WorldWideScience

Sample records for underrepresented minority scientists

  1. Assessing the efficacy of advancing underrepresented minority groups through AGU's Student Programs

    Science.gov (United States)

    Marasco, L.; Hurtado, C.; Gottschall, H.; Meisenhelder, K.; Hankin, E. R.; Harwell, D. E.

    2017-12-01

    The American Geophysical Union (AGU) strives to cultivate a diverse and inclusive organization that uses its position to build the global talent pool in Earth and space science. To cultivate a diverse talent pool, AGU must also foster a diverse student member population. The two largest AGU programs serving students are the Outstanding Student Paper Award (OSPA) and the Student Grants programs. OSPA allows students to practice their presentation skills and receive valuable feedback from experienced scientists. Over 3,000 students participated in OSPA at Fall Meeting 2016. The Student Grants program includes a suite of 14 travel and research grant opportunities. Over 2,000 students applied for grant opportunities in 2016 and 246 grants and fellowships were awarded. The OSPA and Student Grants programs also engage non-student members through volunteering opportunities for program roles, such as OSPA judge or grant reviewer. This presentation will look at the temporal participation trends of underrepresented minority groups in AGU's OSPA and Student Grants programs. The participation of underrepresented minority groups will also be compared before and after the implementation of policy changes to the Student Grants program in 2012.

  2. Research and Education Program for Underrepresented Minority Engineering Students in the JIAFS

    Science.gov (United States)

    Whitesides, John L.

    2000-01-01

    This paper is a final report on Research and Education Program for Underrepresented Minority Engineering Students in the JIAFS (Joint Institute for Advancement of Flight Sciences). The objectives of the program were to conduct research at the NASA Langley Research Center and to increase the number of underrepresented minorities in aerospace engineering.

  3. Motivation and career outcomes of a precollege life science experience for underrepresented minorities

    Science.gov (United States)

    Ortega, Robbie Ray

    Minorities continue to be underrepresented in professional science careers. In order to make Science, Technology, Engineering, and Mathematics (STEM) careers more accessible for underrepresented minorities, informal science programs must be utilized to assist in developing interest in STEM for minority youth. In addition to developing interest in science, informal programs must help develop interpersonal skills and leadership skills of youth, which allow youth to develop discrete social behaviors while creating positive and supportive communities thus making science more practical in their lives. This study was based on the premise that introducing underrepresented youth to the agricultural and life sciences through an integrated precollege experience of leadership development with university faculty, scientist, and staff would help increase youths' interest in science, while also increasing their interest to pursue a STEM-related career. Utilizing a precollege life science experience for underrepresented minorities, known as the Ag Discovery Camp, 33 middle school aged youth were brought to the Purdue University campus to participate in an experience that integrated a leadership development program with an informal science education program in the context of agriculture. The week-long program introduced youth to fields of agriculture in engineering, plant sciences, food sciences, and entomology. The purpose of the study was to describe short-term and intermediate student outcomes in regards to participants' interests in career activities, science self-efficacy, and career intentions. Youth were not interested in agricultural activities immediately following the precollege experience. However, one year after the precollege experience, youth expressed they were more aware of agriculture and would consider agricultural careers if their first career choice did not work out for them. Results also showed that the youth who participated in the precollege experience were

  4. CU-STARs: Promoting STEM Diversity by Addressing First-year Attrition of Underrepresented Minorities

    Science.gov (United States)

    Battersby, Cara; Silvia, Devin W.; Ellingson, Erica; Sturner, Andrew P.; Peck, Courtney

    2015-01-01

    Upon first entering university, the fraction of students interested in pursuing a STEM major are distributed according to societal demographics (with 25% being underrepresented minorities), but by graduation, the fraction of students receiving STEM degrees is unbalanced, with underrepresented minorities receiving only 15% of STEM bachelor's degrees. The CU-STARs (CU Science, Technology, and Astronomy Recruits) program at the University of Colorado, Boulder is targeted to address the main triggers of early career attrition for underrepresented minorities in STEM disciplines. A select group of students are given financial support through work-study at the Fiske planetarium on campus, while resources to address other triggers of attrition are available to the entire cohort of interested students (typically ~5-10 per year). These resources are designed to promote social engagement and mentorship, while also providing a support network and resources to combat inadequate high school preparation for STEM courses. We achieve these goals through activities that include social events, mentor meetings, free tutoring, and special events to meet and talk with scientists. The culmination of the program for the recruits are a series of high school outreach events in underserved areas (inner city and rural alike), in which they become the expert. The STARs are paid for their time and take the lead in planning, teaching, and facilitating programs for the high school students, including classroom presentations, interactive lab activities, solar observing, and star parties. The high school outreach events provide role models and STEM exposure for the underserved high school community while simultaneously cementing the personal achievements and successes for the STARs. CU-STARs is now in its 4th year and is still growing. We are beginning the process of formal assessments of the program's success. We present details of the program implementation, a discussion of potential obstacles

  5. Campus Climate and the Underrepresented Minority Engineering Student Experience: A Critical Race Study

    Science.gov (United States)

    Mayes, Terrance

    In the current technological era, the number of minorities in science, technology, engineering, and mathematics (STEM) is a crucial factor in predetermining the economic growth of the United States. Since the minority population is growing at much faster rates than the non-minority population, the lack of proportionate production of minority engineers poses a threat to the United States' ability to remain a global competitor in technological innovation. Sixty-three per cent (63%) of undergraduate students who enter engineering majors continue on to graduate in that major. The graduation rate, however, for African-American, Hispanic, and Native-American students in engineering is significantly lower at 39%. As this group represents only a small fraction of the annual student enrollment, engineering programs are graduating these minority groups at rates that are greatly disproportionate to United States demographics. Therefore, researchers are thoroughly investigating certain initiatives that promote academic success among underrepresented minority students in engineering. Colleges and universities have attempted to address the growing achievement gap between underrepresented minority and non-minority engineering students, predominately through various deficit-based interventions, focusing on the student's flaws and problems. As the pipeline for minorities in engineering continues to narrow, it begs the question of whether institutions are focusing on the right solutions to the problem. Critical Race Theory scholars argue that colleges and universities must address institutional climate issues around students, such as racism, microaggressions, and marginalization, before members of oppressed groups can truly succeed. This dissertation explored the unique experiences of underrepresented minority engineering students in a predominately White and Asian campus.

  6. Experiences of Underrepresented Minorities in Doctoral Nursing Programs at Predominantly White Universities

    Science.gov (United States)

    Gregory, Linda D.

    2017-01-01

    The representation of racial and ethnic minorities in the nursing workforce is disproportionately low in comparison with their representation in the general population in the United States. Despite diversity initiatives, the slight increase in enrollment of under-represented minority (URM) students in graduate schools of nursing at predominantly…

  7. A Success Story: Recruiting & Retaining Underrepresented Minority Doctoral Students in Biomedical Engineering

    Science.gov (United States)

    Reichert, William M.

    2006-01-01

    There are various ways to succeed in recruiting and retaining underrepresented minority (URM) doctoral students; but key to them all is the creation of real student-faculty relationships, which demonstrate by example that diversity and excellence can and should coexist. This cannot be delegated or done indirectly, and no amount of outreach, campus…

  8. Leadership Competencies: Do They Differ for Women and Under-Represented Minority Faculty Members?

    Science.gov (United States)

    Skarupski, Kimberly A.; Levine, Rachel B.; Yang, Wan Rou; González-Fernández, Marlís; Bodurtha, Joann; Barone, Michael A.; Fivush, Barbara

    2017-01-01

    The literature on leadership competencies does not include an understanding of how stakeholders perceive competencies for women and under-represented minority faculty members. We surveyed three groups of leaders (N = 113) to determine their perceptions of the importance of 23 leadership competencies. All three groups endorsed the same five…

  9. Summer research training provides effective tools for underrepresented minorities to obtain doctoral level degrees

    Science.gov (United States)

    The ethnic, racial, and cultural diversity of the USA is not reflected in its healthcare and biomedical workforce. Undergraduate research programs are used to encourage underrepresented minorities to pursue training for biomedical careers, but there is limited published data on doctoral degree compl...

  10. Examining issues of underrepresented minority students in introductory physics

    Science.gov (United States)

    Watkins, Jessica Ellen

    In this dissertation we examine several issues related to the retention of under-represented minority students in physics and science. In the first section, we show that in calculus-based introductory physics courses, the gender gap on the FCI is diminished through the use of interactive techniques, but in lower-level introductory courses, the gap persists, similar to reports published at other institutions. We find that under-represented racial minorities perform similar to their peers with comparable academic preparation on conceptual surveys, but their average exam grades and course grades are lower. We also examine student persistence in science majors; finding a significant relationship between pedagogy in an introductory physics course and persistence in science. In the second section, we look at student end-of-semester evaluations and find that female students rate interactive teaching methods a full point lower than their male peers. Looking more deeply at student interview data, we find that female students report more social issues related to the discussions in class and both male and female students cite feeling pressure to obtain the correct answer to clicker questions. Finally, we take a look an often-cited claim for gender differences in STEM participation: cognitive differences explain achievement differences in physics. We examine specifically the role of mental rotations in physics achievement and problem-solving, viewing mental rotations as a tool that students can use on physics problems. We first look at student survey results for lower-level introductory students, finding a low, but significant correlation between performance on a mental rotations test and performance in introductory physics courses. In contrast, we did not find a significant relationship for students in the upper-level introductory course. We also examine student problem-solving interviews to investigate the role of mental rotations on introductory problems.

