WorldWideScience

Sample records for understand chemistry climate

  1. General chemistry students' understanding of the chemistry underlying climate science

    Science.gov (United States)

    Versprille, Ashley N.

    The purpose of this study is to investigate first-semester general chemistry students' understanding of the chemistry underlying climate change. The first part of this study involves the collection of qualitative data from twenty-four first-semester general chemistry students from a large Midwestern research institution. The semi-structured interview protocol was developed based on alternative conceptions identified in the research literature and the essential principles of climate change outlined in the U.S. Climate Change Science Program (CCSP) document which pertain to chemistry (CCSP, 2003). The analysis and findings from the interviews indicate conceptual difficulties for students, both with basic climate literacy and underlying chemistry concepts. Students seem to confuse the greenhouse effect, global warming, and the ozone layer, and in terms of chemistry concepts, they lack a particulate level understanding of greenhouse gases and their interaction with electromagnetic radiation, causing them to not fully conceptualize the greenhouse effect and climate change. Based on the findings from these interviews, a Chemistry of Climate Science Diagnostic Instrument (CCSI) was developed for use in courses that teach chemistry with a rich context such as climate science. The CCSI is designed for professors who want to teach general chemistry, while also addressing core climate literacy principles. It will help professors examine their students' prior knowledge and alternative conceptions of the chemistry concepts associated with climate science, which could then inform their teaching and instruction.

  2. General Chemistry Students' Understanding of Climate Change and the Chemistry Related to Climate Change

    Science.gov (United States)

    Versprille, Ashley N.; Towns, Marcy H.

    2015-01-01

    While much is known about secondary students' perspectives of climate change, rather less is known about undergraduate students' perspectives. The purpose of this study is to investigate general chemistry students' understanding of the chemistry underlying climate change. Findings that emerged from the analysis of the 24 interviews indicate that…

  3. Understanding Differences in Chemistry Climate Model Projections of Stratospheric Ozone

    Science.gov (United States)

    Douglass, A. R.; Strahan, S. E.; Oman, L. D.; Stolarski, R. S.

    2014-01-01

    Chemistry climate models (CCMs) are used to project future evolution of stratospheric ozone as concentrations of ozone-depleting substances (ODSs) decrease and greenhouse gases increase, cooling the stratosphere. CCM projections exhibit not only many common features but also a broad range of values for quantities such as year of ozone return to 1980 and global ozone level at the end of the 21st century. Multiple linear regression is applied to each of 14 CCMs to separate ozone response to ODS concentration change from that due to climate change. We show that the sensitivity of lower stratospheric ozone to chlorine change Delta Ozone/Delta inorganic chlorine is a near-linear function of partitioning of total inorganic chlorine into its reservoirs; both inorganic chlorine and its partitioning are largely controlled by lower stratospheric transport. CCMs with best performance on transport diagnostics agree with observations for chlorine reservoirs and produce similar ozone responses to chlorine change. After 2035, differences in Delta Ozone/Delta inorganic chlorine contribute little to the spread in CCM projections as the anthropogenic contribution to inorganic chlorine becomes unimportant. Differences among upper stratospheric ozone increases due to temperature decreases are explained by differences in ozone sensitivity to temperature change Delta Ozone/Delta T due to different contributions from various ozone loss processes, each with its own temperature dependence. Ozone decrease in the tropical lower stratosphere caused by a projected speedup in the Brewer-Dobson circulation may or may not be balanced by ozone increases in the middle- and high-latitude lower stratosphere and upper troposphere. This balance, or lack thereof, contributes most to the spread in late 21st century projections.

  4. Chemistry and climate change

    International Nuclear Information System (INIS)

    Bernier, Jean-Claude; Brasseur, Guy; Brechet, Yves; Candel, Sebastien; Cazenave, Anny; Courtillot, Vincent; Fontecave, Marc; Garnier, Emmanuel; Goebel, Philippe; Legrand, Jack; Legrand, Michel; Le Treut, Herve; Mauberger, Pascal; Dinh-Audouin, Minh-Thu; Olivier, Daniele; Rigny, Paul; Bigot, Bernard

    2016-01-01

    In its first part, this collective publication addresses the decennial and centuries-old variations of climate: perspectives and implications of climate change for the 21. century, questions remaining about the understanding of climate change from its sources to its modelling, extreme climate variations and societies during the last millennium. The contributions of the second part outline how chemistry is a tool to study climate change: ice chemistry as an archive of our past environment, observations and predictions on sea level rise, relationship between atmosphere chemistry and climate. The third set of contributions discusses the transformation of the energy system for a cleaner atmosphere and the management of the climate risk: the chemical processing of CO 2 , actions of chemical companies to support the struggle against climate change, relationship between barrel price and renewable energies, relationship between grid complexity and green energy. The last part outlines the role chemistry can have to be able to do without fossil fuels: chemistry in front of challenges of transformation of the energy system, the use of micro-algae, the use of hydrogen as a vector of energy transition

  5. General Chemistry Students' Understanding of the Chemistry Underlying Climate Science and the Development of a Two-Tiered Multiple-Choice Diagnostic Instrument

    Science.gov (United States)

    Versprille, A.; Towns, M.; Mahaffy, P.; Martin, B.; McKenzie, L.; Kirchhoff, M.

    2013-12-01

    As part of the NSF funded Visualizing the Chemistry of Climate Change (VC3) project, we have developed a chemistry of climate science diagnostic instrument for use in general chemistry courses based on twenty-four student interviews. We have based our interview protocol on misconceptions identified in the research literature and the essential principles of climate change outlined in the CCSP document that pertain to chemistry (CCSP, 2009). The undergraduate student interviews elicited their understanding of the greenhouse effect, global warming, climate change, greenhouse gases, climate, and weather, and the findings from these interviews informed and guided the development of the multiple-choice diagnostic instrument. Our analysis and findings from the interviews indicate that students seem to confuse the greenhouse effect, global warming, and the ozone layer and in terms of chemistry concepts, the students lack a particulate level understanding of greenhouse gases causing them to not fully conceptualize the greenhouse effect and climate change. Details of the findings from the interviews, development of diagnostic instrument, and preliminary findings from the full implementation of the diagnostic instrument will be shared.

  6. Understanding climatic change

    International Nuclear Information System (INIS)

    Fellous, J.L.; Gautier, C.; Andre, J.C.; Balstad, R.; Boucher, O.; Brasseur, G.; Chahine, M.T.; Chanin, M.L.; Ciais, P.; Corell, W.; Duplessy, J.C.; Hourcade, J.C.; Jouzel, J.; Kaufman, Y.J.; Laval, K.; Le Treut, H.; Minster, J.F.; Moore, B. III; Morel, P.; Rasool, S.I.; Remy, F.; Smith, R.C.; Somerville, R.C.J.; Wood, E.F.; Wood, H.; Wunsch, C.

    2007-01-01

    Climatic change is gaining ground and with no doubt is stimulated by human activities. It is therefore urgent to better understand its nature, importance and potential impacts. The chapters of this book have been written by US and French experts of the global warming question. After a description of the Intergovernmental Panel on Climate Change (IPCC, GIEC in French) consensus, they present the past and present researches on each of the main component of the climate system, on the question of climatic change impacts and on the possible answers. The conclusion summarizes the results of each chapter. Content: presentation of the IPCC; greenhouse effect, radiation balance and clouds; atmospheric aerosols and climatic change; global water cycle and climate; influence of climatic change on the continental hydrologic cycle; ocean and climate; ice and climate; global carbon cycle; about some impacts of climatic change on Europe and the Atlantic Ocean; interaction between atmospheric chemistry and climate; climate and society, the human dimension. (J.S.)

  7. Understanding climate

    International Nuclear Information System (INIS)

    1995-01-01

    In this article the following question is answered. What is the climate? What factors do determine our climate? What is solar radiation? How does solar radiation relate to the earth's energy? What is greenhouse effect? What role does the greenhouse effect play in the global ecosystem? How does the water cycle affect climate? What is drought? What role do oceans play in influencing climate. (author)

  8. weaving together climate science and chemistry education

    African Journals Online (AJOL)

    Preferred Customer

    the challenges and know how to respond to them effectively. Since climate science builds on fundamental knowledge of chemistry and other sciences, an important opportunity is presented in chemistry classrooms and laboratories to build connections between climate literacy and chemistry concepts. What approaches to ...

  9. Atmospheric Aerosols: Clouds, Chemistry, and Climate.

    Science.gov (United States)

    McNeill, V Faye

    2017-06-07

    Although too small to be seen with the human eye, atmospheric particulate matter has major impacts on the world around us, from our health to global climate. Understanding the sources, properties, and transformations of these particles in the atmosphere is among the major challenges in air quality and climate research today. Significant progress has been made over the past two decades in understanding atmospheric aerosol chemistry and its connections to climate. Advances in technology for characterizing aerosol chemical composition and physical properties have enabled rapid discovery in this area. This article reviews fundamental concepts and recent developments surrounding ambient aerosols, their chemical composition and sources, light-absorbing aerosols, aerosols and cloud formation, and aerosol-based solar radiation management (also known as solar geoengineering).

  10. Defining Conceptual Understanding in General Chemistry

    Science.gov (United States)

    Holme, Thomas A.; Luxford, Cynthia J.; Brandriet, Alexandra

    2015-01-01

    Among the many possible goals that instructors have for students in general chemistry, the idea that they will better understand the conceptual underpinnings of the science is certainly important. Nonetheless, identifying with clarity what exemplifies student success at achieving this goal is hindered by the challenge of clearly articulating what…

  11. Climate change 101 : understanding and responding to global climate change

    Science.gov (United States)

    2009-01-01

    To inform the climate change dialogue, the Pew Center on Global Climate Change and the Pew Center on the States have developed a series of brief reports entitled Climate Change 101: Understanding and Responding to Global Climate Change. These reports...

  12. Climate-chemistry interaction affecting tropospheric ozone

    Science.gov (United States)

    Mao, Huiting

    1999-09-01

    Tropospheric ozone, an important radiative-chemical species, has been observed increasing especially at northern midlatitudes during the past few decades. This dissertation addresses climate-chemistry interaction associated with such increases in three aspects using observations as well as atmospheric chemistry and climate models. Ozone impact on climate is first evaluated by radiative forcing calculations due to observed ozone changes. It is found that a 10% increase in tropospheric ozone causes a radiative forcing of 0.17 Wm-2 using a fixed temperature (FT) method or 0.13 Wm-2 using a fixed dynamic heating (FDH) method, which is comparable to the radiative forcing 0.26 (FT) and -0.09 Wm-2 (FDH) caused by the stratospheric ozone depletion during the 1980s. Second, radiative forcing due to changes in ozone precursors is estimated. Ozone changes in response to a 20% reduction in surface NOx emission in six regions around the globe differ between regions. A maximum decrease in ozone column reaches 5% in southeast Asia and the central Atlantic Ocean, inducing a local radiative forcing of up to -0.1 Wm-2 in those regions. It indicates that surface NOx emission changes can potentially affect regional climate. Third, the effects of climate and climate changes on atmospheric chemistry are addressed with two studies. One study investigates the effects of global warming on methane and ozone, and another looks into cloud effects on photodissociation rate constants. Calculations based on the IPCC business-as-usual scenario indicate that by 2050, temperature and moisture increases can suppress methane and tropospheric ozone increases by 17% and 11%, respectively, in reference to the 1990 concentrations. The combined effects offset the global warming induced forcing 3.90 Wm -2 by -0.46 Wm-2. A one-dimensional study suggests that a typical cirrus cloud (τ = 2) can significantly increase J(O1D) and J(NO2) around the tropopause with a maximum of 21%. Geographical and seasonal

  13. Climate/chemistry feedbacks and biogenic emissions.

    Science.gov (United States)

    Pyle, John A; Warwick, Nicola; Yang, Xin; Young, Paul J; Zeng, Guang

    2007-07-15

    The oxidizing capacity of the atmosphere is affected by anthropogenic emissions and is projected to change in the future. Model calculations indicate that the change in surface ozone at some locations could be large and have significant implications for human health. The calculations depend on the precise scenarios used for the anthropogenic emissions and on the details of the feedback processes included in the model. One important factor is how natural biogenic emissions will change in the future. We carry out a sensitivity calculation to address the possible increase in isoprene emissions consequent on increased surface temperature in a future climate. The changes in ozone are significant but depend crucially on the background chemical regime. In these calculations, we find that increased isoprene will increase ozone in the Northern Hemisphere but decrease ozone in the tropics. We also consider the role of bromine compounds in tropospheric chemistry and consider cases where, in a future climate, the impact of bromine could change.

  14. Evaluation of the new EMAC-SWIFT chemistry climate model

    Science.gov (United States)

    Scheffler, Janice; Langematz, Ulrike; Wohltmann, Ingo; Rex, Markus

    2016-04-01

    It is well known that the representation of atmospheric ozone chemistry in weather and climate models is essential for a realistic simulation of the atmospheric state. Including atmospheric ozone chemistry into climate simulations is usually done by prescribing a climatological ozone field, by including a fast linear ozone scheme into the model or by using a climate model with complex interactive chemistry. While prescribed climatological ozone fields are often not aligned with the modelled dynamics, a linear ozone scheme may not be applicable for a wide range of climatological conditions. Although interactive chemistry provides a realistic representation of atmospheric chemistry such model simulations are computationally very expensive and hence not suitable for ensemble simulations or simulations with multiple climate change scenarios. A new approach to represent atmospheric chemistry in climate models which can cope with non-linearities in ozone chemistry and is applicable to a wide range of climatic states is the Semi-empirical Weighted Iterative Fit Technique (SWIFT) that is driven by reanalysis data and has been validated against observational satellite data and runs of a full Chemistry and Transport Model. SWIFT has recently been implemented into the ECHAM/MESSy (EMAC) chemistry climate model that uses a modular approach to climate modelling where individual model components can be switched on and off. Here, we show first results of EMAC-SWIFT simulations and validate these against EMAC simulations using the complex interactive chemistry scheme MECCA, and against observations.

  15. Enhancing Preservice Teachers' Understanding of Students' Misconceptions in Learning Chemistry

    Science.gov (United States)

    Naah, Basil Mugaga

    2015-01-01

    Preservice teachers enrolled in a modified introductory chemistry course used an instructional rubric to improve and evaluate their understanding of students' misconceptions in learning various chemistry concepts. A sample of 79 preservice teachers first explored the state science standards to identify chemistry misconceptions associated with the…

  16. OCRA, a Mobile Learning Prototype for Understanding Chemistry Concepts

    Science.gov (United States)

    Shariman, Tenku Putri Norishah; Talib, Othman

    2017-01-01

    This research studies the effects of an interactive multimedia mobile learning application on students' understanding of chemistry concepts. The Organic Chemistry Reaction Application (OCRA), a mobile learning prototype with touch screen commands, was applied in this research. Through interactive multimedia techniques, students can create and…

  17. Provocative Opinion: Can Chemistry be Learned Without Understanding?

    Science.gov (United States)

    Sanderson, R. T.

    1974-01-01

    Voices the opinion that clearer and more useful explanations of common chemistry are needed to facilitate understanding. Presents examples from the realms of atomic structure, periodic table, history of chemistry, valence, electronegativity, electrode potentials, covalent bonds, polar covalence, bond energy, and causes of chemical change. (GS)

  18. Students' Understanding of Acids/Bases in Organic Chemistry Contexts

    Science.gov (United States)

    Cartrette, David P.; Mayo, Provi M.

    2011-01-01

    Understanding key foundational principles is vital to learning chemistry across different contexts. One such foundational principle is the acid/base behavior of molecules. In the general chemistry sequence, the Bronsted-Lowry theory is stressed, because it lends itself well to studying equilibrium and kinetics. However, the Lewis theory of…

  19. Heterogeneous Chemistry: Understanding Aerosol/Oxidant Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Joyce E. Penner

    2005-03-14

    Global radiative forcing of nitrate and ammonium aerosols has mostly been estimated from aerosol concentrations calculated at thermodynamic equilibrium or using approximate treatments for their uptake by aerosols. In this study, a more accurate hybrid dynamical approach (DYN) was used to simulate the uptake of nitrate and ammonium by aerosols and the interaction with tropospheric reactive nitrogen chemistry in a three-dimensional global aerosol and chemistry model, IMPACT, which also treats sulfate, sea salt and mineral dust aerosol. 43% of the global annual average nitrate aerosol burden, 0.16 TgN, and 92% of the global annual average ammonium aerosol burden, 0.29 TgN, exist in the fine mode (D<1.25 {micro}m) that scatters most efficiently. Results from an equilibrium calculation differ significantly from those of DYN since the fraction of fine-mode nitrate to total nitrate (gas plus aerosol) is 9.8%, compared to 13% in DYN. Our results suggest that the estimates of aerosol forcing from equilibrium concentrations will be underestimated. We also show that two common approaches used to treat nitrate and ammonium in aerosol in global models, including the first-order gas-to-particle approximation based on uptake coefficients (UPTAKE) and a hybrid method that combines the former with an equilibrium model (HYB), significantly overpredict the nitrate uptake by aerosols especially that by coarse particles, resulting in total nitrate aerosol burdens higher than that in DYN by +106% and +47%, respectively. Thus, nitrate aerosol in the coarse mode calculated by HYB is 0.18 Tg N, a factor of 2 more than that in DYN (0.086 Tg N). Excessive formation of the coarse-mode nitrate in HYB leads to near surface nitrate concentrations in the fine mode lower than that in DYN by up to 50% over continents. In addition, near-surface HNO{sub 3} and NO{sub x} concentrations are underpredicted by HYB by up to 90% and 5%, respectively. UPTAKE overpredicts the NO{sub x} burden by 56% and near

  20. Atmospheric chemistry and physics from air pollution to climate change

    CERN Document Server

    Seinfeld, John H

    2016-01-01

    Expanded and updated with new findings and new features Since the second edition of Seinfeld and Pandis’ classic textbook, significant progress has taken place in the field of atmospheric chemistry and physics, particularly in the areas of tropospheric chemistry, aerosols, and the science of climate change. A new edition of this comprehensive work has been developed by the renowned author team. Atmospheric Chemistry and Physics, 3rd Edition, as the previous two editions have done, provides a rigorous and comprehensive treatment of the chemistry and physics of the atmosphere – including the chemistry of the stratosphere and troposphere, aerosol physics and chemistry, atmospheric new particle formation, physical meteorology, cloud physics, global climate, statistical analysis of data, and mathematical chemical/transport models of the atmosphere. Each of these topics is covered in detail and in each area the central results are developed from first principles. In this way the reader gains a significant un...

  1. Linking Urban Air Pollution to Global Tropospheric Chemistry and Climate

    Science.gov (United States)

    Wang, Chien

    2005-01-01

    The two major tasks of this project are to study: (a) the impact of urban nonlinear chemistry on chemical budgets of key pollutants in non-urban areas; and (b) the influence of air pollution control strategies in selected metropolitan areas, particularly of emerging economies in East and South Asia, on tropospheric chemistry and hence on regional and global climate.

  2. Chemistry Misconceptions Associated with Understanding Calcium and Phosphate Homeostasis

    Science.gov (United States)

    Cliff, William H.

    2009-01-01

    Successful learning of many aspects in physiology depends on a meaningful understanding of fundamental chemistry concepts. Two conceptual diagnostic questions measured student understanding of the chemical equilibrium underlying calcium and phosphate homeostasis. One question assessed the ability to predict the change in phosphate concentration…

  3. Understanding Controversies in Urban Climate Change Adaptation

    DEFF Research Database (Denmark)

    Baron, Nina; Petersen, Lars Kjerulf

    2015-01-01

    This article explores the controversies that exist in urban climate change adaptation and how these controversies influence the role of homeowners in urban adaptation planning. A concrete SUDS project in a housing cooperative in Copenhagen has been used as a case study thereby investigating...... the multiple understandings “Sustainable Urban Drainages System’s” (SUDS). Several different perspectives are identified with regard to what are and what will become the main climate problems in the urban environment as well as what are considered to be the best responses to these problems. Building...... on the actor-network inspired theory of “urban green assemblages” we argue that at least three different assemblages can be identified in urban climate change adaptation. Each assemblage frames problems and responses differently, and thereby assigns different types of roles to homeowners. As climate change...

  4. Interweaving climate research and public understanding

    Science.gov (United States)

    Betts, A. K.

    2016-12-01

    For the past 10 years I have been using research into land-atmosphere-cloud coupling to address Vermont's need to understand climate change, and develop plans for greater resilience in the face of increasing severe weather. The research side has shown that the fraction of days with snow cover determines the cold season climate, because snow acts as a fast climate switch between non-overlapping climates with and without snow cover. Clouds play opposite roles in warm and cold seasons: surface cooling in summer and warming in winter. The later fall freeze-up and earlier spring ice-out on lakes, coupled to the earlier spring phenology, are clear markers both of a warming climate, as well as the large interannual variability. Severe flooding events have come with large-scale quasi-stationary weather patterns. This past decade I have given 230 talks to schools, business and professional groups, as well as legislative committees and state government. I have written 80 environmental columns for two Vermont newspapers, as part of a weekly series I helped start in 2008. Commentaries and interviews on radio and TV enable me to explain directly the issues we face, as the burning of fossil fuels destabilizes the climate system. The public in Vermont is eager to learn and understand these issues since many have roots in the land; while professional groups need all the information and guidance possible to prepare for the future. My task as a scientist is to map out what we know in ways that can readily be grasped in terms of past experience, even though the climate system is already moving outside this range - and at the same time outline general principles and hopeful strategies for dealing with global and local climate change.

  5. The essential interactions between understanding climate variability and climate change

    Science.gov (United States)

    Neelin, J. D.

    2017-12-01

    Global change is sometimes perceived as a field separate from other aspects of atmospheric and oceanic sciences. Despite the long history of communication between the scientific communities studying global change and those studying interannual variability and weather, increasing specialization and conflicting societal demands on the fields can put these interactions at risk. At the same time, current trajectories for greenhouse gas emissions imply substantial adaptation to climate change will be necessary. Instead of simply projecting effects to be avoided, the field is increasingly being asked to provide regional-level information for specific adaptation strategies—with associated requirements for increased precision on projections. For extreme events, challenges include validating models for rare events, especially for events that are unprecedented in the historical record. These factors will be illustrated with examples of information transfer to climate change from work on fundamental climate processes aimed originally at timescales from hours to interannual. Work to understand the effects that control probability distributions of moisture, temperature and precipitation in historical weather can yield new factors to examine for the changes in the extremes of these distributions under climate change. Surprisingly simple process models can give insights into the behavior of vastly more complex climate models. Observation systems and model ensembles aimed at weather and interannual variations prove valuable for global change and vice versa. Work on teleconnections in the climate system, such as the remote impacts of El Niño, is informing analysis of projected regional rainfall change over California. Young scientists need to prepare to work across the full spectrum of climate variability and change, and to communicate their findings, as they and our society head for future that is more interesting than optimal.

  6. Understanding the school 'climate': secondary school children and climate change

    International Nuclear Information System (INIS)

    Kovacs, Susan; Bernier, Sandrine; Blanchet, Aymeric; Derkenne, Chantal; Clement, Florence; Petitjean, Leslie

    2012-01-01

    This interdisciplinary study analyzes the production, circulation and reception of messages on climate change in secondary schools in France. The objective is to understand how political and educational policy initiatives influence the ways in which schools contribute to creating youngsters' perceptions and opinions about climate change. In order to study the conditions of production and reception of information about climate change, a survey was conducted in four French secondary schools, in the 'Bas Rhin' and 'Nord' departments, and local political actors in each department were interviewed. The cross disciplinary analytical and methodological approach uses the tools of sociological inquiry, information science, and political science: questionnaires and interviews were conducted with members of the educational and governmental communities of each school and department, semiotic and discursive analyses of corpuses of documents were carried out, in order to characterize documents used by students and teachers at school or in more informal contexts; the nature and extent of the relations between the political contexts and school directives and programs were also discussed. This interdisciplinary approach, combining sociological, communicational, and political methods, was chosen in response to the hypothesis that three types of variables (social, communicational and political) contribute to the structuring and production of messages about climate change in schools. This report offers a contextualized overview of activities developed within the four secondary schools to help sensitize children to the risks associated with climate change. A study of the networks of individuals (teachers, staff, members of associations, etc.) created in and around the school environment is presented. The degree of involvement of these actors in climate change programs is analyzed, as it is related to their motives and objectives, to the school discipline taught, and to the position

  7. Next Steps Forward in Understanding Martian Surface and Subsurface Chemistry

    Science.gov (United States)

    Carrier, Brandi L.

    2017-09-01

    The presence of oxidants such as hydrogen peroxide (H2O2) and perchlorate (ClO4-), which have been detected on Mars, has significant implications for chemistry and astrobiology. These oxidants can increase the reactivity of the Martian soil, accelerate the decomposition of organic molecules, and depress the freezing point of water. The study by Crandall et al. "Can Perchlorates be Transformed to Hydrogen Peroxide Products by Cosmic Rays on the Martian Surface" reveals a new formation mechanism by which hydrogen peroxide and other potential oxidants can be generated via irradiation of perchlorate by cosmic rays. This study represents an important next step in developing a full understanding of Martian surface and subsurface chemistry, particularly with respect to degradation of organic molecules and potential biosignatures.

  8. Advances in Understanding Decadal Climate Variability

    Science.gov (United States)

    Busalacchi, Antonio J.

    1999-01-01

    Recently, a joint Brazil-France-U.S. program, known as PIRATA (Pilot Research moored Array in the Tropical Atlantic), was proposed to begin the deployment of moored measurement platforms in the tropical Atlantic in order to enhance the existing observational data base and subsequent understanding of the processes by which the ocean and atmosphere couple in key regions of the tropical Atlantic Ocean. Empirical studies have suggested that there are strong relationships between tropical Atlantic upper ocean variability, SST, ocean-atmosphere coupling and regional climate variability. During the early 1980's a coordinated set of surface wind, subsurface thermal structure, and subsurface current observations were obtained as part of the U.S.-France SEQUAL-FOCAL process experiment designed to observe the seasonal response of the tropical Atlantic Ocean to surface forcing. Since that time, however, the observational data base for the tropical Atlantic Ocean has disintegrated to a few ship-tracks measuring ocean temperatures and a small collection of tide gauge stations measuring sea level. A more comprehensive set of observations, modeling and empirical studies is now in order to make progress on understanding the regional climate variability. The proposed PIRATA program will use mooring platforms similar to the tropical Pacific Ocean TAO array to measure surface fluxes of momentum and heat and the corresponding changes in the upper ocean thermal structure. It is anticipated that the oceanic data from this monitoring array will also be used in a predictive mode for initialization studies of regional coupled climate models. Of particular interest are zonal and meridional modes of ocean-atmosphere variability within the tropical Atlantic basin that have significant impacts on the regional climate of the bordering continents.

  9. Students' Energy Understanding Across Biology, Chemistry, and Physics Contexts

    Science.gov (United States)

    Opitz, S. T.; Neumann, K.; Bernholt, S.; Harms, U.

    2017-07-01

    Energy is considered both as a disciplinary core idea and as a concept cutting across science disciplines. Most previous approaches studied progressing energy understanding in specific disciplinary contexts, while disregarding the relation of understanding across them. Hence, this study provides a systematic analysis of cross-disciplinary energy learning. On the basis of a cross-sectional study with n = 742 students from grades 6, 8, and 10, we analyze students' progression in understanding energy across biology, chemistry, and physics contexts. The study is guided by three hypothetical scenarios that describe how the connection between energy understanding in the three disciplinary contexts changes across grade levels. These scenarios are compared using confirmatory factor analysis (CFA). The results suggest that, from grade 6 to grade 10, energy understanding in the three disciplinary contexts is highly interrelated, thus indicating a parallel progression of energy understanding in the three disciplinary contexts. In our study, students from grade 6 onwards appeared to have few problems to apply one energy understanding across the three disciplinary contexts. These findings were unexpected, as previous research concluded that students likely face difficulties in connecting energy learning across disciplinary boundaries. Potential reasons for these results and the characteristics of the observed cross-disciplinary energy understanding are discussed in the light of earlier findings and implications for future research, and the teaching of energy as a core idea and a crosscutting concept are addressed.

  10. Understanding Resistance to Climate Change Resistance.

    Science.gov (United States)

    Coyle, Maureen

    2014-12-01

    Fifty years after the emergence of warnings over the effects of the environmental impacts of industrialization and other conditions of a planet subjugated by humans, we are still entertaining discussions about the existence of the phenomena of climate change. Worse still, we have not checked the behaviors and conditions that exacerbate the rate of environmental destruction. Older people, particularly those who are economically vulnerable, are among those most at risk in disasters, including events resulting from climate change. By applying the "epistemologies of ignorance" outlined by Nancy Tuana, I attempt to understand the rooted ignorance that prevents acceptance of the environmental impact of human kind's unrepentant misuse of the world's natural resources and the refusal to curb the excesses that have lead to environmental damage that has had, and that will continue to have, dire consequences on the planet and for the most vulnerable denizens of Earth. Far from being a pessimistic project of abjection and despair, this article proposes that an examination of climate change denial can provide guidance for the development of a better counter-narrative. © The Author(s) 2015.

  11. University Students' Understanding of Chemistry Processes and the Quality of Evidence in Their Written Arguments

    Science.gov (United States)

    Seung, Eulsun; Choi, Aeran; Pestel, Beverly

    2016-01-01

    We have developed a process-oriented chemistry laboratory curriculum for non-science majors. The purpose of this study is both to explore university students' understanding of chemistry processes and to evaluate the quality of evidence students use to support their claims regarding chemistry processes in a process-oriented chemistry laboratory…

  12. Chemistry and Climate in Asia - An Earth System Modeling Project

    Science.gov (United States)

    Barth, M. C.; Emmons, L. K.; Massie, S. T.; Pfister, G.; Romero Lankao, P.; Lamarque, J.; Carmichael, G. R.

    2011-12-01

    Asia is one of the most highly populated and economically dynamic regions in the world, with much of the population located in growing mega-cities. It is a region with significant emissions of greenhouse gases, aerosols and other pollutants, which pose high health risks to urban populations. Emissions of these aerosols and gases increased drastically over the last decade due to economic growth and urbanization and are expected to rise further in the near future. As such, the continent plays a role in influencing climate change via its effluent of aerosols and gaseous pollutants. Asia is also susceptible to adverse climate change through interactions between aerosols and clouds, which potentially can have serious implications for freshwater resources. We are developing an integrated inter-disciplinary program to focus on Asia, its climate, air quality, and impact on humans that will include connections with hydrology, ecosystems, extreme weather events, and human health. The primary goal of this project is to create a team to identify key scientific questions and establish networks of specialists to create a plan for future studies to address these questions. A second goal is to establish research facilities and a framework for investigating chemistry and climate over Asia. These facilities include producing high resolution Earth System Model simulations that have been evaluated with meteorological and chemical measurements, producing high-resolution emission inventories, analyzing satellite data, and analyzing the vulnerability of humans to air quality and extreme natural events. In this presentation we will describe in more detail these activities and discuss a future workshop on the impact of chemistry in climate on air quality and human health.

  13. Enhanced chemistry-climate feedbacks in past greenhouse worlds.

    Science.gov (United States)

    Beerling, David J; Fox, Andrew; Stevenson, David S; Valdes, Paul J

    2011-06-14

    Trace greenhouse gases are a fundamentally important component of Earth's global climate system sensitive to global change. However, their concentration in the pre-Pleistocene atmosphere during past warm greenhouse climates is highly uncertain because we lack suitable geochemical or biological proxies. This long-standing issue hinders assessment of their contribution to past global warmth and the equilibrium climate sensitivity of the Earth system (E(ss)) to CO(2). Here we report results from a series of three-dimensional Earth system modeling simulations indicating that the greenhouse worlds of the early Eocene (55 Ma) and late Cretaceous (90 Ma) maintained high concentrations of methane, tropospheric ozone, and nitrous oxide. Modeled methane concentrations were four- to fivefold higher than the preindustrial value typically adopted in modeling investigations of these intervals, even after accounting for the possible high CO(2)-suppression of biogenic isoprene emissions on hydroxyl radical abundance. Higher concentrations of trace greenhouse gases exerted marked planetary heating (> 2 K), amplified in the high latitudes (> 6 K) by lower surface albedo feedbacks, and increased E(ss) in the Eocene by 1 K. Our analyses indicate the requirement for including non-CO(2) greenhouse gases in model-based E(ss) estimates for comparison with empirical paleoclimate assessments, and point to chemistry-climate feedbacks as possible amplifiers of climate sensitivity in the Anthropocene.

  14. Climate effects of anthropogenic sulfate: Simulations from a coupled chemistry/climate model

    International Nuclear Information System (INIS)

    Chuang, C.C.; Penner, J.E.; Taylor, K.E.; Walton, J.J.

    1993-09-01

    In this paper, we use a more comprehensive approach by coupling a climate model with a 3-D global chemistry model to investigate the forcing by anthropogenic aerosol sulfate. The chemistry model treats the global-scale transport, transformation, and removal of SO 2 , DMS and H 2 SO 4 species in the atmosphere. The mass concentration of anthropogenic sulfate from fossil fuel combustion and biomass burning is calculated in the chemistry model and provided to the climate model where it affects the shortwave radiation. We also investigate the effect, with cloud nucleation parameterized in terms of local aerosol number, sulfate mass concentration and updraft velocity. Our simulations indicate that anthropogenic sulfate may result in important increases in reflected solar radiation, which would mask locally the radiative forcing from increased greenhouse gases. Uncertainties in these results will be discussed

  15. Climate effects of anthropogenic sulfate: Simulations from a coupled chemistry/climate model

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, C.C.; Penner, J.E.; Taylor, K.E.; Walton, J.J.

    1993-09-01

    In this paper, we use a more comprehensive approach by coupling a climate model with a 3-D global chemistry model to investigate the forcing by anthropogenic aerosol sulfate. The chemistry model treats the global-scale transport, transformation, and removal of SO{sub 2}, DMS and H{sub 2}SO{sub 4} species in the atmosphere. The mass concentration of anthropogenic sulfate from fossil fuel combustion and biomass burning is calculated in the chemistry model and provided to the climate model where it affects the shortwave radiation. We also investigate the effect, with cloud nucleation parameterized in terms of local aerosol number, sulfate mass concentration and updraft velocity. Our simulations indicate that anthropogenic sulfate may result in important increases in reflected solar radiation, which would mask locally the radiative forcing from increased greenhouse gases. Uncertainties in these results will be discussed.

  16. Assessing Elementary Science Methods Students' Understanding about Global Climate Change

    Science.gov (United States)

    Lambert, Julie L.; Lindgren, Joan; Bleicher, Robert

    2012-01-01

    Global climate change, referred to as climate change in this paper, has become an important planetary issue, and given that K-12 students have numerous alternative conceptions or lack of prior knowledge, it is critical that teachers have an understanding of the fundamental science underlying climate change. Teachers need to understand the natural…

  17. Chemistry-Climate Interactions in the GISS GCM. Part 1; Tropospheric Chemistry Model Description and Evaluation

    Science.gov (United States)

    Shindell, Drew T.; Grenfell, J. Lee; Rind, David; Price, Colin; Grewe, Volker; Hansen, James E. (Technical Monitor)

    2001-01-01

    A tropospheric chemistry module has been developed for use within the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to study interactions between chemistry and climate change. The model uses a simplified chemistry scheme based on CO-NOx-CH4 chemistry, and also includes a parameterization for emissions of isoprene, the most important non-methane hydrocarbon. The model reproduces present day annual cycles and mean distributions of key trace gases fairly well, based on extensive comparisons with available observations. Examining the simulated change between present day and pre-industrial conditions, we find that the model has a similar response to that seen in other simulations. It shows a 45% increase in the global tropospheric ozone burden, within the 25% - 57% range seen in other studies. Annual average zonal mean ozone increases by more than 125% at Northern Hemisphere middle latitudes near the surface. Comparison of model runs that allow the calculated ozone to interact with the GCM's radiation and meteorology with those that do not shows only minor differences for ozone. The common usage of ozone fields that are not calculated interactively seems to be adequate to simulate both the present day and the pre-industrial ozone distributions. However, use of coupled chemistry does alter the change in tropospheric oxidation capacity, enlarging the overall decrease in OH concentrations from the pre-industrial to the present by about 10% (-5.3% global annual average in uncoupled mode, -5.9% in coupled mode). This indicates that there may be systematic biases in the simulation of the pre-industrial to present day decrease in the oxidation capacity of the troposphere (though a 10% difference is well within the total uncertainty). Global annual average radiative forcing from pre-industrial to present day ozone change is 0.32 W/sq m. The forcing seems to be increased by about 10% when the chemistry is coupled to the GCM. Forcing values greater

  18. Climate changes - To understand and to react

    International Nuclear Information System (INIS)

    2011-01-01

    The first part of this report recalls the definition of the greenhouse effect, comments the climate past variations, outlines that climate changes are already here and that greenhouse effect has a human origin, and discusses the expected impacts during the 21. century. The second part presents the basis of international action in the struggle against climate change, outlines the necessity to strengthen this international action, describes the role of Europe in international negotiations on climate, outlines the need of an international agreement on climate, proposes an overview of the French climate policy (national and local actions), and outlines that some political responses do not match with sustainable development (nuclear energy, agro-fuels, carbon capture and storage, shale gas and oil). The third part indicates how one can compute his own impact on climate, and presents some collective and citizen innovative initiatives in the fields of agriculture and food, of energy, of transports and mobility, and of wastes

  19. Can global chemistry-climate models reproduce air quality extremes?

    Science.gov (United States)

    Schnell, J.; Prather, M. J.; Holmes, C. D.

    2013-12-01

    We identify and characterize extreme ozone pollution episodes over the USA and EU through a novel analysis of ten years (2000-2010) of surface ozone measurements. An optimal interpolation scheme is developed to create grid-cell averaged values of surface ozone that can be compared with gridded model simulations. In addition, it also allows a comparison of two non-coincident observational networks in the EU. The scheme incorporates techniques borrowed from inverse distance weighting and Kriging. It uses all representative observational site data while still recognizing the heterogeneity of surface ozone. Individual, grid-cell level events are identified as an exceedance of historical percentile (10 worst days in a year, 97.3 percentile). A clustering algorithm is then used to construct the ozone episodes from the individual events. We then test the skill of the high-resolution (100 km) two-year (2005-2006) hindcast from the UCI global chemistry transport model in reproducing the events/episodes identified in the observations using the same identification criteria. Although the UCI CTM has substantial biases in surface ozone, we find that it has considerable skill in reproducing both individual grid-cell level extreme events and their connectedness in space and time with an overall skill of 24% (32%) for the US (EU). The grid-cell level extreme ozone events in both the observations and UCI CTM are found to occur mostly (~75%) in coherent, multi-day, connected episodes covering areas greater than 1000 x 1000 square km. In addition the UCI CTM has greater skill in reproducing these larger episodes. We conclude that even at relatively coarse resolution, global chemistry-climate models can be used to project major synoptic pollution episodes driven by large-scale climate and chemistry changes even with their known biases.

  20. Exploring elementary students’ understanding of energy and climate change

    Directory of Open Access Journals (Sweden)

    Colin BOYLAN

    2008-10-01

    Full Text Available As environmental changes become a significant societal issue, elementary science curriculaneed to develop students’ understanding about the key concepts of energy and climate change.For teachers, developing quality learning experiences involves establishing what theirstudents’ prior understanding about energy and climate change are. A survey was developed toexplore what elementary students know and understand about renewable and non-renewablesources of energy and their relationship to climate change issues. The findings from thissurvey are reported in this paper.

  1. Weaving together climate science and chemistry education in an ...

    African Journals Online (AJOL)

    ... enhance classroom experiences and equip students to use fundamental understanding of science and problem-solving skills to begin to address some of our planet's most important and complex challenges. Improved climate literacy is especially important to African students and teachers because of Africa's vulnerability ...

  2. Paleoclimates: Understanding climate change past and present

    Science.gov (United States)

    Cronin, Thomas M.

    2010-01-01

    The field of paleoclimatology relies on physical, chemical, and biological proxies of past climate changes that have been preserved in natural archives such as glacial ice, tree rings, sediments, corals, and speleothems. Paleoclimate archives obtained through field investigations, ocean sediment coring expeditions, ice sheet coring programs, and other projects allow scientists to reconstruct climate change over much of earth's history. When combined with computer model simulations, paleoclimatic reconstructions are used to test hypotheses about the causes of climatic change, such as greenhouse gases, solar variability, earth's orbital variations, and hydrological, oceanic, and tectonic processes. This book is a comprehensive, state-of-the art synthesis of paleoclimate research covering all geological timescales, emphasizing topics that shed light on modern trends in the earth's climate. Thomas M. Cronin discusses recent discoveries about past periods of global warmth, changes in atmospheric greenhouse gas concentrations, abrupt climate and sea-level change, natural temperature variability, and other topics directly relevant to controversies over the causes and impacts of climate change. This text is geared toward advanced undergraduate and graduate students and researchers in geology, geography, biology, glaciology, oceanography, atmospheric sciences, and climate modeling, fields that contribute to paleoclimatology. This volume can also serve as a reference for those requiring a general background on natural climate variability.

  3. Understanding the Climate-knowledge Sharing Relation

    DEFF Research Database (Denmark)

    Llopis, Oscar; Foss, Nicolai Juul

    2016-01-01

    A cooperative organizational climate is often argued to promote knowledge-sharing behaviors among employees. However, research indicates that managerial interventions aimed at shaping the organizational climate can be difficult to execute. We develop and test a contingency model of intrinsic moti...

  4. Understanding surface structure and chemistry of single crystal lanthanum aluminate

    KAUST Repository

    Pramana, Stevin S.

    2017-03-02

    The surface crystallography and chemistry of a LaAlO3 single crystal, a material mainly used as a substrate to deposit technologically important thin films (e.g. for superconducting and magnetic devices), was analysed using surface X-ray diffraction and low energy ion scattering spectroscopy. The surface was determined to be terminated by Al-O species, and was significantly different from the idealised bulk structure. Termination reversal was not observed at higher temperature (600 °C) and chamber pressure of 10−10 Torr, but rather an increased Al-O occupancy occurred, which was accompanied by a larger outwards relaxation of Al from the bulk positions. Changing the oxygen pressure to 10−6 Torr enriched the Al site occupancy fraction at the outermost surface from 0.245(10) to 0.325(9). In contrast the LaO, which is located at the next sub-surface atomic layer, showed no chemical enrichment and the structural relaxation was lower than for the top AlO2 layer. Knowledge of the surface structure will aid the understanding of how and which type of interface will be formed when LaAlO3 is used as a substrate as a function of temperature and pressure, and so lead to improved design of device structures.

  5. Numerical Modeling of Climate-Chemistry Connections: Recent Developments and Future Challenges

    Directory of Open Access Journals (Sweden)

    Patrick Jöckel

    2013-05-01

    Full Text Available This paper reviews the current state and development of different numerical model classes that are used to simulate the global atmospheric system, particularly Earth’s climate and climate-chemistry connections. The focus is on Chemistry-Climate Models. In general, these serve to examine dynamical and chemical processes in the Earth atmosphere, their feedback, and interaction with climate. Such models have been established as helpful tools in addition to analyses of observational data. Definitions of the global model classes are given and their capabilities as well as weaknesses are discussed. Examples of scientific studies indicate how numerical exercises contribute to an improved understanding of atmospheric behavior. There, the focus is on synergistic investigations combining observations and model results. The possible future developments and challenges are presented, not only from the scientific point of view but also regarding the computer technology and respective consequences for numerical modeling of atmospheric processes. In the future, a stronger cross-linkage of subject-specific scientists is necessary, to tackle the looming challenges. It should link the specialist discipline and applied computer science.

  6. Understanding the Impact of a General Chemistry Course on Students' Transition to Organic Chemistry

    Science.gov (United States)

    Collins-Webb, Alexandra; Jeffery, Kathleen A.; Sweeder, Ryan D.

    2016-01-01

    The move from general chemistry to organic chemistry can be a challenge for students as it often involves a transition from quantitatively-oriented to mechanistically-oriented thinking. This study found that the design of the general chemistry course can change the student experience of this transition as assessed by a reflective survey. The…

  7. Evaluation of the Australian Community Climate and Earth-System Simulator Chemistry-Climate Model

    Science.gov (United States)

    Stone, K. A.; Morgenstern, O.; Karoly, D. J.; Klekociuk, A. R.; French, W. J. R.; Abraham, N. L.; Schofield, R.

    2015-07-01

    Chemistry climate models are important tools for addressing interactions of composition and climate in the Earth System. In particular, they are used for assessing the combined roles of greenhouse gases and ozone in Southern Hemisphere climate and weather. Here we present an evaluation of the Australian Community Climate and Earth System Simulator-Chemistry Climate Model, focusing on the Southern Hemisphere and the Australian region. This model is used for the Australian contribution to the international Chemistry-Climate Model Initiative, which is soliciting hindcast, future projection and sensitivity simulations. The model simulates global total column ozone (TCO) distributions accurately, with a slight delay in the onset and recovery of springtime Antarctic ozone depletion, and consistently higher ozone values. However, October averaged Antarctic TCO from 1960 to 2010 show a similar amount of depletion compared to observations. A significant innovation is the evaluation of simulated vertical profiles of ozone and temperature with ozonesonde data from Australia, New Zealand and Antarctica from 38 to 90° S. Excess ozone concentrations (up to 26.4 % at Davis during winter) and stratospheric cold biases (up to 10.1 K at the South Pole) outside the period of perturbed springtime ozone depletion are seen during all seasons compared to ozonesondes. A disparity in the vertical location of ozone depletion is seen: centered around 100 hPa in ozonesonde data compared to above 50 hPa in the model. Analysis of vertical chlorine monoxide profiles indicates that colder Antarctic stratospheric temperatures (possibly due to reduced mid-latitude heat flux) are artificially enhancing polar stratospheric cloud formation at high altitudes. The models inability to explicitly simulated supercooled ternary solution may also explain the lack of depletion at lower altitudes. The simulated Southern Annular Mode (SAM) index compares well with ERA-Interim data. Accompanying these

  8. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    Science.gov (United States)

    Cruz-Ramirez de Arellano, Daniel

    2013-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  9. Exploring Elementary Students' Understanding of Energy and Climate Change

    Science.gov (United States)

    Boylan, Colin

    2008-01-01

    As environmental changes become a significant societal issue, elementary science curricula need to develop students' understanding about the key concepts of energy and climate change. For teachers, developing quality learning experiences involves establishing what their students' prior understanding about energy and climate change are. A survey…

  10. The impact of Future Land Use and Land Cover Changes on Atmospheric Chemistry-Climate Interactions

    NARCIS (Netherlands)

    Ganzeveld, L.N.; Bouwman, L.

    2010-01-01

    To demonstrate potential future consequences of land cover and land use changes beyond those for physical climate and the carbon cycle, we present an analysis of large-scale impacts of land cover and land use changes on atmospheric chemistry using the chemistry-climate model EMAC (ECHAM5/MESSy

  11. Public understanding of climate change in the United States.

    Science.gov (United States)

    Weber, Elke U; Stern, Paul C

    2011-01-01

    This article considers scientific and public understandings of climate change and addresses the following question: Why is it that while scientific evidence has accumulated to document global climate change and scientific opinion has solidified about its existence and causes, U.S. public opinion has not and has instead become more polarized? Our review supports a constructivist account of human judgment. Public understanding is affected by the inherent difficulty of understanding climate change, the mismatch between people's usual modes of understanding and the task, and, particularly in the United States, a continuing societal struggle to shape the frames and mental models people use to understand the phenomena. We conclude by discussing ways in which psychology can help to improve public understanding of climate change and link a better understanding to action. (PsycINFO Database Record (c) 2011 APA, all rights reserved).

  12. SWIFT: Semi-empirical and numerically efficient stratospheric ozone chemistry for global climate models

    OpenAIRE

    Kreyling, Daniel; Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2015-01-01

    The SWIFT model is a fast yet accurate chemistry scheme for calculating the chemistry of stratospheric ozone. It is mainly intended for use in Global Climate Models (GCMs), Chemistry Climate Models (CCMs) and Earth System Models (ESMs). For computing time reasons these models often do not employ full stratospheric chem- istry modules, but use prescribed ozone instead. This can lead to insufficient representation between stratosphere and troposphere. The SWIFT stratospheric ozone chem...

  13. Queering Campus: Understanding and Transforming Climate.

    Science.gov (United States)

    Rankin, Sue

    1999-01-01

    Increasingly, homosexual members of the academic community are being subjected to physical and psychological harassment, discrimination, and violence that obstruct the achievement of their educational and professional goals. Discussion of this phenomenon examines the importance of campus climate in providing an atmosphere conducive to maximizing…

  14. Climate and chemistry effects of a regional scale nuclear conflict

    Directory of Open Access Journals (Sweden)

    A. Stenke

    2013-10-01

    Full Text Available Previous studies have highlighted the severity of detrimental effects for life on earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM SOCOL, which belongs to a different family of CCMs than previously used, to investigate the consequences of such a hypothetical nuclear conflict. In accordance with previous studies, the present work assumes a scenario of a nuclear conflict between India and Pakistan, each applying 50 warheads with an individual blasting power of 15 kt ("Hiroshima size" against the major population centers, resulting in the emission of tiny soot particles, which are generated in the firestorms expected in the aftermath of the detonations. Substantial uncertainties related to the calculation of likely soot emissions, particularly concerning assumptions of target fuel loading and targeting of weapons, have been addressed by simulating several scenarios, with soot emissions ranging from 1 to 12 Tg. Their high absorptivity with respect to solar radiation leads to a rapid self-lofting of the soot particles into the strato- and mesosphere within a few days after emission, where they remain for several years. Consequently, the model suggests earth's surface temperatures to drop by several degrees Celsius due to the shielding of solar irradiance by the soot, indicating a major global cooling. In addition, there is a substantial reduction of precipitation lasting 5 to 10 yr after the conflict, depending on the magnitude of the initial soot release. Extreme cold spells associated with an increase in sea ice formation are found during Northern Hemisphere winter, which expose the continental land masses of North

  15. Climate and chemistry effects of a regional scale nuclear conflict

    Science.gov (United States)

    Stenke, A.; Hoyle, C. R.; Luo, B.; Rozanov, E.; Gröbner, J.; Maag, L.; Brönnimann, S.; Peter, T.

    2013-10-01

    Previous studies have highlighted the severity of detrimental effects for life on earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM) SOCOL, which belongs to a different family of CCMs than previously used, to investigate the consequences of such a hypothetical nuclear conflict. In accordance with previous studies, the present work assumes a scenario of a nuclear conflict between India and Pakistan, each applying 50 warheads with an individual blasting power of 15 kt ("Hiroshima size") against the major population centers, resulting in the emission of tiny soot particles, which are generated in the firestorms expected in the aftermath of the detonations. Substantial uncertainties related to the calculation of likely soot emissions, particularly concerning assumptions of target fuel loading and targeting of weapons, have been addressed by simulating several scenarios, with soot emissions ranging from 1 to 12 Tg. Their high absorptivity with respect to solar radiation leads to a rapid self-lofting of the soot particles into the strato- and mesosphere within a few days after emission, where they remain for several years. Consequently, the model suggests earth's surface temperatures to drop by several degrees Celsius due to the shielding of solar irradiance by the soot, indicating a major global cooling. In addition, there is a substantial reduction of precipitation lasting 5 to 10 yr after the conflict, depending on the magnitude of the initial soot release. Extreme cold spells associated with an increase in sea ice formation are found during Northern Hemisphere winter, which expose the continental land masses of North America and Eurasia to a

  16. Introducing a Culture of Modeling to Enhance Conceptual Understanding in High School Chemistry Courses

    Science.gov (United States)

    Edwards, Amanda D.; Head, Michelle

    2016-01-01

    Both the Next Generation Science Standards (NGSS) and the new AP Chemistry curriculum focus on a deeper understanding of content, as well as application of concepts within science classes. A well accepted research-based method for improving student understanding and the ability to apply many of the abstract concepts presented in chemistry is…

  17. Assessing College Students' Understanding of Acid Base Chemistry Concepts

    Science.gov (United States)

    Wan, Yanjun Jean

    2014-01-01

    Typically most college curricula include three acid base models: Arrhenius', Bronsted-Lowry's, and Lewis'. Although Lewis' acid base model is generally thought to be the most sophisticated among these three models, and can be further applied in reaction mechanisms, most general chemistry curricula either do not include Lewis' acid base model, or…

  18. An empirical perspective for understanding climate change impacts in Switzerland

    Science.gov (United States)

    Henne, Paul; Bigalke, Moritz; Büntgen, Ulf; Colombaroli, Daniele; Conedera, Marco; Feller, Urs; Frank, David; Fuhrer, Jürg; Grosjean, Martin; Heiri, Oliver; Luterbacher, Jürg; Mestrot, Adrien; Rigling, Andreas; Rössler, Ole; Rohr, Christian; Rutishauser, This; Schwikowski, Margit; Stampfli, Andreas; Szidat, Sönke; Theurillat, Jean-Paul; Weingartner, Rolf; Wilcke, Wolfgan; Tinner, Willy

    2018-01-01

    Planning for the future requires a detailed understanding of how climate change affects a wide range of systems at spatial scales that are relevant to humans. Understanding of climate change impacts can be gained from observational and reconstruction approaches and from numerical models that apply existing knowledge to climate change scenarios. Although modeling approaches are prominent in climate change assessments, observations and reconstructions provide insights that cannot be derived from simulations alone, especially at local to regional scales where climate adaptation policies are implemented. Here, we review the wealth of understanding that emerged from observations and reconstructions of ongoing and past climate change impacts in Switzerland, with wider applicability in Europe. We draw examples from hydrological, alpine, forest, and agricultural systems, which are of paramount societal importance, and are projected to undergo important changes by the end of this century. For each system, we review existing model-based projections, present what is known from observations, and discuss how empirical evidence may help improve future projections. A particular focus is given to better understanding thresholds, tipping points and feedbacks that may operate on different time scales. Observational approaches provide the grounding in evidence that is needed to develop local to regional climate adaptation strategies. Our review demonstrates that observational approaches should ideally have a synergistic relationship with modeling in identifying inconsistencies in projections as well as avenues for improvement. They are critical for uncovering unexpected relationships between climate and agricultural, natural, and hydrological systems that will be important to society in the future.

  19. Public Understanding of Climate Change in the United States

    Science.gov (United States)

    Weber, Elke U.; Stern, Paul C.

    2011-01-01

    This article considers scientific and public understandings of climate change and addresses the following question: Why is it that while scientific evidence has accumulated to document global climate change and scientific opinion has solidified about its existence and causes, U.S. public opinion has not and has instead become more polarized? Our…

  20. Soil Chemistry after Irrigation with Treated Wastewater in Semiarid Climate

    Directory of Open Access Journals (Sweden)

    Pedro Carlos Pacheco de Oliveira

    2016-01-01

    Full Text Available ABSTRACT Soil irrigation using treated wastewater in the Brazilian semiarid region is a promising practice as this area currently faces water scarcity and pollution of water resources by domestic sewage. The aim of this study was to evaluate the use of treated wastewater in drip irrigation and its effect on the chemistry of soil cultivated with squash (Cucurbita maxima Duch. Coroa IAC and to verify whether there was an increase in soil salinity under a semiarid climate. The experiment was conducted for 123 days on a farm close to the sewage treatment plant, in a randomized block design with five treatments and four replications. The treatments consisted of two irrigation water depths (100 and 150 % of the evapotranspiration, two applications of gypsum to attenuate wastewater sodicity (0 and 5.51 g per plant, and a control treatment with no application of wastewater or gypsum. During the experiment, treated wastewater and soil gravitational water, at a depth of 0.40 m, were collected for measurement of Na+, K+, Ca2+, Mg2+, NO−3, NH4+, Cl− , alkalinity, electrical conductivity, pH and sodium adsorption ratio. At the end of the experiment, soil samples were collected at depths of 0.00-0.10, 0.10-0.20, and 0.20-0.40 m; and pH, total N, organic C, exchangeable cations and electrical conductivity of the saturation extract (CEs were analyzed. Besides an increase in pH and a reduction in total N, the irrigation with wastewater reduces soil salinity of the naturally salt-rich soils of the semiarid climate. It also led to soil sodification, in spite of the added gypsum, which indicates that irrigation with wastewater might require the addition of greater quantities of gypsum to prevent physical degradation of the soil.

  1. Reducing Uncertainty in Chemistry Climate Model Predictions of Stratospheric Ozone

    Science.gov (United States)

    Douglass, A. R.; Strahan, S. E.; Oman, L. D.; Stolarski, R. S.

    2014-01-01

    Chemistry climate models (CCMs) are used to predict the future evolution of stratospheric ozone as ozone-depleting substances decrease and greenhouse gases increase, cooling the stratosphere. CCM predictions exhibit many common features, but also a broad range of values for quantities such as year of ozone-return-to-1980 and global ozone level at the end of the 21st century. Multiple linear regression is applied to each of 14 CCMs to separate ozone response to chlorine change from that due to climate change. We show that the sensitivity of lower atmosphere ozone to chlorine change deltaO3/deltaCly is a near linear function of partitioning of total inorganic chlorine (Cly) into its reservoirs; both Cly and its partitioning are controlled by lower atmospheric transport. CCMs with realistic transport agree with observations for chlorine reservoirs and produce similar ozone responses to chlorine change. After 2035 differences in response to chlorine contribute little to the spread in CCM results as the anthropogenic contribution to Cly becomes unimportant. Differences among upper stratospheric ozone increases due to temperature decreases are explained by differences in ozone sensitivity to temperature change deltaO3/deltaT due to different contributions from various ozone loss processes, each with their own temperature dependence. In the lower atmosphere, tropical ozone decreases caused by a predicted speed-up in the Brewer-Dobson circulation may or may not be balanced by middle and high latitude increases, contributing most to the spread in late 21st century predictions.

  2. Effects of different representations of transport in the new EMAC-SWIFT chemistry climate model

    Science.gov (United States)

    Scheffler, Janice; Langematz, Ulrike; Wohltmann, Ingo; Kreyling, Daniel; Rex, Markus

    2017-04-01

    It is well known that the representation of atmospheric ozone chemistry in weather and climate models is essential for a realistic simulation of the atmospheric state. Interactively coupled chemistry climate models (CCMs) provide a means to realistically simulate the interaction between atmospheric chemistry and dynamics. The calculation of chemistry in CCMs, however, is computationally expensive which renders the use of complex chemistry models not suitable for ensemble simulations or simulations with multiple climate change scenarios. In these simulations ozone is therefore usually prescribed as a climatological field or included by incorporating a fast linear ozone scheme into the model. While prescribed climatological ozone fields are often not aligned with the modelled dynamics, a linear ozone scheme may not be applicable for a wide range of climatological conditions. An alternative approach to represent atmospheric chemistry in climate models which can cope with non-linearities in ozone chemistry and is applicable to a wide range of climatic states is the Semi-empirical Weighted Iterative Fit Technique (SWIFT) that is driven by reanalysis data and has been validated against observational satellite data and runs of a full Chemistry and Transport Model. SWIFT has been implemented into the ECHAM/MESSy (EMAC) chemistry climate model that uses a modular approach to climate modelling where individual model components can be switched on and off. When using SWIFT in EMAC, there are several possibilities to represent the effect of transport inside the polar vortex: the semi-Lagrangian transport scheme of EMAC and a transport parameterisation that can be useful when using SWIFT in models not having transport of their own. Here, we present results of equivalent simulations with different handling of transport, compare with EMAC simulations with full interactive chemistry and evaluate the results with observations.

  3. Understanding Microbial Sensing in Inflammatory Bowel Disease Using Click Chemistry

    Science.gov (United States)

    2016-10-01

    invasive tool for the study of IBD in patients. This approach leverages the Kasper lab’s expertise in commensal microbiology and carbohydrate...on all three specific aims as summarized below. The Kasper lab has done the chemistry, microbiology and worked with the von Andrian lab on the...E. faecalis were labeled as described and administered to mice via oral gavage and direct intestinal injection, respectively. As shown in Fig. 1c

  4. Interactions of Chemistry and Meteorology: Transforming Air Pollution into Climate Change

    Science.gov (United States)

    Dickerson, R. R.

    2009-05-01

    PThe common goal of understanding and protecting Earth's environment has brought together chemists and meteorologists, despite the once widely held view that these are natural adversaries. Historically, dynamics, physics, chemistry, and biology were explored as isolated aspects of air quality and climate, but nature has proved to be much more interesting than that. Emissions and atmospheric photochemistry create air pollutants, but meteorology drives day to day variability in air quality. Air pollution, no matter how severe, has no substantive impact on global atmospheric composition or climate unless it is transported away from the sources, usually through frontal passage and advection, isentropic lifting or, especially lofting in deep convective clouds and thunderstorms. At higher altitudes, greater actinic flux accelerates photochemistry, stronger winds speed dispersal, and lower temperatures slow losses while amplifying radiative heating of greenhouse forcing substance such as ozone and carbonaceous aerosols. Examples include the transport of reactive nitrogen compounds from one part of North America to another, or on to the remote North Atlantic and Europe. Although measurement of NOy and NHx gases and particles still presents an analytical challenge, these trace species have major impacts on ecosystems and biogeochemical cycles. In East Asia chemistry and meteorology conspire to intensify long-range, even intercontinental transport of mineral dust and air pollutants. Recent discovery of a nonlocal dynamical driver to the Urban Heat Island effect shows that the adverse impact of urbanization can cascade to exacerbate heat stress, photochemical smog, and haze well downwind. A balanced consideration of meteorology and chemistry not only helps to identify and understand environmental problems, it can also provide powerful, policy relevant science that has led to success stories such as a regional approach to emissions controls and cleaner air over the eastern US.

  5. Investigation of student use of Web-based tutorial materials and understanding of chemistry concepts

    Science.gov (United States)

    Donovan, William Joseph

    The purpose of this study was to investigate students' use of Web-based tutorial materials in general chemistry and these students' understanding of chemistry concepts. The Visualization and Problem Solving Web Site includes tutorial materials for several visual chemistry topics such as VSEPR and coordination chemistry. Students generally valued the web site because of the representations and visualizations it provided, the materials and information available on the web site, and because they felt that they needed help with chemistry. Many students who did not use the web site felt that they did not need help with chemistry and thus did not need this additional source of help. Both web site users and nonusers were generally positive about using the web to learn chemistry. Motivation was also a factor in student decisions to use or not use the materials on the web. To gauge students' understanding of chemistry concepts, students were asked questions about coordination chemistry and drew concept maps during the interviews. Web site users made more incorrect statements during the discussion of coordination chemistry questions, but the student concept maps did not show a great difference in terms of percentages of correct and incorrect links.

  6. The GEOS Chemistry Climate Model: Implications of Climate Feedbacks on Ozone Depletion and Recovery

    Science.gov (United States)

    Stolarski, Richard S.; Pawson, Steven; Douglass, Anne R.; Newman, Paul A.; Kawa, S. Randy; Nielsen, J. Eric; Rodriquez, Jose; Strahan, Susan; Oman, Luke; Waugh, Darryn

    2008-01-01

    The Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) has been developed by combining the atmospheric chemistry and transport modules developed over the years at Goddard and the GEOS general circulation model, also developed at Goddard. The first version of the model was used in the CCMVal intercomparison exercises that contributed to the 2006 WMO/UNEP Ozone Assessment. The second version incorporates the updated version of the GCM (GEOS 5) and will be used for the next round of CCMVal evaluations and the 2010 Ozone Assessment. The third version, now under development, incorporates the combined stratosphere and troposphere chemistry package developed under the Global Modeling Initiative (GMI). We will show comparison to past observations that indicate that we represent the ozone trends over the past 30 years. We will also show the basic temperature, composition, and dynamical structure of the simulations. We will further show projections into the future. We will show results from an ensemble of transient and time-slice simulations, including simulations with fixed 1960 chlorine, simulations with a best guess scenario (Al), and simulations with extremely high chlorine loadings. We will discuss planned extensions of the model to include emission-based boundary conditions for both anthropogenic and biogenic compounds.

  7. Papers of the CWRA climate change symposium : understanding climate change impacts on Manitoba's water resources

    International Nuclear Information System (INIS)

    2003-01-01

    This symposium provided an opportunity for discussions on climate change issues with particular reference to the impacts on Manitoba's water resources. The presentations addressed issues of importance to governments, scientists, academics, managers, consultants and the general public. Topics of discussion ranged from climate change impacts on water quality, wetlands, hydropower, fisheries and drought, to adaptation to climate change. Recent advances in global and regional climate modelling were highlighted along with paleo-environmental indicators of climate change. The objective was to provide a better understanding of the science of climate change. The conference featured 16 presentations of which 1 was indexed separately for inclusion in this database. refs., tabs., figs

  8. Using Mathematical Software to Introduce Fourier Transforms in Physical Chemistry to Develop Improved Understanding of Their Applications in Analytical Chemistry

    Science.gov (United States)

    Miller, Tierney C.; Richardson, John N.; Kegerreis, Jeb S.

    2016-01-01

    This manuscript presents an exercise that utilizes mathematical software to explore Fourier transforms in the context of model quantum mechanical systems, thus providing a deeper mathematical understanding of relevant information often introduced and treated as a "black-box" in analytical chemistry courses. The exercise is given to…

  9. Analyzing Students' Understanding of Models and Modeling Referring to the Disciplines Biology, Chemistry, and Physics

    Science.gov (United States)

    Krell, Moritz; Reinisch, Bianca; Krüger, Dirk

    2015-01-01

    In this study, secondary school students' (N?=?617; grades 7 to 10) understanding of models and modeling was assessed using tasks which explicitly refer to the scientific disciplines of biology, chemistry, and physics and, as a control, to no scientific discipline. The students' responses are interpreted as their biology-, chemistry-, and…

  10. Professional Development Aligned with AP Chemistry Curriculum: Promoting Science Practices and Facilitating Enduring Conceptual Understanding

    Science.gov (United States)

    Herrington, Deborah G.; Yezierski, Ellen J.

    2014-01-01

    The recent revisions to the advanced placement (AP) chemistry curriculum promote deep conceptual understanding of chemistry content over more rote memorization of facts and algorithmic problem solving. For many teachers, this will mean moving away from traditional worksheets and verification lab activities that they have used to address the vast…

  11. Understanding global climate change scenarios through bioclimate stratification

    Science.gov (United States)

    Soteriades, A. D.; Murray-Rust, D.; Trabucco, A.; Metzger, M. J.

