic energy of the electrons was not understood by most students.

  10. An efficient approach to understanding and predicting the effects of multiple task characteristics on performance. (United States)

    Richardson, Miles


    In ergonomics there is often a need to identify and predict the separate effects of multiple factors on performance. A cost-effective fractional factorial approach to understanding the relationship between task characteristics and task performance is presented. The method has been shown to provide sufficient independent variability to reveal and predict the effects of task characteristics on performance in two domains. The five steps outlined are: selection of performance measure, task characteristic identification, task design for user trials, data collection, regression model development and task characteristic analysis. The approach can be used for furthering knowledge of task performance, theoretical understanding, experimental control and prediction of task performance. Practitioner Summary: A cost-effective method to identify and predict the separate effects of multiple factors on performance is presented. The five steps allow a better understanding of task factors during the design process.

  11. Understanding the Greenhouse Effect by Embodiment - Analysing and Using Students' and Scientists' Conceptual Resources (United States)

    Niebert, Kai; Gropengießer, Harald


    Over the last 20 years, science education studies have reported that there are very different understandings among students of science regarding the key aspects of climate change. We used the cognitive linguistic framework of experientialism to shed new light on this valuable pool of studies to identify the conceptual resources of understanding climate change. In our study, we interviewed 35 secondary school students on their understanding of the greenhouse effect and analysed the conceptions of climate scientists as drawn from textbooks and research reports. We analysed all data by metaphor analysis and qualitative content analysis to gain insight into students' and scientists' resources for understanding. In our analysis, we found that students and scientists refer to the same schemata to understand the greenhouse effect. We categorised their conceptions into three different principles the conceptions are based on: warming by more input, warming by less output, and warming by a new equilibrium. By interrelating students' and scientists' conceptions, we identified the students' learning demand: First, our students were afforded with experiences regarding the interactions of electromagnetic radiation and CO2. Second, our students reflected about the experience-based schemata they use as source domains for metaphorical understanding of the greenhouse effect. By uncovering the-mostly unconscious-deployed schemata, we gave students access to their source domains. We implemented these teaching guidelines in interventions and evaluated them in teaching experiments to develop evidence-based and theory-guided learning activities on the greenhouse effect.

  12. Using Interactive Technology to Support Students' Understanding of the Greenhouse Effect and Global Warming (United States)

    Varma, Keisha; Linn, Marcia C.


    In this work, we examine middle school students' understanding of the greenhouse effect and global warming. We designed and refined a technology-enhanced curriculum module called "Global Warming: Virtual Earth". In the module activities, students conduct virtual experiments with a visualization of the greenhouse effect. They analyze data and draw…

  13. Effect of Technology Enhanced Conceptual Change Texts on Students' Understanding of Buoyant Force (United States)

    Ozkan, Gulbin; Selcuk, Gamze Sezgin


    In this study, the effect of technology enhanced conceptual change texts on elementary school students' understanding of buoyant force was investigated. The conceptual change texts (written forms) used in this study are proven for effectiveness and are enriched by using technology support in this study. These texts were tried out on two groups. A…

  14. Practical and effective management of libraries integrating case studies, general management theory and self-understanding

    CERN Document Server

    Moniz, Jr, Richard


    Aimed at library science students and librarians with newly assigned administrative duties the book is about improving one's thinking and decision making in a role as a library manager. Most librarians get very little exposure to management issues prior to finding themselves in a management role. Furthermore, most library science students do not expect that they will need to understand management yet they quickly find that there is a need to understand this perspective to be effective at almost any library job. Effective library management is about having some tools to make decisions (such as

  15. Effects of a Co-operative Learning Strategy on Ninth-Graders' Understanding of Human Nutrition. (United States)

    Soyibo, Kola; Evans, Hermel G.


    Looks at the effect of teaching strategies on a group's attitude toward biology and understanding human nutrition. Used an experimental group that participated in co-operative learning and a control group taught using the lecture method. Involves ninth graders (n=156) from two high schools in Jamaica. (Author/YDS)

  16. Effects of Representation Sequences and Spatial Ability on Students' Scientific Understandings about the Mechanism of Breathing (United States)

    Wu, Hsin-Kai; Lin, Yu-Fen; Hsu, Ying-Shao


    The purpose of this study was to investigate the effects of representation sequences and spatial ability on students' scientific understandings about the mechanism of breathing in human beings. 130 seventh graders were assigned to two groups with different sequential combinations of static and dynamic representations: SD group (i.e., viewing…

  17. The Effect of Modeling and Visualization Resources on Student Understanding of Physical Hydrology (United States)

    Marshall, Jilll A.; Castillo, Adam J.; Cardenas, M. Bayani


    We investigated the effect of modeling and visualization resources on upper-division, undergraduate and graduate students' performance on an open-ended assessment of their understanding of physical hydrology. The students were enrolled in one of five sections of a physical hydrology course. In two of the sections, students completed homework…

  18. Understanding Crowdsourcing: Effects of motivation and rewards on participation and performance in voluntary online activities

    NARCIS (Netherlands)

    W.A.M. Borst (Irma)


    textabstractCompanies increasingly outsource activities to volunteers that they approach via an open call on the internet. The phenomenon is called ‘crowdsourcing’. For an effective use of crowdsourcing it is important to understand what motivated these online volunteers and what is the influence of

  19. The Effect of Using the History of Sciences on Conceptual Understanding and Intrinsic Motivation (United States)

    Blizak, Djanette


    This study investigates the effect of using the history of science in teaching geometrical optics on the motivation and conceptual understanding of first year university students. For this purpose, 54 students were randomly selected, then divided into two groups: the experimental group was taught by using history of science before traditional…

  20. Effect of Cooperative Learning Strategies on Students' Understanding of Concepts in Electrochemistry (United States)

    Acar, Burcin; Tarhan, Leman


    The present study was conducted to investigate the degree of effectiveness of cooperative learning instruction over a traditional approach on 11th grade students' understanding of electrochemistry. The study involved forty-one 11th grade students from two science classes with the same teacher. To determine students' misconceptions concerning…

  1. Effectiveness of Instruction Based on the Constructivist Approach on Understanding Chemical Equilibrium Concepts (United States)

    Akkus, Huseyin; Kadayifci, Hakki; Atasoy, Basri; Geban, Omer


    The purpose of this study was to identify misconceptions concerning chemical equilibrium concepts and to investigate the effectiveness of instruction based on the constructivist approach over traditional instruction on 10th grade students' understanding of chemical equilibrium concepts. The subjects of this study consisted of 71 10th grade…

  2. Effect of Conceptual Change Approach on Students' Understanding of Reaction Rate Concepts (United States)

    Kingir, Sevgi; Geban, Omer


    The purpose of the present study was to investigate the effect of conceptual change text oriented instruction compared to traditional instruction on 10th grade students' understanding of reaction rate concepts. 45 students from two classes of the same teacher in a public high school participated in this study. Students in the experimental group…

  3. Understanding the effectiveness of vegetated streamside management zones for protecting water quality (Chapter 5) (United States)

    Philip Smethurst; Kevin Petrone; Daniel Neary


    We set out to improve understanding of the effectiveness of streamside management zones (SMZs) for protecting water quality in landscapes dominated by agriculture. We conducted a paired-catchment experiment that included water quality monitoring before and after the establishment of a forest plantation as an SMZ on cleared farmland that was used for extensive grazing....

  4. Student Teacher Understanding of the Greenhouse Effect, Ozone Layer Depletion, and Acid Rain. (United States)

    Dove, Jane


    Describes the results of a survey designed to ascertain details of student teachers' knowledge and misconceptions about the greenhouse effect, acid rain, and ozone layer depletion. Results indicate familiarity with the issues but little understanding of the concepts involved and many commonly held misconceptions. (JRH)

  5. The Effects of Swedish Knife Model on Students' Understanding of the Digestive System (United States)

    Cerrah Ozsevgec, Lale; Artun, Huseyin; Unal, Melike


    This study was designed to examine the effect of Swedish Knife Model on students' understanding of digestive system. A simple experimental design (pretest-treatment-posttest) was used in the study and internal comparison of the results of the one group was made. The sample consisted of 40 7th grade Turkish students whose ages range from 13 to 15.…

  6. Exploring the Effectiveness of a Measurement Error Tutorial in Helping Teachers Understand Score Report Results (United States)

    Zapata-Rivera, Diego; Zwick, Rebecca; Vezzu, Margaret


    The goal of this study was to explore the effectiveness of a short web-based tutorial in helping teachers to better understand the portrayal of measurement error in test score reports. The short video tutorial included both verbal and graphical representations of measurement error. Results showed a significant difference in comprehension scores…

  7. Effectiveness of Understanding Relations between Community, Home, and School for Future Educators (United States)

    Peralta, Claudia; Galaviz, Sonia


    As educators committed to preparing teachers to teach effectively across differences and in ways that actively resist perpetuating injustices, we have found that designing opportunities that take teachers into the children's community is the best way to learn about the cultural wealth existing in homes and to understand the importance of including…

  8. Encouraging a "Romantic Understanding" of Science: The Effect of the Nikola Tesla Story (United States)

    Hadzigeorgiou, Yannis; Klassen, Stephen; Klassen, Cathrine Froese


    The purpose of this paper is to discuss and apply the notion of romantic understanding by outlining its features and its potential role in science education, to identify its features in the story of Nikola Tesla, and to describe an empirical study conducted to determine the effect of telling such a story to Grade 9 students. Elaborated features of…

  9. The Effect of Enriched Learning Environments on the Conceptual Understanding of Students: "The Erosion and Landslide" (United States)

    Çoruhlu, Tülay Senel; Bilgin, Arzu Kirman; Nas, Sibel Er


    The aim of this research is to investigate the effect of enriched learning environments which have been developed in the framework of the "erosion and landslide" concepts on the conceptual understanding of students. A quasi-experimental method has been used in this research. The sample consists of 40 students. 5th grade students (aged…

  10. The Effect of a Conceptual Change Approach on Understanding of Students' Chemical Equilibrium Concepts (United States)

    Atasoy, Basri; Akkus, Huseyin; Kadayifci, Hakki


    The purpose of this study was to compare the effects of a conceptual change approach over traditional instruction on tenth-grade students' conceptual achievement in understanding chemical equilibrium. The study was conducted in two classes of the same teacher with participation of a total of 44 tenth-grade students. In this study, a…

  11. The Effect of Herrmann Whole Brain Teaching Method on Students' Understanding of Simple Electric Circuits (United States)

    Bawaneh, Ali Khalid Ali; Nurulazam Md Zain, Ahmad; Salmiza, Saleh


    The purpose of this study was to investigate the effect of Herrmann Whole Brain Teaching Method over conventional teaching method on eight graders in their understanding of simple electric circuits in Jordan. Participants (N = 273 students; M = 139, F = 134) were randomly selected from Bani Kenanah region-North of Jordan and randomly assigned to…

  12. Effect of science magic applied in interactive lecture demonstrations on conceptual understanding (United States)

    Taufiq, Muhammad; Suhandi, Andi; Liliawati, Winny


    Research about the application of science magic-assisting Interactive Lecture Demonstrations (ILD) has been conducted. This research is aimed at providing description about the comparison of the improvement of the conceptual understanding of lesson on pressure between students who receive physics lesson through science magic-assisting ILD and students who receive physics lesson through ILD without science magic. This research used a quasi-experiment methods with Control Group Pretest-Posttest Design. The subject of the research is all students of class VIII in one of MTs (Islamic junior high school) in Pekalongan. Research samples were selected using random sampling technique. Data about students' conceptual understanding was collected using test instrument of conceptual understanding in the form of multiple choices. N-gain average calculation was performed in order to determine the improvement of students' conceptual understanding. The result of the research shows that conceptual understanding of students on lesson about pressure who received lesson with ILD using science magic is higher than students who received lesson with ILD without science magic . Therefore, the conclusion is that the application of science magic ILD is more effective to improve the conceptual understanding of lesson on pressure.

  13. Understanding Teacher Effectiveness: Significant State Data Capacity Is Required to Measure and Improve Teacher Effectiveness. Data for Action 2012 (United States)

    Data Quality Campaign, 2012


    States are increasingly focused on understanding and improving teacher effectiveness. There are several funding opportunities that incentivize states to use data to inform measurements of teacher effectiveness. Local, state, and federal efforts support using data to improve teacher preparation programs. Preparation programs seek "access to data…

  14. The effect of background music and song texts on the emotional understanding of children with autism. (United States)

    Katagiri, June


    The purpose of this study was to examine the effect of background music and song texts to teach emotional understanding to children with autism. Participants were 12 students (mean age 11.5 years) with a primary diagnosis of autism who were attending schools in Japan. Each participant was taught four emotions to decode and encode: happiness, sadness, anger, and fear by the counterbalanced treatment-order. The treatment consisted of the four conditions: (a) no contact control (NCC)--no purposeful teaching of the selected emotion, (b) contact control (CC)--teaching the selected emotion using verbal instructions alone, (c) background music (BM)--teaching the selected emotion by verbal instructions with background music representing the emotion, and singing songs (SS)--teaching the selected emotion by singing specially composed songs about the emotion. Participants were given a pretest and a posttest and received 8 individual sessions between these tests. The results indicated that all participants improved significantly in their understanding of the four selected emotions. Background music was significantly more effective than the other three conditions in improving participants' emotional understanding. The findings suggest that background music can be an effective tool to increase emotional understanding in children with autism, which is crucial to their social interactions.

  15. Effectiveness of Dry Cell Microscopic Simulation (DCMS) to Promote Conceptual Understanding about Battery (United States)

    Catur Wibowo, Firmanul; Suhandi, Andi; Rusdiana, Dadi; Samsudin, Achmad; Rahmi Darman, Dina; Faizin, M. Noor; Wiyanto; Supriyatman; Permanasari, Anna; Kaniawati, Ida; Setiawan, Wawan; Karyanto, Yudi; Linuwih, Suharto; Fatah, Abdul; Subali, Bambang; Hasani, Aceng; Hidayat, Sholeh


    Electricity is a concept that is abstract and difficult to see by eye directly, one example electric shock, but cannot see the movement of electric current so that students have difficulty by students. A computer simulation designed to improve the understanding of the concept of the workings of the dry cell (battery). This study was conducted to 82 students (aged 18-20 years) in the experimental group by learning to use the Dry Cell Microscopic Simulation (DCMS). The result shows the improving of students’ conceptual understanding scores from post test were statistically significantly of the workings of batteries. The implication using computer simulations designed to overcome the difficulties of conceptual understanding, can effectively help students in facilitating conceptual change.

  16. Photoelectric effect experiment for understanding the concept of quantization of radiation energy

    Directory of Open Access Journals (Sweden)

    Yeimy Gerardine Berrios Saavedra


    Full Text Available This study forms part of research on the teaching of physics. The question that directed it was: How a proposed classroom, based on the photoelectric effect experiment helps pres-service teachers of physics of the Universidad Pedagógica Nacional to expand their understanding of the concept of quantization energy of radiation? The construction of the theoretical framework developed on the one hand, with scientific ideas about the quantization of energy, and moreover, with the educational proposals of teaching for understanding. This pedagogical approach was guided by the investigative gaze of the study methodology based on design, taking as main element the use of learning tools such as the task to Predict, Experiment and Explain (PEE. It was found that these tasks fomented the initial understandings of students about the concept, while they enriched and transformed progressively their models and scientific ideas, promoting aspects of scientific work in developing curiosity, imagination and motivation.

  17. Physical models have gender‐specific effects on student understanding of protein structure–function relationships (United States)

    Harris, Michelle A.; Chang, Wesley S.; Dent, Erik W.; Nordheim, Erik V.; Franzen, Margaret A.


    Abstract Understanding how basic structural units influence function is identified as a foundational/core concept for undergraduate biological and biochemical literacy. It is essential for students to understand this concept at all size scales, but it is often more difficult for students to understand structure–function relationships at the molecular level, which they cannot as effectively visualize. Students need to develop accurate, 3‐dimensional mental models of biomolecules to understand how biomolecular structure affects cellular functions at the molecular level, yet most traditional curricular tools such as textbooks include only 2‐dimensional representations. We used a controlled, backward design approach to investigate how hand‐held physical molecular model use affected students' ability to logically predict structure–function relationships. Brief (one class period) physical model use increased quiz score for females, whereas there was no significant increase in score for males using physical models. Females also self‐reported higher learning gains in their understanding of context‐specific protein function. Gender differences in spatial visualization may explain the gender‐specific benefits of physical model use observed. © 2016 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 44(4):326–335, 2016. PMID:26923186

  18. Physical models have gender-specific effects on student understanding of protein structure-function relationships. (United States)

    Forbes-Lorman, Robin M; Harris, Michelle A; Chang, Wesley S; Dent, Erik W; Nordheim, Erik V; Franzen, Margaret A


    Understanding how basic structural units influence function is identified as a foundational/core concept for undergraduate biological and biochemical literacy. It is essential for students to understand this concept at all size scales, but it is often more difficult for students to understand structure-function relationships at the molecular level, which they cannot as effectively visualize. Students need to develop accurate, 3-dimensional mental models of biomolecules to understand how biomolecular structure affects cellular functions at the molecular level, yet most traditional curricular tools such as textbooks include only 2-dimensional representations. We used a controlled, backward design approach to investigate how hand-held physical molecular model use affected students' ability to logically predict structure-function relationships. Brief (one class period) physical model use increased quiz score for females, whereas there was no significant increase in score for males using physical models. Females also self-reported higher learning gains in their understanding of context-specific protein function. Gender differences in spatial visualization may explain the gender-specific benefits of physical model use observed. © 2016 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 44(4):326-335, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  19. Effect of a Diagram on Primary Students' Understanding About Electric Circuits (United States)

    Preston, Christine Margaret


    This article reports on the effect of using a diagram to develop primary students' conceptual understanding about electric circuits. Diagrammatic representations of electric circuits are used for teaching and assessment despite the absence of research on their pedagogical effectiveness with young learners. Individual interviews were used to closely analyse Years 3 and 5 (8-11-year-old) students' explanations about electric circuits. Data was collected from 20 students in the same school providing pre-, post- and delayed post-test dialogue. Students' thinking about electric circuits and changes in their explanations provide insights into the role of diagrams in understanding science concepts. Findings indicate that diagram interaction positively enhanced understanding, challenged non-scientific views and promoted scientific models of electric circuits. Differences in students' understanding about electric circuits were influenced by prior knowledge, meta-conceptual awareness and diagram conventions including a stylistic feature of the diagram used. A significant finding that students' conceptual models of electric circuits were energy rather than current based has implications for electricity instruction at the primary level.

  20. Informing people about radiation risks: a review of obstacles to public understanding and effective risk communication

    International Nuclear Information System (INIS)

    Covello, V.T.


    This paper reviews the literature on informing people about radiation risks. The paper focuses on obstacles to public understanding and effective risk communication. The paper concludes with a set of guidelines for communicating information about radiation risks to the public. The paper also includes an appendix that reviews the literature on one of the most important tools for communicating information about radiation risks: risk comparisons

  1. Understanding treatment effect mechanisms of the CAMBRA randomized trial in reducing caries increment


    Cheng, J; Chaffee, BW; Cheng, NF; Gansky, SA; Featherstone, JDB


    © International & American Associations for Dental Research 2014. The Caries Management By Risk Assessment (CAMBRA) randomized controlled trial showed that an intervention featuring combined antibacterial and fluoride therapy significantly reduced bacterial load and suggested reduced caries increment in adults with 1 to 7 baseline cavitated teeth. While trial results speak to the overall effectiveness of an intervention, insight can be gained from understanding the mechanism by which an int...

  2. Middle-School Understanding of the Greenhouse Effect using a NetLogo Computer Model (United States)

    Schultz, L.; Koons, P. O.; Schauffler, M.


    We investigated the effectiveness of a freely available agent based, modeling program as a learning tool for seventh and eighth grade students to explore the greenhouse effect without added curriculum. The investigation was conducted at two Maine middle-schools with 136 seventh-grade students and 11 eighth-grade students in eight classes. Students were given a pre-test that consisted of a concept map, a free-response question, and multiple-choice questions about how the greenhouse effect influences the Earth's temperature. The computer model simulates the greenhouse effect and allows students to manipulate atmospheric and surface conditions to observe the effects on the Earth’s temperature. Students explored the Greenhouse Effect model for approximately twenty minutes with only two focus questions for guidance. After the exploration period, students were given a post-test that was identical to the pre-test. Parametric post-test analysis of the assessments indicated middle-school students gained in their understanding about how the greenhouse effect influences the Earth's temperature after exploring the computer model for approximately twenty minutes. The magnitude of the changes in pre- and post-test concept map and free-response scores were small (average free-response post-test score of 7.0) compared to an expert's score (48), indicating that students understood only a few of the system relationships. While students gained in their understanding about the greenhouse effect, there was evidence that students held onto their misconceptions that (1) carbon dioxide in the atmosphere deteriorates the ozone layer, (2) the greenhouse effect is a result of humans burning fossil fuels, and (3) infrared and visible light have similar behaviors with greenhouse gases. We recommend using the Greenhouse Effect computer model with guided inquiry to focus students’ investigations on the system relationships in the model.

  3. Understanding peer effects - On the nature, estimation and channels of peer effects

    NARCIS (Netherlands)

    Feld, J.F.; Zölitz, U.N.


    This paper estimates peer effects in a university context where students are randomly assigned to sections. While students benefit from better peers on average, low-achieving students are harmed by high-achieving peers. Analyzing students’ course evaluations suggests that peer effects are driven by

  4. Understanding peer effects : on the nature, estimation and channels of peer effects

    NARCIS (Netherlands)

    Feld, J.F.; Zölitz, U.N.


    This paper estimates peer effects in a university context where students are randomly assigned to sections. While students benefit from better peers on average, lowachieving students are harmed by high-achieving peers. Analyzing students’ course evaluations suggests that peer effects are driven by

  5. Analysis of the effect of specific vocabulary instruction on high school chemistry students' knowledge and understanding (United States)

    Labrosse, Peggy

    The purpose of this study was to analyze the effects of specific vocabulary instruction on high school chemistry students' knowledge and understanding. Students might be able to formally recite a definition for a term without actually having understood the meaning of the term and its connection to other terms or to related concepts. Researchers (Cassels & Johnstone, 1983; Gabel, 1999; Johnstone, 1991) have been studying the difficulty students have in learning science, particularly chemistry. Gabel (1999) suggests that, "while research into misconceptions (also known as alternative conceptions) and problem-solving has dominated the field for the past 25 years, we are no closer to a solution that would improve the teaching and learning of chemistry" (P. 549). Gabel (1999) relates the difficulty in learning chemistry to use of language. She refers to student difficulty both with words that have more than one meaning in English and with words that are used to mean one idea in chemistry and another idea in every day language. The Frayer Model, a research-based teaching strategy, is a graphic organizer which students use to create meaningful definitions for terms in context (Frayer, Frederick, & Klausmeier, 1969). It was used as the treatment---the specific vocabulary instruction---in this research study. The researcher collected and analyzed data to answer three research questions that focused on the effect of using the Frayer model (a graphic organizer) on high school students' knowledge and understanding of academic language used in chemistry. The research took place in a New England high school. Four intact chemistry classes provided the student participants; two classes were assigned to the treatment group (TG) and two classes were assigned to the control group (CG). The TG received vocabulary instruction on 14 chosen terms using the Frayer Model. The CG received traditional vocabulary instruction with no special attention to the 14 terms selected for this study

  6. Integrated Experimental and Computational Approach to Understand the Effects of Heavy Ion Radiation on Skin Homeostasis.

    Energy Technology Data Exchange (ETDEWEB)

    von Neubeck, Claere; Shankaran, Harish; Geniza, Matthew; Kauer, Paula M.; Robinson, Robert J.; Chrisler, William B.; Sowa, Marianne B.


    The effects of low dose high linear energy transfer (LET) radiation on human health are of concern for both space and clinical exposures. As epidemiological data for such radiation exposures are scarce for making relevant predictions, we need to understand the mechanism of response especially in normal tissues. Our objective here is to understand the effects of heavy ion radiation on tissue homeostasis in a realistic model system. Towards this end, we exposed an in vitro three dimensional skin equivalent to low fluences of Neon (Ne) ions (300 MeV/u), and determined the differentiation profile as a function of time following exposure using immunohistochemistry. We found that Ne ion exposures resulted in transient increases in the tissue regions expressing the differentiation markers keratin 10, and filaggrin, and more subtle time-dependent effects on the number of basal cells in the epidermis. We analyzed the data using a mathematical model of the skin equivalent, to quantify the effect of radiation on cell proliferation and differentiation. The agent-based mathematical model for the epidermal layer treats the epidermis as a collection of heterogeneous cell types with different proliferation/differentiation properties. We obtained model parameters from the literature where available, and calibrated the unknown parameters to match the observed properties in unirradiated skin. We then used the model to rigorously examine alternate hypotheses regarding the effects of high LET radiation on the tissue. Our analysis indicates that Ne ion exposures induce rapid, but transient, changes in cell division, differentiation and proliferation. We have validated the modeling results by histology and quantitative reverse transcription polymerase chain reaction (qRT-PCR). The integrated approach presented here can be used as a general framework to understand the responses of multicellular systems, and can be adapted to other epithelial tissues.

  7. Hierarchical Theoretical Methods for Understanding and Predicting Anisotropic Thermal Transport Release in Rocket Propellant Formulations (United States)


    Mass fraction: liquid RDX(blue), intermediate( red), gas phase( green) In this case we tested the concept of using mass fractions, defined by binning...consideration of phase changes including solid-state polymorphism and transitions among solid, liquid, and gas ; and tracking of key species...anisotropic than that for related organic crystalline explosives . Finite-size effects were investigated and found to be minimal,1,6 indicating that

  8. Understanding and tuning the quantum-confinement effect and edge magnetism in zigzag graphene nanoribbon. (United States)

    Huang, Liang Feng; Zhang, Guo Ren; Zheng, Xiao Hong; Gong, Peng Lai; Cao, Teng Fei; Zeng, Zhi


    The electronic structure of zigzag graphene nanoribbon (ZGNR) is studied using density functional theory. The mechanisms underlying the quantum-confinement effect and edge magnetism in ZGNR are systematically investigated by combining the simulated results and some useful analytic models. The quantum-confinement effect and the inter-edge superexchange interaction can be tuned by varying the ribbon width, and the spin polarization and direct exchange splitting of the edge states can be tuned by varying their electronic occupations. The two edges of ZGNR can be equally or unequally tuned by charge doping or Li adsorption, respectively. The Li adatom has a site-selective adsorption on ZGNR, and it is a nondestructive and memorable approach to effectively modify the edge states in ZGNR. These systematic understanding and effective tuning of ZGNR electronics presented in this work are helpful for further investigation and application of ZGNR and other magnetic graphene systems.

  9. "There is a chain of connections": using syndemics theory to understand HIV treatment side effects. (United States)

    Gagnon, Marilou


    Side effects are central to the experience of living longer with HIV but rarely have they been studied alone. Unlike other aspects of that experience, like quality of life, treatment adherence, chronicity, episodic disability, aging, health, and viral load suppression, side effects have not benefited from the same level of empirical and theoretical engagement from qualitative researchers. In this paper, we draw on syndemics theory and 50 qualitative interviews to better understand the experience of HIV treatment side effects. Two main categories were identified in the data: side effects as a product and side effects as a risk factor. The first category suggests that side effects are not just the product of taking antiretroviral drugs. They are also the product of particular conditions and tend to cluster with other health problems. The second category puts forward the idea that side effects can act as a syndemic risk factor by exposing PLWH to a greater risk of developing health problems and creating conditions in which psychosocial issues are more likely to emerge. The paper concludes by calling for more research on the complex nature of side effects and for the development of comprehensive approaches for the assessment and management of side effects.

  10. The Effect of Brain Based Learning on Second Grade Junior Students’ Mathematics Conceptual Understanding on Polyhedron

    Directory of Open Access Journals (Sweden)

    I Made Suarsana


    Full Text Available The aim of this study is to examine the effect of Brain Based Learning on second grade junior high school students’ conceptual understanding on polyhedron. This study was conducted by using post-test only control group quasi-experimental design. The subjects of this study were 148 students that divided into three classes. Two classes were taken as sample by using cluster random sampling technique. One of the classes was randomly selected as an experimental group and the other as control group. There were 48 students in experimental group and 51 students in control group. The data were collected with post-test which contained mathematical conceptual understanding on fractions. The post-test consisted of 8 essay question types.  The normality and variance homogeny test result showed that the scores are normally distributed and have no difference in variance. The data were analyzed by using one tailed t-test with significance level of 5%. The result of data analysis revealed that the value of t-test = 6,7096 greater than t-table = 1,987, therefore; the null hypothesis is rejected. There is positive effect of of Brain Based Learning on second grade junior students’ conceptual understanding in polyhedron.

  11. Effective spacetime understanding emergence in effective field theory and quantum gravity

    CERN Document Server

    Crowther, Karen


    This book discusses the notion that quantum gravity may represent the "breakdown" of spacetime at extremely high energy scales. If spacetime does not exist at the fundamental level, then it has to be considered "emergent", in other words an effective structure, valid at low energy scales. The author develops a conception of emergence appropriate to effective theories in physics, and shows how it applies (or could apply) in various approaches to quantum gravity, including condensed matter approaches, discrete approaches, and loop quantum gravity.

  12. Understanding of radiation effect on sink in aluminum base structure materials

    International Nuclear Information System (INIS)

    Choi, Sang Il; Kim, Ji Hyun


    In case of aluminum, a slightly different approach is needed for the evaluation of radiation damage. Unlikely other structure materials such as zirconium alloy and iron based alloy, aluminum generate not only matrix defect but also much transmutation. Quantitative analysis of radiation damage of aluminum have been done in two research method. First research method is calculation of radiation damage quantity in the matrix. In this research, quantity of transmutation and matrix damage are evaluated by KMC simulation from ENDF database of IAEA. Most recently, radiation damage such as defect and transmutation are calculated in the MNSR reactor environment. The second research method is evaluation of sink morphology change by irradiation, which research method focus on accumulating behavior of radiation defects. Matrix defect and transmutation are clustering or dissolved by thermal diffusion and energy statue. These clustering defect such as dislocation loop, void and bubble directly affect mechanical properties. In this research area, it is hard to using deterministic method because it should describe envious and various reaction module in detail. However, in case of probabilistic method, it could be explained without detail reaction module. Most recently, there was KMC modeling about vacancy and helium cluster. From this cluster modeling, transmutation is quantitatively analyzed. After that cluster effect on swelling are explained. Unfortunately, silicon, which is another transmutation of aluminum, effect are neglected. Also primary cluster, which is generated by cascade, effect are neglected. For the fundamental understanding of radiation effect on aluminum alloy, it is needed that more various parameter such as alloy element and primary cluster effect should be researched. However, until now there was not general modeling which include alloy element and primary cluster effect on aluminum. However, there was not specified KMC platform for the quantitative analysis of

  13. Teaching Teaching & Understanding Understanding

    DEFF Research Database (Denmark)


    "Teaching Teaching & Understanding Understanding" is a 19-minute award-winning short-film about teaching at university and higher-level educational institutions. It is based on the "Constructive Alignment" theory developed by Prof. John Biggs. The film delivers a foundation for understanding what...

  14. Effects of Error Messages on a Student's Ability to Understand and Fix Programming Errors (United States)

    Beejady Murthy Kadekar, Harsha Kadekar

    Assemblers and compilers provide feedback to a programmer in the form of error messages. These error messages become input to the debugging model of the programmer. For the programmer to fix an error, they should first locate the error in the program, understand what is causing that error, and finally resolve that error. Error messages play an important role in all three stages of fixing of errors. This thesis studies the effects of error messages in the context of teaching programming. Given an error message, this work investigates how it effects student's way of 1) understanding the error, and 2) fixing the error. As part of the study, three error message types were developed--Default, Link and Example, to better understand the effects of error messages. The Default type provides an assembler-centric single line error message, the Link type provides a program-centric detailed error description with a hyperlink for more information, and the Example type provides a program centric detailed error description with a relevant example. All these error message types were developed for assembly language programming. A think aloud programming exercise was conducted as part of the study to capture the student programmer's knowledge model. Different codes were developed to analyze the data collected as part of think aloud exercise. After transcribing, coding, and analyzing the data, it was found that the Link type of error message helped to fix the error in less time and with fewer steps. Among the three types, the Link type of error message also resulted in a significantly higher ratio of correct to incorrect steps taken by the programmer to fix the error.

  15. Understanding semantics

    DEFF Research Database (Denmark)

    Thrane, Torben


    Understanding natural language is a cognitive, information-driven process. Discussing some of the consequences of this fact, the paper offers a novel look at the semantic effect of lexical nouns and the identification of reference types....

  16. Effects of Structural Transparency in System Dynamics Simulators on Performance and Understanding

    Directory of Open Access Journals (Sweden)

    Birgit Kopainsky


    Full Text Available Prior exploration is an instructional strategy that has improved performance and understanding in system-dynamics-based simulators, but only to a limited degree. This study investigates whether model transparency, that is, showing users the internal structure of models, can extend the prior exploration strategy and improve learning even more. In an experimental study, participants in a web-based simulation learned about and managed a small developing nation. All participants were provided the prior exploration strategy but only half received prior exploration embedded in a structure-behavior diagram intended to make the underlying model’s structure more transparent. Participants provided with the more transparent strategy demonstrated better understanding of the underlying model. Their performance, however, was the equivalent to those in the less transparent condition. Combined with previous studies, our results suggest that while prior exploration is a beneficial strategy for both performance and understanding, making the model structure transparent with structure-behavior diagrams is more limited in its effect.

  17. Understanding and Predicting Effect of Sodium Exposure on Microstructure of Grade 91 Steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meimei [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Chen, Wei-Ying [Argonne National Lab. (ANL), Argonne, IL (United States)


    This report provides an update on the understanding of the effect of sodium exposures on microstructure and tensile properties of Grade 91 (G91) steel in support of the design and operation of G91 components in sodium-cooled fast reactors (SFRs). The report is a Level 3 deliverable in FY17 (M3AT-17AN1602018), under the Work Package AT-17AN160201, “SFR Materials Testing” performed by the Argonne National Laboratory (ANL), as part of the Advanced Reactor Technologies Program.