  11. Values Affirmation Intervention Reduces Achievement Gap between Underrepresented Minority and White Students in Introductory Biology Classes

    Science.gov (United States)

    Jordt, Hannah; Eddy, Sarah L.; Brazil, Riley; Lau, Ignatius; Mann, Chelsea; Brownell, Sara E.; King, Katherine; Freeman, Scott

    2017-01-01

    Achievement gaps between underrepresented minority (URM) students and their white peers in college science, technology, engineering, and mathematics classrooms are persistent across many white-majority institutions of higher education. Attempts to reduce this phenomenon of underperformance through increasing classroom structure via active learning…

  12. U.S. Department of Energy student research participation programs. Underrepresented minorities in U.S. Department of Energy student research participation programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The purpose of this study was to identify those particular aspects of US Department of Energy (DOE) research participation programs for undergraduate and graduate students that are most associated with attracting and benefiting underrepresented minority students and encouraging them to pursue careers in science, engineering, and technology. A survey of selected former underrepresented minority participants, focus group analysis, and critical incident analysis serve as the data sources for this report. Data collected from underrepresented minority participants indicate that concerns expressed and suggestions made for conducting student research programs at DOE contractor facilities are not remarkably different from those made by all participants involved in such student research participation programs. With the exception of specific suggestions regarding recruitment, the findings summarized in this report can be interpreted to apply to all student research participants in DOE national laboratories. Clearly defined assignments, a close mentor-student association, good communication, and an opportunity to interact with other participants and staff are those characteristics that enhance any educational program and have positive impacts on career development.

  13. A Longitudinal Study of How Quality Mentorship and Research Experience Integrate Underrepresented Minorities into STEM Careers

    Science.gov (United States)

    Estrada, Mica; Hernandez, Paul R.; Schultz, P. Wesley

    2018-01-01

    African Americans, Latinos, and Native Americans are historically underrepresented minorities (URMs) among science, technology, engineering, and mathematics (STEM) degree earners. Viewed from a perspective of social influence, this pattern suggests that URMs do not integrate into the STEM academic community at the same rate as non-URM students.…

  14. Society of Pediatric Psychology Diversity Award: Training Underrepresented Minority Students in Psychology

    Science.gov (United States)

    Mitchell, Monica J.; Crosby, Lori E.

    2016-01-01

    Improving diversity, particularly among trainees and professionals from underrepresented ethnic minority backgrounds, has been a long-stated goal for the field of Psychology. Research has provided strategies and best practices, such as ensuring cultural sensitivity and relevance in coursework, clinical and research training, promoting a supportive and inclusive climate, providing access to cultural and community opportunities, and increasing insight and cultural competence among professionals (Rogers & Molina, 2006). Despite this, the rates of psychologists from ethnically diverse and underrepresented minority (URM) backgrounds remain low and few published studies have described programmatic efforts to increase diversity within the field. This paper describes the INNOVATIONS training model, which provides community and culturally related research experiences, graduate-school related advising, and mentoring to high school and college students. The paper also examines how the model may support enrollment of URM students in doctoral programs in psychology. Findings indicate that INNOVATIONS supported students’ transition from high school and college to graduate programs (with approximately 75% of students enrolling in Master’s and Doctoral programs). INNOVATIONS also supported students, including those from URM backgrounds, enrolling in doctoral programs (41.7%). Students who were trained in the research assistant track were most likely to enroll in psychology doctoral programs, perhaps as a result of the intensive time and training committed to research and clinical experiences. Data support the importance of research training for URM students pursuing psychology graduate study and the need to ensure cultural relevance of the training. Implications for clinical and pediatric psychology are discussed. PMID:28603680

  15. Is "Race-Neutral" Really Race-Neutral?: Disparate Impact towards Underrepresented Minorities in Post-209 UC System Admissions

    Science.gov (United States)

    Santos, Jose L.; Cabrera, Nolan L.; Fosnacht, Kevin J.

    2010-01-01

    Authors examine the proportion of undergraduate applications, admissions, and enrollments preceding, during, and after Proposition 209 while accounting for the relative growth in University of California eligibility for underrepresented minorities (URMs). They employed standard deviation analyses to measure dispersion of the URMs to non-URMs.…

  16. #Me_Who: Anatomy of Scholastic, Leadership, and Social Isolation of Underrepresented Minority Women in Academic Medicine.

    Science.gov (United States)

    Albert, Michelle A

    2018-05-22

    In academic medicine, under-represented minority women physician-scientists (URMWP)* are uncommon, particularly in leadership positions. Data from the American Association of Medical Colleges (AAMC) show that among internal medicine chairs, there are 12 Asian males, 10 African/American (blacks; 9 men), 7 Hispanics (2 females) and 137 whites (21 females). In the top 40 ranked cardiology programs, there are no female cardiology chiefs, whereas there are at least 10, 2, 1 and 24 Asian, black, Hispanic and white males respectively. There are more URMWP than URM males, yet URMWP are less likely to be professors and occupy leadership positions in academia. Specifically, among United States medical school faculty, relative proportions at assistant, associate and full professor levels according to race/ethnicity and gender have remained essentially unchanged over the past 20 years. AAMC information demonstrates that only 11%, 9%, 11% and 24% of Asian, black, Hispanic and white women are full professors compared with 21%, 18%, 19% and 36% of Asian, black, Hispanic and white men. Additionally, while there are representative proportions of women and Asians at the lowest faculty levels, they have not equitably progressed in academic medicine, likely reflecting discrimination and structural/organizational barriers that are also applicable to black and Hispanic females 1 .

  17. 'Speaking Truth' Protects Underrepresented Minorities' Intellectual Performance and Safety in STEM.

    Science.gov (United States)

    Ben-Zeev, Avi; Paluy, Yula; Milless, Katlyn L; Goldstein, Emily J; Wallace, Lyndsey; Márquez-Magaña, Leticia; Bibbins-Domingo, Kirsten; Estrada, Mica

    2017-06-01

    We offer and test a brief psychosocial intervention, Speaking Truth to EmPower (STEP), designed to protect underrepresented minorities' (URMs) intellectual performance and safety in science, technology, engineering, and math (STEM). STEP takes a 'knowledge as power' approach by: (a) providing a tutorial on stereotype threat (i.e., a social contextual phenomenon, implicated in underperformance and early exit) and (b) encouraging URMs to use lived experiences for generating be-prepared coping strategies. Participants were 670 STEM undergraduates [URMs (Black/African American and Latina/o) and non-URMs (White/European American and Asian/Asian American)]. STEP protected URMs' abstract reasoning and class grades (adjusted for grade point average [GPA]) as well as decreased URMs' worries about confirming ethnic/racial stereotypes. STEP's two-pronged approach-explicating the effects of structural 'isms' while harnessing URMs' existing assets-shows promise in increasing diversification and equity in STEM.

  18. Diversity in the US Infectious Diseases Workforce: Challenges for Women and Underrepresented Minorities.

    Science.gov (United States)

    Aberg, Judith A; Blankson, Joel; Marrazzo, Jeanne; Adimora, Adaora A

    2017-09-15

    Research documents significant gender-based salary inequities among physicians and ongoing inadequacies in recruitment and promotion of physicians from underrepresented minority groups. Given the complexity of the social forces that promote these disparities, their elimination will likely require quantitative and qualitative research to understand the pathways that lead to them and to develop effective solutions. Interventions to combat implicit bias will be required, and structural interventions that hold medical school leadership accountable are needed to achieve and maintain salary equity and racial and gender diversity at all levels. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  19. Developing a Diverse Professoriate - Preliminary Outcomes from a Professional Development Workshop for Underrepresented Minorities in the Geosciences

    Science.gov (United States)

    Houlton, H. R.; Keane, C. M.; Seadler, A. R.; Wilson, C. E.

    2012-12-01

    A professional development workshop for underrepresented minority, future and early-career faculty in the geosciences was held in April of 2012. Twenty seven participants traveled to the Washington DC metro area and attended this 2.5 day workshop. Participants' career levels ranged from early PhD students to Assistant Professors, and they had research interests spanning atmospheric sciences, hydrology, solid earth geoscience and geoscience education. Race and ethnicity of the participants included primarily African American or Black individuals, as well as Hispanic, Native American, Native Pacific Islanders and Caucasians who work with underrepresented groups. The workshop consisted of three themed sessions led by prestigious faculty members within the geoscience community, who are also underrepresented minorities. These sessions included "Guidance from Professional Societies," "Instructional Guidance" and "Campus Leadership Advice." Each session lasted about 3 hours and included a mixture of presentational materials to provide context, hands-on activities and robust group discussions. Two additional sessions were devoted to learning about federal agencies. For the morning session, representatives from USGS and NOAA came to discuss opportunities within each agency and the importance of promoting geoscience literacy with our participants. The afternoon session gave the workshop attendees the fortunate opportunity to visit NSF headquarters. Participants were welcomed by NSF's Assistant Director for Geosciences and took part in small group meetings with program officers within the Geosciences Directorate. Participants indicated having positive experiences during this workshop. In our post-workshop evaluation, the majority of participants revealed that they thought the sessions were valuable, with many finding the sessions extremely valuable. The effectiveness of each session had similar responses. Preliminary results from 17 paired sample t-tests show increased

  20. Providing Social Support for Underrepresented Racial and Ethnic Minority PhD Students in the Biomedical Sciences: A Career Coaching Model

    Science.gov (United States)

    Williams, Simon N.; Thakore, Bhoomi K.; McGee, Richard

    2017-01-01

    Improvement in the proportion of underrepresented racial and ethnic minorities (URMs) in academic positions has been unsatisfactory. Although this is a complex problem, one key issue is that graduate students often rely on research mentors for career-related support, the effectiveness of which can be variable. We present results from a novel…

  1. Strategies for Building a Reliable, Diverse Pipeline of Earth Data Scientists

    Science.gov (United States)

    Fowler, R.; Robinson, E.