    2017-08-01

    Despite progress in impact modelling, communicating and understanding the implications of climatic change projections is challenging due to inherent complexity and a cascade of uncertainty. In this letter, we present an alternative representation of global climate change projections based on shifts in 125 multivariate strata characterized by relatively homogeneous climate. These strata form climate analogues that help in the interpretation of climate change impacts. A Random Forests classifier was calculated and applied to 63 Coupled Model Intercomparison Project Phase 5 climate scenarios at 5 arcmin resolution. Results demonstrate how shifting bioclimate strata can summarize future environmental changes and form a middle ground, conveniently integrating current knowledge of climate change impact with the interpretation advantages of categorical data but with a level of detail that resembles a continuous surface at global and regional scales. Both the agreement in major change and differences between climate change projections are visually combined, facilitating the interpretation of complex uncertainty. By making the data and the classifier available we provide a climate service that helps facilitate communication and provide new insight into the consequences of climate change.

  12. Australian Secondary School Students' Understanding of Climate Change

    Science.gov (United States)

    Dawson, Vaille; Carson, Katherine

    2013-01-01

    This study investigated 438 Year 10 students (15 and 16 years old) from Western Australian schools, on their understanding of the greenhouse effect and climate change, and the sources of their information. Results showed that most students have an understanding of how the greenhouse effect works, however, many students merge the processes of the…

  13. Understanding the Role of Climate Characteristics in Drought Propagation

    Science.gov (United States)

    Apurv, Tushar; Sivapalan, Murugesu; Cai, Ximing

    2017-11-01

    In this study, we use numerical experiments with a simple water balance model to understand the roles of key climate characteristics in hydrologic drought propagation and the consequence of human responses to drought events under different climates. The experiments use climate inputs from a range of places with a hypothetical catchment of fixed properties to study drought propagation under different climates. Three drought propagation mechanisms are identified that produce hydrologic droughts with differing characteristics. The first mechanism involves seasonal groundwater recharge cycles, which persist during low rainfall periods, resulting in shorter hydrologic droughts compared to meteorological droughts. The second is characterized by seasonal groundwater recharge cycles that are suppressed during low rainfall periods, resulting in longer hydrologic droughts than meteorological droughts. The third is exemplified by a lack of seasonality in groundwater recharge and a strong control of precipitation over groundwater recharge, resulting in hydrologic droughts of similar duration as meteorological droughts. The roles of seasonality, climate aridity, and timing of precipitation in producing these different drought propagation mechanisms are studied. The timing of precipitation is found to have the most significant impact. Furthermore, modeling experiments are performed to understand the role of climate in the interaction between short and long time-scale human activities in response to droughts and the effect of the common practice of groundwater pumping during drought events on long-term groundwater depletion. Interestingly, climates with high interannual variability of precipitation are found to be associated with less groundwater depletion than the climates with low interannual variability.

  14. Threshold concepts as barriers to understanding climate science

    Science.gov (United States)

    Walton, P.

    2013-12-01

    Whilst the scientific case for current climate change is compelling, the consequences of climate change have largely failed to permeate through to individuals. This lack of public awareness of the science and the potential impacts could be considered a key obstacle to action. The possible reasons for such limited success centre on the issue that climate change is a complex subject, and that a wide ranging academic, political and social research literature on the science and wider implications of climate change has failed to communicate the key issues in an accessible way. These failures to adequately communicate both the science and the social science of climate change at a number of levels results in ';communication gaps' that act as fundamental barriers to both understanding and engagement with the issue. Meyer and Land (2003) suggest that learners can find certain ideas and concepts within a discipline difficult to understand and these act as a barrier to deeper understanding of a subject. To move beyond these threshold concepts, they suggest that the expert needs to support the learner through a range of learning experiences that allows the development of learning strategies particular to the individual. Meyer and Land's research into these threshold concepts has been situated within Economics, but has been suggested to be more widely applicable though there has been no attempt to either define or evaluate threshold concepts to climate change science. By identifying whether common threshold concepts exist specifically in climate science for cohorts of either formal or informal learners, scientists will be better able to support the public in understanding these concepts by changing how the knowledge is communicated to help overcome these barriers to learning. This paper reports on the findings of a study that examined the role of threshold concepts as barriers to understanding climate science in a UK University and considers its implications for wider

  15. Response of lake chemistry to atmospheric deposition and climate in selected Class I wilderness areas in the western United States, 1993-2009

    Science.gov (United States)

    Mast, M. Alisa

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Agriculture Forest Service, Air Resource Management, conducted a study to evaluate long-term trends in lake-water chemistry for 64 high-elevation lakes in selected Class I wilderness areas in Colorado, Idaho, Utah, and Wyoming during 1993 to 2009. Understanding how and why lake chemistry is changing in mountain areas is essential for effectively managing and protecting high-elevation aquatic ecosystems. Trends in emissions, atmospheric deposition, and climate variables (air temperature and precipitation amount) were evaluated over a similar period of record. A main objective of the study was to determine if changes in atmospheric deposition of contaminants in the Rocky Mountain region have resulted in measurable changes in the chemistry of high-elevation lakes. A second objective was to investigate linkages between lake chemistry and air temperature and precipitation to improve understanding of the sensitivity of mountain lakes to climate variability.

  16. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing

    Science.gov (United States)

    Shrivastava, Manish; Cappa, Christopher D.; Fan, Jiwen; Goldstein, Allen H.; Guenther, Alex B.; Jimenez, Jose L.; Kuang, Chongai; Laskin, Alexander; Martin, Scot T.; Ng, Nga Lee; Petaja, Tuukka; Pierce, Jeffrey R.; Rasch, Philip J.; Roldin, Pontus; Seinfeld, John H.; Shilling, John; Smith, James N.; Thornton, Joel A.; Volkamer, Rainer; Wang, Jian; Worsnop, Douglas R.; Zaveri, Rahul A.; Zelenyuk, Alla; Zhang, Qi

    2017-06-01

    Anthropogenic emissions and land use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding preindustrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features (1) influence estimates of aerosol radiative forcing and (2) can confound estimates of the historical response of climate to increases in greenhouse gases. Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate models typically do not comprehensively include all important processes. This review summarizes some of the important developments during the past decade in understanding SOA formation. We highlight the importance of some processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including formation of extremely low volatility organics in the gas phase, acid-catalyzed multiphase chemistry of isoprene epoxydiols, particle-phase oligomerization, and physical properties such as volatility and viscosity. Several SOA processes highlighted in this review are complex and interdependent and have nonlinear effects on the properties, formation, and evolution of SOA. Current global models neglect this complexity and nonlinearity and thus are less likely to accurately predict the climate forcing of SOA and project future climate sensitivity to greenhouse gases. Efforts are also needed to rank the most influential processes and nonlinear process-related interactions, so that these processes can be accurately represented in atmospheric chemistry-climate models.

  17. Leveraging the Novel Climates of Arboreta to Understand Tree Responses to Climate Change

    Science.gov (United States)

    Ettinger, A.; Wolkovich, E. M.; Joly, S.

    2016-12-01

    Rising global temperatures are expected to cause large-scale changes to forests, including altered mortality and recruitment rates, and dramatic changes in species composition, but exactly how tree growth will be affected by climate change is uncertain. Studies to date suggest that temperate and boreal tree responses to warming range from growing faster, slower, or at unchanged rates. Here we present an approach and preliminary findings that will improve predictions of tree responses to climate change by studying how tree traits, including phenology (e.g. the timing of leaf-out), wood density, leaf mass area, and height, relate to climate sensitivity (i.e. growth responses to annual changes in climate, Figure 1). We demonstrate how arboreta can be used to understand tree responses to climate change using 500 individuals across 65 tree species growing at the Arnold Arboretum, Boston, Massachusetts. Arboretum provide a unique opportunities for understanding temperate tree responses to climate change: they provide large collections of woody species growing together that enable traits to be studied across diverse species in a phylogenetic context. Furthermore, many species in arboreta are nonnative and have been exposed to "novel" climates that may resemble future conditions in their native distributions. We use a phylogenetic approach to understand how annual growth and climate sensitivity relate to focal traits, and asses what these findings may tell us about tree responses to climate change.

  18. Principal efforts in improving the understanding of Climate impact of ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Principal efforts in improving the understanding of Climate impact of aerosols -. New and enhanced satellite borne sensors. Focused field experiments. Establishment and enhancement of ground based networks. Development and deployment of new and enhanced ...

  19. Building Research Capacity to Understand and Adapt to Climate ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Building Research Capacity to Understand and Adapt to Climate Change in the Indus Basin. The Indus river basin is home to the largest contiguous surface irrigation system in the world. In the summer of 2010, a combination of severe rainfall and unanticipated river flow resulted in a devastating flood, which was ...

  20. Virtual Laboratory in the Role of Dynamic Visualisation for Better Understanding of Chemistry in Primary School

    Science.gov (United States)

    Herga, Nataša Rizman; Cagran, Branka; Dinevski, Dejan

    2016-01-01

    Understanding chemistry includes the ability to think on three levels: the macroscopic level, the symbolic level, and the level of particles--sub-microscopic level. Pupils have the most difficulty when trying to understand the sub-microscopic level because it is outside their range of experience. A virtual laboratory enables a simultaneous…

  1. Using digital technologies to enhance chemistry students' understanding and representational skills

    DEFF Research Database (Denmark)

    Hilton, Annette

    Abstract Chemistry students need to understand chemistry on molecular, symbolic and macroscopic levels. Students find it difficult to use representations on these three levels to interpret and explain data. One approach is to encourage students to use writing-to-learn strategies in inquiry settings...... to present and interpret their laboratory results. This paper describes findings from a study on the effects on students’ learning outcomes of creating multimodal texts to report on laboratory inquiries. The study involved two senior secondary school chemistry classes (n = 22, n = 27). Both classes completed...

  2. Performance of Versions 1,2 and 3 of the Goddard Earth Observing System (GEOS) Chemistry-Climate Model (CCM)

    Science.gov (United States)

    Pawson, Steven; Stolarski, Richard S.; Nielsen, J. Eric; Duncan, Bryan N.

    2008-01-01

    Version 1 of the Goddard Earth Observing System Chemistry-Climate Model (GEOS CCM) was used in the first CCMVa1 model evaluation and forms the basis for several studies of links between ozone and the circulation. That version of the CCM was based on the GEOS-4 GCM. Versions 2 and 3 of the GEOS CCM are based on the GEOS-5 GCM, which retains the "Lin-Rood" dynamical core but has a totally different set of physical parameterizatiOns to GEOS-4. In Version 2 of the GEOS CCM the Goddard stratospheric chemistry module is retained. Difference between Versions 1 and 2 thus reflect the physics changes of the underlying GCMs. Several comparisons between these two models are made, several of which reveal improvements in Version 2 (including a more realistic representation of the interannual variability of the Antarctic vortex). In Version 3 of the GEOS CCM, the stratospheric chemistry mechanism is replaced by the "GMI COMBO" code that includes tropospheric chemistry and different computational approaches. An advantage of this model version. is the reduction of high ozone biases that prevail at low chlorine loadings in Versions 1 and 2. This poster will compare and contrast various aspects of the three model versions that are relevant for understanding interactions between ozone and climate.

  3. The GLOBE Program's Student Climate Research Campaign: Empowering Students to Measure, Investigate, and Understand Climate

    Science.gov (United States)

    Mackaro, J.; Andersen, T.; Malmberg, J.; Randolph, J. G.; Wegner, K.; Tessendorf, S. A.

    2012-12-01

    The GLOBE Program's Student Climate Research Campaign (SCRC) is a two-year campaign focused on empowering students to measure, investigate, and understand the climate system in their local community and around the world. Schools can participate in the campaign via three mechanisms: climate foundations, intensive observing periods (IOPs), and research investigations. Participation in the first year of the SCRC focused on increasing student understanding and awareness of climate. Students in 49 countries participated by joining a quarterly webinar, completing the online climate learning activity, collecting and entering data during IOPs, or completing an online join survey. The year also included a video competition with the theme of Earth Day 2012, as well as a virtual student conference in conjunction with The GLOBE Program's From Learning to Research Project. As the SCRC continues into its second year, the goal is for students to increase their understanding of and ability to conduct scientific research focused on climate. Furthermore, year two of the SCRC seeks to improve students' global awareness by encouraging collaborations among students, teachers and scientists focused on understanding the Earth as a system. In addition to the continuation of activities from year one, year two will have even more webinars offered, two competitions, the introduction of two new IOPs, and a culminating virtual student conference. It is anticipated that this virtual conference will showcase research by students who are enthusiastic and dedicated to understanding climate and mitigating impacts of climate change in their communities. This presentation will highlight examples of how the SCRC is engaging students all over the world in hands-on and locally relevant climate research.

  4. Earth Science Week 2009, "Understanding Climate", Highlights and News Clippings

    Energy Technology Data Exchange (ETDEWEB)

    Robeck, Edward C. [American Geological Inst., Alexandria, VA (United States)

    2010-01-05

    The American Geological Institute (AGI) proposes to expand its influential Earth Science Week Program in 2009, with the support of the U.S. Department of Energy, to disseminate DOE's key messages, information, and resources on climate education and to include new program components. These components, ranging from online resources to live events and professional networks, would significantly increase the reach and impact of AGI's already successful geoscience education and public awareness effort in the United States and abroad in 2009, when the campaign's theme will be "Understanding Climate."

  5. Understanding and Improving Ocean Mixing Parameterizations for modeling Climate Change

    Science.gov (United States)

    Howard, A. M.; Fells, J.; Clarke, J.; Cheng, Y.; Canuto, V.; Dubovikov, M. S.

    2017-12-01

    Climate is vital. Earth is only habitable due to the atmosphere&oceans' distribution of energy. Our Greenhouse Gas emissions shift overall the balance between absorbed and emitted radiation causing Global Warming. How much of these emissions are stored in the ocean vs. entering the atmosphere to cause warming and how the extra heat is distributed depends on atmosphere&ocean dynamics, which we must understand to know risks of both progressive Climate Change and Climate Variability which affect us all in many ways including extreme weather, floods, droughts, sea-level rise and ecosystem disruption. Citizens must be informed to make decisions such as "business as usual" vs. mitigating emissions to avert catastrophe. Simulations of Climate Change provide needed knowledge but in turn need reliable parameterizations of key physical processes, including ocean mixing, which greatly impacts transport&storage of heat and dissolved CO2. The turbulence group at NASA-GISS seeks to use physical theory to improve parameterizations of ocean mixing, including smallscale convective, shear driven, double diffusive, internal wave and tidal driven vertical mixing, as well as mixing by submesoscale eddies, and lateral mixing along isopycnals by mesoscale eddies. Medgar Evers undergraduates aid NASA research while learning climate science and developing computer&math skills. We write our own programs in MATLAB and FORTRAN to visualize and process output of ocean simulations including producing statistics to help judge impacts of different parameterizations on fidelity in reproducing realistic temperatures&salinities, diffusivities and turbulent power. The results can help upgrade the parameterizations. Students are introduced to complex system modeling and gain deeper appreciation of climate science and programming skills, while furthering climate science. We are incorporating climate projects into the Medgar Evers college curriculum. The PI is both a member of the turbulence group at

  6. Experts’ understandings of drinking water risk management in a climate change scenario

    Directory of Open Access Journals (Sweden)

    Åsa Boholm

    2017-01-01

    Full Text Available The challenges for society presented by climate change are complex and demanding. This paper focuses on one particular resource of utmost necessity and vulnerability to climate change: namely, the provisioning of safe drinking water. From a critical perspective on the role of expertise in risk debates, this paper looks at how Swedish experts understand risk to drinking water in a climate change scenario and how they reason about challenges to risk management and adaptation strategies. The empirical material derives from ten in-depth semi-structured interviews with experts, employed both at government agencies and at universities, and with disciplinary backgrounds in a variety of fields (water engineering, planning, geology and environmental chemistry. The experts understand risk factors affecting both drinking water quality and availability as complex and systemically interrelated. A lack of political saliency of drinking water as a public service is identified as an obstacle to the development of robust adaptation strategies. Another area of concern relates to the geographical, organizational and institutional boundaries (regulatory, political and epistemological between the plethora of public actors with partly overlapping and sometimes unclear responsibilities for the provisioning of safe drinking water. The study concludes that climate change adaptation regarding drinking water provisioning will require a new integration of the knowledge of systemic risk relations, in combination with more efficient agency collaboration based on a clear demarcation of responsibility between actors.

  7. Analysis of the effect of specific vocabulary instruction on high school chemistry students' knowledge and understanding

    Science.gov (United States)

    Labrosse, Peggy

    The purpose of this study was to analyze the effects of specific vocabulary instruction on high school chemistry students' knowledge and understanding. Students might be able to formally recite a definition for a term without actually having understood the meaning of the term and its connection to other terms or to related concepts. Researchers (Cassels & Johnstone, 1983; Gabel, 1999; Johnstone, 1991) have been studying the difficulty students have in learning science, particularly chemistry. Gabel (1999) suggests that, "while research into misconceptions (also known as alternative conceptions) and problem-solving has dominated the field for the past 25 years, we are no closer to a solution that would improve the teaching and learning of chemistry" (P. 549). Gabel (1999) relates the difficulty in learning chemistry to use of language. She refers to student difficulty both with words that have more than one meaning in English and with words that are used to mean one idea in chemistry and another idea in every day language. The Frayer Model, a research-based teaching strategy, is a graphic organizer which students use to create meaningful definitions for terms in context (Frayer, Frederick, & Klausmeier, 1969). It was used as the treatment---the specific vocabulary instruction---in this research study. The researcher collected and analyzed data to answer three research questions that focused on the effect of using the Frayer model (a graphic organizer) on high school students' knowledge and understanding of academic language used in chemistry. The research took place in a New England high school. Four intact chemistry classes provided the student participants; two classes were assigned to the treatment group (TG) and two classes were assigned to the control group (CG). The TG received vocabulary instruction on 14 chosen terms using the Frayer Model. The CG received traditional vocabulary instruction with no special attention to the 14 terms selected for this study

  8. Enhancing Pre-Service Elementary Teachers' Conceptual Understanding of Solution Chemistry with Conceptual Change Text

    Science.gov (United States)

    Calik, Muammer; Ayas, Alipasa; Coll, Richard Kevin

    2007-01-01

    This paper reports on the use of a constructivist-based pedagogy to enhance understanding of some features of solution chemistry. Pre-service science teacher trainees' prior knowledge about the dissolution of salts and sugar in water were elicited by the use of a simple diagnostic tool. The test revealed widespread alternative conceptions. These…

  9. General Chemistry Students' Conceptual Understanding and Language Fluency: Acid-Base Neutralization and Conductometry

    Science.gov (United States)

    Nyachwaya, James M.

    2016-01-01

    The objective of this study was to examine college general chemistry students' conceptual understanding and language fluency in the context of the topic of acids and bases. 115 students worked in groups of 2-4 to complete an activity on conductometry, where they were given a scenario in which a titration of sodium hydroxide solution and dilute…

  10. Conceptual Understanding of Acids and Bases Concepts and Motivation to Learn Chemistry

    Science.gov (United States)

    Cetin-Dindar, Ayla; Geban, Omer

    2017-01-01

    The purpose of this study was to investigate the effect of 5E learning cycle model oriented instruction (LCMI) on 11th-grade students' conceptual understanding of acids and bases concepts and student motivation to learn chemistry. The study, which lasted for 7 weeks, involved two groups: An experimental group (LCMI) and a control group (the…

  11. Role of Atmospheric Chemistry in the Climate Impacts of Stratospheric Volcanic Injections

    Science.gov (United States)

    Legrande, Allegra N.; Tsigaridis, Kostas; Bauer, Susanne E.

    2016-01-01

    The climate impact of a volcanic eruption is known to be dependent on the size, location and timing of the eruption. However, the chemistry and composition of the volcanic plume also control its impact on climate. It is not just sulfur dioxide gas, but also the coincident emissions of water, halogens and ash that influence the radiative and climate forcing of an eruption. Improvements in the capability of models to capture aerosol microphysics, and the inclusion of chemistry and aerosol microphysics modules in Earth system models, allow us to evaluate the interaction of composition and chemistry within volcanic plumes in a new way. These modeling efforts also illustrate the role of water vapor in controlling the chemical evolution, and hence climate impacts, of the plume. A growing realization of the importance of the chemical composition of volcanic plumes is leading to a more sophisticated and realistic representation of volcanic forcing in climate simulations, which in turn aids in reconciling simulations and proxy reconstructions of the climate impacts of past volcanic eruptions. More sophisticated simulations are expected to help, eventually, with predictions of the impact on the Earth system of any future large volcanic eruptions.

  12. The Development of Multiple-Choice Items Consistent with the AP Chemistry Curriculum Framework to More Accurately Assess Deeper Understanding

    Science.gov (United States)

    Domyancich, John M.

    2014-01-01

    Multiple-choice questions are an important part of large-scale summative assessments, such as the advanced placement (AP) chemistry exam. However, past AP chemistry exam items often lacked the ability to test conceptual understanding and higher-order cognitive skills. The redesigned AP chemistry exam shows a distinctive shift in item types toward…

  13. Students' Understanding of Salt Dissolution: Visualizing Animation in the Chemistry Classroom

    Science.gov (United States)

    Malkoc, Ummuhan

    The present study explored the effect of animation implementation in learning a chemistry topic. 135 high school students taking chemistry class were selected for this study (quasi-experimental groups = 67 and control groups = 68). Independent samples t-tests were run to compare animation and control groups between and within the schools. The over-arching finding of this research indicated that when science teachers used animations while teaching salt dissolution phenomena, students will benefit the application of animations. In addition, the findings informed the TPACK framework on the idea that visual tools are important in students' understanding of salt dissolution concepts.

  14. The Effects of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in an AOGCM

    Science.gov (United States)

    Li, Feng; Newman, Paul; Pawson, Steven; Waugh, Darryn

    2014-01-01

    Stratospheric ozone depletion has played a dominant role in driving Antarctic climate change in the last decades. In order to capture the stratospheric ozone forcing, many coupled atmosphere-ocean general circulation models (AOGCMs) prescribe the Antarctic ozone hole using monthly and zonally averaged ozone field. However, the prescribed ozone hole has a high ozone bias and lacks zonal asymmetry. The impacts of these biases on model simulations, particularly on Southern Ocean and the Antarctic sea ice, are not well understood. The purpose of this study is to determine the effects of using interactive stratospheric chemistry instead of prescribed ozone on Antarctic and Southern Ocean climate change in an AOGCM. We compare two sets of ensemble simulations for the 1960-2010 period using different versions of the Goddard Earth Observing System 5 - AOGCM: one with interactive stratospheric chemistry, and the other with prescribed monthly and zonally averaged ozone and 6 other stratospheric radiative species calculated from the interactive chemistry simulations. Consistent with previous studies using prescribed sea surface temperatures and sea ice concentrations, the interactive chemistry runs simulate a deeper Antarctic ozone hole and consistently larger changes in surface pressure and winds than the prescribed ozone runs. The use of a coupled atmosphere-ocean model in this study enables us to determine the impact of these surface changes on Southern Ocean circulation and Antarctic sea ice. The larger surface wind trends in the interactive chemistry case lead to larger Southern Ocean circulation trends with stronger changes in northerly and westerly surface flow near the Antarctica continent and stronger upwelling near 60S. Using interactive chemistry also simulates a larger decrease of sea ice concentrations. Our results highlight the importance of using interactive chemistry in order to correctly capture the influences of stratospheric ozone depletion on climate

  15. Middle School Students' Understandings About Anthropogenic Climate Change

    Science.gov (United States)

    Golden, B. W.

    2013-12-01

    they discussed the validation of their beliefs. That is, we argue that the unit, and the emphases contained within the unit, resulted in the "epistemic scaffolding" of their ideas, to the extent that they shifted from arguing from anecdotes to arguing based on other types of data, especially from line graphs. Additionally, we found that students' understandings of climate change were tied to their ontological constructions of the subject matter, i.e., many perceived climate change as just another environmentally sensitive issue such as littering and pollution, and were therefore limited in their ability to understand anthropogenic climate change in the vast and robust sense meant by current scientific consensus. Given these known difficulties, it is critical to explore further research of this sort in order to better understand what students are actually thinking, and how that thinking is prone to change, modification, or not. Subsequently, K-12 strategies might be better designed, if that is indeed a priority of US/Western society.

  16. Challenges and opportunities for improved understanding of regional climate dynamics

    Science.gov (United States)

    Collins, Matthew; Minobe, Shoshiro; Barreiro, Marcelo; Bordoni, Simona; Kaspi, Yohai; Kuwano-Yoshida, Akira; Keenlyside, Noel; Manzini, Elisa; O'Reilly, Christopher H.; Sutton, Rowan; Xie, Shang-Ping; Zolina, Olga

    2018-02-01

    Dynamical processes in the atmosphere and ocean are central to determining the large-scale drivers of regional climate change, yet their predictive understanding is poor. Here, we identify three frontline challenges in climate dynamics where significant progress can be made to inform adaptation: response of storms, blocks and jet streams to external forcing; basin-to-basin and tropical-extratropical teleconnections; and the development of non-linear predictive theory. We highlight opportunities and techniques for making immediate progress in these areas, which critically involve the development of high-resolution coupled model simulations, partial coupling or pacemaker experiments, as well as the development and use of dynamical metrics and exploitation of hierarchies of models.

  17. Recent progress in understanding activity cliffs and their utility in medicinal chemistry.

    Science.gov (United States)

    Stumpfe, Dagmar; Hu, Ye; Dimova, Dilyana; Bajorath, Jürgen

    2014-01-09

    The activity cliff concept is of high relevance for medicinal chemistry. Recent studies are discussed that have further refined our understanding of activity cliffs and suggested different ways of exploiting activity cliff information. These include alternative approaches to define and classify activity cliffs in two and three dimensions, data mining investigations to systematically detect all possible activity cliffs, the introduction of computational methods to predict activity cliffs, and studies designed to explore activity cliff progression in medicinal chemistry. The discussion of these studies is complemented with new findings revealing the frequency of activity cliff formation when different molecular representations are used and the distribution of activity cliffs across different targets. Taken together, the results have a number of implications for the practice of medicinal chemistry.

  18. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Overview and Description of Models, Simulations and Climate Diagnostics

    Science.gov (United States)

    Lamarque, J.-F.; Shindell, D. T.; Naik, V.; Plummer, D.; Josse, B.; Righi, M.; Rumbold, S. T.; Schulz, M.; Skeie, R. B.; Strode, S.; hide

    2013-01-01

    The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) consists of a series of time slice experiments targeting the long-term changes in atmospheric composition between 1850 and 2100, with the goal of documenting composition changes and the associated radiative forcing. In this overview paper, we introduce the ACCMIP activity, the various simulations performed (with a requested set of 14) and the associated model output. The 16 ACCMIP models have a wide range of horizontal and vertical resolutions, vertical extent, chemistry schemes and interaction with radiation and clouds. While anthropogenic and biomass burning emissions were specified for all time slices in the ACCMIP protocol, it is found that the natural emissions are responsible for a significant range across models, mostly in the case of ozone precursors. The analysis of selected present-day climate diagnostics (precipitation, temperature, specific humidity and zonal wind) reveals biases consistent with state-of-the-art climate models. The model-to- model comparison of changes in temperature, specific humidity and zonal wind between 1850 and 2000 and between 2000 and 2100 indicates mostly consistent results. However, models that are clear outliers are different enough from the other models to significantly affect their simulation of atmospheric chemistry.

  19. Exploring Undergraduates' Understanding of Transition Metals Chemistry with the Use of Cognitive and Confidence Measures

    Science.gov (United States)

    Sreenivasulu, Bellam; Subramaniam, R.

    2014-01-01

    Compared to studies on school students' understanding of various topics in the sciences, studies involving university students have received relatively less attention in the science education literature. In this study, we investigated university students' understanding of transition metals chemistry, a topic in inorganic chemistry, which…

  20. Celebrity Climate Contrarians: Understanding a keystone species in contemporary climate science-policy-public interactions

    Science.gov (United States)

    Boykoff, M. T.

    2012-12-01

    Since the 1980s, a keystone species called 'climate contrarians' has emerged and thrived. Through resistance to dominant interpretations of scientific evidence, and often outlier views on optimal responses to climate threats, contrarians have raised many meta-level questions: for instance, questions involve to what extent have their varied interventions been effective in terms of sparking a new and wise Copernican revolution; or do their amplified voices instead service entrenched carbon-based industry interests while they blend debates over 'climate change' with other culture wars? While the value of their influence has generated numerous debates, there is no doubt that climate contrarians have had significant influence on climate science, policy and public communities in ways that are larger than would be expected from their relative abundance in society. As such, a number of these actors have achieved 'celebrity status' in science-policy circles, and, at times, larger public spaces. This presentation focuses on how - particularly through amplified mass media attention to their movements - various outlier interventions have demonstrated themselves to be (often deliberately) detrimental to efforts that seek to enlarge rather than constrict the spectrum of possibility for mobilizing appropriate responses to ongoing climate challenges. Also, this work analyses the growth pathways of these charismatic megafauna through interview data and participant observations completed by the author at the 2011 Heartland Institute's Sixth International Conference on Climate Change. This provides detail on how outlier perspectives characterized as climate contrarians do work in these spaces under the guise of public intellectualism to achieve intended goals and objectives. The research undertaken and related in the presentation here seeks to better understand motivations that prop up these contrarian stances, such as possible ideological or evidentiary disagreement to the orthodox

  1. Organic Chemistry in Action! Developing an Intervention Program for Introductory Organic Chemistry to Improve Learners' Understanding, Interest, and Attitudes

    Science.gov (United States)

    O'Dwyer, Anne; Childs, Peter

    2014-01-01

    The main areas of difficulty experienced by those teaching and learning organic chemistry at high school and introductory university level in Ireland have been identified, and the findings support previous studies in Ireland and globally. Using these findings and insights from chemistry education research (CER), the Organic Chemistry in Action!…

  2. Evaluation of the ACCESS - chemistry-climate model for the Southern Hemisphere

    Science.gov (United States)

    Stone, Kane A.; Morgenstern, Olaf; Karoly, David J.; Klekociuk, Andrew R.; French, W. John; Abraham, N. Luke; Schofield, Robyn

    2016-02-01

    Chemistry-climate models are important tools for addressing interactions of composition and climate in the Earth system. In particular, they are used to assess the combined roles of greenhouse gases and ozone in Southern Hemisphere climate and weather. Here we present an evaluation of the Australian Community Climate and Earth System Simulator - chemistry-climate model (ACCESS-CCM), focusing on the Southern Hemisphere and the Australian region. This model is used for the Australian contribution to the international Chemistry-Climate Model Initiative, which is soliciting hindcast, future projection and sensitivity simulations. The model simulates global total column ozone (TCO) distributions accurately, with a slight delay in the onset and recovery of springtime Antarctic ozone depletion, and consistently higher ozone values. However, October-averaged Antarctic TCO from 1960 to 2010 shows a similar amount of depletion compared to observations. Comparison with model precursors shows large improvements in the representation of the Southern Hemisphere stratosphere, especially in TCO concentrations. A significant innovation is seen in the evaluation of simulated vertical profiles of ozone and temperature with ozonesonde data from Australia, New Zealand and Antarctica from 38 to 90° S. Excess ozone concentrations (greater than 26 % at Davis and the South Pole during winter) and stratospheric cold biases (up to 10 K at the South Pole during summer and autumn) outside the period of perturbed springtime ozone depletion are seen during all seasons compared to ozonesondes. A disparity in the vertical location of ozone depletion is seen: centred around 100 hPa in ozonesonde data compared to above 50 hPa in the model. Analysis of vertical chlorine monoxide profiles indicates that colder Antarctic stratospheric temperatures (possibly due to reduced mid-latitude heat flux) are artificially enhancing polar stratospheric cloud formation at high altitudes. The model's inability to

  3. The interaction of climate and glacial landforms on subsurface and surface hydrology and chemistry across a heterogeneous boreal plain landscape

    Science.gov (United States)

    Hokanson, Kelly; Carrera-Hernández, Jaime; Devito, Kevin; Mendoza, Carl

    2016-04-01

    The Boreal Plains (BP) region of Canada is experiencing high levels of anthropogenic activity and may be susceptible to climate change to various degrees. The BP is characterized by heterogeneous glacial landforms, with large contrasts in storage and transmissivity, which when coupled with wet-dry climate cycles, results in complex groundwater-surface water interactions. Predicting the impacts of land use change, climate change, and the future performance of constructed and reclaimed landscapes is currently not possible due to our limited knowledge regarding the natural variability of water table fluctuations, geochemistry, and salinity across the various glacial landforms in the BP. We compare isotopes, EC, chemistry (DOC, Ca, Mg, SO4) and water table position between a drought (2003) and a wet (2013) year to examine the interactions between climate, landform, and geology on the variation in landscape connectivity and overall salinity distribution. Data were collected from surface waters to a depth of 40 m, along a 50 km transect encompassing pond-wetland-forestland sequences across the major glacial depositional types typical of the BP (coarse textured glaciofluvial outwash, fine textured stagnant ice moraine, and lacustrine clay plain). Within each landform, sites range from isolated local flow systems to large intermediate scale flow systems. High spatial variability of water table fluctuations and salinity illustrate the strong regional controls that climate and geology exerts over scales of groundwater flow between landforms and surface water bodies across the BP, reinforcing the need to link surface water and groundwater processes when developing conceptual models. Additionally, when coupled with a strong, physical hydrogeologic conceptual model, synoptic chemical and isotopic surveys can be used to confirm scales and directions of flow; however, without an understanding of the climatic and geologic influence of the region, such data cannot be used as a

  4. Heating up Climate Literacy Education: Understanding Teachers' and Students' Motivational and Affective Response to Climate Change

    Science.gov (United States)

    Sinatra, G. M.

    2011-12-01

    presentation, findings from a research program exploring the role of "hot constructs" such as motivation and emotion in teaching and learning about climate change will be shared. In these studies, we have explored constructs such as emotions, misconceptions, plausibility perceptions, understanding deep time, and dispositions towards uncertainty. Results from four studies will be highlighted. In the first study, we demonstrated that comfort with ambiguity and a willingness to think deeply about issues predicted both change in attitudes towards climate change and expressed willingness to take mitigative action in college students (Sinatra, et al. 2011). In another study with college students, we demonstrated that knowledge of deep time and plausibility perceptions of human-induced climate change were related to students' understanding of weather and climate distinctions (Lombardi & Sinatra, 2010). In a study with graduate education students, we found that misconceptions about climate change were associated with strong emotions (Broughton, et al., 2011). With practicing teachers we have found that emotions, specifically anger and hopelessness, were significant predictors of plausibility perceptions of human-induced climate change (Lombardi & Sinatra, in preparation). The implications for climate change education of the findings will be discussed.

  5. Can pictures speak a thousand words in understanding climate change?

    Science.gov (United States)

    Walton, P.

    2017-12-01

    Pictures are able to engage, inspire and educate people in a way that the spoken or written word cannot, and with 21st Century technology we now have even more ways to present images. Researchers and campaigners working in climate change have used the power of images to great effect, bringing the issue of a warming planet into stark relief through iconic scenes such as the forlorn polar bear adrift on an iceberg. Whilst undeniably successful, this image has now become passé and invisible necessitating the scientific community to identify new ways to engage and educate the general public. This paper reports on a new high resolution visualisation app that has been developed by the European Space Agency to illustrate the change over time of a number of climate variables. Data, collected via satellite Earth observations, have been rendered into visually stunning animations that can be interrogated in a number of ways to allow the user to understand the spatial and temporal changes of that variable. But is it enough? Can it ever be that all that glisters really is gold?

  6. Understanding recognition and self-assembly in biology using the chemist's toolbox. Insight into medicinal chemistry.

    Science.gov (United States)

    Quirolo, Z B; Benedini, L A; Sequeira, M A; Herrera, M G; Veuthey, T V; Dodero, V I

    2014-01-01

    Medicinal chemistry is intimately connected with basic science such as organic synthesis, chemical biology and biophysical chemistry among other disciplines. The reason of such connections is due to the power of organic synthesis to provide designed molecules; chemical biology to give tools to discover biological and/or pathological pathways and biophysical chemistry which provides the techniques to characterize and the theoretical background to understand molecular behaviour. The present review provides some selective examples of these research areas. Initially, template dsDNA organic synthesis and the spatio-temporal control of transcription are presenting following by the supramolecular entities used in drug delivery, such as liposomes and liquid crystal among others. Finally, peptides and protein self-assembly is connected with biomaterials and as an important event in the balance between health and disease. The final aim of the present review is to show the power of chemical tools not only for the synthesis of new molecules but also to improve our understanding of recognition and self-assembly in the biological context.

  7. The Role of Green Chemistry Activities in Fostering Secondary School Students' Understanding of Acid-Base Concepts and Argumentation Skills

    Science.gov (United States)

    Karpudewan, Mageswary; Roth, Wolff Michael; Sinniah, Devananthini

    2016-01-01

    In a world where environmental degradation is taking on alarming levels, understanding, and acting to minimize, the individual environmental impact is an important goal for many science educators. In this study, a green chemistry curriculum--combining chemistry experiments with everyday, environmentally friendly substances with a student-centered…

  8. Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change

    Science.gov (United States)

    Visintainer, Tammie; Linn, Marcia

    2015-01-01

    Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in…

  9. Chemistry

    International Nuclear Information System (INIS)

    Gomez G, H.

    1989-01-01

    A brief description about the development and activities executed in chemistry, in the Instituto de Asuntos Nucleares, during the last years is presented. The plans and feasibility of nuclear techniques in Colombia are also described

  10. An Evaluation of Ozone Dry Deposition in Global Scale Chemistry Climate Models

    Science.gov (United States)

    Hardacre, C.; Wild, O.; Emberson, L.

    2014-12-01

    Dry deposition of atmospheric oxidants to the Earth's surface or vegetation is important as both a major removal pathway governing their atmospheric abundance and as a key input of oxidants and nutrients to sensitive vegetation surfaces. By linking the atmosphere and biosphere, dry deposition processes contribute to wider climate and Earth system feedbacks which need to be adequately quantified for a full understanding of Earth system responses. In addition, they have immediate policy-relevant implications for air quality, ecosystem health and crop productivity that need to be assessed on local, regional and global scales. In this study we use results from the recent Task Force on Hemispheric Transport of Air Pollution (HTAP) model intercomparison to explore how dry deposition of ozone varies across 15 current atmospheric chemistry and transport models. While most models take a similar, resistances-based approach to parameterising dry deposition, there are substantial differences across the models in the magnitude and variability of the annual and monthly ozone deposition fluxes which contribute to the differences in modelled surface ozone and in the global tropospheric ozone budget. We find that the range in global ozone deposition flux over the HTAP model ensemble spans about 30% with deposition to ocean, grass land and tropical forests being particularly variable. Further, we compare modelled dry deposition of ozone to measurements made at a variety of locations in Europe and North America, noting differences of up to a factor of two but no clear systematic bias over the sites examined. We extend this analysis by running sensitivity studies to determine the importance of key parameters in the ozone dry deposition process, including soil moisture and leaf area index. This study provides an important first step towards quantifying the uncertainty in ozone dry deposition and permitting a more thorough, observation-based evaluation of this important process.

  11. Towards a Better Understanding of Climate Change Negotiations

    Directory of Open Access Journals (Sweden)

    Bryndís Arndal Woods

    2012-12-01

    Full Text Available The bulk of environmental economics literature applies non-cooperative game theory to examine the stability of International Environmental Agreements. Recently, a new trend has emerged in the literature whereby scholars use modified economic approaches to better account for ‘reality’ as such. This article builds upon the work of Hugh Ward, Frank Grundig and Ethan Zorick who conducted a mixed-method analysis to create a model of international climate change negotiations which could explain why policy change has been minimal in this issue area. The purpose of this article is to further develop the mixed-method approach in order to gain a better understanding of international climate change negotiations. Using the progression of the 2011 Durban negotiation session as our raw data, we demonstrate the usefulness of conducting qualitative and quantitative analyses simultaneously to best represent reality. Content and discourse analyses are applied to the Durban negotiations to identify the properties of the underlying game. The results are applied to the future of the negotiations in order to identify trends which need to be addressed to reach more progressive outcomes in the future. The main results of the qualitative analyses of the Durban negotiations included that players had modest expectations at the outset of the negotiations, which influenced the issues they addressed. The quantitative analysis demonstrated that players achieved a high degree of success at Durban; all players achieved their desired outcomes on at least half of the issues they addressed. Finally, the mixed-method approach identified important trends from the negotiations, most importantly the cracks exposed within the BASIC bloc and the role of the ‘middle ground’ alliance.

  12. Understanding the Role of Water on Electron-Initiated Processes and Radical Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, Bruce C [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colson, Steven D [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dixon, David A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Laufer, Allan H [US Department of Energy Office of Science Office of Basic Energy Sciences; Ray, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2003-06-10

    On September 26–28, 2002, a workshop entitled “Understanding the Role of Water on Electron-Initiated Processes and Radical Chemistry” was held to assess new research opportunities in electron-driven processes and radical chemistry in aqueous systems. Of particular interest was the unique and complex role that the structure of water plays in influencing these processes. Novel experimental and theoretical approaches to solving long-standing problems in the field were explored. A broad selection of participants from universities and the national laboratories contributed to the workshop, which included scientific and technical presentations and parallel sessions for discussions and report writing.

  13. VICI (Venus In Situ Composition Investigations): The Next Step in Understanding Venus Climate Evolution

    Science.gov (United States)

    Glaze, L. S.; Garvin, J. B.

    2017-12-01

    Venus provides a natural laboratory to explore an example of terrestrial planet evolution that may be cosmically ubiquitous. By better understanding the composition of the Venus atmosphere and surface, we can better constrain the efficiency of the Venusian greenhouse. VICI is a proposed NASA New Frontiers mission that delivers two landers to Venus on two separate Venus fly-bys. Following six orbital remote sensing missions to Venus (since 1978), VICI would be the first mission to land on the Venus surface since 1985, and the first U.S. mission to enter the Venus atmosphere in 49 years. The four major VICI science objectives are: Atmospheric origin and evolution: Understand the origin of the Venus atmosphere, how it has evolved, including how recently Venus lost its oceans, and how and why it is different from the atmospheres of Earth and Mars, through in situ measurements of key noble gases, nitrogen, and hydrogen. Atmospheric composition and structure: Reveal the unknown chemical processes and structure in Venus' deepest atmosphere that dominate the current climate through two comprehensive, in situ vertical profiles. Surface properties and geologic evolution: For the first time ever, explore the tessera from the surface, specifically to test hypotheses of ancient content-building cycles, erosion, and links to past climates using multi-point mineralogy, elemental chemistry, imaging and topography. Surface-atmosphere interactions: Characterize Venus' surface weathering environment and provide insight into the sulfur cycle at the surface-atmosphere interface by integrating rich atmospheric composition and structure datasets with imaging, surface mineralogy, and elemental rock composition. VICI is designed to study Venus' climate history through detailed atmospheric composition measurements not possible on earlier missions. In addition, VICI images the tessera surface during descent enabling detailed topography to be generated. Finally, VICI makes multiple elemental

  14. Student understanding development in chemistry concepts through constructivist-informed laboratory and science camp process in secondary school

    Science.gov (United States)

    Pathommapas, Nookorn

    2018-01-01

    Science Camp for Chemistry Concepts was the project which designed to provide local students with opportunities to apply chemistry concepts and thereby developing their 21st century skills. The three study purposes were 1) to construct and develop chemistry stations for encouraging students' understandings in chemistry concepts based on constructivist-informed laboratory, 2) to compare students' understandings in chemistry concepts before and after using chemistry learning stations, and 3) to study students' satisfactions of using their 21st century skills in science camp activities. The research samples were 67 students who attended the 1-day science camp. They were levels 10 to 11 students in SumsaoPittayakarn School, UdonThani Province, Thailand. Four constructivist-informed laboratory stations of chemistry concepts were designed for each group. Each station consisted of a chemistry scenario, a question, answers in tier 1 and supporting reasons in tier 2, and 4 sets of experimental instruments. Four to five-member subgroups of four student groups parallel participated in laboratory station for an hour in each station. Student activities in each station concluded of individual pretest, group prediction, experimental design, testing out and collection data, interpreting the results, group conclusion, and individual post-test. Data collection was done by station mentors using two-tier multiple choice questions, students' written work and interviews. Data triangulation was used for interpreting and confirming students' understandings of chemistry concepts which divided into five levels, Sound Understanding (SU), Partial Understanding (PU), Specific Misconception (SM), No Understanding (NU) and No Response (NR), before and after collaborating at each station. The study results found the following: 1) four constructivist-laboratory stations were successfully designed and used to investigate student' understandings in chemistry concepts via collaborative workshop of

  15. Contrasting the surface ocean distribution of bromoform and methyl iodide; implications for boundary layer physics, chemistry and climate

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, C J, E-mail: carl.j.palmer@gmail.co [Department of Oceanography, University of Cape Town, 7701 (South Africa)

    2010-08-15

    Bromoform and methyl iodide are both methane-like hydrocarbons with a halogen atom replacing one or more of the hydrogen atoms. Both of these compounds occur naturally in the environment as a result of their production from seaweed and kelp. They are of interest to climate science as a result of their catalytic destruction of boundary layer ozone (a potent greenhouse gas) and, specifically for methyl iodide, the proposed role in the formation of new cloud condensation nuclei with implications for climate. In this paper, the currently available data on the distribution of bromoform and methyl iodide are analysed and contrasted to show that the concentrations of bromoform and methyl iodide do not correlate, that, in contrast to bromoform, the parameterization of sea surface methyl iodide concentrations demands only the sea surface temperature, and that the pelagic distribution of methyl iodide appears to follow the solar zenith angle. These three observations together suggest that, while the pelagic source of bromoform is mostly biogenic, the source of methyl iodide is photochemical. This has implications for the understanding of planetary boundary layer chemistry and potential organohalogen mediated feedbacks to climate.

  16. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1975-01-01

    The chemical research and development efforts related to the design and ultimate operation of molten-salt breeder reactor systems are concentrated on fuel- and coolant-salt chemistry, including the development of analytical methods for use in these systems. The chemistry of tellurium in fuel salt is being studied to help elucidate the role of this element in the intergranular cracking of Hastelloy N. Studies were continued of the effect of oxygen-containing species on the equilibrium between dissolved UF 3 and dissolved UF 4 , and, in some cases, between the dissolved uranium fluorides and graphite, and the UC 2 . Several aspects of coolant-salt chemistry are under investigation. Hydroxy and oxy compounds that could be formed in molten NaBF 4 are being synthesized and characterized. Studies of the chemistry of chromium (III) compounds in fluoroborate melts were continued as part of a systematic investigation of the corrosion of structural alloys by coolant salt. An in-line voltammetric method for determining U 4+ /U 3+ ratios in fuel salt was tested in a forced-convection loop over a six-month period. (LK)

  17. Climatic Change and the Classroom: A Teaching Aid to Understanding.

    Science.gov (United States)

    Sanders, C. Gerald

    Equable climates with mild winters and summers are more likely to maintain snow or ice cover in high latitudes than extreme climates having colder winters and hotter summers. A simplified version of the Milankovitch cycles can be used to develop a model instructors can use in their classes to illustrate the orbital variations producing either…

  18. Understanding Climate Change and Manifestation of its Driven ...

    African Journals Online (AJOL)

    This article examines the nature and manifestation of climate change driven impacts on the agrarian districts of Kongwa and Bahi in the semi arid areas of Dodoma region in Tanzania. A Survey of 398 households in the study area was undertaken to elicit information on the nature and manifestation of climate change driven ...

  19. Understanding Farmer Perspectives on Climate Change Adaptation and Mitigation

    Science.gov (United States)

    Morton, Lois Wright; Hobbs, Jon

    2015-01-01

    Agriculture is vulnerable to climate change and a source of greenhouse gases (GHGs). Farmers face pressures to adjust agricultural systems to make them more resilient in the face of increasingly variable weather (adaptation) and reduce GHG production (mitigation). This research examines relationships between Iowa farmers’ trust in environmental or agricultural interest groups as sources of climate information, climate change beliefs, perceived climate risks to agriculture, and support for adaptation and mitigation responses. Results indicate that beliefs varied with trust, and beliefs in turn had a significant direct effect on perceived risks from climate change. Support for adaptation varied with perceived risks, while attitudes toward GHG reduction (mitigation) were associated predominantly with variation in beliefs. Most farmers were supportive of adaptation responses, but few endorsed GHG reduction, suggesting that outreach should focus on interventions that have adaptive and mitigative properties (e.g., reduced tillage, improved fertilizer management). PMID:25983336

  20. Improving Climate Projections by Understanding How Cloud Phase affects Radiation

    Science.gov (United States)

    Cesana, Gregory; Storelvmo, Trude

    2017-01-01

    Whether a cloud is predominantly water or ice strongly influences interactions between clouds and radiation coming down from the Sun or up from the Earth. Being able to simulate cloud phase transitions accurately in climate models based on observational data sets is critical in order to improve confidence in climate projections, because this uncertainty contributes greatly to the overall uncertainty associated with cloud-climate feedbacks. Ultimately, it translates into uncertainties in Earth's sensitivity to higher CO2 levels. While a lot of effort has recently been made toward constraining cloud phase in climate models, more remains to be done to document the radiative properties of clouds according to their phase. Here we discuss the added value of a new satellite data set that advances the field by providing estimates of the cloud radiative effect as a function of cloud phase and the implications for climate projections.

  1. Perfectly Reasonable in a Practical World: Understanding Chemistry Teacher Responses to a Change Proposal

    Science.gov (United States)

    Westbroek, Hanna; Janssen, Fred; Doyle, Walter

    2017-12-01

    Curriculum ideals often get compromised as a curriculum moves through its various levels of representation. Across the different science reforms, this process of slippage is clearly present. Research shows that teacher subject matter knowledge, PCK, beliefs and context factors all influence implementation. Professional development arrangements focus on fixing deficiencies in teachers' knowledge, beliefs or work context. This approach has not solved the problem of slippage, as we still do not understand what mechanisms operate when teachers make decisions about change proposals. In this study, we unpacked the decision mechanisms of three highly qualified chemistry teachers who subsequently adapted an innovative context-based chemistry unit. In spite of a state of the art professional development arrangement and the teachers being highly qualified, slippage occurred. The teachers' goal systems were used to interpret their reasoning. A goal system is a context-dependent, within-person mental construct that consists of a hierarchy of a person's goals and means in pursuit of a task. We showed that all three teachers adopted or redesigned elements of the change proposals to meet their core goals, i.e., goals that had multiple connections with other goals. This indicated that the adaptations teachers made were perfectly reasonable ways to serve their professional goals. For change to happen, we contend that one should begin with ways to connect teachers' core goals with the lesson or unit goal demands of a proposed innovation. Change emerges from the adaptions teachers make in the service of their core goals.

  2. Understanding premixed flame chemistry of gasoline fuels by comparing quantities of interest

    KAUST Repository

    Selim, Hatem

    2016-07-23

    Gasoline fuels are complex mixtures that vary in composition depending on crude oil feedstocks and refining processes. Gasoline combustion in high-speed spark ignition engines is governed by flame propagation, so understanding fuel composition effects on premixed flame chemistry is important. In this study, the combustion chemistry of low-pressure, burner-stabilized, premixed flames of two gasoline fuels was investigated under stoichiometric conditions. Flame speciation was conducted using vacuum-ultraviolet synchrotron photoionization time-of-flight molecular beam mass spectroscopy. Stable end-products, intermediate hydrocarbons, and free radicals were detected and quantified. In addition, several isomeric species in the reaction pool were distinguished and quantified with the help of the highly tunable synchrotron radiation. A comparison between the products of both flames is presented and the major differences are highlighted. Premixed flame numerical simulations were conducted using surrogate fuel kinetic models for each flame. Furthermore, a new approach was developed to elucidate the main discrepancies between experimental measurements and the numerical predictions by comparing quantities of interest. © 2016.

  3. Understanding the science of climate change: Talking points - Impacts to the Great Lakes

    Science.gov (United States)

    Amanda Schramm; Rachel Loehman

    2010-01-01

    Climate change presents significant risks to our nation’s natural and cultural resources. Although climate change was once believed to be a future problem, there is now unequivocal scientific evidence that our planet’s climate system is warming (IPCC 2007a). While many people understand that human emissions of greenhouse gases have significantly contributed to recent...

  4. Western Australian High School Students' Understandings about the Socioscientific Issue of Climate Change

    Science.gov (United States)

    Dawson, Vaille

    2015-01-01

    Climate change is one of the most significant science issues facing humanity; yet, teaching students about climate change is challenging: not only is it multidisciplinary, but also it is contentious and debated in political, social and media forums. Students need to be equipped with an understanding of climate change science to be able to…

  5. Climatic effects on decomposing litter and substrate chemistry along climatological gradients.

    Science.gov (United States)

    Berg, B.

    2009-04-01

    Climatic effects on decomposing litter and substrate chemistry along climatological gradients. B. Berg, Dipartimento Biologia Strutturale e Funzionale, Complesso Universitario, Monte San Angelo, via Cintia, I-80126 Napoli, Italy and Department of Forest Ecology, P.O. Box 27, University of Helsinki, FIN-00014, Helsinki, Finland. Studies of several processes, using climatic gradients do provide new information as compared with studies at e.g. a single site. Decomposition of plant litter in such gradients give response in decomposition rates to natural climate conditions. Thus Scots pine needle litter incubated in a climate gradient with annual average temperature (AVGT) ranging from -0.5 to 6.8oC had a highly significant increase in initial mass-loss rate with R2 = 0.591 (p<0.001) and a 5o increase in temperature doubled the mass-loss rate. As a contrast - needle litter of Norway spruce incubated in the same transect had no significant response to climate and for initial litter a 5o increase increased mass-loss rate c. 6%. For more decomposed Scots pine litter we could see that the effect of temperature on mass-loss rate gradually decreased until it disappeared. Long-term decomposition studies revealed differences in litter decomposition patterns along a gradient, even for the same type of litter. This could be followed by using an asymptotic function that gave, (i) a measure a maximum level of decomposition, (ii) the initial decomposition rate. Over a gradient the calculated maximum level of decomposition decreased with increasing AVGT. Other gradient studies revealed an effect of AVGT on litter chemical composition. Pine needle litter from stands under different climate conditions had nutrient concentrations related to AVGT. Thus N, P, K, and S were positively related to AVGT and Mn negatively, all of them significantly. This information may be used to explain the changing pattern in decomposition over the gradient.

  6. Causes and impacts of changes in the stratospheric meridional circulation in a chemistry-climate model

    Energy Technology Data Exchange (ETDEWEB)

    Garny, Hella

    2011-05-13

    The stratospheric meridional circulation is projected to be subject to changes due to enhanced greenhouse-gas concentrations in the atmosphere. This study aims to diagnose and explain long-term changes in the stratospheric meridional circulation using the chemistry-climate model E39CA. The diagnosed strengthening of the circulation is found to be driven by increases in tropical sea surface temperatures which lead to a strengthening and upward shift of the subtropical jets. This enables enhanced vertical propagation of large scale waves into the lower stratosphere, and therefore stronger local wave forcing of the meridional circulation in the tropical lower stratosphere. The impact of changes in transport on the ozone layer is analysed using a newly developed method that allows the separation of the effects of transport and chemistry changes on ozone. It is found that future changes of mean stratospheric ozone concentrations are largely determined by changes in chemistry, while changes in transport of ozone play a minor role. (orig.)

  7. Receptive Audiences for Climate Change Education: Understanding Attitudes and Barriers

    Science.gov (United States)

    Kelly, L. D.; Luebke, J. F.; Clayton, S.; Saunders, C. D.; Matiasek, J.; Grajal, A.

    2012-12-01

    Much effort has been devoted to finding ways to explain climate change to uninterested audiences and encourage mitigation behaviors among dismissive audiences. Most approaches have focused on conveying information about climate change processes or threats. Here we report the results of a national survey designed to characterize the readiness of zoo and aquarium visitors to engage with the issue of climate change. Two survey forms, one focused primarily on attitudes (N=3,594) and another on behaviors (N=3,588), were administered concurrently in summer 2011 at 15 Association of Zoos and Aquariums accredited institutions. The attitudes survey used Global Warming's Six Americas segmentation protocols (climatechangecommunication.org) to compare climate change attitudes of zoo and aquarium visitors with the American public (Leiserowitz et al., 2011). Our results reveal that visitors are receptive audiences for climate change education and want to do more to address climate change. Even these favorable audiences, however, perceive barriers to engaging in the issue, signifying the importance of meeting the learning needs of those who acknowledge anthropogenic climate change, and not only of climate change 'deniers.' While 39% of the general public is 'concerned' or 'alarmed' about global warming, 64% of zoo and aquarium visitors fall into these two "Six Americas" segments. Visitors also differ from the national sample in key attitudinal characteristics related to global warming. For example, nearly two-thirds believe human actions are related to global warming, versus less than one-half of the general public; and approximately 60% think global warming will harm them personally, moderately or a great deal, versus less than 30% of the general public. Moreover, 69% of visitors would like to do more to address climate change. Despite zoo and aquarium visitors' awareness of climate change and motivation to address it, survey results indicate they experience barriers to

  8. A Big Data Guide to Understanding Climate Change: The Case for Theory-Guided Data Science

    OpenAIRE

    Faghmous, James H.; Kumar, Vipin

    2014-01-01

    Global climate change and its impact on human life has become one of our era's greatest challenges. Despite the urgency, data science has had little impact on furthering our understanding of our planet in spite of the abundance of climate data. This is a stark contrast from other fields such as advertising or electronic commerce where big data has been a great success story. This discrepancy stems from the complex nature of climate data as well as the scientific questions climate science brin...

  9. What's in a name? Commonalities and differences in public understanding of "climate change" and "global warming"

    OpenAIRE

    Whitmarsh, Lorraine E.

    2009-01-01

    This paper reports on findings from a survey of public understanding of climate change and global warming amongst residents in the south of England. Whereas much previous research has relied on survey checklists to measure public understanding of climate change, this study employed a more qualitative approach to reveal participants' unprompted conceptions of climate change and global warming. Overall, the findings show a tendency for the public to dissociate themselves from the causes, impact...

  10. Research into Practice: Visualising the Molecular World for a Deep Understanding of Chemistry

    Science.gov (United States)

    Tasker, Roy

    2014-01-01

    Why is chemistry so difficult? A seminal paper by Johnstone (1982) offered an explanation for why science in general, and chemistry in particular, is so difficult to learn. He proposed that an expert in chemistry thinks at three levels; the macro (referred to as the observational level in this article), the sub-micro (referred to as the molecular…

  11. Understanding safety climate in small automobile collision repair shops.

    Science.gov (United States)

    Parker, David L; Brosseau, Lisa M; Bejan, Anca; Skan, Maryellen; Xi, Min

    2014-01-01

    In the United States, approximately 236,000 people work in 37,600 auto collision-repair businesses. Workers in the collision-repair industry may be exposed to a wide range of physical and chemical hazards. This manuscript examines the relationship of safety climate as reported by collision repair shop workers and owners to: (1) an independent business safety assessment, and (2) employee self-reported work practices. The study was conducted in the Twin Cities metropolitan area. A total of 199 workers from 49 collision shops completed a survey of self-reported work practices and safety climate. Surveys were completed by an owner or manager in all but three shops. In general, self-reported work practices were poor. Workers' scores on safety climate were uniformly lower than those of owners. For workers, there was no correlation between how well the business scored on an independent audit of business safety practices and the safety climate measures they reported. For owners, however, there was a positive correlation between safety climate scores and the business safety assessment. For workers, safety rules and procedures were associated with improved work practices for those engaged in both painting-related and body technician-related activities. The enforcement of safety rules and procedures emerged as a strong factor positively affecting self-reported work practices. These findings identify a simple, cost effective path to reducing hazards in small workplaces. © 2013 Wiley Periodicals, Inc.

  12. Climate - 30 questions to understand the Paris Conference

    International Nuclear Information System (INIS)

    Canfin, Pascal; Staime, Peter

    2015-01-01

    The authors, who participate in the negotiations on climate, propose an analysis and a description of the various geopolitical, economic and financial challenges which are part of the next conference on climate (Conference of Parties, COP 21) which is to take place in France in December 2015. They notably discuss to which extent France is an example, what Obama can do, why things are changing in China, who are the opponents in the struggle against climate change. While one of the main issue of this conference, and the possible cause of its failure, will be the financial issue, and particularly the promise made in 2009 to mobilise 100 billions dollars every year in favour of developing countries which are the most impacted by global warming, in an interview, one of the author evokes the content of his book: he discusses the general consensus about the human origin of climate change, evokes fossil industries and oil producing countries as opponents to an energy revolution, outlines that energy transition is at the heart of what he calls the Battle of Paris (the conference), outlines the important role France can play despite some weaknesses of its climate policy, the new momentum given by China and the USA. He considers low carbon economy as the main world challenge on the long term

  13. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing: Advances in Secondary Organic Aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, Manish [Pacific Northwest National Laboratory, Richland Washington USA; Cappa, Christopher D. [Department of Civil and Environmental Engineering, University of California, Davis California USA; Fan, Jiwen [Pacific Northwest National Laboratory, Richland Washington USA; Goldstein, Allen H. [Department of Environmental Science, Policy and Management and Department of Civil and Environmental Engineering, University of California, Berkeley California USA; Guenther, Alex B. [Department of Earth System Science, University of California, Irvine California USA; Jimenez, Jose L. [Cooperative Institute for Research in Environmental Sciences and Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder Colorado USA; Kuang, Chongai [Brookhaven National Laboratory, Upton New York USA; Laskin, Alexander [Pacific Northwest National Laboratory, Richland Washington USA; Martin, Scot T. [School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, Cambridge Massachusetts USA; Ng, Nga Lee [School of Chemical and Biomolecular Engineering and School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta Georgia USA; Petaja, Tuukka [Department of Physics, University of Helsinki, Helsinki Finland; Pierce, Jeffrey R. [Department of Atmospheric Science, Colorado State University, Fort Collins Colorado USA; Rasch, Philip J. [Pacific Northwest National Laboratory, Richland Washington USA; Roldin, Pontus [Department of Physics, Lund University, Lund Sweden; Seinfeld, John H. [Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena California USA; Shilling, John [Pacific Northwest National Laboratory, Richland Washington USA; Smith, James N. [Department of Earth System Science, University of California, Irvine California USA; Thornton, Joel A. [Department of Atmospheric Sciences, University of Washington, Seattle Washington USA; Volkamer, Rainer [Cooperative Institute for Research in Environmental Sciences and Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder Colorado USA; Wang, Jian [Brookhaven National Laboratory, Upton New York USA; Worsnop, Douglas R. [Aerodyne Research, Inc., Billerica Massachusetts USA; Zaveri, Rahul A. [Pacific Northwest National Laboratory, Richland Washington USA; Zelenyuk, Alla [Pacific Northwest National Laboratory, Richland Washington USA; Zhang, Qi [Department of Environmental Toxicology, University of California, Davis California USA

    2017-06-01

    Anthropogenic emissions and land-use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding pre-industrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features 1) influence estimates of aerosol radiative forcing and 2) can confound estimates of the historical response of climate to increases in greenhouse gases (e.g. the ‘climate sensitivity’). Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through a combination of laboratory and field measurements, yet current climate models typically do not comprehensively include all important SOA-relevant processes. Therefore, major gaps exist at present between current measurement-based knowledge on the one hand and model implementation of organic aerosols on the other. The critical review herein summarizes some of the important developments in understanding SOA formation that could potentially have large impacts on our understanding of aerosol radiative forcing and climate. We highlight the importance of some recently discovered processes and properties that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including: formation of extremely low-volatility organics in the gas-phase; isoprene epoxydiols (IEPOX) multi-phase chemistry; particle-phase oligomerization; and physical properties such as viscosity. In addition, this review also highlights some of the important processes that involve interactions between natural biogenic emissions and anthropogenic emissions, such as the role of sulfate and oxides of nitrogen (NOx) on SOA formation from biogenic volatile organic compounds. Studies that relate the observed evolution of organic aerosol

  14. To better understand the IPCC - Intergovernmental Panel on Climate Change

    International Nuclear Information System (INIS)

    Planton, Serge; Jouzel, Jean; Masson-Delmotte, Valerie; Soussana, Jean-Francois; Hourcade, Jean-Charles

    2013-10-01

    After indication of some figures illustrating the IPCC's activity, and a presentation of the IPCC by some scientists who are members of IPCC groups, this publication, while answering to some popular misconceptions, indicates important dates for climate and for the IPCC, briefly recalls the IPCC creation and mission. It presents its structure and organisation, gives a brief overview of its activities, presents the role, composition and activities of the different working groups. It indicates the key elements for climate and its evolution. It proposes an overview of the content of the fifth IPCC report, and presents and comments the process of elaboration of assessment reports

  15. Culture of peace and care for the Planet Earth as predictors of students’ understanding of chemistry concepts

    Directory of Open Access Journals (Sweden)

    Ngozi Okafor

    2016-05-01

    Full Text Available This study focused on how culture of peace and care for the planet earth variables predicted public coeducational secondary school students understanding of chemistry concepts in Anambra State of Nigeria. Three research questions guided the study. It was a survey and correlational research designs that involved sample of 180 drawn from six schools through a three-stage sampling procedures. Culture of Peace and Care for the Planet Earth Questionnaire (CPCPEQ and Chemistry Understanding Test (CUT were used for data collection. Their validity and reliability were determined using Cronbach alpha and Kuder-Richardson formula 20 which gave indices of r=.71 and r= 0.78 respectively. Linear regression and bivariate correlation analyses as well as One-way analysis of variance (ANOVA were used in data analysis. The results showed that for culture of peace, tolerance significantly predicted higher chemistry concepts scores while social movement significantly predicted lower concepts scores on chemistry understanding test. On care for the planet earth, adjusting thermostat significantly predicted higher scores while saving water significantly predicted lower scores on chemistry understanding test. The study recommended setting- up of Visionary Chemists for Environment and Peace Culture (VCEPC in all schools that would sensitize students on how to shun hostility, indoctrination and embracing effective methods of waste disposal. It concludes that everybody should go green, plant more trees, and promote mutual understanding, tolerance, peaceful co-existence and friendly environments as fundamental tips of peace culture and care for the planet earth that foster meaningful understanding of chemistry concepts among secondary school students.

  16. Understanding Farmers' Response to Climate Variability in Nigeria ...

    African Journals Online (AJOL)

    In this study, farmers 'response to climate variability was examined. Primary and secondary data were used. A multi-stage sampling procedure was adopted in the collection of the primary data using structured questionnaires. Four vegetation zones out of seven where farming is mainly carried out were selected for the study.

  17. Reassessing the stable water isotope record in understanding past climate

    International Nuclear Information System (INIS)

    Noone, D.; Simmonds, I.