  18. PCI compliance understand and implement effective PCI data security standard compliance

    CERN Document Server

    Williams, Branden R


    The credit card industry established the PCI Data Security Standards to provide a minimum standard for how vendors should protect data to ensure it is not stolen by fraudsters. PCI Compliance, 3e, provides the information readers need to understand the current PCI Data Security standards, which have recently been updated to version 2.0, and how to effectively implement security within your company to be compliant with the credit card industry guidelines and protect sensitive and personally identifiable information. Security breaches continue to occur on a regular basis, affecting millions of

  19. The Effect of Simulated Interaural Frequency Mismatch on Speech Understanding and Spatial Release From Masking. (United States)

    Goupell, Matthew J; Stoelb, Corey A; Kan, Alan; Litovsky, Ruth Y


    The binaural-hearing system interaurally compares inputs, which underlies the ability to localize sound sources and to better understand speech in complex acoustic environments. Cochlear implants (CIs) are provided in both ears to increase binaural-hearing benefits; however, bilateral CI users continue to struggle with understanding speech in the presence of interfering sounds and do not achieve the same level of spatial release from masking (SRM) as normal-hearing listeners. One reason for diminished SRM in CI users could be that the electrode arrays are inserted at different depths in each ear, which would cause an interaural frequency mismatch. Because interaural frequency mismatch diminishes the salience of interaural differences for relatively simple stimuli, it may also diminish binaural benefits for spectral-temporally complex stimuli like speech. This study evaluated the effect of simulated frequency-to-place mismatch on speech understanding and SRM. Eleven normal-hearing listeners were tested on a speech understanding task. There was a female target talker who spoke five-word sentences from a closed set of words. There were two interfering male talkers who spoke unrelated sentences. Nonindividualized head-related transfer functions were used to simulate a virtual auditory space. The target was presented from the front (0°), and the interfering speech was either presented from the front (colocated) or from 90° to the right (spatially separated). Stimuli were then processed by an eight-channel vocoder with tonal carriers to simulate aspects of listening through a CI. Frequency-to-place mismatch ("shift") was introduced by increasing the center frequency of the synthesis filters compared with the corresponding analysis filters. Speech understanding was measured for different shifts (0, 3, 4.5, and 6 mm) and target-to-masker ratios (TMRs: +10 to -10 dB). SRM was calculated as the difference in the percentage of correct words for the colocated and separated

  20. Effects of Understanding the Problem Statement on Students' Mathematical Performance of Senior Secondary Schools in Borno State, Nigeria (United States)

    Banus, Abdullahi Audu; Dauda, Bala


    The study assessed the relative effectiveness of understanding the problem statement on students' mathematical behaviours in Borno State Secondary Schools. The study was guided by an objective: to determine the Understanding the problem statement on student's performance in senior secondary school and a null hypothesis: there was no effect of…

  1. Improving Students' Conceptual Understanding of the Greenhouse Effect Using Theory-Based Learning Materials that Promote Deep Learning (United States)

    Reinfried, Sibylle; Aeschbacher, Urs; Rottermann, Benno


    Students' everyday ideas of the greenhouse effect are difficult to change. Environmental education faces the challenge of developing instructional settings that foster students' conceptual understanding concept of the greenhouse effect in order to understand global warming. To facilitate students' conceptual development with regard to the…

  2. Children's experiences of food insecurity can assist in understanding its effect on their well-being. (United States)

    Connell, Carol L; Lofton, Kristi L; Yadrick, Kathy; Rehner, Timothy A


    An understanding of the experience of food insecurity by children is essential for better measurement and assessment of its effect on children's nutritional, physical, and mental health. Our qualitative study explored children's perceptions of household food insecurity to identify these perceptions and to use them to establish components of children's food insecurity experience. Children (n = 32; 11-16 y old) from after school programs and a middle school in low-income areas participated in individual semistructured in-depth interviews. Children as young as 11 y could describe behaviors associated with food insecurity if they had experienced it directly or indirectly. Using the constant comparative method of qualitative data analysis, children's descriptions of behaviors associated with food insecurity were categorized into components of quantity of food, quality of food, psychological aspects, and social aspects described in the household food insecurity literature. Aspects of quantity included eating less than usual and eating more or eating fast when food was available. Aspects of quality included use of a few kinds of low-cost foods. Psychological aspects included worry/anxiety/sadness about the family food supply, feelings of having no choice in the foods eaten, shame/fear of being labeled as poor, and attempts to shield children. Social aspects of food insecurity centered on using social networks to acquire food or money and social exclusion. These results provide valuable information in understanding the effect of food insecurity on children's well-being especially relative to the social and emotional aspects of well-being.

  3. Understanding reliance on automation: effects of error type, error distribution, age and experience (United States)

    Sanchez, Julian; Rogers, Wendy A.; Fisk, Arthur D.; Rovira, Ericka


    An obstacle detection task supported by “imperfect” automation was used with the goal of understanding the effects of automation error types and age on automation reliance. Sixty younger and sixty older adults interacted with a multi-task simulation of an agricultural vehicle (i.e. a virtual harvesting combine). The simulator included an obstacle detection task and a fully manual tracking task. A micro-level analysis provided insight into the way reliance patterns change over time. The results indicated that there are distinct patterns of reliance that develop as a function of error type. A prevalence of automation false alarms led participants to under-rely on the automation during alarm states while over relying on it during non-alarms states. Conversely, a prevalence of automation misses led participants to over-rely on automated alarms and under-rely on the automation during non-alarm states. Older adults adjusted their behavior according to the characteristics of the automation similarly to younger adults, although it took them longer to do so. The results of this study suggest the relationship between automation reliability and reliance depends on the prevalence of specific errors and on the state of the system. Understanding the effects of automation detection criterion settings on human-automation interaction can help designers of automated systems make predictions about human behavior and system performance as a function of the characteristics of the automation. PMID:25642142

  4. Toward understanding the thermodynamics of TALSPEAK process. Medium effects on actinide complexation

    Energy Technology Data Exchange (ETDEWEB)

    Peter R Zalupski; Leigh R Martin; Ken Nash; Yoshinobu Nakamura; Masahiko Yamamoto


    The ingenious combination of lactate and diethylenetriamine-N,N,N’,N”,N”-pentaacetic acid (DTPA) as an aqueous actinide-complexing medium forms the basis of the successful separation of americium and curium from lanthanides known as the TALSPEAK process. While numerous reports in the prior literature have focused on the optimization of this solvent extraction system, considerably less attention has been devoted to the understanding of the basic thermodynamic features of the complex fluids responsible for the separation. The available thermochemical information of both lactate and DTPA protonation and metal complexation reactions are representative of the behavior of these ions under idealized conditions. Our previous studies of medium effects on lactate protonation suggest that significant departures from the speciation predicted based on reported thermodynamic values should be expected in the TALSPEAK aqueous environment. Thermodynamic parameters describing the separation chemistry of this process thus require further examination at conditions significantly removed from conventional ideal systems commonly employed in fundamental solution chemistry. Such thermodynamic characterization is the key to predictive modelling of TALSPEAK. Improved understanding will, in principle, allow process technologists to more efficiently respond to off-normal conditions during large scale process operation. In this report, the results of calorimetric and potentiometric investigations of the effects of aqueous electrolytes on the thermodynamic parameters for lactate protonation and lactate complexation of americium and neodymium will be presented. Studies on the lactate protonation equilibrium will clearly illustrate distinct thermodynamic variations between strong electrolyte aqueous systems and buffered lactate environment.

  5. The Effects of Conceptual Understanding Procedures (CUPs) Towards Critical Thinking Skills of Senior High School Students (United States)

    Sukaesih, S.; Sutrisno


    The aim of the study was to analyse the effect of the application of Conceptual Understanding Procedures (CUPs) learning to the students’ critical thinking skills in the matter of categorisaed in SMA Negeri 1 Larangan. This study was quasi-experimental design using nonequivalent control group design. The population in this study was entire class X. The samples that were taken by convenience sampling were class X MIA 1 and X MIA 2. Primary data in the study was the student’s critical thinking skills, which was supported by student activity, the level of adherence to the CUPs learning model, student opinion and teacher opinion. N-gain test results showed that the students’ critical thinking skills of experimental class increased by 89.32%, while the control group increased by 57.14%. Activity grade of experimental class with an average value of 72.37 was better than that of the control class with an average of only 22.69 student and teacher opinions to the learning were excellegoodnt. Based on this study concluded that the model of Conceptual Understanding Procedures (CUPs) had an effect on the student’s critical thinking skills in the matter of protest in SMA Negeri 1 Larangan.

  6. Understanding the Doppler effect by analysing spectrograms of the sound of a passing vehicle (United States)

    Lubyako, Dmitry; Martinez-Piedra, Gordon; Ushenin, Arthur; Denvir, Patrick; Dunlop, John; Hall, Alex; Le Roux, Gus; van Someren, Laurence; Weinberger, Harvey


    The purpose of this paper is to demonstrate how the Doppler effect can be analysed to deduce information about a moving source of sound waves. Specifically, we find the speed of a car and the distance of its closest approach to an observer using sound recordings from smartphones. A key focus of this paper is how this can be achieved in a classroom, both theoretically and experimentally, to deepen students’ understanding of the Doppler effect. Included are our own experimental data (48 sound recordings) to allow others to reproduce the analysis, if they cannot repeat the whole experiment themselves. In addition to its educational purpose, this paper examines the percentage errors in our results. This enabled us to determine sources of error, allowing those conducting similar future investigations to optimize their accuracy.

  7. Understanding of latent tuberculosis, its treatment and treatment side effects in immigrant and refugee patients. (United States)

    Butcher, Katie; Biggs, Beverley-Ann; Leder, Karin; Lemoh, Chris; O'Brien, Daniel; Marshall, Caroline


    Isoniazid treatment of latent tuberculosis infection (LTBI) is commonly prescribed in refugees and immigrants. We aimed to assess understanding of information provided about LTBI, its treatment and potential side effects. A questionnaire was administered in clinics at a tertiary hospital. Total Knowledge (TKS) and Total Side Effect Scores (TSES) were derived. Logistic regression analyses were employed to correlate socio-demographic factors with knowledge. Fifty-two participants were recruited, 20 at isoniazid commencement and 32 already on isoniazid. The average TKS were 5.04/9 and 6.23/9 respectively and were significantly associated with interpreter use. Approximately half did not know how tuberculosis was transmitted. The average TSES were 5.0/7 and 3.5/7 respectively, but were not influenced by socio-demographic factors. There was suboptimal knowledge about LTBI. Improvements in health messages delivered via interpreters and additional methods of distributing information need to be developed for this patient population.

  8. Integrative relational machine-learning for understanding drug side-effect profiles. (United States)

    Bresso, Emmanuel; Grisoni, Renaud; Marchetti, Gino; Karaboga, Arnaud Sinan; Souchet, Michel; Devignes, Marie-Dominique; Smaïl-Tabbone, Malika


    Drug side effects represent a common reason for stopping drug development during clinical trials. Improving our ability to understand drug side effects is necessary to reduce attrition rates during drug development as well as the risk of discovering novel side effects in available drugs. Today, most investigations deal with isolated side effects and overlook possible redundancy and their frequent co-occurrence. In this work, drug annotations are collected from SIDER and DrugBank databases. Terms describing individual side effects reported in SIDER are clustered with a semantic similarity measure into term clusters (TCs). Maximal frequent itemsets are extracted from the resulting drug x TC binary table, leading to the identification of what we call side-effect profiles (SEPs). A SEP is defined as the longest combination of TCs which are shared by a significant number of drugs. Frequent SEPs are explored on the basis of integrated drug and target descriptors using two machine learning methods: decision-trees and inductive-logic programming. Although both methods yield explicit models, inductive-logic programming method performs relational learning and is able to exploit not only drug properties but also background knowledge. Learning efficiency is evaluated by cross-validation and direct testing with new molecules. Comparison of the two machine-learning methods shows that the inductive-logic-programming method displays a greater sensitivity than decision trees and successfully exploit background knowledge such as functional annotations and pathways of drug targets, thereby producing rich and expressive rules. All models and theories are available on a dedicated web site. Side effect profiles covering significant number of drugs have been extracted from a drug ×side-effect association table. Integration of background knowledge concerning both chemical and biological spaces has been combined with a relational learning method for discovering rules which explicitly

  9. Multiple stressor effects in Chlamydomonas reinhardtii--toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants. (United States)

    Korkaric, Muris; Behra, Renata; Fischer, Beat B; Junghans, Marion; Eggen, Rik I L


    The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Understanding treatment effect mechanisms of the CAMBRA randomized trial in reducing caries increment. (United States)

    Cheng, J; Chaffee, B W; Cheng, N F; Gansky, S A; Featherstone, J D B


    The Caries Management By Risk Assessment (CAMBRA) randomized controlled trial showed that an intervention featuring combined antibacterial and fluoride therapy significantly reduced bacterial load and suggested reduced caries increment in adults with 1 to 7 baseline cavitated teeth. While trial results speak to the overall effectiveness of an intervention, insight can be gained from understanding the mechanism by which an intervention acts on putative intermediate variables (mediators) to affect outcomes. This study conducted mediation analyses on 109 participants who completed the trial to understand whether the intervention reduced caries increment through its action on potential mediators (oral bacterial load, fluoride levels, and overall caries risk based on the composite of bacterial challenge and salivary fluoride) between the intervention and dental outcomes. The primary outcome was the increment from baseline in decayed, missing, and filled permanent surfaces (ΔDMFS) 24 mo after completing restorations for baseline cavitated lesions. Analyses adjusted for baseline overall risk, bacterial challenge, and fluoride values under a potential outcome framework using generalized linear models. Overall, the CAMBRA intervention was suggestive in reducing the 24-mo DMFS increment (reduction in ΔDMFS: -0.96; 95% confidence interval [CI]: -2.01 to 0.08; P = 0.07); the intervention significantly reduced the 12-mo overall risk (reduction in overall risk: -19%; 95% CI, -7 to -41%;], P = 0.005). Individual mediators, salivary log10 mutans streptococci, log10 lactobacilli, and fluoride level, did not represent statistically significant pathways alone through which the intervention effect was transmitted. However, 36% of the intervention effect on 24-mo DMFS increment was through a mediation effect on 12-mo overall risk (P = 0.03). These findings suggest a greater intervention effect carried through the combined action on multiple aspects of the caries process rather than

  11. Multiple stressor effects in Chlamydomonas reinhardtii – Toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Korkaric, Muris [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland); Behra, Renata; Fischer, Beat B. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); Junghans, Marion [Swiss Center for Applied Ecotoxicology Eawag-EPFL, 8600, Duebendorf (Switzerland); Eggen, Rik I.L., E-mail: [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland)


    Highlights: • Systematic study of multiple stressor effects of UVR and chemicals in C. reinhardtii. • UVR and chemicals did not act independently on algal photosynthesis and reproduction. • Multiple stressor effects of UVR and chemicals depended on chemical MOA. • Synergistic effect interactions not limited to oxidative stress inducing chemicals. • Multiple MOAs of UVR may limit applicability of current prediction models. - Abstract: The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are

  12. Multiple stressor effects in Chlamydomonas reinhardtii – Toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants

    International Nuclear Information System (INIS)

    Korkaric, Muris; Behra, Renata; Fischer, Beat B.; Junghans, Marion; Eggen, Rik I.L.


    Highlights: • Systematic study of multiple stressor effects of UVR and chemicals in C. reinhardtii. • UVR and chemicals did not act independently on algal photosynthesis and reproduction. • Multiple stressor effects of UVR and chemicals depended on chemical MOA. • Synergistic effect interactions not limited to oxidative stress inducing chemicals. • Multiple MOAs of UVR may limit applicability of current prediction models. - Abstract: The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are

  13. Understanding the effects of short-term international service-learning trips on medical students. (United States)

    Abedini, Nauzley C; Gruppen, Larry D; Kolars, Joseph C; Kumagai, Arno K


    The purpose of this qualitative study was to understand what meaning(s) preclinical students attributed to participation in one-week international service-learning trips (ISLTs) and what specific experiences during the trips accounted for such perspectives. Twenty-four first-year students who had participated in one-week ISLTs at the University of Michigan Medical School during February 2010 were invited to participate. Individual, semistructured interviews were conducted from March to August 2010 with 13 student participants. Using grounded theory analysis, several major themes were identified. Acquisition of clinical/language skills and knowledge of other health care systems were explicit benefits associated with student ISLT experiences. However, in-depth, reflective discussions revealed implicit insights and lessons, the most pervasive of which were student ambivalence concerning the value and effect of ISLTs on communities, issues of privilege and power, and ethical concerns when working with vulnerable populations. These implicit lessons stimulated new insights into future involvement in global health and emphasized the importance of reflection and discussion to enhance ISLT experiences. The current study suggests that one-week ISLTs may engender implicit insights and lessons regarding ethical and societal issues involved with global health and may stimulate the development of critical reflection on current and future professional roles for student participants. Furthermore, these activities should allow time and space for dialogue and reflection to ensure that this implicit understanding can be put to constructive educational and service-oriented uses.

  14. Role understanding and effective communication as core competencies for collaborative practice. (United States)

    Suter, Esther; Arndt, Julia; Arthur, Nancy; Parboosingh, John; Taylor, Elizabeth; Deutschlander, Siegrid


    The ability to work with professionals from other disciplines to deliver collaborative, patient-centred care is considered a critical element of professional practice requiring a specific set of competencies. However, a generally accepted framework for collaborative competencies is missing, which makes consistent preparation of students and staff challenging. Some authors have argued that there is a lack of conceptual clarity of the "active ingredients" of collaboration relating to quality of care and patient outcomes, which may be at the root of the competencies issue. As part of a large Health Canada funded study focused on interprofessional education and collaborative practice, our goal was to understand the competencies for collaborative practice that are considered most relevant by health professionals working at the front line. Interview participants comprised 60 health care providers from various disciplines. Understanding and appreciating professional roles and responsibilities and communicating effectively emerged as the two perceived core competencies for patient-centred collaborative practice. For both competencies there is evidence of a link to positive patient and provider outcomes. We suggest that these two competencies should be the primary focus of student and staff education aimed at increasing collaborative practice skills.

  15. Multiple intelligences and alternative teaching strategies: The effects on student academic achievement, conceptual understanding, and attitude (United States)

    Baragona, Michelle

    The purpose of this study was to investigate the interactions between multiple intelligence strengths and alternative teaching methods on student academic achievement, conceptual understanding and attitudes. The design was a quasi-experimental study, in which students enrolled in Principles of Anatomy and Physiology, a developmental biology course, received lecture only, problem-based learning with lecture, or peer teaching with lecture. These students completed the Multiple Intelligence Inventory to determine their intelligence strengths, the Students' Motivation Toward Science Learning questionnaire to determine student attitudes towards learning in science, multiple choice tests to determine academic achievement, and open-ended questions to determine conceptual understanding. Effects of intelligence types and teaching methods on academic achievement and conceptual understanding were determined statistically by repeated measures ANOVAs. No significance occurred in academic achievement scores due to lab group or due to teaching method used; however, significant interactions between group and teaching method did occur in students with strengths in logical-mathematical, interpersonal, kinesthetic, and intrapersonal intelligences. Post-hoc analysis using Tukey HSD tests revealed students with strengths in logical-mathematical intelligence and enrolled in Group Three scored significantly higher when taught by problem-based learning (PBL) as compared to peer teaching (PT). No significance occurred in conceptual understanding scores due to lab group or due to teaching method used; however, significant interactions between group and teaching method did occur in students with strengths in musical, kinesthetic, intrapersonal, and spatial intelligences. Post-hoc analysis using Tukey HSD tests revealed students with strengths in logical-mathematical intelligence and enrolled in Group Three scored significantly higher when taught by lecture as compared to PBL. Students with

  16. Modeling and understanding of effects of randomness in arrays of resonant meta-atoms

    DEFF Research Database (Denmark)

    Tretyakov, Sergei A.; Albooyeh, Mohammad; Alitalo, Pekka


    In this review presentation we will discuss approaches to modeling and understanding electromagnetic properties of 2D and 3D lattices of small resonant particles (meta-atoms) in transition from regular (periodic) to random (amorphous) states. Nanostructured metasurfaces (2D) and metamaterials (3D......) are arrangements of optically small but resonant particles (meta-atoms). We will present our results on analytical modeling of metasurfaces with periodical and random arrangements of electrically and magnetically resonant meta-atoms with identical or random sizes, both for the normal and oblique-angle excitations....... We show how the electromagnetic response of metasurfaces is related to the statistical parameters of the structure. Furthermore, we will discuss the phenomenon of anti-resonance in extracted effective parameters of metamaterials and clarify its relation to the periodicity (or amorphous nature...

  17. Current Understanding on Antihepatocarcinoma Effects of Xiao Chai Hu Tang and Its Constituents

    Directory of Open Access Journals (Sweden)

    Ningning Zheng


    Full Text Available Xiao Chai Hu Tang (XCHT, a compound formula originally recorded in an ancient Chinese medical book Shanghanlun, has been used to treat chronic liver diseases for a long period of time in China. Although extensive studies have been demonstrated the efficacy of this formula to treat chronic hepatitis, hepatic fibrosis, and hepatocarcinoma, how it works against these diseases still awaits full understanding. Here, we firstly present an overview arranging from the entire formula to mechanism studies of single herb in XCHT and their active components, from a new perspective of “separation study,” and we tried our best to both detailedly and systematically organize the antihepatocarcinoma effects of it, hoping that the review will facilitate the strive on elucidating how XCHT elicits its antihepatocarcinoma role.

  18. Toward understanding the thermodynamics of TALSPEAK process. Medium effects on actinide complexation

    International Nuclear Information System (INIS)

    Zalupski, Peter R.; Martin, Leigh R.; Nash, Ken; Nakamura, Yoshinobu; Yamamoto, Masahiko


    The ingenious combination of lactate and diethylenetriamine-N,N,N',N(double p rime),N(double p rime)-pentaacetic acid (DTPA) as an aqueous actinide-complexing medium forms the basis of the successful separation of americium and curium from lanthanides known as the TALSPEAK process. While numerous reports in the prior literature have focused on the optimization of this solvent extraction system, considerably less attention has been devoted to the understanding of the basic thermodynamic features of the complex fluids responsible for the separation. The available thermochemical information of both lactate and DTPA protonation and metal complexation reactions are representative of the behavior of these ions under idealized conditions. Our previous studies of medium effects on lactate protonation suggest that significant departures from the speciation predicted based on reported thermodynamic values should be expected in the TALSPEAK aqueous environment. Thermodynamic parameters describing the separation chemistry of this process thus require further examination at conditions significantly removed from conventional ideal systems commonly employed in fundamental solution chemistry. Such thermodynamic characterization is the key to predictive modelling of TALSPEAK. Improved understanding will, in principle, allow process technologists to more efficiently respond to off-normal conditions during large scale process operation. In this report, the results of calorimetric and potentiometric investigations of the effects of aqueous electrolytes on the thermodynamic parameters for lactate protonation and lactate complexation of americium and neodymium will be presented. Studies on the lactate protonation equilibrium will clearly illustrate distinct thermodynamic variations between strong electrolyte aqueous systems and buffered lactate environment.

  19. The Effect of Three-Dimensional Simulations on the Understanding of Chemical Structures and Their Properties (United States)

    Urhahne, Detlef; Nick, Sabine; Schanze, Sascha


    In a series of three experimental studies, the effectiveness of three-dimensional computer simulations to aid the understanding of chemical structures and their properties was investigated. Arguments for the usefulness of three-dimensional simulations were derived from Mayer’s generative theory of multimedia learning. Simulations might lead to a decrease in cognitive load and thus support active learning. In our studies, the learning effectiveness of three-dimensional simulations was compared to two-dimensional illustrations by use of different versions of a computer programme concerning the modifications of carbon. The first and third study with freshman students of chemistry and biochemistry show that no more knowledge was acquired when participants learnt with three-dimensional simulations than with two-dimensional figures. In the second study with 16-year old secondary school students, use of simulations facilitated the acquisition of conceptual knowledge. It was concluded that three-dimensional simulations are more effective for younger students who lack the experience of learning with different visual representation formats in chemistry. In all three studies, a significant relationship between spatial ability and conceptual knowledge about the modifications of carbon was detected.

  20. Understanding the protective effects of wine components and their metabolites in the brain function

    Directory of Open Access Journals (Sweden)

    Esteban-Fernández A.


    Full Text Available Moderate wine consumption has been suggested to exert a positive effect in prevention of neurodegenerative process and cognitive impairment. With the ultimate aim of achieving a better understanding of the molecular mechanisms behind this benefit, we have investigated the role of certain wine- derived phenolic metabolites and aroma compounds in the MAPK cascade (including ERK1/2, p38, one of the routes directly related to inflammation in neuronal cells. Some of the tested phenolic compounds, especially in the case of 3,4-dihydroxyphenylacetic acid, showed a significant neuroprotective effect against SIN-1-induced neuronal death. Regarding their effect over MAPK phosphorylation, inmunoblotting technique revealed a beneficial and significant decrease on the phosphorylation of p38 and ERK1/2 kinases after incubation with wine constituents. In addition, activity of caspase3-like protease, an executor of neuronal apoptosis and a downstream signal of MAPK, was significantly diminished by 3-(3-hydroxyphenyl propionic acid and linalool, counterbalancing the increase produced by SIN-1. Altogether, these results suggest that wine aroma, phenolic compounds and their gut metabolites could exert neuroprotective actions by modulating MAPK signalling and caspase-3 proteases activation, which are known to play a key role in oxidative/ nitrosative stress-induced response.


    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xing, E-mail: [Institute of Natural Sciences and Department of Physics and Astronomy, Shanghai Jiao Tong University (China); Princeton University Observatory, Princeton, NJ 08544 (United States)


    To understand magnetic effects on dynamical tides, we study the rotating magnetohydrodynamic (MHD) flow driven by harmonic forcing. The linear responses are analytically derived in a periodic box under the local WKB approximation. Both the kinetic and Ohmic dissipations at the resonant frequencies are calculated, and the various parameters are investigated. Although magnetic pressure may be negligible compared to thermal pressure, the magnetic field can be important for the first-order perturbation, e.g., dynamical tides. It is found that the magnetic field splits the resonant frequency, namely the rotating hydrodynamic flow has only one resonant frequency, but the rotating MHD flow has two, one positive and the other negative. In the weak field regime the dissipations are asymmetric around the two resonant frequencies and this asymmetry is more striking with a weaker magnetic field. It is also found that both the kinetic and Ohmic dissipations at the resonant frequencies are inversely proportional to the Ekman number and the square of the wavenumber. The dissipation at the resonant frequency on small scales is almost equal to the dissipation at the non-resonant frequencies, namely the resonance takes its effect on the dissipation at intermediate length scales. Moreover, the waves with phase propagation that is perpendicular to the magnetic field are much more damped. It is also interesting to find that the frequency-averaged dissipation is constant. This result suggests that in compact objects, magnetic effects on tidal dissipation should be considered.

  2. Increasing the understanding of chemical concepts: The effectiveness of multiple exposures (United States)

    Bius, Janet H.

    Chemistry is difficult because it has multilevels of knowledge with each level presenting challenges in vocabulary, abstract thinking, and symbolic language. Students have to be able to transfer between levels to understand the concepts and the theoretical models of chemistry. The cognitive theories of constructivism and cognitive-load theory are used to explain the difficulties novice learners have with the subject of chemistry and methods to increase success for students. The relationship between external representations, misconceptions and topics on the success of students are addressed. If students do not know the formalisms associated with chemical diagrams and graphs, the representations will decrease student success. Misconceptions can be formed when new information is interpreted based on pre-existing knowledge that is faulty. Topics with large amount of interacting elements that must be processed simultaneously are considered difficult to understand. New variables were created to measure the number of times a student is exposed to a chemical concept. Each variable was coded according to topic and learning environment, which are the lecture and laboratory components of the course, homework assignments and textbook examples. The exposure variables are used to measure the success rate of students on similar exam questions. Question difficulty scales were adapted for this project from those found in the chemical education literature. The exposure variables were tested on each level of the difficulty scales to determine their effect at decreasing the cognitive demand of these questions. The subjects of this study were freshmen science majors at a large Midwest university. The effects of the difficulty scales and exposure variables were measured for those students whose exam scores were in the upper one-fourth percentile, for students whose test scores were in the middle one-half percentile, and the lower one-fourth percentile are those students that scored the

  3. Household structure vs. composition: Understanding gendered effects on educational progress in rural South Africa

    Directory of Open Access Journals (Sweden)

    Sangeetha Madhavan


    Full Text Available Background: Demographers have long been interested in the relationship between living arrangements and gendered outcomes for children in sub-Saharan Africa. Most research conflates household structure with composition and has revealed little about the pathways that link these components to gendered outcomes. Objective: We offer a conceptual approach that differentiates structure from composition with a focus on gendered processes that operate in the household in rural South Africa. Methods: We use data from the 2002 round of the Agincourt Health and Socio-Demographic Surveillance System. Our analytical sample includes 22,997 children aged 6‒18 who were neither parents themselves nor lived with a partner or partner's family. We employ ordinary least squares regression models to examine the effects of structure and composition on educational progress of girls and boys. Results: Non-nuclear structures are associated with similar negative effects for both boys and girls compared to children growing up in nuclear households. However, the presence of other kin in the absence of one or both parents results in gendered effects favouring boys. Conclusions: The absence of any gendered effects when using a household structure typology suggests that secular changes to attitudes about gender equity trump any specific gendered processes stemming from particular configurations. On the other hand, gendered effects that appear when one or both parents are absent show that traditional gender norms and/or resource constraints continue to favour boys. Contribution: We have shown the value of unpacking household structure to better understand how gender norms and gendered resource allocations are linked to an important outcome for children in sub-Saharan Africa.

  4. Understanding the physics of a possible non-Abelian fractional quantum hall effect state.

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei; Crawford, Matthew; Tallakulam, Madhu; Ross, Anthony Joseph, III


    We wish to present in this report experimental results from a one-year Senior Council Tier-1 LDRD project that focused on understanding the physics of a possible non-Abelian fractional quantum Hall effect state. We first give a general introduction to the quantum Hall effect, and then present the experimental results on the edge-state transport in a special fractional quantum Hall effect state at Landau level filling {nu} = 5/2 - a possible non-Abelian quantum Hall state. This state has been at the center of current basic research due to its potential applications in fault-resistant topological quantum computation. We will also describe the semiconductor 'Hall-bar' devices we used in this project. Electron physics in low dimensional systems has been one of the most exciting fields in condensed matter physics for many years. This is especially true of quantum Hall effect (QHE) physics, which has seen its intellectual wealth applied in and has influenced many seemingly unrelated fields, such as the black hole physics, where a fractional QHE-like phase has been identified. Two Nobel prizes have been awarded for discoveries of quantum Hall effects: in 1985 to von Klitzing for the discovery of integer QHE, and in 1998 to Tsui, Stormer, and Laughlin for the discovery of fractional QHE. Today, QH physics remains one of the most vibrant research fields, and many unexpected novel quantum states continue to be discovered and to surprise us, such as utilizing an exotic, non-Abelian FQHE state at {nu} = 5/2 for fault resistant topological computation. Below we give a briefly introduction of the quantum Hall physics.

  5. Tree growth variation in the tropical forest: understanding effects of temperature, rainfall and CO2. (United States)

    Schippers, Peter; Sterck, Frank; Vlam, Mart; Zuidema, Pieter A


    Tropical forest responses to climatic variability have important consequences for global carbon cycling, but are poorly understood. As empirical, correlative studies cannot disentangle the interactive effects of climatic variables on tree growth, we used a tree growth model (IBTREE) to unravel the climate effects on different physiological pathways and in turn on stem growth variation. We parameterized the model for canopy trees of Toona ciliata (Meliaceae) from a Thai monsoon forest and compared predicted and measured variation from a tree-ring study over a 30-year period. We used historical climatic variation of minimum and maximum day temperature, precipitation and carbon dioxide (CO 2 ) in different combinations to estimate the contribution of each climate factor in explaining the inter-annual variation in stem growth. Running the model with only variation in maximum temperature and rainfall yielded stem growth patterns that explained almost 70% of the observed inter-annual variation in stem growth. Our results show that maximum temperature had a strong negative effect on the stem growth by increasing respiration, reducing stomatal conductance and thus mitigating a higher transpiration demand, and - to a lesser extent - by directly reducing photosynthesis. Although stem growth was rather weakly sensitive to rain, stem growth variation responded strongly and positively to rainfall variation owing to the strong inter-annual fluctuations in rainfall. Minimum temperature and atmospheric CO 2 concentration did not significantly contribute to explaining the inter-annual variation in stem growth. Our innovative approach - combining a simulation model with historical data on tree-ring growth and climate - allowed disentangling the effects of strongly correlated climate variables on growth through different physiological pathways. Similar studies on different species and in different forest types are needed to further improve our understanding of the sensitivity of

  6. Composition-Effects of Context-based Learning Opportunities on Students' Understanding of Energy (United States)

    Podschuweit, Sören; Bernholt, Sascha


    Context-based learning has become a widespread approach in science education. While positive motivational effects of such approaches have been well established empirically, clear results regarding cognitive aspects of students' learning are still missing. In this article, we argue that this circumstance might be mainly rooted in the definition of context itself. Based on this argument, we shift from the issue of if contexts are cognitively beneficial to focus on the question of which composition of contexts is, at least by tendency, more effective than another. Based on theories of conceptual change, we therefore conducted a small-scale intervention study comparing two groups of students learning in different sets of contexts focusing on the same scientific concept—the cross-cutting concept of energy. Results suggest that learning in a more heterogeneous set of contexts eases transfer to new contexts in comparison to learning in a more homogeneous set of contexts. However, a more abstract understanding of the energy concept does not seem to be fostered by either of these approaches. Theoretical as well as practical implications of these finding are discussed.

  7. Effectiveness of the Wavelet Transform on the Surface EMG to Understand the Muscle Fatigue During Walk (United States)

    Hussain, M. S.; Mamun, Md.


    Muscle fatigue is the decline in ability of a muscle to create force. Electromyography (EMG) is a medical technique for measuring muscle response to nervous stimulation. During a sustained muscle contraction, the power spectrum of the EMG shifts towards lower frequencies. These effects are due to muscle fatigue. Muscle fatigue is often a result of unhealthy work practice. In this research, the effectiveness of the wavelet transform applied to the surface EMG (SEMG) signal as a means of understanding muscle fatigue during walk is presented. Power spectrum and bispectrum analysis on the EMG signal getting from right rectus femoris muscle is executed utilizing various wavelet functions (WFs). It is possible to recognize muscle fatigue appreciably with the proper choice of the WF. The outcome proves that the most momentous changes in the EMG power spectrum are symbolized by WF Daubechies45. Moreover, this research has compared bispectrum properties to the other WFs. To determine muscle fatigue during gait, Daubechies45 is used in this research to analyze the SEMG signal.

  8. A transdisciplinary approach to understanding the health effects of wildfire and prescribed fire smoke regimes (United States)

    Williamson, G. J.; Bowman, D. M. J. S.; Price, O. F.; Henderson, S. B.; Johnston, F. H.


    Prescribed burning is used to reduce the occurrence, extent and severity of uncontrolled fires in many flammable landscapes. However, epidemiologic evidence of the human health impacts of landscape fire smoke emissions is shaping fire management practice through increasingly stringent environmental regulation and public health policy. An unresolved question, critical for sustainable fire management, concerns the comparative human health effects of smoke from wild and prescribed fires. Here we review current knowledge of the health effects of landscape fire emissions and consider the similarities and differences in smoke from wild and prescribed fires with respect to the typical combustion conditions and fuel properties, the quality and magnitude of air pollution emissions, and the potential for dispersion to large populations. We further examine the interactions between these considerations, and how they may shape the longer term smoke regimes to which populations are exposed. We identify numerous knowledge gaps and propose a conceptual framework that describes pathways to better understanding of the health trade-offs of prescribed and wildfire smoke regimes.