    2015-12-01

    The grand challenges facing the geosciences are increasingly data-driven and require large-scale collaboration. Today's geoscience community is primarily self-taught or peer-taught as neither data science nor collaborative skills are traditionally part of the geoscience curriculum. This is not a sustainable model. By increasing understanding of the role of data science and collaboration in the geosciences, and Earth and space science informatics, an increased number of students pursuing STEM degrees may choose careers in these fields. Efforts to build a reliable pipeline of future Earth data scientists must incorporate the following: (1) improved communication: covering not only what data science is, but what a data scientist working in the geosciences does and the impact their work has; (2) effective identification and promotion of the skills and knowledge needed, including possible academic and career paths, the availability and types of jobs in the geosciences, and how to develop the necessary skills for these careers; (3) the employment of recruitment and engagement strategies that result in a diverse data science workforce, especially the recruitment and inclusion of underrepresented minority students; and (4) changing organizational cultures to better retain and advance women and other minority groups in data science. In this presentation we'll discuss strategies to increase the number of women and underrepresented minority students pursuing careers in data science, with an emphasis on effective strategies for recruiting and mentoring these groups, as well as challenges faced and lessons learned.

  2. Everyone Knows What a Scientist Looks Like: The Image of a Modern Scientist

    Science.gov (United States)

    Enevoldsen, A. A. G.

    2008-11-01

    Children are inspired to follow career paths when they can imagine themselves there. Seeing pictures of adult individuals who look like them working in a given career can provide this spark to children's imaginations. Most (though not all) of the current available posters of scientists are of Einstein, and Einstein-like scientists. This is not representative of the current face of science. To change this, Pacific Science Center will host a photography exhibit: photographs of real, current scientists from all races, genders, beliefs, and walks of life. Photos will be taken and short biographies written by Discovery Corps Interns (Pacific Science Center's youth development program) to increase the amount of direct contact between students and scientists, and to give the exhibit an emotional connection for local teachers and families. We plan to make the photographs from this exhibit available to teachers for use in their classrooms, in addition to being displayed at Pacific Science Center during the International Year of Astronomy. The objectives of this project are to fill a need for representative photographs of scientists in the world community and to meet two of the goals of the International Year of Astronomy: to provide a modern image of science and scientists, and to improve the gender-balanced representation of scientists at all levels and promote greater involvement by under-represented minorities in scientific and engineering careers.

  3. Choosing to lead the motivational factors of underrepresented minority librarians in higher education

    CERN Document Server

    Olivas, Antonia

    2017-01-01

    Choosing to Lead: The Motivational Factors of Underrepresented Minority Librarians in Higher Education takes a positive inquiry approach by providing first-hand accounts of success stories, best practices, and practical advice from a collection of diverse authors. Instead of looking at academic library "failures" when it comes to diversifying the leadership workforce, this book highlights what's going right and how to implement it across the profession-with an emphasis on building strengths and fully leveraging one's interests, behaviors, and passions, while never ignoring or deemphasizing the prevailing challenges that exist for diverse LIS professionals who wish to advance their leadership skills. Through case studies, promising practices, and specific strategies for cultivating diversity in academic library leadership, this is a resource for both librarians of color who wish to seek leadership positions and current library leaders who want to nurture these future leaders.

  4. A pre-admission program for underrepresented minority and disadvantaged students: application, acceptance, graduation rates and timeliness of graduating from medical school.

    Science.gov (United States)

    Strayhorn, G

    2000-04-01

    To determine whether students' performances in a pre-admission program predicted whether participants would (1) apply to medical school, (2) get accepted, and (3) graduate. Using prospectively collected data from participants in the University of North Carolina at Chapel Hill's Medical Education Development Program (MEDP) and data from the Association of American Colleges Student and Applicant Information Management System, the author identified 371 underrepresented minority (URM) students who were full-time participants and completed the program between 1984 and 1989, prior to their acceptance into medical school. Logistic regression analysis was used to determine whether MEDP performance significantly predicted (after statistically controlling for traditional predictors of these outcomes) the proportions of URM participants who applied to medical school and were accepted, the timeliness of graduating, and the proportion graduating. Odds ratios with 95% confidence intervals were calculated to determine the associations between the independent and outcome variables. In separate logistic regression models, MEDP performance predicted the study's outcomes after statistically controlling for traditional predictors with 95% confidence intervals. Pre-admission programs with similar outcomes can improve the diversity of the physician workforce and the access to health care for underrepresented minority and economically disadvantaged populations.

  5. Encouraging and Attracting Underrepresented Racial Minorities to the Field of Geosciences-A Latin American Graduate Student Perspective

    Science.gov (United States)

    Caballero Gill, R. P.; Herbert, T.

    2010-12-01

    Recent studies have shown that interactions between same-race and same-gender faculty and graduate students are reported to have a greater impact on the future success of those students. In the same manner, I believe graduate students can play a pivotal role in training and attracting underrepresented racial minorities (URMs) at the high school and undergraduate level to pursue a career in geosciences. Working at Brown University for the last couple of years, I have been involved in a number of initiatives aimed at solidifying ties with the community. Most of my social work has revolved around mentoring underrepresented local minorities, as I feel that this area is where I can contribute the most. This year I began participating in the NSF funded Brown GK-12: "Physical Processes in the Environment" program. As a Latin American female graduate student in the geological sciences, I hope to teach the students-by example-that being a minority is not necessarily an obstacle, but rather an advantage that can offer a different, valuable point of view when pursuing their professional goals. I think that sharing part of my experiences and knowledge as a researcher with young minds contributes to the way they imagine themselves in the future, allowing them to believe that a career in science is within their reach and that higher education is a realistic option worth pursuing if they have the interest in doing so. From my short time as a graduate student, to have a greater impact in attracting URMs, it is critical to have the support of advisors and committee members. One must keep in mind that a graduate career is a time consuming commitment; therefore, it is necessary to undertake activities that will have the most impact on minority students in the short time available. The experience becomes even more effective if advisors are actively involved, particularly financially. Faculty advisors who can allocate funds to, for example support summer activities designed to involve

  6. Scientists as role models in space science outreach

    Science.gov (United States)

    Alexander, D.

    The direct participation of scientists significantly enhances the impact of any E/PO effort. This is particularly true when the scientists come from minority or traditionally under-represented groups and, consequently, become role models for a large number of students while presenting positive counter-examples to the usual stereotypes. In this paper I will discuss the impact of scientists as role models through the successful implementation of a set of space physics games and activities, called Solar Week. Targetted at middle-school girls, the key feature of Solar Week is the "Ask a Scientist" section enabling direct interaction between participating students and volunteer scientists. All of the contributing scientists are women, serving as experts in their field and providing role models to whom the students can relate. Solar Week has completed four sessions with a total of some 140 edcuators and 12,000+ students in over 28 states and 9 countries. A major success of the Solar Week program has been the ability of the students to learn more about the scientists as people, through online biographies, and to discuss a variety of topics ranging from science, to careers and common hobbies.

  7. The American Geological Institute Minority Participation Program (MPP): Thirty Years of Improving Access to Opportunities in the Geosciences Through Undergraduate and Graduate Scholarships for Underrepresented Minorities

    Science.gov (United States)

    Callahan, C. N.; Byerly, G. R.; Smith, M. J.

    2001-05-01

    Since 1971, the American Geological Institute (AGI) Minority Participation Program (MPP) has supported scholarships for underrepresented minorities in the geosciences at the undergraduate and graduate levels. Some of our MPP scholars have gone on to hugely successful careers in the geosciences. MPP scholars include corporate leaders, university professors, a NASA scientist-astronaut and a National Science Foundation (NSF) CAREER awardee. Yet as ethnic minorities continue to be underrepresented in the geosciences, AGI plans to expand its efforts beyond its traditional undergraduate and graduate scholarships to include diversity programs for secondary school geoscience teacher internships, undergraduate research travel support, and doctoral research fellowships. AGI promotes its MPP efforts primarily through its web pages, which are very successful in attracting visitors; through its publications, especially Geotimes; and through its Corporate Associates and Member Societies. Funding for the MPP has come from multiple sources over the past 30 years. Industry, non-profit organizations, and individuals have been the primary source of funding for graduate scholarships. The NSF has regularly funded the undergraduate scholarships. AGI Corporate Associates have contributed to both scholarship programs. The MPP Advisory Committee selects scholarship recipients based upon student academic performance, financial need, and potential for success as a geoscience professional. AGI currently has 29 MPP scholars, including 11 undergraduate and 18 graduate students. Undergraduate scholarships range from \\1000 to \\5000, with an average award of approximately \\2500. Graduate scholarships range from \\500 to \\4000, with an average award of approximately \\1300. In addition to financial assistance, every MPP scholar is assigned a professional geoscientist as a mentor. The mentor is responsible for regular personal contacts with MPP scholars, and with writing evaluation reports that

  8. Retention of Underrepresented Minority Faculty: Strategic Initiatives for Institutional Value Proposition Based on Perspectives from a Range of Academic Institutions.