    1999-01-01

    Full text: The impact of atmospheric circulation on the stable water isotope record has been examined using an atmospheric general circulation model to reassess the validity of using isotopes to reconstruct Earth's climate history. Global temperature changes are classically estimated from the variations in (polar) isotopic values assuming a simple linear relationship. Such a relationship can be justified from first order theoretical considerations given that the isotopic fractionation at the deposition (ice core) site is temperature dependent. However, it is found that the history of a given air mass is more important that local processes because of the net effect of condensation events active along the transport pathway from the source region. Modulations in the hemispheric flow are seen to be crucial to Antarctic precipitation and the isotopic signal. Similarly, both transient and stationary disturbances influence the pathways of the air masses associated with Antarctic precipitation. During different climate regimes, such as that of the Last Glacial Maximum, the properties of these types of disturbances may not be assumed to be the same. As such, we may not assume that the condensation histories are the same as under different climate conditions. Therefore, the veracity of the linear climate reconstructions becomes questionable. Notwithstanding this result, the types of changes to the circulation regime that are expected generally correspond to changes in the global temperature. This fortunate result does not disallow the use of regressional reconstruction, however, the uncertainties associated with these circulation changes are of the same magnitude as the differences suggested by conventional linear regression in climate reconstruction. This indicates that interpretation of ice core data must be accompanied by detailed examination of the atmospheric processes and quantification of the impacts of their changes. Copyright (1999) Geological Society of Australia

  18. Impact of Climate Change on Soil and Groundwater Chemistry Subject to Process Waste Land Application

    Science.gov (United States)

    McNab, W. W.

    2013-12-01

    Nonhazardous aqueous process waste streams from food and beverage industry operations are often discharged via managed land application in a manner designed to minimize impacts to underlying groundwater. Process waste streams are typically characterized by elevated concentrations of solutes such as ammonium, organic nitrogen, potassium, sodium, and organic acids. Land application involves the mixing of process waste streams with irrigation water which is subsequently applied to crops. The combination of evapotranspiration and crop salt uptake reduces the downward mass fluxes of percolation water and salts. By carefully managing application schedules in the context of annual climatological cycles, growing seasons, and process requirements, potential adverse environmental impacts to groundwater can be mitigated. However, climate change poses challenges to future process waste land application efforts because the key factors that determine loading rates - temperature, evapotranspiration, seasonal changes in the quality and quantity of applied water, and various crop factors - are all likely to deviate from current averages. To assess the potential impact of future climate change on the practice of land application, coupled process modeling entailing transient unsaturated fluid flow, evapotranspiration, crop salt uptake, and multispecies reactive chemical transport was used to predict changes in salt loading if current practices are maintained in a warmer, drier setting. As a first step, a coupled process model (Hydrus-1D, combined with PHREEQC) was calibrated to existing data sets which summarize land application loading rates, soil water chemistry, and crop salt uptake for land disposal of process wastes from a food industry facility in the northern San Joaquin Valley of California. Model results quantify, for example, the impacts of evapotranspiration on both fluid flow and soil water chemistry at shallow depths, with secondary effects including carbonate mineral

  19. Understanding and managing trust at the climate science-policy interface

    Science.gov (United States)

    Lacey, Justine; Howden, Mark; Cvitanovic, Christopher; Colvin, R. M.

    2018-01-01

    Climate change effects are accelerating, making the need for appropriate actions informed by sound climate knowledge ever more pressing. A strong climate science-policy relationship facilitates the effective integration of climate knowledge into local, national and global policy processes, increases society's responsiveness to a changing climate, and aligns research activity to policy needs. This complex science-policy relationship requires trust between climate science `producers' and `users', but our understanding of trust at this interface remains largely uncritical. To assist climate scientists and policymakers, this Perspective provides insights into how trust develops and operates at the interface of climate science and policy, and examines the extent to which trust can manage — or even create — risk at this interface.

  20. Understanding the Association Between School Climate and Future Orientation.

    Science.gov (United States)

    Lindstrom Johnson, Sarah; Pas, Elise; Bradshaw, Catherine P

    2016-08-01

    Promoting students' future orientation is inherently a goal of the educational system. Recently, it has received more explicit attention given the increased focus on career readiness. This study aimed to examine the association between school climate and adolescents' report of future orientation using data from youth (N = 27,698; 49.4 % female) across 58 high schools. Three-level hierarchical linear models indicated that perceptions of available emotional and service supports, rules and consequences, and parent engagement were positively related to adolescents' future orientation. Additionally, the school-level average future orientation was significantly related to individuals' future orientation, indicating a potential influence of contextual effects on this construct. Taken together, these findings suggest that interventions targeting school climate may hold promise for promoting future orientation.

  1. Climate-based models for understanding and forecasting dengue epidemics.

    Directory of Open Access Journals (Sweden)

    Elodie Descloux

    Full Text Available BACKGROUND: Dengue dynamics are driven by complex interactions between human-hosts, mosquito-vectors and viruses that are influenced by environmental and climatic factors. The objectives of this study were to analyze and model the relationships between climate, Aedes aegypti vectors and dengue outbreaks in Noumea (New Caledonia, and to provide an early warning system. METHODOLOGY/PRINCIPAL FINDINGS: Epidemiological and meteorological data were analyzed from 1971 to 2010 in Noumea. Entomological surveillance indices were available from March 2000 to December 2009. During epidemic years, the distribution of dengue cases was highly seasonal. The epidemic peak (March-April lagged the warmest temperature by 1-2 months and was in phase with maximum precipitations, relative humidity and entomological indices. Significant inter-annual correlations were observed between the risk of outbreak and summertime temperature, precipitations or relative humidity but not ENSO. Climate-based multivariate non-linear models were developed to estimate the yearly risk of dengue outbreak in Noumea. The best explicative meteorological variables were the number of days with maximal temperature exceeding 32°C during January-February-March and the number of days with maximal relative humidity exceeding 95% during January. The best predictive variables were the maximal temperature in December and maximal relative humidity during October-November-December of the previous year. For a probability of dengue outbreak above 65% in leave-one-out cross validation, the explicative model predicted 94% of the epidemic years and 79% of the non epidemic years, and the predictive model 79% and 65%, respectively. CONCLUSIONS/SIGNIFICANCE: The epidemic dynamics of dengue in Noumea were essentially driven by climate during the last forty years. Specific conditions based on maximal temperature and relative humidity thresholds were determinant in outbreaks occurrence. Their persistence was

  2. Climate-based models for understanding and forecasting dengue epidemics.

    Science.gov (United States)

    Descloux, Elodie; Mangeas, Morgan; Menkes, Christophe Eugène; Lengaigne, Matthieu; Leroy, Anne; Tehei, Temaui; Guillaumot, Laurent; Teurlai, Magali; Gourinat, Ann-Claire; Benzler, Justus; Pfannstiel, Anne; Grangeon, Jean-Paul; Degallier, Nicolas; De Lamballerie, Xavier

    2012-01-01

    Dengue dynamics are driven by complex interactions between human-hosts, mosquito-vectors and viruses that are influenced by environmental and climatic factors. The objectives of this study were to analyze and model the relationships between climate, Aedes aegypti vectors and dengue outbreaks in Noumea (New Caledonia), and to provide an early warning system. Epidemiological and meteorological data were analyzed from 1971 to 2010 in Noumea. Entomological surveillance indices were available from March 2000 to December 2009. During epidemic years, the distribution of dengue cases was highly seasonal. The epidemic peak (March-April) lagged the warmest temperature by 1-2 months and was in phase with maximum precipitations, relative humidity and entomological indices. Significant inter-annual correlations were observed between the risk of outbreak and summertime temperature, precipitations or relative humidity but not ENSO. Climate-based multivariate non-linear models were developed to estimate the yearly risk of dengue outbreak in Noumea. The best explicative meteorological variables were the number of days with maximal temperature exceeding 32°C during January-February-March and the number of days with maximal relative humidity exceeding 95% during January. The best predictive variables were the maximal temperature in December and maximal relative humidity during October-November-December of the previous year. For a probability of dengue outbreak above 65% in leave-one-out cross validation, the explicative model predicted 94% of the epidemic years and 79% of the non epidemic years, and the predictive model 79% and 65%, respectively. The epidemic dynamics of dengue in Noumea were essentially driven by climate during the last forty years. Specific conditions based on maximal temperature and relative humidity thresholds were determinant in outbreaks occurrence. Their persistence was also crucial. An operational model that will enable health authorities to anticipate the

  3. Understanding relationships among abundance, extirpation, and climate at ecoregional scales.

    Science.gov (United States)

    Beever, Erik A; Dobrowski, S Z; Long, J; Mynsberge, A R; Piekielek, N B

    2013-07-01

    Recent research on mountain-dwelling species has illustrated changes in species distributional patterns in response to climate change. Abundance of a species will likely provide an earlier warning indicator of change than will occupancy, yet relationships between abundance and climatic factors have received less attention. We tested whether predictors of counts of American pikas (Ochotona princeps) during surveys from the Great Basin region in 1994-1999 and 2003-2008 differed between the two periods. Additionally, we tested whether various modeled aspects of ecohydrology better predicted relative density than did average annual precipitation, and whether risk of site-wide extirpation predicted subsequent population counts of pikas. We observed several patterns of change in pika abundance at range edges that likely constitute early warnings of distributional shifts. Predictors of pika abundance differed strongly between the survey periods, as did pika extirpation patterns previously reported from this region. Additionally, maximum snowpack and growing-season precipitation resulted in better-supported models than those using average annual precipitation, and constituted two of the top three predictors of pika density in the 2000s surveys (affecting pikas perhaps via vegetation). Unexpectedly, we found that extirpation risk positively predicted subsequent population size. Our results emphasize the need to clarify mechanisms underlying biotic responses to recent climate change at organism-relevant scales, to inform management and conservation strategies for species of concern.

  4. Understanding the major transitions in Quaternary climate dynamics

    Science.gov (United States)

    Willeit, Matteo; Ganopolski, Andrey

    2017-04-01

    Climate dynamics over the past 3 million years was characterized by strong variability associated with glacial cycles and several distinct regime changes. The Pliocene-Pleistocene Transition (PPT), which happened around 2.7 million years ago, was characterized by the appearance of the large continental ice sheets over Northern Eurasia and North America. For two million years after the PPT climate variability was dominated by relatively symmetric 40 kyr cycles. At around 1 million years ago the dominant mode of climate variability experienced a relatively rapid transition from 40 kyr to strongly asymmetric 100 kyr cycles of larger amplitude (Mid-Pleistocene Transition). Additionally, during the past 800 kyr there are clear differences between the earlier and the later glacial cycles with the last five cycles characterized by larger magnitude of variability (Mid-Brunhes Event). Here, we use the Earth system model of intermediate complexity CLIMBER-2 to explore possible mechanisms that could explain these regime shifts. CLIMBER-2 incorporates all major components of the Earth system - atmosphere, ocean, land surface, northern hemisphere ice sheets, terrestrial biota and soil carbon, marine biogeochemistry and aeolian dust. The model was optimally tuned to reproduce climate, ice volume and CO2 variability over the last 400,000 years. Using the same model version, we performed a large set of simulations covering the entire Quaternary (3 million years) starting from identical initial conditions and using a parallelization in time technique which consists of starting the model at different times (every 100,000 years) and running each simulation for 500,000 years. The Earth's orbital variations are the only prescribed radiative forcing. Several sets of the Northern Hemisphere orography and sediment thickness representing different stages of landscape evolution during the Quaternary are prescribed as boundary conditions for the ice sheet model and volcanic CO2 outgassing is

  5. Understanding Prebiotic Chemistry Through the Analysis of Extraterrestrial Amino Acids and Nucleobases in Meteorites

    Science.gov (United States)

    Burton, Aaron S.; Stern, Jennifer C.; Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    The discoveries of amino acids of extraterrestrial origin in many meteorites over the last 50 years have revolutionized the Astrobiology field. A variety of non-terrestrial amino acids similar to those found in life on Earth have been detected in meteorites. A few amino acids have even been found with chiral excesses, suggesting that meteorites could have contributed to the origin of homochirality in life on Earth. In addition to amino acids, which have been productively studied for years, sugar-like molecules, activated phosphates, and nucleobases have also been determined to be indigenous to numerous meteorites. Because these molecules are essential for life as we know it, and meteorites have been delivering them to the Earth since accretion, it is plausible that the origines) of life on Earth were aided by extrataterrestrially-synthesized molecules. Understanding the origins of life on Earth guides our search for life elsewhere, helping to answer the question of whether biology is unique to Earth. This tutorial focuses on meteoritic amino acids and nucleobases, exploring modern analytical methods and possible formation mechanisms. We will also discuss the unique window that meteorites provide into the chemistry that preceded life on Earth, a chemical record we do not have access to on Earth due to geologic recycling of rocks and the pervasiveness of biology across the planet. Finally. we will address the future of meteorite research, including asteroid sample return missions.

  6. Climatic Controls on the Porewater Chemistry of Mid-Continental Wetlands

    Science.gov (United States)

    Levy, Zeno Francis

    Wetlands develop where climate and physiography conspire to maintain saturated soils at the land surface, support diverse plant and animal communities, and serve as globally important sinks for atmospheric carbon. The chemistry of wetland porewaters impacts near-surface biological communities and subsurface biogeochemical processes that influence carbon cycling in the environment. Wetland porewater chemistry is a dynamic byproduct of complex hydrogeological processes that cause meteoric waters to enter groundwater systems (recharge) or groundwater to flow to the land surface (discharge). Changes in climate can alter subsurface hydraulic gradients that determine the recharge and discharge functions of wetlands, which in turn control the hydrogeochemical evolution of wetland porewaters. The climate of mid-continental North America is influenced by competing air masses with vastly different temperature and moisture contents originating from the Pacific Coast, the Gulf of Mexico, and the Arctic. The interactions of these air masses result in large dynamic shifts of climate regimes characterized by decadal-scale oscillations between periods of drought and heavy rain. Over the course of the 20th century, a shift occurred towards wetter climate in the mid-continental region. This dissertation examines the impact of this climate shift on the porewater chemistry of two very different wetland systems, located only 350 km apart: the Glacial Lake Agassiz Peatlands (GLAP) of northern Minnesota and the Cottonwood Lake Study Area (CLSA) of North Dakota. The former study site consists of a large (7,600 km2), circumboreal peatland that developed an extensive blanket of peat over the last 5000 years on a relatively flat glacial lake bed within a sub-humid to semi-arid climate gradient characterized by small annual atmospheric moisture surpluses and frequent droughts. The latter study site consists of a 0.92 km2 complex of small (meter-scale) "prairie pothole" wetlands located on a

  7. Using Self-Efficacy Beliefs to Understand How Students in a General Chemistry Course Approach the Exam Process

    Science.gov (United States)

    Willson-Conrad, Angela; Kowalske, Megan Grunert

    2018-01-01

    Retention of students who major in STEM continues to be a major concern for universities. Many students cite poor teaching and disappointing grades as reasons for dropping out of STEM courses. Current college chemistry courses often assess what a student has learned through summative exams. To understand students' experiences of the exam process,…

  8. Promoting Preservice Chemistry Teachers' Understanding about the Nature of Science through History.

    Science.gov (United States)

    Lin, Huann-shyang; Chen, Chung-Chih

    2002-01-01

    Documents the benefits of teaching chemistry through history. The experimental group consisted of seniors enrolled in a teacher preparation program in which they learned how to teach chemistry through the history of science. The results of the analysis of covariance revealed that the experimental group outperformed the control group on an…

  9. Using Diagnostic Assessment to Help Teachers Understand the Chemistry of the Lead-Acid Battery

    Science.gov (United States)

    Cheung, Derek

    2011-01-01

    Nineteen pre-service and in-service teachers taking a chemistry teaching methods course at a university in Hong Kong were asked to take a diagnostic assessment. It consisted of seven multiple-choice questions about the chemistry of the lead-acid battery. Analysis of the teachers' responses to the questions indicated that they had difficulty in…

  10. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    Science.gov (United States)

    Cruz-Ramírez de Arellano, Daniel; Towns, Marcy H.

    2014-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  11. Understanding and Using the New Guided-Inquiry AP Chemistry Laboratory Manual

    Science.gov (United States)

    Cacciatore, Kristen L.

    2014-01-01

    To support teaching and learning in the advanced placement (AP) chemistry laboratory, the College Board published a laboratory manual, "AP Chemistry Guided-Inquiry Experiments: Applying the Science Practices," in 2013 as part of the redesigned course. This article provides a discussion of the rationale for the existence of the manual as…

  12. Western Australian High School Students' Understandings about the Socioscientific Issue of Climate Change

    Science.gov (United States)

    Dawson, Vaille

    2015-05-01

    Climate change is one of the most significant science issues facing humanity; yet, teaching students about climate change is challenging: not only is it multidisciplinary, but also it is contentious and debated in political, social and media forums. Students need to be equipped with an understanding of climate change science to be able to participate in this discourse. The purpose of this study was to examine Western Australian high school students' understanding of climate change and the greenhouse effect, in order to identify their alternative conceptions about climate change science and provide a baseline for more effective teaching. A questionnaire designed to elicit students' understanding and alternative conceptions was completed by 438 Year 10 students (14-15 years old). A further 20 students were interviewed. Results showed that students know different features of both climate change and the greenhouse effect, however not necessarily all of them and the relationships between. Five categories of alternative conceptions were identified. The categories were (1) the greenhouse effect and the ozone layer; (2) types of greenhouse gases; (3) types of radiation; (4) weather and climate and (5) air pollution. These findings provide science educators a basis upon which to develop strategies and curriculum resources to improve their students' understanding and decision-making skills about the socioscientific issue, climate change.

  13. The Extrapolar SWIFT model (version 1.0): fast stratospheric ozone chemistry for global climate models

    Science.gov (United States)

    Kreyling, Daniel; Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2018-03-01

    The Extrapolar SWIFT model is a fast ozone chemistry scheme for interactive calculation of the extrapolar stratospheric ozone layer in coupled general circulation models (GCMs). In contrast to the widely used prescribed ozone, the SWIFT ozone layer interacts with the model dynamics and can respond to atmospheric variability or climatological trends.The Extrapolar SWIFT model employs a repro-modelling approach, in which algebraic functions are used to approximate the numerical output of a full stratospheric chemistry and transport model (ATLAS). The full model solves a coupled chemical differential equation system with 55 initial and boundary conditions (mixing ratio of various chemical species and atmospheric parameters). Hence the rate of change of ozone over 24 h is a function of 55 variables. Using covariances between these variables, we can find linear combinations in order to reduce the parameter space to the following nine basic variables: latitude, pressure altitude, temperature, overhead ozone column and the mixing ratio of ozone and of the ozone-depleting families (Cly, Bry, NOy and HOy). We will show that these nine variables are sufficient to characterize the rate of change of ozone. An automated procedure fits a polynomial function of fourth degree to the rate of change of ozone obtained from several simulations with the ATLAS model. One polynomial function is determined per month, which yields the rate of change of ozone over 24 h. A key aspect for the robustness of the Extrapolar SWIFT model is to include a wide range of stratospheric variability in the numerical output of the ATLAS model, also covering atmospheric states that will occur in a future climate (e.g. temperature and meridional circulation changes or reduction of stratospheric chlorine loading).For validation purposes, the Extrapolar SWIFT model has been integrated into the ATLAS model, replacing the full stratospheric chemistry scheme. Simulations with SWIFT in ATLAS have proven that the

  14. Coupled Aerosol-Chemistry-Climate Twentieth-Century Transient Model Investigation: Trends in Short-Lived Species and Climate Responses

    Science.gov (United States)

    Koch, Dorothy; Bauer, Susanne E.; Del Genio, Anthony; Faluvegi, Greg; McConnell, Joseph R.; Menon, Surabi; Miller, Ronald L.; Rind, David; Ruedy, Reto; Schmidt, Gavin A.; hide

    2011-01-01

    The authors simulate transient twentieth-century climate in the Goddard Institute for Space Studies (GISS) GCM, with aerosol and ozone chemistry fully coupled to one another and to climate including a full dynamic ocean. Aerosols include sulfate, black carbon (BC), organic carbon, nitrate, sea salt, and dust. Direct and BC snow-albedo radiative effects are included. Model BC and sulfur trends agree fairly well with records from Greenland and European ice cores and with sulfur deposition in North America; however, the model underestimates the sulfur decline at the end of the century in Greenland. Global BC effects peak early in the century (1940s); afterward the BC effects decrease at high latitudes of the Northern Hemisphere but continue to increase at lower latitudes. The largest increase in aerosol optical depth occurs in the middle of the century (1940s-80s) when sulfate forcing peaks and causes global dimming. After this, aerosols decrease in eastern North America and northern Eurasia leading to regional positive forcing changes and brightening. These surface forcing changes have the correct trend but are too weak. Over the century, the net aerosol direct effect is -0.41 Watts per square meter, the BC-albedo effect is -0.02 Watts per square meter, and the net ozone forcing is +0.24 Watts per square meter. The model polar stratospheric ozone depletion develops, beginning in the 1970s. Concurrently, the sea salt load and negative radiative flux increase over the oceans around Antarctica. Net warming over the century is modeled fairly well; however, the model fails to capture the dynamics of the observedmidcentury cooling followed by the late century warming.Over the century, 20% of Arctic warming and snow ice cover loss is attributed to the BC albedo effect. However, the decrease in this effect at the end of the century contributes to Arctic cooling. To test the climate responses to sulfate and BC pollution, two experiments were branched from 1970 that removed

  15. Implementation and evaluation of online gas-phase chemistry within a regional climate model (RegCM-CHEM4)

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, A. K.; Zakey, A. S.; Tawfik, A. B.; Solmon, F.; Giorgi, Filippo; Stordal, F.; Sillman, S.; Zaveri, Rahul A.; Steiner, A. L.

    2012-05-22

    The RegCM-CHEM4 is a new online climate-chemistry model based on the International Centre for Theoretical Physics (ICTP) regional climate model (RegCM4). Tropospheric gas-phase chemistry is integrated into the climate model using the condensed version of the Carbon Bond Mechanism (CBM-Z; Zaveri and Peters, 1999) with a fast solver based on radical balances. We evaluate the model over Continental Europe for two different time scales: (1) an event-based analysis of the ozone episode associated with the heat wave of August 2003 and (2) a climatological analysis of a sixyear simulation (2000-2005). For the episode analysis, model simulations show good agreement with European Monitoring and Evaluation Program (EMEP) observations of hourly ozone over different regions in Europe and capture ozone concentrations during and after the August 2003 heat wave event. For long-term climate simulations, the model captures the seasonal cycle of ozone concentrations with some over prediction of ozone concentrations in non-heat wave summers. Overall, the ozone and ozone precursor evaluation shows the feasibility of using RegCM-CHEM4 for decadal-length simulations of chemistry-climate interactions.

  16. Implementation and evaluation of online gas-phase chemistry within a regional climate model (RegCM-CHEM4

    Directory of Open Access Journals (Sweden)

    A. Shalaby

    2012-05-01

    Full Text Available The RegCM-CHEM4 is a new online climate-chemistry model based on the International Centre for Theoretical Physics (ICTP regional climate model (RegCM4. Tropospheric gas-phase chemistry is integrated into the climate model using the condensed version of the Carbon Bond Mechanism (CBM-Z; Zaveri and Peters, 1999 with a fast solver based on radical balances. We evaluate the model over continental Europe for two different time scales: (1 an event-based analysis of the ozone episode associated with the heat wave of August 2003 and (2 a climatological analysis of a six-year simulation (2000–2005. For the episode analysis, model simulations show good agreement with European Monitoring and Evaluation Programme (EMEP observations of hourly ozone over different regions in Europe and capture ozone concentrations during and after the summer 2003 heat wave event. For long-term climate simulations, the model captures the seasonal cycle of ozone concentrations with some over prediction of ozone concentrations in non-heat wave summers. Overall, the ozone and ozone precursor evaluation shows the feasibility of using RegCM-CHEM4 for decadal-length simulations of chemistry-climate interactions.

  17. Contributions to the Understanding of Aerosol Microphysics Towards Improving the Assessment of Climate Radiative Forcing

    Science.gov (United States)

    Dawson, Kyle William

    The study of climate and the associated impacts imposed by human activity has garnered the attention of scientists and policy makers since the 1950s. Research into the various atmospheric constituents that interact with solar radiation thus modulating Earth's radiative budget has been largely focused on the contributions from greenhouse gases and later focused on the role of atmospheric aerosol. The role of atmospheric aerosol, i.e. a solid or aqueous phase particulate, is complex and presents an opportunity for bettering the assessments of climate radiative forcing (i.e. the fraction of climate change due to anthropogenic, rather than natural, activities) in several ways. First, motivated to better understand the radiative effects of the Earth's background aerosol state to improve the assessment of anthropogenic effects, an experimental study on the water uptake ability of xanthan gum as a proxy for marine hydrogel, a component of natural primary emitted seaspray aerosol, is presented. Marine hydrogel comprises an organic component of the ocean surface microlayer that is released to the atmosphere via the bursting of bubbles generated by entrainment of air through crashing waves. This study investigates the water uptake ability (i.e. hygroscopicity) of these particles when exposed to a range of relative humidity (RH). The hydration characteristics of aerosolized pure xanthan gum as well as xanthan gum/salt mixtures were studied using a hygroscopic tandem differential mobility analyzer (HTDMA) and cloud condensation nuclei counter (CCNc). The hygroscopicity of the various solutions were compared to theoretical thermodynamic calculations accounting for the component volume fractions as a function of relative humidity. The data show that pure xanthan gum aerosol hygroscopicity behaves as other organic polysaccharides and, when combined with salts, is reasonably approximated by the volume fraction mixing rules above 90% RH. Deviations occur below 90% RH as well as for

  18. Using chemistry and microfluidics to understand the spatial dynamics of complex biological networks.

    Science.gov (United States)

    Kastrup, Christian J; Runyon, Matthew K; Lucchetta, Elena M; Price, Jessica M; Ismagilov, Rustem F

    2008-04-01

    Understanding the spatial dynamics of biochemical networks is both fundamentally important for understanding life at the systems level and also has practical implications for medicine, engineering, biology, and chemistry. Studies at the level of individual reactions provide essential information about the function, interactions, and localization of individual molecular species and reactions in a network. However, analyzing the spatial dynamics of complex biochemical networks at this level is difficult. Biochemical networks are nonequilibrium systems containing dozens to hundreds of reactions with nonlinear and time-dependent interactions, and these interactions are influenced by diffusion, flow, and the relative values of state-dependent kinetic parameters. To achieve an overall understanding of the spatial dynamics of a network and the global mechanisms that drive its function, networks must be analyzed as a whole, where all of the components and influential parameters of a network are simultaneously considered. Here, we describe chemical concepts and microfluidic tools developed for network-level investigations of the spatial dynamics of these networks. Modular approaches can be used to simplify these networks by separating them into modules, and simple experimental or computational models can be created by replacing each module with a single reaction. Microfluidics can be used to implement these models as well as to analyze and perturb the complex network itself with spatial control on the micrometer scale. We also describe the application of these network-level approaches to elucidate the mechanisms governing the spatial dynamics of two networkshemostasis (blood clotting) and early patterning of the Drosophila embryo. To investigate the dynamics of the complex network of hemostasis, we simplified the network by using a modular mechanism and created a chemical model based on this mechanism by using microfluidics. Then, we used the mechanism and the model to

  19. The added complications of climate change: understanding and managing biodiversity and ecosystems

    Science.gov (United States)

    Amanda Staudt,; Allison K. Leidner,; Jennifer Howard,; Kate A. Brauman,; Jeffrey S. Dukes,; Hansen, Lara J.; Paukert, Craig; Sabo, John L.; Solorzano, Luis A.

    2013-01-01

    Ecosystems around the world are already threatened by land-use and land-cover change, extraction of natural resources, biological disturbances, and pollution. These environmental stressors have been the primary source of ecosystem degradation to date, and climate change is now exacerbating some of their effects. Ecosystems already under stress are likely to have more rapid and acute reactions to climate change; it is therefore useful to understand how multiple stresses will interact, especially as the magnitude of climate change increases. Understanding these interactions could be critically important in the design of climate adaptation strategies, especially because actions taken by other sectors (eg energy, agriculture, transportation) to address climate change may create new ecosystem stresses.

  20. Beyond "Inert" Ideas to Teaching General Chemistry from Rich Contexts: Visualizing the Chemistry of Climate Change (VC3)

    Science.gov (United States)

    Mahaffy, Peter G.; Holme, Thomas A.; Martin-Visscher, Leah; Martin, Brian E.; Versprille, Ashley; Kirchhoff, Mary; McKenzie, Lallie; Town, Marcy

    2017-01-01

    As one approach to moving beyond transmitting "inert" ideas to chemistry students, we use the term "teaching from rich contexts" to describe implementations of case studies or context-based learning based on systems thinking that provide deep and rich opportunities for learning crosscutting concepts through contexts. This…

  1. A new 2D climate model with chemistry and self consistent eddy-parameterization. The impact of airplane NO{sub x} on the chemistry of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gepraegs, R.; Schmitz, G.; Peters, D. [Institut fuer Atmosphaerenphysik, Kuehlungsborn (Germany)

    1997-12-31

    A 2D version of the ECHAM T21 climate model has been developed. The new model includes an efficient spectral transport scheme with implicit diffusion. Furthermore, photodissociation and chemistry of the NCAR 2D model have been incorporated. A self consistent parametrization scheme is used for eddy heat- and momentum flux in the troposphere. It is based on the heat flux parametrization of Branscome and mixing-length formulation for quasi-geostrophic vorticity. Above 150 hPa the mixing-coefficient K{sub yy} is prescribed. Some of the model results are discussed, concerning especially the impact of aircraft NO{sub x} emission on the model chemistry. (author) 6 refs.

  2. Adaptation to climate change and climate variability:The importance of understanding agriculture as performance

    NARCIS (Netherlands)

    Crane, T.A.; Roncoli, C.; Hoogenboom, G.

    2011-01-01

    Most climate change studies that address potential impacts and potential adaptation strategies are largely based on modelling technologies. While models are useful for visualizing potential future outcomes and evaluating options for potential adaptation, they do not adequately represent and

  3. Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations

    Directory of Open Access Journals (Sweden)

    D. T. Shindell

    2013-03-01

    Full Text Available The new generation GISS climate model includes fully interactive chemistry related to ozone in historical and future simulations, and interactive methane in future simulations. Evaluation of ozone, its tropospheric precursors, and methane shows that the model captures much of the large-scale spatial structure seen in recent observations. While the model is much improved compared with the previous chemistry-climate model, especially for ozone seasonality in the stratosphere, there is still slightly too rapid stratospheric circulation, too little stratosphere-to-troposphere ozone flux in the Southern Hemisphere and an Antarctic ozone hole that is too large and persists too long. Quantitative metrics of spatial and temporal correlations with satellite datasets as well as spatial autocorrelation to examine transport and mixing are presented to document improvements in model skill and provide a benchmark for future evaluations. The difference in radiative forcing (RF calculated using modeled tropospheric ozone versus tropospheric ozone observed by TES is only 0.016 W m−2. Historical 20th Century simulations show a steady increase in whole atmosphere ozone RF through 1970 after which there is a decrease through 2000 due to stratospheric ozone depletion. Ozone forcing increases throughout the 21st century under RCP8.5 owing to a projected recovery of stratospheric ozone depletion and increases in methane, but decreases under RCP4.5 and 2.6 due to reductions in emissions of other ozone precursors. RF from methane is 0.05 to 0.18 W m−2 higher in our model calculations than in the RCP RF estimates. The surface temperature response to ozone through 1970 follows the increase in forcing due to tropospheric ozone. After that time, surface temperatures decrease as ozone RF declines due to stratospheric depletion. The stratospheric ozone depletion also induces substantial changes in surface winds and the Southern Ocean circulation, which may play a role in

  4. Understanding flood-induced water chemistry variability extracting temporal patterns with the LDA method

    Science.gov (United States)

    Aubert, A. H.; Tavenard, R.; Emonet, R.; De Lavenne, A.; Malinowski, S.; Guyet, T.; Quiniou, R.; Odobez, J.; Merot, P.; Gascuel-odoux, C.

    2013-12-01

    Studying floods has been a major issue in hydrological research for years, both in quantitative and qualitative hydrology. Stream chemistry is a mix of solutes, often used as tracers, as they originate from various sources in the catchment and reach the stream by various flow pathways. Previous studies (for instance (1)) hypothesized that stream chemistry reaction to a rainfall event is not unique but varies seasonally, and according to the yearly meteorological conditions. Identifying a typology of flood temporal chemical patterns is a way to better understand catchment processes at the flood and seasonal time scale. We applied a probabilistic model (Latent Dirichlet Allocation or LDA (2)) mining recurrent sequential patterns from a dataset of floods. A set of 472 floods was automatically extracted from a daily 12-year long record of nitrate, dissolved organic carbon, sulfate and chloride concentrations. Rainfall, discharge, water table depth and temperature are also considered. Data comes from a long-term hydrological observatory (AgrHys, western France) located at Kervidy-Naizin. From each flood, a document has been generated that is made of a set of "hydrological words". Each hydrological word corresponds to a measurement: it is a triplet made of the considered variable, the time at which the measurement is made (relative to the beginning of the flood), and its magnitude (that can be low, medium or high). The documents and the number of pattern to be mined are used as input data to the LDA algorithm. LDA relies on spotting co-occurrences (as an alternative to the more traditional study of correlation) between words that appear within the flood documents. It has two nice properties that are its ability to easily deal with missing data and its additive property that allows a document to be seen as a mixture of several flood patterns. The output of LDA is a set of patterns easily represented in graphics. These patterns correspond to typical reactions to rainfall

  5. Understanding how to maintain compliance in the current regulatory climate

    International Nuclear Information System (INIS)

    Bignell, D.T.; Burns, R.

    1995-01-01

    High level radioactive waste facilities must maintain compliance with all regulatory requirements, even those requirements that have been promulgated after the facility was placed into operation. Facilities must aggressively pursue compliance because environmental laws often impose strict liability for violations; therefore, an honest mistake is no defense. Radioactive waste management is constantly under the public microscope, particularly those facilities that handle high-level radioactive waste. The Savannah River Site has effectively met the challenges of regulatory compliance in its HLRW facilities and plans are being formulated to meet future regulatory requirements as well. Understanding, aggressively achieving, and clearly demonstrating compliance is essential for the continued operations of radioactive waste management facilities. This paper examines how HLRW facilities are impacted by regulatory requirements and how compliance in this difficult area is achieved and maintained

  6. Food carbohydrate chemistry

    National Research Council Canada - National Science Library

    Wrolstad, R. E

    2012-01-01

    .... Now in Food Carbohydrate Chemistry, author Wrolstad emphasizes the application of carbohydrate chemistry to understanding the chemistry, physical and functional properties of food carbohydrates...

  7. What is preventing relevant understanding of climate science in the public, media, and policy arenas?

    Science.gov (United States)

    Reisman, J. P.

    2012-12-01

    We need to do a critical self examination of why the communication has thus far failed to sufficiently convey relevance in order to provide a basis for public and policy-maker understanding of the science. This session will focus on major impediments to communicating relevance and the foundations of climate science in two target audiences, those that are unsure, and those that have been misled. The question of 'why' is key. Considerations focus on social psychology and confluence effects that improve, or impede, climate communications and achievement of relevant understanding. Key components of human understanding require context in order to be addressed. Understanding these components form the basis for more effective climate communications.

  8. Preface to the Special Issue on Climate-Chemistry Interactions: Atmospheric Ozone, Aerosols, and Clouds over East Asia

    Directory of Open Access Journals (Sweden)

    Wei-Chyung Wang and Jen-Ping Chen

    2007-01-01

    Full Text Available Atmospheric radiatively-important chemical constituents (e.g., O3 and aerosols are important to maintain the radiation balance of the Earth-atmosphere climate system, and changes in their concentration due to both natural causes and anthropogenic activities will induce climate changes. The distribution of these constituents is sensitive to the state of the climate (e.g., temperature, moisture, wind, and clouds. Therefore, rises in atmospheric temperature and water vapor, and changes in circulation and clouds in global warming can directly affect atmospheric chemistry with subsequent implications for these constituents. Although many coupling mechanisms are identified, the net effect of all these impacts on climate change is not well understood. In particular, changes in water vapor and clouds associated with the hydrologic cycle contain significant uncertainties.

  9. Seasonal variations of stratospheric age spectra in the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM)

    Science.gov (United States)

    Li, Feng; Waugh, Darryn W.; Douglass, Anne R.; Newman, Paul A.; Pawson, Steven; Stolarski, Richard S.; Strahan, Susan E.; Nielsen, J. Eric

    2012-03-01

    The stratospheric age spectrum is the probability distribution function of the transit times since a stratospheric air parcel had last contact with a tropospheric boundary region. Previous age spectrum studies have focused on its annual mean properties. Knowledge of the age spectrum's seasonal variability is very limited. In this study, we investigate the seasonal variations of the stratospheric age spectra using the pulse tracer method in the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM). The relationships between the age spectrum and the boundary impulse response (BIR) are reviewed, and a simplified method to reconstruct seasonally varying age spectra is introduced. The age spectra in GEOSCCM have strong seasonal cycles, especially in the lowermost and lower stratosphere and in the subtropical overworld. These changes reflect the seasonal evolution of the Brewer-Dobson circulation, isentropic mixing, and transport barriers. We also investigate the seasonal and interannual variations of the BIRs. Our results clearly show that computing an ensemble of seasonally dependent BIRs is necessary in order to capture the seasonal and annual mean properties of the stratospheric age spectrum.

  10. Net Influence of an Internally Generated Guasi-biennial Oscillation on Modelled Stratospheric Climate and Chemistry

    Science.gov (United States)

    Hurwitz, Margaret M.; Oman, Luke David; Newman, Paul A.; Song, InSun

    2013-01-01

    A Goddard Earth Observing System Chemistry- Climate Model (GEOSCCM) simulation with strong tropical non-orographic gravity wave drag (GWD) is compared to an otherwise identical simulation with near-zero tropical non-orographic GWD. The GEOSCCM generates a quasibiennial oscillation (QBO) zonal wind signal in response to a tropical peak in GWD that resembles the zonal and climatological mean precipitation field. The modelled QBO has a frequency and amplitude that closely resembles observations. As expected, the modelled QBO improves the simulation of tropical zonal winds and enhances tropical and subtropical stratospheric variability. Also, inclusion of the QBO slows the meridional overturning circulation, resulting in a generally older stratospheric mean age of air. Slowing of the overturning circulation, changes in stratospheric temperature and enhanced subtropical mixing all affect the annual mean distributions of ozone, methane and nitrous oxide. Furthermore, the modelled QBO enhances polar stratospheric variability in winter. Because tropical zonal winds are easterly in the simulation without a QBO, there is a relative increase in tropical zonal winds in the simulation with a QBO. Extratropical differences between the simulations with and without a QBO thus reflect the westerly shift in tropical zonal winds: a relative strengthening of the polar stratospheric jet, polar stratospheric cooling and a weak reduction in Arctic lower stratospheric ozone.

  11. The Promise and Limitations of Using Analogies to Improve Decision-Relevant Understanding of Climate Change.

    Directory of Open Access Journals (Sweden)

    Kaitlin T Raimi

    Full Text Available To make informed choices about how to address climate change, members of the public must develop ways to consider established facts of climate science and the uncertainties about its future trajectories, in addition to the risks attendant to various responses, including non-response, to climate change. One method suggested for educating the public about these issues is the use of simple mental models, or analogies comparing climate change to familiar domains such as medical decision making, disaster preparedness, or courtroom trials. Two studies were conducted using online participants in the U.S.A. to test the use of analogies to highlight seven key decision-relevant elements of climate change, including uncertainties about when and where serious damage may occur, its unprecedented and progressive nature, and tradeoffs in limiting climate change. An internal meta-analysis was then conducted to estimate overall effect sizes across the two studies. Analogies were not found to inform knowledge about climate literacy facts. However, results suggested that people found the medical analogy helpful and that it led people-especially political conservatives-to better recognize several decision-relevant attributes of climate change. These effects were weak, perhaps reflecting a well-documented and overwhelming effect of political ideology on climate change communication and education efforts in the U.S.A. The potential of analogies and similar education tools to improve understanding and communication in a polarized political environment are discussed.

  12. The Promise and Limitations of Using Analogies to Improve Decision-Relevant Understanding of Climate Change.

    Science.gov (United States)

    Raimi, Kaitlin T; Stern, Paul C; Maki, Alexander

    2017-01-01

    To make informed choices about how to address climate change, members of the public must develop ways to consider established facts of climate science and the uncertainties about its future trajectories, in addition to the risks attendant to various responses, including non-response, to climate change. One method suggested for educating the public about these issues is the use of simple mental models, or analogies comparing climate change to familiar domains such as medical decision making, disaster preparedness, or courtroom trials. Two studies were conducted using online participants in the U.S.A. to test the use of analogies to highlight seven key decision-relevant elements of climate change, including uncertainties about when and where serious damage may occur, its unprecedented and progressive nature, and tradeoffs in limiting climate change. An internal meta-analysis was then conducted to estimate overall effect sizes across the two studies. Analogies were not found to inform knowledge about climate literacy facts. However, results suggested that people found the medical analogy helpful and that it led people-especially political conservatives-to better recognize several decision-relevant attributes of climate change. These effects were weak, perhaps reflecting a well-documented and overwhelming effect of political ideology on climate change communication and education efforts in the U.S.A. The potential of analogies and similar education tools to improve understanding and communication in a polarized political environment are discussed.

  13. Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change

    Science.gov (United States)

    Visintainer, Tammie; Linn, Marcia

    2015-04-01

    Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in the Web-based Inquiry Science Environment (WISE), engages sixth-grade students in conducting virtual investigations using NetLogo models to foster an understanding of core mechanisms including the greenhouse effect. Students then test how the greenhouse effect is enhanced by everyday energy use. This study draws on three data sources: (1) pre- and post-unit interviews, (2) analysis of embedded assessments following virtual investigations, and (3) contrasting cases of two students (normative vs. non-normative understanding of the greenhouse effect). Results show the value of using virtual investigations for teaching the mechanisms associated with global climate change. Interviews document that students hold a wide range of ideas about the mechanisms driving global climate change. Investigations with models help students use evidence-based reasoning to distinguish their ideas. Results show that understanding the greenhouse effect offers a foundation for building connections between everyday energy use and increases in global temperature. An impediment to establishing coherent understanding was the persistence of an alternative conception about ozone as an explanation for climate change. These findings illustrate the need for regular revision of curriculum based on classroom trials. We discuss key design features of models and instructional revisions that can transform the teaching and learning of global climate change.

  14. Understanding hydro-climatic drivers of infectious diarrheal diseases in South Asia and their projected risks from regional climate models

    Science.gov (United States)

    Hasan, M. A.; Akanda, A. S.; Jutla, A.; Huq, A.; Colwell, R. R.

    2017-12-01

    Diarrheal diseases remain a major threat to global public health and are the second largest cause of death for children under the age of five. Cholera and Rotavirus diarrhea together comprise more than two-thirds of the diarrheal morbidity in South Asia. Recent studies have shown strong influences of hydrologic processes and climatic variabilities on the onset, intensity, and seasonality of the outbreaks of these diseases. However, our understanding of the propagation and manifestation of these diseases in a changing climate in vulnerable regions of the world are still limited. In this study, we build on our understanding of the role of the hydro-climatic drivers of diarrheal diseases in South Asia in recent decades to project the probable risks of the diseases in this century using the climate projection scenarios from dynamically downscaled climate models. To build the current model, we conducted a multivariate logistic regression assessment using 34 climate indices to examine the role of temperature and rainfall extremes over the seasonality of rotavirus and cholera over a South Asian country, Bangladesh. We utilize the availability of long and reliable time-series of cholera and rotavirus from Bangladesh and conducted a temporal and spatial analysis derived from both ground and satellite observations. For projecting the future risks of the diseases, we used five bias-corrected Regional Climate Model (RCM) results of the CMIP5 series under the RCP 4.5 scenario. Cholera risk shows a significantly higher rate of increase compared to Rotavirus in Bangladesh in the 21st century. As the disease is significantly influenced by extreme rainfall, majority projections showed a significant increase in flood-driven cholera risk. Most RCMs suggest a warmer winter in future years, suggesting reduced risk for Rotavirus. However, as the dryness of the climate is also highly correlated with rotavirus epidemics, the incremental risk of the disease due to drier winters would

  15. Introducing a New Elementary GLOBE Book on Climate: Supporting Educators and Students in their Understanding of the Concepts Underlying Climate and Climate Change

    Science.gov (United States)

    Stanitski, D.; Hatheway, B.; Gardiner, L. S.; Taylor, J.; Chambers, L. H.

    2016-12-01

    Much of the focus on climate literacy in K-12 occurs in middle and high school, where teachers and students can dig into the science in some depth. It is important, however, to introduce this topic at an early age, building on a child's natural curiosity about the world around them - but without overwhelming them with frightening climate change impacts. In some U.S. school systems, a recent focus on standardized testing has crowded out science instruction in order to bring up literacy scores. To give teachers a resource to maintain some science instruction under these conditions, a series of Elementary GLOBE books have been developed. These fictional stories describe sound science and engineering practices that are essential for students to learn the process of science while expanding literacy skills, strongly encouraged in the Next Generation Science Standards (NGSS). The main concepts developed in a new Elementary GLOBE book on climate, titled "What in the World Is Happening to Our Climate?", will be introduced in this presentation. This book complements six other Earth System Science modules within the Elementary GLOBE curriculum and is freely available on the GLOBE website (www.globe.gov/elementaryglobe). The book discusses the concept that climate is changing in different ways and places around the world, and what happens to the climate in one place affects other locations across the globe. Supporting ideas clarify the difference between weather and climate, introduce climate science concepts, reveal the impacts of sea level rise, and help students understand that, while humans are contributing to climate change, they can also participate in solutions that address this challenge. Accompanying teacher's notes and companion classroom activities will be described to help elementary school teachers understand how to approach the subject of climate change with their students.

  16. Understanding "Green Chemistry" and "Sustainability": An Example of Problem-Based Learning (PBL)

    Science.gov (United States)

    Günter, Tugçe; Akkuzu, Nalan; Alpat, Senol

    2017-01-01

    Background: This study uses problem-based learning (PBL) to ensure that students comprehend the significance of green chemistry better by experiencing the stages of identifying the problem, developing hypotheses, and providing solutions within the problem-solving process. Purpose: The aim of this study is to research the effect of PBL implemented…

  17. "Holes" in Student Understanding: Addressing Prevalent Misconceptions regarding Atmospheric Environmental Chemistry

    Science.gov (United States)

    Kerr, Sara C.; Walz, Kenneth A.

    2007-01-01

    There is a misconception among undergraduate students that global warming is caused by holes in the ozone layer. In this study, we evaluated the presence of this and other misconceptions surrounding atmospheric chemistry that are responsible for the entanglement of the greenhouse effect and the ozone hole in students' conceptual frameworks. We…

  18. Do High School Chemistry Examinations Inhibit Deeper Level Understanding of Dynamic Reversible Chemical Reactions?

    Science.gov (United States)

    Wheeldon, R.; Atkinson, R.; Dawes, A.; Levinson, R.

    2012-01-01

    Background and purpose: Chemistry examinations can favour the deployment of algorithmic procedures like Le Chatelier's Principle (LCP) rather than reasoning using chemical principles. This study investigated the explanatory resources which high school students use to answer equilibrium problems and whether the marks given for examination answers…

  19. Reflections on High School Students' Graphing Skills and Their Conceptual Understanding of Drawing Chemistry Graphs

    Science.gov (United States)

    Gültepe, Nejla

    2016-01-01

    Graphing subjects in chemistry has been used to provide alternatives to verbal and algorithmic descriptions of a subject by handing students another way of improving their manipulation of concepts. Teachers should therefore know the level of students' graphing skills. Studies have identified that students have difficulty making connections with…

  20. Need of paleoclimatic reconstructions to understand natural and anthropogenic climatic hazards

    Digital Repository Service at National Institute of Oceanography (India)

    Nigam, R.

    in monsoon rainfall as her economy largely depends on rainfall. Such climatic events (floods, droughts etc.) and their effects on society were recorded right from early historic period. Such historical climatic records are mostly available in the inscriptions... of the fishes. which would in turn affect the economy of the country. Along the Indian coast line, no direct evidence is available to understand the migratory changes of fishes in the past. Quest for an additional tool to decipher such eventualities in the past...

  1. A Big Data Guide to Understanding Climate Change: The Case for Theory-Guided Data Science.

    Science.gov (United States)

    Faghmous, James H; Kumar, Vipin

    2014-09-01

    Global climate change and its impact on human life has become one of our era's greatest challenges. Despite the urgency, data science has had little impact on furthering our understanding of our planet in spite of the abundance of climate data. This is a stark contrast from other fields such as advertising or electronic commerce where big data has been a great success story. This discrepancy stems from the complex nature of climate data as well as the scientific questions climate science brings forth. This article introduces a data science audience to the challenges and opportunities to mine large climate datasets, with an emphasis on the nuanced difference between mining climate data and traditional big data approaches. We focus on data, methods, and application challenges that must be addressed in order for big data to fulfill their promise with regard to climate science applications. More importantly, we highlight research showing that solely relying on traditional big data techniques results in dubious findings, and we instead propose a theory-guided data science paradigm that uses scientific theory to constrain both the big data techniques as well as the results-interpretation process to extract accurate insight from large climate data .

  2. he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study

    Energy Technology Data Exchange (ETDEWEB)

    Keene, William C. [University of Virginia; Long, Michael S. [University of Virginia

    2013-05-20

    This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistry's MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences

  3. Using Scientific Argumentation in a Science Methods Course to Improve Preservice Teachers' Understanding of Climate Change

    Science.gov (United States)

    Lambert, J. L.; Bleicher, R. E.; Soden, B. J.

    2014-12-01

    Given that K-12 students have numerous alternative conceptions, it is critical that teachers have an understanding of the fundamental science underlying climate change (Feldman et al., 2010). Many teachers, however, do not demonstrate adequate understanding of these concepts (Daskolia et al., 2006). Argumentation has been identified as a mechanism for conceptual change (Mercer et al., 2004). Even with several educational initiatives promoting and supporting the use of argumentation as an instructional practice, teachers often struggle to implement argumentation in the classroom (Sampson & Blanchard, 2012). To remedy both issues above, we have designed an innovative methods course to provide background in climate change knowledge and argumentation instruction. In our methods course, we utilize Climate Science Investigations (CSI), an online, interactive series of modules and teaching resources funded by a NASA grant to support teachers learning about the basic science concepts underlying climate change. A key assignment is to develop and present an evidence-based scientific argument. The teachers were assigned a typical question and claim of climate skeptics and asked to conduct research on the scientific findings to prepare a counter-argument (rebuttal). This study examined changes in 60 preservice teachers' knowledge and perceptions about climate change after participation in the course. The teachers' understanding of fundamental concepts increased significantly. Their perceptions about climate change became more aligned to those of climate scientists. Findings suggest that scientific argumentation can play an effective role in the preparation of science educators. In addition to reporting findings in more detail, methods course activities, particularly in argumentation, will be shared in our presentation.

  4. Understanding, modeling and predicting weather and climate extremes: Challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Jana Sillmann

    2017-12-01

    Full Text Available Weather and climate extremes are identified as major areas necessitating further progress in climate research and have thus been selected as one of the World Climate Research Programme (WCRP Grand Challenges. Here, we provide an overview of current challenges and opportunities for scientific progress and cross-community collaboration on the topic of understanding, modeling and predicting extreme events based on an expert workshop organized as part of the implementation of the WCRP Grand Challenge on Weather and Climate Extremes. In general, the development of an extreme event depends on a favorable initial state, the presence of large-scale drivers, and positive local feedbacks, as well as stochastic processes. We, therefore, elaborate on the scientific challenges related to large-scale drivers and local-to-regional feedback processes leading to extreme events. A better understanding of the drivers and processes will improve the prediction of extremes and will support process-based evaluation of the representation of weather and climate extremes in climate model simulations. Further, we discuss how to address these challenges by focusing on short-duration (less than three days and long-duration (weeks to months extreme events, their underlying mechanisms and approaches for their evaluation and prediction.

  5. Crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes.

    Science.gov (United States)

    Wilson, S K; Adjeroud, M; Bellwood, D R; Berumen, M L; Booth, D; Bozec, Y-Marie; Chabanet, P; Cheal, A; Cinner, J; Depczynski, M; Feary, D A; Gagliano, M; Graham, N A J; Halford, A R; Halpern, B S; Harborne, A R; Hoey, A S; Holbrook, S J; Jones, G P; Kulbiki, M; Letourneur, Y; De Loma, T L; McClanahan, T; McCormick, M I; Meekan, M G; Mumby, P J; Munday, P L; Ohman, M C; Pratchett, M S; Riegl, B; Sano, M; Schmitt, R J; Syms, C

    2010-03-15

    Expert opinion was canvassed to identify crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes. Scientists that had published three or more papers on the effects of climate and environmental factors on reef fishes were invited to submit five questions that, if addressed, would improve our understanding of climate change effects on coral reef fishes. Thirty-three scientists provided 155 questions, and 32 scientists scored these questions in terms of: (i) identifying a knowledge gap, (ii) achievability, (iii) applicability to a broad spectrum of species and reef habitats, and (iv) priority. Forty-two per cent of the questions related to habitat associations and community dynamics of fish, reflecting the established effects and immediate concern relating to climate-induced coral loss and habitat degradation. However, there were also questions on fish demographics, physiology, behaviour and management, all of which could be potentially affected by climate change. Irrespective of their individual expertise and background, scientists scored questions from different topics similarly, suggesting limited bias and recognition of a need for greater interdisciplinary and collaborative research. Presented here are the 53 highest-scoring unique questions. These questions should act as a guide for future research, providing a basis for better assessment and management of climate change impacts on coral reefs and associated fish communities.

  6. Crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes

    KAUST Repository

    Wilson, S. K.

    2010-02-26

    Expert opinion was canvassed to identify crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes. Scientists that had published three or more papers on the effects of climate and environmental factors on reef fishes were invited to submit five questions that, if addressed, would improve our understanding of climate change effects on coral reef fishes. Thirty-three scientists provided 155 questions, and 32 scientists scored these questions in terms of: (i) identifying a knowledge gap, (ii) achievability, (iii) applicability to a broad spectrum of species and reef habitats, and (iv) priority. Forty-two per cent of the questions related to habitat associations and community dynamics of fish, reflecting the established effects and immediate concern relating to climate-induced coral loss and habitat degradation. However, there were also questions on fish demographics, physiology, behaviour and management, all of which could be potentially affected by climate change. Irrespective of their individual expertise and background, scientists scored questions from different topics similarly, suggesting limited bias and recognition of a need for greater interdisciplinary and collaborative research. Presented here are the 53 highest-scoring unique questions. These questions should act as a guide for future research, providing a basis for better assessment and management of climate change impacts on coral reefs and associated fish communities.

  7. Contributions, Controversies, and Credibility: Citizen Science and Understandings of Climate Change

    Science.gov (United States)

    Shirk, J.; Bonney, R.

    2011-12-01

    Studying the impacts of global climate change on earth systems requires data to be gathered at vast spatial and temporal scales. Numerous citizen science projects, including the National Audubon Society Christmas Bird Count and the Cooperative Observer Program of the National Weather Service, engage volunteers in collecting environmental information. Some projects span countries or even continents and have been operating for decades, meaning long-term and geographically distributed data are already available for analysis. Citizen science projects have made significant contributions to understanding the effects of climate change by revealing changing patterns in phenology, shifts in species' ranges and distributions, and trends in temperature and rainfall patterns. In addition, citizen science presents opportunities for developing public understanding of climate change and its consequences. According to the Yale Project on Climate Change Communication (YPCCC), public responses to this issue can be categorized into six groups - from alarmed to dismissive - with each group characterized as much by attitudes about climate change as by understandings of the topic. Participants in citizen science projects run by the Cornell Lab of Ornithology, who tend to be highly educated and hold positive views towards the environment, exhibit an unexpected degree of skepticism and misunderstandings regarding climate science. This parallels findings by YPCCC suggesting that, on the issue of climate change, the American public is more meaningfully segmented by ideology and cultural affiliation than by educational background and economic status. No matter how they are segmented, if the public perceives a controversy, individuals often decide what to believe based on who they trust to impart credible information. Citizen science has long endured - and in most fields, has largely overcome - questions of credibility. With refined and sophisticated measures to ensure data quality, the

  8. Chronic disease and climate change: understanding co-benefits and their policy implications.

    Science.gov (United States)

    Capon, Anthony G; Rissel, Chris E

    2010-01-01

    Chronic disease and climate change are major public policy challenges facing governments around the world. An improved understanding of the relationship between chronic disease and climate change should enable improved policy formulation to support both human health and the health of the planet. Chronic disease and climate change are both unintended consequences of our way of life, and are attributable in part to the ready availability of inexpensive fossil fuel energy. There are co-benefits for health from actions to address climate change. For example, substituting physical activity and a vegetable-rich diet for motor vehicle transport and a meat-rich diet is both good for health and good for the planet. We should encourage ways of living that use less carbon as these can be healthy ways of living, for both individuals and society. Quantitative modelling of co-benefits should inform policy responses.

  9. Improving Students' Understanding of Molecular Structure through Broad-Based Use of Computer Models in the Undergraduate Organic Chemistry Lecture

    Science.gov (United States)

    Springer, Michael T.

    2014-01-01

    Several articles suggest how to incorporate computer models into the organic chemistry laboratory, but relatively few papers discuss how to incorporate these models broadly into the organic chemistry lecture. Previous research has suggested that "manipulating" physical or computer models enhances student understanding; this study…

  10. ROS signalling in a destabilised world: A molecular understanding of climate change.

    Science.gov (United States)

    Carmody, Melanie; Waszczak, Cezary; Idänheimo, Niina; Saarinen, Timo; Kangasjärvi, Jaakko

    2016-09-20

    Climate change results in increased intensity and frequency of extreme abiotic and biotic stress events. In plants, reactive oxygen species (ROS) accumulate in proportion to the level of stress and are major signalling and regulatory metabolites coordinating growth, defence, acclimation and cell death. Our knowledge of ROS homeostasis, sensing, and signalling is therefore key to understanding the impacts of climate change at the molecular level. Current research is uncovering new insights into temporal-spatial, cell-to-cell and systemic ROS signalling pathways, particularly how these affect plant growth, defence, and more recently acclimation mechanisms behind stress priming and long term stress memory. Understanding the stabilising and destabilising factors of ROS homeostasis and signalling in plants exposed to extreme and fluctuating stress will concomitantly reveal how to address future climate change challenges in global food security and biodiversity management. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Urban High School Students' Critical Science Agency: Conceptual Understandings and Environmental Actions around Climate Change

    Science.gov (United States)

    McNeill, Katherine L.; Vaughn, Meredith Houle

    2012-01-01

    This study investigates how the enactment of a climate change curriculum supports students' development of critical science agency, which includes students developing deep understandings of science concepts and the ability to take action at the individual and community levels. We examined the impact of a four to six week urban ecology curriculum…

  12. Understanding LiOH chemistry in a ruthenium-catalyzed Li-O{sub 2} battery

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tao; Liu, Zigeng; Kim, Gunwoo; Grey, Clare P. [Department of Chemistry, University of Cambridge (United Kingdom); Frith, James T.; Garcia-Araez, Nuria [Department of Chemistry, University of Southampton (United Kingdom)

    2017-12-11

    Non-aqueous Li-O{sub 2} batteries are promising for next-generation energy storage. New battery chemistries based on LiOH, rather than Li{sub 2}O{sub 2}, have been recently reported in systems with added water, one using a soluble additive LiI and the other using solid Ru catalysts. Here, the focus is on the mechanism of Ru-catalyzed LiOH chemistry. Using nuclear magnetic resonance, operando electrochemical pressure measurements, and mass spectrometry, it is shown that on discharging LiOH forms via a 4 e{sup -} oxygen reduction reaction, the H in LiOH coming solely from added H{sub 2}O and the O from both O{sub 2} and H{sub 2}O. On charging, quantitative LiOH oxidation occurs at 3.1 V, with O being trapped in a form of dimethyl sulfone in the electrolyte. Compared to Li{sub 2}O{sub 2}, LiOH formation over Ru incurs few side reactions, a critical advantage for developing a long-lived battery. An optimized metal-catalyst-electrolyte couple needs to be sought that aids LiOH oxidation and is stable towards attack by hydroxyl radicals. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Decadal to multi-decadal scale variability of Indian summer monsoon rainfall in the coupled ocean-atmosphere-chemistry climate model SOCOL-MPIOM

    Science.gov (United States)

    Malik, Abdul; Brönnimann, Stefan; Stickler, Alexander; Raible, Christoph C.; Muthers, Stefan; Anet, Julien; Rozanov, Eugene; Schmutz, Werner

    2017-11-01

    The present study is an effort to deepen the understanding of Indian summer monsoon rainfall (ISMR) on decadal to multi-decadal timescales. We use ensemble simulations for the period AD 1600-2000 carried out by the coupled Atmosphere-Ocean-Chemistry-Climate Model (AOCCM) SOCOL-MPIOM. Firstly, the SOCOL-MPIOM is evaluated using observational and reanalyses datasets. The model is able to realistically simulate the ISMR as well as relevant patterns of sea surface temperature and atmospheric circulation. Further, the influence of Atlantic Multi-decadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), and El Niño Southern Oscillation (ENSO) variability on ISMR is realistically simulated. Secondly, we investigate the impact of internal climate variability and external climate forcings on ISMR on decadal to multi-decadal timescales over the past 400 years. The results show that AMO, PDO, and Total Solar Irradiance (TSI) play a considerable role in controlling the wet and dry decades of ISMR. Resembling observational findings most of the dry decades of ISMR occur during a negative phase of AMO and a simultaneous positive phase of PDO. The observational and simulated datasets reveal that on decadal to multi-decadal timescales the ISMR has consistent negative correlation with PDO whereas its correlation with AMO and TSI is not stationary over time.

  14. Sustainable Materials Management (SMM) Web Academy Webinar: Compost from Food Waste: Understanding Soil Chemistry and Soil Biology on a College/University Campus

    Science.gov (United States)

    This page contains information about the Sustainable Materials Management (SMM) Web Academy Webinar Series titled Compost from Food Waste:Understanding Soil Chemistry and Soil Biology on a College/University Campus

  15. Understanding subtropical cloud feedbacks in anthropogenic climate change simulations of CMIP5 models

    Science.gov (United States)

    Myers, T. A.; Norris, J. R.

    2014-12-01

    Subtropical marine boundary layer clouds over the eastern subtropics are poorly simulated by climate models and contribute substantially to inter-model differences in climate sensitivity. The aim of the present study is to better understand inter-model differences in projected cloud changes and to constrain the cloud feedback to warming. To do this, we compute independent relationships of cloud properties (cloud fraction, cloud-top height, and cloud radiative effect) to interannual variations in sea surface temperature, estimated inversion strength, horizontal surface temperature advection, free-tropospheric humidity, and subsidence using observations and as simulated by models participating in the Coupled Model Intercomparison Project phase 5. Each relationship is considered to be independent because it represents the association between some cloud property and a meteorological parameter when the other parameters are held constant. We approximate modelled cloud trends in climate change simulations as the sum of the simulated cloud/meteorology relationships multiplied by the respective meteorological trends. We compare these estimated cloud trends to the sum of the observed cloud/meteorology relationships multiplied by the simulated meteorological trends. This method allows us to better understand the sources of inter-model differences in projected cloud changes, including whether cloud/meteorology relationships or meteorological trends dominate the spread of cloud changes. We approximate the true cloud trend due to climate change as the sum of the observed cloud/meteorology relationships multiplied by the multi-model mean meteorological trends. The results may provide an observational and model constraint on climate sensitivity.

  16. Forests under climate change and air pollution: Gaps in understanding and future directions for research

    International Nuclear Information System (INIS)

    Matyssek, R.; Wieser, G.; Calfapietra, C.; Vries, W. de; Dizengremel, P.; Ernst, D.; Jolivet, Y.; Mikkelsen, T.N.; Mohren, G.M.J.; Le Thiec, D.; Tuovinen, J.-P.

    2012-01-01

    Forests in Europe face significant changes in climate, which in interaction with air quality changes, may significantly affect forest productivity, stand composition and carbon sequestration in both vegetation and soils. Identified knowledge gaps and research needs include: (i) interaction between changes in air quality (trace gas concentrations), climate and other site factors on forest ecosystem response, (ii) significance of biotic processes in system response, (iii) tools for mechanistic and diagnostic understanding and upscaling, and (iv) the need for unifying modelling and empirical research for synthesis. This position paper highlights the above focuses, including the global dimension of air pollution as part of climate change and the need for knowledge transfer to enable reliable risk assessment. A new type of research site in forest ecosystems (“supersites”) will be conducive to addressing these gaps by enabling integration of experimentation and modelling within the soil-plant-atmosphere interface, as well as further model development. - Highlights: ► Research needs are identified for forests under climate change and air pollution. ► Abiotic–biotic interactions in response impede tree-ecosystem upscaling. ► Integration of empirical and modelling research is advocated. ► The concept of multi-scale investigations at novel “Supersites” is propagated. ► “Supersites” warrant mechanistic understanding of soil-plant-atmosphere interface. - Forests under climate change and air pollution require empirical and modelling research needs to be integrated at novel “Supersites” through multi-scale investigations.

  17. Photosynthesis-dependent Isoprene Emission from Leaf to Planet in a Global Carbon-chemistry-climate Model

    Science.gov (United States)

    Unger, N.; Harper, K.; Zeng, Y.; Kiang, N. Y.; Alienov, I.; Arneth, A.; Schurgers, G.; Amelynck, C.; Goldstein, A.; Guenther, A.; hide

    2013-01-01

    We describe the implementation of a biochemical model of isoprene emission that depends on the electron requirement for isoprene synthesis into the FarquharBallBerry leaf model of photosynthesis and stomatal conductance that is embedded within a global chemistry-climate simulation framework. The isoprene production is calculated as a function of electron transport-limited photosynthesis, intercellular and atmospheric carbon dioxide concentration, and canopy temperature. The vegetation biophysics module computes the photosynthetic uptake of carbon dioxide coupled with the transpiration of water vapor and the isoprene emission rate at the 30 min physical integration time step of the global chemistry-climate model. In the model, the rate of carbon assimilation provides the dominant control on isoprene emission variability over canopy temperature. A control simulation representative of the present-day climatic state that uses 8 plant functional types (PFTs), prescribed phenology and generic PFT-specific isoprene emission potentials (fraction of electrons available for isoprene synthesis) reproduces 50 of the variability across different ecosystems and seasons in a global database of 28 measured campaign-average fluxes. Compared to time-varying isoprene flux measurements at 9 select sites, the model authentically captures the observed variability in the 30 min average diurnal cycle (R2 6496) and simulates the flux magnitude to within a factor of 2. The control run yields a global isoprene source strength of 451 TgC yr1 that increases by 30 in the artificial absence of plant water stress and by 55 for potential natural vegetation.