  9. Understanding the effects of electronic polarization and delocalization on charge-transport levels in oligoacene systems

    KAUST Repository

    Sutton, Christopher


    Electronic polarization and charge delocalization are important aspects that affect the charge-transport levels in organic materials. Here, using a quantum mechanical/ embedded-charge (QM/EC) approach based on a combination of the long-range corrected omega B97X-D exchange-correlation functional (QM) and charge model 5 (CM5) point-charge model (EC), we evaluate the vertical detachment energies and polarization energies of various sizes of crystalline and amorphous anionic oligoacene clusters. Our results indicate that QM/EC calculations yield vertical detachment energies and polarization energies that compare well with the experimental values obtained from ultraviolet photoemission spectroscopy measurements. In order to understand the effect of charge delocalization on the transport levels, we considered crystalline naphthalene systems with QM regions including one or five-molecules. The results for these systems show that the delocalization and polarization effects are additive; therefore, allowing for electron delocalization by increasing the size of the QM region leads to the additional stabilization of the transport levels. Published by AIP Publishing.

  10. Individual differences in children's emotion understanding: Effects of age and language

    DEFF Research Database (Denmark)

    Pons, Francisco; Lawson, J.: Harris, P.; Rosnay, M. de


    Over the last two decades, it has been established that children's emotion understanding changes as they develop. Recent studies have also begun to address individual differences in children's emotion understanding. The first goal of this study was to examine the development of these individual...... differences across a wide age range with a test assessing nine different components of emotion understanding. The second goal was to examine the relation between language ability and individual differences in emotion understanding. Eighty children ranging in age from 4 to 11 years were tested. Children...... displayed a clear improvement with age in both their emotion understanding and language ability. In each age group, there were clear individual differences in emotion understanding and language ability. Age and language ability together explained 72% of emotion understanding variance; 20% of this variance...

  11. Understanding uncertainty in temperature effects on vector-borne disease: a Bayesian approach. (United States)

    Johnson, Leah R; Ben-Horin, Tal; Lafferty, Kevin D; McNally, Amy; Mordecai, Erin; Paaijmans, Krijn P; Pawar, Samraat; Ryan, Sadie J


    Extrinsic environmental factors influence the distribution and population dynamics of many organisms, including insects that are of concern for human health and agriculture. This is particularly true for vector-borne infectious diseases like malaria, which is a major source of morbidity and mortality in humans. Understanding the mechanistic links between environment and population processes for these diseases is key to predicting the consequences of climate change on transmission and for developing effective interventions. An important measure of the intensity of disease transmission is the reproductive number R0. However, understanding the mechanisms linking R0 and temperature, an environmental factor driving disease risk, can be challenging because the data available for parameterization are often poor. To address this, we show how a Bayesian approach can help identify critical uncertainties in components of R0 and how this uncertainty is propagated into the estimate of R0. Most notably, we find that different parameters dominate the uncertainty at different temperature regimes: bite rate from 15 degrees C to 25 degrees C; fecundity across all temperatures, but especially approximately 25-32 degrees C; mortality from 20 degrees C to 30 degrees C; parasite development rate at degrees 15-16 degrees C and again at approximately 33-35 degrees C. Focusing empirical studies on these parameters and corresponding temperature ranges would be the most efficient way to improve estimates of R0. While we focus on malaria, our methods apply to improving process-based models more generally, including epidemiological, physiological niche, and species distribution models.

  12. Understanding uncertainty in temperature effects on vector-borne disease: a Bayesian approach (United States)

    Johnson, Leah R.; Ben-Horin, Tal; Lafferty, Kevin D.; McNally, Amy; Mordecai, Erin A.; Paaijmans, Krijn P.; Pawar, Samraat; Ryan, Sadie J.


    Extrinsic environmental factors influence the distribution and population dynamics of many organisms, including insects that are of concern for human health and agriculture. This is particularly true for vector-borne infectious diseases like malaria, which is a major source of morbidity and mortality in humans. Understanding the mechanistic links between environment and population processes for these diseases is key to predicting the consequences of climate change on transmission and for developing effective interventions. An important measure of the intensity of disease transmission is the reproductive number R0. However, understanding the mechanisms linking R0 and temperature, an environmental factor driving disease risk, can be challenging because the data available for parameterization are often poor. To address this, we show how a Bayesian approach can help identify critical uncertainties in components of R0 and how this uncertainty is propagated into the estimate of R0. Most notably, we find that different parameters dominate the uncertainty at different temperature regimes: bite rate from 15°C to 25°C; fecundity across all temperatures, but especially ~25–32°C; mortality from 20°C to 30°C; parasite development rate at ~15–16°C and again at ~33–35°C. Focusing empirical studies on these parameters and corresponding temperature ranges would be the most efficient way to improve estimates of R0. While we focus on malaria, our methods apply to improving process-based models more generally, including epidemiological, physiological niche, and species distribution models.

  13. Streamflow depletion by wells--Understanding and managing the effects of groundwater pumping on streamflow (United States)

    Barlow, Paul M.; Leake, Stanley A.


    Groundwater is an important source of water for many human needs, including public supply, agriculture, and industry. With the development of any natural resource, however, adverse consequences may be associated with its use. One of the primary concerns related to the development of groundwater resources is the effect of groundwater pumping on streamflow. Groundwater and surface-water systems are connected, and groundwater discharge is often a substantial component of the total flow of a stream. Groundwater pumping reduces the amount of groundwater that flows to streams and, in some cases, can draw streamflow into the underlying groundwater system. Streamflow reductions (or depletions) caused by pumping have become an important water-resource management issue because of the negative impacts that reduced flows can have on aquatic ecosystems, the availability of surface water, and the quality and aesthetic value of streams and rivers. Scientific research over the past seven decades has made important contributions to the basic understanding of the processes and factors that affect streamflow depletion by wells. Moreover, advances in methods for simulating groundwater systems with computer models provide powerful tools for estimating the rates, locations, and timing of streamflow depletion in response to groundwater pumping and for evaluating alternative approaches for managing streamflow depletion. The primary objective of this report is to summarize these scientific insights and to describe the various field methods and modeling approaches that can be used to understand and manage streamflow depletion. A secondary objective is to highlight several misconceptions concerning streamflow depletion and to explain why these misconceptions are incorrect.

  14. Impact hazard mitigation: understanding the effects of nuclear explosive outputs on comets and asteroids

    Energy Technology Data Exchange (ETDEWEB)

    Clement, Ralph R C [Los Alamos National Laboratory; Plesko, Catherine S [Los Alamos National Laboratory; Bradley, Paul A [Los Alamos National Laboratory; Conlon, Leann M [Los Alamos National Laboratory


    The NASA 2007 white paper ''Near-Earth Object Survey and Deflection Analysis of Alternatives'' affirms deflection as the safest and most effective means of potentially hazardous object (PHO) impact prevention. It also calls for further studies of object deflection. In principle, deflection of a PHO may be accomplished by using kinetic impactors, chemical explosives, gravity tractors, solar sails, or nuclear munitions. Of the sudden impulse options, nuclear munitions are by far the most efficient in terms of yield-per-unit-mass launched and are technically mature. However, there are still significant questions about the response of a comet or asteroid to a nuclear burst. Recent and ongoing observational and experimental work is revolutionizing our understanding of the physical and chemical properties of these bodies (e.g ., Ryan (2000) Fujiwara et al. (2006), and Jedicke et al. (2006)). The combination of this improved understanding of small solar-system bodies combined with current state-of-the-art modeling and simulation capabilities, which have also improved dramatically in recent years, allow for a science-based, comprehensive study of PHO mitigation techniques. Here we present an examination of the effects of radiation from a nuclear explosion on potentially hazardous asteroids and comets through Monte Carlo N-Particle code (MCNP) simulation techniques. MCNP is a general-purpose particle transport code commonly used to model neutron, photon, and electron transport for medical physics reactor design and safety, accelerator target and detector design, and a variety of other applications including modeling the propagation of epithermal neutrons through the Martian regolith (Prettyman 2002). It is a massively parallel code that can conduct simulations in 1-3 dimensions, complicated geometries, and with extremely powerful variance reduction techniques. It uses current nuclear cross section data, where available, and fills in the gaps with

  15. Research Plans for Improving Understanding of Effects of Very Low-Frequency Noise of Heavy Lift Rotorcraft (United States)

    Fidell, Sanford; Horonieff, Richard D.; Schmitz, Fredric H.


    This report reviews the English-language technical literature on infrasonic and low-frequency noise effects; identifies the most salient effects of noise produced by a future large civil tiltrotor aircraft on crew, passengers, and communities near landing areas; and recommends research needed to improve understanding of the effects of such noise on passengers, crew, and residents of areas near landing pads.

  16. Understanding effects in reviews of implementation interventions using the Theoretical Domains Framework. (United States)

    Little, Elizabeth A; Presseau, Justin; Eccles, Martin P


    Behavioural theory can be used to better understand the effects of behaviour change interventions targeting healthcare professional behaviour to improve quality of care. However, the explicit use of theory is rarely reported despite interventions inevitably involving at least an implicit idea of what factors to target to implement change. There is a quality of care gap in the post-fracture investigation (bone mineral density (BMD) scanning) and management (bisphosphonate prescription) of patients at risk of osteoporosis. We aimed to use the Theoretical Domains Framework (TDF) within a systematic review of interventions to improve quality of care in post-fracture investigation. Our objectives were to explore which theoretical factors the interventions in the review may have been targeting and how this might be related to the size of the effect on rates of BMD scanning and osteoporosis treatment with bisphosphonate medication. A behavioural scientist and a clinician independently coded TDF domains in intervention and control groups. Quantitative analyses explored the relationship between intervention effect size and total number of domains targeted, and as number of different domains targeted. Nine randomised controlled trials (RCTs) (10 interventions) were analysed. The five theoretical domains most frequently coded as being targeted by the interventions in the review included "memory, attention and decision processes", "knowledge", "environmental context and resources", "social influences" and "beliefs about consequences". Each intervention targeted a combination of at least four of these five domains. Analyses identified an inverse relationship between both number of times and number of different domains coded and the effect size for BMD scanning but not for bisphosphonate prescription, suggesting that the more domains the intervention targeted, the lower the observed effect size. When explicit use of theory to inform interventions is absent, it is possible to

  17. Understanding E-Learning Adoption in Brazil: Major Determinants and Gender Effects

    Directory of Open Access Journals (Sweden)

    Shintaro Okazaki


    Full Text Available The objective of this study is to examine factors influencing e-learning adoption and the moderating role of gender. This study extends the technology acceptance model (TAM by adding attitude and social interaction. The new construct of social interaction is applied to the South American context. Gender effects on e-learning adoption from educators’ perspectives have seldom been explored. The data collection takes place in three major Brazilian universities. In total, 446 faculty members responded to the questionnaire. Our structural equation modeling reveals that ease of use and perceived usefulness are significant antecedents of attitude, which in turn affects intention. However, unlike the original TAM, perceived usefulness is not a direct driver of intention. In terms of moderation, gender affects three relationships: (1 ease of use –› perceived usefulness; (2 perceived usefulness –› attitude, and (3 intention –› actual behavior. The analysis is carried out in a single country; thus, caution should be taken in generalization of the results. The findings will help academics, educators, and policy makers to better understand the mechanism of e-learning adoption in Brazil.

  18. Challenging effective public outreach activities for increasing mutual understanding of nuclear energy

    International Nuclear Information System (INIS)

    Gunji, Ikuko


    An outreach activity is two-way communication for communicating information. The public outreach activities of USA and Japan for increasing mutual understanding of nuclear energy, and the effective outreach activities are stated. On USA, many communicators in the member of ANS (American Nuclear Society) play an active part in the outreach activities for the policy makers, educators, students, and stakeholders. NEI (Nuclear Energy Institute, USA) provides people with useful information such as benefits and safety control system of nuclear energy, and it has carried out an attitude survey. FPL (Florida Power and Light Company) selected the communicators by ten evaluation items and they made a group and a clear grasp of the goal, needs, and plans and then communicated residents, and sent out questionnaires. Some examples of the special education program for training the communicators in USA are described. In Japan, JAEA gave lessons of nuclear energy, radiation and disaster prevention at the primary, junior high and high schools, friendly talks with local residents, preparing the teaching materials with residents and training of communicators. (S.Y.)

  19. Understanding the effects of stress and alcohol cues on motivation for alcohol via behavioral economics. (United States)

    Amlung, Michael; MacKillop, James


    Psychological stress and alcohol cues are common antecedents of both ongoing drinking and relapse. One candidate mechanism of risk from these factors is acute increases in craving, but experimental support for this hypothesis is mixed. Furthermore, the combination of stress and cues has been largely unstudied. The current study employed a behavioral economic approach to investigate the combined roles of psychosocial stress and alcohol cues on motivation for alcohol. In a sample of 84 adult heavy drinkers, we examined the effects of an acute laboratory stress induction and an alcohol cue exposure on subjective craving and stress, arousal, and behavioral economic decision making. Primary dependent measures included an intertemporal cross-commodity multiple-choice procedure (ICCMCP), incorporating both price and delay elements, an alcohol purchase task (APT), measuring alcohol demand, and a monetary delay discounting task, measuring intertemporal choice. The stress induction significantly increased stress, craving, and the incentive value of alcohol on the ICCMCP and APT. Stress-related increases in value on the ICCMCP were mediated by increased alcohol demand. Exposure to alcohol cues only significantly affected craving, APT breakpoint, and arousal. Delay discounting was not affected by either stress or cues. These results reveal unique behavioral economic dimensions of motivation for alcohol following acute stress and an alcohol cue exposure. More broadly, as the first application of this approach to understanding the role of stress in drug motivation, these findings support its utility and potential in future applications. Copyright © 2014 by the Research Society on Alcoholism.

  20. Understanding pH and ionic strength effects on aluminum sulfate-induced microalgae flocculation. (United States)

    Cui, Y; Yuan, W; Cheng, J


    The objective of this study was to understand the effect of pH and ionic strength of aluminum sulfate on the flocculation of microalgae. It was found that changing pH and ionic strength influenced algal flocculation by changing the zeta potential of cells, which was described by the classical theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO). For both algal species of Scenedesmus dimorphus and Nannochloropsis oculata, cells with lower total DLVO interaction energy had higher flocculation efficiency, indicating that the DLVO model was qualitatively accurate in predicting the flocculation of the two algae. However, the two algae responded differently to changing pH and ionic strength. The flocculation of N. oculata increased with increasing aluminum sulfate concentration and favored either low (pH 5) or high (pH 10) pH where cells had relatively low negative surface charges. For S. dimorphus, the highest flocculation was achieved at low ionic strength (1 μM) or moderate pH (pH 7.5) where cell surface charges were fully neutralized (zero zeta potential).

  1. Understanding the psychiatric effects of concussion on constructed identity in hockey players: Implications for health professionals (United States)

    Todd, Ryan; Bhalerao, Shree; Soklaridis, Sophie; Cusimano, Michael D.


    Objective The following study was undertaken to investigate the effect of concussion and psychiatric illness on athletes and their caregivers. Methods Semi-structured interviews with 20 ice hockey stakeholders (17 men and 3 women) including minor and professional players, coaches, parents, and physicians were conducted over two years (2012–2014). These interviews were analyzed using grounded theory. Results From this analysis, a common biographical theme emerged whereby the subject’s identity as a hockey player, constructed early in life over many years, was disrupted by concussion. Furthermore, some players underwent a biographical deconstruction when they experienced post-concussive mental illness, which was amplified by isolation, stigma from peers, and lack of a clear life trajectory. Many players obtained support from family and peers and were able to recover, as evidenced by the biographical reconstruction of their identity post-hockey concussion. Conclusions and implications for practice Understanding the process of biographical deconstruction and reconstruction has significant psychosocial treatment implications for both healthcare professionals and caregivers of this population. Specifically, the authors suggest that interpersonal psychotherapy (IPT) that focuses on role transitions may create opportunities to facilitate the process of biographical reconstruction and life transition. PMID:29466377

  2. Understanding effect of formulation and manufacturing variables on the critical quality attributes of warfarin sodium product. (United States)

    Rahman, Ziyaur; Korang-Yeboah, Maxwell; Siddiqui, Akhtar; Mohammad, Adil; Khan, Mansoor A


    Warfarin sodium (WS) is a narrow therapeutic index drug and its product quality should be thoroughly understood and monitored in order to avoid clinical performance issues. This study was focused on understanding the effect of manufacturing and formulation variables on WS product critical quality attributes (CQAs). Eight formulations were developed with lactose monohydrate (LM) or lactose anhydrous (LA), and were either wet granulated or directly compressed. Formulations were granulated either with ethanol, isopropyl alcohol (IPA) and IPA-water mixture (50:50). Formulations were characterized for IPA, water content, hardness, disintegration time (DT), assay, dissolution and drug physical forms (scanning electron microscopy (SEM), near infrared chemical imaging (NIR-CI), X-ray powder diffraction (XRPD) and solid state nuclear magnetic resonance (ssNMR)), and performed accelerated stability studies at 40°C/75% RH for three days. The DT and dissolution of directly compressed formulations were faster than wet granulated formulations. This was due to phase transformation of crystalline drug into its amorphous form as indicated by SEM, NIR-CI, XRPD and ssNMR data which itself act as a binder. Similarly, LM showed faster disintegration and dissolution than LA containing formulations. Stability results indicated an increase in hardness and DT, and a decrease in dissolution rate and extent. This was due to phase transformation of the drug and consolidation with particles' bonding. In conclusion, the CQAs of WS product were significantly affected by manufacturing and formulation variables. Published by Elsevier B.V.

  3. Understanding Motivations for Abstinence among Adolescent Young Women: Insights into Effective Sexual Risk Reduction Strategies (United States)

    Long-Middleton, Ellen R.; Burke, Pamela J.; Lawrence, Cheryl A. Cahill; Blanchard, Lauren B.; Amudala, Naomi H.; Rankin, Sally H.


    Introduction Pregnancy and sexually transmitted infections pose a significant threat to the health and wellbeing of adolescent young women. Abstinence when practiced provides the most effective means in preventing these problems, yet the perspective of abstinent young women is not well understood. The purpose of the investigation was to characterize female adolescents’ motivations for abstinence. Method As part of a larger, cross-sectional quantitative study investigating predictors of HIV risk reduction behaviors, qualitative responses from study participants who never had intercourse were analyzed in a consensus-based process using content analysis and frequency counts. An urban primary care site in a tertiary care center served as the setting, with adolescent young women ages 15–19 years included in the sample. Results Five broad topic categories emerged from the data that characterized motivations for abstinence in this sample: 1) Personal Readiness, 2) Fear, 3) Beliefs and Values, 4) Partner Worthiness and 5) Lack of Opportunity. Discussion A better understanding of the motivations for abstinence may serve to guide the development of interventions to delay intercourse. PMID:22525893

  4. The Effects of Poverty Simulation, an Experiential Learning Modality, on Students' Understanding of Life in Poverty (United States)

    Vandsburger, Etty; Duncan-Daston, Rana; Akerson, Emily; Dillon, Tom


    This research examines the impact of the Poverty Simulation Project, an experiential learning modality, on students' understanding of life in poverty. A total of 101 students representing 5 undergraduate majors in the College of Health and Human Services completed measures of critical thinking, understanding of others, and the active learning…

  5. Sifting attacks in finite-size quantum key distribution (United States)

    Pfister, Corsin; Lütkenhaus, Norbert; Wehner, Stephanie; Coles, Patrick J.


    A central assumption in quantum key distribution (QKD) is that Eve has no knowledge about which rounds will be used for parameter estimation or key distillation. Here we show that this assumption is violated for iterative sifting, a sifting procedure that has been employed in some (but not all) of the recently suggested QKD protocols in order to increase their efficiency. We show that iterative sifting leads to two security issues: (1) some rounds are more likely to be key rounds than others, (2) the public communication of past measurement choices changes this bias round by round. We analyze these two previously unnoticed problems, present eavesdropping strategies that exploit them, and find that the two problems are independent. We discuss some sifting protocols in the literature that are immune to these problems. While some of these would be inefficient replacements for iterative sifting, we find that the sifting subroutine of an asymptotically secure protocol suggested by Lo et al (2005 J. Cryptol. 18 133-65), which we call LCA sifting, has an efficiency on par with that of iterative sifting. One of our main results is to show that LCA sifting can be adapted to achieve secure sifting in the finite-key regime. More precisely, we combine LCA sifting with a certain parameter estimation protocol, and we prove the finite-key security of this combination. Hence we propose that LCA sifting should replace iterative sifting in future QKD implementations. More generally, we present two formal criteria for a sifting protocol that guarantee its finite-key security. Our criteria may guide the design of future protocols and inspire a more rigorous QKD analysis, which has neglected sifting-related attacks so far.

  6. Point source atom interferometry with a cloud of finite size

    Energy Technology Data Exchange (ETDEWEB)

    Hoth, Gregory W., E-mail:; Pelle, Bruno; Riedl, Stefan; Kitching, John; Donley, Elizabeth A. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)


    We demonstrate a two axis gyroscope by the use of light pulse atom interferometry with an expanding cloud of atoms in the regime where the cloud has expanded by 1.1–5 times its initial size during the interrogation. Rotations are measured by analyzing spatial fringe patterns in the atom population obtained by imaging the final cloud. The fringes arise from a correlation between an atom's initial velocity and its final position. This correlation is naturally created by the expansion of the cloud, but it also depends on the initial atomic distribution. We show that the frequency and contrast of these spatial fringes depend on the details of the initial distribution and develop an analytical model to explain this dependence. We also discuss several challenges that must be overcome to realize a high-performance gyroscope with this technique.

  7. Kinetic Kelvin-Helmholtz instability at a finite sized object (United States)

    Thomas, V. A.


    Two-dimensional hybrid simulations with particle ions and fluid electrons are used to calculate the kinetic evolution of the self-consistent flow around a two-dimensional obstacle with zero intrinsic magnetic field. Plasma outlfow from the obstacle is used to establish a boundary layer between the incoming solar wind and the outgoing plasma. Because the self-consistent flow solution, a velocity shear is naturally set up at this interface, and since the magnetic field for these simulations is transverse to this flow, the Kelvin-Helmholtz (K-H) instability can be excited at low-velocity shear. Simulations demonstrate the existence of the instability even near the subsolar location, which normally is thought to be stable to this instability. The apparent reason for this result is the overall time dependence at the boundary layer, which gives rise to a Rayleigh-Taylor like instability which provides seed perturbations for the K-H instability. These results are directly applicable to Venus, comets, artificial plasma releases, and laser target experiments. This result has potentially important ramifications for the interpretation of observational results as well as for an estimation of the cross-field transport. The results suggest that the K-H instability may play a role in dayside processes and the Venus ionopause, and may exist within the context of more general situations, for example, the Earth's magnetopause.

  8. Biological effect of radiation. Basis for understanding the risk of Fukushima nuclear accident

    International Nuclear Information System (INIS)

    Imaoka, Tatsuhiko


    The radionuclide release in the Fukushima Nuclear Accident has induced a tremendous anxiety on possible health effects of low dose radiation. When radiation hits a cell in an organism, it may induce DNA damages which, if not repaired properly, lead to either cell death or genetic mutation. If function of the tissue is lost as a result of cell death, various tissue responses including dysfunction of hematopoietic tissues, sterility and skin responses may occur; these responses are not manifested if the radiation dose is low enough. Genetic mutation is considered to occur, albeit at a low frequency, even if the radiation dose is very small. Cancer is a result of genetic mutation and its probability is considered to rise, albeit slightly, if radiation induces a small amount of additional mutations. These assumptions lead to a notion that there is no 'safety dose' below which radiation does not cause any cancer. On the other hand, the study of atomic bomb survivors of Hiroshima and Nagasaki provides the most reliable quantitative information on the relationship between radiation dose and accompanying increase in cancer risk. The analysis so far indicates that cancer risk increases by 0.5-fold, compared to a background level, if a human body is exposed to 1 sievert of radiation; at lower doses, the risk is proportional to the dose, but it is impossible to detect cancer risk associated with 100 milli sievert of exposure because of statistical limitations. Although exposure to atomic bomb radiation occurred in a very little instance, the current situation poses a prolonged (i.e., low dose rate) exposure, probably resulting in still lower cancer risk. Still, since current radiation exposure has no benefit, unlike that in medical situations, it is important to reduce it to a level as low as reasonably achievable. I will explain the biological effect of radiation, including its mechanistic basis and effects on the human body, and wish to help the audience to

  9. Understanding Resilience

    Directory of Open Access Journals (Sweden)

    Gang eWu


    Full Text Available Resilience is the ability to adapt successfully in the face of stress and adversity. Stressful life events, trauma and chronic adversity can have a substantial impact on brain function and structure, and can result in the development of PTSD, depression and other psychiatric disorders. However, most individuals do not develop such illnesses after experiencing stressful life events, and are thus thought to be resilient. Resilience as successful adaptation relies on effective responses to environmental challenges and ultimate resistance to the deleterious effects of stress, therefore a greater understanding of the factors that promote such effects is of great relevance. This review focuses on recent findings regarding genetic, epigenetic, developmental, psychosocial and neurochemical factors that are considered essential contributors to the development of resilience. Neural circuits and pathways involved in mediating resilience are also discussed. The growing understanding of resilience factors will hopefully lead to the development of new pharmacological and psychological interventions for enhancing resilience and mitigating the untoward consequences.

  10. Understanding effects of fire suppression, fuels treatment, and wildfire on bird communities in the Klamath-Siskiyou ecoregion (United States)

    John D. Alexander; C. John Ralph; Bill Hogoboom; Nathaniel E. Seavy; Stewart Janes


    Although fire management is increasingly recognized as an important component of conservation in Klamath-Siskiyou ecosystems, empirical evidence on the ecological effects of fire in this region is limited. Here we describe a conceptual model as a framework for understanding the effects of fire and fire management on bird abundance. This model identifies three major...

  11. Understanding the effect of watershed characteristic on the runoff using SCS curve number (United States)

    Damayanti, Frieta; Schneider, Karl


    Runoff modeling is a key component in watershed management. The temporal course and amount of runoff is a complex function of a multitude of parameters such as climate, soil, topography, land use, and water management. Against the background of the current rapid environmental change, which is due to both i) man-made changes (e.g. urban development, land use change, water management) as well as ii) changes in the natural systems (e.g. climate change), understanding and predicting the impacts of these changes upon the runoff is very important and affects the wellbeing of many people living in the watershed. A main tool for predictions is hydrologic models. Particularly process based models are the method of choice to assess the impact of land use and climate change. However, many regions which experience large changes in the watersheds can be described as rather data poor, which limits the applicability of such models. This is particularly also true for the Telomoyo Watershed (545 km2) which is located in southern part of Central Java province. The average annual rainfall of the study area reaches 2971 mm. Irrigated paddy field are the dominating land use (35%), followed by built-up area and dry land agriculture. The only available soil map is the FAO soil digital map of the world, which provides rather general soil information. A field survey accompanied by a lab analysis 65 soil samples of was carried out to provide more detailed soil texture information. The soil texture map is a key input in the SCS method to define hydrological soil groups. In the frame of our study on 'Integrated Analysis on Flood Risk of Telomoyo Watershed in Response to the Climate and Land Use Change' funded by the German Academic Exchange service (DAAD) we analyzed the sensitivity of the modeled runoff upon the choice of the method to estimate the CN values using the SCS-CN method. The goal of this study is to analyze the impact of different data sources on the curve numbers and the

  12. A framework for understanding semi-permeable barrier effects on migratory ungulates (United States)

    Sawyer, Hall; Kauffman, Matthew J.; Middleton, Arthur D.; Morrison, Thomas A.; Nielson, Ryan M.; Wyckoff, Teal B.


    1. Impermeable barriers to migration can greatly constrain the set of possible routes and ranges used by migrating animals. For ungulates, however, many forms of development are semi-permeable, and making informed management decisions about their potential impacts to the persistence of migration routes is difficult because our knowledge of how semi-permeable barriers affect migratory behaviour and function is limited. 2. Here, we propose a general framework to advance the understanding of barrier effects on ungulate migration by emphasizing the need to (i) quantify potential barriers in terms that allow behavioural thresholds to be considered, (ii) identify and measure behavioural responses to semi-permeable barriers and (iii) consider the functional attributes of the migratory landscape (e.g. stopovers) and how the benefits of migration might be reduced by behavioural changes. 3. We used global position system (GPS) data collected from two subpopulations of mule deer Odocoileus hemionus to evaluate how different levels of gas development influenced migratory behaviour, including movement rates and stopover use at the individual level, and intensity of use and width of migration route at the population level. We then characterized the functional landscape of migration routes as either stopover habitat or movement corridors and examined how the observed behavioural changes affected the functionality of the migration route in terms of stopover use. 4. We found migratory behaviour to vary with development intensity. Our results suggest that mule deer can migrate through moderate levels of development without any noticeable effects on migratory behaviour. However, in areas with more intensive development, animals often detoured from established routes, increased their rate of movement and reduced stopover use, while the overall use and width of migration routes decreased. 5. Synthesis and applications. In contrast to impermeable barriers that impede animal movement

  13. The Effects of Case-Based Instruction on Undergraduate Biology Students' Understanding of the Nature of Science (United States)

    Burniston, Amy Lucinda

    Undergraduate science education is currently seeing a dramatic pedagogical push towards teaching the philosophies underpinning science as well as an increase in strategies that employ active learning. Many active learning strategies stem from constructivist ideals and have been shown to affect a student's understanding of how science operates and its impact on society- commonly referred to as the nature of science (NOS). One particular constructivist teaching strategy, case-based instruction (CBI), has been recommended by researchers and science education reformists as an effective instructional strategy for teaching NOS. Furthermore, when coupled with explicit-reflective instruction, CBI has been found to significantly increasing understanding of NOS in elementary and secondary students. However, few studies aimed their research on CBI and NOS towards higher education. Thus, this study uses a quasi-experimental, nonequivalent group design to study the effects of CBI on undergraduate science students understandings of NOS. Undergraduate biology student's understanding of NOS were assessed using the Views of Science Education (VOSE) instrument pre and post CBI intervention in Cellular and Molecular Biology and Human Anatomy and Physiology II. Data analysis indicated statistically significant differences between students NOS scores in experimental versus control sections for both courses, with experimental groups obtaining higher posttest scores. The results of this study indicate that undergraduate male and female students have similarly poor understandings of NOS and the use of historical case based instruction can be used as a means to increase undergraduate understanding of NOS.

  14. Entropic effects in formation of chromosome territories: towards understanding of radiation-induced gene translocation frequency (United States)

    Gudowska-Nowak, Ewa; Ritter, Sylvia; Durante, Marco; Deperas-Standylo, Joanna; Ciesla, Michal


    A detailed understanding of structural organization of biological target, such as geometry of an inter-phase chromosome, is an essential prerequisite for gaining deeper insight into relationship between radiation track structure and radiation-induced biological damage [1]. In particular, coupling of biophysical models aimed to describe architecture of chromosomes and their positioning in a cell nucleus [2-4] with models of local distribution of ionizations caused by passing projectiles, are expected to result in more accurate estimates of aberration induction caused by radiation. There is abundant experimental evidence indicating that arrangements of chromosomes in eukaryotic cell nucleus is non-random and has been evolutionary conserved in specific cell types. Moreover, the radial position of a given chromosome territory (CT) within the cell nucleus has been shown to correlate with its size and gene density. Usually it is assumed that chromosomal geometry and positioning result from the action of specific forces acting locally, such as hydrogen bonds, electrostatic, Van der Waals or hydrophobic interactions operating between nucleosomes and within their interiors. However, it is both desirable and instructive to learn to what extend organization of inter-phase chromosomes is affected by nonspecific entropic forces. In this study we report results of a coarse-grained analysis of a chromatin structure modeled by two distinct approaches. In the first method, we adhere to purely statistical analysis of chromatin packing within a chromosome territory. On the basis of the polymer theory, the chromatin fiber of diameter 30nm is approximated by a chain of spheres, each corresponding to about 30 kbp. Random positioning of the center of the domain is repeated for 1000 spherical nuclei. Configuration of the domain is determined by a random packing of a polymer (a string of identical beads) in estimated fraction of space occupied by a chromosome of a given length and mass

  15. Effective Use of Discovery Learning to Improve Understanding of Factors That Affect Quality (United States)

    Mukherjee, Arup


    Undergraduate business majors are required to take a course in operations management. In this course, a great deal of emphasis is put on developing a good understanding of quality because this is likely to be the only required course that covers this important topic. Quality of output exhibits a great deal of variation. To produce high quality on…

  16. Examining the Effects of Model-Based Inquiry on Concepetual Understanding and Engagement in Science (United States)

    Baze, Christina L.

    Model-Based Inquiry (MBI) is an instructional model which engages students in the scientific practices of modeling, explanation, and argumentation while they work to construct explanations for natural phenomena. This instructional model has not been previously studied at the community college level. The purpose of this study is to better understand how MBI affects the development of community college students' conceptual understanding of evolution and engagement in the practices of science. Mixed-methods were employed to collect quantitative and qualitative data through the multiple-choice Concepts Inventory of Natural Selection, student artifacts, and semi-structured interviews. Participants were enrolled in Biology Concepts, an introductory class for non-science majors, at a small, rural community college in the southwestern United States. Preliminary data shows that conceptual understanding is not adversely affected by the implementation of MBI, and that students gain valuable insights into the practices of science. Specifically, students who participated in the MBI intervention group gained a better understanding of the role of models in explaining and predicting phenomena and experienced feeling ownership of their ideas, an appropriate depth of thinking, more opportunities for collaboration, and coherence and context within the unit. Implications of this study will be of interest to postsecondary science educators and researchers who seek to reform and improve science education.

  17. U.S. Policy and Canadian Lumber: Effects of the 1986 Memorandum of Understanding (United States)

    David N. Wear; Karen J. Lee


    A 1986 Memorandum of Understanding on softwood lumber imports (MOU) between Canada and the United States required that provinvial governments levy export taxes on softwood lumber shipped to the United States. This agreement, with subsequent amendments, influenced trade from 1987 until it was abandoned by Canada in October of 1991. This paper investigates the market...