    Science.gov (United States)

    Whittaker, Joseph A; Montgomery, Beronda L; Martinez Acosta, Veronica G

    2015-01-01

    The student and faculty make-up of academic institutions does not represent national demographics. Racial and ethnic minorities are disproportionately underrepresented nationally, and particularly at predominantly white institutions (PWIs). Although significant efforts and funding have been committed to increasing points of access or recruitment of under-represented minority (URM) students and faculty at PWIs, these individuals have not been recruited and retained at rates that reflect their national proportions. Underrepresentation of URMs is particularly prevalent in Science, Technology, Engineering, and Mathematics (STEM) disciplines. This reality represents a national crisis given a predicted shortage of workers in STEM disciplines based on current rates of training of all individuals, majority and URM, and the intersection of this limitation with persistent challenges in the recruitment, training, retention and advancement of URMs who will soon represent the largest pool of future trainees. An additional compounding factor is the increasingly disproportionate underrepresentation of minorities at higher professorial and administrative ranks, thus limiting the pool of potential mentors who are correlated with successful shepherding of URM students through STEM training and development. We address issues related to improving recruitment and retention of URM faculty that are applicable across a range of academic institutions. We describe challenges with recruitment and retention of URM faculty and their advancement through promotion in the faculty ranks and into leadership positions. We offer specific recommendations, including identifying environmental barriers to diversity and implementing strategies for their amelioration, promoting effective and innovative mentoring, and addressing leadership issues related to constructive change for promoting diversity.

  9. Diversity in academic medicine no. 1 case for minority faculty development today.

    Science.gov (United States)

    Nivet, Marc A; Taylor, Vera S; Butts, Gary C; Strelnick, A Hal; Herbert-Carter, Janice; Fry-Johnson, Yvonne W; Smith, Quentin T; Rust, George; Kondwani, Kofi

    2008-12-01

    For the past 20 years, the percentage of the American population consisting of nonwhite minorities has been steadily increasing. By 2050, these nonwhite minorities, taken together, are expected to become the majority. Meanwhile, despite almost 50 years of efforts to increase the representation of minorities in the healthcare professions, such representation remains grossly deficient. Among the underrepresented minorities are African and Hispanic Americans; Native Americans, Alaskans, and Pacific Islanders (including Hawaiians); and certain Asians (including Hmong, Vietnamese, and Cambodians). The underrepresentation of underrepresented minorities in the healthcare professions has a profoundly negative effect on public health, including serious racial and ethnic health disparities. These can be reduced only by increased recruitment and development of both underrepresented minority medical students and underrepresented minority medical school administrators and faculty. Underrepresented minority faculty development is deterred by barriers resulting from years of systematic segregation, discrimination, tradition, culture, and elitism in academic medicine. If these barriers can be overcome, the rewards will be great: improvements in public health, an expansion of the contemporary medical research agenda, and improvements in the teaching of both underrepresented minority and non-underrepresented minority students.

  10. Exploring Counseling Services and Their Impact on Female, Underrepresented Minority Community College Students in Science, Technology, Engineering, and Math: A Qualitative Study

    Science.gov (United States)

    Strother, Elizabeth

    The economic future of the United States depends on developing a workforce of professionals in science, technology, engineering and mathematics (Adkins, 2012; Mokter Hossain & Robinson, 2012). In California, the college population is increasingly female and underrepresented minority, a population that has historically chosen to study majors other than STEM. In California, community colleges provide a major inroad for students seeking to further their education in one of the many universities in the state. The recent passage of Senate Bill 1456 and the Student Success and Support Program mandate increased counseling services for all California community college students (California Community College Chancellors Office, 2014). This dissertation is designed to explore the perceptions of female, underrepresented minority college students who are majoring in an area of science, technology, engineering and math, as they relate to community college counseling services. Specifically, it aims to understand what counseling services are most effective, and what community college counselors can do to increase the level of interest in STEM careers in this population. This is a qualitative study. Eight participants were interviewed for the case study, all of whom are current or former community college students who have declared a major in a STEM discipline. The semi-structured interviews were designed to help understand what community college counselors can do to better serve this population, and to encourage more students to pursue STEM majors and careers. Through the interviews, themes emerged to explain what counseling services are the most helpful. Successful STEM students benefited from counselors who showed empathy and support. Counselors who understood the intricacies of educational planning for STEM majors were considered the most efficacious. Counselors who could connect students with enrichment activities, such as internships, were highly valued, as were counseling

  11. Careers "From" but Not "In" Science: Why Are Aspirations to Be a Scientist Challenging for Minority Ethnic Students?

    Science.gov (United States)

    Wong, Billy

    2015-01-01

    The importance of science to the economy and for the progression of society is widely acknowledged. Yet, there are concerns that minority ethnic students in the UK are underrepresented, and even excluded, from post-compulsory science education and careers "in" science. Drawing on an exploratory study of 46 semi-structured interviews with…

  12. Minorities Are Disproportionately Underrepresented in Special Education

    Science.gov (United States)

    Morgan, Paul L.; Farkas, George; Hillemeier, Marianne M.; Mattison, Richard; Maczuga, Steve; Li, Hui; Cook, Michael

    2015-01-01

    We investigated whether minority children attending U.S. elementary and middle schools are disproportionately represented in special education. We did so using hazard modeling of multiyear longitudinal data and extensive covariate adjustment for potential child-, family-, and state-level confounds. Minority children were consistently less likely…

  13. Retaining Underrepresented Minority Undergraduates in STEM through Hands-on Internship Experiences

    Science.gov (United States)

    Bamzai, A.; Mcpherson, R. A.; DeLong, K. L.; Rivera-Monroy, V. H.; Zak, J.; Earl, J.; Owens, K.; Wilson, D.

    2015-12-01

    The U.S. Department of the Interior's South Central Climate Science Center (SCCSC) hosts an annual 3-week summer internship opportunity for undergraduate students of underrepresented minorities interested in science, technology, engineering and mathematics (STEM) fields. Internship participants travel across the south-central U.S. to visit university campuses and field locations. The students interact with faculty conducting cutting edge research and with resource managers facing decision-making under uncertainty. This internship format allows the participants to see the direct impacts of climate variability and change on the Texas Hill Country, prairie and forest ecosystems and tribal cultures in Oklahoma, and the bayous, delta and coastline of Louisiana. Immersive experiences are key for exposing students to academic research and providing them with the skills and experiences needed to continue on in their professional careers. The SCCSC's program introduces students to how research is conducted, gives them a broad perspective on how collaborations form, and starts each student on the path to building a large and diverse professional network. By providing participants with a "buffet" of options, our internship serves as a launching pad from which each student can move forward towards experiences such as participating in a Research Experiences for Undergraduates program, gaining employment in a STEM-related career path, and being accepted into a graduate degree program. This presentation will describe the components of the SCCSC's internship program and provide a summary of post-internship student successes.

  14. Toward a Model of Social Influence that Explains Minority Student Integration into the Scientific Community

    Science.gov (United States)

    Estrada, Mica; Woodcock, Anna; Hernandez, Paul R.; Schultz, P. Wesley

    2010-01-01

    Students from several ethnic minority groups are underrepresented in the sciences, such that minority students more frequently drop out of the scientific career path than non-minority students. Viewed from a perspective of social influence, this pattern suggests that minority students do not integrate into the scientific community at the same rate as non-minority students. Kelman (1958, 2006) describes a tripartite integration model of social influence (TIMSI) by which a person orients to a social system. To test if this model predicts integration into the scientific community, we conducted analyses of data from a national panel of minority science students. A structural equation model framework showed that self-efficacy (operationalized consistent with Kelman’s ‘rule-orientation’) predicted student intentions to pursue a scientific career. However, when identification as a scientist and internalization of values are added to the model, self-efficacy becomes a poorer predictor of intention. Additional mediation analyses support the conclusion that while having scientific self-efficacy is important, identifying with and endorsing the values of the social system reflect a deeper integration and more durable motivation to persist as a scientist. PMID:21552374

  15. The Deaf Mentoring Survey: A Community Cultural Wealth Framework for Measuring Mentoring Effectiveness with Underrepresented Students

    Science.gov (United States)

    Braun, Derek C.; Gormally, Cara; Clark, M. Diane

    2017-01-01

    Disabled individuals, women, and individuals from cultural/ethnic minorities continue to be underrepresented in science, technology, engineering, and mathematics (STEM). Research has shown that mentoring improves retention for underrepresented individuals. However, existing mentoring surveys were developed to assess the majority population, not…

  16. Mentoring, Training, and Scholarly Productivity Experiences of Cancer-Related Health Disparities Research Trainees: Do Outcomes Differ for Underrepresented Scientists?