  18. Understanding the link between aridity and hydrological extremes: Lessons from hyper-arid climates

    Science.gov (United States)

    Molini, Annalisa

    2016-04-01

    Precipitation over arid and hyper-arid regions represents "per se" an extreme event, often resulting in surface-hydrologic impacts comparatively more catastrophic than in temperate climates. The spatio-temporal distribution of precipitation through arid climates is in fact characterized by intense and short-lived patterns and intimately related to the local availability of water and energy. However - given the scarcity of data and the limited number of research contributions analyzing rain extremes in hyper arid environments - is still an open question whether rainfall sporadically falling on hyper-arid regions, and in particular its convective component, presents peculiar features connected with the endemically water-limited regime of these regions. If so, understanding the link between aridity and rainfall variability could turn out a precious tool to investigate not only the climate of arid regions but also more global trends of precipitation under global warming and aridification. In this contribution we analyze the connection between rainfall variability, its temporal scaling laws and aridity in a climatological prospective. Through a wide dataset of precipitation time series covering most Continental US (CONUS) we explore the local dependence of classic intermittency measures on aridity, finding evidence of a well-defined variability patterns across a wide range of water-limited climates. We also explore the connection between different intermittency features of arid climates as contrasted with "wet" regions and briefly discuss the links between clustering, water-availability thresholds and hydro-climatic extremes. Our findings provide a framework to better understand the link between intermittency, rainfall scaling and climate in water-limited regions of the world, with possible extension to global aridification studies.

  19. Data-based perfect-deficit approach to understanding climate extremes and forest carbon assimilation capacity

    Science.gov (United States)

    Wei, Suhua; Yi, Chuixiang; Hendrey, George; Eaton, Timothy; Rustic, Gerald; Wang, Shaoqiang; Liu, Heping; Krakauer, Nir Y.; Wang, Weiguo; Desai, Ankur R.; Montagnani, Leonardo; Tha Paw U, Kyaw; Falk, Matthias; Black, Andrew; Bernhofer, Christian; Grünwald, Thomas; Laurila, Tuomas; Cescatti, Alessandro; Moors, Eddy; Bracho, Rosvel; Valentini, Riccardo

    2014-05-01

    Several lines of evidence suggest that the warming climate plays a vital role in driving certain types of extreme weather. The impact of warming and of extreme weather on forest carbon assimilation capacity is poorly known. Filling this knowledge gap is critical towards understanding the amount of carbon that forests can hold. Here, we used a perfect-deficit approach to identify forest canopy photosynthetic capacity (CPC) deficits and analyze how they correlate to climate extremes, based on observational data measured by the eddy covariance method at 27 forest sites over 146 site-years. We found that droughts severely affect the carbon assimilation capacities of evergreen broadleaf forest (EBF) and deciduous broadleaf forest. The carbon assimilation capacities of Mediterranean forests were highly sensitive to climate extremes, while marine forest climates tended to be insensitive to climate extremes. Our estimates suggest an average global reduction of forest CPC due to unfavorable climate extremes of 6.3 Pg C (˜5.2% of global gross primary production) per growing season over 2001-2010, with EBFs contributing 52% of the total reduction.

  20. Physical Chemistry of Nanomedicine: Understanding the Complex Behaviors of Nanoparticles in Vivo

    Science.gov (United States)

    Lane, Lucas A.; Qian, Ximei; Smith, Andrew M.; Nie, Shuming

    2015-04-01

    Nanomedicine is an interdisciplinary field of research at the interface of science, engineering, and medicine, with broad clinical applications ranging from molecular imaging to medical diagnostics, targeted therapy, and image-guided surgery. Despite major advances during the past 20 years, there are still major fundamental and technical barriers that need to be understood and overcome. In particular, the complex behaviors of nanoparticles under physiological conditions are poorly understood, and detailed kinetic and thermodynamic principles are still not available to guide the rational design and development of nanoparticle agents. Here we discuss the interactions of nanoparticles with proteins, cells, tissues, and organs from a quantitative physical chemistry point of view. We also discuss insights and strategies on how to minimize nonspecific protein binding, how to design multistage and activatable nanostructures for improved drug delivery, and how to use the enhanced permeability and retention effect to deliver imaging agents for image-guided cancer surgery.

  1. Satellite Observations and Chemistry Climate Models - A Meandering Path Towards Better Predictions

    Science.gov (United States)

    Douglass, Anne R.

    2011-01-01

    Knowledge of the chemical and dynamical processes that control the stratospheric ozone layer has grown rapidly since the 1970s, when ideas that depletion of the ozone layer due to human activity were put forth. The concept of ozone depletion due to anthropogenic chlorine increase is simple; quantification of the effect is much more difficult. The future of stratospheric ozone is complicated because ozone is expected to increase for two reasons: the slow decrease in anthropogenic chlorine due to the Montreal Protocol and its amendments and stratospheric cooling caused by increases in carbon dioxide and other greenhouse gases. Prediction of future ozone levels requires three-dimensional models that represent physical, photochemical and radiative processes, i.e., chemistry climate models (CCMs). While laboratory kinetic and photochemical data are necessary inputs for a CCM, atmospheric measurements are needed both to reveal physical and chemical processes and for comparison with simulations to test the conceptual model that CCMs represent. Global measurements are available from various satellites including but not limited to the LIMS and TOMS instruments on Nimbus 7 (1979 - 1993), and various instruments on the Upper Atmosphere Research Satellite (1991 - 2005), Envisat (2002 - ongoing), Sci-Sat (2003 - ongoing) and Aura (2004 - ongoing). Every successful satellite instrument requires a physical concept for the measurement, knowledge of physical chemical properties of the molecules to be measured, and stellar engineering to design an instrument that will survive launch and operate for years with no opportunity for repair but providing enough information that trend information can be separated from any instrument change. The on-going challenge is to use observations to decrease uncertainty in prediction. This talk will focus on two applications. The first considers transport diagnostics and implications for prediction of the eventual demise of the Antarctic ozone hole

  2. Future fire probability modeling with climate change data and physical chemistry

    Science.gov (United States)

    Richard P. Guyette; Frank R. Thompson; Jodi Whittier; Michael C. Stambaugh; Daniel C. Dey

    2014-01-01

    Climate has a primary influence on the occurrence and rate of combustion in ecosystems with carbon-based fuels such as forests and grasslands. Society will be confronted with the effects of climate change on fire in future forests. There are, however, few quantitative appraisals of how climate will affect wildland fire in the United States. We demonstrated a method for...

  3. Moving beyond a knowledge deficit perspective to understand climate action by youth

    Science.gov (United States)

    Busch, K. C.

    2016-12-01

    This presentation reports on an experiment testing two framings of uncertainty on students' intent to take action to mitigate climate change. Additionally, to explore possible mechanisms involved in the choice of taking mitigating action, several factors highlighted within behavior theory literature were measured to create a theoretical model for youth's choice to take mitigating action. The factors explored were: knowledge, certainty, affect, efficacy, and social norms. The experiment was conducted with 453 middle and high school students within the Bay Area. Findings indicated that these students did hold a basic understanding of the causes and effects of climate change. They were worried and felt negatively about the topic. They felt somewhat efficacious about their personal ability to mitigate climate change. The students reported that they associated with people who were more likely to think climate change was real and caused by humans. Students also reported that they often take part in private pro-environmental behaviors such as using less electricity. When asked to respond freely to a question about what think about climate change, participants described the negative effects of human-caused climate change on Earth systems at the global scale and as a current phenomenon. The results of the experiment showed that while the text portraying climate change with high uncertainty did affect student's own certainty and their perception of scientists' certainty, it did not affect behavioral intention. This result can be explained through regression analysis. It was found that efficacy and social norms were direct determinants of pro-environmental behaviors. The cognitive variables - knowledge and certainty - and the psychological variable - affect - were not significant predictors of pro-environmental behavior. The implications for this study are that while students hold basic understanding of the causes and effects of climate change, this understanding lacks

  4. Utilizing Satellite Precipitation Products to Understand the Link Between Climate Variability and Malaria

    Science.gov (United States)

    Maggioni, V.; Mousam, A.; Delamater, P. L.; Cash, B. A.; Quispe, A.

    2015-12-01

    Malaria is a public health threat to people globally leading to 198 million cases and 584,000 deaths annually. Outbreaks of vector borne diseases such as malaria can be significantly impacted by climate variables such as precipitation. For example, an increase in rainfall has the potential to create pools of water that can serve as breeding locations for mosquitos. Peru is a country that is currently controlling malaria, but has not been able to completely eliminate the disease. Despite the various initiatives in order to control malaria - including regional efforts to improve surveillance, early detection, prompt treatment, and vector management - malaria cases in Peru have risen between 2011 and 2014. The purpose of this study is to test the hypothesis that climate variability plays a fundamental role in malaria occurrence over a 12-year period (2003-2014) in Peru. When analyzing climate variability, it is important to obtain high-quality, high-resolution data for a time series long enough to draw conclusion about how climate variables have been and are changing. Remote sensing is a powerful tool for measuring and monitoring climate variables continuously in time and space. A widely used satellite-based precipitation product, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), available globally since 1998, was used to obtain 3-hourly data with a spatial resolution of 0.25° x 0.25°. The precipitation data was linked to weekly (2003-2014) malaria cases collected by health centers and available at a district level all over Peru to investigate the relationship between precipitation and the seasonal and annual variations in malaria incidence. Further studies will incorporate additional climate variables such as temperature, humidity, soil moisture, and surface pressure from remote sensing data products and climate models. Ultimately, this research will help us to understand if climate variability impacts malaria incidence

  5. Promoting Climate Literacy and Conceptual Understanding among In-service Secondary Science Teachers requires an Epistemological Perspective

    Science.gov (United States)

    Bhattacharya, D.; Forbes, C.; Roehrig, G.; Chandler, M. A.

    2017-12-01

    Promoting climate literacy among in-service science teachers necessitates an understanding of fundamental concepts about the Earth's climate System (USGCRP, 2009). Very few teachers report having any formal instruction in climate science (Plutzer et al., 2016), therefore, rather simple conceptions of climate systems and their variability exist, which has implications for students' science learning (Francies et al., 1993; Libarkin, 2005; Rebich, 2005). This study uses the inferences from a NASA Innovations in Climate Education (NICE) teacher professional development program (CYCLES) to establish the necessity for developing an epistemological perspective among teachers. In CYCLES, 19 middle and high school (male=8, female=11) teachers were assessed for their understanding of global climate change (GCC). A qualitative analysis of their concept maps and an alignment of their conceptions with the Essential Principles of Climate Literacy (NOAA, 2009) demonstrated that participants emphasized on EPCL 1, 3, 6, 7 focusing on the Earth system, atmospheric, social and ecological impacts of GCC. However, EPCL 4 (variability in climate) and 5 (data-based observations and modeling) were least represented and emphasized upon. Thus, participants' descriptions about global climatic patterns were often factual rather than incorporating causation (why the temperatures are increasing) and/or correlation (describing what other factors might influence global temperatures). Therefore, engaging with epistemic dimensions of climate science to understand the processes, tools, and norms through which climate scientists study the Earth's climate system (Huxter et al., 2013) is critical for developing an in-depth conceptual understanding of climate. CLiMES (Climate Modeling and Epistemology of Science), a NSF initiative proposes to use EzGCM (EzGlobal Climate Model) to engage students and teachers in designing and running simulations, performing data processing activities, and analyzing

  6. Crossing the river: Developing a strategy to support understanding of uncertainty within probabilistic climate projections.

    Science.gov (United States)

    Walton, P.; Lamb, R.

    2010-09-01

    The UK Climate Impacts Programme (UKCIP) was established by government in 1997 to support the UK's engagement with becoming better adapted to a changing climate. As the lead organisation in the UK on climate change adaptation, UKCIP oversaw the development of the UK Climate Projections (UKCP09) which were launched in June 2009 providing, for the first time, probabilistic climate projections for the UK. As with previous generations of UKCIP climate scenarios, they were freely accessible and intended for a whole spectrum of users, from technical experts to a lay audience. . Prior to the launch of UKCP09 it was acknowledged that users would need support in understanding key concepts, such as the uncertainty inherent in the projections, to be able to use them appropriately. The user support strategy was therefore developed. It is founded on robust pedagogical principles and draws on the latest thinking on public understanding of science (PUS) that places the user at the centre of the communication process. The adopted approach first identifies profiles of the key users of the climate projections and the ways in which they would use and access the data. Based on these profiles it is possible to identify a range of mechanisms that allow the user to engage with understanding the projections in different ways and situations including lectures, workshops and online learning. Within this blended strategy an exercise was developed specifically to support users' understanding of the concept of uncertainty within the probabilistic climate projections. The ‘Crossing the River' exercise encourages the participants to actively consider the nature of information they are using, and how it could be applied in a specific decision. Reflection and discussion are key elements in supporting the users' understanding of the concept and allowing them to apply the principles in the exercise to their own context. Their reflection is facilitated through a range of mechanisms that provide

  7. Presidential Green Chemistry Challenge: 2016 Designing Greener Chemicals and Specific Environmental Benefit: Climate Change Awards

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2016 award winner, Newlight Technologies, developed a net carbon negative plastic made from methane-based GHG. It is cheaper than petroleum-based plastic; used to make cell phone cases, furniture, and other products.

  8. Presidential Green Chemistry Challenge: 2015 Specific Environmental Benefit: Climate Change Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2015 award winner, Algenol, blue-green algae to produce ethanol and other fuels, uses CO2 from air or industrial emitters, reduces the carbon footprint, costs and water usage, no reliance on food crops

  9. Forests under climate change and air pollution: Gaps in understanding and future directions for research

    DEFF Research Database (Denmark)

    Matyssek, R.; Wieser, G.; Calfapietra, C.

    2012-01-01

    changes in air quality (trace gas concentrations), climate and other site factors on forest ecosystem response, (ii) significance of biotic processes in system response, (iii) tools for mechanistic and diagnostic understanding and upscaling, and (iv) the need for unifying modelling and empirical research......Forests in Europe face significant changes in climate, which in interaction with air quality changes, may significantly affect forest productivity, stand composition and carbon sequestration in both vegetation and soils. Identified knowledge gaps and research needs include: (i) interaction between...... for synthesis. This position paper highlights the above focuses, including the global dimension of air pollution as part of climate change and the need for knowledge transfer to enable reliable risk assessment. A new type of research site in forest ecosystems (“supersites”) will be conducive to addressing...

  10. Revisiting of Stommel's model for the understanding of the abrupt climate change

    International Nuclear Information System (INIS)

    Scatamacchia, R.; Purini, R.; Rafanelli, C.

    2010-01-01

    Despite the enormous number of papers devoted to modelling climate changes, the pionieristic Stommel paper (1961) remains a still valid tool for the understanding of the basic mechanism that governs the abrupt climate change, i.e. the existence of multipla equilibria in the governing non-linear equations. Using non-dimensional quantities, Stommel did not provide any explicit information about the temporal scale affecting the process under examination when the control parameters are varied. On the basis of this consideration, the present paper revisits the Stommel theory putting some emphasis on the quantitative estimate of how the variations of the control system parameters system modify the fundamental motor of the climate change, i.e. the thermohaline circulation.

  11. Understanding and Projecting Climate and Human Impacts on Terrestrial-Coastal Carbon and Nutrient Fluxes

    Science.gov (United States)

    Lohrenz, S. E.; Cai, W. J.; Tian, H.; He, R.; Fennel, K.

    2017-12-01

    Changing climate and land use practices have the potential to dramatically alter coupled hydrologic-biogeochemical processes and associated movement of water, carbon and nutrients through various terrestrial reservoirs into rivers, estuaries, and coastal ocean waters. Consequences of climate- and land use-related changes will be particularly evident in large river basins and their associated coastal outflow regions. Here, we describe a NASA Carbon Monitoring System project that employs an integrated suite of models in conjunction with remotely sensed as well as targeted in situ observations with the objectives of describing processes controlling fluxes on land and their coupling to riverine, estuarine and ocean ecosystems. The nature of our approach, coupling models of terrestrial and ocean ecosystem dynamics and associated carbon processes, allows for assessment of how societal and human-related land use, land use change and forestry and climate-related change affect terrestrial carbon transport as well as export of materials through watersheds to the coastal margins. Our objectives include the following: 1) Provide representation of carbon processes in the terrestrial ecosystem to understand how changes in land use and climatic conditions influence the export of materials to the coastal ocean, 2) Couple the terrestrial exports of carbon, nutrients and freshwater to a coastal biogeochemical model and examine how different climate and land use scenarios influence fluxes across the land-ocean interface, and 3) Project future changes under different scenarios of climate and human impact, and support user needs related to carbon management and other activities (e.g., water quality, hypoxia, ocean acidification). This research is providing information that will contribute to determining an overall carbon balance in North America as well as describing and predicting how human- and climate-related changes impact coastal water quality including possible effects of coastal

  12. Understanding the Changes in Global Crop Yields Through Changes in Climate and Technology

    Science.gov (United States)

    Najafi, Ehsan; Devineni, Naresh; Khanbilvardi, Reza M.; Kogan, Felix

    2018-03-01

    During the last few decades, the global agricultural production has risen and technology enhancement is still contributing to yield growth. However, population growth, water crisis, deforestation, and climate change threaten the global food security. An understanding of the variables that caused past changes in crop yields can help improve future crop prediction models. In this article, we present a comprehensive global analysis of the changes in the crop yields and how they relate to different large-scale and regional climate variables, climate change variables and technology in a unified framework. A new multilevel model for yield prediction at the country level is developed and demonstrated. The structural relationships between average yield and climate attributes as well as trends are estimated simultaneously. All countries are modeled in a single multilevel model with partial pooling to automatically group and reduce estimation uncertainties. El Niño-southern oscillation (ENSO), Palmer drought severity index (PDSI), geopotential height anomalies (GPH), historical carbon dioxide (CO2) concentration and country-based time series of GDP per capita as an approximation of technology measurement are used as predictors to estimate annual agricultural crop yields for each country from 1961 to 2013. Results indicate that these variables can explain the variability in historical crop yields for most of the countries and the model performs well under out-of-sample verifications. While some countries were not generally affected by climatic factors, PDSI and GPH acted both positively and negatively in different regions for crop yields in many countries.

  13. Using Weather Types to Understand and Communicate Weather and Climate Impacts

    Science.gov (United States)

    Prein, A. F.; Hale, B.; Holland, G. J.; Bruyere, C. L.; Done, J.; Mearns, L.

    2017-12-01

    A common challenge in atmospheric research is the translation of scientific advancements and breakthroughs to decision relevant and actionable information. This challenge is central to the mission of NCAR's Capacity Center for Climate and Weather Extremes (C3WE, www.c3we.ucar.edu). C3WE advances our understanding of weather and climate impacts and integrates these advances with distributed information technology to create tools that promote a global culture of resilience to weather and climate extremes. Here we will present an interactive web-based tool that connects historic U.S. losses and fatalities from extreme weather and climate events to 12 large-scale weather types. Weather types are dominant weather situations such as winter high-pressure systems over the U.S. leading to very cold temperatures or summertime moist humid air masses over the central U.S. leading to severe thunderstorms. Each weather type has a specific fingerprint of economic losses and fatalities in a region that is quantified. Therefore, weather types enable a direct connection of observed or forecasted weather situation to loss of life and property. The presented tool allows the user to explore these connections, raise awareness of existing vulnerabilities, and build resilience to weather and climate extremes.

  14. Brain Chemistry and Behaviour: An Update on Neuroscience Research and Its Implications for Understanding Drug Addiction

    Science.gov (United States)

    Robinson, Emma S. J.

    2011-01-01

    Psychiatric disorders such as drug addiction represent one of the biggest challenges to society. This article reviews clinical and basic science research to illustrate how developments in research methodology have enabled neuroscientists to understand more about the brain mechanisms involved in addiction biology. Treating addiction represents a…

  15. Combining computational chemistry and crystallography for a better understanding of the structure of cellulose

    Science.gov (United States)

    The approaches in this article seek to enhance understanding of cellulose at the molecular level, independent of the source and the particular crystalline form of cellulose. Four main areas of structure research are reviewed. Initially the molecular shape is inferred from the crystal structures of m...

  16. An Epistemological Inquiry into Organic Chemistry Education: Exploration of Undergraduate Students' Conceptual Understanding of Functional Groups

    Science.gov (United States)

    Akkuzu, Nalan; Uyulgan, Melis Arzu

    2016-01-01

    This study sought to determine the levels of conceptual understanding of undergraduate students regarding organic compounds within different functional groups. A total of 60 students who were enrolled in the Department of Secondary Science and Mathematics Education of a Faculty of Education at a state university in Turkey and who had followed an…

  17. Effects of multiple climate change factors on the tall fescue-fungal endophyte symbiosis: infection frequency and tissue chemistry.

    Energy Technology Data Exchange (ETDEWEB)

    Brosi, Glade [University of Kentucky; McCulley, Rebecca L [University of Kentucky; Bush, L P [University of Kentucky; Nelson, Jim A [University of Kentucky; Classen, Aimee T [University of Tennessee, Knoxville (UTK); Norby, Richard J [ORNL

    2011-01-01

    Climate change (altered CO{sub 2}, warming, and precipitation) may affect plant-microbial interactions, such as the Lolium arundinaceum-Neotyphodium coenophialum symbiosis, to alter future ecosystem structure and function. To assess this possibility, tall fescue tillers were collected from an existing climate manipulation experiment in a constructed old-field community in Tennessee (USA). Endophyte infection frequency (EIF) was determined, and infected (E+) and uninfected (E-) tillers were analysed for tissue chemistry. The EIF of tall fescue was higher under elevated CO{sub 2} (91% infected) than with ambient CO{sub 2} (81%) but was not affected by warming or precipitation treatments. Within E+ tillers, elevated CO{sub 2} decreased alkaloid concentrations of both ergovaline and loline, by c. 30%; whereas warming increased loline concentrations 28% but had no effect on ergovaline. Independent of endophyte infection, elevated CO{sub 2} reduced concentrations of nitrogen, cellulose, hemicellulose, and lignin. These results suggest that elevated CO{sub 2}, more than changes in temperature or precipitation, may promote this grass-fungal symbiosis, leading to higher EIF in tall fescue in old-field communities. However, as all three climate factors are likely to change in the future, predicting the symbiotic response and resulting ecological consequences may be difficult and dependent on the specific atmospheric and climatic conditions encountered.

  18. Response of lake chemistry to changes in atmospheric deposition and climate in three high-elevation wilderness areas of Colorado

    Science.gov (United States)

    Mast, M. Alisa; Turk, John T.; Clow, David W.; Campbell, Donald D.

    2011-01-01

    Trends in precipitation chemistry and hydrologic and climatic data were examined as drivers of long-term changes in the chemical composition of high-elevation lakes in three wilderness areas in Colorado during 1985-2008. Sulfate concentrations in precipitation decreased at a rate of -0.15 to -0.55 μeq/l/year at 10 high-elevation National Atmospheric Deposition Program stations in the state during 1987-2008 reflecting regional reductions in SO2 emissions. In lakes where sulfate is primarily derived from atmospheric inputs, sulfate concentrations also decreased although the rates generally were less, ranging from -0.12 to -0.27 μeq/l/year. The similarity in timing and sulfur isotopic data support the hypothesis that decreases in atmospheric deposition are driving the response of high-elevation lakes in some areas of the state. By contrast, in lakes where sulfate is derived primarily from watershed weathering sources, sulfate concentrations showed sharp increases during 1985-2008. Analysis of long-term climate records indicates that annual air temperatures have increased between 0.45 and 0.93°C per decade throughout most mountainous areas of Colorado, suggesting climate as a factor. Isotopic data reveal that sulfate in these lakes is largely derived from pyrite, which may indicate climate warming is preferentially affecting the rate of pyrite weathering.

  19. Population, Environment, and Climate in the Albertine Rift: Understanding Local Impacts of Regional Change

    Science.gov (United States)

    Hartter, J.; Ryan, S. J.; Diem, J.; Palace, M. W.

    2012-12-01

    Climate change is of critical concern for conservation and to develop appropriate policies and responses, it is important not only to anticipate the nature of changes, but also how they are perceived, interpreted and adapted to by local people. The Albertine Rift in East Africa is one of the most threatened biodiversity hotspots due to dense settlement, extreme poverty, and land conversion. We synthesize ongoing NSF-CNH research, where Ugandan park landscapes are examined to understand the impacts of climate change on livelihoods. Kibale National Park, the main study site, exemplifies the challenges facing many parks because of its isolation within a densely populated agricultural landscape. Three separate household surveys (n=251, 130, 100) reveal that the most perceived benefits provided by Kibale were ecosystem services and farmers cite rainfall as one of the park's most important benefits, but are also concerned with variable precipitation. Analysis of 30+ years of daily rainfall station data shows total rainfall has not changed significantly, but timing and transitions of seasons and intra-seasonal distribution are highly variable, which may contribute to changes in farming schedules and threaten food security. Further, the contrast between land use/cover change over 25 years around the park and the stability of forest within the park underscores the need to understand this landscape for future sustainability planning and the inevitable population growth outside its boundaries. Understanding climate change impacts and feedbacks to and from socio-ecological systems are important to address the dual challenge of biodiversity conservation and poverty alleviation.

  20. Climate change and livestock system in mountain: Understanding from Gandaki River basin of Nepal Himalaya.

    Science.gov (United States)

    Dahal, P.; Shrestha, N. S.; Krakauer, N.; Lakhankar, T.; Panthi, J., Sr.; Pradhanang, S.; Jha, A. K.; Shrestha, M.; Sharma, M.

    2015-12-01

    In recent years climate change has emerged as a source of vulnerability for agro-livestock smallholders in Nepal where people are mostly dependent on rain-fed agriculture and livestock farming for their livelihoods. There is a need to understand and predict the potential impacts of climate change on agro-livestock farmer to develop effective mitigation and adaptation strategies. To understand dynamics of this vulnerability, we assess the farmers' perceptions of climate change, analysis of historical and future projections of climatic parameters and try to understand impact of climate change on livestock system in Gandaki River Basin of Central Nepal. During the period of 1981-2012, as reported by the mountain communities, the most serious hazards for livestock system and agriculture are the increasing trend of temperature, erratic rainfall patterns and increase in drought. Poor households without irrigated land are facing greater risks and stresses than well-off people. Analysis of historical climate data also supports the farmer perception. Result shows that there is increasing trend of temperature but no consistent trend in precipitation but a notable finding is that wet areas are getting wetter and dry areas getting drier. Besides that, there is increase in percentage of warm days and nights with decrease in the cool nights and days. The magnitude of the trend is found to be higher in high altitude. Trend of wet days has found to be increasing with decreasing in rainy days. Most areas are characterized by increases in both severity and frequency of drought and are more evident in recent years. The summers of 2004/05/06/09 and winters of 2006/08/09 were the worst widespread droughts and have a serious impact on livestock since 1981. Future projected change in temperature and precipitation obtained from downscaling the data global model by regional climate model shows that precipitation in central Nepal will change by -8% to 12% and temperature will change by 1

  1. Trace gas and aerosol interactions in the fully coupled model of aerosol-chemistry-climate ECHAM5-HAMMOZ: 2. Impact of heterogeneous chemistry on the global aerosol distributions

    Science.gov (United States)

    Pozzoli, L.; Bey, I.; Rast, S.; Schultz, M. G.; Stier, P.; Feichter, J.

    2008-04-01

    We use the ECHAM5-HAMMOZ aerosol-chemistry-climate model to quantify the influence of trace gas-aerosol interactions on the regional and global distributions and optical properties of aerosols for present-day conditions. The model includes fully interactive simulations of gas phase and aerosol chemistry including a comprehensive set of heterogeneous reactions. We find that as a whole, the heterogeneous reactions have only a small effect on the SO2 and sulfate burden because of competing effects. The uptake of SO2 on dust and sea salt decreases the SO2 concentrations while the decrease in OH (that results from the uptake of HO2, N2O5, and O3) tends to increase SO2 (because of reduced oxidation). The sulfate formed in sea salt aerosols from SO2 uptake accounts for 3.7 Tg(S) a-1 (5%) of the total sulfate production. Uptake and subsequent reaction of SO2 on mineral dust contributes to a small formation of sulfate (0.55 Tg(S) a-1, coating of mineral dust particles, resulting in an extra 300 Tg a-1 of dust being transferred from the insoluble to the soluble mixed modes. The burden of dust in the insoluble modes is reduced by 44%, while the total burden is reduced by 5% as a result of enhanced wet deposition efficiency. Changes in the sulfur cycle affect the H2SO4 concentrations and the condensation of H2SO4 on black carbon. Accounting for heterogeneous reactions enhances the global mean burden of hydrophobic black carbon particles by 4%. The changes in aerosol mixing state result only in a small change in the global and annual aerosol optical depth (AOD) and absorption optical depth (ABS), but have significant implications on regional and seasonal scale. For example, in the main polluted regions of the Northern Hemisphere, AOD and ABS increase by 10-30% and up to 15%, respectively, in winter.

  2. Tropospheric Ozone Changes, Radiative Forcing and Attribution to Emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    Science.gov (United States)

    Stevenson, D.S.; Young, P.J.; Naik, V.; Lamarque, J.-F.; Shindell, D. T.; Voulgarakis, A.; Skeie, R. B.; Dalsoren, S. B.; Myhre, G.; Berntsen, T. K.; hide

    2013-01-01

    Ozone (O3) from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has been used to calculate tropospheric ozone radiative forcings (RFs). All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP) scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750) to present-day (2010) tropospheric ozone RF of 410 mW m-2. The model range of pre-industrial to present-day changes in O3 produces a spread (+/-1 standard deviation) in RFs of +/-17%. Three different radiation schemes were used - we find differences in RFs between schemes (for the same ozone fields) of +/-10 percent. Applying two different tropopause definitions gives differences in RFs of +/-3 percent. Given additional (unquantified) uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of +/-30 percent for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44+/-12 percent), nitrogen oxides (31 +/- 9 percent), carbon monoxide (15 +/- 3 percent) and non-methane volatile organic compounds (9 +/- 2 percent); earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m(-2) DU(-1), a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m(-2); relative to 1750) for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) of 350, 420, 370 and 460 (in 2030), and 200, 300, 280 and 600 (in 2100). Models show some

  3. Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP

    Directory of Open Access Journals (Sweden)

    D. S. Stevenson

    2013-03-01

    Full Text Available Ozone (O3 from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP has been used to calculate tropospheric ozone radiative forcings (RFs. All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750 to present-day (2010 tropospheric ozone RF of 410 mW m−2. The model range of pre-industrial to present-day changes in O3 produces a spread (±1 standard deviation in RFs of ±17%. Three different radiation schemes were used – we find differences in RFs between schemes (for the same ozone fields of ±10%. Applying two different tropopause definitions gives differences in RFs of ±3%. Given additional (unquantified uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of ±30% for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44±12%, nitrogen oxides (31 ± 9%, carbon monoxide (15 ± 3% and non-methane volatile organic compounds (9 ± 2%; earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m−2 DU−1, a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m−2; relative to 1750 for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5 of 350, 420, 370 and 460 (in 2030, and 200, 300, 280 and 600 (in 2100. Models show some coherent responses of ozone to climate change

  4. Development and Application of a Two-Tier Multiple Choice Diagnostic Instrument To Assess High School Students' Understanding of Inorganic Chemistry Qualitative Analysis.

    Science.gov (United States)

    Tan, Kim Chwee Daniel; Goh, Ngoh Khang; Chia, Lian Sai; Treagust, David F.

    2002-01-01

    Describes the development and application of a two-tier multiple choice diagnostic instrument to assess high school students' understanding of inorganic chemistry qualitative analysis. Shows that the Grade 10 students had difficulty understanding the reactions involved in the identification of cations and anions, for example, double decomposition…

  5. A Kaleidoscope of Understanding: Pre-service Elementary Teachers' Knowledge of Climate Change Concepts and Impacts

    Science.gov (United States)

    Hayhoe, D.; Bullock, S.; Hayhoe, K.

    2010-12-01

    Teachers are at the forefront of efforts to increase climate literacy; however, even teachers’ understanding can contain significant misconceptions. Probes aimed at capturing these misconceptions have been used with pre-service teachers in several countries. Here, we report on a unique 59-item questionnaire useful as a pre-post diagnostic for teacher training. Topics include Earth’s climate system, long-range climatic changes, recent changes, various gases and types of radiation involved in the greenhouse effect, future impacts of climate change, and mitigation options This questionnaire is unique in three ways: 1. the topics include climate change concepts not usually probed, 2. the questions have a binary-choice format that avoided both the “positive statement bias” of agree-disagree questions and the superfluous distractors of multiple-choice tests, and 3. the questionnaire was piloted with pre-service elementary teachers in Toronto, one of the most multicultural cities in the world. The questionnaire items were written for the Ontario curriculum (K-10); however, they also address almost all of the principles identified in Climate Literacy: The Essential Principles of Climate Science. The questionnaire was completed by 89 volunteers from a pool of 280. Most had a substantial knowledge of climate change concepts, with 34 of the 59 questions being answered correctly by more than 60% of the subjects. The item discrimination of most questions was relatively low, however, and only a very few item pairs showed a significant correlation. This suggests that subjects’ knowledge consisted of a “kaleidoscope of understanding,” rather than a coherent picture. Significant misconceptions were also identified, with 18 of the 59 items being answered incorrectly by more than 60% of the subjects. Of these, 11 correspond to misconceptions previously noted, while 7 suggest new misconceptions not yet identified in studies done with students or teachers, such as the

  6. Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model

    Science.gov (United States)

    Unger, N.; Harper, K.; Zheng, Y.; Kiang, N. Y.; Aleinov, I.; Arneth, A.; Schurgers, G.; Amelynck, C.; Goldstein, A.; Guenther, A.; Heinesch, B.; Hewitt, C. N.; Karl, T.; Laffineur, Q.; Langford, B.; McKinney, K. A.; Misztal, P.; Potosnak, M.; Rinne, J.; Pressley, S.; Schoon, N.; Serça, D.

    2013-10-01

    We describe the implementation of a biochemical model of isoprene emission that depends on the electron requirement for isoprene synthesis into the Farquhar-Ball-Berry leaf model of photosynthesis and stomatal conductance that is embedded within a global chemistry-climate simulation framework. The isoprene production is calculated as a function of electron transport-limited photosynthesis, intercellular and atmospheric carbon dioxide concentration, and canopy temperature. The vegetation biophysics module computes the photosynthetic uptake of carbon dioxide coupled with the transpiration of water vapor and the isoprene emission rate at the 30 min physical integration time step of the global chemistry-climate model. In the model, the rate of carbon assimilation provides the dominant control on isoprene emission variability over canopy temperature. A control simulation representative of the present-day climatic state that uses 8 plant functional types (PFTs), prescribed phenology and generic PFT-specific isoprene emission potentials (fraction of electrons available for isoprene synthesis) reproduces 50% of the variability across different ecosystems and seasons in a global database of 28 measured campaign-average fluxes. Compared to time-varying isoprene flux measurements at 9 select sites, the model authentically captures the observed variability in the 30 min average diurnal cycle (R2 = 64-96%) and simulates the flux magnitude to within a factor of 2. The control run yields a global isoprene source strength of 451 TgC yr-1 that increases by 30% in the artificial absence of plant water stress and by 55% for potential natural vegetation.

  7. Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model

    Directory of Open Access Journals (Sweden)

    N. Unger

    2013-10-01

    Full Text Available We describe the implementation of a biochemical model of isoprene emission that depends on the electron requirement for isoprene synthesis into the Farquhar–Ball–Berry leaf model of photosynthesis and stomatal conductance that is embedded within a global chemistry-climate simulation framework. The isoprene production is calculated as a function of electron transport-limited photosynthesis, intercellular and atmospheric carbon dioxide concentration, and canopy temperature. The vegetation biophysics module computes the photosynthetic uptake of carbon dioxide coupled with the transpiration of water vapor and the isoprene emission rate at the 30 min physical integration time step of the global chemistry-climate model. In the model, the rate of carbon assimilation provides the dominant control on isoprene emission variability over canopy temperature. A control simulation representative of the present-day climatic state that uses 8 plant functional types (PFTs, prescribed phenology and generic PFT-specific isoprene emission potentials (fraction of electrons available for isoprene synthesis reproduces 50% of the variability across different ecosystems and seasons in a global database of 28 measured campaign-average fluxes. Compared to time-varying isoprene flux measurements at 9 select sites, the model authentically captures the observed variability in the 30 min average diurnal cycle (R2 = 64–96% and simulates the flux magnitude to within a factor of 2. The control run yields a global isoprene source strength of 451 TgC yr−1 that increases by 30% in the artificial absence of plant water stress and by 55% for potential natural vegetation.

  8. Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model

    Energy Technology Data Exchange (ETDEWEB)

    Unger, N.; Harper, K.; Zheng, Y.; Kiang, N. Y.; Aleinov, I.; Arneth, Almut; Schurgers, G.; Amelynck, C.; Goldstein, Allen H.; Guenther, Alex B.; Heinesch, B.; Hewitt, C. N.; Karl, T.; Laffineur, Q.; Langford, B.; McKinney, Karena A.; Misztal, P.; Potosnak, M.; Rinne, J.; Pressley, S.; Schoon, N.; Serca, D.

    2013-10-22

    We describe the implementation of a biochemical model of isoprene emission that depends on the electron requirement for isoprene synthesis into the Farquhar/Ball- Berry leaf model of photosynthesis and stomatal conductance that is embedded within a global chemistry-climate simulation framework. The isoprene production is calculated as a function of electron transport-limited photosynthesis, intercellular carbon dioxide concentration, and canopy temperature. The vegetation biophysics module computes the photosynthetic uptake of carbon dioxide coupled with the transpiration of water vapor and the isoprene emission rate at the 30 min physical integration time step of the global chemistry-climate model. In the model, the rate of carbon assimilation provides the dominant control on isoprene emission variability over canopy temperature. A control simulation representative of the present day climatic state that uses plant functional types (PFTs), prescribed phenology and generic PFT-specific isoprene emission potentials (fraction of electrons available for isoprene synthesis) reproduces 50% of the variability across different ecosystems and seasons in a global database of measured campaign-average fluxes. Compared to time-varying isoprene flux measurements at select sites, the model authentically captures the observed variability in the 30 min average diurnal cycle (R2 = 64-96 %) and simulates the flux magnitude to within a factor of 2. The control run yields a global isoprene source strength of 451 TgC yr-1 that increases by 30% in the artificial absence of plant water stress and by 55% for potential natural vegetation.

  9. Recent advances in understanding climate, glacier and river dynamics in high mountain Asia

    Science.gov (United States)

    Immerzeel, W.

    2016-12-01

    The water cycle in the Himalaya is poorly understood because of its extreme topography that results in complex interactions between climate, water stored in snow and glaciers and the hydrological processes. Hydrological extremes in the greater Himalayas regularly cause great damage, while high mountain Asia also supplies water to over 25% of the global population. So, the stakes are high and an accurate understanding of the Himalayan water cycle is imperative. The hydrology of the greater Himalayas is only marginally resolved due to the intricacy of monsoon dynamics, the poorly quantified dependence on the cryosphere and the physical constraints of doing research in high-altitude and generally inaccessible terrain. However, in recent years significant scientific advances have been made in field monitoring, modelling and remote sensing and the latest progress and outstanding challenges will be presented for three related fields. First focus will be on recent learnings about high altitude climate dynamics and the interaction between the atmosphere and the extreme mountain topography. Secondly, recent advances in how climate controls key glacio-hydrological processes in high-altitude catchments will be discussed with a particular focus on debris covered glaciers. Thirdly, new developments in glacio-hydrological modelling and approaches to climate change impact assessments will be reviewed. Finally, the outstanding scientific challenges will be synthesized that need to be addressed to fully close the high mountain water cycle and to be able to reduce the uncertainty in future projections of water availability and the occurrence of extreme events in high mountain Asia.

  10. Understanding the prairie-forest transitional zone in northern Minnesota through variations in soil chemistry

    Science.gov (United States)

    Kasmerchak, C. S.; Mason, J. A.

    2015-12-01

    Boundaries between soil types are not discrete, but instead there are transitional zones that exhibit characteristics of soil types that they border. The prairie-forest transitional zone is seen throughout North America and Eurasia. Prairie soils (Mollisols) and deciduous forest soils (Alfisols) demonstrate interesting contrasts in morphology. Understanding variations in chemical properties is key to understanding nutrient cycling and retention, ecosystem development, and furthering the field of soil geography. Research sites are located in northern Minnesota's eastern forest, western prairie, and the transitional forested zone between. Evidence of clay translocation is a key indicator of Alfisol development. The double layer theory suggests chemical factors allowing clays to be dispersed/flocculated are ionic strength of the solution, relative abundance of Na+ and di- or trivalent cations, and pH (Sposito, 1984; van Olphen, 1977). In initial stages of soil formation exchangeable bases (Na+, K+, Ca++, and Mg++) occupy 100% of clay exchange sites, but as soil develops are these replaced by acidity ions (H+ and Al3+) and base saturation decreases. The relationship between exchangeable cations and clay dispersion is understood in lower horizons where Ca++ and Mg++ are abundant, and clay is flocculated, but this is not well understood in upper horizons. However it is suggested that clay dispersion can occur in upper horizons of pH values between 7 and 5 (van Breeman and Buurman, 2002). CEC values are expected to be much higher in soils where clay is flocculated and base ion concentration is high. Preliminary analyses supports that differences in these chemical factors are key indicators of varying rates of soil development, and explain geographic distribution of soils in this region. Through further lab work and data analysis, the relative importance of these chemical properties will come to light and the drivers prairie-forest soil transition will be better understood.

  11. Understanding Student Cognition about Complex Earth System Processes Related to Climate Change

    Science.gov (United States)

    McNeal, K. S.; Libarkin, J.; Ledley, T. S.; Dutta, S.; Templeton, M. C.; Geroux, J.; Blakeney, G. A.

    2011-12-01

    The Earth's climate system includes complex behavior and interconnections with other Earth spheres that present challenges to student learning. To better understand these unique challenges, we have conducted experiments with high-school and introductory level college students to determine how information pertaining to the connections between the Earth's atmospheric system and the other Earth spheres (e.g., hydrosphere and cryosphere) are processed. Specifically, we include psychomotor tests (e.g., eye-tracking) and open-ended questionnaires in this research study, where participants were provided scientific images of the Earth (e.g., global precipitation and ocean and atmospheric currents), eye-tracked, and asked to provide causal or relational explanations about the viewed images. In addition, the students engaged in on-line modules (http://serc.carleton.edu/eslabs/climate/index.html) focused on Earth system science as training activities to address potential cognitive barriers. The developed modules included interactive media, hands-on lessons, links to outside resources, and formative assessment questions to promote a supportive and data-rich learning environment. Student eye movements were tracked during engagement with the materials to determine the role of perception and attention on understanding. Students also completed a conceptual questionnaire pre-post to determine if these on-line curriculum materials assisted in their development of connections between Earth's atmospheric system and the other Earth systems. The pre-post results of students' thinking about climate change concepts, as well as eye-tracking results, will be presented.

  12. Understanding of Grassland Ecosystems under Climate Change and Economic Development Pressures in the Mongolia Plateau

    Science.gov (United States)

    Qi, J.; Chen, J.; Shan, P.; Pan, X.; Wei, Y.; Wang, M.; Xin, X.

    2011-12-01

    The land use and land cover change, especially in the form of grassland degradation, in the Mongolian Plateau, exhibited a unique spatio-temporal pattern that is a characteristic of a mixed stress from economic development and climate change of the region. The social dimension of the region played a key role in shaping the landscape and land use change, including the cultural clashes with economic development, conflicts between indigenous people and business ventures, and exogenous international influences. Various research projects have been conducted in the region to focus on physical degradation of grasslands and/or on economic development but there is a lack of understanding how the social and economic dimensions interact with grassland ecosystems and changes. In this talk, a synthesis report was made based on the most recent workshop held in Hohhot, Inner Mongolia, of China, that specifically focused on climate change and grassland ecosystems. The report analyzed the degree of grassland degradation, its climate and social drivers, and coupling nature of economic development and conservation of traditional grassland values. The goal is to fully understand the socio-ecological-economic interactions that together shape the trajectory of the grassland ecosystems in the Mongolia Plateau.

  13. Use of the HadGEM2 climate-chemistry model to investigate interannual variability in methane sources

    Science.gov (United States)

    Hayman, Garry; O'Connor, Fiona; Clark, Douglas; Huntingford, Chris; Gedney, Nicola

    2013-04-01

    The global mean atmospheric concentration of methane (CH4) has more than doubled during the industrial era [1] and now constitutes ? 20% of the anthropogenic climate forcing by greenhouse gases [2]. The globally-averaged CH4 growth rate, derived from surface measurements, has fallen significantly from a high of 16 ppb yr-1 in the late 1970s/early 1980s and was close to zero between 1999 and 2006 [1]. This overall period of declining or low growth was however interspersed with years of positive growth-rate anomalies (e.g., in 1991-1992, 1998-1999 and 2002-2003). Since 2007, renewed growth has been evident [1, 3], with the largest increases observed over polar northern latitudes and the Southern Hemisphere in 2007 and in the tropics in 2008. The observed inter-annual variability in atmospheric methane concentrations and the associated changes in growth rates have variously been attributed to changes in different methane sources and sinks [1, 4]. In this paper, we report results from runs of the HadGEM2 climate-chemistry model [5] using year- and month-specific emission datasets. The HadGEM2 model includes the comprehensive atmospheric chemistry and aerosol package, the UK Chemistry Aerosol community model (UKCA, http://www.ukca.ac.uk/wiki/index.php). The Standard Tropospheric Chemistry scheme was selected for this work. This chemistry scheme simulates the Ox, HOx and NOx chemical cycles and the oxidation of CO, methane, ethane and propane. Year- and month-specific emission datasets were generated for the period from 1997 to 2009 for the emitted species in the chemistry scheme (CH4, CO, NOx, HCHO, C2H6, C3H8, CH3CHO, CH3CHOCH3). The approach adopted varied depending on the source sector: Anthropogenic: The emissions from anthropogenic sources were based on decadal-averaged emission inventories compiled by [6] for the Coupled Carbon Cycle Climate Model Intercomparison Project (C4MIP). These were then used to derive year-specific emission datasets by scaling the

  14. Learning Quantum Chemistry via a Visual-Conceptual Approach: Students' Bidirectional Textual and Visual Understanding

    Science.gov (United States)

    Dangur, Vered; Avargil, Shirly; Peskin, Uri; Dori, Yehudit Judy

    2014-01-01

    Most undergraduate chemistry courses and a few high school honors courses, which focus on physical chemistry and quantum mechanics, are highly mathematically-oriented. At the Technion, Israel Institute of Technology, we developed a new module for high school students, titled "Chemistry--From 'the Hole' to 'the Whole': From the Nanoscale to…

  15. Impacts of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in the Goddard Earth Observing System Version 5 (GEOS-5)

    Science.gov (United States)

    Li, Feng; Vikhliaev, Yury V.; Newman, Paul A.; Pawson, Steven; Perlwitz, Judith; Waugh, Darryn W.; Douglass, Anne R.

    2016-01-01

    Stratospheric ozone depletion plays a major role in driving climate change in the Southern Hemisphere. To date, many climate models prescribe the stratospheric ozone layer's evolution using monthly and zonally averaged ozone fields. However, the prescribed ozone underestimates Antarctic ozone depletion and lacks zonal asymmetries. In this study we investigate the impact of using interactive stratospheric chemistry instead of prescribed ozone on climate change simulations of the Antarctic and Southern Ocean. Two sets of 1960-2010 ensemble transient simulations are conducted with the coupled ocean version of the Goddard Earth Observing System Model, version 5: one with interactive stratospheric chemistry and the other with prescribed ozone derived from the same interactive simulations. The model's climatology is evaluated using observations and reanalysis. Comparison of the 1979-2010 climate trends between these two simulations reveals that interactive chemistry has important effects on climate change not only in the Antarctic stratosphere, troposphere, and surface, but also in the Southern Ocean and Antarctic sea ice. Interactive chemistry causes stronger Antarctic lower stratosphere cooling and circumpolar westerly acceleration during November-December-January. It enhances stratosphere-troposphere coupling and leads to significantly larger tropospheric and surface westerly changes. The significantly stronger surface wind stress trends cause larger increases of the Southern Ocean Meridional Overturning Circulation, leading to year-round stronger ocean warming near the surface and enhanced Antarctic sea ice decrease.

  16. Metagenomics-Enabled Understanding of Soil Microbial Feedbacks to Climate Warming

    Science.gov (United States)

    Zhou, J.; Wu, L.; Zhili, H.; Kostas, K.; Luo, Y.; Schuur, E. A. G.; Cole, J. R.; Tiedje, J. M.

    2014-12-01

    Understanding the response of biological communities to climate warming is a central issue in ecology and global change biology, but it is poorly understood microbial communities. To advance system-level predictive understanding of the feedbacks of belowground microbial communities to multiple climate change factors and their impacts on soil carbon (C) and nitrogen (N) cycling processes, we have used integrated metagenomic technologies (e.g., target gene and shotgun metagenome sequencing, GeoChip, and isotope) to analyze soil microbial communities from experimental warming sites in Alaska (AK) and Oklahoma (OK), and long-term laboratory incubation. Rapid feedbacks of microbial communities to warming were observed in the AK site. Consistent with the changes in soil temperature, moisture and ecosystem respiration, microbial functional community structure was shifted after only 1.5-year warming, indicating rapid responses and high sensitivity of this permafrost ecosystem to climate warming. Also, warming stimulated not only functional genes involved in aerobic respiration of both labile and recalcitrant C, contributing to an observed 24% increase in 2010 growing season and 56% increase of decomposition of a standard substrate, but also functional genes for anaerobic processes (e.g., denitrification, sulfate reduction, methanogenesis). Further comparisons by shotgun sequencing showed significant differences of microbial community structure between AK and OK sites. The OK site was enriched in genes annotated for cellulose degradation, CO2 production, denitrification, sporulation, heat shock response, and cellular surface structures (e.g., trans-membrane transporters for glucosides), while the AK warmed plots were enriched in metabolic pathways related to labile C decomposition. Together, our results demonstrate the vulnerability of permafrost ecosystem C to climate warming and the importance of microbial feedbacks in mediating such vulnerability.

  17. Understanding Indian Institutional Networks and Participation in Water Management Adaptation to Climate Change

    Science.gov (United States)

    Azhoni, A.; Holman, I.; Jude, S.

    2014-12-01

    Adaptation to climate change for water management involves complex interactions between different actors and sectors. The need to understand the relationships between key stakeholder institutions (KSIs) is increasingly recognized. The complexity of water management in India has meant that enhancing adaptive capacity through improved inter-institutional networks remains a challenge for both government and non-governmental institutions. To analyse such complex inter-actions this study has used Social Network and Stakeholder Analysis tools to quantify the participation of, and interactions between, each KSI in the climate change adaptation and water discourse based on keyword analysis of their online presence. Using NodeXL, a Social Network Analysis tool, network diagrams have been used to evaluate the inter-relationships between these KSIs. Semi-structured interviews were conducted with twenty-five KSIs to identify the main barriers to adaptation and to triangulate the findings of the e-documents analysis. The analysis found that there is an inverse relationship between institutions' reference to water and climate change in their web-documents. Most institutions emphasize mitigation rather than adaptation. Bureaucratic delays, poor coordination between the KSIs, unclear policies and systemic deficiencies are identified as key barriers to improving adaptive capacity within water management to climate change. However, the increasing attention being given to the perceived climate change impacts on the water sector and improving the inter-institutional networks are some of the opportunities for Indian water institutions. Although websites of Union Government Institutions seldom directly hyperlink to one another, they are linked through "bridging" websites which have the potential to act as brokers for enhancing adaptive capacity. The research has wider implications for analysis of complex inter-disciplinary and inter-institutional issues involving multi stakeholders.

  18. Understanding Climate Variability of Urban Ecosystems Through the Lens of Citizen Science

    Science.gov (United States)

    Ripplinger, J.; Jenerette, D.; Wang, J.; Chandler, M.; Ge, C.; Koutzoukis, S.

    2017-12-01

    The Los Angeles megacity is vulnerable to climate warming - a process that locally exacerbates the urban heat island effect as it intensifies with size and density of the built-up area. We know that large-scale drivers play a role, but in order to understand local-scale climate variation, more research is needed on the biophysical and sociocultural processes driving the urban climate system. In this study, we work with citizen scientists to deploy a high-density network of microsensors across a climate gradient to characterize geographic variation in neighborhood meso- and micro-climates. This research asks: How do urbanization, global climate, and vegetation interact across multiple scales to affect local-scale experiences of temperature? Additionally, citizen scientist-led efforts generated research questions focused on examining microclimatic differences among yard groundcover types (rock mulch vs. lawn vs. artificial turf) and also on variation in temperature related to tree cover. Combining sensor measurements with Weather Research and Forecasting (WRF) spatial models and satellite-based temperature, we estimate spatially-explicit maps of land surface temperature and air temperature to illustrate the substantial difference between surface and air urban heat island intensities and the variable degree of coupling between land surface and air temperature in urban areas. Our results show a strong coupling between air temperature variation and landcover for neighborhoods, with significant detectable signatures from tree cover and impervious surface. Temperature covaried most strongly with urbanization intensity at nighttime during peak summer season, when daily mean air temperature ranged from 12.8C to 30.4C across all groundcover types. The combined effects of neighborhood geography and vegetation determine where and how temperature and tree canopy vary within a city. This citizen science-enabled research shows how large-scale climate drivers and urbanization

  19. Understanding the hydrolysis mechanism of ethyl acetate catalyzed by an aqueous molybdocene: a computational chemistry investigation.

    Science.gov (United States)

    Tílvez, Elkin; Cárdenas-Jirón, Gloria I; Menéndez, María I; López, Ramón

    2015-02-16

    , in general, the information reported here could be of interest in designing new catalysts and understanding the reaction mechanism of these and other metal-catalyzed hydrolysis reactions.

  20. Incorporating modeling and simulations in undergraduate biophysical chemistry course to promote understanding of structure-dynamics-function relationships in proteins.

    Science.gov (United States)

    Hati, Sanchita; Bhattacharyya, Sudeep

    2016-01-01

    A project-based biophysical chemistry laboratory course, which is offered to the biochemistry and molecular biology majors in their senior year, is described. In this course, the classroom study of the structure-function of biomolecules is integrated with the discovery-guided laboratory study of these molecules using computer modeling and simulations. In particular, modern computational tools are employed to elucidate the relationship between structure, dynamics, and function in proteins. Computer-based laboratory protocols that we introduced in three modules allow students to visualize the secondary, super-secondary, and tertiary structures of proteins, analyze non-covalent interactions in protein-ligand complexes, develop three-dimensional structural models (homology model) for new protein sequences and evaluate their structural qualities, and study proteins' intrinsic dynamics to understand their functions. In the fourth module, students are assigned to an authentic research problem, where they apply their laboratory skills (acquired in modules 1-3) to answer conceptual biophysical questions. Through this process, students gain in-depth understanding of protein dynamics-the missing link between structure and function. Additionally, the requirement of term papers sharpens students' writing and communication skills. Finally, these projects result in new findings that are communicated in peer-reviewed journals. © 2016 The International Union of Biochemistry and Molecular Biology.

  1. Argumentation as a Strategy for Increasing Preservice Teachers’ Understanding of Climate Change, a Key Global Socioscientific Issue

    OpenAIRE

    Lambert, Julie L.; Bleicher, Robert E.

    2017-01-01

    Findings of this study suggest that scientific argumentation can play an effective role in addressing complex socioscientific issues (i.e. global climate change). This research examined changes in preservice teachers’ knowledge and perceptions about climate change in an innovative undergraduate-level elementary science methods course. The preservice teachers’ understanding of fundamental concepts (e.g., the difference between weather and climate, causes of recent global warming, etc.) increas...

  2. Analysis of farm performance in Europe under different climate and management conditions to improve understanding of adaptive capacity

    NARCIS (Netherlands)

    Reidsma, P.; Ewert, F.; Oude Lansink, A.

    2007-01-01

    The aim of this paper is to improve understanding of the adaptive capacity of European agriculture to climate change. Extensive data on farm characteristics of individual farms from the Farm Accountancy Data Network (FADN) have been combined with climatic and socio-economic data to analyze the

  3. Primary School Student Teachers' Understanding of Climate Change: Comparing the Results Given by Concept Maps and Communication Analysis

    Science.gov (United States)

    Ratinen, Ilkka; Viiri, Jouni; Lehesvuori, Sami

    2013-01-01

    Climate change is a complex environmental problem that can be used to examine students' understanding, gained through classroom communication, of climate change and its interactions. The present study examines a series of four science sessions given to a group of primary school student teachers (n?=?20). This includes analysis of the…

  4. The Effectiveness of the Geospatial Curriculum Approach on Urban Middle-Level Students' Climate Change Understandings

    Science.gov (United States)

    Bodzin, Alec M.; Fu, Qiong

    2014-01-01

    Climate change science is a challenging topic for student learning. This quantitative study examined the effectiveness of a geospatial curriculum approach to promote climate change science understandings in an urban school district with eighth-grade students and investigated whether teacher- and student-level factors accounted for students'…

  5. Parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC: impact of nudging and soil properties

    Directory of Open Access Journals (Sweden)

    M. Astitha

    2012-11-01

    Full Text Available Airborne desert dust influences radiative transfer, atmospheric chemistry and dynamics, as well as nutrient transport and deposition. It directly and indirectly affects climate on regional and global scales. Two versions of a parameterization scheme to compute desert dust emissions are incorporated into the atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy2.41 Atmospheric Chemistry. One uses a globally uniform soil particle size distribution, whereas the other explicitly accounts for different soil textures worldwide. We have tested these two versions and investigated the sensitivity to input parameters, using remote sensing data from the Aerosol Robotic Network (AERONET and dust concentrations and deposition measurements from the AeroCom dust benchmark database (and others. The two versions are shown to produce similar atmospheric dust loads in the N-African region, while they deviate in the Asian, Middle Eastern and S-American regions. The dust outflow from Africa over the Atlantic Ocean is accurately simulated by both schemes, in magnitude, location and seasonality. Approximately 70% of the modelled annual deposition data and 70–75% of the modelled monthly aerosol optical depth (AOD in the Atlantic Ocean stations lay in the range 0.5 to 2 times the observations for all simulations. The two versions have similar performance, even though the total annual source differs by ~50%, which underscores the importance of transport and deposition processes (being the same for both versions. Even though the explicit soil particle size distribution is considered more realistic, the simpler scheme appears to perform better in several locations. This paper discusses the differences between the two versions of the dust emission scheme, focusing on their limitations and strengths in describing the global dust cycle and suggests possible future improvements.

  6. Creating Climate Change Awareness in South African Schools through Practical Chemistry Demonstrations

    Science.gov (United States)

    Sunassee, Suthananda N.; Young, Ryan M.; Sewry, Joyce D.; Harrison, Timothy G.; Shallcross, Dudley E.

    2012-01-01

    In accordance with the requirements for the National Curriculum Statement for both Life sciences and Physical sciences and the importance of community engagement in Higher Education in South Africa, this paper described the use of the lecture-demonstration "A Pollutant's Tale" to create climate change awareness amongst school learners.…

  7. Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry

    NARCIS (Netherlands)

    Soudzilovskaia, N.A.; Douma, J.C.; Akhmetzhanova, A.A.; Bodegom, van P.M.; Cornwell, W.K.; Moens, E.J.; Treseder, K.K.; Tibbett, M.; Wang, Y.P.; Cornelissen, J.H.C.

    2015-01-01

    Aim Most vascular plants on Earth form mycorrhizae, a symbiotic relationship between plants and fungi. Despite the broad recognition of the importance of mycorrhizae for global carbon and nutrient cycling, we do not know how soil and climate variables relate to the intensity of colonization of plant

  8. Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry

    NARCIS (Netherlands)

    Soudzilovskaia, N.A.; Douma, J.C.; Akhmetzhanova, A.A.; van Bodegom, P.M.; Cornwell, W.K.; Moens, E.J.; Treseder, K.K.; Tibbett, M.; Wang, Y.-P.; Cornelissen, J.H.C.

    2015-01-01

    Aim: Most vascular plants on Earth form mycorrhizae, a symbiotic relationship between plants and fungi. Despite the broad recognition of the importance of mycorrhizae for global carbon and nutrient cycling, we do not know how soil and climate variables relate to the intensity of colonization of

  9. Projections of emissions from burning of biomass foruse in studies of global climate and atmospheric chemistry

    Science.gov (United States)

    Darold E. Ward; Weimin Hao

    1991-01-01

    Emissions of trace gases and particulate matter from burning of biomass are generally factored into global climate models. Models for improving the estimates of the global annual release of emissions from biomass fires are presented. Estimates of total biomass consumed on a global basis range from 2 to 10 Pg (1 petagram = 1015 g) per year. New...

  10. How QEMCAN technology can contribute to an understanding of the possible climate impacts of atmospheric dust

    International Nuclear Information System (INIS)

    Pudmenzky, Christa; Butcher, Alan; Love, Benjamin; McTainsh, Grant

    2007-01-01

    Full text: Each year, three billion tons of anthropogenic and natural aerosols are released from the Earth's surface to the atmosphere. Natural aerosols contribute 89 per cent. Mineral dust aerosol plays a mediating role in physical and biogeochemical exchanges among the atmosphere, land, and ocean and is an active component of the global climate system. On 23 October 2002, a dust storm carried 4.85 Mt of dust along a 2,400 km front across eastern Australia and hit Brisbane. Also, in February 2000, red dust deposits were measured on the Franz Josef Glacier in New Zealand, and were found to have travelled over 2,500 km from the Mallee area of south-east Australia. Mineral dust has the potential to influence the attenuation of sunlight by scattering and/or absorbing incoming solar radiation, which can result in negative (cooling) or positive (heating) radiative forcing. The direction and degree of radiative forcing by dust depend upon: particle-size, aggregation, shape and mineralogy. Smaller particles are more effective in scattering energy than larger particles, and the effectiveness of scattering also depends on particle shape and density, which are related to dust mineralogy. Dust consists of mixtures of minerals, each with characteristic optical properties, occurring as either individual mineral grains, or as pure or mixed-mineral aggregates, but data on dust mineralogy are rare. This study investigates these properties of Australian dust and their possible implications for radiative forcing of climate. QEMSCAN TM, an automated scanning electron microscope analytical system, is used to measure the mineralogy, particle-size, particle shape and aggregation. The information gained from this technology can be used in Global Climate Models to provide a more detailed understanding of the impacts of atmospheric dust on global climate

  11. Re-analysis of tropospheric sulfate aerosol and ozone for the period 1980–2005 using the aerosol-chemistry-climate model ECHAM5-HAMMOZ

    Directory of Open Access Journals (Sweden)

    L. Pozzoli

    2011-09-01

    Full Text Available Understanding historical trends of trace gas and aerosol distributions in the troposphere is essential to evaluate the efficiency of existing strategies to reduce air pollution and to design more efficient future air quality and climate policies. We performed coupled photochemistry and aerosol microphysics simulations for the period 1980–2005 using the aerosol-chemistry-climate model ECHAM5-HAMMOZ, to assess our understanding of long-term changes and inter-annual variability of the chemical composition of the troposphere, and in particular of ozone and sulfate concentrations, for which long-term surface observations are available. In order to separate the impact of the anthropogenic emissions and natural variability on atmospheric chemistry, we compare two model experiments, driven by the same ECMWF re-analysis data, but with varying and constant anthropogenic emissions, respectively. Our model analysis indicates an increase of ca. 1 ppbv (0.055 ± 0.002 ppbv yr−1 in global average surface O3 concentrations due to anthropogenic emissions, but this trend is largely masked by the larger O3 anomalies due to the variability of meteorology and natural emissions. The changes in meteorology (not including stratospheric variations and natural emissions account for the 75 % of the total variability of global average surface O3 concentrations. Regionally, annual mean surface O3 concentrations increased by 1.3 and 1.6 ppbv over Europe and North America, respectively, despite the large anthropogenic emission reductions between 1980 and 2005. A comparison of winter and summer O3 trends with measurements shows a qualitative agreement, except in North America, where our model erroneously computed a positive trend. Simulated O3 increases of more than 4 ppbv in East Asia and 5 ppbv in South Asia can not be corroborated with long-term observations. Global average sulfate surface

  12. Sensitivity of the tropical stratospheric ozone response to the solar rotational cycle in observations and chemistry-climate model simulations

    Science.gov (United States)

    Thiéblemont, Rémi; Marchand, Marion; Bekki, Slimane; Bossay, Sébastien; Lefèvre, Franck; Meftah, Mustapha; Hauchecorne, Alain

    2017-08-01

    The tropical stratospheric ozone response to solar UV variations associated with the rotational cycle (˜ 27 days) is analyzed using MLS satellite observations and numerical simulations from the LMDz-Reprobus chemistry-climate model. The model is used in two configurations, as a chemistry-transport model (CTM) where dynamics are nudged toward ERA-Interim reanalysis and as a chemistry-climate model (free-running) (CCM). An ensemble of five 17-year simulations (1991-2007) is performed with the CCM. All simulations are forced by reconstructed time-varying solar spectral irradiance from the Naval Research Laboratory Solar Spectral Irradiance model. We first examine the ozone response to the solar rotational cycle during two 3-year periods which correspond to the declining phases of solar cycle 22 (October 1991-September 1994) and solar cycle 23 (September 2004-August 2007), when the satellite ozone observations of the two Microwave Limb Sounders (UARS MLS and Aura MLS) are available. In the observations, during the first period, ozone and UV flux are found to be correlated between about 10 and 1 hPa with a maximum of 0.29 at ˜ 5 hPa; the ozone sensitivity (% change in ozone for 1 % change in UV) peaks at ˜ 0.4. Correlation during the second period is weaker and has a peak ozone sensitivity of only 0.2, possibly due to the fact that the solar forcing is weaker during that period. The CTM simulation reproduces most of these observed features, including the differences between the two periods. The CCM ensemble mean results comparatively show much smaller differences between the two periods, suggesting that the amplitude of the rotational ozone signal estimated from MLS observations or the CTM simulation is strongly influenced by other (non-solar) sources of variability, notably dynamics. The analysis of the ensemble of CCM simulations shows that the estimation of the ensemble mean ozone sensitivity does not vary significantly either with the amplitude of the solar

  13. 21st Century Trends in Antarctic Temperature and Polar Stratospheric Cloud (PSC) Area in the GEOS Chemistry-Climate Model

    Science.gov (United States)

    Hurwitz, M. M.; Newman, P. A.