  18. Students' Understanding of Genetics Concepts: The Effect of Reasoning Ability and Learning Approaches (United States)

    Kiliç, Didem; Saglam, Necdet


    Students tend to learn genetics by rote and may not realise the interrelationships in daily life. Because reasoning abilities are necessary to construct relationships between concepts and rote learning impedes the students' sound understanding, it was predicted that having high level of formal reasoning and adopting meaningful learning orientation…

  19. Students' Perceived Understanding Mediates the Effects of Teacher Clarity and Nonverbal Immediacy on Learner Empowerment (United States)

    Finn, Amber N.; Schrodt, Paul


    This study examined students' perceived understanding as a mediator of the relationship between student perceptions of teacher clarity, nonverbal immediacy cues, and learner empowerment (i.e., meaningfulness, competence, and impact). Participants included 261 undergraduate students who completed survey instruments. Results of structural equation…

  20. Improved understanding of moisture effects on outdoor wood–adhesive bondlines (United States)

    Joseph E. Jakes; Nayomi Plaza-Rodriguez; Xavier Arzola Villegas; Charles R. Frihart


    The development of improved moisture-durable wood adhesives for outdoor applications, such as repairing historic covered bridges, is hindered by an incomplete mechanistic understanding of what makes a wood–adhesive bond moisture-durable. The wood–adhesive bondline is extraordinarily difficult to study because of the chemical, structural, and mechanical complexities and...

  1. Effects of Experimenting with Physical and Virtual Manipulatives on Students' Conceptual Understanding in Heat and Temperature (United States)

    Zacharia, Zacharias C.; Olympiou, Georgios; Papaevripidou, Marios


    This study aimed to investigate the comparative value of experimenting with physical manipulatives (PM) in a sequential combination with virtual manipulatives (VM), with the use of PM preceding the use of VM, and of experimenting with PM alone, with respect to changes in students' conceptual understanding in the domain of heat and temperature. A…

  2. Maternal Behavior Modifications during Pretense and Their Long-Term Effects on Toddlers' Understanding of Pretense (United States)

    Nakamichi, Naoko


    Recent studies indicate the need to investigate the sources of toddlers' understanding of another person's pretense. The present study is a cultural and longitudinal extension of the work of Lillard and Witherington (2004), who claimed that mothers modify their behaviors during pretense and that the some of these behavior modifications help their…

  3. The Effect of Guided Note Taking during Lectures on Thai University Students' Understanding of Electromagnetism (United States)

    Narjaikaew, Pattawan; Emarat, Narumon; Cowie, Bronwen


    This paper reports on the implementation of a guided note taking strategy to promote Thai students' understanding of electromagnetism during a lecture course. The aim of the study was to enhance student learning of electromagnetism concepts. The developed guided notes contain quotations, diagrams, pictures, problems, and blank spaces to encourage…

  4. Can an Understanding of Basic Research Facilitate the Effectiveness of Practitioners? Reflections and Personal Perspectives (United States)

    Sidman, Murray


    I have written before about the importance of applied behavior analysis to basic researchers. That relationship is, however, reciprocal; it is also critical for practitioners to understand and even to participate in basic research. Although applied problems are rarely the same as those investigated in the laboratory, practitioners who understand…

  5. Understanding the Greenhouse Effect by Embodiment--Analysing and Using Students' and Scientists' Conceptual Resources (United States)

    Niebert, Kai; Gropengießer, Harald


    Over the last 20 years, science education studies have reported that there are very different understandings among students of science regarding the key aspects of climate change. We used the cognitive linguistic framework of experientialism to shed new light on this valuable pool of studies to identify the conceptual resources of understanding…

  6. Understanding the effects of inter-particle contact friction on the elastic moduli of granular materials

    NARCIS (Netherlands)

    Taghizadeh Bajgirani, Kianoosh; Kumar, Nishant; Magnanimo, Vanessa; Luding, Stefan


    Understanding the mechanical stiffness of closely packed, dense granular systems is of interest in many fields, such as soil mechanics, material science and physics. The main difficulty arises due to discreteness and disorder in granular materials at the microscopic scale which requires a

  7. Understanding Change for Effective School Improvement Initiatives: Critical Elements of School Reform (United States)

    Schnautz, Dee Ann Piercy


    With the historical political and social changes, which ultimately affect education, it is easy to see why teachers sometimes balk at new initiatives and perceived new best practices. For change to occur it is important to understand how perception of critical elements of change impact student academic growth. It is also important to have a…

  8. The Effect of Conceptual Change Model in the Senior High School Students’ Understanding and Character in Learning Physics

    Directory of Open Access Journals (Sweden)

    Santyasa I Wayan


    Full Text Available Learning physics for senior high school (SMA students is often coloured by misconceptions that hinder students in achieving deep understanding. So a relevant learning model is needed. This study aims to examine the effect of conceptual change model (CCM compared with direct instruction model (DIM on the students’ conceptual understanding and character in the subject area of motion and force. This quasi-experimental research using a non-equivalence pre-test post-test control groups design. The population is 20 classes (738 students of grade X consisted of 8 classes (272 students of SMA 1 Amlapura, 8 classes (256 students of SMA 2 Amlapura, and 6 classes (210 students of SMA 1 Manggis in Karangasem regency in Bali. The random assignment technique is used to assign 6 classes (202 students, or 26.5% of the population. In each school there are set 2 classes each as a CCM group and DIM groups. The data of students’ conceptual understanding is collected by tests, while the characters by questionnaires. To analyse the data a one way MANCOVA statistics was used. The result of the analysis showed that there was a significant difference of effect between CCM group and DIM group on the students’ conceptual understanding and character. The effect of the CCM group is higher than the DIM group on the students’ conceptual understanding and character in learning subject area of motion and force.

  9. On the Understandability of Public Domain Icons: Effects of Gender and Age


    Berget, Gerd; Sandnes, Frode Eika


    Icons and symbols are often deployed in graphical user interfaces. It is commonly believed that icons add to the user friendliness of products. Devel‐ opers have great trust in icon libraries and they are likely to use icons they under‐ stand themselves without verifying users’ understanding. Interfaces relying on icons that are misinterpreted can lead to erroneous operation. In this study a set of icons in the public domain was interpreted by 64 participants to assess how well general icons ...

  10. Field Independence and the Effect of Background Music on Film Understanding and Emotional Responses of American Indians. (United States)

    Raburn, Josephine

    Fifty-five Indian students between the ages of 16 and 22 years were selected from the junior and senior English classes at the Fort Sill Indian School to examine the effects of background music in helping lower socio-economic American Indians understand film content and in manipulating their emotions. This study also looked at how cognitive style…

  11. Effect of Computer Simulations at the Particulate and Macroscopic Levels on Students' Understanding of the Particulate Nature of Matter (United States)

    Tang, Hui; Abraham, Michael R.


    Computer-based simulations can help students visualize chemical representations and understand chemistry concepts, but simulations at different levels of representation may vary in effectiveness on student learning. This study investigated the influence of computer activities that simulate chemical reactions at different levels of representation…

  12. The Effect of Using Virtual Laboratory on Grade 10 Students' Conceptual Understanding and Their Attitudes towards Physics (United States)

    Faour, Malak Abou; Ayoubi, Zalpha


    This study investigated the effect of using (VL) on grade 10 students' conceptual understanding of the direct current electric circuit and their attitudes towards physics. The research used a quantitative experimental approach. The sample of the study was formed of 50 students of the tenth grade, aged 14 to 16 years old, of an official secondary…

  13. The Effectiveness of the Brain Based Teaching Approach in Enhancing Scientific Understanding of Newtonian Physics among Form Four Students (United States)

    Saleh, Salmiza


    The aim of this study was to assess the effectiveness of Brain Based Teaching Approach in enhancing students' scientific understanding of Newtonian Physics in the context of Form Four Physics instruction. The technique was implemented based on the Brain Based Learning Principles developed by Caine & Caine (1991, 2003). This brain compatible…

  14. Understanding the biophysical effects of transcranial magnetic stimulation on brain tissue: the bridge between brain stimulation and cognition. (United States)

    Neggers, Sebastiaan F W; Petrov, Petar I; Mandija, Stefano; Sommer, Iris E C; van den Berg, Nico A T


    Transcranial magnetic stimulation (TMS) is rapidly being adopted in neuroscience, medicine, psychology, and biology, for basic research purposes, diagnosis, and therapy. However, a coherent picture of how TMS affects neuronal processing, and especially how this in turn influences behavior, is still largely unavailable despite several studies that investigated aspects of the underlying neurophysiological effects of TMS. Perhaps as a result from this "black box approach," TMS studies show a large interindividual variability in applied paradigms and TMS treatment outcome can be quite variable, hampering its general efficacy and introduction into the clinic. A better insight into the biophysical, neuronal, and cognitive mechanisms underlying TMS is crucial in order to apply it effectively in the clinic and to increase our understanding of brain-behavior relationship. Therefore, computational and experimental efforts have been started recently to understand and control the effect TMS has on neuronal functioning. Especially, how the brain shapes magnetic fields induced by a TMS coil, how currents are generated locally in the cortical surface, and how they interact with complex functional neuronal circuits within and between brain areas are crucial to understand the observed behavioral changes and potential therapeutic effects resulting from TMS. Here, we review the current knowledge about the biophysical underpinnings of single-pulse TMS and argue how to move forward to fully understand and exploit the powerful technique that TMS can be. © 2015 Elsevier B.V. All rights reserved.

  15. Effects of Intervention to Improve At-Risk Fourth Graders' Understanding, Calculations, and Word Problems with Fractions (United States)

    Fuchs, Lynn S.; Schumacher, Robin F.; Long, Jessica; Namkung, Jessica; Malone, Amelia S.; Wang, Amber; Hamlett, Carol L.; Jordan, Nancy C.; Siegler, Robert S.; Changas, Paul


    The purposes of this study were to (a) investigate the efficacy of a core fraction intervention program on understanding and calculation skill and (b) isolate the effects of different forms of fraction word-problem (WP) intervention. At-risk fourth graders (n = 213) were randomly assigned to the school's business-as-usual program, or one of two…

  16. The Effect of Cooperative Learning Approach Based on Conceptual Change Condition on Students' Understanding of Chemical Equilibrium Concepts (United States)

    Bilgin, Ibrahim; Geban, Omer


    The purpose of this study is to investigate the effects of the cooperative learning approach based on conceptual change conditions over traditional instruction on 10th grade students' conceptual understanding and achievement of computational problems related to chemical equilibrium concepts. The subjects of this study consisted of 87 tenth grade…

  17. Expression and function of nuclear receptor coregulators in brain : understanding the cell-specific effects of glucocorticoids

    NARCIS (Netherlands)

    Laan, Siem van der


    Currently, the raising awareness of the role of glucocorticoids in the onset of numerous (neuro)-pathologies constitutes the increasing necessity of understanding the mechanisms of action of glucocorticoids in bodily processes and brain functioning. Glucocorticoids mediate their effects by binding

  18. Drama-Based Science Teaching and Its Effect on Students' Understanding of Scientific Concepts and Their Attitudes towards Science Learning (United States)

    Abed, Osama H.


    This study investigated the effect of drama-based science teaching on students' understanding of scientific concepts and their attitudes towards science learning. The study also aimed to examine if there is an interaction between students' achievement level in science and drama-based instruction. The sample consisted of (87) of 7th grade students…

  19. The Effectiveness of the Geospatial Curriculum Approach on Urban Middle-Level Students' Climate Change Understandings (United States)

    Bodzin, Alec M.; Fu, Qiong


    Climate change science is a challenging topic for student learning. This quantitative study examined the effectiveness of a geospatial curriculum approach to promote climate change science understandings in an urban school district with eighth-grade students and investigated whether teacher- and student-level factors accounted for students'…


    Directory of Open Access Journals (Sweden)

    J. Siswanto


    Full Text Available The aimed of this sudy are: (1 investigate the effectiveness of E-Lab to improve generic science skills and understanding the concepts oh physics; and (2 investigate the effect of generic science skills towards understanding the concept of students after learning by using the E-Lab. The method used in this study is a pre-experimental design with one group pretest-posttest. Subjects were students of Physics Education in University PGRI Semarang with methode random sampling. The results showed that: (1 learning to use E-Lab effective to increase generic science skills of students; and (2 Generic science skills give positive effect on student conceptual understanding on the material of the photoelectric effect, compton effect, and electron diffraction. Tujuan penelitian ini yaitu: (1 menyelidiki efektifitas E-Lab untuk meningkatkan keterampilan generik sains dan pemahaman konsep mahasiswa; dan (2  menyelidiki pengaruh keterampilan generik sains terhadap pemahaman konsep mahasiswa setelah dilakukan pembelajaran dengan menggunakan E-Lab. Metode penelitian yang digunakan dalam penelitian ini adalah pre-experimental dengan desain one group pretest-posttest. Subjek penelitian adalah mahasiswa Program Studi Pendidikan  Fisika  Universitas PGRI Semarang, dengan metode pengambilan sampel penelitian secara random. Hasil penelitian menunjukkan bahwa bahwa: (1 pembelajaran menggunakan E-Lab efektif untuk meningkatkan keterampilan generik sains mahasiswa; dan  (2 Keterampilan generik sains berpengaruh positif terhadap pemahaman konsep mahasiswa pada materi efek fotolistrik, efek compton, dan difraksi elektron. 

  1. Children's Models of Understanding of Two Major Global Environmental Issues (Ozone Layer and Greenhouse Effect). (United States)

    Boyes, Edward; Stanisstreet, Martin


    Aims to quantify the models that 13- and 14 year-old students hold about the causes of the greenhouse effect and ozone layer depletion. Assesses the prevalence of those ideas that link the two phenomena. Twice as many students think that holes in the ozone layer cause the greenhouse effect than think the greenhouse effect causes ozone depletion.…

  2. Future development of biological understanding of radiation protection: implications of nonstochastic effects

    International Nuclear Information System (INIS)

    Hahn, F.F.; McClellan, R.O.; Boecker, B.B.; Muggenburg, B.A.


    Radiation-protection standards are based on minimizing or preventing biological effects in exposed populations. Radiation-induced biological effects can be classified as stochastic--malignant and hereditary diseases for which the probability of an effect occurring is a function of dose without threshold--and nonstochastic--inflammatory and degenerative diseases for which the severity and frequency of the effect varies with the dose and for which a threshold is present. The current International Commission on Radiation Protection (ICRP) approach for setting limits for intakes of radionuclides by workers, which accounts for doses to significantly exposed organs of the body, is based on limitation of stochastic effects in most situations. When setting exposure limits, nonstochastic effects are generally considered to be unlikely at the limits for stochastic effects. In some situations, limits based on prevention of nonstochastic effects are lower than for stochastic effects. This review considers the threshold radiation doses for thyroid, bone, liver and lung and their relationship to the limits recommended by the ICRP and the cancer risks at the limits. This review indicates that the threshold dose for nonstochastic effects in thyroid and lung is much above the dose limit as advocated by ICRP. The threshold dose for nonstochastic effects in bone and liver is much closer to the dose limit, but protection from nonstochastic effects should still be afforded by the dose limits

  3. PCI Compliance Understand and Implement Effective PCI Data Security Standard Compliance

    CERN Document Server

    Chuvakin, Anton


    Identity theft and other confidential information theft have now topped the charts as the #1 cybercrime. In particular, credit card data is preferred by cybercriminals. Is your payment processing secure and compliant?. Now in its second edition, PCI Compliance has been revised to follow the new PCI DSS standard 1.2.1. Also new to this edition: Each chapter has how-to guidance to walk you through implementing concepts, and real-world scenarios to help you relate to the information and better grasp how it impacts your data. This book provides the information that you need to understand the curre

  4. Understanding the Effects of Collisional Evolution and Spacecraft Impact Experiments on Comets and Asteroids (United States)

    Lederer, S.M.; Jensen, E.A.; Fane, M.; Smith, D.C.; Holmes, J.; Keller, L.P.; Lindsay, S.S.; Wooden, D.H.; Whizin, A.; Cintala, M.J.; hide


    Comets and asteroids have endured impacts from other solar system bodies that result in outcomes ranging from catastrophic collisions to regolith evolution due to micrometeorid bombardment of the surface ices and refactory components. Experiments designed to better understand these relics of solar system formation have been conducted on Earth in a laboratory setting, as well as in space through, e.g., the Deep Impact Mission to Comet Tempel 1. Deep Impact fired a high-speed impactor into the roughly 6 km nucleus of the comet. The ejecta plume generated by the impact was studied by both spacecraft instrumentation and groundbased telescopes.

  5. Stories That Heal: Understanding the Effects of Creating Digital Stories With Pediatric and Adolescent/Young Adult Oncology Patients. (United States)

    Laing, Catherine M; Moules, Nancy J; Estefan, Andrew; Lang, Mike

    The purpose of this philosophical hermeneutic study was to determine if, and understand how, digital stories might be effective therapeutic tools to use with children and adolescents/young adults (AYA) with cancer, thus helping mitigate suffering. Sixteen participants made digital stories with the help of a research assistant trained in digital storytelling and were interviewed following the completion of their stories. Findings from this research revealed that digital stories were a way to have others understand their experiences of cancer, allowed for further healing from their sometimes traumatic experiences, had unexpected therapeutic effects, and were a way to reconcile past experiences with current life. Digital stories, we conclude, show great promise with the pediatric and AYA oncology community and we believe are a way in which the psychosocial effects of cancer treatment may be addressed. Recommendations for incorporating digital stories into clinical practice and follow-up programs are offered.

  6. Trust, Mistrust, and Organizational Design: Understanding the Effects of Social Configurations

    National Research Council Canada - National Science Library

    Moonier III, James E; Baker, Spencer L; Greene, Mark L


    .... The formation of effective partnerships is influenced greatly by trust. Trust sets the stage for necessary factors for collaboration such as social interaction, communication, negotiation, and cooperation...

  7. The Effects of Maple Integrated Strategy on Engineering Technology Students' Understanding of Integral Calculus (United States)

    Salleh, Tuan Salwani; Zakaria, Effandi


    The objective of this research is to investigate the effectiveness of a learning strategy using Maple in integral calculus. This research was conducted using a quasi-experimental nonequivalent control group design. One hundred engineering technology students at a technical university were chosen at random. The effectiveness of the learning…

  8. Global Warming: Understanding and Teaching the Forecast. Part A The Greenhouse Effect. (United States)

    Andrews, Bill


    Provides information necessary for an interdisciplinary analysis of the greenhouse effect, enhanced greenhouse effect, global warming, global climate change, greenhouse gases, carbon dioxide, and scientific study of global warming for students grades 4-12. Several activity ideas accompany the information. (LZ)

  9. Understanding the effects of the core on the nutation of the Earth

    Directory of Open Access Journals (Sweden)

    Véronique Dehant


    Full Text Available In this review paper, we examine the changes in the Earth orientation in space and focus on the nutation (shorter-term periodic variations, which is superimposed on precession (long-term trend on a timescale of years. We review the nutation modelling involving several coupling mechanisms at the core-mantle boundary using the Liouville angular momentum equations for a two-layered Earth with a liquid flattened core. The classical approach considers a Poincaré fluid for the core with an inertial pressure coupling mechanism at the core-mantle boundary. We examine possible additional coupling mechanisms to explain the observations. In particular, we examine how we can determine the flattening of the core as well as information on the magnetic field and the core flow from the nutation observations. The precision of the observations is shown to be high enough to increase our understanding on the coupling mechanisms at the core-mantle boundary.

  10. Understanding and effectively addressing breast cancer in African American women: Unpacking the social context. (United States)

    Williams, David R; Mohammed, Selina A; Shields, Alexandra E


    Black women have a higher incidence of breast cancer before the age of 40 years, more severe disease at all ages, and an elevated mortality risk in comparison with white women. There is limited understanding of the contribution of social factors to these patterns. Elucidating the role of the social determinants of health in breast cancer disparities requires greater attention to how risk factors for breast cancer unfold over the lifecourse and to the complex ways in which socioeconomic status and racism shape exposure to psychosocial, physical, chemical, and other individual and community-level assaults that increase the risk of breast cancer. Research that takes seriously the social context in which black women live is also needed to maximize the opportunities to prevent breast cancer in this underserved group. Cancer 2016;122:2138-49. © 2016 American Cancer Society. © 2016 American Cancer Society.

  11. EGFR-Targeting as a Biological Therapy: Understanding Nimotuzumab's Clinical Effects

    International Nuclear Information System (INIS)

    Perez, Rolando; Moreno, Ernesto; Garrido, Greta; Crombet, Tania


    Current clinical trials of epidermal growth factor receptor (EGFR)-targeted therapies are mostly guided by a classical approach coming from the cytotoxic paradigm. The predominant view is that the efficacy of EGFR antagonists correlates with skin rash toxicity and induction of objective clinical response. Clinical benefit from EGFR-targeted therapies is well documented; however, chronic use in advanced cancer patients has been limited due to cumulative and chemotherapy-enhanced toxicity. Here we analyze different pieces of data from mechanistic and clinical studies with the anti-EGFR monoclonal antibody Nimotuzumab, which provides several clues to understand how this antibody may induce a biological control of tumor growth while keeping a low toxicity profile. Based on these results and the current state of the art on EGFR-targeted therapies, we discuss the need to evaluate new therapeutic approaches using anti-EGFR agents, which would have the potential of transforming advanced cancer into a long-term controlled chronic disease

  12. Effects of prefrontal cortex damage on emotion understanding: EEG and behavioural evidence. (United States)

    Perry, Anat; Saunders, Samantha N; Stiso, Jennifer; Dewar, Callum; Lubell, Jamie; Meling, Torstein R; Solbakk, Anne-Kristin; Endestad, Tor; Knight, Robert T


    Humans are highly social beings that interact with each other on a daily basis. In these complex interactions, we get along by being able to identify others' actions and infer their intentions, thoughts and feelings. One of the major theories accounting for this critical ability assumes that the understanding of social signals is based on a primordial tendency to simulate observed actions by activating a mirror neuron system. If mirror neuron regions are important for action and emotion recognition, damage to regions in this network should lead to deficits in these domains. In the current behavioural and EEG study, we focused on the lateral prefrontal cortex including dorsal and ventral prefrontal cortex and utilized a series of task paradigms, each measuring a different aspect of recognizing others' actions or emotions from body cues. We examined 17 patients with lesions including (n = 8) or not including (n = 9) the inferior frontal gyrus, a core mirror neuron system region, and compared their performance to matched healthy control subjects (n = 18), in behavioural tasks and in an EEG observation-execution task measuring mu suppression. Our results provide support for the role of the lateral prefrontal cortex in understanding others' emotions, by showing that even unilateral lesions result in deficits in both accuracy and reaction time in tasks involving the recognition of others' emotions. In tasks involving the recognition of actions, patients showed a general increase in reaction time, but not a reduction in accuracy. Deficits in emotion recognition can be seen by either direct damage to the inferior frontal gyrus, or via damage to dorsal lateral prefrontal cortex regions, resulting in deteriorated performance and less EEG mu suppression over sensorimotor cortex. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email:

  13. The effects of bariatric surgery – will understanding its mechanism render the knife unnecessary?


    Browning, Kirsteen N; Hajnal, Andras


    The incidence of obesity is increasing worldwide at a dramatic rate, accompanied by an associated increase in comorbid conditions. Bariatric surgery is the most effective treatment for severe obesity with, until recently, Roux-en-Y gastric bypass (RYGB) being the most commonly performed procedures, yet the underlying mechanisms by which it induces a wide-array of beneficial effects remains obscure. From both basic science as well as clinical standpoints, there are several areas of current int...

  14. “Listening Stress” and Its Debilitative Effects : Understanding the Circular Mechanism


    Noro, Tokuji


    The present study discusses the debilitative effects of “listening stress,” which has beenconceptualized by the present author in a series of preliminary research projects in the psychologicalstress research framework to explain anxiety-related cognition in the second/foreign language (L2/FL) listening process. The effects of affective factors on L2/FL learning have been conventionallyinvestigated with the construct of language anxiety. However, language anxiety is usually categorizedas situa...

  15. Recent Advances in Understanding and Mitigating Adipogenic and Metabolic Effects of Antipsychotic Drugs (United States)

    Gohlke, Julia M.; Dhurandhar, Emily J.; Correll, Christoph U.; Morrato, Elaine H.; Newcomer, John W.; Remington, Gary; Nasrallah, Henry A.; Crystal, Stephen; Nicol, Ginger; Allison, David B.


    Although offering many benefits for several psychiatric disorders, antipsychotic drugs (APDs) as a class have a major liability in their tendency to promote adiposity, obesity, and metabolic dysregulation in an already metabolically vulnerable population. The past decade has witnessed substantial research aimed at investigating the mechanisms of these adverse effects and mitigating them. On July 11 and 12, 2011, with support from 2 NIH institutes, leading experts convened to discuss current research findings and to consider future research strategies. Five areas where significant advances are being made emerged from the conference: (1) methodological issues in the study of APD effects; (2) unique characteristics and needs of pediatric patients; (3) genetic components underlying susceptibility to APD-induced metabolic effects; (4) APD effects on weight gain and adiposity in relation to their acute effects on glucose regulation and diabetes risk; and (5) the utility of behavioral, dietary, and pharmacological interventions in mitigating APD-induced metabolic side effects. This paper summarizes the major conclusions and important supporting data from the meeting. PMID:22754543

  16. Understanding and predicting metallic whisker growth and its effects on reliability : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Michael, Joseph Richard; Grant, Richard P.; Rodriguez, Mark Andrew; Pillars, Jamin; Susan, Donald Francis; McKenzie, Bonnie Beth; Yelton, William Graham


    Tin (Sn) whiskers are conductive Sn filaments that grow from Sn-plated surfaces, such as surface finishes on electronic packages. The phenomenon of Sn whiskering has become a concern in recent years due to requirements for lead (Pb)-free soldering and surface finishes in commercial electronics. Pure Sn finishes are more prone to whisker growth than their Sn-Pb counterparts and high profile failures due to whisker formation (causing short circuits) in space applications have been documented. At Sandia, Sn whiskers are of interest due to increased use of Pb-free commercial off-the-shelf (COTS) parts and possible future requirements for Pb-free solders and surface finishes in high-reliability microelectronics. Lead-free solders and surface finishes are currently being used or considered for several Sandia applications. Despite the long history of Sn whisker research and the recently renewed interest in this topic, a comprehensive understanding of whisker growth remains elusive. This report describes recent research on characterization of Sn whiskers with the aim of understanding the underlying whisker growth mechanism(s). The report is divided into four sections and an Appendix. In Section 1, the Sn plating process is summarized. Specifically, the Sn plating parameters that were successful in producing samples with whiskers will be reviewed. In Section 2, the scanning electron microscopy (SEM) of Sn whiskers and time-lapse SEM studies of whisker growth will be discussed. This discussion includes the characterization of straight as well as kinked whiskers. In Section 3, a detailed discussion is given of SEM/EBSD (electron backscatter diffraction) techniques developed to determine the crystallography of Sn whiskers. In Section 4, these SEM/EBSD methods are employed to determine the crystallography of Sn whiskers, with a statistically significant number of whiskers analyzed. This is the largest study of Sn whisker crystallography ever reported. This section includes a

  17. Evaluating the effects of ideology on public understanding of climate change science: how to improve communication across ideological divides? (United States)

    Zia, Asim; Todd, Anne Marie


    While ideology can have a strong effect on citizen understanding of science, it is unclear how ideology interacts with other complicating factors, such as college education, which influence citizens' comprehension of information. We focus on public understanding of climate change science and test the hypotheses: [H1] as citizens' ideology shifts from liberal to conservative, concern for global warming decreases; [H2] citizens with college education and higher general science literacy tend to have higher concern for global warming; and [H3] college education does not increase global warming concern for conservative ideologues. We implemented a survey instrument in California's San Francisco Bay Area, and employed regression models to test the effects of ideology and other socio-demographic variables on citizen concern about global warming, terrorism, the economy, health care and poverty. We are able to confirm H1 and H3, but reject H2. Various strategies are discussed to improve the communication of climate change science across ideological divides.

  18. Predicting Plant Diversity Patterns in Madagascar: Understanding the Effects of Climate and Land Cover Change in a Biodiversity Hotspot


    Brown, Kerry A.; Parks, Katherine E.; Bethell, Colin A.; Johnson, Steig E.; Mulligan, Mark


    Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs) calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence r...

  19. The effects of bariatric surgery: will understanding its mechanism render the knife unnecessary? (United States)

    Browning, Kirsteen N; Hajnal, Andras


    The incidence of obesity is increasing worldwide at a dramatic rate, accompanied by an associated increase in comorbid conditions. Bariatric surgery is the most effective treatment for morbid obesity with Roux-en-Y gastric bypass being the most commonly performed procedure, yet the underlying mechanisms by which it induces a wide-array of beneficial effects remains obscure. From basic science as well as clinical standpoints, there are several areas of current interest that warrant continued investigation. Several major focus areas have also emerged in current research that may guide future efforts in this field, particularly with regards to using novel, non-surgical approaches to mimic the success of bariatric surgery while minimizing its adverse side effects.

  20. Understanding the effect of inelastic electron-phonon scattering and channel inhomogeneities on a nanowire FET (United States)

    Sarkar, Niladri


    Using self-consistent Non-Equilibrium Green's Function formalism, the effect of the inelastic scattering due to electron-phonon interaction on the transfer and output characteristics of a coaxially gated generic nanowire field effect transistor has been studied in detail. The scattering strength Do is varied from 0.003 eV2 to 0.3 eV2. There is change in the threshold voltage and suppression of channel current with increasing scattering strength. We also studied the effect of channel inhomogeneities on electron energy. The channel inhomogeneities are invoked by introducing potential step inside the channel. We study the energy relaxation due to inelastic scattering and channel inhomogeneities by comparing the normalized terminal current per energy for the source and drain terminals.

  1. Understanding the Socioeconomic Effects of Wildfires on Western U.S. Public Lands (United States)

    Sanchez, J. J.; Srivastava, L.; Marcos-Martinez, R.


    Climate change has resulted in the increased severity and frequency of forest disturbances due to wildfires, droughts, pests and diseases that compromise the sustainable provision of forest ecosystem services (e.g., water quantity and quality, carbon sequestration, recreation). A better understanding of the environmental and socioeconomic consequences of forest disturbances (i.e., wildfires) could improve the management and protection of public lands. We used a single-site benefit transfer function and spatially explicit information for demographic, socioeconomic, and site-specific characteristics to estimate the monetized value of market and non-market ecosystem services provided by forests on Western US public lands. These estimates are then used to approximate the costs of forest disturbances caused by wildfires of varying frequency and intensity, and across sites with heterogeneous characteristics and protection and management strategies. Our analysis provides credible estimates of the benefits of the forest for land management by the United States Forest Service, thereby assisting forest managers in planning resourcing and budgeting priorities.

  2. Understanding Birnessite MnO2: Effects of Small Polaron and Local Dipole (United States)

    Peng, Haowei; Perdew, John P.

    Birnessite MnO2, usually with cations like K and Na intercalated between layers, is a class of potential cheap oxygen evolution reaction (OER) catalyst. Using hybrid density functional calculations, we investigate the electronic structures of the layered MnO2 with the intercalated cation modelled as a defect. We found that an electron small polaron will form when an extra electron is doped in the pure MnO2, turning a Mn(IV) to a Mn(III) with a singly occupied eg orbital located within the band gap, and the resulting small-polaron hopping conduction explains the observed low electric conductivity. The inter-layer doped K atom will donate one electron to one Mn ion as expected, and also contributes to a local dipole forming between K and the Mn(III), raising the electrostatic potential of the specific layer. With a certain spatial distribution of such local dipoles, the small-polaron eg states become comparable in energy with the global conduction band minimum, and charge transfer occurs. This further results in a singly or partially occupied eg orbital near the Fermi level, which has been regarded as a signal for an excellent OER catalyst. Our calculation helps understanding several experimental observations. This work was supported as part of the CCDM-EFRC funded by the U.S. DOE, Office of Science, Basic Energy Sciences.

  3. Alcohol Use Severity Among Hispanic Emerging Adults in Higher Education: Understanding the Effect of Cultural Congruity. (United States)

    Cano, Miguel Ángel; Vaughan, Ellen L; de Dios, Marcel A; Castro, Yessenia; Roncancio, Angelica M; Ojeda, Lizette


    Identifying and understanding determinants of alcohol use behavior among Hispanic college students is an increasingly important public health issue, particularly during emerging adulthood. Studies examining ethnocultural determinants of alcohol use behavior among Hispanic college students have focused on direct associations with cultural orientation (e.g., acculturation and enculturation); yet there is a need for research that accounts for the complex interplay of other culturally relevant sociocultural factors. This study examined associations of behavioral acculturation, behavioral enculturation, and cultural congruity (perception of cultural fit between the values of the academic environment and the student's personal values) with alcohol use severity (AUS); and tested if gender moderated those associations. A hierarchical linear regression and moderation analysis were conducted on a sample of 167 Hispanic emerging adults (ages 18-25) enrolled in college. All predictor variables entered in the regression model accounted for 20.9% of the variance in AUS. After controlling for demographic variables and depressive symptoms, behavioral acculturation and enculturation did not have a statistically significant association with AUS. Further, gender did not moderate either of these associations. Conversely, greater cultural congruity was associated with lower reports of AUS. A moderation analysis suggested that cultural congruity predicted lower reports of AUS among men, but not among women. This was the first known study to examine the association of cultural congruity with alcohol use. Findings highlight the value of examining contextual factors of culture and moving beyond reductive measures of cultural orientation.

  4. Managing a new collaborative entity in business organizations: understanding organizational communities of practice effectiveness. (United States)

    Kirkman, Bradley L; Mathieu, John E; Cordery, John L; Rosen, Benson; Kukenberger, Michael


    Companies worldwide are turning to organizational communities of practice (OCoPs) as vehicles to generate learning and enhance organizational performance. OCoPs are defined as groups of employees who share a concern, a set of problems, or a passion about a topic and who strengthen their knowledge and expertise by interacting on a consistent basis. To date, OCoP research has drawn almost exclusively from the community of practice (CoP) literature, even though the organizational form of CoPs shares attributes of traditional CoPs and of organizational teams. Drawing on Lave and Wenger's (1991) original theory of legitimate peripheral participation, we integrate theory and research from CoPs and organizational teams to develop and empirically examine a model of OCoP effectiveness that includes constructs such as leadership, empowerment, the structure of tasks, and OCoP relevance to organizational effectiveness. Using data from 32 OCoPs in a U.S.-based multinational mining and minerals processing firm, we found that external community leaders play an important role in enhancing OCoP empowerment, particularly to the extent that task interdependence is high. Empowerment, in turn, was positively related to OCoP effectiveness. We also found that OCoPs designated as "core" by the organization (e.g., working on critical issues) were more effective than those that were noncore. Task interdependence also was positively related to OCoP effectiveness. We provide scholars and practitioners with insights on how to effectively manage OCoPs in today's organizations. (c) 2011 APA, all rights reserved.

  5. Zero-mode effects in the lattice thermodynamics of massless bose field

    International Nuclear Information System (INIS)

    Gorenstein, M.I.; Lipskikh, S.I.; Sorin, A.S.