    Science.gov (United States)

    Felder, Tisha M; Braun, Kathryn L; Wigfall, Lisa; Sevoyan, Maria; Vyas, Shraddha; Khan, Samira; Brandt, Heather M; Rogers, Charles; Tanjasiri, Sora; Armstead, Cheryl A; Hébert, James R

    2018-02-12

    The study aims to explore variation in scholarly productivity outcomes by underrepresented status among a diverse sample of researchers in a community-engaged training program. We identified 141 trainees from a web-based survey of researchers in the National Cancer Institute-funded, Community Networks Program Centers (CNPCs) (2011-2016). We conducted a series of multiple logistic regression models to estimate the effect of National Institutes of Health (NIH)-defined underrepresented status on four, self-reported, scholarly productivity outcomes in the previous 5 years: number of publications (first-authored and total) and funded grants (NIH and any agency). Sixty-five percent (n = 92) indicated NIH underrepresented status. In final adjusted models, non-NIH underrepresented (vs. underrepresented) trainees reported an increased odds of having more than the median number of total publications (> 9) (OR = 3.14, 95% CI 1.21-8.65) and any grant funding (OR = 5.10, 95% CI 1.77-14.65). Reporting ≥ 1 mentors (vs. none) was also positively associated (p < 0.05) with these outcomes. The CNPC underrepresented trainees had similar success in first-authored publications and NIH funding as non-underrepresented trainees, but not total publications and grants. Examining trainees' mentoring experiences over time in relation to scholarly productivity outcomes is needed.

  17. Mentoring the Mentors of Underrepresented Racial/Ethnic Minorities Who are Conducting HIV Research: Beyond Cultural Competency

    Science.gov (United States)

    Simoni, Jane M.; Evans-Campbell, Teresa (Tessa); Udell, Wadiya; Johnson-Jennings, Michelle; Pearson, Cynthia R.; MacDonald, Meg M.; Duran, Bonnie

    2016-01-01

    The majority of literature on mentoring focuses on mentee training needs, with significantly less guidance for the mentors. Moreover, many mentoring the mentor models assume generic (i.e. White) mentees with little attention to the concerns of underrepresented racial/ethnic minorities (UREM). This has led to calls for increased attention to diversity in research training programs, especially in the field of HIV where racial/ethnic disparities are striking. Diversity training tends to address the mentees' cultural competency in conducting research with diverse populations, and often neglects the training needs of mentors in working with diverse mentees. In this article, we critique the framing of diversity as the problem (rather than the lack of mentor consciousness and skills), highlight the need to extend mentor training beyond aspirations of cultural competency toward cultural humility and cultural safety, and consider challenges to effective mentoring of UREM, both for White and UREM mentors. PMID:27484060

  18. Increasing the Presence of Underrepresented Minorities in the Geosciences: The Woods Hole Partnership Education Program Model and Outcomes

    Science.gov (United States)

    George, A.; Gutierrez, B.; Jearld, A.; Liles, G.; Scott, O.; Harden, B.

    2017-12-01

    Launched in 2009, the Partnership Education Program (PEP) is supported by six scientific institutions in Woods Hole, Massachusetts through the Woods Hole Diversity Initiative. PEP, which was shaped by experience with other diversity programs as well as input from scientists in Woods Hole, is designed to promote a diverse scientific community by recruiting talent from minority groups that are under-represented in marine and environmental sciences. Focused on college juniors and seniors with course work in marine and/or environmental sciences, PEP is comprised of a four-week course, "Ocean and Environmental Sciences: Global Climate Change," and a six to eight week individual research project under the guidance of a research mentor. Investigators from the six science institutions serve as course faculty and research mentors. Course credit is through PEP's academic partner, the University of Maryland Eastern Shore. PEP students also participate in seminars, workshops, field trips, at-sea experiences, career development activities, and attend lectures at participating science institutions throughout the summer. Students present their research results at the end of the summer with a 15-minute public presentation. A number of PEP participants then presented their work at professional and scientific meetings, such as AGU, using the program as a gateway to graduate education and career opportunities in the marine and environmental sciences. From 2009 through 2017, 138 students from 86 colleges and universities, including many that previously had sent few or no students or faculty to Woods Hole, have participated in the program. Participating organizations are: Northeast Fisheries Science Center (NOAA Fisheries), Marine Biological Laboratory (MBL), Sea Education Association (SEA), U.S. Geological Survey (USGS), Woods Hole Oceanographic Institution (WHOI), Woods Hole Research Center (WHRC), and University of Maryland Eastern Shore (UMES) - academic partner.

  19. Understanding Underrepresented Populations in the Business School Pipeline. GMAC® Research Report RR-16-02

    Science.gov (United States)

    Daniel, Rhonda; Caruthers, Devina

    2016-01-01

    This white paper, "Understanding Underrepresented Populations in the Business School Pipeline," examines the shifting US racial and ethnic demographics and projected growth among US minority populations and the challenges--and incentives--these developments pose for US business schools to increase the opportunities for minority students…

  20. Medical School Performance of Socioeconomically Disadvantaged and Underrepresented Minority Students Matriculating after a Multiple Mini-Interview.

    Science.gov (United States)

    Jerant, Anthony; Henderson, Mark C; Griffin, Erin; Talamantes, Efrain; Fancher, Tonya; Sousa, Francis; Franks, Peter

    2018-01-01

    Multiple Mini-Interviews (MMIs) are increasingly used in medical school admissions. We previously reported that while under-represented minority (URM) status was not associated with MMI scores, self-designated disadvantaged applicants had lower MMI scores, possibly affecting their matriculation prospects. No studies have examined how URM status or socioeconomic disadvantage (SED) are associated with academic performance following admission through an MMI. We examined the adjusted associations of MMI scores, SED, and URM status with U.S. Medical Licensing Examination Steps 1 and 2 performance and third-year clerkship Honors, measures affecting residency matching. While URM status was not associated with the measures, students with greater SED had lower Step 1 scores and fewer Honors. Students with higher MMI scores had more Step 1 failures, but more Honors. The findings identify areas to address in medical school admissions, student support, and evaluation processes, which is important given the need for a more representative physician workforce.

  1. Surveying ethnic minorities

    NARCIS (Netherlands)

    Joost Kappelhof

    2015-01-01

    Obtaining accurate survey data on ethnic minorities is not easy. Ethnic minorities are usually underrepresented in surveys, and it is moreover not certain that those who do take part in surveys are representative of the group the researcher is interested in. For example, is it only people with

  2. The significance of recruiting underrepresented minorities in medicine: an examination of the need for effective approaches used in admissions by higher education institutions

    Directory of Open Access Journals (Sweden)

    Obed Figueroa

    2014-09-01

    Full Text Available The purpose of this paper is to examine the significance of recruiting underrepresented minorities in medicine (URM. This would include African Americans, Hispanics, and Native Americans. The research findings support the belief that URMs, upon graduating, are more likely to become practitioners in underserved communities, thereby becoming a resource that prompts us to find effective ways to help increase their college enrollments statewide. This paper analyzes the recruitment challenges for institutions, followed by a review of creative and effective approaches used by organizations and universities. The results have shown positive outcomes averaging a 50% increase in minority enrollments and retention. In other areas, such as cognitive development, modest gains were achieved in programs that were shorter in duration. The results nevertheless indicated steps in the right direction inspiring further program developments.

  3. Effectiveness of a formal post-baccalaureate pre-medicine program for underrepresented minority students.

    Science.gov (United States)

    Giordani, B; Edwards, A S; Segal, S S; Gillum, L H; Lindsay, A; Johnson, N

    2001-08-01

    To address the effectiveness of a formal postbaccalaureate (PB) experience for underrepresented minority (URM) students before medical school. The program provided an intense year-long experience of course work, research, and personal development. There were 516 participants from one medical school: 15 URM medical students had completed the formal PB program, 58 students had done independent PB work before matriculation, and 443 students were traditional matriculants. Cognitive and academic indicators [college science and non-science grade-point averages (GPAs); biology, physics, and verbal MCAT scores; and percentage scores from first-year medical school courses] were compared for the three groups. Both groups of students with PB experience demonstrated competency in the first year of medical school consistent with traditional students even though the students who had completed the formal PB program had lower MCAT scores and lower college GPAs than did the traditional students. Traditional predictors of academic performance during the first year of medical school did not significantly contribute to actual academic performances of students from the formal PB program. The results support the use of a formal PB program to provide academic readiness and support for URM students prior to medical school. Such a program may also improve retention. Noncognitive variables, however, may be important to understanding the success of such students in medical school.

  4. Retention of underrepresented groups in corporate agribusinesses: Assessing the intentions of underrepresented groups to remain working for corporate agribusinesses

    OpenAIRE

    Wright, Brielle Simone

    2014-01-01

    It is projected that the majority population will become the minority population by 2050. In order to serve the needs of an ethnically diverse U.S. population, corporate agribusinesses are encouraged to employ an ethnically diverse workforce. The purpose of this research was to understand how attitudes, subjective norms, and perceived behavioral control in the workplace affects the intent of underrepresented groups to remain in working for their current corporate agribusiness. In current agr...