    2010-01-01

    This study examines trends in Antarctic temperature and APSC, a temperature proxy for the area of polar stratospheric clouds, in an ensemble of Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) simulations of the 21st century. A selection of greenhouse gas, ozone-depleting substance, and sea surface temperature scenarios is used to test the trend sensitivity to these parameters. One scenario is used to compare temperature trends in two versions of the GEOS CCM. An extended austral winter season is examined in detail. In May, June, and July, the expected future increase in CO2-related radiative cooling drives temperature trends in the Antarctic lower stratosphere. At 50 hPa, a 1.3 K cooling is expected between 2000 and 2100. Ozone levels increase, despite this robust cooling signal and the consequent increase in APSC, suggesting the enhancement of stratospheric transport in future. In the lower stratosphere, the choice of climate change scenarios does not affect the magnitude of the early winter cooling. Midwinter temperature trends are generally small. In October, APSC trends have the same sign as the prescribed halogen trends. That is, there are negative APSC trends in "grealistic future" simulations, where halogen loading decreases in accordance with the Montreal Protocol and CO2 continues to increase. In these simulations, the speed of ozone recovery is not influenced by either the choice of sea surface temperature and greenhouse gas scenarios or by the model version.

  14. Crossing Scales and Disciplines to Understand Challenges for Climate Change Adaptation and Water Resources Management in Chile and Californi

    Science.gov (United States)

    Vicuna, S.; Melo, O.; Meza, F. J.; Medellin-Azuara, J.; Herman, J. D.; Sandoval Solis, S.

    2017-12-01

    California and Chile share similarities in terms of climate, ecosystems, topography and water use. In both regions, the hydro-climatologic system is characterized by a typical Mediterranean climate, rainy winters and dry summers, highly variable annual precipitation, and snowmelt-dependent water supply systems. Water use in both regions has also key similarities, with the highest share devoted to high-value irrigated crops, followed by urban water use and a significant hydropower-driven power supply system. Snowmelt-driven basins in semiarid regions are highly sensitive to climate change for two reasons, temperature effects on snowmelt timing and water resources scarcity in these regions subject to ever-increasing demands. Research in both regions also coincide in terms of the potential climate change impacts. Expected impacts on California and Chile water resources have been well-documented in terms of changes in water supply and water demand, though significant uncertainties remain. Both regions have recently experienced prolonged droughts, providing an opportunity to understand the future challenges and potential adaptive responses under climate change. This study connects researchers from Chile and California with the goal of understanding the problem of how to adapt to climate change impacts on water resources and agriculture at the various spatial and temporal scales. The project takes advantage of the complementary contexts between Chile and California in terms of similar climate and hydrologic conditions, water management institutions, patterns of water consumption and, importantly, a similar challenge facing recent drought scenarios to understand the challenges faced by a changing climate.

  15. Understanding Controversies in Urban Climate Change Adaptation. A case study of the role of homeowners in the process of climate change adaptation in Copenhagen

    Directory of Open Access Journals (Sweden)

    Nina Baron

    2015-12-01

    Full Text Available This article explores the controversies that exist in urban climate change adaptation and how these controversies influence the role of homeowners in urban adaptation planning. A concrete ‘Sustainable Urban Drainages System’ (SUDS project in a housing cooperative in Copenhagen has been used as a case study, thereby investigating multiple understandings of urban climate change adaptation. Several different perspectives are identified with regard to what are and what will become the main climate problems in the urban environment as well as what are considered to be the best responses to these problems. Building on the actor-network inspired theory of ‘urban green assemblages’ we argue that at least three different assemblages can be identified in urban climate change adaptation. Each assemblage constitutes and connects problems and responses differently and thereby involve homeowners in different ways. As climate change is a problem of unknown character and outcome in the future, we argue that it can be problematic if one way of constituting urban climate change adaptation becomes dominant, in which case some climate problems and adaptation options may become less influential, even though the enrolment of these could contribute to a more resilient city. Furthermore, the case study from Copenhagen also shows that the influence and involvement of homeowners might be reduced if the conception of future climate problems becomes too restricted. The result would be that the potential benefits of involving urban citizens in defining and responding to problems related to climate change would be lost.

  16. Conceptualizing In-service Secondary School Science Teachers' Knowledge Base for Promoting Understanding about the Science of Global Climate Change

    Science.gov (United States)

    Bhattacharya, Devarati

    Efforts to adapt and mitigate the effects of global climate change (GCC) have been ongoing for the past two decades and have become a major global concern. However, research and practice for promoting climate literacy and understanding about GCC have only recently become a national priority. The National Research Council (NRC), has recently emphasized upon the importance of developing learners' capacity of reasoning, their argumentation skills and understanding of GCC (Framework for K-12 Science Education, National Research Council, 2012). This framework focuses on fostering conceptual clarity about GCC to promote innovation, resilience, and readiness in students as a response towards the threat of a changing environment. Previous research about teacher understanding of GCC describes that in spite of the prevalent frameworks like the AAAS Science Literacy Atlas (AAAS, 2007) and the Essential Principles for Climate Literacy (United States Global Climate Research Program, 2009; Bardsley, 2007), most learners are challenged in understanding the science of GCC (Michail et al., 2007) and misinformed perceptions about basic climate science content and the role of human activities in changing climate remain persistent (Reibich and Gautier, 2006). Our teacher participants had a rather simplistic knowledge structure. While aware of climate change, teacher participants lacked in depth understanding of how change in climate can impact various ecosystems on the Earth. Furthermore, they felt overwhelmed with the extensive amount of information needed to comprehend the complexity in GCC. Hence, extensive efforts not only focused on assessing conceptual understanding of GCC but also for teaching complex science topics like GCC are essential. This dissertation explains concept mapping, and the photo elicitation method for assessing teachers' understanding of GCC and the use of metacognitive scaffolding in instruction of GCC for developing competence of learners in this complex

  17. Assessing the Development of Chemistry Students' Conceptual and Visual Understanding of Dimensional Analysis via Supplemental Use of Web-Based Software

    Science.gov (United States)

    Ellis, Jennifer T.

    2013-01-01

    This study was designed to evaluate the effects of a proprietary software program on students' conceptual and visual understanding of dimensional analysis. The participants in the study were high school general chemistry students enrolled in two public schools with different demographics (School A and School B) in the Chattanooga, Tennessee,…

  18. A Comparative Study of the Effects of a Concept Mapping Enhanced Laboratory Experience on Turkish High School Students' Understanding of Acid-Base Chemistry

    Science.gov (United States)

    Ozmen, Haluk; Demircioglu, Gokhan; Coll, Richard K.

    2009-01-01

    The research reported here consists of the introduction of an intervention based on a series of laboratory activities combined with concept mapping. The purpose of this intervention was to enhance student understanding of acid-base chemistry for tenth grade students' from two classes in a Turkish high school. An additional aim was to enhance…

  19. A Framework for Understanding Student Nurses' Experience of Chemistry as Part of a Health Science Course

    Science.gov (United States)

    Boddey, Kerrie; de Berg, Kevin

    2018-01-01

    Twenty-seven first-year nursing students, divided across six focus groups formed on the basis of their past chemistry experience, were interviewed about their chemistry experience as a component of a Health Science unit. Information related to learning and academic performance was able to be established from student conversations resulting in…

  20. Simulation of polar stratospheric clouds in the chemistry-climate-model EMAC via the submodel PSC

    Directory of Open Access Journals (Sweden)

    O. Kirner

    2011-03-01

    Full Text Available The submodel PSC of the ECHAM5/MESSy Atmospheric Chemistry model (EMAC has been developed to simulate the main types of polar stratospheric clouds (PSC. The parameterisation of the supercooled ternary solutions (STS, type 1b PSC in the submodel is based on Carslaw et al. (1995b, the thermodynamic approach to simulate ice particles (type 2 PSC on Marti and Mauersberger (1993. For the formation of nitric acid trihydrate (NAT particles (type 1a PSC two different parameterisations exist. The first is based on an instantaneous thermodynamic approach from Hanson and Mauersberger (1988, the second is new implemented and considers the growth of the NAT particles with the aid of a surface growth factor based on Carslaw et al. (2002. It is possible to choose one of this NAT parameterisation in the submodel. This publication explains the background of the submodel PSC and the use of the submodel with the goal of simulating realistic PSC in EMAC.

  1. Preindustrial to Present-Day Changes in Tropospheric Hydroxyl Radical and Methane Lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    Science.gov (United States)

    Naik, V.; Voulgarakis, A.; Fiore, A. M.; Horowitz, L. W.; Lamarque, J.-F.; Lin, M.; Prather, M. J.; Young, P. J.; Bergmann, D.; Cameron-Smith, P. J.; hide

    2013-01-01

    We have analysed time-slice simulations from 17 global models, participating in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), to explore changes in present-day (2000) hydroxyl radical (OH) concentration and methane (CH4) lifetime relative to preindustrial times (1850) and to 1980. A comparison of modeled and observation-derived methane and methyl chloroform lifetimes suggests that the present-day global multi-model mean OH concentration is overestimated by 5 to 10% but is within the range of uncertainties. The models consistently simulate higher OH concentrations in the Northern Hemisphere (NH) compared with the Southern Hemisphere (SH) for the present-day (2000; inter-hemispheric ratios of 1.13 to 1.42), in contrast to observation-based approaches which generally indicate higher OH in the SH although uncertainties are large. Evaluation of simulated carbon monoxide (CO) concentrations, the primary sink for OH, against ground-based and satellite observations suggests low biases in the NH that may contribute to the high north–south OH asymmetry in the models. The models vary widely in their regional distribution of present-day OH concentrations (up to 34%). Despite large regional changes, the multi-model global mean (mass-weighted) OH concentration changes little over the past 150 yr, due to concurrent increases in factors that enhance OH (humidity, tropospheric ozone, nitrogen oxide (NOx) emissions, and UV radiation due to decreases in stratospheric ozone), compensated by increases in OH sinks (methane abundance, carbon monoxide and non-methane volatile organic carbon (NMVOC) emissions). The large inter-model diversity in the sign and magnitude of preindustrial to present-day OH changes (ranging from a decrease of 12.7% to an increase of 14.6%) indicate that uncertainty remains in our understanding of the long-term trends in OH and methane lifetime. We show that this diversity is largely explained by the different ratio of the

  2. Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP

    Directory of Open Access Journals (Sweden)

    V. Naik

    2013-05-01

    Full Text Available We have analysed time-slice simulations from 17 global models, participating in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP, to explore changes in present-day (2000 hydroxyl radical (OH concentration and methane (CH4 lifetime relative to preindustrial times (1850 and to 1980. A comparison of modeled and observation-derived methane and methyl chloroform lifetimes suggests that the present-day global multi-model mean OH concentration is overestimated by 5 to 10% but is within the range of uncertainties. The models consistently simulate higher OH concentrations in the Northern Hemisphere (NH compared with the Southern Hemisphere (SH for the present-day (2000; inter-hemispheric ratios of 1.13 to 1.42, in contrast to observation-based approaches which generally indicate higher OH in the SH although uncertainties are large. Evaluation of simulated carbon monoxide (CO concentrations, the primary sink for OH, against ground-based and satellite observations suggests low biases in the NH that may contribute to the high north–south OH asymmetry in the models. The models vary widely in their regional distribution of present-day OH concentrations (up to 34%. Despite large regional changes, the multi-model global mean (mass-weighted OH concentration changes little over the past 150 yr, due to concurrent increases in factors that enhance OH (humidity, tropospheric ozone, nitrogen oxide (NOx emissions, and UV radiation due to decreases in stratospheric ozone, compensated by increases in OH sinks (methane abundance, carbon monoxide and non-methane volatile organic carbon (NMVOC emissions. The large inter-model diversity in the sign and magnitude of preindustrial to present-day OH changes (ranging from a decrease of 12.7% to an increase of 14.6% indicate that uncertainty remains in our understanding of the long-term trends in OH and methane lifetime. We show that this diversity is largely explained by the different ratio of the

  3. Elements of environmental chemistry

    National Research Council Canada - National Science Library

    Hites, R. A; Raff, Jonathan D

    2012-01-01

    ... more. Extensively revised, updated, and expanded, this second edition includes new chapters on atmospheric chemistry, climate change, and polychlorinated biphenyls and dioxins, and brominated flame retardants...

  4. Understanding the role of extreme weather event attribution as a climate service

    Science.gov (United States)

    Walton, P.

    2016-12-01

    Any robust, fit for purpose climate service needs to start with the needs of the people who are going to be using the science. However, experience suggests that this is not a simple process taking time, and periods of discussion to identify issues such as what is needed, how it can used, how can it be used in conjunction with other tools etc. As a relatively new science within the field of climate change, attribution of extreme weather events is still exploring how the science can be applied and how best to support decision-makers in using it. This paper reports on the experiences of a 3-year project that looked to identify what an event attribution service for Europe could look like. Key sectors including insurance, local planners, national policy and law were engaged to better understand their needs for the science, and how the science could be best communicated. Whilst many lessons have been learned about stakeholder needs in terms of accessing information, there is still more that needs developing with regards to what the science can say and how this impacts on the decision-making process.

  5. What Is That Thing Called Climate Change? an Investigation into the Understanding of Climate Change by Seventh-Grade Students

    Science.gov (United States)

    Özdem, Yasemin; Dal, Burçkin; Öztürk, Nilay; Sönmez, Duygu; Alper, Umut

    2014-01-01

    This paper presents findings from research on students' general environmental concerns, experiences, beliefs, attitudes, worldviews, values, and actions relating to climate change. Data was gathered from a sample of 646 seventh-grade students. The findings indicate that students identify climate change as a consequence of modern life. They…

  6. Understanding How and Why Cities Engage with Climate Policy: An Analysis of Local Climate Action in Spain and Italy.

    Directory of Open Access Journals (Sweden)

    Sonia De Gregorio Hurtado

    2015-10-01

    The results of the analysis show a trend towards an increasing awareness on climate mitigation (highly focused on energy efficiency and the promotion of cleaner energy sources, while adaptation remains an incipient local policy area in both countries. The analysis identifies also the beneficial influence of national and international climate city networks.

  7. A modeling tool to evaluate regional coral reef responses to changes in climate and ocean chemistry

    Science.gov (United States)

    Buddemeier, R.W.; Jokiel, P.L.; Zimmerman, K.M.; Lane, D.R.; Carey, J.M.; Bohling, Geoffrey C.; Martinich, J.A.

    2008-01-01

    We developed a spreadsheet-based model for the use of managers, conservationists, and biologists for projecting the effects of climate change on coral reefs at local-to-regional scales. The COMBO (Coral Mortality and Bleaching Output) model calculates the impacts to coral reefs from changes in average SST and CO2 concentrations, and from high temperature mortality (bleaching) events. The model uses a probabilistic assessment of the frequency of high temperature events under a future climate to address scientific uncertainties about potential adverse effects. COMBO offers data libraries and default factors for three selected regions (Hawai'i, Great Barrier Reef, and Caribbean), but it is structured with user-selectable parameter values and data input options, making possible modifications to reflect local conditions or to incorporate local expertise. Preliminary results from sensitivity analyses and simulation examples for Hawai'i demonstrate the relative importance of high temperature events, increased average temperature, and increased CO2 concentration on the future status of coral reefs; Illustrate significant interactions among variables; and allow comparisons of past environmental history with future predictions. ?? 2008, by the American Society of Limnology and Oceanugraphy, Inc.

  8. Towards Understanding the Climate of Venus Applications of Terrestrial Models to Our Sister Planet

    CERN Document Server

    Bonnet, Roger-Maurice; Grinspoon, David; Koumoutsaris, Symeon; Lebonnois, Sebastien; Titov, Dmitri

    2013-01-01

    ESA’s Venus Express Mission has monitored Venus since April 2006, and scientists worldwide have used mathematical models to investigate its atmosphere and model its circulation. This book summarizes recent work to explore and understand the climate of the planet through a research program under the auspices of the International Space Science Institute (ISSI) in Bern, Switzerland. Some of the unique elements that are discussed are the anomalies with Venus’ surface temperature (the huge greenhouse effect causes the surface to rise to 460°C, without which would plummet as low as -40°C), its unusual lack of solar radiation (despite being closer to the Sun, Venus receives less solar radiation than Earth due to its dense cloud cover reflecting 76% back) and the juxtaposition of its atmosphere and planetary rotation (wind speeds can climb up to 200 m/s, much faster than Venus’ sidereal day of 243 Earth-days).

  9. Understanding the systemic nature of cities to improve health and climate change mitigation.

    Science.gov (United States)

    Chapman, Ralph; Howden-Chapman, Philippa; Capon, Anthony

    2016-09-01

    Understanding cities comprehensively as systems is a costly challenge and is typically not feasible for policy makers. Nevertheless, focusing on some key systemic characteristics of cities can give useful insights for policy to advance health and well-being outcomes. Moreover, if we take a coevolutionary systems view of cities, some conventional assumptions about the nature of urban development (e.g. the growth in private vehicle use with income) may not stand up. We illustrate this by examining the coevolution of urban transport and land use systems, and institutional change, giving examples of policy implications. At a high level, our concern derives from the need to better understand the dynamics of urban change, and its implications for health and well-being. At a practical level, we see opportunities to use stylised findings about urban systems to underpin policy experiments. While it is now not uncommon to view cities as systems, policy makers appear to have made little use so far of a systems approach to inform choice of policies with consequences for health and well-being. System insights can be applied to intelligently anticipate change - for example, as cities are subjected to increasing natural system reactions to climate change, they must find ways to mitigate and adapt to it. Secondly, systems insights around policy cobenefits are vital for better informing horizontal policy integration. Lastly, an implication of system complexity is that rather than seeking detailed, 'full' knowledge about urban issues and policies, cities would be well advised to engage in policy experimentation to address increasingly urgent health and climate change issues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The need for New In Situ Measurements to Understand the Climate, Geology and Evolution of Venus.

    Science.gov (United States)

    Grinspoon, D. H.

    2017-12-01

    Many measurements needed to address outstanding questions about current processes and evolution of Venus can only be made from in situ platforms such as entry probes, balloons or landers. Among these are precise determination of the value and altitude dependence of the deuterium-to-hydrogen ratio, an important tracer of water history which, while clearly greatly elevated compared to the terrestrial ratio, is still unknown within a large range of uncertainty and appears, based on Venus Express results, to display an enigmatic altitude dependence. Rare gas abundances and isotopes provide clues to volatile sources and histories of outgassing and exospheric escape. Modern mass spectrometry at Venus would yield abundances of the eight stable xenon isotopes, bulk abundances of krypton, and isotopes of neon. Altitude profiles of sulfur-containing chemical species would illuminate global geochemical cycles, including cloud formation, outgassing rates and surface-atmosphere interactions. The altitude profile of wind speeds and radiation fluxes, interpreted in light of the Venus Express and Akatsuki data, would enrich understanding of the global circulation and climate dynamics of Venus. Descent and surface images of carefully chosen locations would lend ground truth to interpretations of the near-global Magellan data sets and provide context for global remote sensing data obtained by future orbiter missions. Landed instruments would provide refinement and calibration for chemical abundance measurements by historical missions as well as direct mineralogical measurements of Venusian surface and subsurface rocks. In concert with atmospheric measurements these would greatly constrain geologic history as well as the nature of surface-atmosphere interactions. Such a suite of measurements will deepen our understanding of the origin and evolution of Venus in the context of Solar System and extrasolar terrestrial planets, determine the level and style of current geological activity

  11. Teaching Climate Change Using System Models: An Understanding Global Change Project Pilot Study

    Science.gov (United States)

    Bean, J. R.; Stuhlsatz, M.; Bracey, Z. B.; Marshall, C. R.

    2017-12-01

    Teaching and learning about historical and anthropogenic climate change in the classroom requires integrating instructional resources that address physical, chemical, and biological processes. The Understanding Global Change (UGC) framework and system models developed at the University of California Museum of Paleontology (UCMP) provide visualizations of the relationships and feedbacks between Earth system processes, and the consequences of anthropogenic activities on global climate. This schema provides a mechanism for developing pedagogic narratives that are known to support comprehension and retention of information and relationships. We designed a nine-day instructional unit for middle and high school students that includes a sequence of hands-on, inquiry-based, data rich activities combined with conceptual modeling exercises intended to foster students' development of systems thinking and their understanding of human influences on Earth system processes. The pilot unit, Sea Level Rise in the San Francisco Bay Area, addresses the human causes and consequences of sea level rise and related Earth system processes (i.e., the water cycle and greenhouse effect). Most of the content is not Bay Area specific, and could be used to explore sea level rise in any coastal region. Students completed pre and post assessments, which included questions about the connectedness of components of the Earth system and probed their attitudes towards participating in environmental stewardship activities. Students sequentially drew models representing the content explored in the activities and wrote short descriptions of their system diagrams that were collected by teachers for analysis. We also randomly assigned classes to engage in a very short additional intervention that asked students to think about the role that humans play in the Earth system and to draw themselves into the models. The study will determine if these students have higher stewardship scores and more frequently

  12. Impact of large solar zenith angles on lower stratospheric dynamical and chemical processes in a coupled chemistry-climate model

    Directory of Open Access Journals (Sweden)

    D. Lamago

    2003-01-01

    Full Text Available Actinic fluxes at large solar zenith angles (SZAs are important for atmospheric chemistry, especially under twilight conditions in polar winter and spring. The results of a sensitivity experiment employing the fully coupled 3D chemistry-climate model ECHAM4.L39(DLR/CHEM have been analysed to quantify the impact of SZAs larger than 87.5º on dynamical and chemical processes in the lower stratosphere, in particular their influence on the ozone layer. Although the actinic fluxes at SZAs larger than 87.5º are small, ozone concentrations are significantly affected because daytime photolytic ozone destruction is switched on earlier, especially at the end of polar night the conversion of Cl2 and Cl2O2 into ClO in the lower stratosphere. Comparing climatological mean ozone column values of a simulation considering SZAs up to 93º with those of the sensitivity run with SZAs confined to 87.5º total ozone is reduced by about 20% in the polar Southern Hemisphere, i.e., the ozone hole is "deeper'' if twilight conditions are considered in the model because there is about 4 weeks more time for ozone destruction. This causes an additional cooling of the polar lower stratosphere (50 hPa up to -4 K with obvious consequences for chemical processes. In the Northern Hemisphere the impact of large SZAs cannot be determined on the basis of climatological mean values due to the pronounced dynamic variability of the stratosphere in winter and spring. This study clearly shows the necessity of considering large SZAs for the calculation of photolysis rates in atmospheric models.

  13. Carbon dioxide, climate and the deep ocean circulation: Carbon chemistry model

    International Nuclear Information System (INIS)

    Menawat, A.S.

    1992-01-01

    The objective of this study was to investigate the role of oceanic carbon chemistry in modulating the atmospheric levels of CO 2 . It is well known that the oceans are the primary sink of the excess carbon pumped into the atmosphere since the beginning of the industrial period. The suspended particulate and the dissolved organic matters in the deep ocean play important roles as carriers of carbon and other elements critical to the fate of CO 2 . In addition, the suspended particulate matter provides sites for oxidation-reduction reactions and microbial activities. The problem is of an intricate system with complex chemical, physical and biological processes. This report describes a methodology to describe the interconversions of different forms of the organic and inorganic nutrients, that may be incorporated in the ocean circulation models. Our approach includes the driving force behind the transfers in addition to balancing the elements. Such thermodynamic considerations of describing the imbalance in the chemical potentials is a new and unique feature of our approach

  14. Links between climate change, water-table depth, and water chemistry in a mineralized mountain watershed

    Science.gov (United States)

    Manning, Andrew H.; Verplanck, Philip L.; Caine, Jonathan S.; Todd, Andrew S.

    2013-01-01

    Recent studies suggest that climate change is causing rising solute concentrations in mountain lakes and streams. These changes may be more pronounced in mineralized watersheds due to the sensitivity of sulfide weathering to changes in subsurface oxygen transport. Specific causal mechanisms linking climate change and accelerated weathering rates have been proposed, but in general remain entirely hypothetical. For mineralized watersheds, a favored hypothesis is that falling water tables caused by declining recharge rates allow an increasing volume of sulfide-bearing rock to become exposed to air, thus oxygen. Here, we test the hypothesis that falling water tables are the primary cause of an increase in metals and SO4 (100-400%) observed since 1980 in the Upper Snake River (USR), Colorado. The USR drains an alpine watershed geologically and climatologically representative of many others in mineralized areas of the western U.S. Hydrologic and chemical data collected from 2005 to 2011 in a deep monitoring well (WP1) at the top of the USR watershed are utilized. During this period, both water table depths and groundwater SO4 concentrations have generally increased in the well. A numerical model was constructed using TOUGHREACT that simulates pyrite oxidation near WP1, including groundwater flow and oxygen transport in both saturated and unsaturated zones. The modeling suggests that a falling water table could produce an increase in metals and SO4 of a magnitude similar to that observed in the USR (up to 300%). Future water table declines may produce limited increases in sulfide weathering high in the watershed because of the water table dropping below the depth of oxygen penetration, but may continue to enhance sulfide weathering lower in the watershed where water tables are shallower. Advective air (oxygen) transport in the unsaturated zone caused by seasonally variable recharge and associated water table fluctuations was found to have little influence on pyrite

  15. Modeling the present and future impact of aviation on climate: an AOGCM approach with online coupled chemistry

    Directory of Open Access Journals (Sweden)

    P. Huszar

    2013-10-01

    Full Text Available Our work is among the first that use an atmosphere-ocean general circulation model (AOGCM with online chemistry to evaluate the impact of future aviation emissions on temperature. Other particularities of our study include non-scaling to the aviation emissions, and the analysis of models' transient response using ensemble simulations. The model we use is the Météo-France CNRM-CM5.1 earth system model extended with the REPROBUS chemistry scheme. The time horizon of our interest is 1940–2100, assuming the A1B SRES scenario. We investigate the present and future impact of aviation emissions of CO2, NOx and H2O on climate, taking into account changes in greenhouse gases, contrails and contrail-induced cirrus (CIC. As in many transport-related impact studies, we distinguish between the climate impacts of CO2 emissions and those of non-CO2 emissions. Aviation-produced aerosol is not considered in the study. Our modeling system simulated a notable sea-ice bias in the Arctic, and therefore results concerning the surface should be viewed with caution. The global averaged near-surface CO2 impact reaches around 0.1 K by the end of the 21st century, while the non-CO2 impact reaches 0.2 K in the second half of the century. The NOx emissions impact is almost negligible in our simulations, as our aviation-induced ozone production is small. As a consequence, the non-CO2 signal is very similar to the CIC signal. The seasonal analysis shows that the strongest warming due to aviation is modeled for the late summer and early autumn. In the stratosphere, a significant cooling is attributed to aviation CO2 emissions (−0.25 K by 2100. A −0.3 K temperature decrease is modeled when considering all the aviation emissions, but no significant signal appears from the CIC or NOx forcings in the stratosphere.

  16. Climate change and atmospheric chemistry: how will the stratospheric ozone layer develop?

    Science.gov (United States)

    Dameris, Martin

    2010-10-25

    The discovery of the ozone hole over Antarctica in 1985 was a surprise for science. For a few years the reasons of the ozone hole was speculated about. Soon it was obvious that predominant meteorological conditions led to a specific situation developing in this part of the atmosphere: Very low temperatures initiate chemical processes that at the end cause extreme ozone depletion at altitudes of between about 15 and 30 km. So-called polar stratospheric clouds play a key role. Such clouds develop at temperatures below about 195 K. Heterogeneous chemical reactions on cloud particles initiate the destruction of ozone molecules. The future evolution of the ozone layer will not only depend on the further development of concentrations of ozone-depleting substances, but also significantly on climate change.

  17. Proceedings of the adapting to climate change in Canada 2005 conference : understanding risks and building capacity

    International Nuclear Information System (INIS)

    2005-01-01

    This four-day conference provided a national forum for researchers and decision-makers from a variety of disciplines to share information and results on climate change. Sponsored by Natural Resources Canada's Climate Change Impacts and Adaptation Program, the conference explored ways to improve knowledge of Canada's vulnerability to climate change, to better assess the benefits and risks of climate change and to examine policies and options through which decisions on adaptation can be made. Conference topics included issues such as global warming; sustainable development; climate change and agriculture; adaptation strategies; water, coastline and marine management and climate change; municipal level management and climate change; climate change and health issues; and many other topics related to climate change. The conference featured paper and poster presentations, opening remarks, and panel discussions. A total of 118 conference papers and 46 conference posters were presented at the conference of which 17 have been catalogued separately in this database. refs., tabs., figs

  18. Influence of chemistry and climate on large induced large scale stresses in anisotropically fractured carbonates.

    Science.gov (United States)

    Toussaint, R.; Cornet, F.

    2012-04-01

    We will explore a simple model coupling for carbonate rocks the fracture density and orientation, the water chemistry and transport, the dissolution reactions and the expected irreversible rock deformation. Adding elasticity and boundary conditions, plus an estimation of the water source composition in the formation, we will estimate orders of magnitudes of the stress changes that can be expected from these processes in sedimentary basins over long times. We will in particular examine whether such intrinsic deformation mechanism can give a hint to explain the observed anisotropic stresses, in orientation and magnitude, in zones above the C.O.X. argillite formation in the Paris Basin, where the horizontal stress anisotropy has been shown to be important, whereas stress decoupling from the deep crustal roots should be effective, and no strong anisotropy would be expected in the absence of active deformation mechanism. In the Paris basin, the analysis of log cores shows that fractures and joints, up to meter-long ones, are common anisotropic features present in the carbonate rocks. Dissolution of calcite along these oriented features removes material with an a priori oriented flux reflecting this structural anisotropy, resulting in a non-isotropic deformation associated to this dissolution. We will present a simple model where dissolution and transport of dissolved calcite is associated with the deformation of the carbonate rock. Estimating the reaction constants, the chemical composition variation of the meteoric water, the rock permeability and the fracture density from observations around the Bure underground laboratory, we will estimate the order of magnitude of the deformations expected from these types of mechanisms. Such estimates have already been performed for dissolution along stylolites, e.g. by Clark, 1966; Renard et al., 2004; Schmittbuhl et al., 2004; Koehn et al., 2007. We will adapt these to reflect the anisotropic feature of the fractures present in

  19. Early Holocene hydroclimate of Baffin Bay: Understanding the interplay between abrupt climate change events and ice sheet fluctuations

    Science.gov (United States)

    Corcoran, M. C.; Thomas, E. K.; Castañeda, I. S.; Briner, J. P.

    2017-12-01

    Understanding the causes of ice sheet fluctuations resulting in sea level rise is essential in today's warming climate. In high-latitude ice-sheet-proximal environments such as Baffin Bay, studying both the cause and the rate of ice sheet variability during past abrupt climate change events aids in predictions. Past climate reconstructions are used to understand ice sheet responses to changes in temperature and precipitation. The 9,300 and 8,200 yr BP events are examples of abrupt climate change events in the Baffin Bay region during which there were multiple re-advances of the Greenland and Laurentide ice sheets. High-resolution (decadal-scale) hydroclimate variability near the ice sheet margins during these abrupt climate change events is still unknown. We will generate a decadal-scale record of early Holocene temperature and precipitation using leaf wax hydrogen isotopes, δ2Hwax, from a lake sediment archive on Baffin Island, western Baffin Bay, to better understand abrupt climate change in this region. Shifts in temperature and moisture source result in changes in environmental water δ2H, which in turn is reflected in δ2Hwax, allowing for past hydroclimate to be determined from these compound-specific isotopes. The combination of terrestrial and aquatic δ2Hwax is used to determine soil evaporation and is ultimately used to reconstruct moisture variability. We will compare our results with a previous analysis of δ2Hwax and branched glycerol dialkyl glycerol tetraethers, a temperature and pH proxy, in lake sediment from western Greenland, eastern Baffin Bay, which indicates that cool and dry climate occurred in response to freshwater forcing events in the Labrador Sea. Reconstructing and comparing records on both the western and eastern sides of Baffin Bay during the early Holocene will allow for a spatial understanding of temperature and moisture balance changes during abrupt climate events, aiding in ice sheet modeling and predictions of future sea level

  20. Predicting Plant Diversity Patterns in Madagascar: Understanding the Effects of Climate and Land Cover Change in a Biodiversity Hotspot

    OpenAIRE

    Brown, Kerry A.; Parks, Katherine E.; Bethell, Colin A.; Johnson, Steig E.; Mulligan, Mark

    2015-01-01

    Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs) calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence r...

  1. Understanding Hydroclimatic Extremes in Changing Monsoon Climates with Daily Bias Correction of CMIP5 Regional Climate Models over South Asia

    Science.gov (United States)

    Hasan, M. A.; Islam, A. S.; Akanda, A. S. S.

    2015-12-01

    The assessment of hydroclimatic and hydrometeorological extremes in changing climates has gathered special attention in the latest IPCC 5thAssessment Report (AR5). In monsoon regions such as South Asia, hydrologic modeling (i.e., stream flow assessment, water budget analysis, etc.) needs to incorporate such extremes to simulate retrospective and future scenarios. For information of past and future climate, Regional Climate Models (RCMs) are preferred over global models due to their higher resolution and dynamic downscaling capabilities. Although the models perform well in representing the mean climate, they still possess significant biases, especially in daily hydrometeorological extremes over monsoon regions. Therefore, modification and correction of RCM results while preserving the extremes are crucial for hydrologic modeling in changing monsoon climates such as in South Asia. In this context, we generate a gridded observed product that preserve the hydroclimatic and hydrometeorological extremes for the Ganges-Brahmaputra-Meghna (GBM) basin region in South Asia. A recent approach to bias correction is also proposed for correcting regional climate data in currently available future projections. The 30 year dataset (1971-2010) is used for comparing hydroclimatic and hydrometeorological extremes with APHRODITE and ERA-Interim Reanalysis products. The assessment has revealed that the new gridded data set provides much accurate maximum rainfall intensity, number of dry days, number of wet days and number of rainy days with greater than 500mm rainfall than any other available gridded data products. Using the gridded data sets, bias correctionis applied on CMIP5 multi-model historical datasets to evaluate RCM data performance over the region, which show great improvement in regional climate data for future hydrologic modeling scenarios and analyzing impacts of climate extremes.

  2. Environmental chemistry. Seventh edition

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, S.E. [Univ. of Missouri, Columbia, MO (United States)

    1999-11-01

    This book presents a basic understanding of environmental chemistry and its applications. In addition to providing updated materials in this field, the book emphasizes the major concepts essential to the practice of environmental chemistry. Topics of discussion include the following: toxicological chemistry; toxicological chemistry of chemical substances; chemical analysis of water and wastewater; chemical analysis of wastes and solids; air and gas analysis; chemical analysis of biological materials and xenobiotics; fundamentals of chemistry; and fundamentals of organic chemistry.

  3. iRESM INITIATIVE UNDERSTANDING DECISION SUPPORT NEEDS FOR CLIMATE CHANGE MITIGATION AND ADAPTATION --US Midwest Region—

    Energy Technology Data Exchange (ETDEWEB)

    Rice, Jennie S.; Runci, Paul J.; Moss, Richard H.; Anderson, Kate L.

    2010-10-01

    The impacts of climate change are already affecting human and environmental systems worldwide, yet many uncertainties persist in the prediction of future climate changes and impacts due to limitations in scientific understanding of relevant causal factors. In particular, there is mounting urgency to efforts to improve models of human and environmental systems at the regional scale, and to integrate climate, ecosystem and energy-economic models to support policy, investment, and risk management decisions related to climate change mitigation (i.e., reducing greenhouse gas emissions) and adaptation (i.e., responding to climate change impacts). The Pacific Northwest National Laboratory (PNNL) is developing a modeling framework, the integrated Regional Earth System Model (iRESM), to address regional human-environmental system interactions in response to climate change and the uncertainties therein. The framework will consist of a suite of integrated models representing regional climate change, regional climate policy, and the regional economy, with a focus on simulating the mitigation and adaptation decisions made over time in the energy, transportation, agriculture, and natural resource management sectors.

  4. Atmospheric Extremes in a Changing Climate: A Strategy for Improved Understanding Driven by International Security Concerns

    Science.gov (United States)

    Davis, A. B.; Kao, C. J.

    2001-05-01

    critical threshold crossing. So extreme atmospheric phenomena are of the essence yet they are poorly understood, even in a steady climate, because they challenge both dynamical modelers and statisticians. The authors will describe a preliminary proposal to harness some of the unique human, computational and observational resources at LANL that could lead to a significant breakthrough in our understanding of extreme weather mechanisms and how they relate to climate and climate change. If implemented, this program could open new relationships between the laboratory and presently unsuspecting client-agencies such as FEMA, CDC, EPA, State Department, and so on.

  5. Mainstreaming Climate Change: Recent and Ongoing Efforts to Understand, Improve, and Expand Consideration of Climate Change in Federal Water Resources Planning

    Science.gov (United States)

    Ferguson, I. M.; McGuire, M.; Broman, D.; Gangopadhyay, S.

    2017-12-01

    The Bureau of Reclamation is a Federal agency tasked with developing and managing water supply and hydropower projects in the Western U.S. Climate and hydrologic variability and change significantly impact management actions and outcomes across Reclamation's programs and initiatives, including water resource planning and operations, infrastructure design and maintenance, hydropower generation, and ecosystem restoration, among others. Planning, design, and implementation of these programs therefore requires consideration of future climate and hydrologic conditions will impact program objectives. Over the past decade, Reclamation and other Federal agencies have adopted new guidelines, directives, and mandates that require consideration of climate change in water resources planning and decision making. Meanwhile, the scientific community has developed a large number of climate projections, along with an array of models, methods, and tools to facilitate consideration of climate projections in planning and decision making. However, water resources engineers, planners, and decision makers continue to face challenges regarding how best to use the available data and tools to support major decisions, including decisions regarding infrastructure investments and long-term operating criteria. This presentation will discuss recent and ongoing research towards understanding, improving, and expanding consideration of climate projections and related uncertainties in Federal water resources planning and decision making. These research efforts address a variety of challenges, including: How to choose between available climate projection datasets and related methods, models, and tools—many of which are considered experimental or research tools? How to select an appropriate decision framework when design or operating alternatives may differ between climate scenarios? How to effectively communicate results of a climate impacts analysis to decision makers? And, how to improve

  6. The influence of global climate change on the scientific foundations and applications of Environmental Toxicology and Chemistry: Introduction to a SETAC international workshop

    Science.gov (United States)

    Stahl, Ralph G.; Hooper, Michael J.; Balbus, John M.; Clements, William; Fritz, Alyce; Gouin, Todd; Helm, Roger; Hickey, Christopher; Landis, Wayne; Moe, S. Jannicke

    2013-01-01

    This is the first of seven papers resulting from a Society of Environmental Toxicology and Chemistry (SETAC) international workshop titled “The Influence of Global Climate Change on the Scientific Foundations and Applications of Environmental Toxicology and Chemistry.” The workshop involved 36 scientists from 11 countries and was designed to answer the following question: How will global climate change influence the environmental impacts of chemicals and other stressors and the way we assess and manage them in the environment? While more detail is found in the complete series of articles, some key consensus points are as follows: (1) human actions (including mitigation of and adaptation to impacts of global climate change [GCC]) may have as much influence on the fate and distribution of chemical contaminants as does GCC, and modeled predictions should be interpreted cautiously; (2) climate change can affect the toxicity of chemicals, but chemicals can also affect how organisms acclimate to climate change; (3) effects of GCC may be slow, variable, and difficult to detect, though some populations and communities of high vulnerability may exhibit responses sooner and more dramatically than others; (4) future approaches to human and ecological risk assessments will need to incorporate multiple stressors and cumulative risks considering the wide spectrum of potential impacts stemming from GCC; and (5) baseline/reference conditions for estimating resource injury and restoration/rehabilitation will continually shift due to GCC and represent significant challenges to practitioners.

  7. The influence of global climate change on the scientific foundations and applications of Environmental Toxicology and Chemistry: introduction to a SETAC international workshop.

    Science.gov (United States)

    Stahl, Ralph G; Hooper, Michael J; Balbus, John M; Clements, William; Fritz, Alyce; Gouin, Todd; Helm, Roger; Hickey, Christopher; Landis, Wayne; Moe, S Jannicke

    2013-01-01

    This is the first of seven papers resulting from a Society of Environmental Toxicology and Chemistry (SETAC) international workshop titled "The Influence of Global Climate Change on the Scientific Foundations and Applications of Environmental Toxicology and Chemistry." The workshop involved 36 scientists from 11 countries and was designed to answer the following question: How will global climate change influence the environmental impacts of chemicals and other stressors and the way we assess and manage them in the environment? While more detail is found in the complete series of articles, some key consensus points are as follows: (1) human actions (including mitigation of and adaptation to impacts of global climate change [GCC]) may have as much influence on the fate and distribution of chemical contaminants as does GCC, and modeled predictions should be interpreted cautiously; (2) climate change can affect the toxicity of chemicals, but chemicals can also affect how organisms acclimate to climate change; (3) effects of GCC may be slow, variable, and difficult to detect, though some populations and communities of high vulnerability may exhibit responses sooner and more dramatically than others; (4) future approaches to human and ecological risk assessments will need to incorporate multiple stressors and cumulative risks considering the wide spectrum of potential impacts stemming from GCC; and (5) baseline/reference conditions for estimating resource injury and restoration/rehabilitation will continually shift due to GCC and represent significant challenges to practitioners. Copyright © 2013 SETAC.

  8. Air traffic simulation in chemistry-climate model EMAC 2.41: AirTraf 1.0

    Science.gov (United States)

    Yamashita, Hiroshi; Grewe, Volker; Jöckel, Patrick; Linke, Florian; Schaefer, Martin; Sasaki, Daisuke

    2016-09-01

    Mobility is becoming more and more important to society and hence air transportation is expected to grow further over the next decades. Reducing anthropogenic climate impact from aviation emissions and building a climate-friendly air transportation system are required for a sustainable development of commercial aviation. A climate optimized routing, which avoids climate-sensitive regions by re-routing horizontally and vertically, is an important measure for climate impact reduction. The idea includes a number of different routing strategies (routing options) and shows a great potential for the reduction. To evaluate this, the impact of not only CO2 but also non-CO2 emissions must be considered. CO2 is a long-lived gas, while non-CO2 emissions are short-lived and are inhomogeneously distributed. This study introduces AirTraf (version 1.0) that performs global air traffic simulations, including effects of local weather conditions on the emissions. AirTraf was developed as a new submodel of the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model. Air traffic information comprises Eurocontrol's Base of Aircraft Data (BADA Revision 3.9) and International Civil Aviation Organization (ICAO) engine performance data. Fuel use and emissions are calculated by the total energy model based on the BADA methodology and Deutsches Zentrum für Luft- und Raumfahrt (DLR) fuel flow method. The flight trajectory optimization is performed by a genetic algorithm (GA) with respect to a selected routing option. In the model development phase, benchmark tests were performed for the great circle and flight time routing options. The first test showed that the great circle calculations were accurate to -0.004 %, compared to those calculated by the Movable Type script. The second test showed that the optimal solution found by the algorithm sufficiently converged to the theoretical true-optimal solution. The difference in flight time between the two solutions is less than 0.01 %. The dependence of

  9. Using Climate Regionalization to Understand Climate Forecast System Version 2 (CFSv2) Precipitation Performance for the Conterminous United States (CONUS)

    Science.gov (United States)

    Regonda, Satish K.; Zaitchik, Benjamin F.; Badr, Hamada S.; Rodell, Matthew

    2016-01-01

    Dynamically based seasonal forecasts are prone to systematic spatial biases due to imperfections in the underlying global climate model (GCM). This can result in low-forecast skill when the GCM misplaces teleconnections or fails to resolve geographic barriers, even if the prediction of large-scale dynamics is accurate. To characterize and address this issue, this study applies objective climate regionalization to identify discrepancies between the Climate Forecast SystemVersion 2 (CFSv2) and precipitation observations across the Contiguous United States (CONUS). Regionalization shows that CFSv2 1 month forecasts capture the general spatial character of warm season precipitation variability but that forecast regions systematically differ from observation in some transition zones. CFSv2 predictive skill for these misclassified areas is systematically reduced relative to correctly regionalized areas and CONUS as a whole. In these incorrectly regionalized areas, higher skill can be obtained by using a regional-scale forecast in place of the local grid cell prediction.

  10. Understanding the Effects of Climate Change on Urban Stormwater Infrastructures in the Las Vegas Valley

    Directory of Open Access Journals (Sweden)

    Ranjeet Thakali

    2016-10-01

    Full Text Available The intensification of the hydrological cycle due to climate change entails more frequent and intense rainfall. As a result, urban water systems will be disproportionately affected by the climate change, especially in such urban areas as Las Vegas, which concentrates its population, infrastructure, and economic activity. Proper design and management of stormwater facilities are needed to attenuate the severe effects of extreme rainfall events. The North American Regional Climate Change Assessment Program is developing multiple high-resolution projected-climate data from different combinations of regional climate models and global climate models. The objective of this study was to evaluate existing stormwater facilities of a watershed within the Las Vegas Valley in southern Nevada by using a robust design method for the projected climate. The projected climate change was incorporated into the model at the 100 year return period with 6 h duration depths, using a statistical regionalization analysis method. Projection from different sets of climate model combinations varied substantially. Gridded reanalysis data were used to assess the performance of the climate models. An existing Hydrologic Engineering Center’s Hydrological Modeling System (HEC-HMS model was implemented using the projected change in standard design storm. Hydrological simulation using HEC-HMS showed exceedances of existing stormwater facilities that were designed under the assumption of stationarity design depth. Recognizing climate change and taking an immediate approach in assessing the city’s vulnerability by using proper strategic planning would benefit the urban sector and improve the quality of life.

  11. Using physiology to understand climate-driven changes in disease and their implications for conservation.

    Science.gov (United States)

    Rohr, Jason R; Raffel, Thomas R; Blaustein, Andrew R; Johnson, Pieter T J; Paull, Sara H; Young, Suzanne

    2013-01-01

    Controversy persists regarding the contributions of climate change to biodiversity losses, through its effects on the spread and emergence of infectious diseases. One of the reasons for this controversy is that there are few mechanistic studies that explore the links among climate change, infectious disease, and declines of host populations. Given that host-parasite interactions are generally mediated by physiological responses, we submit that physiological models could facilitate the prediction of how host-parasite interactions will respond to climate change, and might offer theoretical and terminological cohesion that has been lacking in the climate change-disease literature. We stress that much of the work on how climate influences host-parasite interactions has emphasized changes in climatic means, despite a hallmark of climate change being changes in climatic variability and extremes. Owing to this gap, we highlight how temporal variability in weather, coupled with non-linearities in responses to mean climate, can be used to predict the effects of climate on host-parasite interactions. We also discuss the climate variability hypothesis for disease-related declines, which posits that increased unpredictable temperature variability might provide a temporary advantage to pathogens because they are smaller and have faster metabolisms than their hosts, allowing more rapid acclimatization following a temperature shift. In support of these hypotheses, we provide case studies on the role of climatic variability in host population declines associated with the emergence of the infectious diseases chytridiomycosis, withering syndrome, and malaria. Finally, we present a mathematical model that provides the scaffolding to integrate metabolic theory, physiological mechanisms, and large-scale spatiotemporal processes to predict how simultaneous changes in climatic means, variances, and extremes will affect host-parasite interactions. However, several outstanding questions

  12. Predicting plant diversity patterns in Madagascar: understanding the effects of climate and land cover change in a biodiversity hotspot.

    Directory of Open Access Journals (Sweden)

    Kerry A Brown

    Full Text Available Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence records for 828 plant genera and 2186 plant species. We developed three scenarios, (i.e., climate only, land cover only and combined climate-land cover based on recent and future climate and land cover variables. We used this modelling framework to investigate how the impacts of changes to climate and land cover influenced biodiversity across ecoregions and elevation bands. There were large-scale climate- and land cover-driven changes in plant biodiversity across Madagascar, including both losses and gains in diversity. The sharpest declines in biodiversity were projected for the eastern escarpment and high elevation ecosystems. Sharp declines in diversity were driven by the combined climate-land cover scenarios; however, there were subtle, region-specific differences in model outputs for each scenario, where certain regions experienced relatively higher species loss under climate or land cover only models. We strongly caution that predicted future gains in plant diversity will depend on the development and maintenance of dispersal pathways that connect current and future suitable habitats. The forecast for Madagascar's plant diversity in the face of future environmental change is worrying: regional diversity will continue to decrease in response to the combined effects of climate and land cover change, with habitats such as ericoid thickets and eastern lowland and sub-humid forests particularly vulnerable into the future.

  13. Predicting plant diversity patterns in Madagascar: understanding the effects of climate and land cover change in a biodiversity hotspot.

    Science.gov (United States)

    Brown, Kerry A; Parks, Katherine E; Bethell, Colin A; Johnson, Steig E; Mulligan, Mark

    2015-01-01

    Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs) calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence records for 828 plant genera and 2186 plant species. We developed three scenarios, (i.e., climate only, land cover only and combined climate-land cover) based on recent and future climate and land cover variables. We used this modelling framework to investigate how the impacts of changes to climate and land cover influenced biodiversity across ecoregions and elevation bands. There were large-scale climate- and land cover-driven changes in plant biodiversity across Madagascar, including both losses and gains in diversity. The sharpest declines in biodiversity were projected for the eastern escarpment and high elevation ecosystems. Sharp declines in diversity were driven by the combined climate-land cover scenarios; however, there were subtle, region-specific differences in model outputs for each scenario, where certain regions experienced relatively higher species loss under climate or land cover only models. We strongly caution that predicted future gains in plant diversity will depend on the development and maintenance of dispersal pathways that connect current and future suitable habitats. The forecast for Madagascar's plant diversity in the face of future environmental change is worrying: regional diversity will continue to decrease in response to the combined effects of climate and land cover change, with habitats such as ericoid thickets and eastern lowland and sub-humid forests particularly vulnerable into the future.

  14. Relative Contribution of Greenhouse Gases and Ozone Change to Temperature Trends in the Stratosphere: A Chemistry/Climate Model Study

    Science.gov (United States)

    Stolarski, Richard S.; Douglass, A. R.; Newman, P. A.; Pawson, S.; Schoeberl, M. R.

    2006-01-01

    Long-term changes in greenhouse gases, primarily carbon dioxide, are expected to lead to a warming of the troposphere and a cooling of the stratosphere. We examine the cooling of the stratosphere and compare the contributions greenhouse gases and ozone change for the decades between 1980 and 2000. We use 150 years of simulation done with our coupled chemistry/climate model (GEOS 4 GCM with GSFC CTM chemistry) to calculate temperatures and constituents fiom,1950 through 2100. The contributions of greenhouse gases and ozone to temperature change are separated by a time-series analysis using a linear trend term throughout the period to represent the effects of greenhouse gases and an equivalent effective stratospheric chlorine (EESC) term to represent the effects of ozone change. The temperature changes over the 150 years of the simulation are dominated by the changes in greenhouse gases. Over the relatively short period (approx. 20 years) of ozone decline between 1980 and 2000 changes in ozone are competitive with changes in greenhouse gases. The changes in temperature induced by the ozone change are comparable to, but smaller than, those of greenhouse gases in the upper stratosphere (1-3 hPa) at mid latitudes. The ozone term dominates the temperature change near both poles with a negative temperature change below about 3-5 hPa and a positive change above. At mid latitudes in the upper stratosphere and mesosphere (above about 1 hPa) and in the middle stratosphere (3 to 70 ma), the greenhouse has term dominates. From about 70 hPa down to the tropopause at mid latitudes, cooling due to ozone changes is the largest influence on temperature. Over the 150 years of the simulation, the change in greenhouse gases is the most important contributor to temperature change. Ozone caused a perturbation that is expected to reverse over the coming decades. We show a model simulation of the expected temperature change over the next two decades (2006-2026). The simulation shows a

  15. Nuclear chemistry

    International Nuclear Information System (INIS)

    Vertes, A.; Kiss, I.

    1987-01-01

    This book is an introduction to the application of nuclear science in modern chemistry. The first group of chapters discuss the basic phenomena and concepts of nuclear physics with emphasis on their relation to chemical problems, including the main properties and the composition of atomic nuclei, nuclear reactions, radioactive decay and interactions of radiation with matter. These chapters provide the basis for understanding the following chapters which encompass the wide scope of nuclear chemistry. The methods of the investigation of chemical structure based on the interaction of nuclear radiation with matter including positronium chemistry and other exotic atoms is elaborated in particular detail. Separate chapters are devoted to the use of radioactive tracers, the chemical consequences of nuclear processes (i.e. hot atom chemistry), radiation chemistry, isotope effects and their applications, and the operation of nuclear reactors. (Auth.)

  16. Nuclear chemistry

    International Nuclear Information System (INIS)

    Vertes, A.; Kiss, I.

    1987-01-01

    This book is an introduction to the application of nuclear science in modern chemistry. The first group of chapters discuss the basic phenomena and concepts of nuclear physics with emphasis on their relation to chemical problems, including the main properties and the composition of atomic nuclei, nuclear reactions, radioactive decay and interactions of radiation with matter. These chapters provide the basis for understanding the following chapters which encompass the wide scope of nuclear chemistry. The methods of the investigation of chemical structure based on the interaction of nuclear radiation with matter including positronium chemistry and other exotic atoms is elaborated in particular detail. Separate chapters are devoted to the use of radioactive tracers, the chemical consequences of nuclear processes (i.e. hot atom chemistry), radiation chemistry, isotope effects and their applications, and the operation of nuclear reactors

  17. Mandatory Climate Change Discussions in Online Classrooms: Promoting Students' Climate Literacy and Understanding of the Nature of Science

    Science.gov (United States)

    Clary, Renee M.; Wandersee, James H.

    2012-01-01

    Graduate students entered our online classrooms with robust, but nonscientific, opinions on climate change. To expose students to critical analysis of media and emphasize the nature of science, we required them to access scientific reports and participate in mandatory peer discussions. An introductory survey probed incoming knowledge and opinions,…

  18. Incorporating Modeling and Simulations in Undergraduate Biophysical Chemistry Course to Promote Understanding of Structure-Dynamics-Function Relationships in Proteins

    Science.gov (United States)

    Hati, Sanchita; Bhattacharyya, Sudeep

    2016-01-01

    A project-based biophysical chemistry laboratory course, which is offered to the biochemistry and molecular biology majors in their senior year, is described. In this course, the classroom study of the structure-function of biomolecules is integrated with the discovery-guided laboratory study of these molecules using computer modeling and…

  19. Exploring Different Types of Assessment Items to Measure Linguistically Diverse Students' Understanding of Energy and Matter in Chemistry

    Science.gov (United States)

    Ryoo, Kihyun; Toutkoushian, Emily; Bedell, Kristin

    2018-01-01

    Energy and matter are fundamental, yet challenging concepts in middle school chemistry due to their abstract, unobservable nature. Although it is important for science teachers to elicit a range of students' ideas to design and revise their instruction, capturing such varied ideas using traditional assessments consisting of multiple-choice items…

  20. Learning network theory : its contribution to our understanding of work-based learning projects and learning climate

    NARCIS (Netherlands)

    Poell, R.F.; Moorsel, M.A.A.H. van

    1996-01-01

    This paper discusses the relevance of Van der Krogt's learning network theory (1995) for our understanding of the concepts of work-related learning projects and learning climate in organisations. The main assumptions of the learning network theory are presented and transferred to the level of

  1. Understanding the adaptation deficit: why are poor countries more vulnerable to climate events than rich countries?

    OpenAIRE

    Samuel Fankhauser; Thomas K. J. McDermott

    2014-01-01

    Poor countries are more heavily affected by extreme weather events and future climate change than rich countries. This discrepancy is sometimes known as an adaptation deficit. This paper analyses the link between income and adaptation to climate events theoretically and empirically. We postulate that the adaptation deficit is due to two factors: A demand effect, whereby the demand for the good �climate security� increases with income, and an efficiency effect, which works as a spill-over exte...

  2. Perceptions and understanding of climate change in Sri Lanka : a case study

    Energy Technology Data Exchange (ETDEWEB)

    Patabendi, P. [Team for Disaster Prevention and Sustainable Development, Kaduwela (Sri Lanka)

    2000-06-01

    A citizen's organization in Sri Lanka is conducting a study on current perceptions and attitudes of climate change in a small village in southern Sri Lanka just 100 km north of the capital city of Colombo. The study involves 500 villagers, of which the majority are farmers. While not yet completed, several interesting facts are emerging from this study. The 65,610 sq. km island of Sri Lanka is divided into two distinct climate regions, the wet and dry zones. The mean temperature of the island ranges from 26 to 28 degrees C. Rainfall occurs during the southwest and northeast monsoons. The three main factors for climatic change in Sri Lanka are depressions in the Bay of Bengal, intermonsoonal rain, and deforestation. A total of 500 households were given a questionnaire which was divided into the following 4 sections: (1) socio-economic situation of the household, (2) impacts of climate change, (3) behavioural intentions for actions to reduce the advance impacts of climate change, and (4) ideas about public policies to address climate change. Group discussions were also held to allow villagers to express their voices and raise questions. The study indicates that the villagers have a comprehensive perception about climate change issues in their community (experience gained by flash floods), but have less knowledge about climate change issues in the country. Many villagers believe that political intervention is necessary for any effective climate policy to emerge.

  3. Quantum chemistry

    CERN Document Server

    Lowe, John P

    1993-01-01

    Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,

  4. Influence of climate change and marine chemistry on ecological shifts following the Triassic/Jurassic mass extinction

    Science.gov (United States)

    Ritterbush, K. A.; West, A. J.; Berelson, W.; Rosas, S.; Bottjer, D. J.; Yager, J. A.; Corsetti, F. A.

    2014-12-01

    silica concentration likely occurred over hundred-thousand year timescales relevant to the post-extinction ecology. The influence of climate and weathering on marine chemistry and ecological opportunity presents an excellent example of interrelated Earth and life systems at a critical transition point.

  5. Beyond Climate Scenarios: Advancing from Changes in the Mean to a Better Understanding of Physical Processes to Enhance Stakeholder Engagement

    Science.gov (United States)

    Yates, D. N.; Kaatz, L.; Ammann, C. M.

    2017-12-01

    Great strides have been made within the climate sciences community to make Global Climate Model (GCM) output and their results as meaningful as possible to the broad community of stakeholders that might benefit from this information. Regardless of these good intentions, the fact remains that most data from GCMs are viewed as being highly uncertain and thus not actionable for water resources planning. The most common use of GCM data is informing projected future climate by use of a mean change, primarily for temperature, given the generally greater confidence in this variable. In contrast, precipitation is viewed as highly uncertain, primarily because it has not validated well against observed precipitation climatologies at local and regional levels. Simple perturbations to historical mean temperature and precipitation sequences are not as complex as using direct GCM outputs and have fewer analytical requirements. Mean climate change information can still give valuable information to water managers, providing meaningful insights and sign posts into future vulnerabilities and is an approach that is arguably deemed more actionable. These temperature and precipitation sign posts can be monitored and used as indicators when certain actions become necessary and/or until there are improvements in actionable climate science information. Recent advances in regional climate modeling (RCM), particularly those run at very high resolution and are cloud resolving, show promise in advancing our understanding of the interaction among climate variables at the regional level. Thus, in addition to exploring how changes in the mean climate (e.g. 2oC warming) might impact a water system, this bottom-up approach makes use of carefully constructed regional climate experiments that are conducted, for example, under conditions of a warmer atmosphere that can hold more moisture. One can then explore what happens to, for example, rain-snow partitioning at various elevations across a snow

  6. Understanding Farmer Perspectives on Climate Change Adaptation and Mitigation: The Roles of Trust in Sources of Climate Information, Climate Change Beliefs, and Perceived Risk.

    Science.gov (United States)

    Arbuckle, J Gordon; Morton, Lois Wright; Hobbs, Jon

    2015-02-01

    Agriculture is vulnerable to climate change and a source of greenhouse gases (GHGs). Farmers face pressures to adjust agricultural systems to make them more resilient in the face of increasingly variable weather (adaptation) and reduce GHG production (mitigation). This research examines relationships between Iowa farmers' trust in environmental or agricultural interest groups as sources of climate information, climate change beliefs, perceived climate risks to agriculture, and support for adaptation and mitigation responses. Results indicate that beliefs varied with trust, and beliefs in turn had a significant direct effect on perceived risks from climate change. Support for adaptation varied with perceived risks, while attitudes toward GHG reduction (mitigation) were associated predominantly with variation in beliefs. Most farmers were supportive of adaptation responses, but few endorsed GHG reduction, suggesting that outreach should focus on interventions that have adaptive and mitigative properties (e.g., reduced tillage, improved fertilizer management).

  7. Use of Climate Information for Decision-Making and Impacts Research: State of Our Understanding

    Science.gov (United States)

    2016-03-01

    first known as general circulation models—were initially developed to model the energy budget of the earth system and the impact of external factors...of twenty-first-century policy for multi- millennial climate and sea-level change. Nature Climate Change, doi:10.1038/nclimate2923 48 Crane

  8. Understanding the science of climate change: Talking points - Impacts to the Atlantic Coast

    Science.gov (United States)

    Rachel Loehman; Greer Anderson

    2009-01-01

    Observed 20th century climate changes in the Atlantic Coast bioregion include warmer air and sea surface temperatures, increased winter precipitation (especially rainfall), and an increased frequency of extreme precipitation events. Climate change impacts during the century include phenological shifts in plant and animals species, such as earlier occurrence of lilac...

  9. Understanding Climate Change Perceptions, Attitudes, and Needs of Forest Service Resource Managers

    Science.gov (United States)

    Carlos Rodriguez-Franco; Tara J. Haan

    2015-01-01

    Surveys were collected to assess Forest Service (FS) resource managers' perceptions, attitudes, and informational needs related to climate change and its potential impacts on forests and grasslands. Resource managers with three background types were surveyed. All participants generally considered themselves to be well-informed on climate change issues, although...

  10. Exploiting temporal variability to understand tree recruitment response to climate change

    Science.gov (United States)

    Ines Ibanez; James S. Clark; Shannon LaDeau; Janneke Hill Ris Lambers

    2007-01-01

    Predicting vegetation shifts under climate change is a challenging endeavor, given the complex interactions between biotic and abiotic variables that influence demographic rates. To determine how current trends and variation in climate change affect seedling establishment, we analyzed demographic responses to spatiotemporal variation to temperature and soil moisture in...

  11. From Bearing Witness to Art Exhibitions to Inspiring the Understanding of Climate Change

    Science.gov (United States)

    Burko, D.

    2016-12-01

    I intend to demonstrate how artists such as myself can influence the public discourse on climate change. I believe aesthetically compelling visualizations can transcend data and language. I will speak specifically to how I communicate scientific research to diverse populations. I have much to share since first speaking in 2012 on the Panel "Communication of Science through Art: Raison d'Etre for Interdisciplinary Communication". I then illustrated how I utilized visual cues such as archival evidence in the form of repeats, geological charts of recessional lines, graphs, symbols and Landsat maps in my large scale paintings and photographs and inspired learning. I continue to develop visual strategies delivering information on an emotional/non-verbal level. Now 4 years later, I've added the most dramatic layer to my creative process: bearing witness. I've been to the three largest ice fields in the world: Greenland, Antarctica and Argentina's Patagonia, observing the unprecedented pace of glacial melt. Those expeditions feed my practice, leading to exhibitions that begin a dialog with an audience not initially interested in science. In the past 5 years my work has appeared in 6 solo and 19 group exhibits all devoted to the environment. I make myself present in universities, museums and galleries to explain what the images are about. I require universities to include a public component: an all-college lecture or panel where the geography/environmental/sociology/geology departments participate with broad student involvement. I believe that such endeavors are worthwhile and can be models for further efforts to educate an unsuspecting audience. Artists can bridge the gap communicating to a public of art appreciators, nonscientists - how easy it is to understand geology and global warming. I believe we can even inspire attitudinal change. Aside from personal examples I will include other artists and exhibition venues contributing to this phenomenon.

  12. Clays as mineral dust aerosol: An integrated approach to studying climate, atmospheric chemistry, and biogeochemical effects of atmospheric clay minerals in an undergraduate research laboratory

    Science.gov (United States)

    Hatch, C. D.; Crane, C. C.; Harris, K. J.; Thompson, C. E.; Miles, M. K.; Weingold, R. M.; Bucuti, T.

    2011-12-01

    Entrained mineral dust aerosol accounts for 45% of the global annual atmospheric aerosol load and can have a significant influence on important environmental issues, including climate, atmospheric chemistry, cloud formation, biogeochemical processes, visibility, and human health. 70% of all mineral aerosol mass originating from Africa consists of layered aluminosilicates, including illite, kaolinite, and montmorillonite clays. Clay minerals are a largely neglected component of mineral aerosol, yet they have unique physiochemical properties, including a high reactive surface area, large cation exchange capacities, small particle sizes, and a relatively large capacity to take up adsorbed water, resulting in expansion of clay layers (and a larger reactive surface area for heterogeneous interactions) in some cases. An integrated laboratory research approach has been implemented at Hendrix College, a Primarily Undergraduate Institution, in which undergraduate students are involved in independent and interdisciplinary research projects that relate the chemical aging processes (heterogeneous chemistry) of clay minerals as a major component of mineral aerosol to their effects on climate (water adsorption), atmospheric chemistry (trace gas uptake), and biogeochemistry (iron dissolution and phytoplankton biomarker studies). Preliminary results and future directions will be reported.

  13. Climate Odyssey: Resources for Understanding Coastal Change through Art, Science, and Sail

    Science.gov (United States)

    Klos, P. Z.; Holtsnider, L.

    2017-12-01

    Climate Odyssey (climateodyssey.org) is a year-long sailing expedition and continuing collaboration aimed at using overlaps in science and visual art to communicate coastal climate change impacts and solutions. We, visual artist Lucy Holtsnider and climate scientist Zion Klos, are using our complimentary skills in art, science and communication to engage audiences both intuitively and cognitively regarding the urgency of climate change through story and visualization. Over the 2015 - 2016 academic year, we embarked on the sailing portion of Climate Odyssey, beginning in Lake Michigan, continuing along the Eastern Seaboard, and concluding in the tropics. Along the way we photographed climate change impacts and adaptation strategies, interviewed stakeholders, scientists, and artists. We are now sharing our photographs and documented encounters through a tangible artist's book, interactive digital map, blog, and series of K16 lesson plans. Each of our images added to the artist's book and digital map are linked to relevant blog entries and other external scientific resources, making the map both a piece of art and an engaging education tool for sharing the science of climate change impacts and solutions. After completing the sailing component of the project, we have now finalized our multi-media resources and are working to share these with the public via libraries, galleries, and K16 classrooms in coastal communities. At AGU, we will share with our peers the completed version of the series of K16 lesson plans that provide educators an easy-to-use way to introduce and utilize the material in the artist's book, digital map, and online blog. Through this, we hope to both discuss climate-focused education and engagement strategies, as well as showcase this example of art-science outreach with the broader science education and communication community that is focused on climate literacy in the U.S. and beyond.