    The thermodynamics of free massless Bose field on a lattice is discussed. The coefficients characterizing the finite size effects are obtained. The use of these coefficients in the Yang-Mills thermodynamics allows one to make Monte-Carlo calculations, carried out on the different size lattices, self-consistent

  6. Excitation spectra of an effective d-wave model for cuprate superconductivity

    NARCIS (Netherlands)

    Yamaguchi, M; Ohta, Y; Eder, R

    An exact-diagonalization technique on finite-size clusters is used to study the ground states and some excitation spectra of the two-dimensional effective Fermi-liquid model derived from numerical studies of the t-J model. We show that there is actually a reasonable range of parameter values where

  7. The effect of laser beam size in a zig-zag collimator on transverse ...

    Indian Academy of Sciences (India)

    The effect of size of a cooling laser beam in a zig-zag atomic beam collimator on transverse cooling of a krypton atomic beam is investigated. The simulation results show that discreteness in the interaction between the cooling laser beam and atomic beam, arising due to finite size and incidence angle of the cooling laser ...

  8. Towards the understanding of non-thermal airplasma action: effects on bacteria and fibroblasts

    Czech Academy of Sciences Publication Activity Database

    Lunov, Oleg; Zablotskyy, Vitaliy A.; Churpita, Olexandr; Jäger, Aleš; Polívka, Leoš; Syková, Eva; Terebova, N.; Kulikov, A.; Kubinová, Šárka; Dejneka, Alexandr


    Roč. 6, č. 30 (2016), 25286-25292 ISSN 2046-2069 R&D Projects: GA MŠk(CZ) LM2011026; GA MŠk(CZ) LO1309 Institutional support: RVO:68378271 ; RVO:68378041 Keywords : non-thermal plasma * bactericidal effects * medical applications Subject RIV: BO - Biophysics Impact factor: 3.108, year: 2016

  9. Age and Task-Related Effects on Young Children's Understanding of a Complex Picture Story (United States)

    Hayward, Denyse; Schneider, Phyllis; Gillam, Ronald B.


    In this study we examined age- and task-related effects in story schema knowledge across an independent narrative task (story formulations) and a supported narrative task (answering questions). We also examined age-related changes to questions about the story as a whole. Participants were typically developing English-speaking children aged 4, 5,…

  10. Understanding the Theory and Practice of Molecular Spectroscopy: The Effects of Spectral Bandwidth (United States)

    Hirayama, Satoshi; Steer, Ronald P.


    The near-UV spectrum of benzene is used to illustrate the effects of variations in instrument spectral bandwidth on absorbance and molar absorptivity measurements and on the independence of values of quantities such as the oscillator strength that are based on integrated absorptivity. Excel-based computer simulations are provided that help develop…

  11. Educator Effectiveness Research Alliance: Using Research and Data to Understand and Improve Educator Preparation and Evaluation (United States)

    Regional Educational Laboratory Southwest, 2018


    Research shows that teachers affect student learning more than any other factor. The Educator Effectiveness Research Alliance, a collaborative partnership of educators, policymakers, and researchers, seeks to improve educator quality through research and analytic technical support. Initially focused on Texas, the alliance has expanded to include…

  12. Tree growth variation in the tropical forest: understanding effects of temperature, rainfall and CO2

    NARCIS (Netherlands)

    Schippers, P.; Sterck, F.J.; Vlam, M.; Zuidema, P.A.


    Tropical forest responses to climatic variability have important consequences for global carbon cycling, but are poorly understood. As empirical, correlative studies cannot disentangle the interactive effects of climatic variables on tree growth, we used a tree growth model (IBTREE) to unravel the

  13. Toward a Better Understanding of the Effects of Hindrance and Challenge Stressors on Work Behavior (United States)

    Webster, Jennica R.; Beehr, Terry A.; Christiansen, Neil D.


    This study investigated the processes whereby hindrance and challenge stressors may affect work behavior. Three mechanisms were examined to explain the differential effects these stressors have demonstrated: job satisfaction, strains, and work self-efficacy. A model is proposed in which both types of stressors will result in increases in strains,…

  14. Understanding the effects of lignosulfonate on enzymatic saccharification of pure cellulose (United States)

    Hongming Lou; Haifeng Zhou; Xiuli Li; Mengxia Wang; J.Y. Zhu; Xueqing Qiu


    The effects of lignosulfonate (LS) on enzymatic saccharification of pure cellulose were studied. Four fractions of LS with different molecular weight (MW) prepared by ultrafiltration of a commercial LS were applied at different loadings to enzymatic hydrolysis of Whatman paper under different pH. Using LS fractions with low MW and high degree of sulfonation can enhance...

  15. Understanding the Effect of Loneliness on Academic Participation and Success among International University Students (United States)

    Bek, Hafiz


    The purpose of this study was to assess the effect of loneliness on academic participation and success among 213 students studying at Usak University. A total of 213 international students studying at Usak University, including 151 males and 62 females, were selected and participated in the research voluntarily. In the study, feelings of…

  16. Understanding the Doppler Effect by Analysing Spectrograms of the Sound of a Passing Vehicle (United States)

    Lubyako, Dmitry; Martinez-Piedra, Gordon; Ushenin, Arthur; Ushenin, Arthur; Denvir, Patrick; Dunlop, John; Hall, Alex; Le Roux, Gus; van Someren, Laurence; Weinberger, Harvey


    The purpose of this paper is to demonstrate how the Doppler effect can be analysed to deduce information about a moving source of sound waves. Specifically, we find the speed of a car and the distance of its closest approach to an observer using sound recordings from smartphones. A key focus of this paper is how this can be achieved in a…

  17. The Effects of Clinical Experiences on the Understanding of Classroom Management Techniques (United States)

    Cushman, Carey Anne Aycock; Kempy, Andrew


    For teacher educators, classroom management education is one of the least researched aspects of the profession. The purpose of this study was to determine if classroom management was most effectively learned through textbook analysis coupled with classroom discussion, or the experience of observing and practicing classroom management in the…

  18. Finding orchids in a field of dandelions: understanding children’s differential susceptibility to media effects

    NARCIS (Netherlands)

    Piotrowski, J.; Valkenburg, P.M.


    Most youth and media researchers do not believe that media affect all youth in the same manner or to the same degree. While most media effects theories reflect this belief, empirical efforts often do not. Rather than conceptualizing individual differences as noise or nuisance variables, we argue

  19. Neuroimaging studies towards understanding the central effects of pharmacological cannabis products on patients with epilepsy. (United States)

    Allendorfer, Jane B; Szaflarski, Jerzy P


    Recent interest for the use of cannabis-derived products as therapeutic agents in the treatment of epilepsies has necessitated a reevaluation of their effects on brain and behavior. Overall, prolonged cannabis use is thought to result in functional and structural brain alterations. These effects may be dependent on a number of factors: e.g., which phytocannabinoid is used (e.g., cannabidiol (CBD) vs. tetrahyrocannabinol (THC)), the frequency of use (occasional vs. heavy), and at what age (prenatal, childhood, adulthood) the use began. However, due to the fact that there are over seven hundred constituents that make up the Cannabis sativa plant, it is difficult to determine which compound or combination of compounds is responsible for specific effects when studying recreational users. Therefore, this review focuses only on the functional MRI studies investigating the effects of specific pharmacological preparations of cannabis compounds, specifically THC, tetrahydrocannabivarin (THCV), and CBD, on brain function in healthy individuals and persons with epilepsy with references to non-epilepsy studies only to underline the gaps in research that need to be filled before cannabis-derived products are considered for a wide use in the treatment of epilepsy. This article is part of a Special Issue entitled "Cannabinoids and Epilepsy". Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Understanding the effect of n-type and p-type doping in the channel ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, device performance of graphene nanoribbon field effect transistor (GNRFET) with diffe- rent doping concentrations in different parts of the channel is reported. The study is performed by using atomistic simulations based on self-consistent solution of Schrodinger's and Poisson's equation within the ...

  1. Understanding motion of twin boundary - a key to magnetic shape memory effect

    Czech Academy of Sciences Publication Activity Database

    Heczko, Oleg


    Roč. 50, č. 11 (2014), s. 2505807 ISSN 0018-9464 R&D Projects: GA ČR(CZ) GAP107/11/0391 Institutional support: RVO:68378271 Keywords : magnetic field-induced strain * magnetic field-induced twin boundary motion * magnetoelasticity * magnetomechanical effects * martensitic transformation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.386, year: 2014

  2. Age Effects in Second Language Learning: Stepping Stones toward Better Understanding (United States)

    DeKeyser, Robert M.


    The effect of age of acquisition on ultimate attainment in second language learning has been a controversial topic for years. After providing a very brief overview of the ideas that are at the core of the controversy, I discuss the two main reasons why these issues are so controversial: conceptual misunderstandings and methodological difficulties.…

  3. Clay Modeling versus Written Modules as Effective Interventions in Understanding Human Anatomy (United States)

    Bareither, Mary Lou; Arbel, Vered; Growe, Meghan; Muszczynski, Emily; Rudd, Adam; Marone, Jane R.


    The effectiveness of clay modeling to written modules is examined to determine the degree of improvement in learning and retention of anatomical 3D relationships among students with different learning preferences. Thirty-nine undergraduate students enrolled in a cadaver dissection course completed a pre-assessment examination and the VARK…

  4. Principal Stratification: A Tool for Understanding Variation in Program Effects across Endogenous Subgroups (United States)

    Page, Lindsay C.; Feller, Avi; Grindal, Todd; Miratrix, Luke; Somers, Marie-Andree


    Increasingly, researchers are interested in questions regarding treatment-effect variation across partially or fully latent subgroups defined not by pretreatment characteristics but by postrandomization actions. One promising approach to address such questions is principal stratification. Under this framework, a researcher defines endogenous…

  5. Towards Understanding the Two Way Interaction Effects of Extraversion and Openness to Experience on Career Commitment (United States)

    Arora, Ridhi; Rangnekar, Santosh


    In this study, we examined potential two-way interaction effects of the Big Five personality traits extraversion and openness to experience on career commitment measured in terms of three components of career identity, career resilience, and career planning. Participants included 450 managers from public and private sector organizations in North…

  6. The Effective Concepts on Students' Understanding of Chemical Reactions and Energy (United States)

    Ayyildiz, Yildizay; Tarhan, Leman


    The purpose of this study was to determine the relationship between the basic concepts related to the unit of "Chemical Reactions and Energy" and the sub-concepts underlying for meaningful learning of the unit and to investigate the effectiveness of them on students' learning achievements. For this purpose, the basic concepts of the unit…

  7. Understanding the positive and negative effects of emotional expressions in organizations: EASI does it

    NARCIS (Netherlands)

    van Kleef, G.A.


    Emotions have a pervasive impact on organizational behavior. They do not just influence people’s own actions; when expressed, emotions may also exert influence on other organization members who perceive the expressions. Sometimes emotional expressions have ‘symmetrical’ effects, in that positive

  8. The Lusi seismic experiment: An initial study to understand the effect of seismic activity to Lusi

    Energy Technology Data Exchange (ETDEWEB)

    Karyono, E-mail: [Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta (Indonesia); OSLO University (Norway); Padjadjaran University (UNPAD), Bandung (Indonesia); Mazzini, Adriano; Sugiharto, Anton [OSLO University (Norway); Lupi, Matteo [ETH Zurich (Switzerland); Syafri, Ildrem [Padjadjaran University (UNPAD), Bandung (Indonesia); Masturyono,; Rudiyanto, Ariska; Pranata, Bayu; Muzli,; Widodo, Handi Sulistyo; Sudrajat, Ajat [Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta (Indonesia)


    The spectacular Lumpur Sidoarjo (Lusi) eruption started in northeast Java on the 29 of May 2006 following a M6.3 earthquake striking the island [1,2]. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system [3] and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. The Lusi seismic experiment is a project aims to begin a detailed study of seismicity around the Lusi area. In this initial phase we deploy 30 seismometers strategically distributed in the area around Lusi and along the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. The purpose of the initial monitoring is to conduct a preliminary seismic campaign aiming to identify the occurrence and the location of local seismic events in east Java particularly beneath Lusi.This network will locate small event that may not be captured by the existing BMKG network. It will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-AW region and spatial and temporal variations of vp/vs ratios. The goal of this study is to understand how the seismicity occurring along the Sunda subduction zone affects to the behavior of the Lusi eruption. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. In this study, we will extract Green’s functions from ambient seismic noise data in order to image the shallow subsurface structure beneath LUSI area. The waveform cross-correlation technique will be apply to all of recordings of ambient seismic noise at 30 seismographic stations around the LUSI area. We use the dispersive behaviour of the retrieved Rayleigh waves to infer velocity structures in the shallow subsurface.

  9. Understanding the solid phase chemical fractionation of uranium in soil and effect of ageing

    Energy Technology Data Exchange (ETDEWEB)

    Rout, Sabyasachi, E-mail: [Health Physics Division, Bhabha Atomic Research Centre, Mumbai (India); Kumar, Ajay [Health Physics Division, Bhabha Atomic Research Centre, Mumbai (India); Ravi, P.M.; Tripathi, R.M. [Homi Bhabha National Institute Anushaktinagar, Mumbai (India)


    Highlights: • Apart of U(VI) converted to U(IV) during adsorption to soil. • Ageing leads to rearrangement of chemical fractionation of U in soil. • Organic matter and carbonate minerals responsible for Surface enrichment of U. • There occurs Occlusion of U-Fe-Oxides (Hydroxide) in to silica. - Abstract: The aim of the present work is to understand the solid phase chemical fractionation of Uranium (U) in soil and the mechanism involved. This study integrated batch experiments of U(VI) adsorption to soil, study of U in different soil fractions, ageing impact on fractionation of U and spectroscopic investigation of adsorbed U(VI) using X-ray Photoelectron Spectroscopy (XPS). For the study three soils, pedogenically different (S1: Igneous, S2: Sedimentary and S3: Metamorphic) were amended with U(VI) and chemical fractionation of U was studied by sequential extraction after an interval of one month and 12 months. It was found that there occurs a significant rearrangement of U in different fractions with ageing and no correlation was observed between the U content in different fractions and the adsorbents of respective fractions such as soil organic matter (SOM), Fe/Mn oxides (hydroxides) carbonates, soil cation exchange capacity (CEC). XPS study revealed that surface enrichment of U mainly governed by the carbonate minerals and SOM, whereas bulk concentration was controlled by the oxides (hydroxides) of Si and Al. Occlusion of U-Fe-oxides (hydroxides) on silica was identified as an important mechanism for bulk enrichment (Increase in residual fraction) and depletion of U concentration in reducible fraction.

  10. Using Electroencephalogram (EEG to Understand The Effect of Price Perception on Consumer Preference

    Directory of Open Access Journals (Sweden)

    Fitri Aprilianty


    Full Text Available The research examines the influence of price as product cues on consumer’s perception and evaluation by using the application of electroencephalogram (EEG. This method can give objective information about consumer reactions towards product cues that will drive consumer’s choice. The main research objective was to observe and evaluate consumer’s brain activity in different brain regions while they were being exposed by several price levels (low, medium, high of underwear as stimuli and focused mainly on liking/disliking the stimuli. The participants consist of 10 female and 10 male consumers within 18-24 years old, have normal vision, right handed, and considered as potential purchasers of underwear. The participant’s brain activity was collected using Emotiv EPOC neuroheadset (EEG with international 10/20 system and was obtained in Beta frequency bands (13–30 Hz. The result indicated that there was a clear and significant change (p<0.05 in the EEG brain spectral activities of right and left hemisphere in the frontal (F3 & F4, temporal (T7 & T8, and parietal (P7 & P8 regions when participants indicated their attentiveness towards each price level stimulus. The results show, the male and female participant’s tactile sensations in parietal lobe does not give more favorable attention towards particular price stimulus, but the difference price perceptions in parietal lobe can lead to rational preference and give most favored response towards high price stimulus. Analyzing of price perception may help to understand the differences in price-related emotions and preference, which can gain insights into an alternative pricing strategy that can lead to influence consumers buying decision.

  11. Experimental and Modeling Approaches for Understanding the Effect of Gene Expression Noise in Biological Development

    Directory of Open Access Journals (Sweden)

    David M. Holloway


    Full Text Available Biological development involves numerous chemical and physical processes which must act in concert to reliably produce a cell, a tissue, or a body. To be successful, the developing organism must be robust to variability at many levels, such as the environment (e.g., temperature, moisture, upstream information (such as long-range positional information gradients, or intrinsic noise due to the stochastic nature of low concentration chemical kinetics. The latter is especially relevant to the regulation of gene expression in cell differentiation. The temporal stochasticity of gene expression has been studied in single celled organisms for nearly two decades, but only recently have techniques become available to gather temporally-resolved data across spatially-distributed gene expression patterns in developing multicellular organisms. These demonstrate temporal noisy “bursting” in the number of gene transcripts per cell, raising the question of how the transcript number defining a particular cell type is produced, such that one cell type can reliably be distinguished from a neighboring cell of different type along a tissue boundary. Stochastic spatio-temporal modeling of tissue-wide expression patterns can identify signatures for specific types of gene regulation, which can be used to extract regulatory mechanism information from experimental time series. This Perspective focuses on using this type of approach to study gene expression noise during the anterior-posterior segmentation of the fruit fly embryo. Advances in experimental and theoretical techniques will lead to an increasing quantification of expression noise that can be used to understand how regulatory mechanisms contribute to embryonic robustness across a range of developmental processes.

  12. The Lusi seismic experiment: An initial study to understand the effect of seismic activity to Lusi

    International Nuclear Information System (INIS)

    Karyono; Mazzini, Adriano; Sugiharto, Anton; Lupi, Matteo; Syafri, Ildrem; Masturyono,; Rudiyanto, Ariska; Pranata, Bayu; Muzli,; Widodo, Handi Sulistyo; Sudrajat, Ajat


    The spectacular Lumpur Sidoarjo (Lusi) eruption started in northeast Java on the 29 of May 2006 following a M6.3 earthquake striking the island [1,2]. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system [3] and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. The Lusi seismic experiment is a project aims to begin a detailed study of seismicity around the Lusi area. In this initial phase we deploy 30 seismometers strategically distributed in the area around Lusi and along the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. The purpose of the initial monitoring is to conduct a preliminary seismic campaign aiming to identify the occurrence and the location of local seismic events in east Java particularly beneath Lusi.This network will locate small event that may not be captured by the existing BMKG network. It will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-AW region and spatial and temporal variations of vp/vs ratios. The goal of this study is to understand how the seismicity occurring along the Sunda subduction zone affects to the behavior of the Lusi eruption. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. In this study, we will extract Green’s functions from ambient seismic noise data in order to image the shallow subsurface structure beneath LUSI area. The waveform cross-correlation technique will be apply to all of recordings of ambient seismic noise at 30 seismographic stations around the LUSI area. We use the dispersive behaviour of the retrieved Rayleigh waves to infer velocity structures in the shallow subsurface

  13. Effects of Message Framing on Influenza Vaccination: Understanding the Role of Risk Disclosure, Perceived Vaccine Efficacy, and Felt Ambivalence. (United States)

    Kim, Sungsu; Pjesivac, Ivanka; Jin, Yan


    The current study examined the effects of framing in promotional health messages on intention to vaccinate against seasonal influenza virus. The findings of an experimental study (N = 86) indicated that exposure to both benefits and side effects of vaccination (gain-framed with risk disclosure message) led to lower intention to receive the flu vaccine. This relationship was mediated by both perceived vaccine efficacy and felt ambivalence in a serial order, revealing the underlying psychological mechanisms important for understanding health-related behaviors. Theoretical implications of constructing sub-framed messages are discussed and the concept of second-order framing is introduced.

  14. Towards a probabilistic definition of entropy: An investigation of the effects of a new curriculum on students' understanding of thermodynamics (United States)

    Colon-Garcia, Evy B.

    Thermodynamics is a vital tool in understanding why reactions happen; nevertheless, it is often considered a difficult topic. Prior studies have shown that students struggle with fundamental thermodynamic concepts such as entropy, enthalpy and Gibbs energy even in upper level physical chemistry courses. Thermodynamics, as a general chemistry topic, can be more math-intensive than other topics such as bonding or intermolecular forces. As a result, it is possible for students to get lost in the algorithms and overlook the important underlying theoretical concepts. Students' difficulties in understanding thermodynamics may be contributing to their inability to explain phenomena such as phase changes and manipulations of equilibrium systems. Current chemistry curricula split the thermodynamic chapters over a span of two semesters as well as splitting it over different units. This division fails to make explicit the connection between Enthalpy, Entropy and Gibbs Energy and how they affect how and why every reaction or process happens. The reason for this division of topics is not based on any educational research rather than opinions as to what will not overwhelm the students. Additionally, students who take only one semester of General Chemistry will leave without being instructed in what is considered to be one of the most fundamental concepts in Chemistry, Thermodynamics. Chemistry, Life, the Universe and Everything (CLUE) is a general chemistry course developed with the explicit goal of addressing the major obstacles that inhibit students from acquiring an appreciation and mastery of the chemical principles upon which other sciences depend. Using a control and treatment group, the effectiveness of this new curriculum was evaluated for two main aspects: 1. What is students' understanding of entropy?, 2. Can an alternative instructional approach to teaching Thermodynamics (Chemistry, Life, the Universe and Everything - CLUE) improve students' understanding of Entropy

  15. The effect of problem posing and problem solving with realistic mathematics education approach to the conceptual understanding and adaptive reasoning (United States)

    Mahendra, Rengga; Slamet, Isnandar; Budiyono


    One of the difficulties of students in learning mathematics is on the subject of geometry that requires students to understand abstract things. The aim of this research is to determine the effect of learning model Problem Posing and Problem Solving with Realistic Mathematics Education Approach to conceptual understanding and students' adaptive reasoning in learning mathematics. This research uses a kind of quasi experimental research. The population of this research is all seventh grade students of Junior High School 1 Jaten, Indonesia. The sample was taken using stratified cluster random sampling technique. The test of the research hypothesis was analyzed by using t-test. The results of this study indicate that the model of Problem Posing learning with Realistic Mathematics Education Approach can improve students' conceptual understanding significantly in mathematics learning. In addition tu, the results also showed that the model of Problem Solving learning with Realistic Mathematics Education Approach can improve students' adaptive reasoning significantly in learning mathematics. Therefore, the model of Problem Posing and Problem Solving learning with Realistic Mathematics Education Approach is appropriately applied in mathematics learning especially on the subject of geometry so as to improve conceptual understanding and students' adaptive reasoning. Furthermore, the impact can improve student achievement.

  16. Learning algebra on screen and on paper: The effect of using a digital tool on students' understanding (United States)

    Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja


    The use of digital tools in algebra education is expected to not only contribute to master skill, but also to acquire conceptual understanding. The question is how digital tools affect students" thinking and understanding. This paper presents an analysis of data of one group of three grade seventh students (12-13 year-old) on the use of a digital tool for algebra, the Cover-up applet for solving equations in particular. This case study was part of a larger teaching experiment on initial algebra enriched with digital technology which aimed to improve students" conceptual understanding and skills in solving equations in one variable. The qualitative analysis of a video observation, digital and written work showed that the use of the applet affects student thinking in terms of strategies used by students while dealing with the equations. We conclude that the effects of the use of the digital tool can be traced from student problem solving strategies on paper-and-pencil environment which are similar to strategies while working with the digital tool. In future research, we recommend to use specific theoretical lenses, such as the theory of instrumental genesis and the onto-semiotic approach, to reveal more explicit relationships between students" conceptual understanding and the use of a digital tool.

  17. Humiliation and the Inertia Effect: Implications for Understanding Violence and Compromise in Intractable Intergroup Conflicts


    Ginges, Jeremy; Atran, Scott


    We investigated the influence of humiliation on inter-group conflict in three studies of Palestinians living in the West Bank and Gaza. We demonstrate that experienced humiliation produces an inertia effect; a tendency towards inaction that suppresses rebellious or violent action but which paradoxically also suppresses support for acts of inter-group compromise. In Study 1, Palestinians who felt more humiliated by the Israeli occupation were less likely to support suicide attacks against Isra...

  18. Toward understanding subtle instrumentation effects associated with weak seismic events in the near field

    Czech Academy of Sciences Publication Activity Database

    Zahradník, J.; Plešinger, Axel


    Roč. 100, č. 1 (2010), s. 59-73 ISSN 0037-1106 R&D Projects: GA AV ČR IAA300120911 Grant - others:GA ČR(CZ) GA205/07/0502 Institutional research plan: CEZ:AV0Z30120515 Keywords : instrumentation effects * broadband seismology * weak earthquakes Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.027, year: 2010

  19. New experimental contributions to understanding the effect of ultrasonic irradiation on tomatoes (United States)

    Elena, A.


    Irradiation of Aurora 100 tomatoes by a hydrodynamic ultrasonic generator with a frequency of 25 kHz per sec intensifies seed germination and the growth of the plants, causing precosity and increasing the output by 15.63 to 37.65%. The most effective radiation time (between 20 and 40 min) intensifies the phenophases. It causes some increase in output and changes in the chemical compositions of the fruits.



    Demir, Hakan; Sezen, Bulent


    Purpose- Main goalof this paper is to perform an exploratory and empirical research on theinteractions of collaboration and innovation elements that are presented in theliterature; co-creation, service dominant logic, open innovation, negativeentropy and entrepreneurship orientation. Moreover, this study aims to examinethe effects of these elements on supply chain performance attributes(reliability, responsiveness, flexibility, costs and asset management). Methodology- In order tounderstand t...

  1. How to understand the radiation effects of small dose - some critical comments on ICRP recommendations

    International Nuclear Information System (INIS)

    Matsuura, T.


    The widespread feeling of 'radiophobia' by the general public has its basis on the ICRP's 'linear no-threshold' hypothesis in dose-response relationship for low dose radiation from the standpoint of radiation protection. Although this common feeling served as a merit for constructing the 'safety culture' of society, it has now become a large obstacle for the development of peaceful uses of nuclear technology as a demerit. Recently many data have been accumulated for the radiation effects of low dose, both epidemiologically and experimentally. Although in general it is very difficult to obtain clear evidence of presence or absence of threshold, it seems to be true that the risk by radiation exposure at low level (the definition of which is below 0.2 Gy) is not so large as that of extrapolation from the high or medium dose range. In fact, many data suggest that some quite different mechanisms are working in low dose from high dose, such as 'adaptive response', and a new concept, 'radiation hormesis', has emerged, that the low level radiation is not only quite harmless but is rather necessary for living cells or beneficial for human health. In this paper, some critical comments on ICRP recommendations are given as a personal view by the author. These include: (1) a question of exact assessment of exposed dose by A-bomb survivors used for the epidemiological data, which are regarded to be the most authentic and important; (2) a brief summary of effects at the natural radiation level, including the high background area data; (3) the importance of dose rate effect, which reflects the living matter's repairability from radiation injury, and (4) the proposal of new paradigm by adopting the reasonable 'de minimis' level (below which there is no harm) both for low dose and at low dose rate. A simple mathematical analysis for representative data of dose rate effect was shown as an appendix

  2. Understanding the effects of pre-processing on extracted signal features from gait accelerometry signals. (United States)

    Millecamps, Alexandre; Lowry, Kristin A; Brach, Jennifer S; Perera, Subashan; Redfern, Mark S; Sejdić, Ervin


    Gait accelerometry is an important approach for gait assessment. Previous contributions have adopted various pre-processing approaches for gait accelerometry signals, but none have thoroughly investigated the effects of such pre-processing operations on the obtained results. Therefore, this paper investigated the influence of pre-processing operations on signal features extracted from gait accelerometry signals. These signals were collected from 35 participants aged over 65years: 14 of them were healthy controls (HC), 10 had Parkinson׳s disease (PD) and 11 had peripheral neuropathy (PN). The participants walked on a treadmill at preferred speed. Signal features in time, frequency and time-frequency domains were computed for both raw and pre-processed signals. The pre-processing stage consisted of applying tilt correction and denoising operations to acquired signals. We first examined the effects of these operations separately, followed by the investigation of their joint effects. Several important observations were made based on the obtained results. First, the denoising operation alone had almost no effects in comparison to the trends observed in the raw data. Second, the tilt correction affected the reported results to a certain degree, which could lead to a better discrimination between groups. Third, the combination of the two pre-processing operations yielded similar trends as the tilt correction alone. These results indicated that while gait accelerometry is a valuable approach for the gait assessment, one has to carefully adopt any pre-processing steps as they alter the observed findings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The Aging of the Social Mind - Differential Effects on Components of Social Understanding


    Reiter, Andrea M. F.; Kanske, Philipp; Eppinger, Ben; Li, Shu-Chen


    Research in younger adults dissociates cognitive from affective facets of social information processing, rather than promoting a monolithic view of social intelligence. An influential theory on adult development suggests differential effects of aging on cognitive and affective functions. However, this dissociation has not been directly tested in the social domain. Employing a newly developed naturalistic paradigm that disentangles facets of the social mind within an individual, we show multi-...

  4. Understanding the proton radius puzzle: Nuclear structure effects in light muonic atoms

    Directory of Open Access Journals (Sweden)

    Ji Chen


    Full Text Available We present calculations of nuclear structure effects to the Lamb shift in light muonic atoms. We adopt a modern ab-initio approach by combining state-of-the-art nuclear potentials with the hyperspherical harmonics method. Our calculations are instrumental to the determination of nuclear charge radii in the Lamb shift measurements, which will shed light on the proton radius puzzle.

  5. Understanding the Effects of Sleep Deprivation on Executive Function, Complex Task Performance and Situation Awareness


    Grugle, Nancy Lynn


    Both sleep deprivation and loss of situation awareness (SA) have been cited as primary causal factors contributing to the accident and injury rate in the military and civilian sector (e.g., transportation). Despite the numerous references to both factors as causal in nature, much of the literature on the effects of sleep deprivation on executive function is anecdotal. Research has produced mixed results regarding the nature and extent of performance degradation on a variety of lower-level a...

  6. Understanding the toxic potencies of xenobiotics inducing TCDD/TCDF-like effects. (United States)

    Şahin, A D; Saçan, M T


    Toxic potencies of xenobiotics such as halogenated aromatic hydrocarbons inducing 2,3,7,8-tetrachlorodibenzo-p-dioxin/2,3,7,8-tetrachlorodibenzofuran (TCDD/TCDF)-like effects were investigated by quantitative structure-toxicity relationships (QSTR) using their aryl hydrocarbon receptor (AhR) binding affinity data. A descriptor pool was created using the SPARTAN 10, DRAGON 6.0 and ADMET 8.0 software packages, and the descriptors were selected using QSARINS (v.2.2.1) software. The QSTR models generated for AhR binding affinities of chemicals with TCDD/TCDF-like effects were internally and externally validated in line with the Organization of Economic Co-operation and Development (OECD) principles. The TCDD-based model had six descriptors from DRAGON 6.0 and ADMET 8.0, whereas the TCDF-based model had seven descriptors from DRAGON 6.0. The predictive ability of the generated models was tested on a diverse group of chemicals including polychlorinated/brominated biphenyls, dioxins/furans, ethers, polyaromatic hydrocarbons with fused heterocyclic rings (i.e. phenoxathiins, thianthrenes and dibenzothiophenes) and polyaromatic hydrocarbons (i.e. halogenated naphthalenes and phenanthrenes) with no AhR binding data. For the external set chemicals, the structural coverage of the generated models was 90% and 89% for TCDD and TCDF-like effects, respectively.

  7. Understanding the factors that make public participation effective in health policy and planning: a realist synthesis. (United States)

    Pagatpatan, Celso P; Ward, Paul R


    Although researchers argue for the importance of involving the public in developing health policy, there has been little focus on central research questions - such as what techniques of public participation work, in what circumstances, and why. This paper presents a realist synthesis which identifies and explains the underlying mechanisms and specific contextual factors that lead to effective public participation in health policy and planning. Peer-reviewed, English language literature was searched, which resulted in 77 articles for review and synthesis. This synthesis uncovered the underlying mechanism of 'political commitment' that generates public participation effectiveness. The other three possible underlying mechanisms, namely: 'partnership synergy', 'inclusiveness' and 'deliberativeness', were found to potentially provide further explanation on public participation effectiveness for health policy and planning. The findings of this review provide evidence that can be useful to health practitioners and decision-makers to actively involve the public when drafting public health policies and programs and, more importantly, guide them in deciding which strategies to best employ for which contexts.

  8. Understanding negative impacts of perceived cognitive load on job learning effectiveness: a social capital solution. (United States)

    Lin, Chieh-Peng


    This study proposes a model explaining how social capital helps ease excessively required mental effort. Although organizational researchers have studied both social capital and cognitive load, no prior research has critically examined the role of social capital in improving individuals' mental load and effort and consequently enhancing job learning effectiveness. This study surveys participants made up of professionals in Taiwan's information technology industry. It measures the constructs with the use of 5-point Likert-type scale items modified from existing literature. The survey data were analyzed with the use of structural equation modeling. Job learning effectiveness is negatively influenced by role ambiguity and role conflict. Time pressure has a positive influence on role ambiguity and role conflict Although the relationship between task complexity and role ambiguity is insignificant, task complexity has a positive influence on role conflict. Because the relationship between network ties and role conflict is insignificant, trust has a negative influence on role conflict. Last, shared vision has a negative influence on role ambiguity. This study provides an example of how social capital can be applied as a useful remedy to ease the negative impact of perceived cognitive load on job learning effectiveness. The negative relationship between shared vision and role ambiguity suggests that a shared vision helps in disseminating organizationally common goals and directions among employees to alleviate individuals' mental efforts in dealing with the ambiguity of their job roles. A firm's management team should take actions to decrease role conflict by strengthening trust among employees.

  9. Understanding physics

    CERN Document Server

    Cassidy, David; Rutherford, James


    Understanding Physics provides a thorough grounding in contemporary physics while placing physics into its social and historical context Based in large part on the highly respected Project Physics Course developed by two of the authors, it also integrates the results of recent pedagogical research The text thus - teaches about the basic phenomena in the physical world and the concepts developed to explain them - shows that science is a rational human endeavor with a long and continuing tradition, involving many different cultures and people - develops facility in critical thinking, reasoned argumentation, evaluation of evidence, mathematical modeling, and ethical values The treatment emphasizes not only what we know but also how we know it, why we believe it, and what effects that knowledge has - Why do we believe the Earth and planets revolve around the Sun? - Why do we believe that matter is made of atoms? - How do relativity theory and quantum mechanics alter our conception of Nature and in what ways do th...