  5. The C-MORE Scholars Program: Engaging minority students in STEM through undergraduate research

    Science.gov (United States)

    Gibson, B. A.; Bruno, B. C.

    2010-12-01

    There have been several studies that show how undergraduate research experiences (REU) have a positive impact on a student’s academic studies and career path, including being a positive influence toward improving the student's lab skills and ability to work independently. Moreover, minority students appear to relate to science, technology, engineering, and mathematics (STEM) concepts better when they are linked with (1) a service learning component, and (2) STEM courses that include a cultural and social aspect that engages the student in a way that does not distract from the student’s technical learning. It is also known that a “place-based” approach that incorporates traditional (indigenous) knowledge can help engage underrepresented minority groups in STEM disciplines and increase science literacy. Based on the methods and best practices used by other minority serving programs and described in the literature, the Center for Microbial Oceanography: Research and Education (C-MORE) has successfully developed an academic-year REU to engage and train the next generation of scientists. The C-MORE Scholars Program provides undergraduate students majoring in an ocean or earth science-related field, especially underrepresented students such as Native Hawaiians and Pacific Islanders, the opportunity to participate in unique and cutting edge hands-on research experiences. The program appoints awardees at one of three levels based on previous research and academic experience, and students can progress through the various tiers as their skills and STEM content knowledge develop. All awardees receive guidance on a research project from a mentor who is a scientist at the university and/or industry. A key component of the program is the inclusion of professional development activities to help the student continue towards post graduation education or prepare for career opportunities after they receive their undergraduate STEM degree.

  6. Mentoring programs for underrepresented minority faculty in academic medical centers: a systematic review of the literature.

    Science.gov (United States)

    Beech, Bettina M; Calles-Escandon, Jorge; Hairston, Kristen G; Langdon, Sarah E; Latham-Sadler, Brenda A; Bell, Ronny A

    2013-04-01

    Mentoring is critical for career advancement in academic medicine. However, underrepresented minority (URM) faculty often receive less mentoring than their nonminority peers. The authors conducted a comprehensive review of published mentoring programs designed for URM faculty to identify "promising practices." Databases (PubMed, PsycINFO, ERIC, PsychLit, Google Scholar, Dissertations Abstracts International, CINHAL, Sociological Abstracts) were searched for articles describing URM faculty mentoring programs. The RE-AIM framework (Reach, Effectiveness, Adoption, Implementation, and Maintenance) formed the model for analyzing programs. The search identified 73 citations. Abstract reviews led to retrieval of 38 full-text articles for assessment; 18 articles describing 13 programs were selected for review. The reach of these programs ranged from 7 to 128 participants. Most evaluated programs on the basis of the number of grant applications and manuscripts produced or satisfaction with program content. Programs offered a variety of training experiences, and adoption was relatively high, with minor changes made for implementing the intended content. Barriers included time-restricted funding, inadequate evaluation due to few participants, significant time commitments required from mentors, and difficulty in addressing institutional challenges faced by URM faculty. Program sustainability was a concern because programs were supported through external funds, with minimal institutional support. Mentoring is an important part of academic medicine, particularly for URM faculty who often experience unique career challenges. Despite this need, relatively few publications exist to document mentoring programs for this population. Institutionally supported mentoring programs for URM faculty are needed, along with detailed plans for program sustainability.

  7. Self-efficacy beliefs of underrepresented minorities in science, technology, engineering, and math

    Science.gov (United States)

    Garibay, Guadalupe

    The purpose of this study is to understand the self-perceptions, confidence, and self-efficacy of underrepresented minorities (URMs) as they undertake Science, Technology, Engineering and Math (STEM) courses during their K-12 years in urban-public schools. Through the lens of Bandura's self-efficacy theory, this study analyzed self-efficacious behaviors as they revealed themselves in K-12 classrooms. The participants were 11th- and 12th-grade students, their parents, their STEM teachers, and their mentor. The goal was to understand what has been inhibiting the growth of URM representation in STEM majors and in STEM fields. This qualitative study was designed to understand the participants' stories and uncover personal characteristics such as grit, perseverance, and determination in the face of obstacles. The instruments used in this study were interviews, observations, and self-efficacy surveys. The findings revealed that the participants' perceptions of the students' abilities to succeed in a STEM field were all tentatively positive. The participants focused on the many obstacles already overcome by the students and used it as precedent for future success. All the student-participants shared a similar set of adult types in their lives--adults who believed not only in their STEM abilities, but also in their abilities to face obstacles, who were willing to give their time and expertise when necessary, and who shared similar experiences in terms of the lack of educational resources or of economic struggles. It was these shared experiences that strengthened the beliefs that, if the adult participants could succeed in education or succeed in spite of poverty, the student participants could succeed, as well.

  8. Minorities and Women and Honors Education.

    Science.gov (United States)

    Harvey, Maria Luisa Alvarez

    1986-01-01

    Although honors education can be a key to the liberation of women and minorities, both groups continue to be underrepresented, perhaps because bright women and minority students are uncomfortable displaying their talents and adding pressure in an already stressful situation. (MSE)

  9. Willingness to participate in genomics research and desire for personal results among underrepresented minority patients: a structured interview study.

    Science.gov (United States)

    Sanderson, Saskia C; Diefenbach, Michael A; Zinberg, Randi; Horowitz, Carol R; Smirnoff, Margaret; Zweig, Micol; Streicher, Samantha; Jabs, Ethylin Wang; Richardson, Lynne D

    2013-10-01

    Patients from traditionally underrepresented communities need to be involved in discussions around genomics research including attitudes towards participation and receiving personal results. Structured interviews, including open-ended and closed-ended questions, were conducted with 205 patients in an inner-city hospital outpatient clinic: 48 % of participants self-identified as Black or African American, 29 % Hispanic, 10 % White; 49 % had an annual household income of personal results to be returned was not mentioned, 82 % of participants were willing to participate in genomics research. Reasons for willingness fell into four themes: altruism; benefit to family members; personal health benefit; personal curiosity and improving understanding. Reasons for being unwilling fell into five themes: negative perception of research; not personally relevant; negative feelings about procedures (e.g., blood draws); practical barriers; and fear of results. Participants were more likely to report that they would participate in genomics research if personal results were offered than if they were not offered (89 vs. 62 % respectively, p personal genomic risk results for cancer, heart disease and type 2 diabetes than obesity (89, 89, 91, 80 % respectively, all p personal results was disease-specific worry. There was considerable willingness to participate in and desire for personal results from genomics research in this sample of predominantly low-income, Hispanic and African American patients. When returning results is not practical, or even when it is, alternatively or additionally providing generic information about genomics and health may also be a valuable commodity to underrepresented minority and other populations considering participating in genomics research.

  10. Doctors of tomorrow: An innovative curriculum connecting underrepresented minority high school students to medical school.

    Science.gov (United States)

    Derck, Jordan; Zahn, Kate; Finks, Jonathan F; Mand, Simanjit; Sandhu, Gurjit

    2016-01-01

    Racial minorities continue to be underrepresented in medicine (URiM). Increasing provider diversity is an essential component of addressing disparity in health delivery and outcomes. The pool of students URiM that are competitive applicants to medical school is often limited early on by educational inequalities in primary and secondary schooling. A growing body of evidence recognizing the importance of diversifying health professions advances the need for medical schools to develop outreach collaborations with primary and secondary schools to attract URiMs. The goal of this paper is to describe and evaluate a program that seeks to create a pipeline for URiMs early in secondary schooling by connecting these students with support and resources in the medical community that may be transformative in empowering these students to be stronger university and medical school applicants. The authors described a medical student-led, action-oriented pipeline program, Doctors of Tomorrow, which connects faculty and medical students at the University of Michigan Medical School with 9th grade students at Cass Technical High School (Cass Tech) in Detroit, Michigan. The program includes a core curriculum of hands-on experiential learning, development, and presentation of a capstone project, and mentoring of 9th grade students by medical students. Cass Tech student feedback was collected using focus groups, critical incident written narratives, and individual interviews. Medical student feedback was collected reviewing monthly meeting minutes from the Doctors of Tomorrow medical student leadership. Data were analyzed using thematic analysis. Two strong themes emerged from the Cass Tech student feedback: (i) Personal identity and its perceived effect on goal achievement and (ii) positive affect of direct mentorship and engagement with current healthcare providers through Doctors of Tomorrow. A challenge noted by the medical students was the lack of structured curriculum beyond the 1st

  11. The social and learning environments experienced by underrepresented minority medical students: a narrative review.

    Science.gov (United States)

    Orom, Heather; Semalulu, Teresa; Underwood, Willie

    2013-11-01

    To review the literature on the social and learning environments experienced by underrepresented minority (URM) medical students to determine what type of interventions are needed to eliminate potential barriers to enrolling and retaining URM students. The authors searched MEDLINE, PubMed, Ovid HealthStar, and Web of Science, and the reference lists of included studies, published between January 1, 1980, and September 15, 2012. Studies of the learning and social environments and of students' satisfaction, experiences with discrimination or unfair practices, and academic performance or progress, as well as assessments of programs or interventions to improve URM students' academic performance, were eligible for inclusion. The authors identified 28 studies (27 unique data sets) meeting the inclusion criteria. The results of the included studies indicated that URM students experienced less supportive social and less positive learning environments, were subjected to discrimination and racial harassment, and were more likely to see their race as having a negative impact on their medical school experiences than non-URM students. Academic performance on standardized exams was worse, progress less timely, and attrition higher for URM students as well. For URM students, an adverse climate may be decreasing the attractiveness of careers in medicine, impairing their academic performance, and increasing attrition. Improvements to the social and learning environments experienced by URM students are needed to make medicine a more inclusive profession. The current environment of health care reform creates an opportunity for institutions to implement strategies to achieve this goal.