  14. College Chemistry Students' Understanding of Potential Energy in the Context of Atomic-Molecular Interactions

    Science.gov (United States)

    Becker, Nicole M.; Cooper, Melanie M.

    2014-01-01

    Understanding the energy changes that occur as atoms and molecules interact forms the foundation for understanding the macroscopic energy changes that accompany chemical processes. In order to identify ways to scaffold students' understanding of the connections between atomic-molecular and macroscopic energy perspectives, we conducted a…

  15. Forests under climate change and air pollution: Gaps in understanding and future directions for research

    NARCIS (Netherlands)

    Matyssek, R.; Wieser, G.; Calfapietra, C.; Vries, de W.; Mohren, G.M.J.

    2012-01-01

    Forests in Europe face significant changes in climate, which in interaction with air quality changes, may significantly affect forest productivity, stand composition and carbon sequestration in both vegetation and soils. Identified knowledge gaps and research needs include: (i) interaction between

  16. Understanding smallholder farmers’ capacity to respond to climate change in a coastal community in Central Vietnam

    NARCIS (Netherlands)

    Phuong, Le Thi Hong; Biesbroek, G.R.; Sen, Le Thi Hoa; Wals, Arjen E.J.

    2017-01-01

    Climate change as expressed by erratic rainfall, increased flooding, extended droughts, frequency tropical cyclones or saline water intrusion, poses severe threats to smallholder farmers in Vietnam. Adaptation of the agricultural sector is vital to increase the resilience of smallholder farmers’

  17. Comparison of the HadGEM2 climate-chemistry model against in situ and SCIAMACHY atmospheric methane data

    Directory of Open Access Journals (Sweden)

    G. D. Hayman

    2014-12-01

    Full Text Available Wetlands are a major emission source of methane (CH4 globally. In this study, we evaluate wetland emission estimates derived using the UK community land surface model (JULES, the Joint UK Land Earth Simulator against atmospheric observations of methane, including, for the first time, total methane columns derived from the SCIAMACHY instrument on board the ENVISAT satellite. Two JULES wetland emission estimates are investigated: (a from an offline run driven with Climatic Research Unit–National Centers for Environmental Prediction (CRU-NCEP meteorological data and (b from the same offline run in which the modelled wetland fractions are replaced with those derived from the Global Inundation Extent from Multi-Satellites (GIEMS remote sensing product. The mean annual emission assumed for each inventory (181 Tg CH4 per annum over the period 1999–2007 is in line with other recently published estimates. There are regional differences as the unconstrained JULES inventory gives significantly higher emissions in the Amazon (by ~36 Tg CH4 yr−1 and lower emissions in other regions (by up to 10 Tg CH4 yr−1 compared to the JULES estimates constrained with the GIEMS product. Using the UK Hadley Centre's Earth System model with atmospheric chemistry (HadGEM2, we evaluate these JULES wetland emissions against atmospheric observations of methane. We obtain improved agreement with the surface concentration measurements, especially at high northern latitudes, compared to previous HadGEM2 runs using the wetland emission data set of Fung et al. (1991. Although the modelled monthly atmospheric methane columns reproduce the large-scale patterns in the SCIAMACHY observations, they are biased low by 50 part per billion by volume (ppb. Replacing the HadGEM2 modelled concentrations above 300 hPa with HALOE–ACE assimilated TOMCAT output results in a significantly better agreement with the SCIAMACHY observations. The use of the GIEMS product to constrain the JULES

  18. Comparison of the HadGEM2 climate-chemistry model against in situ and SCIAMACHY atmospheric methane data

    Science.gov (United States)

    Hayman, G. D.; O'Connor, F. M.; Dalvi, M.; Clark, D. B.; Gedney, N.; Huntingford, C.; Prigent, C.; Buchwitz, M.; Schneising, O.; Burrows, J. P.; Wilson, C.; Richards, N.; Chipperfield, M.

    2014-12-01

    Wetlands are a major emission source of methane (CH4) globally. In this study, we evaluate wetland emission estimates derived using the UK community land surface model (JULES, the Joint UK Land Earth Simulator) against atmospheric observations of methane, including, for the first time, total methane columns derived from the SCIAMACHY instrument on board the ENVISAT satellite. Two JULES wetland emission estimates are investigated: (a) from an offline run driven with Climatic Research Unit-National Centers for Environmental Prediction (CRU-NCEP) meteorological data and (b) from the same offline run in which the modelled wetland fractions are replaced with those derived from the Global Inundation Extent from Multi-Satellites (GIEMS) remote sensing product. The mean annual emission assumed for each inventory (181 Tg CH4 per annum over the period 1999-2007) is in line with other recently published estimates. There are regional differences as the unconstrained JULES inventory gives significantly higher emissions in the Amazon (by ~36 Tg CH4 yr-1) and lower emissions in other regions (by up to 10 Tg CH4 yr-1) compared to the JULES estimates constrained with the GIEMS product. Using the UK Hadley Centre's Earth System model with atmospheric chemistry (HadGEM2), we evaluate these JULES wetland emissions against atmospheric observations of methane. We obtain improved agreement with the surface concentration measurements, especially at high northern latitudes, compared to previous HadGEM2 runs using the wetland emission data set of Fung et al. (1991). Although the modelled monthly atmospheric methane columns reproduce the large-scale patterns in the SCIAMACHY observations, they are biased low by 50 part per billion by volume (ppb). Replacing the HadGEM2 modelled concentrations above 300 hPa with HALOE-ACE assimilated TOMCAT output results in a significantly better agreement with the SCIAMACHY observations. The use of the GIEMS product to constrain the JULES-derived wetland

  19. An improved parameterisation of ozone dry deposition to the ocean and its impact in a global climate-chemistry model

    Science.gov (United States)

    Luhar, Ashok K.; Galbally, Ian E.; Woodhouse, Matthew T.; Thatcher, Marcus

    2017-03-01

    Schemes used to parameterise ozone dry deposition velocity at the oceanic surface mainly differ in terms of how the dominant term of surface resistance is parameterised. We examine three such schemes and test them in a global climate-chemistry model that incorporates meteorological nudging and monthly-varying reactive-gas emissions. The default scheme invokes the commonly used assumption that the water surface resistance is constant. The other two schemes, named the one-layer and two-layer reactivity schemes, include the simultaneous influence on the water surface resistance of ozone solubility in water, waterside molecular diffusion and turbulent transfer, and a first-order chemical reaction of ozone with dissolved iodide. Unlike the one-layer scheme, the two-layer scheme can indirectly control the degree of interaction between chemical reaction and turbulent transfer through the specification of a surface reactive layer thickness. A comparison is made of the modelled deposition velocity dependencies on sea surface temperature (SST) and wind speed with recently reported cruise-based observations. The default scheme overestimates the observed deposition velocities by a factor of 2-4 when the chemical reaction is slow (e.g. under colder SSTs in the Southern Ocean). The default scheme has almost no temperature, wind speed, or latitudinal variations in contrast with the observations. The one-layer scheme provides noticeably better variations, but it overestimates deposition velocity by a factor of 2-3 due to an enhancement of the interaction between chemical reaction and turbulent transfer. The two-layer scheme with a surface reactive layer thickness specification of 2.5 µm, which is approximately equal to the reaction-diffusive length scale of the ozone-iodide reaction, is able to simulate the field measurements most closely with respect to absolute values as well as SST and wind-speed dependence. The annual global oceanic deposition of ozone determined using this

  20. An Australian Feeling for Snow: Towards Understanding Cultural and Emotional Dimensions of Climate Change

    Directory of Open Access Journals (Sweden)

    Andrew Gorman-Murray

    2010-03-01

    Full Text Available In Australia, snow is associated with alpine and subalpine regions in rural areas; snow is a component of ‘natural’ rather than urban environments. But the range, depth and duration of Australia’s regional snow cover is imperilled by climate change. While researchers have considered the impacts of snow retreat on the natural environment and responses from the mainland ski industry, this paper explores associated cultural and emotional dimensions of climate change. This responds to calls to account for local meanings of climate, and thus localised perceptions of and responses to climate change. Accordingly, this paper presents a case study of reactions to the affect of climate change on Tasmania’s snow country. Data is drawn from a nationwide survey of responses to the impact of climate change on Australia’s snow country, and a Tasmanian focus group. Survey respondents suggested the uneven distribution of Australia’s snow country means snow cover loss may matter more in certain areas: Tasmania was a key example cited by residents of both that state and others. Focus group respondents affirmed a connection between snow and Tasmanian cultural identity, displaying sensitivity to recent changing snow patterns. Moreover, they expressed concerns about the changes using emotive descriptions of local examples: the loss of snow cover mattered culturally and emotionally, compromising local cultural activities and meanings, and invoking affective responses. Simultaneously, respondents were ‘realistic’ about how important snow loss was, especially juxtaposed with sea level rise. Nevertheless, the impact of climate change on cultural and emotional attachments can contribute to urgent ethical, practical and political arguments about arresting global warming.

  1. An Australian feeling for snow : towards understanding cultural and emotional dimensions of climate change

    Directory of Open Access Journals (Sweden)

    Gorman-Murray, Andrew

    2010-01-01

    Full Text Available In Australia, snow is associated with alpine and subalpine regions in rural areas; snow is a component of ‘natural’ rather than urban environments. But the range, depth and duration of Australia’s regional snow cover is imperilled by climate change. While researchers have considered the impacts of snow retreat on the natural environment and responses from the mainland ski industry, this paper explores associated cultural and emotional dimensions of climate change. This responds to calls to account for local meanings of climate, and thus localised perceptions of and responses to climate change. Accordingly, this paper presents a case study of reactions to the affect of climate change on Tasmania’s snow country. Data is drawn from a nationwide survey of responses to the impact of climate change on Australia’s snow country, and a Tasmanian focus group. Survey respondents suggested the uneven distribution of Australia’s snow country means snow cover loss may matter more in certain areas: Tasmania was a key example cited by residents of both that state and others. Focus group respondents affirmed a connection between snow and Tasmanian cultural identity, displaying sensitivity to recent changing snow patterns. Moreover, they expressed concerns about the changes using emotive descriptions of local examples: the loss of snow cover mattered culturally and emotionally, compromising local cultural activities and meanings, and invoking affective responses. Simultaneously, respondents were ‘realistic’ about how important snow loss was, especially juxtaposed with sea level rise. Nevertheless, the impact of climate change on cultural and emotional attachments can contribute to urgent ethical, practical and political arguments about arresting global warming.

  2. Evaluating the effects of ideology on public understanding of climate change science: how to improve communication across ideological divides?

    Science.gov (United States)

    Zia, Asim; Todd, Anne Marie

    2010-11-01

    While ideology can have a strong effect on citizen understanding of science, it is unclear how ideology interacts with other complicating factors, such as college education, which influence citizens' comprehension of information. We focus on public understanding of climate change science and test the hypotheses: [H1] as citizens' ideology shifts from liberal to conservative, concern for global warming decreases; [H2] citizens with college education and higher general science literacy tend to have higher concern for global warming; and [H3] college education does not increase global warming concern for conservative ideologues. We implemented a survey instrument in California's San Francisco Bay Area, and employed regression models to test the effects of ideology and other socio-demographic variables on citizen concern about global warming, terrorism, the economy, health care and poverty. We are able to confirm H1 and H3, but reject H2. Various strategies are discussed to improve the communication of climate change science across ideological divides.

  3. A New Trilogy to Understand the Relationship among Organizational Climate, Workplace Bullying and Employee Health

    Directory of Open Access Journals (Sweden)

    Muhammad Imran Qureshi

    2014-10-01

    Full Text Available Organizational Climate is a driving force in the organization behavior which provides foundations to many physical and psychological phenomena to the employees. Bullying is one of the major under considered phenomenon, usually caused by the organizational climate. The objective of the study is to examine the relationship between organizational climates, workplace bullying and workers’ health in selected higher education institutes of Pakistan. A proportionate random sample of 20 Universities comprising of 10 from public sector and 10 from private sector was selected for the study. The model of workplace bullying, organizational climate and worker's health was estimated by Structural Equation Modeling using AMOS software. The study found a negative relationship between organizational climate and bullying on one hand, while on the other hand, an increased workplace bullying effects employees’ health negatively due to affected sleeping hours. Drug abuse was treated as a moderator between health and affected sleeping hours. The study suggested that organizations should control workplace bullying which may cause physical and psychological effects on employee's health.

  4. Working with South Florida County Planners to Understand and Mitigate Uncertain Climate Risks

    Science.gov (United States)

    Knopman, D.; Groves, D. G.; Berg, N.

    2017-12-01

    This talk describes a novel approach for evaluating climate change vulnerabilities and adaptations in Southeast Florida to support long-term resilience planning. The work is unique in that it combines state-of-the-art hydrologic modeling with the region's long-term land use and transportation plans to better assess the future climate vulnerability and adaptations for the region. Addressing uncertainty in future projections is handled through the use of decisionmaking under deep uncertainty methods. Study findings, including analysis of key tradeoffs, were conveyed to the region's stakeholders through an innovative web-based decision support tool. This project leverages existing groundwater models spanning Miami-Dade and Broward Counties developed by the USGS, along with projections of land use and asset valuations for Miami-Dade and Broward County planning agencies. Model simulations are executed on virtual cloud-based servers for a highly scalable and parallelized platform. Groundwater elevations and the saltwater-freshwater interface and intrusion zones from the integrated modeling framework are analyzed under a wide range of long-term climate futures, including projected sea level rise and precipitation changes. The hydrologic hazards are then combined with current and future land use and asset valuation projections to estimate assets at risk across the range of futures. Lastly, an interactive decision support tool highlights the areas with critical climate vulnerabilities; distinguishes between vulnerability due to new development, increased climate hazards, or both; and provides guidance for adaptive management and development practices and decisionmaking in Southeast Florida.

  5. Understanding the Effectiveness of Carbon Dioxide Removal to Reduce the Impacts of Climate Change.

    Science.gov (United States)

    Scott, V.; Tett, S. F.; Brander, M.

    2017-12-01

    The current Nationally Determined Contributions to the Paris Agreement suggest exceeding the emissions budgets corresponding to the below 2°C and 1.5°C temperature targets. To address this the future application of Carbon Dioxide Removal (CDR) is proposed to recapture excess emissions at a later time, so keeping the total net emissions within budget. This assumes that the climate change impact of CO2 emitted now can be fully compensated by a matched CO2 removal in the future. However, the impacts from this pathway of emissions budget overshoot and subsequent recapture may differ from those resulting from a pathway where emissions are held within budget with no temporary overshoot. These pathway dependent impacts could give rise to different climatic and societal futures despite the total net emissions being the same. Using a low resolution fully coupled Earth System Model with an interactive carbon cycle, we present an investigation into the pathway dependence of climate change impacts and how these relate to the scale and duration of the emissions budget overshoot and subsequent recapture. From this we discuss the effectiveness of CDR in avoiding climate change impacts relative to more immediate emissions reductions. We consider how this relative effectiveness might be reflected in GHG accounting methods and national GHG accounts, and explore the implications for Article 2 of the Paris Agreement, where holding temperatures to the targets is recognised to "significantly reduce the risks and impacts of climate change".

  6. Understanding of catalysis on early transition metal oxide-based catalysts through exploration of surface structure and chemistry during catalysis using in-situ approaches

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Franklin [Univ. of Kansas, Lawrence, KS (United States). Dept. of Chemical and Petroleum Engineering. Dept. of Chemistry

    2015-09-14

    Two main categories of heterogeneous catalysts are metal and metal oxide which catalyze 80% chemical reactions at solid-gas and solid-liquid interfaces. Metal oxide catalysts are much more complicated than metal catalysts. The reason is that the cations of the metal atoms could exhibit a few different oxidation states on surface of the same catalyst particle such as Co3O4 or change of their oxidation states under different reactive environments. For a metal catalyst, there is only one oxidation state typically. In addition, surface of a metal oxide can be terminated with multiple surface functionalities including O atoms with different binding configurations and OH group. For metal, only metal atoms are exposed typically. Obviously, the complication of surface chemistry and structure of a metal oxide makes studies of surface of an oxide catalyst very challenging. Due to the complication of surface of a meal oxide, the electronic and geometric structures of surface of a metal oxide and the exposed species have received enormous attention since oxide catalysts catalyze at least 1/3 chemical reactions in chemical and energy industries. Understanding of catalytic reactions on early transition metal oxide-based catalysts is fundamentally intriguing and of great practical interest in energy- and environment-related catalysis. Exploration of surface chemistry of oxide-based catalysts at molecular level during catalysis has remained challenging though it is critical in deeply understanding catalysis on oxide-based catalysts and developing oxide-based catalysts with high activity and selectivity. Thus, the overall objective of this project is to explore surface chemistry and structure of early transition metal oxide-based catalysts through in-situ characterization of surface of catalysts, measurements of catalytic performances, and then build an intrinsic correlation of surface chemistry and structure with their catalytic performances in a few

  7. The understanding of world climate change; Les connaissances sur le changement climatique mondial

    Energy Technology Data Exchange (ETDEWEB)

    Petit, M.

    2008-07-01

    After having recalled that the problem of global warming in relationship with human activities has been studied since the end of the nineteenth century and since then by different scientific programs, the author describes how the IPCC's or Intergovernmental Panel on Climate Change's report is produced. He briefly comments how Earth's temperature is determined and the various natural parameters which influence the climate on Earth. He recalls how the IPCC showed the actual influence of human activities, and which changes have actually been observed

  8. Effects of stron UV-B radiation on air chemistry and climate; Auswirkungen verstaerkter UV-B-Strahlung auf Luftchemie und Klima

    Energy Technology Data Exchange (ETDEWEB)

    Schoenemeyer, T.; Seidl, W.; Forkel, R.; Kuhn, M.; Wehrhahn, J.; Grell, G.

    1998-07-01

    Effects of enhanced UV radiation on air chemistry, climate and climate change were investigated, and its interactions with other environmental problems like acidification of soil and surface water, reduction in the variety of species, and desertification were gone into. [German] In der vorliegenden Arbeit wurden die bisher vorliegenden Erkenntnisse ueber die Auswirkungen erhoehter UV-Strahlung infolge des Abbaus von Ozon in der Stratosphaere auf Luftchemie und Klima zusammengetragen. Die Problematik wird in ihrer ganzen Breite beleuchtet und dabei deutlich gemacht, ueber welche zahlreichen Mechanismen eine erhoehte UV-Strahlung auch zu Klimaaenderungen fuehren kann. Dies unterstreicht die Notwendigkeit, Verknuepfungen mit anderen Umweltproblemen wie der Versauerung des Bodens und von Gewaessern, der Abnahme der Artenvielfalt sowie der zunehmenden Wuestenbildung herzustellen. (orig.)

  9. Polar Bears or People?: How Framing Can Provide a Useful Analytic Tool to Understand & Improve Climate Change Communication in Classrooms

    Science.gov (United States)

    Busch, K. C.

    2014-12-01

    Not only will young adults bear the brunt of climate change's effects, they are also the ones who will be required to take action - to mitigate and to adapt. The Next Generation Science Standards include climate change, ensuring the topic will be covered in U.S. science classrooms in the near future. Additionally, school is a primary source of information about climate change for young adults. The larger question, though, is how can the teaching of climate change be done in such a way as to ascribe agency - a willingness to act - to students? Framing - as both a theory and an analytic method - has been used to understand how language in the media can affect the audience's intention to act. Frames function as a two-way filter, affecting both the message sent and the message received. This study adapted both the theory and the analytic methods of framing, applying them to teachers in the classroom to answer the research question: How do teachers frame climate change in the classroom? To answer this question, twenty-five lessons from seven teachers were analyzed using semiotic discourse analysis methods. It was found that the teachers' frames overlapped to form two distinct discourses: a Science Discourse and a Social Discourse. The Science Discourse, which was dominant, can be summarized as: Climate change is a current scientific problem that will have profound global effects on the Earth's physical systems. The Social Discourse, used much less often, can be summarized as: Climate change is a future social issue because it will have negative impacts at the local level on people. While it may not be surprising that the Science Discourse was most often heard in these science classrooms, it is possibly problematic if it were the only discourse used. The research literature on framing indicates that the frames found in the Science Discourse - global scale, scientific statistics and facts, and impact on the Earth's systems - are not likely to inspire action-taking. This

  10. Understanding the science of climate change: Talking points - impacts to the Pacific Coast

    Science.gov (United States)

    Amanda Schramm; Rachel Loehman

    2012-01-01

    The Pacific Coast is an area of incredible biodiversity and diverse landscapes that are subject to a range of effects as regional climates shift. Changes that have already been observed within this bioregion include warmer average temperatures, earlier runoff season, rising sea levels, coastal erosion, species migration, and a longer growing season. In the next century...

  11. Understanding the science of climate change: Talking points - Impacts to the Gulf Coast

    Science.gov (United States)

    Rachel Loehman; Greer Anderson

    2010-01-01

    Predicted climate changes in the Gulf Coast bioregion include increased air and sea surface temperatures, altered fire regimes and rainfall patterns, increased frequency of extreme weather events, rising sea levels, increased hurricane intensity, and potential destruction of coastal wetlands and the species that reside within them. Prolonged drought conditions, storm...

  12. Landscape-based hydrological modelling : Understanding the influence of climate, topography, and vegetation on catchment hydrology

    NARCIS (Netherlands)

    Gao, H.

    2015-01-01

    In this thesis, a novel landscape-based hydrological model is presented that was developed and tested in numerous catchments around the world with various landscapes and climate conditions. A landscape is considered to consist of a topography and an ecosystem living on it. Firstly, the influence of

  13. Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system.

    Science.gov (United States)

    Seinfeld, John H; Bretherton, Christopher; Carslaw, Kenneth S; Coe, Hugh; DeMott, Paul J; Dunlea, Edward J; Feingold, Graham; Ghan, Steven; Guenther, Alex B; Kahn, Ralph; Kraucunas, Ian; Kreidenweis, Sonia M; Molina, Mario J; Nenes, Athanasios; Penner, Joyce E; Prather, Kimberly A; Ramanathan, V; Ramaswamy, Venkatachalam; Rasch, Philip J; Ravishankara, A R; Rosenfeld, Daniel; Stephens, Graeme; Wood, Robert

    2016-05-24

    The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth's clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol-cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol-cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol-cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.

  14. Improving Our Fundamental Understanding of the Role of Aerosol Cloud Interactions in the Climate System

    Science.gov (United States)

    Seinfeld, John H.; Bretherton, Christopher; Carslaw, Kenneth S.; Coe, Hugh; DeMott, Paul J.; Dunlea, Edward J.; Feingold, Graham; Ghan, Steven; Guenther, Alex B.; Kahn, Ralph; hide

    2016-01-01

    The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth's clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol-cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol-cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol-cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.

  15. Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system

    Science.gov (United States)

    Seinfeld, John H.; Bretherton, Christopher; Carslaw, Kenneth S.; Coe, Hugh; DeMott, Paul J.; Dunlea, Edward J.; Feingold, Graham; Ghan, Steven; Guenther, Alex B.; Kraucunas, Ian; Molina, Mario J.; Nenes, Athanasios; Penner, Joyce E.; Prather, Kimberly A.; Ramanathan, V.; Ramaswamy, Venkatachalam; Rasch, Philip J.; Ravishankara, A. R.; Rosenfeld, Daniel; Stephens, Graeme; Wood, Robert

    2016-01-01

    The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth’s clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol−cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol−cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol−cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty. PMID:27222566

  16. Climate and Food Production: Understanding Vulnerability from Past Trends in Africa’s Sudan-Sahel

    Directory of Open Access Journals (Sweden)

    Genesis T. Yengoh

    2012-12-01

    Full Text Available Just how influential is rainfall on agricultural production in the Sudan-Sahel of Africa? And, is there evidence that support for small-scale farming can reduce the vulnerability of crop yields to rainfall in these sensitive agro-ecological zones? These questions are explored based on a case study from Cameroon’s Sudan-Sahel region. Climate data for 20 years and crop production data for six major food crops for the same years are used to find patterns of correlation over this time period. Results show a distinction of three periods of climatic influence of agriculture: one period before 1989, another between 1990 and 1999 and the last from 2000 to 2004. The analysis reveals that, while important in setting the enabling biophysical environment for food crop cultivation, the influence of rainfall in agriculture can be diluted by proactive policies that support food production. Proactive policies also reduce the impact of agriculturally relevant climatic shocks, such as droughts on food crop yields over the time-series. These findings emphasize the extent of vulnerability of food crop production to rainfall variations among small-holder farmers in these agro-ecological zones and reinforce the call for the proactive engagement of relevant institutions and support services in assisting the efforts of small-scale food producers in Africa’s Sudan-Sahel. The implications of climate variability on agriculture are discussed within the context of food security with particular reference to Africa’s Sudan-Sahel.

  17. Prospective Primary Teachers' Understanding of Climate Change, Greenhouse Effect, and Ozone Layer Depletion

    Science.gov (United States)

    Papadimitriou, Vasiliki

    2004-01-01

    Climate change is one of the most serious global environmental problems and for that reason there has been lately a great interest in educating pupils, the future citizens, about it. Previous research has shown that pupils of all ages and teachers hold many misconceptions and misunderstandings concerning this issue. This paper reports on research…

  18. Understanding the Reach of Agricultural Impacts from Climate Extremes in the Agricultural Model Intercomparison and Improvement Project (AgMIP)

    Science.gov (United States)

    Ruane, A. C.

    2016-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) has been working since 2010 to build a modeling framework capable of representing the complexities of agriculture, its dependence on climate, and the many elements of society that depend on food systems. AgMIP's 30+ activities explore the interconnected nature of climate, crop, livestock, economics, food security, and nutrition, using common protocols to systematically evaluate the components of agricultural assessment and allow multi-model, multi-scale, and multi-method analysis of intertwining changes in socioeconomic development, environmental change, and technological adaptation. AgMIP is now launching Coordinated Global and Regional Assessments (CGRA) with a particular focus on unforeseen consequences of development strategies, interactions between global and local systems, and the resilience of agricultural systems to extreme climate events. Climate extremes shock the agricultural system through local, direct impacts (e.g., droughts, heat waves, floods, severe storms) and also through teleconnections propagated through international trade. As the climate changes, the nature of climate extremes affecting agriculture is also likely to change, leading to shifting intensity, duration, frequency, and geographic extents of extremes. AgMIP researchers are developing new scenario methodologies to represent near-term extreme droughts in a probabilistic manner, field experiments that impose heat wave conditions on crops, increased resolution to differentiate sub-national drought impacts, new behavioral functions that mimic the response of market actors faced with production shortfalls, analysis of impacts from simultaneous failures of multiple breadbasket regions, and more detailed mapping of food and socioeconomic indicators into food security and nutrition metrics that describe the human impact in diverse populations. Agricultural models illustrate the challenges facing agriculture, allowing

  19. Modeling the Explicit Chemistry of Anthropogenic and Biogenic Organic Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Madronich, Sasha [Univ. Corporation for Atmospheric Research, Boulder, CO (United States)

    2015-12-09

    The atmospheric burden of Secondary Organic Aerosols (SOA) remains one of the most important yet uncertain aspects of the radiative forcing of climate. This grant focused on improving our quantitative understanding of SOA formation and evolution, by developing, applying, and improving a highly detailed model of atmospheric organic chemistry, the Generation of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) model. Eleven (11) publications have resulted from this grant.

  20. Understanding and Managing the Effects of Climate Change on Ecosystem Services in the Rocky Mountains

    Directory of Open Access Journals (Sweden)

    Jessica E. Halofsky

    2017-08-01

    Full Text Available Public lands in the US Rocky Mountains provide critical ecosystem services, especially to rural communities that rely on these lands for fuel, food, water, and recreation. Climate change will likely affect the ability of these lands to provide ecosystem services. We describe 2 efforts to assess climate change vulnerabilities and develop adaptation options on federal lands in the Rocky Mountains. We specifically focus on aspects that affect community economic security and livelihood security, including water quality and quantity, timber, livestock grazing, and recreation. Headwaters of the Rocky Mountains serve as the primary source of water for large populations, and these headwaters are located primarily on public land. Thus, federal agencies will play a key role in helping to protect water quantity and quality by promoting watershed function and water conservation. Although increased temperatures and atmospheric concentration of CO2 have the potential to increase timber and forage production in the Rocky Mountains, those gains may be offset by wildfires, droughts, insect outbreaks, non-native species, and altered species composition. Our assessment identified ways in which federal land managers can help sustain forest and range productivity, primarily by increasing ecosystem resilience and minimizing current stressors, such as invasive species. Climate change will likely increase recreation participation. However, recreation managers will need more flexibility to adjust practices, provide recreation opportunities, and sustain economic benefits to communities. Federal agencies are now transitioning from the planning phase of climate change adaptation to implementation to ensure that ecosystem services will continue to be provided from federal lands in a changing climate.

  1. An Approach to Understanding Complex Socio-Economic Impacts and Responses to Climate Disruption in the Chesapeake Bay Region

    Science.gov (United States)

    Schaefer, R. K.; Nix, M.; Ihde, A. G.; Paxton, L. J.; Weiss, M.; Simpkins, S.; Fountain, G. H.; APl GAIA Team

    2011-12-01

    In this paper we describe the application of a proven methodology for modeling the complex social and economic interactions of a system under stress to the regional issues that are tied to global climate disruption. Under the auspices of the GAIA project (http://gaia.jhuapl.edu), we have investigated simulating the complex interplay between climate, politics, society, industry, and the environment in the Chesapeake Bay Watershed and associated geographic areas of Maryland, Virginia, and Pennsylvania. This Chesapeake Bay simulation draws on interrelated geophysical and climate models to support decision-making analysis about the Bay. In addition to physical models, however, human activity is also incorporated via input and output calculations. For example, policy implications are modeled in relation to business activities surrounding fishing, farming, industry and manufacturing, land development, and tourism. This approach fosters collaboration among subject matter experts to advance a more complete understanding of the regional impacts of climate change. Simulated interactive competition, in which teams of experts are assigned conflicting objectives in a controlled environment, allow for subject exploration which avoids trivial solutions that neglect the possible responses of affected parties. Results include improved planning, the anticipation of areas of conflict or high risk, and the increased likelihood of developing mutually acceptable solutions.

  2. "I Feel Suffocated:" Understandings of Climate Change in an Inner City Heat Island.

    Science.gov (United States)

    Singer, Merrill; Hasemann, Jose; Raynor, Abigail

    2016-01-01

    Global climate change is contributing to a range of adverse environmental and weather shifts, including more intense and more frequent heatwaves and an intensification of the urban heat island effect. These changes are known to produce a set of significant and differentially distributed health problems, with a particularly high burden among poor and marginalized populations. In this article, we report findings from a qualitative study of community knowledge, attitudes, health and other concerns, and behavioral responses regarding mounting urban temperatures and related environmental health issues among Latinos living in the city of Hartford, CT in northeast United States. Findings suggest the need for enhanced participation in knowledge dissemination and preparedness planning based on the coproduction of knowledge about climate change and community responses to it. The special role of anthropology in such efforts is highlighted.

  3. The climate-energy contribution. Understand it, and you will adopt it

    International Nuclear Information System (INIS)

    2013-10-01

    This publication explains why the climate-energy contribution has a crucial role in the protection of climate, how everybody should be concerned, and whether it's a constraint or an opportunity for a successful energy transition. It outlines that this contribution is an application of the 'polluter pays' principle, describes how this contribution can be efficient and fair (all energies and all sectors are concerned). It briefly describes how revenues can be redistributed and how to invest in energy transition. By referring to some European countries (UK, Ireland, Finland, Sweden, Denmark and Switzerland), it outlines that this contribution has already been implemented, and that it could be a tool for innovation and jobs. It indicates the impact of this contribution on households (costs for housing and for mobility, possible actions to reduce energy consumption in housing and in mobility practices)

  4. Air traffic simulation in chemistry-climate model EMAC 2.41 : AirTraf 1.0

    NARCIS (Netherlands)

    Yamashita, H.; Grewe, V.; Jockel, P.; Linke, F.; Schaefer, M.; Sasaki, D.

    2016-01-01

    Mobility is becoming more and more important to society and hence air transportation is expected to grow further over the next decades. Reducing anthropogenic climate impact from aviation emissions and building a climate-friendly air transportation system are required for a sustainable development

  5. Ecosystem services and climate change: Understanding the differences and identifying opportunities for forest carbon

    Science.gov (United States)

    Robert L. Deal; Crystal Raymond; David L. Peterson; Cindy. Glick

    2010-01-01

    There are a number of misunderstandings about “ecosystem services” and “climate change” and these terms are often used incorrectly to describe different concepts. These concepts address different issues and objectives but have some important integrating themes relating to carbon and carbon sequestration. In this paper, we provide definitions and distinctions between...

  6. Low Frequency Climate Variability: Understanding the Rise and Fall of the Great Salt Lake

    OpenAIRE

    Mann, Michael E.; Lall, Upmanu; Saltzman, Barry

    1994-01-01

    Connections between the Great Salt Lake (GSL) volume (V) and large-scale climate variations are developed through an analysis of the time series of the month-to-month differences in V (change in V), local precipitation and streamflow, and gridded U.S. sea level pressure and global temperature data. We isolate decadal and secular mdoes of cliamte variability that are coherent with change in V variations. The decada...

  7. Understanding Mars meteorology using a "new generation" Mars Global Climate Model.

    Science.gov (United States)

    Forget, F.; Madeleine, J.-B.; Millour, E.; Colaitis, A.; Spiga, A.; Montabone, L.; Chaufray, J.-Y.; Lefèvre, F.; Montmessin, F.; Määttänen, A.; Gonzalez-Galindo, F.; Lopez-Valverde, M.-A.

    2011-10-01

    For more than 20 years, several teams around the world have developed GCMs (Mars General Circulation Model or Mars Global Climate) to simulate the environment on Mars. The GCM developed at the Laboratoire de Météorologie Dynamique in collaboration with several teams in Europe (LATMOS, France, University of Oxford, The Open University, the Instituto de Astrofisica de Andalucia), and with the support of ESA and CNES. is currently used for many kind of applications. It has become a "Mars System Model" which, for instance, includes the water cycle, the dust cycle, several photochemistry cycles, the release and transport of Radon, water isotopes cycles, a therrmosphere and a Ionosphere. It can also be used to explore Mars past climates. Moreover the outputs of the GCM are available to the community and to engineers through the Mars Climate Database, a tool available on a DVD-Rom and used by more than 150 teams around the world. For all these applications, it is more important than ever that the model accurately simulates the "fundamentals" of the Martian meteorology: pressure, temperature, winds. However, several recent studies have revealed that to simulate the details of Mars meteorology one must take into account several processes previously neglected like the radiative effect of water ice clouds, complex variations in the vertical distribution of dust including the formation of detached layers of dust, complex coupling in the CO2 cycle which control the pressure cycle and the temperatures at high latitude, etc.

  8. Toward an understanding of the Middle Pleistocene Transition as a structural change in climate stability

    Science.gov (United States)

    Ditlevsen, Peter

    2016-04-01

    The Middle Pleistocene transition signifies a change approximately 1 Myr ago from a period with 40 kyr glacial cycles to a period of approximately 100 kyr cycles in response to the orbital forcing. This change from the "40 kyr world" to the "100 kyr world" is not reflected in noticeable changes in the forcing. To explain this we present a low order conceptual model for the oscillatory dynamics of the ice sheets in terms of a relaxation oscillator with multiple levels subject to the Milankovitch forcing. The model exhibits smooth transitions between three different climate states; an interglacial (i), a mild glacial (g) and a deep glacial (G) as proposed by Paillard (1998). The model suggests a dynamical explanation in terms of the structure of a slow manifold for the observed allowed and ``forbidden'' transitions between the three climate states. With the model, the pacing of the climate oscillations by the astronomical forcing is through the mechanism of phase-resetting of relaxation oscillations in which the internal phase of the oscillation is affected by the forcing.

  9. For a better understanding of adaptive capacity to climate change: a research framework

    International Nuclear Information System (INIS)

    Magnan, Alexandre

    2010-05-01

    It is generally accepted that there exists a systematic link between a low level of adaptive capacity and a low level of development, which thus implies that the poor inevitably have low adaptive capacities. We argue here that this viewpoint is biased because adaptation to climate change is not solely determined by economic and technological capacities. Many other characteristics of a community can play a major role in its ability to react to and anticipate climate changes (e.g. the territorial identity or the social relationships). From our point of view, this limited view of adaptive capacity is related to a relative immaturity of the science of adaptation, a discipline that analyses the processes and determinants of adaptive capacity. This can be explained by the fact that there are currently few existing frameworks for studying adaptive capacity. This paper consists in a proposal for a research framework which is based upon four main fields of investigation: (i) the influential factors of adaptive capacity and their interactions, (ii) the relevant spatial and temporal scales of adaptive capacity, (iii) the links between adaptive capacity, vulnerability and the level of development and (iv) the theoretical links between adaptation and sustainability. These four fields of research should bring new knowledge on adaptive capacity and feed a more general reflection on the adaptation pathways for dealing with climate change. (author)

  10. Understanding the Perception of Global Climate Change: Research into the Role of Media

    Science.gov (United States)

    Kundargi, R.; Gopal, S.; Tsay-Vogel, M.

    2016-12-01

    Here we present preliminary results for a novel study investigating the perception of climate change media, in relation to two pre-selected dimensions. We administer a questionnaire varying in two dimensions (spatial proximity and scientific literacy) to 155 mostly students in order to evaluate their emotional and cognitive reactions towards a series of video clips depicting the impacts of global climate change (GCC) events or the science behind global climate change. 19 videos were selected and vetted by experts for content and relevance to the subject matter. Our preliminary analysis indicate that the further away an event is perceived to be (spatial proximity) results in a lower uncertainty about the risks of GCC, lower self-efficacy to effect GCC, and lower personal responsibility to influence GCC. Furthermore, our results show that videos with a higher perceived background scientific knowledge requirement (scientific literacy) results in greater viewer engagement with the video. A full analysis and results of this study will be presented within the poster presentation.

  11. Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty.

    Science.gov (United States)

    Cheaib, Alissar; Badeau, Vincent; Boe, Julien; Chuine, Isabelle; Delire, Christine; Dufrêne, Eric; François, Christophe; Gritti, Emmanuel S; Legay, Myriam; Pagé, Christian; Thuiller, Wilfried; Viovy, Nicolas; Leadley, Paul

    2012-06-01

    Model-based projections of shifts in tree species range due to climate change are becoming an important decision support tool for forest management. However, poorly evaluated sources of uncertainty require more scrutiny before relying heavily on models for decision-making. We evaluated uncertainty arising from differences in model formulations of tree response to climate change based on a rigorous intercomparison of projections of tree distributions in France. We compared eight models ranging from niche-based to process-based models. On average, models project large range contractions of temperate tree species in lowlands due to climate change. There was substantial disagreement between models for temperate broadleaf deciduous tree species, but differences in the capacity of models to account for rising CO(2) impacts explained much of the disagreement. There was good quantitative agreement among models concerning the range contractions for Scots pine. For the dominant Mediterranean tree species, Holm oak, all models foresee substantial range expansion. © 2012 Blackwell Publishing Ltd/CNRS.

  12. Trends in lake chemistry in response to atmospheric deposition and climate in selected Class I wilderness areas in Colorado, Idaho, Utah, and Wyoming, 1993-2009

    Science.gov (United States)

    Mast, M. Alisa; Ingersoll, George P.

    2011-01-01

    In 2010, the U.S. Geological Survey, in cooperation with the U.S. Department of Agriculture Forest Service, Air Resource Management, began a study to evaluate long-term trends in lake-water chemistry for 64 high-elevation lakes in selected Class I wilderness areas in Colorado, Idaho, Utah, and Wyoming during 1993 to 2009. The purpose of this report is to describe trends in the chemical composition of these high-elevation lakes. Trends in emissions, atmospheric deposition, and climate variables (air temperature and precipitation amount) are evaluated over a similar period of record to determine likely drivers of changing lake chemistry. Sulfate concentrations in precipitation decreased over the past two decades at high-elevation monitoring stations in the Rocky Mountain region. The trend in deposition chemistry is consistent with regional declines in sulfur dioxide emissions resulting from installation of emission controls at large stationary sources. Trends in nitrogen deposition were not as widespread as those for sulfate. About one-half of monitoring stations showed increases in ammonium concentrations, but few showed significant changes in nitrate concentrations. Trends in nitrogen deposition appear to be inconsistent with available emission inventories, which indicate modest declines in nitrogen emissions in the Rocky Mountain region since the mid-1990s. This discrepancy may reflect uncertainties in emission inventories or changes in atmospheric transformations of nitrogen species that may be affecting deposition processes. Analysis of long-term climate records indicates that average annual mean air temperature minimums have increased from 0.57 to 0.75 °C per decade in mountain areas of the region with warming trends being more pronounced in Colorado. Trends in annual precipitation were not evident over the period 1990 to 2006, although wetter than average years during 1995 to 1997 and drier years during 2001 to 2004 caused a notable decline in precipitation

  13. A Collaborative Proposal: Simulating and Understanding Abrupt Climate-Ecosystem Changes During Holocene with NCAR-CCSM3.

    Energy Technology Data Exchange (ETDEWEB)

    Zhengyu Liu, Bette Otto-Bliesner

    2013-02-01

    We have made significant progress in our proposed work in the last 4 years (3 years plus 1 year of no cost extension). In anticipation of the next phase of study, we have spent time on the abrupt changes since the last glacial maximum. First, we have performed further model-data comparison based on our baseline TRACE-21 simulation and made important progress towards the understanding of several major climate transitions. Second, we have made a significant effort in processing the model output of TRACE-21 and have put this output on a website for access by the community. Third, we have completed many additional sensitivity experiments. In addition, we have organized synthesis workshops to facilitate and promote transient model-data comparison for the international community. Finally, we have identified new areas of interest for Holocene climate changes.

  14. Atmospheric Chemistry Over Southern Africa

    Science.gov (United States)

    Gatebe, Charles K.; Levy, Robert C.; Thompson, Anne M.

    2011-01-01

    During the southern African dry season, regional haze from mixed industrial pollution, biomass burning aerosol and gases from domestic and grassland fires, and biogenic sources from plants and soils is worsened by a semi-permanent atmosphere gyre over the subcontinent. These factors were a driver of several major international field campaigns in the 1990s and early 2000s, and attracted many scientists to the region. Some researchers were interested in understanding fundamental processes governing chemistry of the atmosphere and interaction with climate change. Others found favorable conditions for evaluating satellite-derived measurements of atmospheric properties and a changing land surface. With that background in mind a workshop on atmospheric chemistry was held in South Africa. Sponsored by the International Commission for Atmospheric Chemistry and Global Pollution (ICACGP; http://www.icacgp.org/), the workshop received generous support from the South African power utility, Eskom, and the Climatology Research Group of the University of the Witwatersrand, Johannesburg, South Africa. The purpose of the workshop was to review some earlier findings as well as more recent findings on southern African climate vulnerability, chemical changes due to urbanization, land-use modification, and how these factors interact. Originally proposed by John Burrows, president of ICACGP, the workshop was the first ICACGP regional workshop to study the interaction of air pollution with global chemical and climate change. Organized locally by the University of the Witwatersrand, the workshop attracted more than 60 delegates from South Africa, Mozambique, Botswana, Zimbabwe, France, Germany, Canada, and the United States. More than 30 presentations were given, exploring both retrospective and prospective aspects of the science. In several talks, attention was focused on southern African chemistry, atmospheric pollution monitoring, and climate processes as they were studied in the field

  15. The GLOBE Carbon Cycle Project: Using a systems approach to understand carbon and the Earth's climate system

    Science.gov (United States)

    Silverberg, S. K.; Ollinger, S. V.; Martin, M. E.; Gengarelly, L. M.; Schloss, A. L.; Bourgeault, J. L.; Randolph, G.; Albrechtova, J.

    2009-12-01

    National Science Content Standards identify systems as an important unifying concept across the K-12 curriculum. While this standard exists, there is a recognized gap in the ability of students to use a systems thinking approach in their learning. In a similar vein, both popular media as well as some educational curricula move quickly through climate topics to carbon footprint analyses without ever addressing the nature of carbon or the carbon cycle. If students do not gain a concrete understanding of carbon’s role in climate and energy they will not be able to successfully tackle global problems and develop innovative solutions. By participating in the GLOBE Carbon Cycle project, students learn to use a systems thinking approach, while at the same time, gaining a foundation in the carbon cycle and it's relation to climate and energy. Here we present the GLOBE Carbon Cycle project and materials, which incorporate a diverse set of activities geared toward upper middle and high school students with a variety of learning styles. A global carbon cycle adventure story and game let students see the carbon cycle as a complete system, while introducing them to systems thinking concepts including reservoirs, fluxes and equilibrium. Classroom photosynthesis experiments and field measurements of schoolyard vegetation brings the global view to the local level. And the use of computer models at varying levels of complexity (effects on photosynthesis, biomass and carbon storage in global biomes, global carbon cycle) not only reinforces systems concepts and carbon content, but also introduces students to an important scientific tool necessary for understanding climate change.

  16. Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation Historical and Projected Changes

    Science.gov (United States)

    Lamarque, J.-F.; Dentener, F.; McConnell, J.; Ro, C.-U.; Shaw, M.; Vet, R.; Bergmann, D.; Cameron-Smith, P.; Doherty, R.; Faluvegi, G.; hide

    2013-01-01

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of 50 Tg(N) yr1 from nitrogen oxide emissions, 60 Tg(N) yr1 from ammonia emissions, and 83 Tg(S) yr1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching 1300 mg(N) m2 yr1 averaged over regional to continental scale regions in RCP 2.6 and 8.5, 3050 larger than the values in any region currently (2000). The new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.

  17. Towards IASI-New Generation (IASI-NG): impact of improved spectral resolution and radiometric noise on the retrieval of thermodynamic, chemistry and climate variables

    Science.gov (United States)

    Crevoisier, C.; Clerbaux, C.; Guidard, V.; Phulpin, T.; Armante, R.; Barret, B.; Camy-Peyret, C.; Chaboureau, J.-P.; Coheur, P.-F.; Crépeau, L.; Dufour, G.; Labonnote, L.; Lavanant, L.; Hadji-Lazaro, J.; Herbin, H.; Jacquinet-Husson, N.; Payan, S.; Péquignot, E.; Pierangelo, C.; Sellitto, P.; Stubenrauch, C.

    2014-12-01

    Besides their strong contribution to weather forecast improvement through data assimilation, thermal infrared sounders onboard polar-orbiting platforms are now playing a key role for monitoring atmospheric composition changes. The Infrared Atmospheric Sounding Interferometer (IASI) instrument developed by the French space agency (CNES) and launched by EUMETSAT onboard the Metop satellite series is providing essential inputs for weather forecasting and pollution/climate monitoring owing to its smart combination of large horizontal swath, good spectral resolution and high radiometric performance. EUMETSAT is currently preparing the next polar-orbiting program (EPS-SG) with the Metop-SG satellite series that should be launched around 2020. In this framework, CNES is studying the concept of a new instrument, the IASI-New Generation (IASI-NG), characterized by an improvement of both spectral and radiometric characteristics as compared to IASI, with three objectives: (i) continuity of the IASI/Metop series; (ii) improvement of vertical resolution; and (iii) improvement of the accuracy and detection threshold for atmospheric and surface components. In this paper, we show that an improvement of spectral resolution and radiometric noise fulfil these objectives by leading to (i) a better vertical coverage in the lower part of the troposphere, thanks to the increase in spectral resolution; and (ii) an increase in the accuracy of the retrieval of several thermodynamic, climate and chemistry variables, thanks to the improved signal-to-noise ratio as well as less interference between the signatures of the absorbing species in the measured radiances. The detection limit of several atmospheric species is also improved. We conclude that IASI-NG has the potential to strongly benefit the numerical weather prediction, chemistry and climate communities now connected through the European GMES/Copernicus initiative.

  18. Tropospheric O3 distribution over the Indian Ocean during spring 1995 evaluated with a chemistry-climate model

    NARCIS (Netherlands)

    Laat, A.T.J. de; Zachariasse, M.; Roelofs, G.J.H.; Velthoven, P. van; Dickerson, R.R.; Rhoads, K.P.; Oltmans, S.J.; Lelieveld, J.

    1999-01-01

    An analysis of tropospheric O 3 over the Indian Ocean during spring 1995 is presented based on O 3 soundings and results from the chemistry-general circulation model ECHAM (European Centre Hamburg Model). The ECHAM model is nudged towards actual meteorology using ECMWF analyses, to enable a

  19. Understanding north-western Mediterranean climate variability: a multi-proxy and multi-sequence approach based on wavelet analysis.

    Science.gov (United States)

    Azuara, Julien; Lebreton, Vincent; Jalali, Bassem; Sicre, Marie-Alexandrine; Sabatier, Pierre; Dezileau, Laurent; Peyron, Odile; Frigola, Jaime; Combourieu-Nebout, Nathalie

    2017-04-01

    Forcings and physical mechanisms underlying Holocene climate variability still remain poorly understood. Comparison of different paleoclimatic reconstructions using spectral analysis allows to investigate their common periodicities and helps to understand the causes of past climate changes. Wavelet analysis applied on several proxy time series from the Atlantic domain already revealed the first key-issues on the origin of Holocene climate variability. However the differences in duration, resolution and variance between the time-series are important issues for comparing paleoclimatic sequences in the frequency domain. This work compiles 7 paleoclimatic proxy records from 4 time-series from the north-western Mediterranean all ranging from 7000 to 1000 yrs cal BP: -pollen and clay mineral contents from the lagoonal sediment core PB06 recovered in southern France, -Sea Surface Temperatures (SST) derived from alkenones, concentration of terrestrial alkanes and their average chain length (ACL) from core KSGC-31_GolHo-1B recovered in the Gulf of Lion inner-shelf, - δ18O record from speleothems recovered in the Asiul Cave in north-western Spain, -grain size record from the deep basin sediment drift core MD99-2343 north of Minorca island. A comparison of their frequency content is proposed using wavelet analysis and cluster analysis of wavelet power spectra. Common cyclicities are assessed using cross-wavelet analysis. In addition, a new algorithm is used in order to propagate the age model errors within wavelet power spectra. Results are consistents with a non-stationnary Holocene climate variability. The Halstatt cycles (2000-2500 years) depicted in many proxies (ACL, errestrial alkanes and SSTs) demonstrate solar activity influence in the north-western Mediterranean climate. Cluster analysis shows that pollen and ACL proxies, both indicating changes in aridity, are clearly distinct from other proxies and share significant common periodicities around 1000 and 600 years

  20. Understanding global climate change: paleoclimate perspective from the world's highest mountains.

    Science.gov (United States)

    Thompson, Lonnie G

    2010-06-01

    Glaciers are among the world's best recorders of, and first responders to, natural and anthropogenic climate change and provide a time perspective for current climatic and environmental variations. Over the last 50 years such records have been recovered from the polar regions as well as low-latitude, high-elevation ice fields. Analyses of these ice cores and of the glaciers from which they have been drilled have yielded three lines of evidence for past and present abrupt climate change: (1) the temperature and precipitation histories recorded in the glaciers as revealed by the climate records extracted from the ice cores; (2) the accelerating loss of the glaciers themselves; and (3) the uncovering of ancient fauna and flora from the margins of the glaciers as a result of their recent melting, thus illustrating the significance of the current ice loss. The current melting of high-altitude, low-latitude ice fields is consistent with model predictions for a vertical amplification of temperature in the tropics. The ongoing rapid retreat of the world's mountain glaciers, as well as the margins of the Greenland and Antarctic ice sheets, is not only contributing to global sea level rise, but also threatening fresh-water supplies in many of the most populous regions. More recently, strong evidence has appeared for the acceleration of the rate of ice loss in the tropics, which especially presents a clear and present danger to water supplies for at-risk populations in South America and Asia. The human response to this issue, however, is not so clear, for although the evidence from both data and models becomes more compelling, the rate of global CO2 emissions continues to accelerate. Climatologically, we are in unfamiliar territory, and the world's ice cover is responding dramatically. The loss of glaciers, which can be viewed as the world's water towers, threatens water resources that are essential for hydroelectric power, crop irrigation, municipal water supplies, and even

  1. Using Scaling to Understand, Model and Predict Global Scale Anthropogenic and Natural Climate Change

    Science.gov (United States)

    Lovejoy, S.; del Rio Amador, L.

    2014-12-01

    The atmosphere is variable over twenty orders of magnitude in time (≈10-3 to 1017 s) and almost all of the variance is in the spectral "background" which we show can be divided into five scaling regimes: weather, macroweather, climate, macroclimate and megaclimate. We illustrate this with instrumental and paleo data. Based the signs of the fluctuation exponent H, we argue that while the weather is "what you get" (H>0: fluctuations increasing with scale), that it is macroweather (Hbackground as close to white noise and focuses on quasi-periodic variability assumes a spectrum that is in error by a factor of a quadrillion (≈ 1015). Using this scaling framework, we can quantify the natural variability, distinguish it from anthropogenic variability, test various statistical hypotheses and make stochastic climate forecasts. For example, we estimate the probability that the warming is simply a giant century long natural fluctuation is less than 1%, most likely less than 0.1% and estimate return periods for natural warming events of different strengths and durations, including the slow down ("pause") in the warming since 1998. The return period for the pause was found to be 20-50 years i.e. not very unusual; however it immediately follows a 6 year "pre-pause" warming event of almost the same magnitude with a similar return period (30 - 40 years). To improve on these unconditional estimates, we can use scaling models to exploit the long range memory of the climate process to make accurate stochastic forecasts of the climate including the pause. We illustrate stochastic forecasts on monthly and annual scale series of global and northern hemisphere surface temperatures. We obtain forecast skill nearly as high as the theoretical (scaling) predictability limits allow: for example, using hindcasts we find that at 10 year forecast horizons we can still explain ≈ 15% of the anomaly variance. These scaling hindcasts have comparable - or smaller - RMS errors than existing GCM

  2. Petrography and Mineral Chemistry of Magmatic and Hydrothermal Biotite in Porphyry Copper-Gold Deposits: A Tool for Understanding Mineralizing Fluid Compositional Changes During Alteration Processes

    Directory of Open Access Journals (Sweden)

    Arifudin Idrus

    2018-01-01

    Full Text Available DOI: 10.17014/ijog.5.1.47-64This study aims to understand the petrography and chemistry of both magmatic and hydrothermal biotites in porphyry copper-gold deposits, and to evaluate the fluid compositional changes during alteration processes. A total of 206 biotite grains from selected rock samples taken from the Batu Hijau porphyry Cu-Au deposit was analyzed. Detailed petrography and biotite chemistry analysis were performed on thin sections and polished thin sections, respectively, representing various rocks and alteration types. A JEOL JXA-8900R electron microprobe analyzer (EMPA was used for the chemistry analysis. The biotite is texturally divided into magmatic and hydrothermal types. Ti, Fe, and F contents can be used to distinguish the two biotite types chemically. Some oxide and halogen contents of biotite from various rocks and alteration types demonstrate a systematic variation in chemical composition. Biotite halogen chemistry shows a systematic increase in log (XCl/XOH and decrease in log (XF/XOH values from biotite (potassic through chlorite-sericite (intermediate argillic to actinolite (inner propylitic zones. The y-intercepts on the log (XCl/XOH vs. XMg and log (XF/XOH vs. XFe plotted for biotite from potassic and intermediate argillic zones are similar or slightly different. In contrast, the y-intercepts on the log (XCl/XOH vs. XMg and log (XF/XOH vs. XFe plotted for biotite from inner propylitic zone display different values in comparison to the two alteration zones. Halogen (F,Cl fugacity ratios in biotite show a similar pattern: in the potassic and intermediate argillic zones they show little variation, whereas in the inner propylitic zone they are distinctly different. These features suggest the hydrothermal fluid composition remained fairly constant in the inner part of the deposit during the potassic and intermediate argillic alteration events, but changed significantly towards the outer part affected by inner propylitic

  3. Fractionation of bamboo culms by autohydrolysis, organosolv delignification and extended delignification: understanding the fundamental chemistry of the lignin during the integrated process.

    Science.gov (United States)

    Wen, Jia-Long; Sun, Shao-Ni; Yuan, Tong-Qi; Xu, Feng; Sun, Run-Cang

    2013-12-01

    Bamboo (Phyllostachys pubescens) was successfully fractionated using a three-step integrated process: (1) autohydrolysis pretreatment facilitating xylooligosaccharide (XOS) production (2) organosolv delignification with organic acids to obtain high-purity lignin, and (3) extended delignification with alkaline hydrogen peroxide (AHP) to produce purified pulp. The integrated process was comprehensively evaluated by component analysis, SEM, XRD, and CP-MAS NMR techniques. Emphatically, the fundamental chemistry of the lignin fragments obtained from the integrated process was thoroughly investigated by gel permeation chromatography and solution-state NMR techniques (quantitative (13)C, 2D-HSQC, and (31)P-NMR spectroscopies). It is believed that the integrated process facilitate the production of XOS, high-purity lignin, and purified pulp. Moreover, the enhanced understanding of structural features and chemical reactivity of lignin polymers will maximize their utilizations in a future biorefinery industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Understanding the recent trend of haze pollution in eastern China: roles of climate change

    Directory of Open Access Journals (Sweden)

    H.-J. Wang

    2016-04-01

    Full Text Available In this paper, the variation and trend of haze pollution in eastern China for winter of 1960–2012 were analyzed. With the overall increasing number of winter haze days in this period, the 5 decades were divided into three sub-periods based on the changes of winter haze days (WHD in central North China (30–40° N and eastern South China (south of 30° N for east of 109° E mainland China. Results show that WHD kept gradually increasing during 1960–1979, remained stable overall during 1980–1999, and increased fast during 2000–2012. The author identified the major climate forcing factors besides total energy consumption. Among all the possible climate factors, variability of the autumn Arctic sea ice extent, local precipitation and surface wind during winter is most influential to the haze pollution change. The joint effect of fast increase of total energy consumption, rapid decline of Arctic sea ice extent and reduced precipitation and surface winds intensified the haze pollution in central North China after 2000. There is a similar conclusion for haze pollution in eastern South China after 2000, with the precipitation effect being smaller and spatially inconsistent.

  5. Representations of the Stratospheric Polar Vortices in Versions 1 and 2 of the Goddard Earth Observing System Chemistry-Climate Model (GEOS CCM)

    Science.gov (United States)

    Pawson, S.; Stolarski, R.S.; Nielsen, J.E.; Perlwitz, J.; Oman, L.; Waugh, D.

    2009-01-01

    This study will document the behavior of the polar vortices in two versions of the GEOS CCM. Both versions of the model include the same stratospheric chemistry, They differ in the underlying circulation model. Version 1 of the GEOS CCM is based on the Goddard Earth Observing System, Version 4, general circulation model which includes the finite-volume (Lin-Rood) dynamical core and physical parameterizations from Community Climate Model, Version 3. GEOS CCM Version 2 is based on the GEOS-5 GCM that includes a different tropospheric physics package. Baseline simulations of both models, performed at two-degree spatial resolution, show some improvements in Version 2, but also some degradation, In the Antarctic, both models show an over-persistent stratospheric polar vortex with late breakdown, but the year-to-year variations that are overestimated in Version I are more realistic in Version 2. The implications of this for the interactions with tropospheric climate, the Southern Annular Mode, will be discussed. In the Arctic both model versions show a dominant dynamically forced variabi;ity, but Version 2 has a persistent warm bias in the low stratosphere and there are seasonal differences in the simulations. These differences will be quantified in terms of climate change and ozone loss. Impacts of model resolution, using simulations at one-degree and half-degree, and changes in physical parameterizations (especially the gravity wave drag) will be discussed.

  6. Understanding Perceptions of Climate Change, Priorities, and Decision-Making among Municipalities in Lima, Peru to Better Inform Adaptation and Mitigation Planning.

    Science.gov (United States)

    Siña, Mariella; Wood, Rachel C; Saldarriaga, Enrique; Lawler, Joshua; Zunt, Joseph; Garcia, Patricia; Cárcamo, César

    2016-01-01

    Climate change poses multiple risks to the population of Lima, the largest city and capital of Peru, located on the Pacific coast in a desert ecosystem. These risks include increased water scarcity, increased heat, and the introduction and emergence of vector-borne and other climate sensitive diseases. To respond to these threats, it is necessary for the government, at every level, to adopt more mitigation and adaptation strategies. Here, focus groups were conducted with representatives from five Lima municipalities to determine priorities, perception of climate change, and decision-making processes for implementing projects within each municipality. These factors can affect the ability and desire of a community to implement climate change adaptation and mitigation strategies. The results show that climate change and other environmental factors are of relatively low priority, whereas public safety and water and sanitation services are of highest concern. Perhaps most importantly, climate change is not well understood among the municipalities. Participants had trouble distinguishing climate change from other environmental issues and did not fully understand its causes and effects. Greater understanding of what climate change is and why it is important is necessary for it to become a priority for the municipalities. Different aspects of increased climate change awareness seem to be connected to having experienced extreme weather events, whether related or not to climate change, and to higher socioeconomic status.

  7. Understanding climate's influence on the extinction of Oreopithecus (late Miocene, Tusco-Sardinian paleobioprovince, Italy).

    Science.gov (United States)

    DeMiguel, Daniel; Rook, Lorenzo

    2018-03-01

    Despite its long history of scientific study, the causes underlying the extinction of the insular hominoid Oreopithecus bambolii are still a matter of ongoing debate. While some authors consider intense tectonism and invading species the cause of its extinction ca. 6.7 Ma, others propose climatic change as the main contributing factor. We rely on long-term patterns of tooth wear and hypsodonty of the Baccinello and Fiume Santo herbivore-faunas to reconstruct changes in habitat prior to, during and after the extinction. While a mosaic of habitats was represented in Baccinello V1 (as shown by a record of browsers, mixed feeders and species engaged in grazing), more closed forests (higher proportion of browsers, shortage of mixed feeders and lack of grazers) characterised Baccinello V2. Finally, there was a partial loss of canopy cover and development of open-patches and low-abrasive grasses in Baccinello V3 (as denoted by new records of taxa involved in grazing)-although still dominated by a forested habitat (since browse was a component in all diets). Our results provide evidence for two perceptible shifts in climate, one between 8.1 and 7.1 Ma and other ca. 6.7 Ma, though this latter was not drastic enough to lead to intensive forest loss, substantially alter the local vegetation or affect Oreopithecus lifestyle-especially if considering the growing evidence of its versatile diet. Although the disappearance of Oreopithecus is complex, our data reject the hypothesis of environmental change as the main factor in the extinction of Oreopithecus and Maremma fauna. When our results are analysed together with other evidence, faunal interaction and predation by invading species from mainland Europe seems to be the most parsimonious explanation for this extinction event. This contrasts with European hominoid extinctions that were associated with major climatic shifts that led to environmental uniformity and restriction of the preferred habitats of Miocene apes. Copyright

  8. Understanding the molecular behavior of organotin compounds to design their effective use as agrochemicals: exploration via quantum chemistry and experiments.

    Science.gov (United States)

    Ramalho, Teodorico C; Rocha, Marcus V J; da Cunha, Elaine F F; Oliveira, Luiz C A; Carvalho, Kele T C

    2010-10-01

    The high frequency of contamination by herbicides suggests the need for more active and selective agrochemicals. Organotin compounds are the active component of some herbicides, such as Du-Ter and Brestan, which is also a potent inhibitor of the F1Fo ATP Synthase. That is a key enzyme, because the ATP production is one of the major chemical reactions in living organisms. Thus ATP Synthase is regarded as a prime target for organotin compounds. In this line, molecular modeling studies and DFT calculations were performed in order to understand the molecular behavior of those compounds in solution. In addition, we investigated the reaction mechanism by ESI-MS analyses of the diphenyltin dichloride. Our findings indicate that an unstable key-intermediate generated in situ might take place in the reaction with ATP Synthase.

  9. Large Rivers in the Anthropocene: Insights and tools for understanding climatic, land use, and reservoir influences

    Science.gov (United States)

    Habersack, Helmut; Haspel, Daniel; Kondolf, Mathias

    2014-05-01

    Since the industrial revolution, human impacts on landscapes and river systems globally have intensified significantly. Humans nowadays artificially increase and decrease fluxes of water, sediment and nutrients on a scale far exceeding natural fluxes. Rivers integrate such changes occurring throughout their drainage basins, and thus can be considered as indicators of landscape processes and river basin "health" more broadly. This special issue brings together a set of papers that explore interactions of climate change and river processes, influences of land use changes, effects of reservoirs, as well as new approaches to sorting out the relative importance of these diverse influences on rivers and uncertainties in modeling future behavior. These papers contribute to a growing body of work demonstrating the fundamental differences between large rivers in the Anthropocene and rivers in prior time periods.

  10. Understanding environmental and climatic influences on regional differences and spatio-temporalscale issues of dengue fever transmission in Puerto Rico

    Science.gov (United States)

    Serman, E. A.; Akanda, A. S. S.; Ginsberg, H. S.; Couret, J.

    2015-12-01

    Each year, there are an estimated 50-100 million cases of dengue fever worldwide, roughly 30 times the number of cases as 50 years ago, with some estimates even higher. Puerto Rico (PR) has experienced epidemic dengue activity since 1963, and the disease is currently endemic. Since 1990 there have been 4 large epidemics, the most recent in 2010 where there were nearly 27,000 cases reported, amounting to almost 1% of the island's total population. Because no vaccine is currently available, effective control is dependent on our ability to understand the complex relationship between environmental factors, mosquito vector ecology, and disease epidemiology. Dengue virus is transmitted primarily by Aedes aegypti mosquitoes, as humans are the preferred host for Ae. aegypti. The purpose of our analysis is to assess temporal and spatial patterns of dengue transmission in PR and relate this to both climatic and anthropogenic factors. Unlike past studies, which have used San Juan to represent the island as a whole, our research will investigate regional dynamics in dengue transmission, as preliminary results have shown significant differences in population density, disease incidence, and environmental and climatic variables. Data from the Passive Dengue Surveillance System of CDC, meteorological observations from NCDC, and remote sensing data from USGS and NASA will be used together to identify relationships between climate, urbanization, and dengue incidence for PR at various spatial and temporal scales. Preliminary climatic factors considered include precipitation, temperature, humidity, and soil moisture. Finally, we will assess measures of urbanization such as land cover, land use, population density, and infrastructure that can make regional differences in dengue incidence each year. Results from this study could help create early warning systems for dengue surveillance in Puerto Rico, and develop techniques that can be applied to other areas of the world.