  10. Current understandings and perspectives on non-cancer health effects of benzene: A global concern

    International Nuclear Information System (INIS)

    Bahadar, Haji; Mostafalou, Sara; Abdollahi, Mohammad


    Objective: Benzene, as a volatile organic compound, is known as one of the main air pollutants in the environment. The aim of this review is to summarize all available evidences on non-cancerous health effects of benzene providing an overview of possible association of exposure to benzene with human chronic diseases, specially, in those regions of the world where benzene concentration is being poorly monitored. Methodology: A bibliographic search of scientific databases including PubMed, Google Scholar, and Scirus was conducted with key words of “benzene toxic health effects”, “environmental volatile organic compounds”, “diabetes mellitus and environmental pollutants”, “breast cancer and environmental pollution”, “prevalence of lung cancer”, and “diabetes prevalence”. More than 300 peer reviewed papers were examined. Experimental and epidemiologic studies reporting health effects of benzene and volatile organic compounds were included in the study. Results: Epidemiologic and experimental studies suggest that benzene exposure can lead to numerous non-cancerous health effects associated with functional aberration of vital systems in the body like reproductive, immune, nervous, endocrine, cardiovascular, and respiratory. Conclusion: Chronic diseases have become a health burden of global dimension with special emphasis in regions with poor monitoring over contents of benzene in petrochemicals. Benzene is a well known carcinogen of blood and its components, but the concern of benzene exposure is more than carcinogenicity of blood components and should be evaluated in both epidemiologic and experimental studies. Aspect of interactions and mechanism of toxicity in relation to human general health problems especially endocrine disturbances with particular reference to diabetes, breast and lung cancers should be followed up. - Highlights: • Benzene is a volatile organic compound and established blood carcinogen. • Exposure to benzene needs to be

  11. Current understandings and perspectives on non-cancer health effects of benzene: A global concern

    Energy Technology Data Exchange (ETDEWEB)

    Bahadar, Haji [International Campus, Tehran University of Medical Sciences (Iran, Islamic Republic of); Pharmaceutical Sciences Research Center and Faculty of Pharmacy, Tehran University of Medical Sciences (Iran, Islamic Republic of); Mostafalou, Sara [Pharmaceutical Sciences Research Center and Faculty of Pharmacy, Tehran University of Medical Sciences (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: Mohammad.Abdollahi@UToronto.Ca [Pharmaceutical Sciences Research Center and Faculty of Pharmacy, Tehran University of Medical Sciences (Iran, Islamic Republic of)


    Objective: Benzene, as a volatile organic compound, is known as one of the main air pollutants in the environment. The aim of this review is to summarize all available evidences on non-cancerous health effects of benzene providing an overview of possible association of exposure to benzene with human chronic diseases, specially, in those regions of the world where benzene concentration is being poorly monitored. Methodology: A bibliographic search of scientific databases including PubMed, Google Scholar, and Scirus was conducted with key words of “benzene toxic health effects”, “environmental volatile organic compounds”, “diabetes mellitus and environmental pollutants”, “breast cancer and environmental pollution”, “prevalence of lung cancer”, and “diabetes prevalence”. More than 300 peer reviewed papers were examined. Experimental and epidemiologic studies reporting health effects of benzene and volatile organic compounds were included in the study. Results: Epidemiologic and experimental studies suggest that benzene exposure can lead to numerous non-cancerous health effects associated with functional aberration of vital systems in the body like reproductive, immune, nervous, endocrine, cardiovascular, and respiratory. Conclusion: Chronic diseases have become a health burden of global dimension with special emphasis in regions with poor monitoring over contents of benzene in petrochemicals. Benzene is a well known carcinogen of blood and its components, but the concern of benzene exposure is more than carcinogenicity of blood components and should be evaluated in both epidemiologic and experimental studies. Aspect of interactions and mechanism of toxicity in relation to human general health problems especially endocrine disturbances with particular reference to diabetes, breast and lung cancers should be followed up. - Highlights: • Benzene is a volatile organic compound and established blood carcinogen. • Exposure to benzene needs to be

  12. Understanding particle size and distance driven competition of interparticle interactions and effective single-particle anisotropy. (United States)

    Pacakova, B; Mantlikova, A; Niznansky, D; Kubickova, S; Vejpravova, J


    Magnetic response of single-domain nanoparticles (NPs) in concentrated systems is strongly affected by mutual interparticle interactions. However, particle proximity significantly influences single-particle effective anisotropy. To solve which of these two phenomena plays a dominant role in the magnetic response of real NP systems, systematic study on samples with well-defined parameters is required. In our work, we prepared a series of nanocomposites constituted of highly-crystalline and well-isolated CoFe2O4 NPs embedded in an amorphous SiO2 matrix using a single-molecule precursor method. This preparation method enabled us to reach a wide interval of particle size and concentration. We observed that the characteristic parameters of the single-domain state (coercivity, blocking temperature) and dipole-dipole interaction energy ([Formula: see text]) scaled with each other and increased with increasing [Formula: see text], where d XRD was the NP diameter and r was the interparticle distance. Our results are in excellent agreement with Monte-Carlo simulations of the particle growth. Moreover, we demonstrated that the contribution of [Formula: see text] acting as an additional energetic barrier to the superspin reversal or as an average static field did not sufficiently explain how the concentrated NP systems responded to an external magnetic field. Alternations in the blocking temperature and coercivity of our NP systems accounted for reformed relaxations of the NP superspins and modified effective anisotropy energy of the interacting NPs. Therefore, the concept of modified NP effective anisotropy explains the magnetic response of our concentrated NP systems better than the concept of the energy barrier influenced by interparticle interactions.

  13. Understanding the effects of different social data on selecting priority conservation areas. (United States)

    Karimi, Azadeh; Tulloch, Ayesha I T; Brown, Greg; Hockings, Marc


    Conservation success is contingent on assessing social and environmental factors so that cost-effective implementation of strategies and actions can be placed in a broad social-ecological context. Until now, the focus has been on how to include spatially explicit social data in conservation planning, whereas the value of different kinds of social data has received limited attention. In a regional systematic conservation planning case study in Australia, we examined the spatial concurrence of a range of spatially explicit social values and land-use preferences collected using a public participation geographic information system and biological data. We used Zonation to integrate the social data with the biological data in a series of spatial-prioritization scenarios to determine the effect of the different types of social data on spatial prioritization compared with biological data alone. The type of social data (i.e., conservation opportunities or constraints) significantly affected spatial prioritization outcomes. The integration of social values and land-use preferences under different scenarios was highly variable and generated spatial prioritizations 1.2-51% different from those based on biological data alone. The inclusion of conservation-compatible values and preferences added relatively few new areas to conservation priorities, whereas including noncompatible economic values and development preferences as costs significantly changed conservation priority areas (48.2% and 47.4%, respectively). Based on our results, a multifaceted conservation prioritization approach that combines spatially explicit social data with biological data can help conservation planners identify the type of social data to collect for more effective and feasible conservation actions. © 2017 Society for Conservation Biology.

  14. Understanding resistant effect of mosquito on fumigation strategy in dengue control program (United States)

    Aldila, D.; Situngkir, N.; Nareswari, K.


    A mathematical model of dengue disease transmission will be introduced in this talk with involving fumigation intervention into mosquito population. Worsening effect of uncontrolled fumigation in the form of resistance of mosquito to fumigation chemicals will also be included into the model to capture the reality in the field. Deterministic approach in a 9 dimensional of ordinary differential equation will be used. Analytical result about the existence and local stability of the equilibrium points followed with the basic reproduction number will be discussed. Some numerical result will be performed for some scenario to give a better interpretation for the analytical results.

  15. Prediction/discussion-based learning cycle versus conceptual change text: comparative effects on students' understanding of genetics (United States)

    khawaldeh, Salem A. Al


    Background and purpose: The purpose of this study was to investigate the comparative effects of a prediction/discussion-based learning cycle (HPD-LC), conceptual change text (CCT) and traditional instruction on 10th grade students' understanding of genetics concepts. Sample: Participants were 112 10th basic grade male students in three classes of the same school located in an urban area. The three classes taught by the same biology teacher were randomly assigned as a prediction/discussion-based learning cycle class (n = 39), conceptual change text class (n = 37) and traditional class (n = 36). Design and method: A quasi-experimental research design of pre-test-post-test non-equivalent control group was adopted. Participants completed the Genetics Concept Test as pre-test-post-test, to examine the effects of instructional strategies on their genetics understanding. Pre-test scores and Test of Logical Thinking scores were used as covariates. Results: The analysis of covariance showed a statistically significant difference between the experimental and control groups in the favor of experimental groups after treatment. However, no statistically significant difference between the experimental groups (HPD-LC versus CCT instruction) was found. Conclusions: Overall, the findings of this study support the use of the prediction/discussion-based learning cycle and conceptual change text in both research and teaching. The findings may be useful for improving classroom practices in teaching science concepts and for the development of suitable materials promoting students' understanding of science.

  16. Danger and usefulness: an alternative framework for understanding rapid evaluation effects in perception? (United States)

    Wurm, Lee H


    Previous studies have shown effects of rated danger and usefulness on lexical access. All of them have used stimuli selected for connotations of danger and/or usefulness. Stimuli for the present lexical decision study were all of the nouns, verbs, and adjectives from the Balota et al. (2002) English Lexicon Project (subject to constraints relating to experimental control; none had anything to do with danger or usefulness). The interaction between danger and usefulness ratings previously demonstrated (Wurm & Vakoch, 2000; Wurm, Vakoch, Seaman, & Buchanan, 2004; Wurm, Whitman, Seaman, Hill, & Ulstad, 2007) was found for nouns, even when age of acquisition was controlled. It was also found for verbs and adjectives. The interaction is believed to reflect competing pressures to (1) avoid dangerous objects/events and (2) approach valuable resources. It may be a manifestation of the rapid evaluation effects pervasive in the literature. Post hoc analyses showed that danger and usefulness explain as much variance as valence and arousal, or evaluation, potency, and activity.

  17. Understanding the side effects of emission trading: implications for waste management. (United States)

    Braschel, Nina; Posch, Alfred; Pierer, Magdalena


    The trading of emission allowances is an important market instrument in climate policy. However, the inclusion of certain branches of industry in the trading system not only provides incentives for emission reduction, it also entails unwanted side effects. Thus, the objective of the present study is to identify such side effects-positive and negative-by examining the potential impact of waste management inclusion in the European Union Emissions Trading Scheme (EU ETS). Desk research was supplemented with qualitative and quantitative empirical analysis (based on expert interviews and a questionnaire) in order to analyse the related perceptions and expectations of actors and stakeholders. The impact of waste management inclusion in the EU ETS is analysed in terms of the following three areas: (i) costs and cost pass-through, (ii), competitiveness and market position, and (iii) carbon leakage. Concerning expectations in the area of costs, both the interviewed experts and the practitioners surveyed thought that costs were likely to increase or that they could be passed on to customers. However, experts and practitioners differed with respect to the possibility of carbon leakage. Clearly, increased knowledge of the possible impact arising from inclusion of the waste sector in the EU ETS would enable managers to become more proactive and to manage waste streams and treatment options more economically.

  18. Further understanding incivility in the workplace: The effects of gender, agency, and communion. (United States)

    Gabriel, Allison S; Butts, Marcus M; Yuan, Zhenyu; Rosen, Rebecca L; Sliter, Michael T


    Research conducted on workplace incivility-a low intensity form of deviant behavior-has generally shown that women report higher levels of incivility at work. However, to date, it is unclear as to whether women are primarily treated uncivilly by men (i.e., members of the socially dominant group/out-group) or other women (i.e., members of in-group) in organizations. In light of different theorizing surrounding gender and incivility, we examine whether women experience increased incivility from other women or men, and whether this effect is amplified for women who exhibit higher agency and less communion at work given that these traits and behaviors violate stereotypical gender norms. Across three complementary studies, results indicate that women report experiencing more incivility from other women than from men, with this effect being amplified for women who are more agentic at work. Further, agentic women who experience increased female-instigated incivility from their coworkers report lower well-being (job satisfaction, psychological vitality) and increased work withdrawal (turnover intentions). Theoretical implications tied to gender and incivility are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  19. `Discover, Understand, Implement, and Transfer': Effectiveness of an intervention programme to motivate students for science (United States)

    Schütte, Kerstin; Köller, Olaf


    Considerable research has focused on how best to satisfy modern societies' needs for skilled labour in the field of science. The present study evaluated an intervention programme designed to increase secondary school students' motivation to pursue a science career. Students from 3 schools of the highest educational track participated for up to 2 years in the intervention programme, which was implemented as an elective in the school curriculum. Our longitudinal study design for evaluating the effectiveness of the intervention programme included all students at the grade levels involved in the programme with students who did not participate serving as a control group. Mixed-model analyses of variance showed none of the intended effects of the intervention programme on science motivation; latent growth models corroborated these results. When the programme began, students who enrolled in the science elective (n = 92) were already substantially more motivated than their classmates (n = 228). Offering such an intervention programme as an elective did not further increase the participating students' science motivation. It seems worthwhile to carry out intervention programmes with talented students who show (comparatively) little interest in science at the outset rather than with highly motivated students who self-select into the programme.

  20. Understanding and harnessing the health effects of rapid urbanization in China. (United States)

    Zhu, Yong-Guan; Ioannidis, John P A; Li, Hong; Jones, Kevin C; Martin, Francis L


    China is undergoing a rapid transition from a rural to an urban society. This societal change is a consequence of a national drive toward economic prosperity. Rapid urbanization impacts on infrastructure, environmental health and human wellbeing. Unlike many cases of urban expansion, Chinese urbanization has led to containment, rather than to increase, in the spread of infectious diseases. Conversely, the incidence of chronic conditions such as cardiovascular and metabolic diseases has risen, with higher rates occurring in urban regions. This rural-urban gradient in disease incidence seems not to be a reflection simply of more aggressive diagnosis or healthcare access. Other diseases exhibit little rural versus urban differences (e.g., liver cancer or respiratory disease), or even occur at a higher rate in the rural population (e.g., esophageal cancer). This article examines the impact of this changing demographic on environmental health and human wellbeing in China. Lessons learned from epidemiological studies mostly carried out in Europe and the U.S. may not be directly transferable to China. We advocate that there is now a need to establish robust systems of accurate data collection, a Chinese biobank network to facilitate the profiling of human health effects, and relevant randomized controlled trials to identify effective interventions in the Chinese urbanized setting. Such studies could allow for the future implementation of disease-preventive strategies.

  1. Towards understanding the effects of additives on the vermicomposting of sewage sludge. (United States)

    Xing, Meiyan; Lv, Baoyi; Zhao, Chunhui; Yang, Jian


    This work evaluated the effects of additives on the chemical properties of the final products (vermicompost) from vermicomposting of sewage sludge and the adaptable characteristics of Eisenia fetida during the process. An experimental design with different ratios of sewage sludge and the additives (cattle dung or pig manure) was conducted. The results showed that the vermicomposting reduced total organic carbon and the quotient of total organic carbon to total nitrogen (C/N ratio) of the initial mixtures and enhanced the stability and agronomical value of the final products. Notably, principal component analysis indicated that the additives had significant effects on the characteristics of the vermicomposts. Moreover, the vermibeds containing cattle dung displayed a better earthworm growth and reproduction than those with pig manure. Additionally, redundancy analysis demonstrated that electrical conductivity (EC), pH, and C/N ratio played crucial roles on earthworm growth and reproduction. In all, the additives with high C/N ratio, pH buffering capacity, and low EC are recommended to be used for vermicomposting of sewage sludge.

  2. Understanding the Effects of Stigma Messages: Danger Appraisal and Message Judgments. (United States)

    Smith, Rachel A; Zhu, Xun; Fink, Edward L


    Media coverage of health issues has been criticized for creating health stigmas. The model of stigma communication (MSC, Smith, 2007) provides insights into why this is so, but it has two problems: Some of its mediators have not been supported, and it does not do a good job of predicting the transmission of stigma messages (i.e., social transmission). We present a revised model of stigma message effects in which exposure to stigma messages leads to stigma beliefs and stigmatization as a result of a person-oriented danger appraisal. In addition, message judgments-shock value and common ground-are introduced as mediators of the relationship between danger appraisal and social transmission. Participants (N = 200) were randomly assigned to read a health story written either with or without the intrinsic features of stigma messages. The revised model of stigma-message effects was supported: Reading a health news story written with (vs. without) the intrinsic features of stigma messages resulted in greater danger appraisal, which directly predicted stigma-related outcomes and indirectly predicted social transmission through message judgments. Social transmission varied by message judgment: Shocking messages were shared in ways that facilitate diffusion, but common ground messages were shared with influential others, suggesting different means by which stigma as a collective norm may emerge from interactions among community members.

  3. Living with heterogeneities in bioreactors: understanding the effects of environmental gradients on cells. (United States)

    Lara, Alvaro R; Galindo, Enrique; Ramírez, Octavio T; Palomares, Laura A


    The presence of spatial gradients in fundamental culture parameters, such as dissolved gases, pH, concentration of substrates, and shear rate, among others, is an important problem that frequently occurs in large-scale bioreactors. This problem is caused by a deficient mixing that results from limitations inherent to traditional scale-up methods and practical constraints during large-scale bioreactor design and operation. When cultured in a heterogeneous environment, cells are continuously exposed to fluctuating conditions as they travel through the various zones of a bioreactor. Such fluctuations can affect cell metabolism, yields, and quality of the products of interest. In this review, the theoretical analyses that predict the existence of environmental gradients in bioreactors and their experimental confirmation are reviewed. The origins of gradients in common culture parameters and their effects on various organisms of biotechnological importance are discussed. In particular, studies based on the scale-down methodology, a convenient tool for assessing the effect of environmental heterogeneities, are surveyed.

  4. Understanding the Effectiveness of Carbon Dioxide Removal to Reduce the Impacts of Climate Change. (United States)

    Scott, V.; Tett, S. F.; Brander, M.


    The current Nationally Determined Contributions to the Paris Agreement suggest exceeding the emissions budgets corresponding to the below 2°C and 1.5°C temperature targets. To address this the future application of Carbon Dioxide Removal (CDR) is proposed to recapture excess emissions at a later time, so keeping the total net emissions within budget. This assumes that the climate change impact of CO2 emitted now can be fully compensated by a matched CO2 removal in the future. However, the impacts from this pathway of emissions budget overshoot and subsequent recapture may differ from those resulting from a pathway where emissions are held within budget with no temporary overshoot. These pathway dependent impacts could give rise to different climatic and societal futures despite the total net emissions being the same. Using a low resolution fully coupled Earth System Model with an interactive carbon cycle, we present an investigation into the pathway dependence of climate change impacts and how these relate to the scale and duration of the emissions budget overshoot and subsequent recapture. From this we discuss the effectiveness of CDR in avoiding climate change impacts relative to more immediate emissions reductions. We consider how this relative effectiveness might be reflected in GHG accounting methods and national GHG accounts, and explore the implications for Article 2 of the Paris Agreement, where holding temperatures to the targets is recognised to "significantly reduce the risks and impacts of climate change".

  5. Understanding Carbohydrates (United States)

    ... Size: A A A Listen En Español Understanding Carbohydrates How much and what type of carbohydrate foods ... glucose levels in your target range. Explore: Understanding Carbohydrates Glycemic Index and Diabetes Learn about the glycemic ...

  6. Compounds Released from Biomass Deconstruction: Understanding Their Effect on Cellulose Enzyme Hydrolysis and Their Biological Activity (United States)

    Djioleu, Angele Mezindjou

    The effect of compounds produced during biomass pretreatment on cellulolytic enzyme was investigated. Liquid prehydrolyzates were prepared by pretreating switchgrass using 24 combinations of temperature, time, and sulfuric acid concentration based on a full factorial design. Temperature was varied from 140°C to 180°C; time ranged from 10 to 40 min; and the sulfuric acid concentrations were 0.5% or 1% (v/v). Identified products in the prehydrolyzates included xylose, glucose, hydroxymethylfurfural (HMF), furfural, acetic acid, formic acid, and phenolic compounds at concentration ranging from 0 to 21.4 g/L. Pretreatment conditions significantly affected the concentrations of compounds detected in prehydrolyzates. When assayed in the presence of switchgrass prehydrolyzates against model substrates, activities of cellulase, betaglucosidase, and exoglucanase, were significantly reduced by at least 16%, 31.8%, and 57.8%, respectively, as compared to the control. A strong positive correlation between inhibition of betaglucosidase and concentration of glucose, acetic acid, and furans in prehydrolyzate was established. Exoglucanase inhibition correlated with the presence of phenolic compounds and acetic acid. The prehydrolyzate, prepared at 160°C, 30 min, and 1% acid, was fractionated by centrifugal partition chromatography (CPC) into six fractions; the inhibition effect of these fractions on betaglucosidase and exoglucanase was determined. The initial hydrolysis rate of cellobiose by betaglucosidase was significantly reduced by the CPC sugar-rich fraction; however, exoglucanase was deactivated by the CPC phenolic-rich fraction. Finally, biological activities of water-extracted compounds from sweetgum bark and their effect on cellulase was investigated. It was determined that 12% of solid content of the bark extract could be accounted by phenolic compounds with gallic acid identified as the most concentrated phytochemical. Sweetgum bark extract inhibited Staphylococcus

  7. Is experience on a farm an effective approach to understanding animal products and the management of dairy farming? (United States)

    Mochizuki, Mariko; Osada, Masahiro; Ishioka, Katsumi; Matsubara, Takako; Momota, Yutaka; Yumoto, Norio; Sako, Toshinori; Kamiya, Shinji; Yoshimura, Itaru


    The understanding of animal products and dairy farming is important for the promotion of dairy farming. Thus, to examine the effects of farm experience on the understanding of animal products and the management of dairy farming, the interaction between students and dairy cows was investigated in groups of first-year veterinary nursing students in 2011 and 2012 (n = 201). These students included 181 women and 20 men. Nine items about dairy cows were presented in a questionnaire. The survey was performed before and after praxis on the educational farm attached to the authors' university. After praxis on the farm, increases occurred in the number of positive responses to the items involving the price of milk, dairy farming and the taste of milk. For these items, a significant difference (P animal products and dairy farming. © 2013 Japanese Society of Animal Science.

  8. Towards understanding addiction factors of mobile devices: An eye tracking study on effect of screen size. (United States)

    Wibirama, Sunu; Nugroho, Hanung A


    Mobile devices addiction has been an important research topic in cognitive science, mental health, and human-machine interaction. Previous works observed mobile device addiction by logging mobile devices activity. Although immersion has been linked as a significant predictor of video game addiction, investigation on addiction factors of mobile device with behavioral measurement has never been done before. In this research, we demonstrated the usage of eye tracking to observe effect of screen size on experience of immersion. We compared subjective judgment with eye movements analysis. Non-parametric analysis on immersion score shows that screen size affects experience of immersion (pmobile devices addiction. Our experimental results are also useful to develop a guideline as well as intervention strategy to deal with smartphone addiction.

  9. Understanding the electrolyte background for biochemical sensing with ion-sensitive field-effect transistors. (United States)

    Tarasov, Alexey; Wipf, Mathias; Stoop, Ralph L; Bedner, Kristine; Fu, Wangyang; Guzenko, Vitaliy A; Knopfmacher, Oren; Calame, Michel; Schönenberger, Christian


    Silicon nanowire field-effect transistors have attracted substantial interest for various biochemical sensing applications, yet there remains uncertainty concerning their response to changes in the supporting electrolyte concentration. In this study, we use silicon nanowires coated with highly pH-sensitive hafnium oxide (HfO(2)) and aluminum oxide (Al(2)O(3)) to determine their response to variations in KCl concentration at several constant pH values. We observe a nonlinear sensor response as a function of ionic strength, which is independent of the pH value. Our results suggest that the signal is caused by the adsorption of anions (Cl(-)) rather than cations (K(+)) on both oxide surfaces. By comparing the data to three well-established models, we have found that none of those can explain the present data set. Finally, we propose a new model which gives excellent quantitative agreement with the data.

  10. Fundamentals of risk management understanding, evaluating and implementing effective risk management

    CERN Document Server

    Hopkin, Paul


    Now more than ever, organizations must plan, response and recognize all forms of risks that they face. "Fundamentals of Risk Management", now in its second edition, provides a comprehensive introduction to the subject of commercial and business risk for anyone studying for a career in risk as well as a broad range of risk professionals. It examines the key components of risk management and its application with examples to demonstrate its benefit to organisations in the public and private sector. The second edition has been completely updated to take into account the greater influence of ISO 3100, the emergence of Governance Risk and Compliance (GRC) and the wide use of the bowtie method to illustrate risk management. In addition, there is now a chapter on the skills and competencies required by an effective risk manager.

  11. Effects of Positioning Aids on Understanding the Relationship Between a Mobile Map and the Environment

    Directory of Open Access Journals (Sweden)

    Juho Kässi


    Full Text Available Positioning technologies such as GPS enable mobile map applications to display a symbol representing an estimation of a user’s location on a mobile map, therefore acting as a positioning aid. Previous research on the cognitive processes involved in map reading suggests that map readers need at least two map–environment points (objects that are visualized on the map and perceived in the environment for determining their location on a map. Hence, the positioning aid alone does not provide enough information for self-location. Using a field experiment, we assessed the effect of representing the user’s location on a map on the cognitive processes involved in self-location. The results show that positioning aids guide the search for map–environment points and narrow the area on the map that must be scanned for self-location.

  12. The Effect of Math Modeling on Student’s Emerging Understanding

    Directory of Open Access Journals (Sweden)

    Andrzej Sokolowski


    Full Text Available This study investigated the effects of applying mathematical modeling on revising students’ preconception of the process of optimizing area enclosed by a string of a fixed length. A group of 28 high school pre-calculus students were immersed in modeling activity that included direct measurements, data collecting, and formulating algebraic representation for the data. The lab conduct was enriched by scientific inquiry elements such as hypothesis stating and its verification. While 86% of the students (N=24 falsely hypothesized that the rectangular areas enclosed by a string of a fixed length will remain constant before engaging in the lab, the subsequent tasks of the modeling activity prompted the students to correct their ways of thinking. The study showed that the modeling processes provide ample means of revising students’ perception to establish firm conceptual background for inducing a more rigorous algebraic approach to solving problems in math classes. Suggestions for further studies follow.

  13. Study of Acid Hydrolysis on Organic Waste: Understanding The Effect of Delignification and Particle Size

    Directory of Open Access Journals (Sweden)

    Anwar Nadiem


    Full Text Available Organic wastes from Swiettenia marcophylla L, Artocarpus heterophyllus L, Mangifera indica L, and Annona muricata L were prepared by grinding into 0.1875, 0.3750, 0.7500 mm of particle size and delignified by 2% NaOH at 80°C for 90 minutes. Acid dilution hydrolysis process with H2SO4 1% was performed at 150°C for 120 minutes in a closed reactor. The effect of particle size and delignification on and reducing sugar concentration were investigated. The result showed (1 leaves that can be used as raw material to produce hydrogen should have 38–49% cellulose and hemicellulose. (2 Reducing sugar concentration increased with particle size reduction and delignification. (3 the best result with the highest reducing sugar concentration was achieved by 0.1875 mm particle size with delignification on Annona muricata L.

  14. Understanding the Thermodynamic Properties of the Elastocaloric Effect Through Experimentation and Modelling

    DEFF Research Database (Denmark)

    Tušek, Jaka; Engelbrecht, Kurt; Mañosa, Lluis


    This paper presents direct and indirect methods for studying the elastocaloric effect (eCE) in shape memory materials and its comparison. The eCE can be characterized by the adiabatic temperature change or the isothermal entropy change (both as a function of applied stress/strain). To get...... these quantities, the evaluation of the eCE can be done using either direct methods, where one measures (adiabatic) temperature changes or indirect methods where one can measure the stress–strain–temperature characteristics of the materials and from these deduce the adiabatic temperature and isothermal entropy...... changes. The former can be done using the basic thermodynamic relations, i.e. Maxwell relation and Clausius–Clapeyron equation. This paper further presents basic thermodynamic properties of shape memory materials, such as the adiabatic temperature change, isothermal entropy change and total entropy...

  15. Understanding the role consumer involvement plays in the effectiveness of hospital advertising. (United States)

    McCullough, Tammy; Dodge, H Robert


    Both intensified competition and greater consumer participation in the choice process for healthcare has increased the importance of advertising for health care providers and seriously challenged many of the preconceptions regarding advertising. This study investigates the effectiveness of advertising under conditions of high and low involvement using the Elaboration Likelihood Model to develop hypotheses that are tested in a 2 x 2 x 2 experimental design. The study findings provide insights into the influence of message content and message source on consumers categorized as high or low involvement. It was found that consumers classified as high-involvement are more influenced by a core service-relevant message than those consumers classified as low-involvement. Moreover, a non-physician spokesperson was found to have as much or more influence as a physician spokesperson regardless of the consumers' involvement level.

  16. Effect of Process-Oriented Guided-Inquiry Learning on Non-majors Biology Students' Understanding of Biological Classification (United States)

    Wozniak, Breann M.

    The purpose of this study was to examine the effect of process-oriented guided-inquiry learning (POGIL) on non-majors college biology students' understanding of biological classification. This study addressed an area of science instruction, POGIL in the non-majors college biology laboratory, which has yet to be qualitatively and quantitatively researched. A concurrent triangulation mixed methods approach was used. Students' understanding of biological classification was measured in two areas: scores on pre and posttests (consisting of 11 multiple choice questions), and conceptions of classification as elicited in pre and post interviews and instructor reflections. Participants were Minnesota State University, Mankato students enrolled in BIOL 100 Summer Session. One section was taught with the traditional curriculum (n = 6) and the other section in the POGIL curriculum (n = 10) developed by the researcher. Three students from each section were selected to take part in pre and post interviews. There were no significant differences within each teaching method (p group may have scored higher on the posttest (M = 8.830 +/- .477 vs. M = 7.330 +/- .330; z =-1.729, p = .084) and the traditional group may have scored higher on the pretest than the posttest (M = 8.333 +/- .333 vs M = 7.333 +/- .333; z = -1.650 , p = .099). Two themes emerged after the interviews and instructor reflections: 1) After instruction students had a more extensive understanding of classification in three areas: vocabulary terms, physical characteristics, and types of evidence used to classify. Both groups extended their understanding, but only POGIL students could explain how molecular evidence is used in classification. 2) The challenges preventing students from understanding classification were: familiar animal categories and aquatic habitats, unfamiliar organisms, combining and subdividing initial groupings, and the hierarchical nature of classification. The POGIL students were the only group to

  17. Effective Two-way Communication of Environmental Hazards: Understanding Public Perception in the UK (United States)

    Lorono-Leturiondo, Maria; O'Hare, Paul; Cook, Simon; Hoon, Stephen R.; Illingworth, Sam


    Climate change intensified hazards, such as floods and landslides, require exploring renewed ways of protecting at-risk communities (World Economic Forum 2016). Scientists are being encouraged to explore new pathways to work closely with affected communities in search of experiential knowledge that is able to complement and extend scientific knowledge (see for instance Whatmore and Landström 2011 and Höpner et al. 2010). Effective two-way communication of environmental hazards is, however, a challenge. Besides considering factors such as the purpose of communication, or the characteristics of the different formats; effective communication has to carefully acknowledge the personal framework of the individuals involved. Existing experiences, values, beliefs, and needs are critical determinants of the way they perceive and relate to these hazards, and in turn, of the communication process in which they are involved (Longnecker 2016 and Gibson et al. 2016). Our study builds on the need to analyze how the public perceives environmental hazards in order to establish forms of communication that work. Here we present early findings of a survey analysing the UK public's perception and outline how survey results can guide more effective two-way communication practices between scientists and affected communities. We explore the perception of environmental hazards in terms of how informed and concerned the public is, as well as how much ownership they claim over these phenomena. In order to gain a more accurate image, we study environmental hazards in relation to other risks threatening the UK, such as large-scale involuntary migration or unemployment (World Economic Forum 2016, Bord et al. 1998). We also explore information consumption in relation to environmental hazards and the public's involvement in advancing knowledge. All these questions are accompanied by an extensive demographics section that allows us to ascertain how the context or environment in which an

  18. Filling Gaps in Biogeochemical Understanding of Wildfire Effects on Watersheds and Water Quality (United States)

    Rhoades, Charles; Covino, Timothy; Chow, Alex


    Large, high-severity wildfires alter the biogeochemical conditions that determine how watersheds retain and release nutrients and influence stream water quality. These effects are commonly expected to abate within a few years, but recent studies show that post-fire watershed changes can have persistent, but poorly-understood biogeochemical consequences. Owing to the increased frequency and extent of high-severity wildfires predicted for western North America, and the growing awareness of the links between wildfire and clean water supply, there is a need to address these knowledge gaps. For the past 15 years we have tracked stream nutrients, chemistry, temperature, and sediment after the 2002 Hayman Fire, the largest wildfire in Colorado history. Our earlier work showed that headwater catchments that experienced extensive, high-severity forest fires had elevated stream nitrate, temperature, and turbidity for five post-fire years. Recent sampling, conducted 13 and 14 years after the fire, found that turbidity had largely returned to pretreatment levels, but that stream nitrate remained an order of magnitude above pre-fire levels in catchments with extensive high-severity wildfire. Stream temperature and total dissolved nitrogen concentration also remained higher in those catchments compared to unburned streams. Decreased plant demand is the mechanism commonly credited for post-fire nutrient losses, though our current work is evaluating the implications of soil and stream nutrient uptake and supply on persistent nitrogen (N) export from severely-burned catchments. For example, we have measured higher total soil N and higher net N mineralization in severely-burned portions of the Hayman Fire compared to moderately or unburned areas, indicating that higher soil N supply may contribute to N losses from upland soils. Conversely, using a nutrient tracer approach we found reduced N uptake in burned streams, which suggests a switch from the N-limited conditions typical of

  19. Understanding the Effects of Lower Boundary Conditions and Eddy Diffusion on the Ionosphere-Thermosphere System (United States)

    Malhotra, G.; Ridley, A. J.; Marsh, D. R.; Wu, C.; Paxton, L. J.