  12. MS PHD'S: A Successful Model Promoting Inclusion, Preparation and Engagement of Underrepresented Minorities within the Geosciences Workforce

    Science.gov (United States)

    Padilla, E.; Scott, O.; Strickland, J. T.; Ricciardi, L.; Guzman, W. I.; Braxton, L.; Williamson, V.; Johnson, A.

    2015-12-01

    According to 2014 findings of the National Research Council, geoscience and related industries indicate an anticipated 48,000 blue-collar, scientific, and managerial positions to be filled by underrepresented minority (URM) workers in the next 15 years. An Information Handling Services (IHS) report prepared for the American Petroleum Institute forecasts even greater numbers estimating upward of 408,000 opportunities for URM workers related to growth in accelerated development of oil, gas and petroleum industries. However, many URM students lack the training in both the hard sciences and craft skills necessary to fill these positions. The Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science (MS PHD'S) Professional Development Program uses integrative and holistic strategies to better prepare URM students for entry into all levels of the geoscience workforce. Through a three-phase program of mentoring, community building, networking and professional development activities, MS PHD'S promotes collaboration, critical thinking, and soft skills development for participants. Program activities expose URM students to education, training and real-life geoscience workforce experiences while maintaining a continuity of supportive mentoring and training networks via an active virtual community. MS PHD'S participants report increased self-confidence and self-efficacy in pursuing geoscience workforce goals. To date, the program supports 223 participants of who 57, 21 and 16 have received Doctorate, Masters and Baccalaureate degrees respectively and are currently employed within the geoscience and related industries workforce. The remaining 129 participants are enrolled in undergraduate and graduate programs throughout the U.S. Geographic representation of participants includes 35 states, the District of Columbia, Puerto Rico and two international postdoctoral appointments - one in Saudi Arabia and the other in France.

  13. Bayer Facts of Science Education XV: A View from the Gatekeepers—STEM Department Chairs at America's Top 200 Research Universities on Female and Underrepresented Minority Undergraduate STEM Students

    Science.gov (United States)

    Bayer Corporation

    2012-06-01

    Diversity and the underrepresentation of women, African-Americans, Hispanics and American Indians in the nation's science, technology, engineering and mathematics (STEM) fields are the subjects of the XV: A View from the Gatekeepers—STEM Department Chairs at America's Top 200 Research Universities on Female and Underrepresented Minority Undergraduate STEM Students. Annual public opinion research project commissioned by Bayer Corporation, the Bayer Facts surveys examine science education and science literacy issues. The 15th in the series and the fifth to explore diversity and underrepresentation, this research is a direct outgrowth of last year's results which found 40 percent of the country's female and underrepresented minority (URM) chemists and chemical engineers working today were discouraged from pursuing their STEM career at some point in their lives. US colleges were cited as places where this discouragement most often happened and college professors as the individuals most likely responsible. Does such discouragement still occur in American colleges today? To answer this and other questions about the undergraduate environment in which today's students make their career decisions, the survey polls 413 STEM department chairs at the nation's 200 top research universities and those that produce the highest proportion of female and URM STEM graduates. The survey also asks the chairs about their institutions track record recruiting and retaining female and URM STEM undergraduates, preparedness of these students to study STEM, the impact of traditional introductory STEM courses on female and URM students and barriers these students face pursuing their STEM degrees.

  14. Tribology Based Research and Training for Underrepresented Minorities

    Science.gov (United States)

    2017-11-30

    unlimited. Major Goals: The major goal of this project is provide the research tools necessary to train the next generation of scientists and engineers ...for successful and productive careers in tribology and related fields. Tribology is an exciting research area that plays an important role in...have no exposure to tribology in their standard engineering curriculum. This project aims to motivate students to pursue STEM degrees and then give

  15. Values Affirmation Intervention Reduces Achievement Gap between Underrepresented Minority and White Students in Introductory Biology Classes.

    Science.gov (United States)

    Jordt, Hannah; Eddy, Sarah L; Brazil, Riley; Lau, Ignatius; Mann, Chelsea; Brownell, Sara E; King, Katherine; Freeman, Scott

    2017-01-01

    Achievement gaps between underrepresented minority (URM) students and their white peers in college science, technology, engineering, and mathematics classrooms are persistent across many white-majority institutions of higher education. Attempts to reduce this phenomenon of underperformance through increasing classroom structure via active learning have been partially successful. In this study, we address the hypothesis that the achievement gap between white and URM students in an undergraduate biology course has a psychological and emotional component arising from stereotype threat. Specifically, we introduced a values affirmation exercise that counters stereotype threat by reinforcing a student's feelings of integrity and self-worth in three iterations of an intensive active-learning college biology course. On average, this exercise reduced the achievement gap between URM and white students who entered the course with the same incoming grade point average. This result suggests that achievement gaps resulting from the underperformance of URM students could be mitigated by providing students with a learning environment that removes psychological and emotional impediments of performance through short psychosocial interventions. © 2017 H. Jordt et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. Science That Matters: The Importance of a Cultural Connection in Underrepresented Students' Science Pursuit

    Science.gov (United States)

    Jackson, Matthew C.; Galvez, Gino; Landa, Isidro; Buonora, Paul; Thoman, Dustin B.

    2016-01-01

    Recent research suggests that underrepresented minority (URM) college students, and especially first-generation URMs, may lose motivation to persist if they see science careers as unable to fulfill culturally relevant career goals. In the present study, we used a mixed-methods approach to explore patterns of motivation to pursue physical and life…

  17. Engaging Scientists in Meaningful E/PO: How the NASA SMD E/PO Community Addresses the needs of Underrepresented Audiences through NASA Science4Girls and Their Families

    Science.gov (United States)

    Meinke, Bonnie K.; Smith, Denise A.; Bleacher, Lora; Hauck, Karin; Soeffing, Cassie; NASA SMD E/PO Community

    2015-01-01

    The NASA Astrophysics Science Education and Public Outreach Forum (SEPOF) coordinates the work of individual NASA Science Mission Directorate (SMD) Astrophysics EPO projects and their teams to bring the NASA science education resources and expertise to libraries nationwide. The Astrophysics Forum assists scientists and educators with becoming involved in SMD E/PO (which is uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise) and makes SMD E/PO resources and expertise accessible to the science and education communities. The NASA Science4Girls and Their Families initiative partners NASA science education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families. As such, the initiative engages girls in all four NASA science discipline areas (Astrophysics, Earth Science, Planetary Science, and Heliophysics), which enables audiences to experience the full range of NASA science topics and the different career skills each requires. The events focus on engaging this particular underserved and underrepresented audience in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences.

  18. A Study of The Influence of Advising on Underrepresented Minority Undergraduate Student Persistence in STEM

    Science.gov (United States)

    Weir, Michael J.

    In the United States, undergraduate underrepresented minority (URM) students tend to change out of declared majors in science, technology, engineering and math (STEM) disciplines at a rate of nearly sixty percent prior to earning a post secondary degree. This phenomenon contributes to a general concern that the United States is not producing enough STEM trained skilled workers to meet future employment needs of industry and government. Although there has been research developed to examine how to increase the numbers of URM students enrolling in STEM programs at higher education institutions, retention of these students remains critical. One area of increasing focus for researchers is to understand how multiple factors impact the college experience of URM students and how those factors may contribute to the student decision to persist in earning a STEM disciple degree. This research study is a phenomenological mixed method study that examines how students experience the phenomenon of advising and the influence of the advising experience of undergraduate URM students on their likelihood of persisting in STEM at a northeast US technology oriented post secondary institution. Persistence, from the perspective of the student, is driven by cognitive psychological attributes such as confidence, motivation and self-efficacy. Utilizing a Social Cognitive theoretical framework, this study examines how three distinct undergraduate URM student populations enrolled in; an Academic Services Program, Honors College, and the general undergraduate population at this institution experience advising and how their experiences may influence their propensity to persist in earning a STEM oriented degree.

  19. Racial/Ethnic Minority Undergraduate Psychology Majors' Perceptions about School Psychology: Implications for Minority Recruitment

    Science.gov (United States)

    Bocanegra, Joel O.; Newell, Markeda L.; Gubi, Aaron A.

    2016-01-01

    Racial and ethnic minorities are underrepresented within school psychology. Increased racial/ethnic diversity within university training programs has been shown to reduce prejudices and anxiety within students while increasing empathy for other racial/ethnic groups. The reduction of prejudices and anxiety and increased empathy for racial/ethnic…

  20. Clinical Trials Shed Light on Minority Health

    Science.gov (United States)

    ... Native Hawaiian and Pacific Islander communities. OMH project manager Christine Merenda, M.P.H., R.N. explains ... are disproportionately affected by diabetes. But historically, both women and minorities have been under-represented in clinical ...