  11. The New Color of Chemistry: Green Chemistry

    OpenAIRE

    Zuhal GERÇEK

    2012-01-01

    Green chemistry which is the new application of chemistry rules provides solutions to problems that mankind is faced with climate changes, sustainable agriculture, energy, toxics, depletion of natural sources e.g. designing new chemicals and processes that production and utilization of hazardous matters. So, it is the indispensible tool for sustainable development. Current and future chemists should consider the human health and ecological issues in their professional life. In order to provid...

  12. Impacts of Mt Pinatubo volcanic aerosol on the tropical stratosphere in chemistry-climate model simulations using CCMI and CMIP6 stratospheric aerosol data

    Science.gov (United States)

    Revell, Laura E.; Stenke, Andrea; Luo, Beiping; Kremser, Stefanie; Rozanov, Eugene; Sukhodolov, Timofei; Peter, Thomas

    2017-11-01

    To simulate the impacts of volcanic eruptions on the stratosphere, chemistry-climate models that do not include an online aerosol module require temporally and spatially resolved aerosol size parameters for heterogeneous chemistry and aerosol radiative properties as a function of wavelength. For phase 1 of the Chemistry-Climate Model Initiative (CCMI-1) and, later, for phase 6 of the Coupled Model Intercomparison Project (CMIP6) two such stratospheric aerosol data sets were compiled, whose functional capability and representativeness are compared here. For CCMI-1, the SAGE-4λ data set was compiled, which hinges on the measurements at four wavelengths of the SAGE (Stratospheric Aerosol and Gas Experiment) II satellite instrument and uses ground-based lidar measurements for gap-filling immediately after the 1991 Mt Pinatubo eruption, when the stratosphere was too optically opaque for SAGE II. For CMIP6, the new SAGE-3λ data set was compiled, which excludes the least reliable SAGE II wavelength and uses measurements from CLAES (Cryogenic Limb Array Etalon Spectrometer) on UARS, the Upper Atmosphere Research Satellite, for gap-filling following the Mt Pinatubo eruption instead of ground-based lidars. Here, we performed SOCOLv3 (Solar Climate Ozone Links version 3) chemistry-climate model simulations of the recent past (1986-2005) to investigate the impact of the Mt Pinatubo eruption in 1991 on stratospheric temperature and ozone and how this response differs depending on which aerosol data set is applied. The use of SAGE-4λ results in heating and ozone loss being overestimated in the tropical lower stratosphere compared to observations in the post-eruption period by approximately 3 K and 0.2 ppmv, respectively. However, less heating occurs in the model simulations based on SAGE-3λ, because the improved gap-filling procedures after the eruption lead to less aerosol loading in the tropical lower stratosphere. As a result, simulated tropical temperature anomalies in

  13. Model-Based Knowing: How Do Students Ground Their Understanding About Climate Systems in Agent-Based Computer Models?

    Science.gov (United States)

    Markauskaite, Lina; Kelly, Nick; Jacobson, Michael J.

    2017-12-01

    This paper gives a grounded cognition account of model-based learning of complex scientific knowledge related to socio-scientific issues, such as climate change. It draws on the results from a study of high school students learning about the carbon cycle through computational agent-based models and investigates two questions: First, how do students ground their understanding about the phenomenon when they learn and solve problems with computer models? Second, what are common sources of mistakes in students' reasoning with computer models? Results show that students ground their understanding in computer models in five ways: direct observation, straight abstraction, generalisation, conceptualisation, and extension. Students also incorporate into their reasoning their knowledge and experiences that extend beyond phenomena represented in the models, such as attitudes about unsustainable carbon emission rates, human agency, external events, and the nature of computational models. The most common difficulties of the students relate to seeing the modelled scientific phenomenon and connecting results from the observations with other experiences and understandings about the phenomenon in the outside world. An important contribution of this study is the constructed coding scheme for establishing different ways of grounding, which helps to understand some challenges that students encounter when they learn about complex phenomena with agent-based computer models.

  14. The New Color of Chemistry: Green Chemistry

    Directory of Open Access Journals (Sweden)

    Zuhal GERÇEK

    2012-01-01

    Full Text Available Green chemistry which is the new application of chemistry rules provides solutions to problems that mankind is faced with climate changes, sustainable agriculture, energy, toxics, depletion of natural sources e.g. designing new chemicals and processes that production and utilization of hazardous matters. So, it is the indispensible tool for sustainable development. Current and future chemists should consider the human health and ecological issues in their professional life. In order to provide a solution for this requirement, green chemistry rules and under standings should be primarily taken in the university curriculum and at all educational levels.

  15. Information transfer and synchronization among the scales of climate variability: clues for understanding anomalies and extreme events?

    Science.gov (United States)

    Palus, Milan

    2017-04-01

    Deeper understanding of complex dynamics of the Earth atmosphere and climate is inevitable for sustainable development, mitigation and adaptation strategies for global change and for prediction of and resilience against extreme events. Traditional (linear) approaches cannot explain or even detect nonlinear interactions of dynamical processes evolving on multiple spatial and temporal scales. Combination of nonlinear dynamics and information theory explains synchronization as a process of adjustment of information rates [1] and causal relations (à la Granger) as information transfer [2]. Information born in dynamical complexity or information transferred among systems on a way to synchronization might appear as an abstract quantity, however, information transfer is tied to a transfer of mass and energy, as demonstrated in a recent study using directed (causal) climate networks [2]. Recently, an information transfer across scales of atmospheric dynamics has been observed [3]. In particular, a climate oscillation with the period around 7-8 years has been identified as a factor influencing variability of surface air temperature (SAT) on shorter time scales. Its influence on the amplitude of the SAT annual cycle was estimated in the range 0.7-1.4 °C and the effect on the overall variability of the SAT anomalies (SATA) leads to the changes 1.5-1.7 °C in the annual SATA means. The strongest effect of the 7-8 year cycle was observed in the winter SATA means where it reaches 4-5 °C in central European station and reanalysis data [4]. In the dynamics of El Niño-Southern Oscillation, three principal time scales have been identified: the annual cycle (AC), the quasibiennial (QB) mode(s) and the low-frequency (LF) variability. An intricate causal network of information flows among these modes helps to understand the occurrence of extreme El Niño events, characterized by synchronization of the QB modes and AC, and modulation of the QB amplitude by the LF mode. The latter

  16. Understanding the Response of Photosynthetic Metabolism in Tropical Forests to Seasonal Climate Variations. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dye, Dennis [U.S. Geological Survey, Menlo Park, CA (United States); Ivanov, Valeriy [Univ. of Michigan, Ann Arbor, MI (United States); Saleska, Scott [Univ. of Arizona, Tucson, AZ (United States); Huete, Alfredo [Univ. of Arizona, Tucson, AZ (United States); Univ. of Technology, Sydney NSW (Australia)

    2017-03-31

    This U.S-Brazil collaboration for GOAmazon has investigated a deceptively simple question: what controls the response of photosynthesis in Amazon tropical forests to seasonal variations in climate? In the past this question has been difficult to answer with modern earth system process models. We hypothesized that observed dry season increases in photosynthetic capacity are controlled by the phenology of leaf flush and litter fall, from which the seasonal pattern of LAI emerges. Our results confirm this hypothesis (Wu et al., 2016). Synthesis of data collected throughout the 3-year project period continues through December 31, 2017 under no-cost extensions granted to the project teams at University of Michigan and University of Arizona (Award 2). The USGS component (Award 1) ceased on the final date of the project performance period, December 31, 2016. This report summarizes the overall activities and achievements of the project, and constitutes the final project report for the USGS component. The University of Michigan will submit a separate final report that includes additional results and deliverables achieved during the period of their and the University of Arizona’s no-cost extension, which will end on December 31, 2017.

  17. Recent Advances in Improvement of Forecast Skill and Understanding Climate Processes Using AIRS Version-5 Products

    Science.gov (United States)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena; Rosenberg, Robert

    2012-01-01

    AIRS/AMSU is the state of the art infrared and microwave atmospheric sounding system flying aboard EOS Aqua. These observations, covering the period September 2002 until the present, have been analyzed using the AIRS Science Team Version-5 retrieval algorithm. AIRS is a high spectral resolution infrared grating spectrometer with spect,ral coverage from 650 per centimeter extending to 2660 per centimeter, with low noise and a spectral resolving power of 2400. A brief overview of the AIRS Version-5 retrieval procedure will be presented, including the AIRS channels used in different steps in the retrieval process. Many researchers have used these products to make significant advances in both climate and weather applications. Recent significant results of these experiments will be presented, including results showing that 1) assimilation of AIRS Quality Controlled temperature profiles into a General Circulation Model (GCM) significantly improves the ability to predict storm tracks of intense precipitation events; and 2) anomaly time-series of Outgoing Longwave Radiation (OLR) computed using AIRS sounding products closely match those determined from the CERES instrument, and furthermore explain that the phenomenon that global and especially tropical mean OLR have been decreasing since September 2002 is a result of El Nino/La Nina oscillations during this period.

  18. Understanding the new US climate change strategy - The Waxman-Markey bill at a glance

    International Nuclear Information System (INIS)

    Marchal, V.; Galharret, S.

    2009-01-01

    The climate change agenda is one of the two top priorities of Obama's administration, along with the reform of the health system. On June 26, 2009, the House of Representatives passed, by a margin of 219 to 212, the American Clean Energy and Security Act of 2009 (ACES), authored by Henry Waxman (from California) and Edward Markey (from Massachusetts). The bill is a comprehensive energy legislation that presents a cap and trade scheme regulating US Green House Gas (GHG) emissions, and a set of federal measures that aims at transforming the US traditional fossil fuel-based economy into a cleaner economy, based on renewable energy and low carbon alternatives. If passed by the Senate, the bill would intent to reduce US GHG emissions by 17% in 2020 and 80% in 2050 under 2005 levels, along with a 2 degrees / 450 ppm GHG concentration global objective. This brief provides an overview of the 1,428-page bill mechanisms and its implications at the national and international levels. It highlights the key uncertainties surrounding its institutional adoption and operational implementation. It also emphasizes its main differences with the European approach on cap and trade, the EU Emission Trading Scheme (EU ETS), as well as examines its international implications on carbon markets and negotiations. (authors)

  19. Polar boundary layer bromine explosion and ozone depletion events in the chemistry-climate model EMAC v2.52: implementation and evaluation of AirSnow algorithm

    Science.gov (United States)

    Falk, Stefanie; Sinnhuber, Björn-Martin

    2018-03-01

    Ozone depletion events (ODEs) in the polar boundary layer have been observed frequently during springtime. They are related to events of boundary layer enhancement of bromine. Consequently, increased amounts of boundary layer volume mixing ratio (VMR) and vertical column densities (VCDs) of BrO have been observed by in situ observation, ground-based as well as airborne remote sensing, and from satellites. These so-called bromine explosion (BE) events have been discussed serving as a source of tropospheric BrO at high latitudes, which has been underestimated in global models so far. We have implemented a treatment of bromine release and recycling on sea-ice- and snow-covered surfaces in the global chemistry-climate model EMAC (ECHAM/MESSy Atmospheric Chemistry) based on the scheme of Toyota et al. (2011). In this scheme, dry deposition fluxes of HBr, HOBr, and BrNO3 over ice- and snow-covered surfaces are recycled into Br2 fluxes. In addition, dry deposition of O3, dependent on temperature and sunlight, triggers a Br2 release from surfaces associated with first-year sea ice. Many aspects of observed bromine enhancements and associated episodes of near-complete depletion of boundary layer ozone, both in the Arctic and in the Antarctic, are reproduced by this relatively simple approach. We present first results from our global model studies extending over a full annual cycle, including comparisons with Global Ozone Monitoring Experiment (GOME) satellite BrO VCDs and surface ozone observations.

  20. Skin cancer risks avoided by the Montreal Protocol--worldwide modeling integrating coupled climate-chemistry models with a risk model for UV.

    Science.gov (United States)

    van Dijk, Arjan; Slaper, Harry; den Outer, Peter N; Morgenstern, Olaf; Braesicke, Peter; Pyle, John A; Garny, Hella; Stenke, Andrea; Dameris, Martin; Kazantzidis, Andreas; Tourpali, Kleareti; Bais, Alkiviadis F

    2013-01-01

    The assessment model for ultraviolet radiation and risk "AMOUR" is applied to output from two chemistry-climate models (CCMs). Results from the UK Chemistry and Aerosols CCM are used to quantify the worldwide skin cancer risk avoided by the Montreal Protocol and its amendments: by the year 2030, two million cases of skin cancer have been prevented yearly, which is 14% fewer skin cancer cases per year. In the "World Avoided," excess skin cancer incidence will continue to grow dramatically after 2030. Results from the CCM E39C-A are used to estimate skin cancer risk that had already been inevitably committed once ozone depletion was recognized: excess incidence will peak mid 21st century and then recover or even super-recover at the end of the century. When compared with a "No Depletion" scenario, with ozone undepleted and cloud characteristics as in the 1960s throughout, excess incidence (extra yearly cases skin cancer per million people) of the "Full Compliance with Montreal Protocol" scenario is in the ranges: New Zealand: 100-150, Congo: -10-0, Patagonia: 20-50, Western Europe: 30-40, China: 90-120, South-West USA: 80-110, Mediterranean: 90-100 and North-East Australia: 170-200. This is up to 4% of total local incidence in the Full Compliance scenario in the peak year. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  1. Understanding the acquisition and regulation mechanisms of the water chemistry in a clay formation: the CEC/ANDRA Archimede-argile project

    International Nuclear Information System (INIS)

    Merceron, T.; Mossmann, J.R.; Neerdael, B.; Canniere, P. de; Beaucaire, C.; Toulhoat, P.; Daumas, S.; Bianchi, A.; Christen, R.

    1993-01-01

    Clay formations are candidate host environments to high level radioactive waste repository. The radioelements could be partially released from the waste into the host geological formation after a very long time. Understanding behaviour of the natural chemical species is considered as a fundamental prerequisite before the disturbed system will be studied. Additional laboratory studies are also essential in order to forecast, by analogy, the behaviour of radioelements released from the radioactive waste repository. The ARCHIMEDE-ARGILE project has two main goals. The first is to gain an understanding of the mechanisms of acquisition and regulation of the water chemistry in a clay environment. This step is essential to predict both the behaviour and the migration in solution of artificial elements which are initially absent in the clay formation. The second is to test and validate in clay the measured physico chemical parameters which are the basis for the geochemical modelling of the behaviour of the natural and artificial radioelements. The paper presents the main results previously obtained on granitic waters and the research strategy established for the ARCHIMEDE project. (authors). 2 figs., 2 refs

  2. Forest carbon changes of the United States in response to impacts of disturbances, succession, climate variability and atmospheric chemistry

    Science.gov (United States)

    Yude Pan; Richard Birdsey; Jing Chen; kevin McCullough

    2008-01-01

    U.S. forests and forest products currently offset about 20% of the nation's fossil fuel emissions. Two of the most significant recent scientific findings cast doubt on the sustainability of this offset. First, there are clear indications that the strength of the U.S. forest carbon offset is weakening due to increasing forest age, climate variability, and...

  3. Impacts of land cover and climate data selection on understanding terrestrial carbon dynamics and the CO2 airborne fraction

    Science.gov (United States)

    Poulter, B.; Frank, D. C.; Hodson, E. L.; Zimmermann, N. E.

    2011-08-01

    Terrestrial and oceanic carbon cycle processes remove ~55 % of global carbon emissions, with the remaining 45 %, known as the "airborne fraction", accumulating in the atmosphere. The long-term dynamics of the component fluxes contributing to the airborne fraction are challenging to interpret, but important for informing fossil-fuel emission targets and for monitoring the trends of biospheric carbon fluxes. Climate and land-cover forcing data for terrestrial ecosystem models are a largely unexplored source of uncertainty in terms of their contribution to understanding airborne fraction dynamics. Here we present results using a single dynamic global vegetation model forced by an ensemble experiment of climate (CRU, ERA-Interim, NCEP-DOE II), and diagnostic land-cover datasets (GLC2000, GlobCover, MODIS). For the averaging period 1996-2005, forcing uncertainties resulted in a large range of simulated global carbon fluxes, up to 13 % for net primary production (52.4 to 60.2 Pg C a-1) and 19 % for soil respiration (44.2 to 54.8 Pg C a-1). The sensitivity of contemporary global terrestrial carbon fluxes to climate strongly depends on forcing data (1.2-5.9 Pg C K-1 or 0.5 to 2.7 ppmv CO2 K-1), but weakening carbon sinks in sub-tropical regions and strengthening carbon sinks in northern latitudes are found to be robust. The climate and land-cover combination that best correlate to the inferred carbon sink, and with the lowest residuals, is from observational data (CRU) rather than reanalysis climate data and with land-cover categories that have more stringent criteria for forest cover (MODIS). Since 1998, an increasing positive trend in residual error from bottom-up accounting of global sinks and sources (from 0.03 (1989-2005) to 0.23 Pg C a-1 (1998-2005)) suggests that either modeled drought sensitivity of carbon fluxes is too high, or that carbon emissions from net land-cover change is too large.

  4. Coastal and wetland ecosystems of the Chesapeake Bay watershed: Applying palynology to understand impacts of changing climate, sea level, and land use

    Science.gov (United States)

    Willard, Debra A.; Bernhardt, Christopher E.; Hupp, Cliff R.; Newell, Wayne L.

    2015-01-01

    The mid-Atlantic region and Chesapeake Bay watershed have been influenced by fluctuations in climate and sea level since the Cretaceous, and human alteration of the landscape began ~12,000 years ago, with greatest impacts since colonial times. Efforts to devise sustainable management strategies that maximize ecosystem services are integrating data from a range of scientific disciplines to understand how ecosystems and habitats respond to different climatic and environmental stressors. Palynology has played an important role in improving understanding of the impact of changing climate, sea level, and land use on local and regional vegetation. Additionally, palynological analyses have provided biostratigraphic control for surficial mapping efforts and documented agricultural activities of both Native American populations and European colonists. This field trip focuses on sites where palynological analyses have supported efforts to understand the impacts of changing climate and land use on the Chesapeake Bay ecosystem.

  5. Understanding the Environmental and Climate Impacts of Biomass Burning in Northern Sub-Saharan Africa

    Science.gov (United States)

    Ichoku, Charles; Gatebe, Charles; Bolten, John; Policelli, Fritz; Habib, Shahid; Lee, Jejung; Wang, Jun; Wilcox, Eric; Adegoke, Jimmy

    2011-01-01

    The northern sub-Saharan African (NSSA) region, bounded on the north and south by the Sahara and the Equator, respectively, and stretching from the West to the East African coastlines, has one of the highest biomass-burning rates per unit land area among all regions of the world. Because of the high concentration and frequency of fires in this region, with the associated abundance of heat release and gaseous and particulate smoke emissions, biomass-burning activity is believed to be one of the drivers of the regional carbon and energy cycles, with serious implications for the water cycle. A new interdisciplinary research effort sponsored by NASA is presently being focused on the NSSA region, to better understand the possible connection between the intense biomass burning observed from satellite year after year across the region and the rapid depletion of the regional water resources, as exemplified by the dramatic drying of Lake Chad. A combination of remote sensing and modeling approaches is being utilized in investigating multiple regional surface, atmospheric, and water-cycle processes, and inferring possible links between them. In this presentation, we will discuss preliminary results as well as the path toward improved understanding'of the interrelationships and feedbacks between the biomass burning and the environmental change dynamics in the NSSA region.

  6. Interstellar chemistry

    Science.gov (United States)

    Klemperer, William

    2006-01-01

    In the past half century, radioastronomy has changed our perception and understanding of the universe. In this issue of PNAS, the molecular chemistry directly observed within the galaxy is discussed. For the most part, the description of the molecular transformations requires specific kinetic schemes rather than chemical thermodynamics. Ionization of the very abundant molecular hydrogen and atomic helium followed by their secondary reactions is discussed. The rich variety of organic species observed is a challenge for complete understanding. The role and nature of reactions involving grain surfaces as well as new spectroscopic observations of interstellar and circumstellar regions are topics presented in this special feature. PMID:16894148

  7. USGS global change science strategy: A framework for understanding and responding to climate and land-use change

    Science.gov (United States)

    Burkett, Virginia R.; Taylor, Ione L.; Belnap, Jayne; Cronin, Thomas M.; Dettinger, Michael D.; Frazier, Eldrich L.; Haines, John W.; Kirtland, David A.; Loveland, Thomas R.; Milly, Paul C.D.; O'Malley, Robin; Thompson, Robert S.

    2011-01-01

    This U.S. Geological Survey (USGS) Global Change Science Strategy expands on the Climate Variability and Change science component of the USGS 2007 Science Strategy, “Facing Tomorrow’s Challenges: USGS Science in the Coming Decade” (U.S. Geological Survey, 2007). Here we embrace the broad definition of global change provided in the U.S. Global Change Research Act of 1990 (Public Law 101–606,104 Stat. 3096–3104)—“Changes in the global environment (including alterations in climate, land productivity, oceans or other water resources, atmospheric chemistry, and ecological systems) that may alter the capacity of the Earth to sustain life”—with a focus on climate and land-use change.There are three major characteristics of this science strategy. First, it addresses the science required to broadly inform global change policy, while emphasizing the needs of natural-resource managers and reflecting the role of the USGS as the science provider for the Department of the Interior and other resource-management agencies. Second, the strategy identifies core competencies, noting 10 critical capabilities and strengths the USGS uses to overcome key problem areas. We highlight those areas in which the USGS is a science leader, recognizing the strong partnerships and effective collaboration that are essential to address complex global environmental challenges. Third, it uses a query-based approach listing key research questions that need to be addressed to create an agenda for hypothesis-driven global change science organized under six strategic goals. Overall, the strategy starts from where we are, provides a vision for where we want to go, and then describes high-priority strategic actions, including outcomes, products, and partnerships that can get us there. Global change science is a well-defined research field with strong linkages to the ecosystems, water, energy and minerals, natural hazards, and environmental health components of the USGS Science Strategy

  8. Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model

    Directory of Open Access Journals (Sweden)

    W. H. Swartz

    2012-07-01

    Full Text Available The 11-yr solar cycle in solar spectral irradiance (SSI inferred from measurements by the SOlar Radiation & Climate Experiment (SORCE suggests a much larger variation in the ultraviolet than previously accepted. We present middle atmosphere ozone and temperature responses to the solar cycles in SORCE SSI and the ubiquitous Naval Research Laboratory (NRL SSI reconstruction using the Goddard Earth Observing System chemistry-climate model (GEOSCCM. The results are largely consistent with other recent modeling studies. The modeled ozone response is positive throughout the stratosphere and lower mesosphere using the NRL SSI, while the SORCE SSI produces a response that is larger in the lower stratosphere but out of phase with respect to total solar irradiance above 45 km. The modeled responses in total ozone are similar to those derived from satellite and ground-based measurements, 3–6 Dobson Units per 100 units of 10.7-cm radio flux (F10.7 in the tropics. The peak zonal mean tropical temperature response using the SORCE SSI is nearly 2 K per 100 units F10.7 – 3 times larger than the simulation using the NRL SSI. The GEOSCCM and the Goddard Space Flight Center (GSFC 2-D coupled model are used to examine how the SSI solar cycle affects the atmosphere through direct solar heating and photolysis processes individually. Middle atmosphere ozone is affected almost entirely through photolysis, whereas the solar cycle in temperature is caused both through direct heating and photolysis feedbacks, processes that are mostly linearly separable. This is important in that it means that chemistry-transport models should simulate the solar cycle in ozone well, while general circulation models without coupled chemistry will underestimate the temperature response to the solar cycle significantly in the middle atmosphere. Further, the net ozone response results from the balance of ozone production at wavelengths less than 242 nm

  9. Characterizing the development of students' understandings regarding the second law of thermodynamics: Using learning progressions to illuminate thinking in high school chemistry

    Science.gov (United States)

    Cunningham, Kevin D.

    As demonstrated by their emphasis in the new, national, science education standards, learning progressions (LPs) have become a valuable means of informing teaching and learning. LPs serve this role by isolating the key components of central skills and understandings, and by describing how those abilities and concepts tend to develop over time among students in a particular context. Some LPs also identify common challenges students experience in learning specific content and suggest methods of instruction and assessment, particularly ways in which difficulties can be identified and addressed. LPs are research-based and created through the integration of content analyses and interpretations of student performances with respect to the skills and understandings in question. The present research produced two LPs portraying the development of understandings associated with the second law of thermodynamics as evidenced by the evolving explanations for the spontaneity and irreversibility of diffusion and the cooling of a hot object constructed periodically by twenty students over two consecutive years in high school chemistry. While the curriculum they experienced did not emphasize the processes of diffusion and cooling or the second law and its applications, these students received prolonged instruction regarding key aspects of the particulate nature of matter. Working in small groups and as individuals, they were also taught and regularly expected to create, test, and revise particulate-based, conceptual models to account for the properties and behavior of a wide variety of common phenomena. Although some students quickly exhibited dramatic improvements in explaining and understanding the phenomena of interest, conceptual development for most was evolutionary rather than revolutionary, and success in explaining one phenomenon did not generally translate into successes in explaining related but different phenomena. Few students reached the uppermost learning goals of

  10. Seasonal Sea Level Cycle Change: Understanding the Possible Climate Feedbacks Over the Gulf of Mexico and the Gulf Stream Region

    Science.gov (United States)

    Ricko, M.; Ray, R. D.; Beckley, B. D.

    2016-12-01

    Recent change in the seasonal sea level cycle has been observed in satellite radar altimetry record, especially over regions such as the Gulf of Mexico and the Gulf Stream region. Gridded satellite data is in a good agreement with ground tide gauge data that also confirm increased annual amplitude of sea level during most recent years. Data analysis is based on a set of tide gauges, satellite measurements and models. A consistent positive trend in the seasonal sea level cycle during recent years over different regions has been well confirmed (e.g., Wahl et al. 2014, Etcheverry et al. 2015). Over a longer timescale, historical tide gauge data give a neutral or slightly positive trend in the seasonal cycle of sea level along the coast of the Gulf of Mexico. This observed signal of increased seasonal sea level cycle in tide gauges over the coastal areas is extended with satellite observations to open ocean regions. It is most evident during last several years (2007-2015) over most of the Gulf of Mexico, especially over north-eastern and central parts of the Gulf of Mexico, and over the Gulf Stream region, showing mean annual amplitude larger than 15 cm. One part of this increase appears to be due to change in mean sea level pressure. However, main causes of seasonal sea level cycle change on interannual to climate scale have not yet been understood. To determine possible climate feedbacks responsible for observed change in the seasonal sea level cycle, its relationship with parameters such as sea surface temperature, wind curl, circulation, mesoscale eddies, etc., is investigated. Model-based results (e.g., NASA's GMAO model) give similar trend and feedbacks, but with a consistent bias and underestimation of annual amplitude increase. Understanding climate mechanisms responsible for observed seasonal sea level cycle change would offer better prediction of sea level variability on interannual to interdecadal time scales.

  11. A compilation of Western European terrestrial records 60-8 ka BP: towards an understanding of latitudinal climatic gradients

    Science.gov (United States)

    Moreno, Ana; Svensson, Anders; Brooks, Stephen J.; Connor, Simon; Engels, Stefan; Fletcher, William; Genty, Dominique; Heiri, Oliver; Labuhn, Inga; Perşoiu, Aurel; Peyron, Odile; Sadori, Laura; Valero-Garcés, Blas; Wulf, Sabine; Zanchetta, Giovanni

    2014-12-01

    Terrestrial records of past climatic conditions, such as lake sediments and speleothems, provide data of great importance for understanding environmental changes. However, unlike marine and ice core records, terrestrial palaeodata are often not available in databases or in a format that is easily accessible to the non-specialist. As a consequence, many excellent terrestrial records are unknown to the broader palaeoclimate community and are not included in compilations, comparisons, or modelling exercises. Here we present a compilation of Western European terrestrial palaeo-records covering, entirely or partially, the 60-8-ka INTIMATE time period. The compilation contains 56 natural archives, including lake records, speleothems, ice cores, and terrestrial proxies in marine records. The compilation is limited to include records of high temporal resolution and/or records that provide climate proxies or quantitative reconstructions of environmental parameters, such as temperature or precipitation, and that are of relevance and interest to a broader community. We briefly review the different types of terrestrial archives, their respective proxies, their interpretation and their application for palaeoclimatic reconstructions. We also discuss the importance of independent chronologies and the issue of record synchronization. The aim of this exercise is to provide the wider palaeo-community with a consistent compilation of high-quality terrestrial records, to facilitate model-data comparisons, and to identify key areas of interest for future investigations. We use the compilation to investigate Western European latitudinal climate gradients during the deglacial period and, despite of poorly constrained chronologies for the older records, we summarize the main results obtained from NW and SW European terrestrial records before the LGM.

  12. A New Model Hierarchy to Understand the Impact of Radiation and Convection on the Extratropical Circulation Response to Climate Change

    Science.gov (United States)

    Tan, Z.; Shaw, T.

    2017-12-01

    State-of-the-art climate models exhibit a large spread in the magnitude of projected poleward jet shift and Hadley cell expansion in response to warming. Interestingly, some idealized gray radiation models with simplified convective schemes produce an equatorward jet shift in response to warming. In order to understand the impact of radiation and convection on the circulation response and resolve the discrepancies across the model hierarchy, we introduce a new model radiation-convection hierarchy. The hierarchy spans idealized (gray) through sophisticated (RRTMG) radiation, and idealized (Betts-Miller) through sophisticated (eddy-diffusivity mass-flux scheme) convection schemes in the same general circulation model. It is used to systematically explore the impact of radiation and convection on the extratropical circulation response to climate change independent of mean surface temperature and meridional temperature gradient responses. With a gray radiation scheme, the jet stream shift depends on the prescribed stratospheric optical depth, which controls the climatological jet regime. A large optical depth leads to a split jet and an equatorward shift. A small optical depth leads to a poleward shift. The different shifts are connected to the vertical extent of tropical long wave cooling that impacts the subtropical jet and Hadley circulation. In spite of these sensitivities, the storm track position, defined by the meridonal eddy heat flux and moist static energy flux maxima, shifts robustly poleward. In contrast to gray radiation, with a comprehensive radiation scheme, the jet and storm track shift robustly poleward irrespective of radiative assumptions (clear sky versus cloudy sky, ozone versus no ozone). This response is reproduced by adding more spectral bands and including the water vapor feedback in the gray scheme. Dynamical sensitivities to convective assumption are also explored. Overall the new hierarchy highlights the importance of radiative and

  13. Long-Term Changes in Stratospheric Age Spectra in the 21st Century in the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM)

    Science.gov (United States)

    Li, Feng; Waugh, Darryn W.; Douglass, Anne R.; Newman, Paul A.; Strahan, Susan E.; Ma, Jun; Nielsen, J. Eric; Liang, Qing

    2012-01-01

    In this study we investigate the long-term variations in the stratospheric age spectra using simulations of the 21st century with the Goddard Earth Observing System Chemistry- Climate Model (GEOSCCM). Our purposes are to characterize the long-term changes in the age spectra and identify processes that cause the decrease of the mean age in a warming climate. Changes in the age spectra in the 21st century simulations are characterized by decreases in the modal age, the mean age, the spectral width, and the tail decay timescale. Our analyses show that the decrease in the mean age is caused by two processes: the acceleration of the residual circulation that increases the young air masses in the stratosphere, and the weakening of the recirculation that leads to the decrease of tail of the age spectra and the decrease of the old air masses. The weakening of the stratospheric recirculation is also strongly correlated with the increase of the residual circulation. One important result of this study is that the decrease of the tail of the age spectra makes an important contribution to the decrease of the main age. Long-term changes in the stratospheric isentropic mixing are investigated. Mixing increases in the subtropical lower stratosphere, but its impact on the age spectra is outweighed by the increase of the residual circulation. The impacts of the long-term changes in the age spectra on long-lived chemical traces are also investigated. 37 2

  14. Relationship between climate and vegetation and the stable carbon isotope chemistry of soils in the eastern Mojave Desert, Nevada

    International Nuclear Information System (INIS)

    Amundson, R.G.; Chadwick, O.A.; Sowers, J.M.; Doner, H.E.

    1988-01-01

    The relationship between the stable C-isotope composition of the soil environment and modern climate and vegetation was determined empirically along a present-day climatic transect in the eastern Mojave Desert. The δ 13 C of the soil CO 2 and carbonates decreased with increasing elevation and plant density, even though plant assemblages at all elevations were isotopically similar. Several factors, including differences in the ratios of pedogenic of limestone calcite and differences in past vegetation, were considered as explanations of this trend, However, it appears that in the sparsely vegetated Mojave Desert, the δ 13 C of pedogenic carbonate is controlled by differences in plant density and biological activity. This relationship may provide a tool for assessing past vegetational densities, as long as the vegetation is isotopically homogeneous. (author)

  15. Examining Workplace Ostracism Experiences in Academia: Understanding How Differences in the Faculty Ranks Influence Inclusive Climates on Campus

    Directory of Open Access Journals (Sweden)

    Carla A. Zimmerman

    2016-05-01

    Full Text Available Research on the retention of women in academia has focused on challenges, including a chilly climate, devaluation, and incivility. The unique consequences of workplace ostracism – being ignored and excluded by others in an organizational setting – require focus on this experience as another interpersonal challenge for women in academia. The purpose of this study is to examine differences in the faculty experiences and outcomes of workplace ostracism, and to determine if these experiences are affected significantly by the gender composition of an employee’s specific department. Participants were recruited at two time points to complete campus climate surveys that were distributed to faculty at a large, public, research university. We examined the number of reported ostracism experiences (Study 1 and perceived information sharing (Study 2 among male and female university faculty. The findings indicated that female faculty members perceived more workplace ostracism than male faculty members. Analyses of department gender ratios suggested that the proportion of women in the department did not reduce the amount of workplace ostracism experienced by women. No gender differences were found in perceived information sharing. However, we found that Faculty of Color, both men and women, reported more frequent information exclusion than White faculty. These results have important implications for theoretical and practical understandings of workplace demography and suggest that it is necessary to look at subtle, ambiguous forms of discrimination in order to increase retention of faculty from underrepresented groups in academia.

  16. Examining Workplace Ostracism Experiences in Academia: Understanding How Differences in the Faculty Ranks Influence Inclusive Climates on Campus.

    Science.gov (United States)

    Zimmerman, Carla A; Carter-Sowell, Adrienne R; Xu, Xiaohong

    2016-01-01

    Research on the retention of women in academia has focused on challenges, including a "chilly climate," devaluation, and incivility. The unique consequences of workplace ostracism - being ignored and excluded by others in an organizational setting - require focus on this experience as another interpersonal challenge for women in academia. The purpose of this study is to examine differences in the faculty experiences and outcomes of workplace ostracism, and to determine if these experiences are affected significantly by the gender composition of an employee's specific department. Participants were recruited at two time points to complete campus climate surveys that were distributed to faculty at a large, public, research university. We examined the number of reported ostracism experiences (Study 1) and perceived information sharing (Study 2) among male and female university faculty. The findings indicated that female faculty members perceived more workplace ostracism than male faculty members. Analyses of department gender ratios suggested that the proportion of women in the department did not reduce the amount of workplace ostracism experienced by women. No gender differences were found in perceived information sharing. However, we found that Faculty of Color, both men and women, reported more frequent information exclusion than White faculty. These results have important implications for theoretical and practical understandings of workplace demography and suggest that it is necessary to look at subtle, ambiguous forms of discrimination in order to increase retention of faculty from underrepresented groups in academia.

  17. Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP: evaluation of historical and projected future changes

    Directory of Open Access Journals (Sweden)

    J.-F. Lamarque

    2013-08-01

    Full Text Available We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP. The computed deposition fluxes are compared to surface wet deposition and ice core measurements. We use a new dataset of wet deposition for 2000–2002 based on critical assessment of the quality of existing regional network data. We show that for present day (year 2000 ACCMIP time slice, the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of approximately 50 Tg(N yr−1 from nitrogen oxide emissions, 60 Tg(N yr−1 from ammonia emissions, and 83 Tg(S yr−1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards a potential misrepresentation of 1980 NH3 emissions over North America. Based on ice core records, the 1850 deposition fluxes agree well with Greenland ice cores, but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways (RCPs to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double their 2000 counterpart in some scenarios and reaching > 1300 mg(N m−2 yr−1 averaged over regional to continental-scale regions in RCP 2.6 and 8.5, ~ 30–50% larger than the values in any region currently (circa 2000. However, sulfur deposition rates in 2100 are in all regions lower than in 2000 in

  18. Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation historical and projected changes

    Science.gov (United States)

    Lamarque, J.-F.; Dentener, F.; McConnell, J.; Ro, C.-U.; Shaw, M.; Vet, R.; Bergmann, D.; Cameron-Smith, P.; Doherty, R.; Faluvegi, G.; Ghan, S. J.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Plummer, D.; Shindell, D. T.; Stevenson, D. S.; Strode, S.; Zeng, G.

    2013-03-01

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of 50 Tg(N) yr-1 from nitrogen oxide emissions, 60 Tg(N) yr-1 from ammonia emissions, and 83 Tg(S) yr-1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching > 1300 mg(N) m-2 yr-1 averaged over regional to continental scale regions in RCP 2.6 and 8.5, ~30-50 % larger than the values in any region currently (2000). The new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.

  19. Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes

    Science.gov (United States)

    Lamarque, J.-F.; Dentener, F.; McConnell, J.; Ro, C.-U.; Shaw, M.; Vet, R.; Bergmann, D.; Cameron-Smith, P.; Dalsoren, S.; Doherty, R.; Faluvegi, G.; Ghan, S. J.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Plummer, D.; Shindell, D. T.; Skeie, R. B.; Stevenson, D. S.; Strode, S.; Zeng, G.; Curran, M.; Dahl-Jensen, D.; Das, S.; Fritzsche, D.; Nolan, M.

    2013-08-01

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present day (year 2000 ACCMIP time slice), the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of approximately 50 Tg(N) yr-1 from nitrogen oxide emissions, 60 Tg(N) yr-1 from ammonia emissions, and 83 Tg(S) yr-1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards a potential misrepresentation of 1980 NH3 emissions over North America. Based on ice core records, the 1850 deposition fluxes agree well with Greenland ice cores, but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways (RCPs) to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double their 2000 counterpart in some scenarios and reaching > 1300 mg(N) m-2 yr-1 averaged over regional to continental-scale regions in RCP 2.6 and 8.5, ~ 30-50% larger than the values in any region currently (circa 2000). However, sulfur deposition rates in 2100 are in all regions lower than in 2000 in all the RCPs. The new

  20. An Integrated Approach for Understanding Anthropogenic and Climatic Impacts on Lakes: A Case study from Lake Iznik, Turkey

    Science.gov (United States)

    Derin, Y.; Milewski, A.; Fryar, A. E.; Schroeder, P.

    2013-12-01

    Lakes are among the most vital natural water resource, providing many environmental and economic advantages to a region. Unfortunately, many lakes are disappearing or continue to be polluted as industrial and agricultural practices increase to keep pace with rising populations. Lake Iznik, the biggest lake (approximately 300 km2) in the Marmara Region in Turkey, is a significant water resource as it provides opportunities for recreational activities, agriculture, industry, and water production for the region. However, rapid population growth combined with poor land management practices in this water basin has contributed to decreased water quality and water levels. As a result, Lake Iznik has switched from being Mesotrophic to Eutrophic in the past thirty years. This research aims to understand both the anthropogenic and climatic impacts on Lake Iznik. An integrated approach combining satellite remote sensing, hydrogeology, hydrologic modeling, and climatology was utilized to identify the source and timing responsible for the decline in water quality and quantity. Specifically, Landsat TM images from 1990, 2000, 2005, and 2010 were collected, processed, and analyzed for changes in landuse/landcover and surface area extent of Lake Iznik. Water level and water quality data (e.g. streamflow, lake level, pH, conductivity, total nitrogen, total dissolved solid etc.) collected from the General Directorate of State Hydraulic Works (DSI) from 1980-2012 were obtained from 4 stations and compared to the Landsat landuse mosaics. Meteorological data collected from Turkish State Meteorological Service from 1983-2012 were obtained from 3 stations (precipitation, temperature, atmospheric pressure, relative humidity, vapor pressure, wind speed and pan evaporation). A hydrologic model using MIKE21 was constructed to measure the change in streamflow and subsequent lake level as a result of changes in both land use and climate. Results have demonstrated the drop in water level from

  1. The USA National Phenology Network: A national science and monitoring program for understanding climate change

    Science.gov (United States)

    Weltzin, J.

    2009-04-01

    Patterns of phenology for plants and animals control ecosystem processes, determine land surface properties, control biosphere-atmosphere interactions, and affect food production, health, conservation, and recreation. Although phenological data and models have applications related to scientific research, education and outreach, agriculture, tourism and recreation, human health, and natural resource conservation and management, until recently there was no coordinated effort to understand phenology at the national scale in the United States. The USA National Phenology Network (USA-NPN; www.usanpn.org), established in 2007, is an emerging and exciting partnership between federal agencies, the academic community, and the general public to establish a national science and monitoring initiative focused on phenology. The first year of operation of USA-NPN produced many new phenology products and venues for phenology research and citizen involvement. Products include a new web-site (www.usanpn.org) that went live in June 2008; the web-site includes a tool for on-line data entry, and serves as a clearinghouse for products and information to facilitate research and communication related to phenology. The new core Plant Phenology Program includes profiles for 200 vetted local, regional, and national plant species with descriptions and (BBCH-consistent) monitoring protocols, as well as templates for addition of new species. A partnership program describes how other monitoring networks can engage with USA-NPN to collect, manage or disseminate phenological information for science, health, education, management or predictive service applications. Project BudBurst, a USA-NPN field campaign for citizen scientists, went live in February 2008, and now includes over 3000 registered observers monitoring 4000 plants across the nation. For 2009 and beyond, we will initiate a new Wildlife Phenology Program, create an on-line clearing-house for phenology education and outreach, strengthen

  2. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, V.

    1982-01-01

    The author of the book has had 25 years of experience at the Nuclear Chemistry of Prague Technical University. In consequence, the book is intended as a basic textbook for students of this field. Its main objectives are an easily understandable presentation of the complex subject and in spite of the uncertainty which still characterizes the definition and subjects of nuclear chemistry - a systematic classification and logical structure. Contents: 1. Introduction (history and definition); 2. General nuclear chemistry (physical fundamentals, hot atom chemistry, interaction of nuclear radiation with matter, radioactive elements, isotope effects, isotope exchange, chemistry of radioactive trace elements); 3. Methods of nuclear chemistry of nuclear chemistry (radiochemical methods, activation, separation and enrichment chemistry); 4. Preparative nuclear chemistry (isotope production, labelled compounds); 5. Analytival nuclear chemistry; 6. Applied nuclear chemistry (isotope applications in general physical and analytical chemistry). The book is supplemented by an annex with tables, a name catalogue and a subject index which will facilitate access to important information. (RB) [de

  3. AECL research programs in chemistry

    International Nuclear Information System (INIS)

    Crocker, I.H.; Eastwood, T.A.; Smith, D.R.; Stewart, R.B.; Tomlinson, M.; Torgerson, D.F.

    1980-09-01

    Fundamental or underlying research in chemistry is being done in AECL laboratories to further the understanding of processes involved in current nuclear energy systems and maintain an awareness of progress at the frontiers of chemical research so that new advances can be turned to advantage in future AECL endeavours. The report introduces the current research topics and describes them briefly under the following headings: radiation chemistry, isotope separation, high temperature solution chemistry, fuel reprocessing chemistry, and analytical chemistry. (auth)

  4. Understanding the influence of topography on the dynamics of the North American monsoon in climate model simulations

    Science.gov (United States)

    Varuolo-Clarke, A. M.; Medeiros, B.; Reed, K. A.

    2017-12-01

    This project examines the influence of topography on the dynamics of the North American monsoon (NAM), including the genesis, peak, and demise of the monsoon. The monsoon season occurs from July to September in the southwestern United States and northwestern Mexico and is characterized by an increase in rainfall that accounts for 40-80% of the total annual rainfall. We use a simple "monsoon index" and show that simulations with the Community Atmosphere model capture the essential nature of the NAM. Comparing standard low-resolution (1o latitude x 1o longitude) simulations where the topography over North America is either retained or removed we evaluate the models' representations of the NAM. To understand the origin of differences between the simulations we analyze the moist static energy budget in the monsoon region. Our preliminary results from simulations with realistic topography indicate that the simulated NAM is driven by locally-generated convection, with advection processes being secondary; this is consistent with the NAM being a result of the thermal contrast between the hot, summertime continent and relatively cool ocean. When topography is removed the simulated NAM will be relatively weak and be driven primarily by locally-generated convection. A better understanding of the monsoon dynamics and the impact topography has on these dynamics will allow for a more accurate representation of the monsoon in projections of future climate.

  5. Understanding Social Media’s Take on Climate Change through Large-Scale Analysis of Targeted Opinions and Emotions

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Neetu; Henry, Michael J.; Volkova, Svitlana

    2017-03-29

    Social media is a powerful data source for researchers interested in understanding population-level behavior, having been successfully leveraged in a number of different application areas including flu and illness prediction models, detecting civil unrest, and measuring public sentiment towards a given topic of interest within the public discourse. In this work, we present a study of a large collection of Twitter data centered on the social conversation around global cli- mate change during the UN Climate Change Conference, held in Paris, France during December 2015 (COP21). We first developed a mechanism for distinguishing between personal and non-personal accounts. We then analyzed demographics and emotion and opinion dynamics over time and location in order to understand how the different user types converse around meaningful topics on social media. This methodology offers an in-depth insight into the behavior and opinions around a topic where multiple distinct narratives are present, and lays the groundwork for future work in studying narratives in social media.

  6. Selective recovery of pure copper nanopowder from indium-tin-oxide etching wastewater by various wet chemical reduction process: Understanding their chemistry and comparisons of sustainable valorization processes

    International Nuclear Information System (INIS)

    Swain, Basudev; Mishra, Chinmayee; Hong, Hyun Seon; Cho, Sung-Soo

    2016-01-01

    Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11 kg/m 3 of copper and 1.35 kg/m 3 of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered using various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100–500 nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process. - Highlights: • From the Indium-Tin-Oxide etching wastewater

  7. The Climate Variability & Predictability (CVP) Program at NOAA - Observing and Understanding Processes Affecting the Propagation of Intraseasonal Oscillations in the Maritime Continent Region

    Science.gov (United States)

    Lucas, S. E.

    2017-12-01

    The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). In 2017, the CVP Program had a call for proposals focused on observing and understanding processes affecting the propagation of intraseasonal oscillations in the Maritime Continent region. This poster will present the recently funded CVP projects, the expected scientific outcomes, the geographic areas of their work in the Maritime Continent region, and the collaborations with the Office of Naval Research, Indonesian Agency for Meteorology, Climatology and Geophysics (BMKG), Japan Agency for Marine-Earth Science and Technology (JAMSTEC) and other partners.

  8. A wireless partially glaciated watershed in a virtual globe: Integrating data, models, and visualization to increase climate change understanding

    Science.gov (United States)

    Jones, J.; Hood, E.; Fatland, D. R.; Berner, L.; Heavner, M.; Connor, C.; O'Brien, W.

    2008-12-01

    SEAMONSTER, a NASA funded sensor web project, is the SouthEast Alaska MOnitoring Network for Science, Telecommunications, Education and Research. SEAMONSTER is operating in the partially glaciated Mendenhall and Lemon Creek Watersheds, in the Juneau area, on the margins of the Juneau Icefield. These watersheds are studied for both 1. long term monitoring of changes, and 2. detection and analysis of transient events (such as glacier lake outburst floods). The diverse sensors (meteorological, dual frequency GPS, water quality, lake level, etc), power and bandwidth constraints, and competing time scales of interest require autonomous reactivity of the sensor web. The sensors are deployed throughout two partially glaciated watersheds and facilitated data acquisition in temperate rain forest, alpine, lacustrine, and glacial environments. Understanding these environments is important for public understanding of climate change. These environments are geographically isolated, limiting public access to, and understanding of, such locales. In an effort to inform the general public and primary educators about the basic processes occurring in these unique natural systems, we have developed an interactive website. This web portal supplements and enhances environmental science primary education by providing educators and students with interactive access to basic information from the glaciological, hydrological, and meteorological systems we are studying. In addition, we have developed an interactive virtual tour of the Lemon Glacier and its watershed. The focus of this presentation is using the data gathered by the SEAMONSTER sensor web, coupled with a temperature-indexed glacial melt model, to educate students and the public on topics ranging from modeling responses due to environmental changes to glacial hydrology. The interactive SEAMONSTER web site is the primary source for visualizing the data, while Google Earth can be used to visualize the isolated Lemon Creek watershed

  9. “Globalizing the science classroom" : Exploring the development of students’ conceptual understanding of climate change from international peer collaboration

    OpenAIRE

    Korsager, Majken

    2013-01-01

    Climate change is not local, it is global. This means that many environmental issues related to climate change are not geographically limited and hence concern humans in more than one location. There is a growing body of research indicating that today’s increased climate change is caused by human activities and our modern lifestyle. Consequently, climate change awareness and attention from the entire world’s population needs to be a global priority and we need to work collaboratively to attai...

  10. Comparison of the HadGEM2 climate-chemistry model against in-situ and SCIAMACHY atmospheric methane data

    Science.gov (United States)

    Hayman, G. D.; O'Connor, F. M.; Dalvi, M.; Clark, D. B.; Gedney, N.; Huntingford, C.; Prigent, C.; Buchwitz, M.; Schneising, O.; Burrows, J. P.; Wilson, C.; Richards, N.; Chipperfield, M.

    2014-05-01

    Wetlands are a major emission source of methane (CH4) globally. In this study, we have evaluated wetland emission estimates derived using the UK community land surface model (JULES, the Joint UK Land Earth Simulator) against atmospheric observations of methane, including, for the first time, total methane columns derived from the SCIAMACHY instrument on board the ENVISAT satellite. Two JULES wetland emission estimates were investigated: (a) from an offline run driven with CRU-NCEP meteorological data and (b) from the same offline run in which the modelled wetland fractions were replaced with those derived from the Global Inundation Extent from Multi-Satellites (GIEMS) remote sensing product. The mean annual emission assumed for each inventory (181 Tg CH4 per annum over the period 1999-2007) is in line with other recently-published estimates. There are regional differences as the unconstrained JULES inventory gave significantly higher emissions in the Amazon and lower emissions in other regions compared to the JULES estimates constrained with the GIEMS product. Using the UK Hadley Centre's Earth System model with atmospheric chemistry (HadGEM2), we have evaluated these JULES wetland emissions against atmospheric observations of methane. We obtained improved agreement with the surface concentration measurements, especially at northern high latitudes, compared to previous HadGEM2 runs using the wetland emission dataset of Fung (1991). Although the modelled monthly atmospheric methane columns reproduced the large-scale patterns in the SCIAMACHY observations, they were biased low by 50 part per billion by volume (ppb). Replacing the HadGEM2 modelled concentrations above 300 hPa with HALOE-ACE assimilated TOMCAT output resulted in a significantly better agreement with the SCIAMACHY observations. The use of the GIEMS product to constrain JULES-derived wetland fraction improved the description of the wetland emissions in JULES and gave a good description of the seasonality

  11. Bad chemistry

    OpenAIRE

    Petsko, Gregory A

    2004-01-01

    General chemistry courses haven't changed significantly in forty years. Because most basic chemistry students are premedical students, medical schools have enormous influence and could help us start all over again to create undergraduate chemistry education that works.

  12. Understanding the interactions between Social Capital, climate change, and community resilience in Gulf of Mexico coastal counties

    Science.gov (United States)

    Young, C.; Blomberg, B.; Kolker, A.; Nguyen, U.; Page, C. M.; Sherchan, S. P.; Tobias, V. D.; Wu, H.

    2017-12-01

    Coastal communities in the Gulf of Mexico are facing new and complex challenges as their physical environment is altered by climate warming and sea level rise. To effectively prepare for environmental changes, coastal communities must build resilience in both physical structures and social structures. One measure of social structure resilience is how much social capital a community possesses. Social capital is defined as the connections among individuals which result in networks with shared norms, values and understandings that facilitate cooperation within or among groups. Social capital exists in three levels; bonding, bridging and linking. Bonding social capital is a measure of the strength of relationships amongst members of a network who are similar in some form. Bridging social capital is a measure of relationships amongst people who are dissimilar in some way, such as age, education, or race/ethnicity. Finally Linking social capital measures the extent to which individuals build relationships with institutions and individuals who have relative power over them (e.g local government, educational institutions). Using census and American Community Survey data, we calculated a Social Capital index value for bonding, bridging and linking for 60 Gulf of Mexico coastal counties for the years 2000, and 2010 to 2015. To investigate the impact of social capital on community resilience we coupled social capital index values with physical datasets of land-use/land cover, sea level change, climate, elevation and surface water quality for each coastal county in each year. Preliminary results indicate that in Gulf of Mexico coastal counties, increased bonding social capital results in decreased population change. In addition, we observed a multi-year time lag in the effect of increased bridging social capital on population stability, potentially suggesting key linkages between the physical and social environment in this complex coupled-natural human system. This

  13. Revised mineral dust emissions in the atmospheric chemistry-climate model EMAC (MESSy 2.52 DU_Astitha1 KKDU2017 patch)

    Science.gov (United States)

    Klingmüller, Klaus; Metzger, Swen; Abdelkader, Mohamed; Karydis, Vlassis A.; Stenchikov, Georgiy L.; Pozzer, Andrea; Lelieveld, Jos

    2018-03-01

    To improve the aeolian dust budget calculations with the global ECHAM/MESSy atmospheric chemistry-climate model (EMAC), which combines the Modular Earth Submodel System (MESSy) with the ECMWF/Hamburg (ECHAM) climate model developed at the Max Planck Institute for Meteorology in Hamburg based on a weather prediction model of the European Centre for Medium-Range Weather Forecasts (ECMWF), we have implemented new input data and updates of the emission scheme.The data set comprises land cover classification, vegetation, clay fraction and topography. It is based on up-to-date observations, which are crucial to account for the rapid changes of deserts and semi-arid regions in recent decades. The new Moderate Resolution Imaging Spectroradiometer (MODIS)-based land cover and vegetation data are time dependent, and the effect of long-term trends and variability of the relevant parameters is therefore considered by the emission scheme. All input data have a spatial resolution of at least 0.1° compared to 1° in the previous version, equipping the model for high-resolution simulations.We validate the updates by comparing the aerosol optical depth (AOD) at 550 nm wavelength from a 1-year simulation at T106 (about 1.1°) resolution with Aerosol Robotic Network (AERONET) and MODIS observations, the 10 µm dust AOD (DAOD) with Infrared Atmospheric Sounding Interferometer (IASI) retrievals, and dust concentration and deposition results with observations from the Aerosol Comparisons between Observations and Models (AeroCom) dust benchmark data set. The update significantly improves agreement with the observations and is therefore recommended to be used in future simulations.

  14. Collaborative Research: Towards Advanced Understanding and Predictive Capability of Climate Change in the Arctic using a High-Resolution Regional Arctic Climate System Model

    Energy Technology Data Exchange (ETDEWEB)

    Lettenmaier, Dennis P

    2013-04-08

    Primary activities are reported in these areas: climate system component studies via one-way coupling experiments; development of the Regional Arctic Climate System Model (RACM); and physical feedback studies focusing on changes in Arctic sea ice using the fully coupled model.

  15. Selective recovery of pure copper nanopowder from indium-tin-oxide etching wastewater by various wet chemical reduction process: Understanding their chemistry and comparisons of sustainable valorization processes.

    Science.gov (United States)

    Swain, Basudev; Mishra, Chinmayee; Hong, Hyun Seon; Cho, Sung-Soo

    2016-05-01

    Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11kg/m(3) of copper and 1.35kg/m(3) of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered using various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100-500nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. WHAT MAKES CHEMISTRY DIFFICULT?

    African Journals Online (AJOL)

    IICBA01

    AJCE, 2014, 4(2), Special Issue (Part I). ISSN 2227-5835. 32. INTRODUCTION. Many students from secondary schools to universities in many countries struggle to learn chemistry and many do not succeed [1]. Research has shown that many students do not correctly understand fundamental chemistry concepts [2].

  17. A 125-year record of climate and chemistry variability at the Pine Island Glacier ice divide, Antarctica

    Directory of Open Access Journals (Sweden)

    F. Schwanck

    2017-07-01

    Full Text Available The Mount Johns (MJ ice core (79°55′ S; 94°23′ W was drilled near the Pine Island Glacier ice divide on the West Antarctic Ice Sheet during the 2008–2009 austral summer, to a depth of 92.26 m. The upper 45 m of the record covers approximately 125 years (1883–2008, showing marked seasonal variability. Trace element concentrations in 2137 samples were determined using inductively coupled plasma mass spectrometry. In this study, we reconstruct mineral dust and sea salt aerosol transport and investigate the influence of climate variables on the elemental concentrations at the MJ site. The ice core record reflects changes in emissions as well as atmospheric circulation and transport processes. Our trajectory analysis shows distinct seasonality, with strong westerly transport in the winter months and secondary northeasterly transport in the summer. During summer months, the trajectories present slow-moving (short transport and are more locally influenced than in other seasons. Finally, our reanalysis correlations with trace element suggest that marine-derived trace element concentrations are strongly influenced by sea ice concentration and sea surface temperature anomalies. The results show that seasonal elemental concentration maxima in sea salt elements correlate well with the sea ice concentration winter maxima in the west Amundsen and Ross seas. Lastly, we observed an increased concentration of marine aerosols when sea surface temperature decreased.

  18. The influence of the Calbuco eruption on the 2015 Antarctic ozone hole in a fully coupled chemistry-climate model

    Science.gov (United States)

    Ivy, Diane J.; Solomon, Susan; Kinnison, Doug; Mills, Michael J.; Schmidt, Anja; Neely, Ryan R.

    2017-03-01

    Recent research has demonstrated that the concentrations of anthropogenic halocarbons have decreased in response to the worldwide phaseout of ozone depleting substances. Yet in 2015 the Antarctic ozone hole reached a historical record daily average size in October. Model simulations with specified dynamics and temperatures based on a reanalysis suggested that the record size was likely due to the eruption of Calbuco but did not allow for fully coupled dynamical or thermal feedbacks. We present simulations of the impact of the 2015 Calbuco eruption on the stratosphere using the Whole Atmosphere Community Climate Model with interactive dynamics and temperatures. Comparisons of the interactive and specified dynamics simulations indicate that chemical ozone depletion due to volcanic aerosols played a key role in establishing the record-sized ozone hole of October 2015. The analysis of an ensemble of interactive simulations with and without volcanic aerosols suggests that the forced response to the eruption of Calbuco was an increase in the size of the ozone hole by 4.5 × 106 km2.

  19. Marine Biogenic Minerals Hold Clues About Changes in Ocean Chemistry and Climate: Some Important Lessons Learned from Studies of Stable and Radioactive Isotopes of Be and Al

    Directory of Open Access Journals (Sweden)

    Devendra Lal

    2002-01-01

    Full Text Available The elements Be and Al exhibit very short residence time in ocean waters, and therefore serve as useful tracers for the study of biogeochemical processes in seawater. A unique feature of these tracers is that nuclear interactions of cosmic rays in the atmosphere produce appreciable amounts of two radioactive isotopes, 10Be (with a half-life of 1.5 my and 26Al (with a half-life of 0.7 my, which are introduced in the hydrosphere, cryosphere, and lithosphere via precipitation. Thus, these elements are labeled by their respective radioactive isotopes, which help quantitative tagging of their biogeochemical cycles. Finally, as we report here, several marine organisms incorporate them in their skeletal shells in certain fixed proportions to their concentrations in the seawater, so that it seems possible to study changes in the ocean chemistry and climate over the past several million years. We summarize here the recent discovery by Dong et al.[9] of significant enrichments of intrinsic Be and Al in marine foraminiferal calcite and coral aragonite, and of Al in opal (radiolarians and aragonite (corals, which should make it possible to determine 10Be/Be and 26Al/Al in oceans in the past. We also summarize their measured 10Be/9Be in foraminiferal calcite in Pacific Ocean cores, which reveal that the concentrations and ratios of the stable and cosmogenic isotopes of Be and Al have varied significantly in the past 30 ky. The implications of these results are discussed.

  20. Using annually-resolved bivalve records and biogeochemical models to understand and predict climate impacts in coastal oceans

    Science.gov (United States)

    Holmes, Sarah

    2017-04-01

    It is more important than ever to study the oceans and especially the shelf seas, which are disproportionately productive, sustaining over 90% of global fisheries . The economic and societal significance of these shallow oceans, as the interface through which society interacts with the marine environment, makes them highly relevant to the decisions of policy-makers and stakeholders. These decision-makers rely upon empirical data informed by consistent and extensive monitoring and assessment from experts in the field, yet long-term, spatially-extensive datasets of the marine environment do not exist or are of poor quality. Modelling the shelf seas with biogeochemical models can provide valuable data, allowing scientists to look at both past and future scenarios to estimate ecosystem response to change. In particular, the European Regional Sea Ecosystem Model or ERSEM combines not only the complex hydrographical aspects of the North West European shelf, but also vast numbers of biological and chemical parameters. Though huge efforts across the modelling community are invested into developing and ultimately increasing the reliability of models such as the ERSEM, this is typically achieved by looking at relationships with aforementioned observed datasets, restricting model accuracy and our understanding of ecosystem processes. It is for this reason that proxy data of the marine environment is so valuable. Of all marine proxies available, sclerochronology, the study of the growth bands on long-lived marine molluscs, is the only proven to provide novel, high resolution, multi-centennial, annually-resolved, absolutely-dated archives of past ocean environment, analogous to dendrochronology. For the first time, this PhD project will combine the proxy data of sclerochronology with model hindcast data from the ERSEM with the aim to better understand the North West European shelf sea environment and potentially improve predictions of future climate change in this region and

  1. Understanding mechanisms of rarity in pteridophytes: competition and climate change threaten the rare fern Asplenium scolopendrium var. americanum (Aspleniaceae).

    Science.gov (United States)

    Testo, Weston L; Watkins, James E

    2013-11-01

    Understanding the ecology of rare species can inform aspects of conservation strategies; however, the mechanisms of rarity remain elusive for most pteridophytes, which possess independent and ecologically distinct gametophyte and sporophyte generations. To elucidate factors contributing to recent declines of the rare fern Asplenium scolopendrium var. americanum, we studied the ecology and ecophysiology of its gametophyte generation, focusing on responses to competition, temperature, and water stress. Gametophytes of A. scolopendrium var. americanum, its widespread European relative A. scolopendrium var. scolopendrium, and five co-occurring fern species were grown from spores. Gametophytes were grown at 20°C and 25°C, and germination rates, intra- and interspecific competition, desiccation tolerance, and sporophyte production were determined for all species. Gametophytes of A. scolopendrium var. americanum had the lowest rates of germination and sporophyte production among all species studied and exhibited the greatest sensitivity to interspecific competition, temperature increases, and desiccation. Mature gametophytes of A. scolopendrium var. americanum grown at 25°C were 84.6% smaller than those grown at 20°C, and only 1.5% produced sporophytes after 200 d in culture. Similar responses were not observed in other species studied. The recent declines and current status of populations of A. scolopendrium var. americanum are linked to its gametophyte's limited capacity to tolerate competition and physiological stress linked to climate change. This is the first study to develop a mechanistic understanding of rarity and decline in a fern and demonstrates the importance of considering the ecology of the gametophyte in plants with independent sporophyte and gametophyte generations.

  2. Understanding Climate Policy Data Needs. NASA Carbon Monitoring System Briefing: Characterizing Flux Uncertainty, Washington D.C., 11 January 2012

    Science.gov (United States)

    Brown, Molly E.; Macauley, Molly

    2012-01-01

    inverse approach based on the CO2 model of GEOS ]Chem. The forward model ensembles will be used to build understanding of relationships among surface flux perturbations, transport uncertainty and atmospheric carbon concentration. This will help construct uncertainty estimates and information on the true spatial resolution of the top-down flux calculations. The relationship between the top-down and bottom-up flux distributions will be documented. Because the goal of NASA CMS is to be policy relevant, the scientists involved in the flux modeling pilot need to understand and be focused on the needs of the climate policy and decision making community. If policy makers are to use CMS products, they must be aware of the modeling effort and begin to design policies that can be evaluated with information. Improving estimates of carbon sequestered in forests, for example, will require information on the spatial variability of forest biomass that is far more explicit than is presently possible using only ground observations. Carbon mitigation policies being implemented by cities around the United States could be designed with the CMS data in mind, enabling sequential evaluation and subsequent improvements in incentives, structures and programs. The success of climate mitigation programs being implemented in the United States today will hang on the depth of the relationship between scientists and their policy and decision making counterparts. Ensuring that there is two-way communication between data providers and users is important for the success both of the policies and the scientific products meant to support them..

  3. Observational research study around tropical Western Pacific: PALAU (Pacific Area Long-term Atmospheric observation for Understanding climate change) project

    Science.gov (United States)

    Shirooka, Ryuichi

    2017-04-01

    The warm water pool region in the tropical Western Pacific is a key area for global climate systems, as strong atmospheric convective activity in this area is the driving engine of the atmosphere. However, there are many processes between meso-scale convective activities and the global-scale climate, and these are not fully understood yet. To understand the mechanism of clouds-precipitation processes and air-sea interactions over the warm pool in the tropics, there are in need of further investigation on the Western Pacific monsoon and the tropical-extratropical interactions. Toward these objectives, we have continued a long-term observational project named PALAU (Pacific Area Long-term Atmospheric observation for Understanding climate change) around the tropical Western Pacific near the Republic of Palau. The main target of this project is to describe multi-scale interactions of cloud systems to intra-seasonal oscillations affected by monsoon activities. To elucidate the structure of tropical cyclones, which occur over a monsoon trough near Palau, is also a major interest. Since November 2000, we have been continuously operating a surface weather observation site in Palau. We also have conducted several intensive field campaigns targeted for various phenomena. PALAU2013, one of the intensive campaign, was carried out to focus on the formation mechanism of tropical cyclones and their relation to intra-seasonal oscillations and monsoon activity over the tropical Western Pacific. During the campaign, R/V Mirai was placed near Palau and conducted atmospheric and oceanic observations using Doppler radar, radiosonde, CTD and so on. Daily profiling Argo-floats were deployed for analyzing air-sea interactions. To capture the monsoon activity with wide area, we constructed intensified sounding network from Philippines, Palau, and Yap to Guam. Three X-band radars were utilized to obtain the internal structure of cloud systems. Dual-polarization parameters also can be

  4. Limited resources and evolutionary learning may help to understand the mistimed reproduction in birds caused by climate change.