    The exchange of energy between lower atmospheric regions with the ionosphere-thermosphere (IT) system is not well understood. A number of studies have observed day-to-day and seasonal variabilities in the difference between data and model output of various IT parameters. It is widely speculated that the forcing from the lower atmosphere, variability in weather systems and gravity waves that propagate upward from troposphere into the upper mesosphere and lower thermosphere (MLT) may be responsible for these spatial and temporal variations in the IT region, but their exact nature is unknown. These variabilities can be interpreted in two ways: variations in state (density, temperature, wind) of the upper mesosphere or spatial and temporal changes in the small-scale mixing, or Eddy diffusion that is parameterized within the model.In this study, firstly, we analyze the sensitivity of the thermospheric and ionospheric states - neutral densities, O/N2, total electron content (TEC), peak electron density, and peak electron height - to various lower boundary conditions in the Global Ionosphere Thermosphere Model (GITM). We use WACCM-X and GSWM to drive the lower atmospheric boundary in GITM at 100 km, and compare the results with the current MSIS-driven version of GITM, analyzing which of these simulations match the measurements from GOCE, GUVI, CHAMP, and GPS-derived TEC best. Secondly, we analyze the effect of eddy diffusion in the IT system. The turbulence due to eddy mixing cannot be directly measured and it is a challenge to completely characterize its linear and non-linear effects from other influences, since the eddy diffusion both influences the composition through direct mixing and the temperature structure due to turbulent conduction changes. In this study we input latitudinal and seasonal profiles of eddy diffusion into GITM and then analyze the changes in the thermospheric and ionospheric parameters. These profiles will be derived from both WACC-X simulations

  20. Understanding effects of chemical structure on azo dye decolorization characteristics by Aeromonas hydrophila

    Energy Technology Data Exchange (ETDEWEB)

    Hsueh, Chung-Chuan [Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan (China); Chen, Bor-Yann, E-mail: [Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan (China); Yen, Chia-Yi [Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan (China)


    This novel comparative study tended to disclose how the molecular structures present in seven azo dyes including two types of azo dyes (i.e., naphthol type azo dyes - Reactive Black 5 (RB 5), Reactive Blue 171 (RB 171), Reactive Green 19 (RG19), Reactive Red 198 (RR198), Reactive Red 141 (RR141) and non-naphthol type azo dyes - Direct Yellow 86 (DY86), Reactive Yellow 84 (RY84)) affected color removal capability of Aeromonas hydrophila. Generally speaking, the decolorization rate of naphthol type azo dye with hydroxyl group at ortho to azo bond was faster than that of non-naphthol type azo dye without hydroxyl group, except of RG19. The azo dyes with electron-withdrawing groups (e.g., sulfo group in RR198, RB5 and RR141) would be easier to be decolorized than the azo dyes with the electron-releasing groups (e.g., -NH-triazine in RB171 and RG19). In addition, the azo dyes containing more electron-withdrawing groups (e.g., RR198, RB5 and RR141) showed significantly faster rate of decolorization. The azo dyes with electron-withdrawing groups (e.g., sulfo group) at para and ortho to azo bond (e.g., RR198, RB5 and RR141) could be more preferred for color removal than those at meta (e.g., DY86 and RY84). The former azo dyes with para and ortho sulfo group provided more effective resonance effects to withdraw electrons from azo bond, causing azo dyes to be highly electrophilic for faster rates of reductive biodecolorization. However, since the ortho substituent caused steric hindrance near azo linkage(s), azo dyes with para substituent could be more favorable (e.g., SO{sub 2}(CH{sub 2}){sub 2}SO{sub 4}{sup -} in RR198 and RB5) than those with ortho substituent (e.g., sulfo group at RR141) for decolorization. Thus, the ranking of the position for the electron-withdrawing substituent in azo dyes to escalate decolorization was para > ortho > meta. This study suggested that both the positions of substituents on the aromatic ring and the electronic characteristics of

  1. Digitized Ethnic Hate Speech: Understanding Effects of Digital Media Hate Speech on Citizen Journalism in Kenya

    Directory of Open Access Journals (Sweden)

    Stephen Gichuhi Kimotho


    Full Text Available Ethnicity in Kenya permeates all spheres of life. However, it is in politics that ethnicity is most visible. Election time in Kenya often leads to ethnic competition and hatred, often expressed through various media. Ethnic hate speech characterized the 2007 general elections in party rallies and through text messages, emails, posters and leaflets. This resulted in widespread skirmishes that left over 1200 people dead, and many displaced (KNHRC, 2008. In 2013, however, the new battle zone was the war of words on social media platform. More than any other time in Kenyan history, Kenyans poured vitriolic ethnic hate speech through digital media like Facebook, tweeter and blogs. Although scholars have studied the role and effects of the mainstream media like television and radio in proliferating the ethnic hate speech in Kenya (Michael Chege, 2008; Goldstein & Rotich, 2008a; Ismail & Deane, 2008; Jacqueline Klopp & Prisca Kamungi, 2007, little has been done in regard to social media.  This paper investigated the nature of digitized hate speech by: describing the forms of ethnic hate speech on social media in Kenya; the effects of ethnic hate speech on Kenyan’s perception of ethnic entities; ethnic conflict and ethics of citizen journalism. This study adopted a descriptive interpretive design, and utilized Austin’s Speech Act Theory, which explains use of language to achieve desired purposes and direct behaviour (Tarhom & Miracle, 2013. Content published between January and April 2013 from six purposefully identified blogs was analysed. Questionnaires were used to collect data from university students as they form a good sample of Kenyan population, are most active on social media and are drawn from all parts of the country. Qualitative data were analysed using NVIVO 10 software, while responses from the questionnaire were analysed using IBM SPSS version 21. The findings indicated that Facebook and Twitter were the main platforms used to

  2. Quantifying 'causality' in complex systems: understanding transfer entropy.

    Directory of Open Access Journals (Sweden)

    Fatimah Abdul Razak

    Full Text Available 'Causal' direction is of great importance when dealing with complex systems. Often big volumes of data in the form of time series are available and it is important to develop methods that can inform about possible causal connections between the different observables. Here we investigate the ability of the Transfer Entropy measure to identify causal relations embedded in emergent coherent correlations. We do this by firstly applying Transfer Entropy to an amended Ising model. In addition we use a simple Random Transition model to test the reliability of Transfer Entropy as a measure of 'causal' direction in the presence of stochastic fluctuations. In particular we systematically study the effect of the finite size of data sets.

  3. Quantifying ‘Causality’ in Complex Systems: Understanding Transfer Entropy (United States)

    Abdul Razak, Fatimah; Jensen, Henrik Jeldtoft


    ‘Causal’ direction is of great importance when dealing with complex systems. Often big volumes of data in the form of time series are available and it is important to develop methods that can inform about possible causal connections between the different observables. Here we investigate the ability of the Transfer Entropy measure to identify causal relations embedded in emergent coherent correlations. We do this by firstly applying Transfer Entropy to an amended Ising model. In addition we use a simple Random Transition model to test the reliability of Transfer Entropy as a measure of ‘causal’ direction in the presence of stochastic fluctuations. In particular we systematically study the effect of the finite size of data sets. PMID:24955766

  4. Understanding the Effects of Climate Change on Urban Stormwater Infrastructures in the Las Vegas Valley

    Directory of Open Access Journals (Sweden)

    Ranjeet Thakali


    Full Text Available The intensification of the hydrological cycle due to climate change entails more frequent and intense rainfall. As a result, urban water systems will be disproportionately affected by the climate change, especially in such urban areas as Las Vegas, which concentrates its population, infrastructure, and economic activity. Proper design and management of stormwater facilities are needed to attenuate the severe effects of extreme rainfall events. The North American Regional Climate Change Assessment Program is developing multiple high-resolution projected-climate data from different combinations of regional climate models and global climate models. The objective of this study was to evaluate existing stormwater facilities of a watershed within the Las Vegas Valley in southern Nevada by using a robust design method for the projected climate. The projected climate change was incorporated into the model at the 100 year return period with 6 h duration depths, using a statistical regionalization analysis method. Projection from different sets of climate model combinations varied substantially. Gridded reanalysis data were used to assess the performance of the climate models. An existing Hydrologic Engineering Center’s Hydrological Modeling System (HEC-HMS model was implemented using the projected change in standard design storm. Hydrological simulation using HEC-HMS showed exceedances of existing stormwater facilities that were designed under the assumption of stationarity design depth. Recognizing climate change and taking an immediate approach in assessing the city’s vulnerability by using proper strategic planning would benefit the urban sector and improve the quality of life.

  5. Understanding and managing the effects of battery charger and inverter aging (United States)

    Gunther, W.; Aggarwal, S.

    An aging assessment of battery chargers and inverters was conducted under the auspices of the NRC's Nuclear Plant Aging Research (NPAR) Program. The intentions of this program are to resolve issues related to the aging and service wear of equipment and systems at operating reactor facilities and to assess their impact on safety. Inverters and battery chargers are used in nuclear power plants to perform significant functions related to plant safety and availability. The specific impact of a battery charger or inverter failure varies with plant configuration. Operating experience data have demonstrated that reactor trips, safety injection system actuations, and inoperable emergency core cooling systems have resulted from inverter failures; and dc bus degradation leading to diesel generator inoperability or loss of control room annunication and indication have resulted from battery and battery charger failures. For the battery charger and inverter, the aging and service wear of subcomponents have contributed significantly to equipment failures. This paper summarizes the data and then describes methods that can be used to detect battery charger and inverter degradation prior to failure, as well as methods to minimize the failure effects. In both cases, the managing of battery charger and inverter aging is emphasized.

  6. Understanding the peculiarities of the piezoelectric effect in macro-porous BaTiO3. (United States)

    Roscow, James I; Topolov, Vitaly Yu; Bowen, Christopher R; Taylor, John; Panich, Anatoly E


    This work demonstrates the potential of porous BaTiO 3 for piezoelectric sensor and energy-harvesting applications by manufacture of materials, detailed characterisation and application of new models. Ferroelectric macro-porous BaTiO 3 ceramics for piezoelectric applications are manufactured for a range of relative densities, α  = 0.30-0.95, using the burned out polymer spheres method. The piezoelectric activity and relevant parameters for specific applications are interpreted by developing two models: a model of a 3-0 composite and a 'composite in composite' model. The appropriate ranges of relative density for the application of these models to accurately predict piezoelectric properties are examined. The two models are extended to take into account the effect of 90° domain-wall mobility within ceramic grains on the piezoelectric coefficients [Formula: see text]. It is shown that porous ferroelectrics provide a novel route to form materials with large piezoelectric anisotropy [Formula: see text] at 0.20 ≤ α ≤ 0.45 and achieve a high squared figure of merit [Formula: see text] [Formula: see text]. The modelling approach allows a detailed analysis of the relationships between the properties of the monolithic and porous materials for the design of porous structures with optimum properties.

  7. Field modeling for transcranial magnetic stimulation: A useful tool to understand the physiological effects of TMS? (United States)

    Thielscher, Axel; Antunes, Andre; Saturnino, Guilherme B


    Electric field calculations based on numerical methods and increasingly realistic head models are more and more used in research on Transcranial Magnetic Stimulation (TMS). However, they are still far from being established as standard tools for the planning and analysis in practical applications of TMS. Here, we start by delineating three main challenges that need to be addressed to unravel their full potential. This comprises (i) identifying and dealing with the model uncertainties, (ii) establishing a clear link between the induced fields and the physiological stimulation effects, and (iii) improving the usability of the tools for field calculation to the level that they can be easily used by non-experts. We then introduce a new version of our pipeline for field calculations ( that substantially simplifies setting up and running TMS and tDCS simulations based on Finite-Element Methods (FEM). We conclude with a brief outlook on how the new version of SimNIBS can help to target the above identified challenges.

  8. Understanding the effect of flower extracts on the photoconducting properties of nanostructured TiO2. (United States)

    Ansari, S G; Bhayana, Laitka; Umar, Ahmad; Al-Hajry, A; Al-Deyab, Salem S; Ansari, Z A


    Here we report an easy method to improve the optoelectronic properties of commercially available TiO2 nanopowder using extracts of various flowers viz. Calendula Orange (CO), Calendula Yellow (CY), Dahlia Violet (DV), Dahlia Yellow (DY), Rabbit flower (RF), Sweet Poppy (SP), Sweet Williams (SW) and their Mixed Extracts (ME). Various analysis techniques such as UV-Vis, FTIR, FESEM, XRD, and Raman spectroscopy were used to characterize for elemental, structural and morphological properties of the unmixed/mixed TiO2 nanopowder. TiO2 nanopowder was also calcined at 550 degrees C. Thick films of the these unmixed/mixed powder were printed, using conventional screen printing method, on fluorine doped tin oxide (FTO) substrate with organic binders and dried at 45 degrees C. The photoconducting properties are investigated as a function of wavelength from ultra-violet (UV) to infra-red (IR) region at a constant illumination intensity. Photocurrent gradually decreases when irradiated from UV to IR region. In case of unmixed and uncalcined TiO2, conductance decreased continuously whereas when extracts are added, a flat region of conductance is observed. The overall effect of extracts (colour pigments) is seen as an increase in the photoconductance. Highest photoconductance is observed in case of DY flower extract. Anthocyanins, present in flowers are known to have antioxidative properties and hence can contribute in photoconduction by reducing the surface adsorbed oxygen. This investigation indicates the potential use of flower extracts for dye sensitized solar cell (DSSC).

  9. Spaces of care in the third sector: understanding the effects of professionalization. (United States)

    Carey, Gemma; Braunack-Mayer, Annette; Barraket, Jo


    Increasingly the health and welfare needs of individuals and communities are being met by third sector, or not-for-profit, organizations. Since the 1980s third sector organizations have been subject to significant, sector-wide changes, such as the development of contractual funding and an increasing need to collaborate with governments and other sectors. In particular, the processes of 'professionalization' and 'bureaucratization' have received significant attention and are now well documented in third sector literature. These processes are often understood to create barriers between organizations and their community groups and neutralize alternative forms of service provision. In this article we provide a case study of an Australian third sector organization undergoing professionalization. The case study draws on ethnographic and qualitative interviews with staff and volunteers at a health-based third sector organization involved in service provision to marginalized community groups. We examine how professionalization alters organizational spaces and dynamics and conclude that professionalized third sector spaces may still be 'community' spaces where individuals may give and receive care and services. Moreover, we suggest that these community spaces hold potential for resisting the neutralizing effects of contracting.

  10. Understanding the effect of polylysine architecture on DNA binding using molecular dynamics simulations. (United States)

    Elder, Robert M; Emrick, Todd; Jayaraman, Arthi


    Polycations with varying chemistries and architectures have been synthesized and used in DNA transfection. In this paper we connect poly-L-lysine (PLL) architecture to DNA-binding strength, and in turn transfection efficiency, since experiments have shown that graft-type oligolysine architectures [e.g., poly(cyclooctene-g-oligolysine)] exhibit higher transfection efficiency than linear PLL. We use atomistic molecular dynamics simulations to study structural and thermodynamic effects of polycation-DNA binding for linear PLL and grafted oligolysines of varying graft lengths. Structurally, linear PLL binds in a concerted manner, while each oligolysine graft binds independently of its neighbors in the grafted architecture. Additionally, the presence of a hydrophobic backbone in the grafted architecture weakens binding to DNA compared to linear PLL. The binding free energy varies nonmonotonically with the graft length primarily due to entropic contributions. The binding free energy normalized to the number of bound amines is similar between the grafted and linear architectures at the largest (Poly5) and smallest (Poly2) graft length and stronger than the intermediate graft lengths (Poly3 and Poly4). These trends agree with experimental results that show higher transfection efficiency for Poly3 and Poly4 grafted oligolysines than for Poly5, Poly2, and linear PLL.

  11. Understanding Romanowsky staining. I: The Romanowsky-Giemsa effect in blood smears. (United States)

    Horobin, R W; Walter, K J


    Normal blood smears were stained by the standardised azure B-eosin Y Romanowsky procedure recently introduced by the ICSH, and the classical picture resulted. The effects of varying the times and temperature of staining, the composition of the solvent (buffer concentration, methanol content, & pH), the concentration of the dyes, and the mode of fixation were studied. The results are best understood in terms of the following staining mechanism. Initial colouration involves simple acid and basic dyeing. Eosin yields red erythrocytes and eosinophil granules. Azure B very rapidly gives rise to blue stained chromatin, neutrophil specific granules, platelets and ribosome-rich cytoplasms; also to violet basophil granules. Subsequently the azure B in certain structures combines with eosin to give purple azure B-eosin complexes, leaving other structures with their initial colours. The selectivity of complex formation is controlled by rate of entry of eosin into azure B stained structures. Only faster staining structures (i.e. chromatin, neutrophil specific granules, and platelets) permit formation of the purple complex in the standard method. This staining mechanism illuminates scientific problems (e.g. the nature of 'toxic' granules) and assists technical trouble-shooting (e.g. why nuclei sometimes stain blue, not purple).

  12. Understanding the Psychosocial Effects of WES Test Results on Parents of Children with Rare Diseases. (United States)

    Krabbenborg, Lotte; Vissers, L E L M; Schieving, J; Kleefstra, T; Kamsteeg, E J; Veltman, J A; Willemsen, M A; Van der Burg, S


    The use of whole exome sequencing (WES) for diagnostics of children with rare genetic diseases raises questions about best practices in genetic counselling. While a lot of attention is now given to pre-test counselling procedures for WES, little is known about how parents experience the (positive, negative, or inconclusive) WES results in daily life. To fill this knowledge gap, data were gathered through in-depth interviews with parents of 15 children who underwent WES analysis. WES test results, like results from other genetic tests, evoked relief as well as worries, irrespective of the type of result. Advantages of obtaining a conclusive diagnosis included becoming more accepting towards the situation, being enabled to attune care to the needs of the child, and better coping with feelings of guilt. Disadvantages experienced included a loss of hope for recovery, and a loss by parents of their social network of peers and the effort necessary to re-establish that social network. While parents with conclusive diagnoses were able to re-establish a peer community with the help of social media, parents receiving a possible diagnosis experienced hurdles in seeking peer support, as peers still needed to be identified. These types of psychosocial effects of WES test results for parents are important to take into account for the development of successful genetic counselling strategies.

  13. Nano-diamonds surface modifications: understanding of electron exchange mechanisms and evidence of a therapeutic effect

    International Nuclear Information System (INIS)

    Petit, Tristan


    In this thesis, a therapeutic effect of nano-diamonds (NDs) has been evidenced by investigating the role of NDs surface chemistry on their electronic properties. More precisely, the generation of reactive oxygen species from detonation NDs under ionizing radiation, which could improve current radiotherapy treatments, has been demonstrated. To this end, surface treatments facilitating electron transfer from NDs to their environment, namely hydrogenation and surface graphitization, were developed. Experimental conditions ensuring an efficient hydrogenation by hydrogen plasma were determined under ultrahigh vacuum, before being used to prepare large quantities of NDs in powder phase. A similar procedure was applied to the surface graphitization of NDs, performed by annealing under vacuum at high temperature. The impact of such surface treatments on the electronic interaction properties of NDs has been investigated under ambient air and after dispersion in water. These surface treatments induce a positive Zeta potential to NDs in water, which origin has been discussed. Finally, their interactions with human tumor cells were observed. Radiosensitization of tumor cells using NDs under gamma irradiation was demonstrated, opening new perspectives for NDs in nano-medicine. (author) [fr

  14. Contributions to understanding the high speed machining effects on aeronautic part surface integrity (United States)

    Jomaa, Walid

    To remain competitive, the aeronautic industry has increasing requirements for mechanical components and parts with high functional performance and longer in-service life. The improvement of the in-service life of components can be achieved by mastering and optimizing the surface integrity of the manufactured parts. Thus, the present study attempted to investigate, experimentally and theoretically, the tool/work material interactions on part surface integrity during the machining of aluminium alloys and hardened materials (low alloy steels) using orthogonal machining tests data. The studied materials are two aluminum alloys (6061-T6 and 7075-T651) and AISI 4340 steel. The AISI 4340 steel was machined after been induction heat treated to 58-60 HRC. These materials were selected in an attempt to provide a comprehensive study for the machining of metals with different behaviours (ductile and hard material). The proposed approach is built on three steps. First, we proposed a design of experiment (DOE) to analyse, experimentally, the chip formation and the resulting surface integrity during the high speed machining under dry condition. The orthogonal cutting mode, adopted in these experiments, allowed to explore, theoretically, the effects of technological (cutting speed and feed) and physical (cutting forces, temperature, shear angle, friction angle, and length Contact tool/chip) parameters on the chip formation mechanisms and the machined surface characteristics (residual stress, plastic deformation, phase transformation, etc.). The cutting conditions were chosen while maintaining a central composite design (CCD) with two factors (cutting speed and feed per revolution). For the aluminum 7075-T651, the results showed that the formation of BUE and the interaction between the tool edge and the iron-rich intermetallic particles are the main causes of the machined surface damage. The BUE formation increases with the cutting feed while the increase of the cutting speed

  15. Understanding the exposure-time effect on speckle contrast measurements for laser displays (United States)

    Suzuki, Koji; Kubota, Shigeo


    To evaluate the influence of exposure time on speckle noise for laser displays, speckle contrast measurement method was developed observable at a human eye response time using a high-sensitivity camera which has a signal multiplying function. The nonlinearity of camera light sensitivity was calibrated to measure accurate speckle contrasts, and the measuring lower limit noise of speckle contrast was improved by applying spatial-frequency low pass filter to the captured images. Three commercially available laser displays were measured over a wide range of exposure times from tens of milliseconds to several seconds without adjusting the brightness of laser displays. The speckle contrast of raster-scanned mobile projector without any speckle-reduction device was nearly constant over various exposure times. On the contrary to this, in full-frame projection type laser displays equipped with a temporally-averaging speckle-reduction device, some of their speckle contrasts close to the lower limits noise were slightly increased at the shorter exposure time due to the noise. As a result, the exposure-time effect of speckle contrast could not be observed in our measurements, although it is more reasonable to think that the speckle contrasts of laser displays, which are equipped with the temporally-averaging speckle-reduction device, are dependent on the exposure time. This discrepancy may be attributed to the underestimation of temporal averaging factor. We expected that this method is useful for evaluating various laser displays and clarify the relationship between the speckle noise and the exposure time for a further verification of speckle reduction.

  16. Understanding the placebo effect in clinical trials for postural tachycardia syndrome. (United States)

    Nwazue, Victor C; Arnold, Amy C; Raj, Vidya; Black, Bonnie K; Biaggioni, Italo; Paranjape, Sachin Y; Orozco, Carlos; Dupont, William D; Robertson, David; Raj, Satish R


    Postural tachycardia syndrome (POTS) is characterized by excessive increases in heart rate (HR) upon standing. Previous studies have shown that standing HR decreases over time in POTS patients given placebo. We hypothesized that this reduction is due to cardiovascular physiological alteration, as opposed to psychological benefit from perceived therapy. To prospectively test this hypothesis, we examined the effects of an open-label 'no treatment' intervention (NoRx) compared with a patient-blinded placebo on standing HR in POTS patients. Twenty-one POTS patients participated in a randomized cross-over trial with oral placebo versus NoRx administered at 0900 h. Seated blood pressure (BP) and HR were measured at baseline and every hour for 4 h. Similarly, BP and HR were measured while patients stood for 10 min at these time points. Standing HR decreased significantly over time with both NoRx (112±13 and 103±16 b.p.m. at baseline and 4 h, respectively) and placebo (112±14 and 102±16 b.p.m. at baseline and 4 h, respectively; Ptimeeffect was not different between interventions (Pdrug=0.771). Postural tachycardia syndrome patients have exaggerated orthostatic tachycardia in the morning that decreases over time with either placebo or NoRx interventions, suggesting this phenomenon is due to cardiovascular physiological variation. These data highlight the need for a placebo arm in haemodynamic clinical trials in POTS and may have important implications for the diagnosis of these patients. © 2014 Wiley Publishing Asia Pty Ltd.

  17. A surfeit of science: The "CSI effect" and the media appropriation of the public understanding of science. (United States)

    Cole, Simon A


    Over the past decade, popular media has promulgated claims that the television program CSI and its spinoffs and imitators have had a pernicious effect on the public understanding of forensic science, the so-called "CSI effect." This paper analyzes those media claims by documenting the ways in which the media claims that CSI "distorts" an imagined "reality." It shows that the media appropriated the analytic stance usually adopted by science advocates, portraying the CSI effect as a social problem in science communication. This appropriation was idiosyncratic in that it posited, as a social problem, a "surfeit" of knowledge and positive imagery about science, rather than the more familiar "deficits." In addition, the media simultaneously appropriated both "traditional" and "critical" PUS discourses. Despite this apparent contradiction, the paper concludes that, in both discourses, the media and its expert informants insist upon their hegemony over "the public" to articulate the "reality" of forensic science. © The Author(s) 2013.

  18. Understanding ageing effects using complexity analysis of foot-ground clearance during walking. (United States)

    Karmakar, Chandan; Khandoker, Ahsan; Begg, Rezaul; Palaniswami, Marimuthu


    Ageing influences gait patterns which in turn can affect the balance control of human locomotion. Entropy-based regularity and complexity measures have been highly effective in analysing a broad range of physiological signals. Minimum toe clearance (MTC) is an event during the swing phase of the gait cycle and is highly sensitive to the spatial balance control properties of the locomotor system. The aim of this research was to investigate the regularity and complexity of the MTC time series due to healthy ageing and locomotors' disorders. MTC data from 30 healthy young (HY), 27 healthy elderly (HE) and 10 falls risk (FR) elderly subjects with balance problems were analysed. Continuous MTC data were collected and using the first 500 data points, MTC mean, standard deviation (SD) and entropy-based complexity analysis were performed using sample entropy (SampEn) for different window lengths (m) and filtering levels (r). The MTC SampEn values were lower in the FR group compared to the HY and HE groups for all m and r. The HY group had a greater mean SampEn value than both HE and FR reflecting higher complexity in their MTC series. The mean SampEn values of HY and FR groups were found significantly different for m = 2, 4, 5 and r = (0.1-0.9) × SD, (0.3-0.9) × SD and (0.3-0.9) × SD, respectively. They were also significant difference between HE and FR groups for m = 4-5 and r = (0.3-0.7) × SD, but no significant differences were seen between HY and HE groups for any m and r. A significant correlation of SampEn with SD of MTC was revealed for the HY and HE groups only, suggesting that locomotor disorders could significantly change the regularity or the complexity of the MTC series while healthy ageing does not. These results can be usefully applied to the early diagnosis of common gait pathologies.

  19. The Impact of Mathematics Teachers' Effectiveness on Students' Learning in the Two Realms of: Knowledge and Understanding

    Directory of Open Access Journals (Sweden)

    Nafiseh Ramezani-Monfared


    Full Text Available Effective teachers focus on the students' appropriate academic achievement and have positive impact on their performance. The need to evaluate the effectiveness of teachers on students' performance and learning areas seems necessary. This study was conducted with the aim to investigate the effectiveness of mathematics teachers on the learning of high school second-grade female students. Considering this purpose, survey research method was used. The population of this study included female mathematics teachers of girl high schools as well as female high school students of the zone 1 of Qom city during the school year 2013-2014. In the present study, quasi-cluster sampling method was used and the second grade was selected from among all the grades of the high schools in zone 1 of Qom city, and the study was conducted on 15 female mathematics teachers in this grade and 359 female students of these teachers. Using a questionnaire and a mathematics test, Mann-Whitney statistical results showed that mathematics scores of students who had effective teachers, were lower in the realm of knowledge compared to the students who did not have effective teachers, and mathematics scores of students who had effective teachers, in the realm of understanding were higher, compared to the students who did not have effective teachers.

  20. Understanding and diminishing the extra-column band broadening effects in supercritical fluid chromatography. (United States)

    De Pauw, Ruben; Shoykhet Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken


    Supercritical fluid chromatography, where a low-viscosity mobile phase such as carbon dioxide is used, proves to be an excellent technique for fast and efficient separations, especially when sub-2μm particles are used. However, to achieve high velocities when using these small particles, and in order to stay within the flow rate range of current SFC-instruments, narrow columns (e.g. 2.1mm ID) must be used. Unfortunately, state-of-the-art instrumentation is limiting the full separation power of these narrower columns due to significant extra-column band broadening effects. The present work identifies and quantifies the different contributions to extra-column band broadening in SFC such as the influence of the sample solvent, injection volume, extra-column volumes and detector cell volume/design. When matching the sample solvent to the mobile phase in terms of elution strength and polarity (e.g. using hexane/ethanol/isopropanol 85/10/5vol%) and lowering the injection volume to 0.4μL, the plate count can be increased from 7600 to 21,300 for a low-retaining compound (k'=2.3) on a 2.1mm×150mm column (packed with 1.8μm particles). The application of a water/acetonitrile mixture as sample solvent was also investigated. It was found that when the volumetric ratio of water/acetonitrile was optimized, only a slightly lower plate count was measured compared to the hexane-based solvent when minimizing injection and extra-column volume. This confirms earlier results that water/acetonitrile can be used if water-soluble samples are considered or when a less volatile solvent is preferred. Minimizing the ID of the connection capillaries from 250 to 65μm, however, gives no further improvement in obtained efficiency for early-eluting compounds when a standard system configuration with optimized sample solvent was used. When switching to a state-of-the-art detector design with reduced (dispersion) volume (1.7-0.6μL), an increase in plate count is observed (from 11,000 to 14

  1. The effect of activity-based nanoscience and nanotechnology education on pre-service science teachers' conceptual understanding (United States)

    Şenel Zor, Tuba; Aslan, Oktay


    The purpose of the study was to examine the effect of activity-based nanoscience and nanotechnology education (ABNNE) on pre-service science teachers' (PST') conceptual understanding of nanoscience and nanotechnology. Within this context, the study was conducted according to mixed methods research with the use of both quantitative and qualitative methods. The participants were 32 PST who were determined by using criterion sampling that is one of the purposive sampling methods. ABNNE was carried out during 7 weeks as 2 h per week in special issues at physics course. Design and implementation of ABNNE were based on "Big Ideas" which was found in literature and provided guidance for teaching nanoscience and nanotechnology. All activities implemented during ABNNE were selected from literature. "Nanoscience and Nanotechnology Concept Test (NN-CT)" and "Activity-Based Nanoscience and Nanotechnology Education Assessment Form (ABNNE-AF)" were used as data collection tools in research. Findings obtained with data collection tools were discussed with coverage of literature. The findings revealed that PST conceptual understanding developed following ABNNE. Various suggestions for increasing PST conceptual understanding of nanoscience and nanotechnology were presented according to the results of the study.

  2. Understanding the determinants of the complex interplay between cost-effectiveness and equitable impact in maternal and child mortality reduction. (United States)

    Chopra, Mickey; Campbell, Harry; Rudan, Igor


    One of the most unexpected outcomes arising from the efforts towards maternal and child mortality reduction is that all too often the objective success has been coupled with increased inequity in the population. The aim of this study is to analyze the determinants of the complex interplay between cost-effectiveness and equity and suggest strategies that will promote an impact on mortality that reduce population child health inequities. We developed a conceptual framework that exposes the nature of the links between the five key determinants that need to be taken into account when planning equitable impact. These determinants are: (i) efficiency of intervention scale-up (requires knowledge of differential increase in cost of intervention scale-up by equity strata in the population); (ii) effectiveness of intervention (requires understanding of differential effectiveness of interventions by equity strata in the population); (iii) the impact on mortality (requires knowledge of differential mortality levels by equity strata, and understanding the differences in cause composition of overall mortality in different equity strata); (iv) cost-effectiveness (compares the initial cost and the resulting impact on mortality); (v) equity structure of the population. The framework is presented visually as a four-quadrant graph. We use the proposed framework to demonstrate why the relationship between cost-effectiveness and equitable impact of an intervention cannot be intuitively predicted or easily planned. The relationships between the five determinants are complex, often nonlinear, context-specific and intervention-specific. We demonstrate that there will be instances when an equity-promoting approach, ie, trying to reach for the poorest and excluded in the population with health interventions, will also be the most cost-effective approach. However, there will be cases in which this will be entirely unfeasible, and where equity-neutral or even inequity-promoting approaches may

  3. Understanding the foot-in-the-door effect as a pseudo-effect from the perspective of the Campbell paradigm. (United States)

    Arnold, Oliver; Kaiser, Florian G


    Compliance with a small request (a metaphorical foot-in-the-door) promotes compliance with a subsequent big request. Whereas some explanations expect a drop in the behavioural costs of the big request, others suspect that the effect comes from boosting the underlying attitude. However, evidence for both explanations is equivocal and circumstantial, at best. Drawing on what Kaiser et al. (2010) call the Campbell paradigm, we present an integrative account: Compliance with any request demands a corresponding attitude to counterbalance the costs of the request. In our research, 229 participants were randomly assigned to either a foot-in-the-door (i.e., initially asked to sign a pro-environmental petition) or a control condition. Small-request-compliant participants were more likely than control participants to also comply with the big request and to continue filling out environmental-issues-related questionnaires. However, this foot-in-the-door effect occurred without diminishing behavioural costs or increasing attitude levels. Accordingly, the greater likelihood of small-request-compliant participants to also comply with the big request can be parsimoniously explained by baseline variability in people's attitude levels that manifests in their compliance with the initial request. We conclude that several of the foot-in-the-door effects reported in the literature carry the risk of representing mere pseudo-effects. © 2016 International Union of Psychological Science.

  4. Understanding Earth's Albedo Effect (United States)

    Fidler, Chuck


    Earth and space science in the middle school classroom are composed of intricately intertwined sets of conceptual systems (AAAS 1993; NRC 1996). Some systems of study, such as the water and rock cycles, are quite explicit and often found as stand-alone middle school science units. Other phenomena are not so apparent, yet they play an extremely…

  5. Understanding classification

    NARCIS (Netherlands)

    Subianto, M.


    In practical data analysis, the understandability of models plays an important role in their acceptance. In the data mining literature, however, understandability plays is hardly ever mentioned. If it is mentioned, it is interpreted as meaning that the models have to be simple. In this thesis we

  6. A cross-cultural, multilevel study of inquiry-based instruction effects on conceptual understanding and motivation in physics (United States)

    Negishi, Meiko

    Student achievement and motivation to learn physics is highly valued in many industrialized countries including the United States and Japan. Science education curricula in these countries emphasize the importance and encourage classroom teachers to use an inquiry approach. This dissertation investigated high school students' motivational orientations and their understanding of physics concepts in a context of inquiry-based instruction. The goals were to explore the patterns of instructional effects on motivation and learning in each country and to examine cultural differences and similarities. Participants consisted of 108 students (55 females, 53 males) and 9 physics teachers in the United States and 616 students (203 females and 413 males) and 11 physics teachers in Japan. Students were administered (a) Force Concept Inventory measuring physics conceptual understanding and (b) Attitudes about Science Questionnaire measuring student motivational orientations. Teachers were given a survey regarding their use of inquiry teaching practices and background information. Additionally, three teachers in each country were interviewed and observed in their classrooms. For the data analysis, two-level hierarchical linear modeling (HLM) methods were used to examine individual student differences (i.e., learning, motivation, and gender) within each classroom (i.e., inquiry-based teaching, teaching experience, and class size) in the U.S. and Japan, separately. Descriptive statistical analyses were also conducted. The results indicated that there was a cultural similarity in that current teaching practices had minimal influence on conceptual understanding as well as motivation of high school students between the U.S. and Japan. In contrast, cultural differences were observed in classroom structures and instructional approaches. Furthermore, this study revealed gender inequity in Japanese students' conceptual understanding and self-efficacy. Limitations of the study, as well as

  7. Local Actions, Global Effects? Understanding the Circumstances in which Locally Beneficial Environmental Actions Cumulate to Have Global Effects


    Thomas K. Rudel


    Environmentally beneficial actions come in diverse forms and occur in a wide range of settings ranging from personal decisions in households to negotiated agreements between nations. This article draws upon both social and ecological theory to outline, theoretically, the circumstances in which localized actions, undertaken by citizens, should cumulate to have global effects. The beliefs behind these actions tend to be either 'defensive environmentalism' in which actors work to improve their...

  8. Embodied understanding. (United States)

    Johnson, Mark


    Western culture has inherited a view of understanding as an intellectual cognitive operation of grasping of concepts and their relations. However, cognitive science research has shown that this received intellectualist conception is substantially out of touch with how humans actually make and experience meaning. The view emerging from the mind sciences recognizes that understanding is profoundly embodied, insofar as our conceptualization and reasoning recruit sensory, motor, and affective patterns and processes to structure our understanding of, and engagement with, our world. A psychologically realistic account of understanding must begin with the patterns of ongoing interaction between an organism and its physical and cultural environments and must include both our emotional responses to changes in our body and environment, and also the actions by which we continuously transform our experience. Consequently, embodied understanding is not merely a conceptual/propositional activity of thought, but rather constitutes our most basic way of being in, and engaging with, our surroundings in a deep visceral manner.

  9. Could the Coandă effect be called the Young effect? The understanding of fluid dynamics of a legendary polymath (United States)

    López-Arias, T.


    We discuss a brief part of a famous paper on sound and light written by Thomas Young in 1800. We show that the proverbial intuition of this famous polymath leads to the discussion of several important and complex fluid dynamics phenomena regarding the behaviour of streams of air. In particular, we show that Young had already explained the adhesion of jets of air to curved surfaces known today as the Coandă effect. This historical anecdote can be used in a didactic context to weave an interesting web between several crucial names in the history of aerodynamics.

  10. Local Actions, Global Effects? Understanding the Circumstances in which Locally Beneficial Environmental Actions Cumulate to Have Global Effects

    Directory of Open Access Journals (Sweden)

    Thomas K. Rudel


    Full Text Available Environmentally beneficial actions come in diverse forms and occur in a wide range of settings ranging from personal decisions in households to negotiated agreements between nations. This article draws upon both social and ecological theory to outline, theoretically, the circumstances in which localized actions, undertaken by citizens, should cumulate to have global effects. The beliefs behind these actions tend to be either 'defensive environmentalism' in which actors work to improve their personal, local environments or 'altruistic environmentalism' in which actors work to improve the global environment. Defensive environmental actions such as creating common property institutions, limiting fertility, reducing waste streams, using energy efficient technologies, and eating organic foods have cumulative effects whereas altruistic environmental action often occurs through threshold crossings following a focusing event. Defensive environmentalism expedites altruistic environmentalism by persuading politicians, after focusing events, that rank and file citizens really do want a regime change. The resulting political transformation should, at least theoretically, create a sustainable development state that would promote additional defensive and altruistic environmental actions.

  11. Advancing the understanding of craving during smoking cessation attempts: a demonstration of the time-varying effect model. (United States)

    Lanza, Stephanie T; Vasilenko, Sara A; Liu, Xiaoyu; Li, Runze; Piper, Megan E


    Advancing the understanding of smoking cessation requires a complex and nuanced understanding of behavior change. To this end, ecological momentary assessments (EMA) are now being collected extensively. The time-varying effect model (TVEM) is a statistical technique ideally suited to model processes that unfold as behavior and nicotine dependence change. Coefficients are expressed dynamically over time and are represented as smooth functions of time. The TVEM approach is demonstrated using data from a smoking-cessation trial. Time-varying effects of baseline nicotine dependence (a time-invariant covariate) and negative affect (a time-varying covariate) on urge to smoke during a quit attempt were estimated for monotherapy, combination therapy, and placebo groups. SAS syntax for conducting TVEM is provided so that readers can adapt it for their research. During the first 2 days after quitting, the association between negative affect and craving was significantly stronger among individuals in the placebo group, suggesting an early positive impact of treatment. For the monotherapy and combination therapy groups, during the second week of the quit attempt, baseline dependence was less strongly related to craving compared with the placebo group, indicating a different positive impact of treatments later in the quit attempt. The results reveal information about the underlying dynamics that unfold during a quit attempt and how monotherapy and combination therapy impact those processes. This suggests possible mechanisms to target in an intervention and indicates timepoints that hold the greatest promise for effective treatment. TVEM is a straightforward approach to examining time-varying processes embedded in EMA.

  12. Using land-cover data to understand effects of agricultural and urban development on regional water quality (United States)

    Karstensen, Krista A.; Warner, Kelly L.


    The Land-Cover Trends project is a collaborative effort between the Geographic Analysis and Monitoring Program of the U.S. Geological Survey (USGS), the U.S. Environmental Protection Agency (EPA) and the National Aeronautics and Space Administration (NASA) to understand the rates, trends, causes, and consequences of contemporary land-use and land-cover change in the United States. The data produced from this research can lead to an enriched understanding of the drivers of future landuse change, effects on environmental systems, and any associated feedbacks. USGS scientists are using the EPA Level III ecoregions as the geographic framework to process geospatial data collected between 1973 and 2000 to characterize ecosystem responses to land-use changes. General land-cover classes for these periods were interpreted from Landsat Multispectral Scanner, Thematic Mapper, and Enhanced Thematic Mapper Plus imagery to categorize and evaluate land-cover change using a modified Anderson Land-Use/Land-Cover Classification System for image interpretation.

  13. The effects of a technology-enhanced inquiry instructional model on students' understanding of science in Thailand (United States)

    Lertwanasiriwan, Chaiwuti

    The study examined the effects of a technology-enhanced inquiry instructional model on students' understanding of science in Thailand. A mixed quantitative research design was selected for the research design. A pretest-posttest control-group design was implemented for the experimental research. A causal-comparative design using questionnaire and classroom observation was employed for the non-experimental research. Two sixth-grade classrooms at a medium-sized public school in Bangkok, Thailand were randomly selected for the study - one as the control group and the other as the experimental group. The 34 students in the control group only received the inquiry instructional model, while the 35 students in the experimental group received the technology-enhanced inquiry instructional model. Both groups of students had been taught by the same science teacher for 15 weeks (three periods per week). The results and findings from the study seemed to indicate that both the technology-enhanced inquiry instructional model and the inquiry instructional model significantly improve students' understanding of science. However, it might be claimed that students receiving the technology-enhanced inquiry instructional model gain more than students only receiving the inquiry instructional model. In addition, the technology-enhanced inquiry instructional model seemed to support the assessment during the 5E Model's evaluation stage. Most students appeared to have very good attitudes toward using it in the science classroom suggesting that the technology-enhanced inquiry instructional model motivates students to learn science.

  14. Understanding the tissue interaction of new treatment modalities in laparoscopic surgery in view of safe and effective application (Conference Presentation) (United States)

    Grimbergen, Matthijs C. M.; Klaessens, John H.; van der Veen, Albert J.; Verdaasdonk, Rudolf M.


    During laparoscopic surgery, devices are require to either cut, ablate or coagulate tissue and veins with high precision and controlled lateral damage preferably in an one-for-all modality. The tissue interactions of 3 new treatment modalities were studied using special imaging techniques to obtain a better understanding the working mechanism in view of effective and safe application. The Plasmajet produces a high temperature ionized gas 'flame' directed to the tissue surface at the tip of a 4 mm diameter rigid hand piece. The Lumenis DUO CO2 laser enables endoscopic laser energy delivery through a 1 mm outer diameter flexible hollow waveguide. The 2 µm 'Thulium' laser is delivered by (standard) 400 µm diameter optical fiber. Thermal imaging and Schlieren techniques were used to assess the superficial ablative and coagulation effects these surgical instruments scanning at preset velocities and distances from the surface of biological tissues and phantoms . The CO2 was very effective in tissue ablation even at a distance up to 10 mm due to a very small diverging beam from the hollow waveguide. In contrast, the Thulium laser showed less ablation and increasing coagulation at larger distance to the tissue. The gas 'flame' of the Plasmajet spread the thermal energy over the surface for effective superficial ablation and coagulation. However, the pressure of the gas flow is substantial on the tissue surface creating turbulence and even indirect cooling. The specific ablation and coagulation effects of the three treatment modalities have to be appreciate and the effective and safe application will depend on the preference and skills of the surgeon

  15. Understanding Alzheimer's (United States)

    ... Navigation Bar Home Current Issue Past Issues Understanding Alzheimer's Past Issues / Fall 2007 Table of Contents For ... and brain scans. No treatment so far stops Alzheimer's. However, for some in the disease's early and ...

  16. Understanding homelessness


    Somerville, Peter


    This paper reviews the literature on understanding homelessness. It criticizes approaches that ignore, distort or diminish the humanity of homeless people, or else, add little to our understanding of that humanity. In particular, it rejects what it calls “epidemiological” approaches, which deny the possibility of agency for homeless people, insofar as those approaches view the situation of those people largely as a “social fact”, to be explained in terms of causal variables or “risk factors” ...

  17. Developments in our understanding of the effects of growth hormone on white adipose tissue from mice: implications to the clinic. (United States)

    Berryman, Darlene E; Henry, Brooke; Hjortebjerg, Rikke; List, Edward O; Kopchick, John J


    Adipose tissue (AT) is a well-established target of growth hormone (GH) and is altered in clinical conditions associated with excess, deficiency and absence of GH action. Due to the difficulty in collecting AT from clinical populations, genetically modified mice have been useful in better understanding how GH affects this tissue. Recent findings in mice would suggest that the impact of GH on AT is beyond alterations of lipolysis, lipogenesis or proliferation/ differentiation. AT depot-specific alterations in immune cells, extracellular matrix, adipokines, and senescence indicate an expanded role for GH in AT physiology. This mouse data will guide additional studies necessary to evaluate the therapeutic potential and safety of GH for conditions associated with altering AT, such as obesity. In this review, we introduce several relatively new intricacies of GH's effect on AT, focusing on recent studies in mice. Finally, we summarize the clinical implications of these findings.

  18. New understanding of the effect of hydrostatic pressure on the corrosion of Ni–Cr–Mo–V high strength steel

    International Nuclear Information System (INIS)

    Yang, Yange; Zhang, Tao; Shao, Yawei; Meng, Guozhe; Wang, Fuhui


    Highlights: •Stress distributions of pits under different hydrostatic pressures are simulated. •Corrosion model of Ni–Cr–Mo–V steel under hydrostatic pressure is established. •A novel understanding of the effect of hydrostatic pressure is proposed. -- Abstract: Corrosion of Ni–Cr–Mo–V high strength steel at different hydrostatic pressures is investigated by scanning electron microscopy (SEM) and finite element analysis (FEA). The results indicate that corrosion pits of Ni–Cr–Mo–V high strength steel originate from inclusions in the steel and high hydrostatic pressures accelerate pit growth rate parallel to steel and the coalescence rate of neighbouring pits, which lead to the fast formation of uniform corrosion. Corrosion of Ni–Cr–Mo–V high strength steel under high hydrostatic pressure is the interaction result between electrochemical corrosion and elastic stress

  19. The fit between stress appraisal and dyadic coping in understanding perceived coping effectiveness for adolescents with type 1 diabetes. (United States)

    Berg, Cynthia A; Skinner, Michelle; Ko, Kelly; Butler, Jorie M; Palmer, Debra L; Butner, Jonathan; Wiebe, Deborah J


    This study examined whether perceived coping effectiveness (PCE) was associated with better diabetes management and was higher when adolescents' dyadic coping was matched to shared stress appraisals. There were 252 adolescents with Type 1 diabetes who completed stress and coping interviews where they appraised mothers' and fathers' involvement in stress ownership (mine, indirectly shared, directly shared with parent), in coping (uninvolved, supportive, collaborative, or controlling), and rated their effectiveness in coping. Adolescents completed assessments of depressive symptoms (Children's Depression Inventory), self-care behaviors (Self-Care Inventory), and efficacy of disease management (Diabetes Self-Efficacy). Glycosylated hemoglobin levels were obtained from medical records. Higher PCE was associated with fewer depressive symptoms, self-care behaviors, and efficacy across age and, more strongly for older adolescents' metabolic control. Appraisals of support or collaboration from parents were more frequent when stressors were appraised as shared. PCE was enhanced when dyadic coping with mothers (but not fathers) was consistent with stress appraisals (e.g., shared stressors together with collaborative coping). Stress and coping is embedded within a relational context and this context is useful in understanding the coping effectiveness of adolescents. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  20. Understanding the atmospheric pressure ionization of petroleum components: The effects of size, structure, and presence of heteroatoms

    Energy Technology Data Exchange (ETDEWEB)

    Huba, Anna Katarina; Huba, Kristina [Department of Chemistry & Biochemistry, Florida International University, 3000 NE 151 Street, Biscayne Bay Campus, North Miami, Florida 33181 (United States); Gardinali, Piero R. [Department of Chemistry & Biochemistry, Florida International University, 3000 NE 151 Street, Biscayne Bay Campus, North Miami, Florida 33181 (United States); Southeast Environmental Research Center (SERC), Florida International University, 3000 NE 151 Street, Biscayne Bay Campus, North Miami, Florida 33181 (United States)


    Understanding the composition of crude oil and its changes with weathering is essential when assessing its provenience, fate, and toxicity. High-resolution mass spectrometry (HRMS) has provided the opportunity to address the complexity of crude oil by assigning molecular formulae, and sorting compounds into “classes” based on heteroatom content. However, factors such as suppression effects and discrimination towards certain components severely limit a truly comprehensive mass spectrometric characterization, and, despite the availability of increasingly better mass spectrometers, a complete characterization of oil still represents a major challenge. In order to fully comprehend the significance of class abundances, as well as the nature and identity of compounds detected, a good understanding of the ionization efficiency of the various compound classes is indispensable. The current study, therefore, analyzed model compounds typically found in crude oils by high-resolution mass spectrometry with atmospheric pressure photoionization (APPI), atmospheric pressure chemical ionization (APCI), and electrospray ionization (ESI), in order to provide a better understanding of benefits and drawbacks of each source. The findings indicate that, overall, APPI provides the best results, being able to ionize the broadest range of compounds, providing the best results with respect to ionization efficiencies, and exhibiting the least suppression effects. However, just like in the other two sources, in APPI several factors have shown to affect the ionization efficiency of petroleum model compounds. The main such factor is the presence or absence of functional groups that can be easily protonated/deprotonated, in addition to other factors such as size, methylation level, presence of heteroatoms, and ring structure. Overall, this study evidences the intrinsic limitations and benefits of each of the three sources, and should provide the fundamental knowledge required to expand the

  1. Effect of Inquiry-Based Computer Simulation Modeling on Pre-Service Teachers' Understanding of Homeostasis and Their Perceptions of Design Features (United States)

    Chabalengula, Vivien; Fateen, Rasheta; Mumba, Frackson; Ochs, Laura Kathryn


    This study investigated the effect of an inquiry-based computer simulation modeling (ICoSM) instructional approach on pre-service science teachers' understanding of homeostasis and its related concepts, and their perceived design features of the ICoSM and simulation that enhanced their conceptual understanding of these concepts. Fifty pre-service…

  2. Understanding Maple

    CERN Document Server

    Thompson, Ian


    Maple is a powerful symbolic computation system that is widely used in universities around the world. This short introduction gives readers an insight into the rules that control how the system works, and how to understand, fix, and avoid common problems. Topics covered include algebra, calculus, linear algebra, graphics, programming, and procedures. Each chapter contains numerous illustrative examples, using mathematics that does not extend beyond first-year undergraduate material. Maple worksheets containing these examples are available for download from the author's personal website. The book is suitable for new users, but where advanced topics are central to understanding Maple they are tackled head-on. Many concepts which are absent from introductory books and manuals are described in detail. With this book, students, teachers and researchers will gain a solid understanding of Maple and how to use it to solve complex mathematical problems in a simple and efficient way.

  3. The effect of intranasal oxytocin on perceiving and understanding emotion on the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT). (United States)

    Cardoso, Christopher; Ellenbogen, Mark A; Linnen, Anne-Marie


    Evidence suggests that intranasal oxytocin enhances the perception of emotion in facial expressions during standard emotion identification tasks. However, it is not clear whether this effect is desirable in people who do not show deficits in emotion perception. That is, a heightened perception of emotion in faces could lead to "oversensitivity" to the emotions of others in nonclinical participants. The goal of this study was to assess the effects of intranasal oxytocin on emotion perception using ecologically valid social and nonsocial visual tasks. Eighty-two participants (42 women) self-administered a 24 IU dose of intranasal oxytocin or a placebo in a double-blind, randomized experiment and then completed the perceiving and understanding emotion components of the Mayer-Salovey-Caruso Emotional Intelligence Test. In this test, emotion identification accuracy is based on agreement with a normative sample. As expected, participants administered intranasal oxytocin rated emotion in facial stimuli as expressing greater emotional intensity than those given a placebo. Consequently, accurate identification of emotion in faces, based on agreement with a normative sample, was impaired in the oxytocin group relative to placebo. No such effect was observed for tests using nonsocial stimuli. The results are consistent with the hypothesis that intranasal oxytocin enhances the salience of social stimuli in the environment, but not nonsocial stimuli. The present findings support a growing literature showing that the effects of intranasal oxytocin on social cognition can be negative under certain circumstances, in this case promoting "oversensitivity" to emotion in faces in healthy people. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  4. Understanding physics

    CERN Document Server

    Mansfield, Michael


    Understanding Physics - Second edition is a comprehensive, yet compact, introductory physics textbook aimed at physics undergraduates and also at engineers and other scientists taking a general physics course. Written with today's students in mind, this text covers the core material required by an introductory course in a clear and refreshing way. A second colour is used throughout to enhance learning and understanding. Each topic is introduced from first principles so that the text is suitable for students without a prior background in physics. At the same time the book is designed to enable

  5. Understanding the Role and Impact of Effective Country and Community Leadership in Progress Toward the Global Plan. (United States)

    Lyons, Charles; Pillay, Yogan


    Individual leadership and leaders have played pivotal roles in the history of efforts to end the AIDS epidemic. The goal of this article is to reflect on and understand how leadership and leaders have impacted and enabled the success of the Global Plan Towards the Elimination of New HIV Infections among Children by 2015 and Keeping their Mothers Alive (Global Plan). To accomplish this goal, multiple interviews were conducted with individuals in positions of leadership who had been identified as people whose actions drove progress. Interviewees were selected from all levels of traditional hierarchies and sectors to provide a more complete account and representation of leadership, with a particular emphasis on the community, district, and country levels. The leaders interviewed provide insight into their work, motivations, and approaches to effective leadership. Through their experiences, they shed light on the strategies they used to drive changes in policy, programs, practice, and communities that allowed for progress toward the goals of the Global Plan. Leaders also identify future challenges and areas of improvement in the effort to end the AIDS epidemic that they feel require leadership and urgent action. In conclusion, this article identifies common characteristics of effective leadership and reflects on the experiences of individuals who are leaders in the effort to end the AIDS epidemic, and how their lessons learned can be applied to help realize future global public health goals.

  6. Atomic-scale understanding of non-stoichiometry effects on the electrochemical performance of Ni-rich cathode materials (United States)

    Kong, Fantai; Liang, Chaoping; Longo, Roberto C.; Zheng, Yongping; Cho, Kyeongjae


    As the next-generation high energy capacity cathode materials for Li-ion batteries, Ni-rich oxides face the problem of obtaining near-stoichiometric phases due to excessive Ni occupying Li sites. These extra-Ni-defects drastically affect the electrochemical performance. Despite of its importance, the fundamental correlation between such defects and the key electrochemical properties is still poorly understood. In this work, using density-functional-theory, we report a comprehensive study on the effects of non-stoichiometric phases on properties of Ni-rich layered oxides. For instance, extra-Ni-defects trigger charge disproportionation reaction within the system, alleviating the Jahn-Teller distortion of Ni3+ ions, which constitutes an important reason for their low formation energies. Kinetic studies of these defects reveal their immobile nature, creating a "pillar effect" that increases the structural stability. Ab initio molecular dynamics revealed Li depletion regions surrounding extra-Ni-defects, which are ultimate responsible for the arduous Li diffusion and re-intercalation, resulting in poor rate performance and initial capacity loss. Finally, the method with combination of high valence cation doping and ion-exchange synthesis is regarded as the most promising way to obtain stoichiometric oxides. Overall, this work not only deepens our understanding of non-stoichiometric Ni-rich layered oxides, but also enables further optimizations of high energy density cathode materials.

  7. Understanding the effect of secondary structure on molecular interactions of poly-L-lysine with different substrates by SFA. (United States)

    Binazadeh, Mojtaba; Faghihnejad, Ali; Unsworth, Larry D; Zeng, Hongbo


    Nonspecific adsorption of proteins on biomaterial surfaces challenges the widespread application of engineered materials, and understanding the impact of secondary structure of proteins and peptides on their adsorption process is of both fundamental and practical importance in bioengineering. In this work, poly-L-lysine (PLL)-based α-helices and β-sheets were chosen as a model system to investigate the effect of secondary structure on peptide interactions with substrates of various surface chemistries. Circular dichroism (CD) was used to confirm the presence of both α-helix and β-sheet structured PLL in aqueous solutions and upon adsorption to quartz, where these secondary structures seemed to be preserved. Atomic force microscopy (AFM) imaging showed different surface patterns for adsorbed α-helix and β-sheet PLL. Interactions between PLL of different secondary structures and various substrates (i.e., PLL, Au, mica, and poly(ethylene glycol) (PEG)) were directly measured using a surface forces apparatus (SFA). It was found that β-sheet PLL films showed higher adsorbed layer thicknesses in general. Adhesion energies of β-sheet versus Au and β-sheet versus β-sheet were considerably higher than that of α-helix versus Au and α-helix versus α-helix systems, respectively. Au and β-sheet PLL interactions seemed to be more dependent on the salt concentration than that of α-helix, while the presence of a grafted PEG layer greatly diminished any attraction with either PLL structure. The molecular interaction mechanism of peptide in different secondary structures is discussed in terms of Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, Alexander-de Gennes (AdG) steric model and hydrogen bonding, which provides important insight into the fundamental understanding of the interaction mechanism between proteins and biomaterials.

  8. Understanding Energy (United States)

    Menon, Deepika; Shelby, Blake; Mattingly, Christine


    "Energy" is a term often used in everyday language. Even young children associate energy with the food they eat, feeling tired after playing soccer, or when asked to turn the lights off to save light energy. However, they may not have the scientific conceptual understanding of energy at this age. Teaching energy and matter could be…

  9. Understanding the biological effects of thorium in human cells and animals and developing efficient approaches for its decorporation and mitigation

    International Nuclear Information System (INIS)

    Kumar, Amit; Ali, Manjoor; Pandey, Badri N.


    Thorium-232 (Th) is being realized as a potential source of nuclear fuel for meeting long-term energy generation in India/other nations. In view of utilizing Th, it is hoped that mining, extraction, purification, back-end processing and disposal would increase significantly in near future. Therefore, understanding the biological effects of Th would enable its efficient utilization with adequate human health protection. Biological half-life and associated health effects of Th govern by its speciation, bio-kinetics, radiation decay and organ-specific accumulation due to Fe-like behaviour inside the body system. Our animal studies showed that Th mainly accumulates in liver and bone, in contrast to the accumulation of uranium in kidney. Cell culture experiments were performed to study the binding/internalization mechanism of Th (IV) with human liver cells (HepG2). Experiments using HepG2 cells suggested the role of transferrin (Tf), a blood protein in Th internalization. Recently, our in vitro study observed that the low concentration of Th nitrate induced proliferation in HepG2 through IGF-1R pathway. This study may have relevance to prevent early effects of Th using IGF-1 receptor-specific inhibitor. One of the major goals of our research group is to develop biological approaches for efficient decorporation of Th from liver. In this direction, liposomal form of DTPA has been optimized to effectively deliver DTPA to the liver. Testing of liposomal-DTPA in Th injected animal showed significant enhancement in removal of Th from liver and blood as compared to non-liposomal DTPA. Using ex-vivo human erythrocytes hemolysis assay and in whole blood condition, further efforts are in-progress to evaluate metal binding molecules in search of more effective decorporating agent than DTPA. In conclusion, this paper would discuss the results on mechanism of biological effects of Th on cells and proteins and newer molecules/approaches for its decorporation for human application

  10. Size effects in finite systems with long-range interactions (United States)

    Loscar, E. S.; Horowitz, C. M.


    Small systems consisting of particles interacting with long-range potentials exhibit enormous size effects. The Tsallis conjecture [Tsallis, Fractals 3, 541 (1995), 10.1142/S0218348X95000473], valid for translationally invariant systems with long-range interactions, states a well-known scaling relating different sizes. Here we propose to generalize this conjecture to systems with this symmetry broken, by adjusting one parameter that determines an effective distance to compute the strength of the interaction. We apply this proposal to the one-dimensional Ising model with ferromagnetic interactions that decay as 1 /r1 +σ in the region where the model has a finite critical temperature. We demonstrate the convenience of using this generalization to study finite-size effects, and we compare this approach with the finite-size scaling theory.

  11. Understanding Leisure-related Program Effects by Using Process Data in the HealthWise South Africa Project. (United States)

    Caldwell, Linda L; Younker, Anita S; Wegner, Lisa; Patrick, Megan E; Vergnani, Tania; Smith, Edward A; Flisher, Alan J


    As the push for evidence-based programming gathers momentum, many human services programs and interventions are under increased scrutiny to justify their effectiveness across different conditions and populations. Government agencies and the public want to be assured that their resources are being put to good use on programs that are effective and efficient (Guskey, 2000). Thus, programs are increasingly based on theory and evaluated through randomized control trials using longitudinal data. Despite this progress, hypothesized outcomes are often not detected and/or their effect sizes are small (Gingiss, Roberts-Gray, Boerm, 2006). Moreover, findings may go against intuition or "gut feelings" on the part of project staff. Given the need to understand how program implementation issues relate to outcomes, this study focuses on whether process measures that focus on program implementation and fidelity can shed light on associated outcomes. In particular, we linked the process evaluation of the HealthWise motivation lesson with outcomes across four waves of data collection. We hypothesized that HealthWise would increase learners' intrinsic and identified forms of motivation, and decrease amotivation and extrinsic motivation. We did not hypothesize a direction of effects on introjected motivation due to its conceptual ambiguity. Data came from youth in four intervention schools (n = 902, 41.1%) and five control schools (n = 1291, 58.9%) who were participating in a multi-cohort, longitudinal study. The schools were in a township near Cape Town, South Africa. For each cohort, baseline data are collected on learners as they begin Grade 8. We currently have four waves of data collected on the first cohort, which is the focus of this paper. The mean age of the sample at Wave 3 was 15.0 years (SD = .86) and 51% of students were female. Results suggested that there was evidence of an overall program effect of the curriculum on amotivation regardless of fidelity of implementation

  12. An investigation of meaningful understanding and effectiveness of the implementation of Piagetian and Ausubelian theories in physics instruction (United States)

    Williams, Karen Ann

    One section of college students (N = 25) enrolled in an algebra-based physics course was selected for a Piagetian-based learning cycle (LC) treatment while a second section (N = 25) studied in an Ausubelian-based meaningful verbal reception learning treatment (MVRL). This study examined the students' overall (concept + problem solving + mental model) meaningful understanding of force, density/Archimedes Principle, and heat. Also examined were students' meaningful understanding as measured by conceptual questions, problems, and mental models. In addition, students' learning orientations were examined. There were no significant posttest differences between the LC and MVRL groups for students' meaningful understanding or learning orientation. Piagetian and Ausubelian theories explain meaningful understanding for each treatment. Students from each treatment increased their meaningful understanding. However, neither group altered their learning orientation. The results of meaningful understanding as measured by conceptual questions, problem solving, and mental models were mixed. Differences were attributed to the weaknesses and strengths of each treatment. This research also examined four variables (treatment, reasoning ability, learning orientation, and prior knowledge) to find which best predicted students' overall meaningful understanding of physics concepts. None of these variables were significant predictors at the.05 level. However, when the same variables were used to predict students' specific understanding (i.e. concept, problem solving, or mental model understanding), the results were mixed. For forces and density/Archimedes Principle, prior knowledge and reasoning ability significantly predicted students' conceptual understanding. For heat, however, reasoning ability was the only significant predictor of concept understanding. Reasoning ability and treatment were significant predictors of students' problem solving for heat and forces. For density

  13. Understanding translation

    DEFF Research Database (Denmark)

    Schjoldager, Anne Gram; Gottlieb, Henrik; Klitgård, Ida

    Understanding Translation is designed as a textbook for courses on the theory and practice of translation in general and of particular types of translation - such as interpreting, screen translation and literary translation. The aim of the book is to help you gain an in-depth understanding...... of the phenomenon of translation and to provide you with a conceptual framework for the analysis of various aspects of professional translation. Intended readers are students of translation and languages, but the book will also be relevant for others who are interested in the theory and practice of translation...... - translators, language teachers, translation users and literary, TV and film critics, for instance. Discussions focus on translation between Danish and English....

  14. Understand electronics

    CERN Document Server

    Bishop, Owen


    Understand Electronics provides a readable introduction to the exciting world of electronics for the student or enthusiast with little previous knowledge. The subject is treated with the minimum of mathematics and the book is extensively illustrated.This is an essential guide for the newcomer to electronics, and replaces the author's best-selling Beginner's Guide to Electronics.The step-by-step approach makes this book ideal for introductory courses such as the Intermediate GNVQ.

  15. Understanding users

    DEFF Research Database (Denmark)

    Johannsen, Carl Gustav Viggo


    Segmentation of users can help libraries in the process of understanding user similarities and differences. Segmentation can also form the basis for selecting segments of target users and for developing tailored services for specific target segments. Several approaches and techniques have been...... segmentation project using computer-generated clusters. Compared to traditional marketing texts, this article also tries to identify user segments or images or metaphors by the library profession itself....

  16. Understanding unemployment


    Guillaume Rocheteau


    Modern economists have built models of the labor market, which isolate the market’s key drivers and describe the way these interact to produce particular levels of unemployment. One of the most popular models used by macroeconomists today is the search-matching model of equilibrium unemployment. We explain this model, and show how it can be applied to understand the way various policies, such as unemployment benefits, taxes, or technological changes, can affect the unemployment rate.

  17. Understanding Technology?

    Directory of Open Access Journals (Sweden)

    Erik Bendtsen


    Full Text Available We are facing radical changes in our ways of living in the nearest future. Not necessarily of our own choice, but because tchnological development is moving so fast, that it will have still greater impact on many aspects of our lives. We have seen the beginnings of that change within the latest 35 years or so, but according to newest research that change will speed up immensely in the nearest years to come. The impact of that change or these changes will affect our working life immensely as a consequence of automation. How these changes are brought about and which are their consequences in a broad sense is being attempted to be understood and guessed by researchers. No one knows for sure, but specific patterns are visible. This paper will not try to guess, what will come, but will rather try to understand the deepest ”nature” of technology in order to understand the driving factors in this development: the genesis of technology in a broad sense in order to contibute to the understanding of the basis for the expected development.

  18. Predicting plant diversity patterns in Madagascar: understanding the effects of climate and land cover change in a biodiversity hotspot.

    Directory of Open Access Journals (Sweden)

    Kerry A Brown

    Full Text Available Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence records for 828 plant genera and 2186 plant species. We developed three scenarios, (i.e., climate only, land cover only and combined climate-land cover based on recent and future climate and land cover variables. We used this modelling framework to investigate how the impacts of changes to climate and land cover influenced biodiversity across ecoregions and elevation bands. There were large-scale climate- and land cover-driven changes in plant biodiversity across Madagascar, including both losses and gains in diversity. The sharpest declines in biodiversity were projected for the eastern escarpment and high elevation ecosystems. Sharp declines in diversity were driven by the combined climate-land cover scenarios; however, there were subtle, region-specific differences in model outputs for each scenario, where certain regions experienced relatively higher species loss under climate or land cover only models. We strongly caution that predicted future gains in plant diversity will depend on the development and maintenance of dispersal pathways that connect current and future suitable habitats. The forecast for Madagascar's plant diversity in the face of future environmental change is worrying: regional diversity will continue to decrease in response to the combined effects of climate and land cover change, with habitats such as ericoid thickets and eastern lowland and sub-humid forests particularly vulnerable into the future.

  19. Priority setting for resources to improve the understanding of information about claims of treatment effects in the mass media. (United States)

    Semakula, Daniel; Nsangi, Allen; Oxman, Andrew D; Sewankambo, Nelson K


    Claims about benefits and harms of treatments are common in the media. We engaged health journalists in prioritizing concepts of evidence-based medicine that we believe the public needs to understand to be able to assess claims about treatment effects; and which could improve how journalists report such information. We conducted a three-day workshop with a group of Ugandan journalists in which we presented and explained the concepts. We asked journalists to prioritize groups of related concepts using four pre-specified criteria i.e. relevance of the concepts to journalists and their audiences; ease of comprehension; feasibility of developing resources for teaching the concepts and, whether such resources would potentially have an impact. Using a modified Delphi technique, participants ranked each group of concepts using these criteria on a scale of one to six (one = lowest; 6 = highest). We analyzed the rankings in real time using STATA statistical software. All six groups of concepts were considered relevant and comprehensible with scores of five and six on a scale of one to six. Twenty two out of 25 participants reported having understood the concepts well, with subjective scores of above 75 on a scale of one to 100. Journalists in Uganda recognize the importance of evidence-based medicine concepts in assessing claims about benefits and harms of treatments to them and their audiences. They should be empowered to use these and similar concepts in order to improve how information about effects of treatments is relayed in the media. © 2015 Chinese Cochrane Center, West China Hospital of Sichuan University and Wiley Publishing Asia Pty Ltd.

  20. Optimization of methotrexate loaded niosomes by Box-Behnken design: an understanding of solvent effect and formulation variability. (United States)

    Zidan, Ahmed S; Mokhtar Ibrahim, Mahmoud; Megrab, Nagia A El


    Dermal drug delivery system which localizes methotrexate (MTX) in the skin is advantageous in topical treatment of psoriasis. The aim of the current study was to understand dilution effects and formulation variability for the potential formation of niosomes from proniosome gels of MTX. Box-Behnken's design was employed to prepare a series of MTX proniosome gels of Span 40, cholesterol (Chol-X 1 ) and Tween 20 (T20-X 2 ). Short chain alcohols (X 3 ), namely ethanol (Et), propylene glycol (Pg) and glycerol (G) were evaluated for their dilution effects on proniosomes. The responses investigated were niosomal vesicles size (Y 1 ), MTX entrapment efficiency percent (EE%-Y 2 ) and zeta potential (Y 3 ). MTX loaded niosomes were formed immediately upon hydration of the proniosome gels with the employed solvents. Addition of Pg resulted in a decrease of vesicular size from 534 nm to 420 nm as Chol percentage increased from 10% to 30%, respectively. In addition, increasing the hydrophilicity of the employed solvents was enhancing the resultant zeta potential. On the other hand, using Et in proniosomal gels would abolish Chol action to increase the zeta potential value and hence less stable niosomal dispersion was formed. The optimized formula of MTX loaded niosomes showed vesicle size of 480 nm, high EE% (55%) and zeta potential of -25.5 mV, at Chol and T20 concentrations of 30% and 23.6%, respectively, when G was employed as the solvent. Hence, G was the solvent of choice to prepare MTX proniosomal gels with a maintained stability and highest entrapment.