    Science.gov (United States)

    Campos, Daniel; Llebot, Josep E; Méndez, Vicenç

    2008-08-01

    We present an agent-based model inspired by the Evolutionary Minority Game (EMG), albeit strongly adapted, to the case of competition for limited resources in ecology. The agents in this game become able, after some time, to predict the a priori best option as a result of an evolution-driven learning process. We show that a self-segregated social structure can emerge from this process, i.e., extreme learning strategies are always favoured while intermediate learning strategies tend to die out. This result may contribute to understanding some levels of organization and cooperative behaviour in ecological and social systems. We use the ideas and results reported here to discuss an issue of current interest in ecology: the mistimings in egg laying observed for some species of bird as a consequence of their slower rate of adaptation to climate change in comparison with that shown by their prey. Our model supports the hypothesis that habitat-specific constraints could explain why different populations are adapting differently to this situation, in agreement with recent experiments.

  5. Understanding Snow Depth Variability with Respect to the Canopy in Multiple Climates Using Airborne LiDAR

    Science.gov (United States)

    Currier, W. R.; Giulia, M.; Pflug, J. M.; Jonas, T.; Jessica, L.

    2017-12-01

    Snow depth within a typical hydrologic model grid cell (150 m or 1 km) can vary from 0.5 meters to 6 meters, or more. This variability is driven by the meteorological conditions throughout the winter as well as the forest architecture. To better understand this variability, we used airborne LiDAR from Olympic National Park, WA, Yosemite National Park, CA, Jemez Caldera, NM, and Niwot Ridge, CO to determine unique spatial patterns of snow depth in forested regions. Specifically, we compared snow depth distributions along north facing forest edges and south facing forest edges to those in the open or directly under the canopy. When categorizing the north facing and south facing edges based on distance from the canopy, distances relative to tree height, and distances relative to the fraction of the sky that is visible (sky view factor) we found unique snow depth patterns for each of these regions. In all regions besides Olympic National Park, WA, north facing edges contained more snow than open areas, forested areas, or along the south facing edges. These snow distributions were relatively consistent regardless of the metric used to define the forest edge and the size of the domain (150 m through 1 km). The absence of the forest edge effect in Olympic National Park was attributed to the meteorological data and climate conditions, which showed significantly less incoming shortwave radiation and more incoming longwave radiation. Furthermore, this study evaluated the effect that wind speed and direction have on the spatial distribution of snow depth.

  6. Pre-industrial to End 21st Century Projections of Tropospheric Ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    Science.gov (United States)

    Young, P. J.; Archibald, A. T.; Bowman, K. W.; Lamarque, J.-F.; Naik, V.; Stevenson, D. S.; Tilmes, S.; Voulgarakis, A.; Wild, O.; Bergmann, D.; hide

    2013-01-01

    Present day tropospheric ozone and its changes between 1850 and 2100 are considered, analysing 15 global models that participated in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The ensemble mean compares well against present day observations. The seasonal cycle correlates well, except for some locations in the tropical upper troposphere. Most (75 %) of the models are encompassed with a range of global mean tropospheric ozone column estimates from satellite data, but there is a suggestion of a high bias in the Northern Hemisphere and a low bias in the Southern Hemisphere, which could indicate deficiencies with the ozone precursor emissions. Compared to the present day ensemble mean tropospheric ozone burden of 337+/-23 Tg, the ensemble mean burden for 1850 time slice is approx. 30% lower. Future changes were modelled using emissions and climate projections from four Representative Concentration Pathways (RCPs). Compared to 2000, the relative changes in the ensemble mean tropospheric ozone burden in 2030 (2100) for the different RCPs are: -4% (-16 %) for RCP2.6, 2% (-7%) for RCP4.5, 1% (-9%) for RCP6.0, and 7% (18 %) for RCP8.5. Model agreement on the magnitude of the change is greatest for larger changes. Reductions in most precursor emissions are common across the RCPs and drive ozone decreases in all but RCP8.5, where doubled methane and a 40-150% greater stratospheric influx (estimated from a subset of models) increase ozone. While models with a high ozone burden for the present day also have high ozone burdens for the other time slices, no model consistently predicts large or small ozone changes; i.e. the magnitudes of the burdens and burden changes do not appear to be related simply, and the models are sensitive to emissions and climate changes in different ways. Spatial patterns of ozone changes are well correlated across most models, but are notably different for models without time evolving stratospheric ozone concentrations

  7. DOE fundamentals handbook: Chemistry

    International Nuclear Information System (INIS)

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. This volume contains the following modules: reactor water chemistry (effects of radiation on water chemistry, chemistry parameters), principles of water treatment (purpose; treatment processes [ion exchange]; dissolved gases, suspended solids, and pH control; water purity), and hazards of chemicals and gases (corrosives [acids, alkalies], toxic compounds, compressed gases, flammable/combustible liquids)

  8. Multiclass Classification of Agro-Ecological Zones for Arabica Coffee: An Improved Understanding of the Impacts of Climate Change

    Science.gov (United States)

    Bunn, Christian; Läderach, Peter; Pérez Jimenez, Juan Guillermo; Montagnon, Christophe; Schilling, Timothy

    2015-01-01

    Cultivation of Coffea arabica is highly sensitive to and has been shown to be negatively impacted by progressive climatic changes. Previous research contributed little to support forward-looking adaptation. Agro-ecological zoning is a common tool to identify homologous environments and prioritize research. We demonstrate here a pragmatic approach to describe spatial changes in agro-climatic zones suitable for coffee under current and future climates. We defined agro-ecological zones suitable to produce arabica coffee by clustering geo-referenced coffee occurrence locations based on bio-climatic variables. We used random forest classification of climate data layers to model the spatial distribution of these agro-ecological zones. We used these zones to identify spatially explicit impact scenarios and to choose locations for the long-term evaluation of adaptation measures as climate changes. We found that in zones currently classified as hot and dry, climate change will impact arabica more than those that are better suited to it. Research in these zones should therefore focus on expanding arabica's environmental limits. Zones that currently have climates better suited for arabica will migrate upwards by about 500m in elevation. In these zones the up-slope migration will be gradual, but will likely have negative ecosystem impacts. Additionally, we identified locations that with high probability will not change their climatic characteristics and are suitable to evaluate C. arabica germplasm in the face of climate change. These locations should be used to investigate long term adaptation strategies to production systems. PMID:26505637

  9. Solar Variability and Planetary Climates

    CERN Document Server

    Calisesi, Y; Gray, L; Langen, J; Lockwood, M

    2007-01-01

    Variations in solar activity, as revealed by variations in the number of sunspots, have been observed since ancient times. To what extent changes in the solar output may affect planetary climates, though, remains today more than ever a subject of controversy. In 2000, the SSSI volume on Solar Variability and Climate reviewed the to-date understanding of the physics of solar variability and of the associated climate response. The present volume on Solar Variability and Planetary Climates provides an overview of recent advances in this field, with particular focus at the Earth's middle and lower atmosphere. The book structure mirrors that of the ISSI workshop held in Bern in June 2005, the collection of invited workshop contributions and of complementary introductory papers synthesizing the current understanding in key research areas such as middle atmospheric processes, stratosphere-troposphere dynamical coupling, tropospheric aerosols chemistry, solar storm influences, solar variability physics, and terrestri...

  10. Comparison between the Understanding Levels of Boys and Girls on the Concepts of Environmental Degradation, Meteorology and Climate Change in Tanzanian Secondary Schools

    Science.gov (United States)

    Kira, Ernest S.; Komba, Sotco C.

    2015-01-01

    The study aimed to determine whether there was any significant difference in understanding levels between secondary school boys and girls on the concepts of environmental degradation, meteorology and climate change. Both structured survey and focus group discussions were used to collect information from 480 students, sampled randomly from 12…

  11. Urban Change: Understanding how expansion and densification relate to demographic change and their implications for climate change.

    Science.gov (United States)

    Balk, D.; Jones, B.; Liu, Z.; Nghiem, S. V.; Pesaresi, M.

    2015-12-01

    provides a more accurate understanding of urban processes, particularly in the context of climate change (as shown in Figure 1). Together these will help understand the form of urban change as well as the relationship between urban change, vulnerability and population distribution within and on the periphery of growing cities.

  12. Understanding surface-water availability in the Central Valley as a means to projecting future groundwater storage with climate variability

    Science.gov (United States)

    Goodrich, J. P.; Cayan, D. R.

    2017-12-01

    California's Central Valley (CV) relies heavily on diverted surface water and groundwater pumping to supply irrigated agriculture. However, understanding the spatiotemporal character of water availability in the CV is difficult because of the number of individual farms and local, state, and federal agencies involved in using and managing water. Here we use the Central Valley Hydrologic Model (CVHM), developed by the USGS, to understand the relationships between climatic variability, surface water inputs, and resulting groundwater use over the historical period 1970-2013. We analyzed monthly surface water diversion data from >500 CV locations. Principle components analyses were applied to drivers constructed from meteorological data, surface reservoir storage, ET, land use cover, and upstream inflows, to feed multiple regressions and identify factors most important in predicting surface water diversions. Two thirds of the diversion locations ( 80% of total diverted water) can be predicted to within 15%. Along with monthly inputs, representations of cumulative precipitation over the previous 3 to 36 months can explain an additional 10% of variance, depending on location, compared to results that excluded this information. Diversions in the southern CV are highly sensitive to inter-annual variability in precipitation (R2 = 0.8), whereby more surface water is used during wet years. Until recently, this was not the case in the northern and mid-CV, where diversions were relatively constant annually, suggesting relative insensitivity to drought. In contrast, this has important implications for drought response in southern regions (eg. Tulare Basin) where extended dry conditions can severely limit surface water supplies and lead to excess groundwater pumping, storage loss, and subsidence. In addition to fueling our understanding of spatiotemporal variability in diversions, our ability to predict these water balance components allows us to update CVHM predictions before

  13. Chemistry in Context: Analysis of Thematic Chemistry Videos Available Online

    Science.gov (United States)

    Christensson, Camilla; Sjöström, Jesper

    2014-01-01

    United Nations declared 2011 to be the International Year of Chemistry. The Swedish Chemical Society chose twelve themes, one for each month, to highlight the connection of chemistry with everyday life. Examples of themes were fashion, climate change, love, sports, communication, health issues, and food. From the themes various context-based…

  14. Complex chemistry

    International Nuclear Information System (INIS)

    Kim, Bong Gon; Kim, Jae Sang; Kim, Jin Eun; Lee, Boo Yeon

    2006-06-01

    This book introduces complex chemistry with ten chapters, which include development of complex chemistry on history coordination theory and Warner's coordination theory and new development of complex chemistry, nomenclature on complex with conception and define, chemical formula on coordination compound, symbol of stereochemistry, stereo structure and isomerism, electron structure and bond theory on complex, structure of complex like NMR and XAFS, balance and reaction on solution, an organo-metallic chemistry, biology inorganic chemistry, material chemistry of complex, design of complex and calculation chemistry.

  15. Understanding the Impacts of Soil, Climate and Farming Practices on Soil Organic Carbon Sequestration: a Simulation Study in Australia

    Directory of Open Access Journals (Sweden)

    Cecile Marie Godde

    2016-05-01

    Full Text Available Carbon sequestration in agricultural soils has the capacity to mitigate greenhouse gas emissions, as well as to improve soil biological, physical and chemical properties. The review of literature pertaining to soil organic carbon (SOC dynamics within Australian grain farming systems does not enable us to conclude on the best farming practices to increase or maintain SOC for a specific combination of soil and climate. This study aimed to further explore the complex interactions of soil, climate and farming practices on SOC. We undertook a modeling study with the APSIM (Agricultural Production Systems sIMulator modeling framework, by combining contrasting Australian soils, climates and farming practices (crop rotations, and management within rotations, such as fertilization, tillage and residue management in a factorial design. This design resulted in the transposition of contrasting soils and climates in our simulations, giving soil-climate combinations that do not occur in the study area to help provide insights into the importance of the climate constraints on SOC. We statistically analyzed the model’s outputs to determinate the relative contributions of soil parameters, climate and farming practices on SOC. The initial SOC content had the largest impact on the value of SOC, followed by the climate and the fertilization practices. These factors explained 66%, 18% and 15% of SOC variations, respectively, after 80 years of constant farming practices in the simulation. Tillage and stubble management had the lowest impacts on SOC. This study highlighted the possible negative impact on SOC of a chickpea phase in a wheat-chickpea rotation and the potential positive impact of a cover crop in a sub-tropical climate (Queensland on SOC. It also showed the complexities in managing to achieve increased SOC, while simultaneously aiming to minimize nitrous oxide (N2O emissions and nitrate leaching in farming systems. The transposition of contrasting soils

  16. Understanding the Impacts of Soil, Climate, and Farming Practices on Soil Organic Carbon Sequestration: A Simulation Study in Australia.

    Science.gov (United States)

    Godde, Cécile M; Thorburn, Peter J; Biggs, Jody S; Meier, Elizabeth A

    2016-01-01

    Carbon sequestration in agricultural soils has the capacity to mitigate greenhouse gas emissions, as well as to improve soil biological, physical, and chemical properties. The review of literature pertaining to soil organic carbon (SOC) dynamics within Australian grain farming systems does not enable us to conclude on the best farming practices to increase or maintain SOC for a specific combination of soil and climate. This study aimed to further explore the complex interactions of soil, climate, and farming practices on SOC. We undertook a modeling study with the Agricultural Production Systems sIMulator modeling framework, by combining contrasting Australian soils, climates, and farming practices (crop rotations, and management within rotations, such as fertilization, tillage, and residue management) in a factorial design. This design resulted in the transposition of contrasting soils and climates in our simulations, giving soil-climate combinations that do not occur in the study area to help provide insights into the importance of the climate constraints on SOC. We statistically analyzed the model's outputs to determinate the relative contributions of soil parameters, climate, and farming practices on SOC. The initial SOC content had the largest impact on the value of SOC, followed by the climate and the fertilization practices. These factors explained 66, 18, and 15% of SOC variations, respectively, after 80 years of constant farming practices in the simulation. Tillage and stubble management had the lowest impacts on SOC. This study highlighted the possible negative impact on SOC of a chickpea phase in a wheat-chickpea rotation and the potential positive impact of a cover crop in a sub-tropical climate (QLD, Australia) on SOC. It also showed the complexities in managing to achieve increased SOC, while simultaneously aiming to minimize nitrous oxide (N2O) emissions and nitrate leaching in farming systems. The transposition of contrasting soils and climates in

  17. Diagnosing the radiative and chemical contributions to future changes in tropical column ozone with the UM-UKCA chemistry-climate model

    Science.gov (United States)

    Keeble, James; Bednarz, Ewa M.; Banerjee, Antara; Abraham, N. Luke; Harris, Neil R. P.; Maycock, Amanda C.; Pyle, John A.

    2017-11-01

    Chemical and dynamical drivers of trends in tropical total-column ozone (TCO3) for the recent past and future periods are explored using the UM-UKCA (Unified Model HadGEM3-A (Hewitt et al., 2011) coupled with the United Kingdom Chemistry and Aerosol scheme) chemistry-climate model. A transient 1960-2100 simulation is analysed which follows the representative concentration pathway 6.0 (RCP6.0) emissions scenario for the future. Tropical averaged (10° S-10° N) TCO3 values decrease from the 1970s, reach a minimum around 2000 and return to their 1980 values around 2040, consistent with the use and emission of halogenated ozone-depleting substances (ODSs), and their later controls under the Montreal Protocol. However, when the ozone column is subdivided into three partial columns (PCO3) that cover the upper stratosphere (PCO3US), lower stratosphere (PCO3LS) and troposphere (PCO3T), significant differences in the temporal behaviour of the partial columns are seen. Modelled PCO3T values under the RCP6.0 emissions scenario increase from 1960 to 2000 before remaining approximately constant throughout the 21st century. PCO3LS values decrease rapidly from 1960 to 2000 and remain constant from 2000 to 2050, before gradually decreasing further from 2050 to 2100 and never returning to their 1980s values. In contrast, PCO3US values decrease from 1960 to 2000, before increasing rapidly throughout the 21st century and returning to 1980s values by ˜ 2020, and reach significantly higher values by 2100. Using a series of idealised UM-UKCA time-slice simulations with concentrations of well-mixed greenhouse gases (GHGs) and halogenated ODS species set to either year 2000 or 2100 levels, we examine the main processes that drive the PCO3 responses in the three regions and assess how these processes change under different emission scenarios. Finally, we present a simple, linearised model to describe the future evolution of tropical stratospheric column ozone values based on terms

  18. The Island Arcs as a Major Source of Mantellic Sr to the Ocean: Tectonic Control over Seawater Chemistry and Climate

    Science.gov (United States)

    Louvat, P.; Allegre, C. J.; Meynadier, L.

    2005-12-01

    mandatory coupled. We can then explain quite easily the Cenozoic 87Sr/86Sr curve but also the Phanerozoic one. This model has also important consequences for the climate models of the Cenozoic. References 1 Berner R.A., Lasaga A.C., Garrels R.M., Am. J. Science 283 (1983) 641-683. 2 Raymo M., Ruddiman W.F., Nature 359 (1992) 117-122. 3 Fehn U., Green K.E., Von Herzen R.P., Cathles L.M., J. Geophys. Res. 88 (1983) 1033-1048. 4 Sleep N.H., J. Geophys. Res. 96 (1991) 2375-2387. 5 Bowers T.S., Taylor H.P., J. Geophys. Res. 90 (1985) 12583-12606. 6 Davis A., Brickle M.J., Teagle D., Earth Planet. Sci. Lett. 112 (2003) 173-187. 7 Golsdtein S., Hemming S.R., in Treatise on Geochemistry, Vol. 6, The Oceans and Marine Geochemistry (2003) editor H. Elderfield, Elsevier, 453p. 8 Rad S., Louvat P., Allègre C.J., AGU Fall Meeting (2005) session PP14.

  19. Mathematical Chemistry

    OpenAIRE

    Trinajstić, Nenad; Gutman, Ivan

    2002-01-01

    A brief description is given of the historical development of mathematics and chemistry. A path leading to the meeting of these two sciences is described. An attempt is made to define mathematical chemistry, and journals containing the term mathematical chemistry in their titles are noted. In conclusion, the statement is made that although chemistry is an experimental science aimed at preparing new compounds and materials, mathematics is very useful in chemistry, among other things, to produc...

  20. DOE fundamentals handbook: Chemistry

    International Nuclear Information System (INIS)

    1993-01-01

    The Chemistry Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. The handbook includes information on the atomic structure of matter; chemical bonding; chemical equations; chemical interactions involved with corrosion processes; water chemistry control, including the principles of water treatment; the hazards of chemicals and gases, and basic gaseous diffusion processes. This information will provide personnel with a foundation for understanding the chemical properties of materials and the way these properties can impose limitations on the operation of equipment and systems

  1. Argumentation as a Strategy for Increasing Preservice Teachers' Understanding of Climate Change, a Key Global Socioscientific Issue

    Science.gov (United States)

    Lambert, Julie L.; Bleicher, Robert E.

    2017-01-01

    Findings of this study suggest that scientific argumentation can play an effective role in addressing complex socioscientific issues (i.e. global climate change). This research examined changes in preservice teachers' knowledge and perceptions about climate change in an innovative undergraduate-level elementary science methods course. The…

  2. Using silicon isotopes to understand the role of the Southern Ocean in modern and ancient biogeochemistry and climate

    Science.gov (United States)

    Hendry, Katharine R.; Brzezinski, Mark A.

    2014-04-01

    The growth of siliceous phytoplankton, mainly diatoms, in the Southern Ocean influences the preformed nutrient inventory in the ocean on a global scale. Silicic acid use by diatoms and deep circulation combine to trap dissolved Si in the Southern Ocean resulting in high levels of silica production and expansive diatom oozes in Southern Ocean sediments. The analysis of the silicon isotope composition of biogenic silica, or opal, and dissolved silicic acid provide insight into the operation of the global marine silicon cycle and the role played by the Southern Ocean in nutrient supply and carbon drawdown, both in the modern and in the past. Silicon isotope studies of diatoms have provided insight into the history of silica production in surface waters, while the analysis of spicules from deep sea sponges has defined both the spatial and the temporal variability of silicic acid concentrations in the water column; together these - and other - proxies reveal variations in the northward flow of Southern Ocean intermediate and mode waters and how changes in Southern Ocean productivity altered their preformed nutrient content. We present a new hypothesis - the "Silicic Acid Ventilation Hypothesis" (SAVH) - to explain the geographical variation of opal-based proxy records, in particular the contrasting patterns of opal burial change found in the low and high latitudes. By understanding the silicon isotope systematics of opal and silicic acid in the modern, we will be able to use opal-based proxies to reconstruct past changes in the Southern Ocean and so investigate its role in global carbon cycling and climate.

  3. Attribution of recent ozone changes in the Southern Hemisphere mid-latitudes using statistical analysis and chemistry-climate model simulations

    Science.gov (United States)

    Zeng, Guang; Morgenstern, Olaf; Shiona, Hisako; Thomas, Alan J.; Querel, Richard R.; Nichol, Sylvia E.

    2017-09-01

    Ozone (O3) trends and variability from a 28-year (1987-2014) ozonesonde record at Lauder, New Zealand, have been analysed and interpreted using a statistical model and a global chemistry-climate model (CCM). Lauder is a clean rural measurement site often representative of the Southern Hemisphere (SH) mid-latitude background atmosphere. O3 trends over this period at this location are characterised by a significant positive trend below 6 km, a significant negative trend in the tropopause region and the lower stratosphere between 9 and 15 km, and no significant trend in the free troposphere (6-9 km) and the stratosphere above 15 km. We find that significant positive trends in lower tropospheric ozone are correlated with increasing temperature and decreasing relative humidity at the surface over this period, whereas significant negative trends in the upper troposphere and the lower stratosphere appear to be strongly linked to an upward trend of the tropopause height. Relative humidity and the tropopause height also dominate O3 variability at Lauder in the lower troposphere and the tropopause region, respectively. We perform an attribution of these trends to anthropogenic forcings including O3 precursors, greenhouse gases (GHGs), and O3-depleting substances (ODSs), using CCM simulations. Results indicate that changes in anthropogenic O3 precursors contribute significantly to stratospheric O3 reduction, changes in ODSs contribute significantly to tropospheric O3 reduction, and increased GHGs contribute significantly to stratospheric O3 increases at Lauder. Methane (CH4) likely contributes positively to O3 trends in both the troposphere and the stratosphere, but the contribution is not significant at the 95 % confidence level over this period. An extended analysis of CCM results covering 1960-2010 (i.e. starting well before the observations) reveals significant contributions from all forcings to O3 trends at Lauder - i.e. increases in GHGs and the increase in CH4 alone

  4. Collaborative Research: Towards Advanced Understanding and Predictive Capability of Climate Change in the Arctic Using a High-Resolution Regional Arctic Climate Model

    Energy Technology Data Exchange (ETDEWEB)

    Cassano, John [Principal Investigator

    2013-06-30

    The primary research task completed for this project was the development of the Regional Arctic Climate Model (RACM). This involved coupling existing atmosphere, ocean, sea ice, and land models using the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM) coupler (CPL7). RACM is based on the Weather Research and Forecasting (WRF) atmospheric model, the Parallel Ocean Program (POP) ocean model, the CICE sea ice model, and the Variable Infiltration Capacity (VIC) land model. A secondary research task for this project was testing and evaluation of WRF for climate-scale simulations on the large pan-Arctic model domain used in RACM. This involved identification of a preferred set of model physical parameterizations for use in our coupled RACM simulations and documenting any atmospheric biases present in RACM.

  5. Nitrogen compounds and ozone in the stratosphere: comparison of MIPAS satellite data with the chemistry climate model ECHAM5/MESSy1

    Directory of Open Access Journals (Sweden)

    C. Brühl

    2007-11-01

    Full Text Available The chemistry climate model ECHAM5/MESSy1 (E5/M1 in a setup extending from the surface to 80 km with a vertical resolution of about 600 m near the tropopause with nudged tropospheric meteorology allows a direct comparison with satellite data of chemical species at the same time and location. Here we present results out of a transient 10~years simulation for the period of the Antarctic vortex split in September 2002, where data of MIPAS on the ENVISAT-satellite are available. For the first time this satellite instrument opens the opportunity, to evaluate all stratospheric nitrogen containing species simultaneously with a good global coverage, including the source gas N2O and ozone which allows an estimate for NOx-production in the stratosphere. We show correlations between simulated and observed species in the altitude region between 10 and 50 hpa for different latitude belts, together with the Probability Density Functions (PDFs of model results and observations. This is supplemented by global maps on pressure levels showing the comparison between the satellite and the simulated data sampled at the same time and location. We demonstrate that the model in most cases captures the partitioning in the nitrogen family, the diurnal cycles and the spatial distribution within experimental uncertainty. This includes even variations due to tropospheric clouds. There appears to be, however, a problem to reproduce the observed nighttime partitioning between N2O5 and NO2 in the middle stratosphere using the recommended set of reaction coefficients and photolysis data.

  6. Evaluation of Preindustrial to Present-day Black Carbon and its Albedo Forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Lamarque, J.-F.; Flanner, M. G.; Jiao, C.; Shindell, Drew; Berntsen, T.; Bisiauxs, M.; Cao, J.; Collins, W. J.; Curran, M.; Edwards, R.; Faluvegi, G.; Ghan, Steven J.; Horowitz, L.; McConnell, J.R.; Ming, J.; Myhre, G.; Nagashima, T.; Naik, Vaishali; Rumbold, S.; Skeie, R. B.; Sudo, K.; Takemura, T.; Thevenon, F.; Xu, B.; Yoon, Jin-Ho

    2013-03-05

    As a part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), we evaluate the historical black carbon (BC) aerosols simulated by 8 ACCMIP models against the observations including 12 ice core records, a long-term surface mass concentrations and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using the NCAR Community Land and Sea-Ice model 4 with prescribed meteorology from 1996-2000, which includes the SNICAR BC-snow model. We evaluated the vertical profile of BC snow concentrations from these offline simulations to using recent BC snowpack measurements. Despite using the same BC emissions, global BC burden differs by approximately a factor of 3 among models due to the differences in aerosol removal parameterizations and simulated meteorology among models; 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However,models agree well on 2.5~3 times increase in the global BC burden from preindustrial to present-day, which matches with the 2.5 times increase in BC emissions. We find a large model diversity at both NH and SH high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC mass concentrations well in Europe and North America except at Jungfrauch and Ispra. However, the models fail to capture the Arctic BC seasonality due tosevere underestimations during winter and spring. Compared to recent snowpack measurements, the simulated vertically resolved BC snow concentrations are, on average, within a factor of 2-3 of observations except for Greenland and Arctic Ocean. However, model and observation differ widely due to missing interannual variations in emissions and possibly due to the choice of the prescribed meteorology period (i.e., 1996-2000).

  7. Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED summer 2013 campaign

    Directory of Open Access Journals (Sweden)

    M. Mallet

    2016-01-01

    Full Text Available The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED project during the Mediterranean dry season over the western and central Mediterranean basins, with a focus on aerosol-radiation measurements and their modeling. The SOP-1a took place from 11 June to 5 July 2013. Airborne measurements were made by both the ATR-42 and F-20 French research aircraft operated from Sardinia (Italy and instrumented for in situ and remote-sensing measurements, respectively, and by sounding and drifting balloons, launched in Minorca. The experimental setup also involved several ground-based measurement sites on islands including two ground-based reference stations in Corsica and Lampedusa and secondary monitoring sites in Minorca and Sicily. Additional measurements including lidar profiling were also performed on alert during aircraft operations at EARLINET/ACTRIS stations at Granada and Barcelona in Spain, and in southern Italy. Remote-sensing aerosol products from satellites (MSG/SEVIRI, MODIS and from the AERONET/PHOTONS network were also used. Dedicated meso-scale and regional modeling experiments were performed in relation to this observational effort. We provide here an overview of the different surface and aircraft observations deployed during the ChArMEx/ADRIMED period and of associated modeling studies together with an analysis of the synoptic conditions that determined the aerosol emission and transport. Meteorological conditions observed during this campaign (moderate temperatures and southern flows were not favorable to producing high levels of atmospheric pollutants or intense

  8. Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

    Science.gov (United States)

    Mallet, M.; Dulac, F.; Formenti, P.; Nabat, P.; Sciare, J.; Roberts, G.; Pelon, J.; Ancellet, G.; Tanré, D.; Parol, F.; Denjean, C.; Brogniez, G.; di Sarra, A.; Alados-Arboledas, L.; Arndt, J.; Auriol, F.; Blarel, L.; Bourrianne, T.; Chazette, P.; Chevaillier, S.; Claeys, M.; D'Anna, B.; Derimian, Y.; Desboeufs, K.; Di Iorio, T.; Doussin, J.-F.; Durand, P.; Féron, A.; Freney, E.; Gaimoz, C.; Goloub, P.; Gómez-Amo, J. L.; Granados-Muñoz, M. J.; Grand, N.; Hamonou, E.; Jankowiak, I.; Jeannot, M.; Léon, J.-F.; Maillé, M.; Mailler, S.; Meloni, D.; Menut, L.; Momboisse, G.; Nicolas, J.; Podvin, T.; Pont, V.; Rea, G.; Renard, J.-B.; Roblou, L.; Schepanski, K.; Schwarzenboeck, A.; Sellegri, K.; Sicard, M.; Solmon, F.; Somot, S.; Torres, B.; Totems, J.; Triquet, S.; Verdier, N.; Verwaerde, C.; Waquet, F.; Wenger, J.; Zapf, P.

    2016-01-01

    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr) is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) project during the Mediterranean dry season over the western and central Mediterranean basins, with a focus on aerosol-radiation measurements and their modeling. The SOP-1a took place from 11 June to 5 July 2013. Airborne measurements were made by both the ATR-42 and F-20 French research aircraft operated from Sardinia (Italy) and instrumented for in situ and remote-sensing measurements, respectively, and by sounding and drifting balloons, launched in Minorca. The experimental setup also involved several ground-based measurement sites on islands including two ground-based reference stations in Corsica and Lampedusa and secondary monitoring sites in Minorca and Sicily. Additional measurements including lidar profiling were also performed on alert during aircraft operations at EARLINET/ACTRIS stations at Granada and Barcelona in Spain, and in southern Italy. Remote-sensing aerosol products from satellites (MSG/SEVIRI, MODIS) and from the AERONET/PHOTONS network were also used. Dedicated meso-scale and regional modeling experiments were performed in relation to this observational effort. We provide here an overview of the different surface and aircraft observations deployed during the ChArMEx/ADRIMED period and of associated modeling studies together with an analysis of the synoptic conditions that determined the aerosol emission and transport. Meteorological conditions observed during this campaign (moderate temperatures and southern flows) were not favorable to producing high levels of atmospheric pollutants or intense biomass burning

  9. Understanding the Effect of Surface Chemistry on Charge Generation and Transport in Poly (3-hexylthiophene)/CdSe Hybrid Solar Cells

    DEFF Research Database (Denmark)

    Lek, Jun Yan; Xi, Lifei; Kardynal, Beata

    2011-01-01

    For hybrid solar cells, interfacial chemistry is one of the most critical factors for good device performance. We have demonstrated that the size of the surface ligands and the dispersion of nanoparticles in the solvent and in the polymer are important criteria in obtaining optimized device...

  10. Spline models of contemporary, 2030, 2060, and 2090 climates for Mexico and their use in understanding climate-change impacts on the vegetation

    Science.gov (United States)

    Cuauhtemoc Saenz-Romero; Gerald E. Rehfeldt; Nicholas L. Crookston; Pierre Duval; Remi St-Amant; Jean Beaulieu; Bryce A. Richardson

    2010-01-01

    Spatial climate models were developed for Mexico and its periphery (southern USA, Cuba, Belize and Guatemala) for monthly normals (1961-1990) of average, maximum and minimum temperature and precipitation using thin plate smoothing splines of ANUSPLIN software on ca. 3,800 observations. The fit of the model was generally good: the signal was considerably less than one-...

  11. Understanding the Combined Influence of Boreal Landuse and Climate Change on Catchment Functioning through Virtual Forest Alterations

    Science.gov (United States)

    Teutschbein, Claudia; Grabs, Thomas; Karlsen, Reinert H.; Laudon, Hjalmar; Bishop, Kevin

    2017-04-01

    The available scientific literature on hydrological climate change impacts in boreal regions in northern Europe consistently suggests increasing amounts of annual river streamflow. In these regions, the present-day streamflow regimes with low winter flow and a dominating snow-melt driven spring flood peak will transform to regimes with a much lower amplitude and an earlier initiation and peaking of the spring flood. Such changes lead to alterations of flow duration curves, indicating lower chances for both high and low flows in a future warmer climate. The question arises as to whether one can draw such generalized conclusions in terms of future hydrological changes for a larger boreal region based on a selection of representative catchment studies. One could argue that nearby catchments within the same climate zone should function in similar ways, which means that conclusions can be drawn for a larger region with the same climate conditions. It is, however, well acknowledged that present-day hydrological functioning and the variability at multiple temporal and spatial scales are not only controlled by external climatic conditions, but also by physical properties such as topographic features, soil characteristics, catchment area, land cover, vegetation type or geology. Consequently, this raises the question as to what extend variability in projected future streamflow changes is predetermined by the landscape characteristics in a catchment. To answer this question, we explored how landscape characteristics such as topography, geology, soils and land cover influence the way boreal catchments respond to changing climate conditions. Based on an ensemble of 15 regional climate models bias-corrected with a distribution-mapping approach, present and future streamflow in 14 neighbouring and rather similar catchments in Northern Sweden was simulated with the HBV model. We established functional relationships between a range of landscape characteristics and projected future

  12. Combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  13. Integrating Dendrochronology, Climate and Satellite Remote Sensing to Better Understand Savanna Landscape Dynamics in the Okavango Delta, Botswana

    Directory of Open Access Journals (Sweden)

    Jane Southworth

    2013-11-01

    Full Text Available This research examines the integration and potential uses of linkages between climate dynamics, savanna vegetation and landscape level processes within a highly vulnerable region, both in terms of climate variability and social systems. We explore the combined applications of two time-series methodologies: (1 climate signals detected in tree ring growth, from published literature, chronologies from the International Tree-Ring Data Bank, and minimal preliminary field data; and (2 new primary production (NPP data of vegetation cover over time derived from remotely sensed analyses. Both time-series are related to the regional patterns of precipitation, the principle driver of plant growth in the area. The approach is temporally and spatially multiscalar and examines the relationships between vegetation cover, type and amount, and precipitation shifts. We review literature linking dendrochronology, climate, and remotely sensed imagery, and, in addition, provide unique preliminary analyses from a dry study site located on the outer limit of the Okavango Delta. The work demonstrates integration across the different data sources, to provide a more holistic view of landscape level processes occurring in the last 30-50 years. These results corroborate the water-limited nature of the region and the dominance of precipitation in controlling vegetation growth. We present this integrative analysis of vegetation and climate change, as a prospective approach to facilitate the development of long-term climate/vegetation change records across multiple scales.

  14. Understanding Hydrological Processes in Variable Source Areas in the Glaciated Northeastern US Watersheds under Variable Climate Conditions

    Science.gov (United States)

    Steenhuis, T. S.; Azzaino, Z.; Hoang, L.; Pacenka, S.; Worqlul, A. W.; Mukundan, R.; Stoof, C.; Owens, E. M.; Richards, B. K.

    2017-12-01

    The New York City source watersheds in the Catskill Mountains' humid, temperate climate has long-term hydrological and water quality monitoring data It is one of the few catchments where implementation of source and landscape management practices has led to decreased phosphorus concentration in the receiving surface waters. One of the reasons is that landscape measures correctly targeted the saturated variable source runoff areas (VSA) in the valley bottoms as the location where most of the runoff and other nonpoint pollutants originated. Measures targeting these areas were instrumental in lowering phosphorus concentration. Further improvements in water quality can be made based on a better understanding of the flow processes and water table fluctuations in the VSA. For that reason, we instrumented a self-contained upland variable source watershed with a landscape characteristic of a soil underlain by glacial till at shallow depth similar to the Catskill watersheds. In this presentation, we will discuss our experimental findings and present a mathematical model. Variable source areas have a small slope making gravity the driving force for the flow, greatly simplifying the simulation of the flow processes. The experimental data and the model simulations agreed for both outflow and water table fluctuations. We found that while the flows to the outlet were similar throughout the year, the discharge of the VSA varies greatly. This was due to transpiration by the plants which became active when soil temperatures were above 10oC. We found that shortly after the temperature increased above 10oC the baseflow stopped and only surface runoff occurred when rainstorms exceeded the storage capacity of the soil in at least a portion of the variable source area. Since plant growth in the variable source area was a major variable determining the base flow behavior, changes in temperature in the future - affecting the duration of the growing season - will affect baseflow and

  15. Chemistry Notes

    Science.gov (United States)

    School Science Review, 1976

    1976-01-01

    Described are eight chemistry experiments and demonstrations applicable to introductory chemistry courses. Activities include: measure of lattice enthalpy, Le Chatelier's principle, decarboxylation of soap, use of pocket calculators in pH measurement, and making nylon. (SL)

  16. Chemistry Dashboard

    Science.gov (United States)

    The Chemistry Dashboard is part of a suite of dashboards developed by EPA to help evaluate the safety of chemicals. The Chemistry Dashboard provides access to a variety of information on over 700,000 chemicals currently in use.

  17. Understanding of crop phenology using satellite-based retrievals and climate factors – a case study on spring maize in Northeast China plain

    International Nuclear Information System (INIS)

    Shuai, Yanmin; Xie, Donghui; Wang, Peijuan; Wu, Menxin

    2014-01-01

    Land surface phenology is an efficient bio-indicator for monitoring terrestrial ecosystem variation in response to climate change. Numerous studies point out climate change plays an important role in modulating vegetation phenological events, especially in agriculture. In turn, surface changes caused by geo-biological processes can affect climate transition regionally and perhaps globally, as concluded by Intergovernmental Panel on Climate Change (IPCC) in 2001. Large amounts of research concluded that crops, as one of the most sensitive bio-indicators for climate change, can be strongly influenced by local weather such as temperature, moisture and radiation. Thus, investigating the details of weather impact and the feedback from crops can help improve our understanding of the interaction between crops and climate change at satellite scale. Our efforts start from this point, via case studies over the famous agriculture region in the Northeast China's plain to examine the response of spring maize under temperature and moisture stress. MODIS-based daily green vegetation information together with frequent field specification of the surface phenology as well as continuous measurements of the routine climatic factors during seven years (2003-2009) is used in this paper. Despite the obvious difference in scale between satellite estimations and field observations, the inter- and intra-annual variation of maize in seven-years' growth was captured successfully over three typical spring maize regions (Fuyu, Changling, and Hailun) in Northeast China. The results demonstrate that weather conditions such as changes of temperature and moisture stress provide considerable contribution to the year-to-year variations in the timing of spring maize phenological events

  18. Predicting Effects of Climate Change on Habitat Suitability of Red Spruce (Picea rubens Sarg. in the Southern Appalachian Mountains of the USA: Understanding Complex Systems Mechanisms through Modeling

    Directory of Open Access Journals (Sweden)

    Kyung Ah Koo

    2015-04-01

    Full Text Available Alpine, subalpine and boreal tree species, of low genetic diversity and adapted to low optimal temperatures, are vulnerable to the warming effects of global climate change. The accurate prediction of these species’ distributions in response to climate change is critical for effective planning and management. The goal of this research is to predict climate change effects on the distribution of red spruce (Picea rubens Sarg. in the Great Smoky Mountains National Park (GSMNP, eastern USA. Climate change is, however, conflated with other environmental factors, making its assessment a complex systems problem in which indirect effects are significant in causality. Predictions were made by linking a tree growth simulation model, red spruce growth model (ARIM.SIM, to a GIS spatial model, red spruce habitat model (ARIM.HAB. ARIM.SIM quantifies direct and indirect interactions between red spruce and its growth factors, revealing the latter to be dominant. ARIM.HAB spatially distributes the ARIM.SIM simulations under the assumption that greater growth reflects higher probabilities of presence. ARIM.HAB predicts the future habitat suitability of red spruce based on growth predictions of ARIM.SIM under climate change and three air pollution scenarios: 10% increase, no change and 10% decrease. Results show that suitable habitats shrink most when air pollution increases. Higher temperatures cause losses of most low-elevation habitats. Increased precipitation and air pollution produce acid rain, which causes loss of both low- and high-elevation habitats. The general prediction is that climate change will cause contraction of red spruce habitats at both lower and higher elevations in GSMNP, and the effects will be exacerbated by increased air pollution. These predictions provide valuable information for understanding potential impacts of global climate change on the spatiotemporal distribution of red spruce habitats in GSMNP.

  19. Understanding of crop phenology using satellite-based retrievals and climate factors - a case study on spring maize in Northeast China plain

    Science.gov (United States)

    Shuai, Yanmin; Xie, Donghui; Wang, Peijuan; Wu, Menxin

    2014-03-01

    Land surface phenology is an efficient bio-indicator for monitoring terrestrial ecosystem variation in response to climate change. Numerous studies point out climate change plays an important role in modulating vegetation phenological events, especially in agriculture. In turn, surface changes caused by geo-biological processes can affect climate transition regionally and perhaps globally, as concluded by Intergovernmental Panel on Climate Change (IPCC) in 2001. Large amounts of research concluded that crops, as one of the most sensitive bio-indicators for climate change, can be strongly influenced by local weather such as temperature, moisture and radiation. Thus, investigating the details of weather impact and the feedback from crops can help improve our understanding of the interaction between crops and climate change at satellite scale. Our efforts start from this point, via case studies over the famous agriculture region in the Northeast China's plain to examine the response of spring maize under temperature and moisture stress. MODIS-based daily green vegetation information together with frequent field specification of the surface phenology as well as continuous measurements of the routine climatic factors during seven years (2003-2009) is used in this paper. Despite the obvious difference in scale between satellite estimations and field observations, the inter- and intra-annual variation of maize in seven-years' growth was captured successfully over three typical spring maize regions (Fuyu, Changling, and Hailun) in Northeast China. The results demonstrate that weather conditions such as changes of temperature and moisture stress provide considerable contribution to the year-to-year variations in the timing of spring maize phenological events.

  20. Positronium chemistry

    CERN Document Server

    Green, James

    1964-01-01

    Positronium Chemistry focuses on the methodologies, reactions, processes, and transformations involved in positronium chemistry. The publication first offers information on positrons and positronium and experimental methods, including mesonic atoms, angular correlation measurements, annihilation spectra, and statistical errors in delayed coincidence measurements. The text then ponders on positrons in gases and solids. The manuscript takes a look at the theoretical chemistry of positronium and positronium chemistry in gases. Topics include quenching, annihilation spectrum, delayed coincidence

  1. Aquatic Chemistry

    International Nuclear Information System (INIS)

    Kim, Dong Yeun; Kim, Oh Sik; Kim, Chang Guk; Park, Cheong Gil; Lee, Gwi Hyeon; Lee, Cheol Hui

    1987-07-01

    This book deals aquatic chemistry, which treats water and environment, chemical kinetics, chemical balance like dynamical characteristic, and thermodynamics, acid-base chemistry such as summary, definition, kinetics, and PH design for mixture of acid-base chemistry, complex chemistry with definition, and kinetics, precipitation and dissolution on summary, kinetics of precipitation and dissolution, and balance design oxidation and resolution with summary, balance of oxidation and resolution.

  2. Combinatorial chemistry

    DEFF Research Database (Denmark)

    Nielsen, John

    1994-01-01

    An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds.......An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds....

  3. Piloting a Geoscience Literacy Exam for Assessing Students' Understanding of Earth, Climate, Atmospheric and Ocean Science Concepts

    Science.gov (United States)

    Steer, D. N.; Iverson, E. A.; Manduca, C. A.

    2013-12-01

    This research seeks to develop valid and reliable questions that faculty can use to assess geoscience literacy across the curriculum. We are particularly interested on effects of curricula developed to teach Earth, Climate, Atmospheric, and Ocean Science concepts in the context of societal issues across the disciplines. This effort is part of the InTeGrate project designed to create a population of college graduates who are poised to use geoscience knowledge in developing solutions to current and future environmental and resource challenges. Details concerning the project are found at http://serc.carleton.edu/integrate/index.html. The Geoscience Literacy Exam (GLE) under development presently includes 90 questions. Each big idea from each literacy document can be probed using one or more of three independent questions: 1) a single answer, multiple choice question aimed at basic understanding or application of key concepts, 2) a multiple correct answer, multiple choice question targeting the analyzing to analysis levels and 3) a short essay question that tests analysis or evaluation cognitive levels. We anticipate multiple-choice scores and the detail and sophistication of essay responses will increase as students engage with the curriculum. As part of the field testing of InTeGrate curricula, faculty collected student responses from classes that involved over 700 students. These responses included eight pre- and post-test multiple-choice questions that covered various concepts across the four literacies. Discrimination indices calculated from the data suggest that the eight tested questions provide a valid measure of literacy within the scope of the concepts covered. Student normalized gains across an academic term with limited InTeGrate exposure (typically two or fewer weeks of InTeGrate curriculum out of 14 weeks) were found to average 16% gain. A small set of control data (250 students in classes from one institution where no InTeGrate curricula were used) was

  4. Effective Chemistry Communication in Informal Environments

    Science.gov (United States)

    National Academies Press, 2016

    2016-01-01

    Chemistry plays a critical role in daily life, impacting areas such as medicine and health, consumer products, energy production, the ecosystem, and many other areas. Communicating about chemistry in informal environments has the potential to raise public interest and understanding of chemistry around the world. However, the chemistry community…

  5. Changes in Tibetan Plateau latitude as an important factor for understanding East Asian climate since the Eocene: A modeling study

    Science.gov (United States)

    Zhang, Ran; Jiang, Dabang; Ramstein, Gilles; Zhang, Zhongshi; Lippert, Peter C.; Yu, Entao

    2018-02-01

    Previous climate modeling studies suggest that the surface uplift of the Himalaya-Tibetan plateau (TP) is a crucial parameter for the onset and intensification of the East Asian monsoon during the Cenozoic. Most of these studies have only considered the Himalaya-TP in its present location between ∼26°N and ∼40°N despite numerous recent geophysical studies that reconstruct the Himalaya-TP 10° or more of latitude to the south during the early Paleogene. We have designed a series of climate simulations to explore the sensitivity of East Asian climate to the latitude of the Himalaya-TP. Our simulations suggest that the East Asian climate strongly depends on the latitude of the Himalaya-TP. Surface uplift of a proto-Himalaya-TP in the subtropics intensifies aridity throughout inland Asia north of ∼40°N and enhances precipitation over East Asia. In contrast, the rise of a proto-Himalaya-TP in the tropics only slightly intensifies aridity in inland Asia north of ∼40°N, and slightly increases precipitation in East Asia. Importantly, this climate sensitivity to the latitudinal position of the Himalaya-TP is non-linear, particularly for precipitation across East Asia. The simulated precipitation patterns across East Asia are significantly different between our scenarios in which a proto-plateau is situated between ∼11°N and ∼25°N and between ∼20°N and ∼33°N, but they are similar when the plateau translates northward from between ∼20°N and ∼33°N to its modern position. Our simulations, when interpreted in the context of climate proxy data from Central Asia, support geophysically-based paleogeographic reconstructions in which the southern margin of a modern-elevation proto-Himalaya-TP was located at ∼20°N or further north in the Eocene.

  6. Understanding the molecular-level chemistry of water plasmas and the effects of surface modification and deposition on a selection of oxide substrates

    Science.gov (United States)

    Trevino, Kristina J.

    2011-12-01

    This dissertation first examines electrical discharges used to study wastewater samples for contaminant detection and abatement. Two different water samples contaminated with differing concentrations of either methanol (MeOH) or methyl tert-butyl ether (MTBE) were used to follow breakdown mechanisms. Emission from CO* was used to monitor the contaminant and for molecular breakdown confirmation through actinometric OES as it can only arise from the carbon-based contaminant in either system. Detection was achieved at concentrations as low as 0.01 ppm, and molecular decomposition was seen at a variety of plasma parameters. This dissertation also explores the vibrational (thetaV), rotational (thetaR) and translational (thetaT) temperatures for a range of diatomic species in different plasma systems. For the majority of the plasma species studied, thetaV are much higher than thetaR and thetaT. This suggests that more energy is partitioned into the vibrational degrees of freedom in our plasmas. The thetaR reported are significantly lower in all the plasma systems studied and this is a result of radical equilibration to the plasma gas temperature. thetaT values show two characteristics; (1) they are less than the thetaV and higher than the theta R and (2) show varying trends with plasma parameters. Radical energetics were examined through comparison of thetaR, thetaT, and thetaV, yielding significant insight on the partitioning of internal and kinetic energies in plasmas. Correlations between energy partitioning results and corresponding radical surface scattering coefficients obtained using our imaging of radicals interacting with surfaces (IRIS) technique are also presented. Another aspect of plasma process chemistry, namely surface modification via plasma treatment, was investigated through characterization of metal oxides (SiOxNy, nat-SiO2, and dep-SiO2) following their exposure to a range of plasma discharges. Here, emphasis was placed on the surface wettability

  7. Understanding developing country stances on post-2012 climate change negotiations: Comparative analysis of Brazil, China, India, Mexico, and South Africa

    International Nuclear Information System (INIS)

    Rong Fang

    2010-01-01

    An essential issue in future climate negotiations is how to bring developing countries on board. This paper proposes and applies the two-level interest-based model to analyze the factors that affect the likely stances of the 'Plus Five' countries (Brazil, China, India, Mexico, and South Africa) on international climate negotiations. This study finds mitigation capability to be a crucial factor which consists of at least such sub-factors as per capita income, energy endowment, and economic structure, while ecological vulnerability does not seem to play an important role which includes reductions in agricultural outputs, sea-level rise, climate-related natural disasters, and others. The paper proposes six options in an ascending order of stringency that the Plus Five are likely to adopt. The paper suggests that the 'Basic Four' (the Plus Five excluding Mexico), particularly China and India, are less likely to adopt a voluntary commitment to an emissions cap on the national economy in the near future than Mexico, which has the highest mitigation capability among all five. The Basic Four are likely to adopt more stringent climate polices with increasing mitigation capabilities, suggesting the importance of effective international financial and technology transfer mechanisms and further tighten emission reduction targets from developed countries.

  8. Student Understanding of Climate Change: Influences of College Major and Environmental Group Membership on Undergraduate Knowledge and Mental Models

    Science.gov (United States)

    Huxster, Joanna

    2013-01-01

    A consensus has been reached within the scientific community concerning the occurrence of climate change and its anthropogenic causes. Outside of this community, however, there continues to be considerable debate and confusion surrounding the topic. The government mitigation strategies and political leadership needed for this issue will require…

  9. Does an understanding of ecosystems responses to rainfall pulses improve predictions of responses of drylands to climate change?

    Science.gov (United States)

    Drylands will experience more intense and frequent droughts and floods. Ten-year field experiments manipulating the amount and variability of precipitation suggest that we cannot predict responses of drylands to climate change based on pulse experimentation. Long-term drought experiments showed no e...

  10. Interactive effects of air pollution and climate change on forest ecosystems in the United States: current understanding and future scenarios

    Science.gov (United States)

    Andrzej Bytnerowicz; Mark Fenn; Steven McNulty; Fengming Yuan; Afshin Pourmokhtarian; Charles Driscoll; Tom Meixner

    2013-01-01

    A review of the current status of air pollution and climate change (CC) in the United States from a perspective of their impacts on forest ecosystems is provided. Ambient ozone (O3) and nitrogen (N) deposition have important and widespread ecological impacts in U.S. forests. Effects of sulphurous (S) air pollutants and other trace pollutants have...

  11. Understanding developing country stances on post-2012 climate change negotiations: Comparative analysis of Brazil, China, India, Mexico, and South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Rong Fang, E-mail: rongfang98@hotmail.co [Laboratory on International Law and Regulation, School of International Relations and Pacific Studies, University of California, San Diego, 92093 (United States); Center for Industrial Development and Environmental Governance, School of Public Policy and Management, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    An essential issue in future climate negotiations is how to bring developing countries on board. This paper proposes and applies the two-level interest-based model to analyze the factors that affect the likely stances of the 'Plus Five' countries (Brazil, China, India, Mexico, and South Africa) on international climate negotiations. This study finds mitigation capability to be a crucial factor which consists of at least such sub-factors as per capita income, energy endowment, and economic structure, while ecological vulnerability does not seem to play an important role which includes reductions in agricultural outputs, sea-level rise, climate-related natural disasters, and others. The paper proposes six options in an ascending order of stringency that the Plus Five are likely to adopt. The paper suggests that the 'Basic Four' (the Plus Five excluding Mexico), particularly China and India, are less likely to adopt a voluntary commitment to an emissions cap on the national economy in the near future than Mexico, which has the highest mitigation capability among all five. The Basic Four are likely to adopt more stringent climate polices with increasing mitigation capabilities, suggesting the importance of effective international financial and technology transfer mechanisms and further tighten emission reduction targets from developed countries.

  12. Understanding developing country stances on post-2012 climate change negotiations. Comparative analysis of Brazil, China, India, Mexico, and South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Rong, Fang [Laboratory on International Law and Regulation, School of International Relations and Pacific Studies, University of California, San Diego, 92093 (United States); Center for Industrial Development and Environmental Governance, School of Public Policy and Management, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    An essential issue in future climate negotiations is how to bring developing countries on board. This paper proposes and applies the two-level interest-based model to analyze the factors that affect the likely stances of the Plus Five countries (Brazil, China, India, Mexico, and South Africa) on international climate negotiations. This study finds mitigation capability to be a crucial factor which consists of at least such sub-factors as per capita income, energy endowment, and economic structure, while ecological vulnerability does not seem to play an important role which includes reductions in agricultural outputs, sea-level rise, climate-related natural disasters, and others. The paper proposes six options in an ascending order of stringency that the Plus Five are likely to adopt. The paper suggests that the Basic Four (the Plus Five excluding Mexico), particularly China and India, are less likely to adopt a voluntary commitment to an emissions cap on the national economy in the near future than Mexico, which has the highest mitigation capability among all five. The Basic Four are likely to adopt more stringent climate polices with increasing mitigation capabilities, suggesting the importance of effective international financial and technology transfer mechanisms and further tighten emission reduction targets from developed countries. (author)

  13. Understanding the impacts of climate change and human activities on streamflow: a case study of the Soan River basin, Pakistan

    Science.gov (United States)

    Shahid, Muhammad; Cong, Zhentao; Zhang, Danwu

    2017-09-01

    Climate change and land use change are the two main factors that can alter the catchment hydrological process. The objective of this study is to evaluate the relative contribution of climate change and land use change to runoff change of the Soan River basin. The Mann-Kendal and the Pettit tests are used to find out the trends and change point in hydroclimatic variables during the period 1983-2012. Two different approaches including the abcd hydrological model and the Budyko framework are then used to quantify the impact of climate change and land use change on streamflow. The results from both methods are consistent and show that annual runoff has significantly decreased with a change point around 1997. The decrease in precipitation and increases in potential evapotranspiration contribute 68% of the detected change while the rest of the detected change is due to land use change. The land use change acquired from Landsat shows that during post-change period, the agriculture has increased in the Soan basin, which is in line with the positive contribution of land use change to runoff decrease. This study concludes that aforementioned methods performed well in quantifying the relative contribution of land use change and climate change to runoff change.

  14. Undergraduate Understanding of Climate Change: The Influences of College Major and Environmental Group Membership on Survey Knowledge Scores

    Science.gov (United States)

    Huxster, Joanna K.; Uribe-Zarain, Ximena; Kempton, Willett

    2015-01-01

    A survey covering the scientific and social aspects of climate change was administered to examine U.S. undergraduate student mental models, and compare knowledge between groups based on major and environmental group membership. A Knowledge Score (scale 0-35, mean score = 17.84) was generated for respondents at two, central East Coast, U.S.…

  15. The physical basis of chemistry

    CERN Document Server

    Warren, Warren S

    2000-01-01

    If the text you're using for general chemistry seems to lack sufficient mathematics and physics in its presentation of classical mechanics, molecular structure, and statistics, this complementary science series title may be just what you're looking for. Written for the advanced lower-division undergraduate chemistry course, The Physical Basis of Chemistry, Second Edition, offers students an opportunity to understand and enrich the understanding of physical chemistry with some quantum mechanics, the Boltzmann distribution, and spectroscopy. Posed and answered are questions concerning eve

  16. Understanding the dynamics in distribution of invasive alien plant species under predicted climate change in Western Himalaya.

    Science.gov (United States)

    Thapa, Sunil; Chitale, Vishwas; Rijal, Srijana Joshi; Bisht, Neha; Shrestha, Bharat Babu

    2018-01-01

    Invasive alien plant species (IAPS) can pose severe threats to biodiversity and stability of native ecosystems, therefore, predicting the distribution of the IAPS plays a crucial role in effective planning and management of ecosystems. In the present study, we use Maximum Entropy (MaxEnt) modelling approach to predict the potential of distribution of eleven IAPS under future climatic conditions under RCP 2.6 and RCP 8.5 in part of Kailash sacred landscape region in Western Himalaya. Based on the model predictions, distribution of most of these invasive plants is expected to expand under future climatic scenarios, which might pose a serious threat to the native ecosystems through competition for resources in the study area. Native scrublands and subtropical needle-leaved forests will be the most affected ecosystems by the expansion of these IAPS. The present study is first of its kind in the Kailash Sacred Landscape in the field of invasive plants and the predictions of potential distribution under future climatic conditions from our study could help decision makers in planning and managing these forest ecosystems effectively.

  17. Organic chemistry

    International Nuclear Information System (INIS)

    2003-08-01

    This book with sixteen chapter explains organic chemistry on linkage isomerism such as alkane, cycloalkane, alkene, aromatic compounds, stereo selective isomerization, aromatic compounds, stereo selective isomerization, organic compounds, stereo selective isomerization, organic halogen compound, alcohol, ether, aldehyde and ketone, carboxylic acid, dicarboxylic acid, fat and detergent, amino, carbohydrate, amino acid and protein, nucleotide and nucleic acid and spectroscopy, a polymer and medical chemistry. Each chapter has introduction structure and characteristic and using of organic chemistry.

  18. U.S. Geological Survey climate and land use change science strategy: a framework for understanding and responding to global change

    Science.gov (United States)

    Burkett, Virginia R.; Kirtland, David A.; Taylor, Ione L.; Belnap, Jayne; Cronin, Thomas M.; Dettinger, Michael D.; Frazier, Eldrich L.; Haines, John W.; Loveland, Thomas R.; Milly, Paul C.D.; ,; ,; ,; Robert, S.; Maule, Alec G.; McMahon, Gerard; Striegl, Robert G.

    2013-01-01

    The U.S. Geological Survey (USGS), a nonregulatory Federal science agency with national scope and responsibilities, is uniquely positioned to serve the Nation’s needs in understanding and responding to global change, including changes in climate, water availability, sea level, land use and land cover, ecosystems, and global biogeochemical cycles. Global change is among the most challenging and formidable issues confronting our Nation and society. Scientists agree that global environmental changes during this century will have far-reaching societal implications (Intergovernmental Panel on Climate Change, 2007; U.S. Global Change Research Program, 2009). In the face of these challenges, the Nation can benefit greatly by using natural science information in decisionmaking.

  19. Chemistry Technology

    Data.gov (United States)

    Federal Laboratory Consortium — Chemistry technology experts at NCATS engage in a variety of innovative translational research activities, including:Design of bioactive small molecules.Development...

  20. Technetium chemistry

    International Nuclear Information System (INIS)

    Burns, C.; Bryan, J.; Cotton, F.; Ott, K.; Kubas, G.; Haefner, S.; Barrera, J.; Hall, K.; Burrell, A.

    1996-01-01

    Technetium chemistry is a young and developing field. Despite the limited knowledge of its chemistry, technetium is the workhorse for nuclear medicine. Technetium is also a significant environmental concern because it is formed as a byproduct of nuclear weapons production and fission-power generators. Development of new technetium radio-pharmaceuticals and effective environmental control depends strongly upon knowledge of basic technetium chemistry. The authors performed research into the basic coordination and organometallic chemistry of technetium and used this knowledge to address nuclear medicine and environmental applications. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL)

  1. Understanding the impact of changes in land-use/land-cover and atmospheric dust loading and their coupling upon climate change in the NEESPI study domain drylands

    Science.gov (United States)

    Sokolik, I.; Darmenova, K.; Darmenov, A.; Xi, X.; Shao, Y.; Marticorena, B.; Bergametti, G.

    2009-04-01

    The Northern Eurasia Earth Science Partnership Initiative (NEESPI) Science Plan identifies atmospheric aerosols and pollutions and their impacts on and interactions with the Earth systems (and terrestrial ecosystem dynamics in particular) as a cross-cutting topic of special interest. Wind-blown mineral dust, being an important atmospheric constituent in the NEESPI drylands, can exert strong radiative forcing upon the regional climate and cause adverse impacts on human and ecosystems health. The impacts of dust storms are not only regional, but may affect areas thousands of kilometers from their source, making interactions between climate change, land use and dust aerosols globally relevant. Given the intimate coupling between the land processes and wind-blown atmospheric dust and their importance in the climate system, an improved understanding of how land-use/land-cover changes affect Asian dust and associated feedbacks is needed to make assessments of climate change more realistic. To improve the ability to predict impacts of dust on the climate and environment, we have been developing a coupled regional dust modeling system for Central and East Asia. This includes implementation of a new dust module DuMo into the NCAR Weather Research and Forecasting (WRF) model as well as a coupled treatment of dust aerosol interactions with atmospheric radiation. The dust module DuMo includes two different state-of-the art schemes that explicitly account for land properties (including vegetation and soil geomorphology and moisture) and meteorology, and, thus, improves modeling capability. The focus of this talk will be on the impact of atmospheric dust on the surface energy balance and photosynthetically active radiation (PAR). Both processes play a key role in the ecosystem functioning as well as overall in land-atmosphere interactions, but they are rarely considered in an integrated fashion.

  2. Climate change

    International Nuclear Information System (INIS)

    2010-01-01

    Based on contributions on 120 French and foreign scientists representing different disciplines (mathematics, physics, mechanics, chemistry, biology, medicine, and so on), this report proposes an overview of the scientific knowledge and debate about climate change. It discusses the various indicators of climate evolution (temperatures, ice surfaces, sea level, biological indicators) and the various factors which may contribute to climate evolution (greenhouse gases, solar radiation). It also comments climate evolutions in the past as they can be investigated through some geological, thermal or geochemical indicators. Then, the authors describe and discuss the various climate mechanisms: solar activity, oceans, ice caps, greenhouse gases. In a third part, the authors discuss the different types of climate models which differ by the way they describe processes, and the current validation process for these models

  3. Global observation of EKC hypothesis for CO2, SOx and NOx emission: A policy understanding for climate change mitigation in Bangladesh

    International Nuclear Information System (INIS)

    Danesh Miah, Md.; Farhad Hossain Masum, Md.; Koike, Masao

    2010-01-01

    Environmental Kuznets Curve (EKC) hypothesis is critical to understanding the developmental path of a nation in relation to its environment. How the effects of economic development processes dictate environmental changes can be found through the study of EKC. To understand the EKC phenomena for climate change, this study was undertaken by reviewing the available literature. As CO 2 , SO x and NO x are the significant greenhouse gases (GHG) responsible for global warming, thus leading to climate change, the study focused on those GHGs for EKC consideration. With an understanding of the different EKC trajectories, an attempt was made to determine the implications for the economic development of Bangladesh in regards to the EKC. It was shown that EKC for CO 2 was following a monotonous straight line in most cases. SO x were shown to follow the full trajectory of the EKC in most situations and NO x was shown the hope only for the developed countries getting the low-income turning point. The type of economic policy that Bangladesh should follow in regards to the discussed pollutants and sources is also revealed. From these discussions, contributions to policy stimulation in Bangladesh are likely to be made.

  4. Fossil pollen analysis of U-Pb-dated speleothems: a new approach to understanding Pliocene terrestrial climate evolution

    Science.gov (United States)

    Sniderman, K.; Woodhead, J. D.; Porch, N.

    2013-12-01

    The nature of terrestrial environments in the Southern Hemisphere during the warm Pliocene is poorly known. This is not only because there are few published fossil records, but also because many of the existing records have very limited age control. For example, in Australia, the ages of most putative 'mid-Pliocene' fossil pollen records are based solely on biostratigraphic correlation. These correlations for the most part do not have the resolution to differentiate late Miocene from early Pliocene environments, let alone to pinpoint a Myrtaceae, with no sign of extensive cheonopod shrubland. Climate reconstructions based on presence of taxa now absent from the Nullarbor suggest that mean annual rainfall and/or summer rainfall were 50-100% higher than today. Second, vegetation near the Miocene/Pliocene boundary (at c. 5.5 Ma) was dominated by Gyrostemonaceae and Casuarinaceae. We interpret this transition from earliest Pliocene to mid-late Pliocene vegetation as an increase in biological productivity, from possibly very sparse woodland to forest, presumably in response to increased effective moisture in the mid-late Pliocene. Hence climate evolution within the Pliocene was substantial enough to drive complete biome turnover. Explanations of the mechanisms that drove Pliocene warmth thus need to explain not only why the Pliocene warm interval was terminated by Pleistocene cooling, but also why the mid-late Pliocene differed substantially from the earliest Pliocene. Our novel use of U/Pb dating of speleothem pollen records demonstrates that previous syntheses of 'mid-Pliocene' vegetation may, in regions with poor age control, have conflated biomes growing within different climatic regimes during different stages within the Pliocene.

  5. Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP

    Directory of Open Access Journals (Sweden)

    Y. H. Lee

    2013-03-01

    Full Text Available As part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP, we evaluate the historical black carbon (BC aerosols simulated by 8 ACCMIP models against observations including 12 ice core records, long-term surface mass concentrations, and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using offline models with prescribed meteorology from 1996–2000. We evaluate the vertical profile of BC snow concentrations from these offline simulations using the recent BC snowpack measurements. Despite using the same BC emissions, the global BC burden differs by approximately a factor of 3 among models due to differences in aerosol removal parameterizations and simulated meteorology: 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However, the global BC burden from preindustrial to present-day increases by 2.5–3 times with little variation among models, roughly matching the 2.5-fold increase in total BC emissions during the same period. We find a large divergence among models at both Northern Hemisphere (NH and Southern Hemisphere (SH high latitude regions