  1. Moving toward True Inclusion of Racial/Ethnic Minorities in Federally Funded Studies. A Key Step for Achieving Respiratory Health Equality in the United States

    Science.gov (United States)

    Oh, Sam S.; Foreman, Marilyn G.; Celedón, Juan C.

    2015-01-01

    A key objective of the 1993 National Institutes of Health (NIH) Revitalization Act was to ensure inclusion of minorities in clinical research. We conducted a literature search for the period from 1993 to 2013 to examine whether racial/ethnic minorities are adequately represented in published research studies of pulmonary diseases, particularly NIH-funded studies. We found a marked underrepresentation of minorities in published clinical research on pulmonary diseases. Over the last 20 years, inclusion of members of racial or ethnic minority groups was reported (in MeSH terms, journal titles, and MEDLINE fields) in less than 5% of all NIH-funded published studies of respiratory diseases. Although a secondary analysis revealed that a larger proportion of NIH-funded studies included any minorities, this proportional increment mostly resulted from studies including relatively small numbers of minorities (which precludes robust race- or ethnic-specific analyses). Underrepresentation or exclusion of minorities from NIH-funded studies is likely due to multiple reasons, including insufficient education and training on designing and implementing population-based studies of minorities, inadequate motivation or incentives to overcome challenges in the recruitment and retention of sufficient numbers of members of racial/ethnic minorities, underrepresentation of minorities among respiratory scientists in academic medical centers, and a dearth of successful partnerships between academic medical centers and underrepresented communities. This problem could be remedied by implementing short-, medium-, and long-term strategies, such as creating incentives to conduct minority research, ensuring fair review of grant applications focusing on minorities, developing the careers of minority scientists, and facilitating and valuing research on minorities by investigators of all backgrounds. PMID:25584658

  2. GeoX: A New Pre-college Program to Attract Underrepresented Minorities and First Generation Students to the Geosciences

    Science.gov (United States)

    Miller, K. C.; Garcia, S. J.; Houser, C.; GeoX Team

    2011-12-01

    An emerging challenge in science, technology, engineering and math (STEM) education is the recruitment of underrepresented groups in those areas of the workforce. This paper describes the structure and first-year results of the Geosciences Exploration Summer Program (GeoX) at Texas A&M University. Recent evidence suggest that pipeline programs should target junior and senior high school students who are beginning to seriously consider future career choices and appropriate college programs. GeoX is an overnight program that takes place during the summer at Texas A&M University. Over the course of a week, GeoX participants interact with faculty from the College of Geosciences, administrators, current students, and community leaders through participation in inquiry-based learning activities, field trips, and evening social events. The aim of this project is to foster a further interest in pursuing geosciences as an undergraduate major in college and thereby increase participation in the geosciences by underrepresented ethnic minority students. With funding from industry and private donors, high achieving rising junior and rising senior students, with strong interest in science and math, were invited to participate in the program. Students and their parents were interviewed before and after the program to determine if it was successful in introducing and enhancing awareness of the: 1) various sub-disciplines in the geosciences, 2) benefits of academia and research, 3) career opportunities in each of those fields and 4) college admission process including financial aid and scholarship opportunities. Results of the survey suggest that the students had a very narrow and stereotypical view of the geosciences that was almost identical to the views of their parents. Following the program, the students had a more expanded and positive view of the geosciences compared to the pre-program survey and compared to their parents. While it remains to be seen how many of those

  3. An examination of how women and underrepresented racial/ethnic minorities experience barriers in biomedical research and medical programs

    Science.gov (United States)

    Chakraverty, Devasmita

    Women in medicine and biomedical research often face challenges to their retention, promotion, and advancement to leadership positions (McPhillips et al., 2007); they take longer to advance their careers, tend to serve at less research-intensive institutions and have shorter tenures compared to their male colleagues (White, McDade, Yamagata, & Morahan, 2012). Additionally, Blacks and Hispanics are the two largest minority groups that are vastly underrepresented in medicine and biomedical research in the United States (AAMC, 2012; NSF, 2011). The purpose of this study is to examine specific barriers reported by students and post-degree professionals in the field through the following questions: 1. How do women who are either currently enrolled or graduated from biomedical research or medical programs define and make meaning of gender-roles as academic barriers? 2. How do underrepresented groups in medical schools and biomedical research institutions define and make meaning of the academic barriers they face and the challenges these barriers pose to their success as individuals in the program? These questions were qualitatively analyzed using 146 interviews from Project TrEMUR applying grounded theory. Reported gender-role barriers were explained using the "Condition-Process-Outcome" theoretical framework. About one-third of the females (across all three programs; majority White or Black between 25-35 years of age) reported gender-role barriers, mostly due to poor mentoring, time constraints, set expectations and institutional barriers. Certain barriers act as conditions, causing gender-role issues, and gender-role issues influence certain barriers that act as outcomes. Strategies to overcome barriers included interventions mostly at the institutional level (mentor support, proper specialty selection, selecting academia over medicine). Barrier analysis for the two largest URM groups indicated that, while Blacks most frequently reported racism, gender barriers

  4. Minority-Serving Institutions and the Education of U.S. Underrepresented Students

    Science.gov (United States)

    John, Ginelle; Stage, Frances K.

    2014-01-01

    Numbers of students of color enrolling in higher educational institutions is expected to increase across all racial groups. With continued increases in minority enrollments, minority-serving institutions have and will continue to play a major role in educating student of color. A large national data set was used to examine the numbers of…

  5. Elements of ethics for physical scientists

    CERN Document Server

    Greer, Sandra C

    2017-01-01

    This book offers the first comprehensive guide to ethics for physical scientists and engineers who conduct research. Written by a distinguished professor of chemistry and chemical engineering, the book focuses on the everyday decisions about right and wrong faced by scientists as they do research, interact with other people, and work within society. The goal is to nurture readers’ ethical intelligence so that they know an ethical issue when they see one, and to give them a way to think about ethical problems. After introductions to the philosophy of ethics and the philosophy of science, the book discusses research integrity, with a unique emphasis on how scientists make mistakes and how they can avoid them. It goes on to cover personal interactions among scientists, including authorship, collaborators, predecessors, reviewers, grantees, mentors, and whistle-blowers. It considers underrepresented groups in science as an ethical issue that matters not only to those groups but also to the development of scien...

  6. A Longitudinal Study of How Quality Mentorship and Research Experience Integrate Underrepresented Minorities into STEM Careers.

    Science.gov (United States)

    Estrada, Mica; Hernandez, Paul R; Schultz, P Wesley

    2018-01-01

    African Americans, Latinos, and Native Americans are historically underrepresented minorities (URMs) among science, technology, engineering, and mathematics (STEM) degree earners. Viewed from a perspective of social influence, this pattern suggests that URMs do not integrate into the STEM academic community at the same rate as non-URM students. Estrada and colleagues recently showed that Kelman's tripartite integration model of social influence (TIMSI) predicted URM persistence into science fields. In this paper, we longitudinally examine the integration of URMs into the STEM community by using growth-curve analyses to measure the development of TIMIS's key variables (science efficacy, identity, and values) from junior year through the postbaccalaureate year. Results showed that quality mentorship and research experience occurring in the junior and senior years were positively related to student science efficacy, identity, and values at that same time period. Longitudinal modeling of TIMSI further shows that, while efficacy is important, and perhaps a necessary predictor of moving toward a STEM career, past experiences of efficacy may not be sufficient for maintaining longer-term persistence. In contrast, science identity and values do continue to be predictive of STEM career pathway persistence up to 4 years after graduation. © 2018 M. Estrada et al. CBE—Life Sciences Education © 2018 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. The American Geological Institute Minority Participation Program

    Science.gov (United States)

    Smith, M. J.; Byerly, G. R.; Callahan, C. N.

    2001-12-01

    Since 1971, the American Geological Institute (AGI) Minority Participation Program (MPP) has supported scholarships for underrepresented minorities in the geosciences at the undergraduate and graduate levels. Some of our MPP scholars have gone on to hugely successful careers in the geosciences. MPP scholars include corporate leaders, university professors, a NASA scientist-astronaut and a National Science Foundation (NSF) CAREER awardee. Yet as ethnic minorities continue to be underrepresented in the geosciences, AGI plans to expand its efforts beyond its traditional undergraduate and graduate scholarships to include diversity programs for secondary school geoscience teacher internships, undergraduate research travel support, and doctoral research fellowships. Funding for the MPP has come from multiple sources, including industry, scientific societies, individuals, and during the last 10 years, the NSF. College-level students apply for the MPP awards or award renewals, and the MPP Advisory Committee selects scholarship recipients based upon student academic performance, financial need, and potential for success as a geoscience professional. Mentoring is a long-standing hallmark of the AGI MPP. Every AGI MPP scholar is assigned a professional geoscientist as a mentor. The mentor is responsible for regular personal contacts with MPP scholars. The MPP Advisory Committee aims to match the profession of the mentor with the scholar's academic interest. Throughout the year, mentors and scholars communicate about possible opportunities in the geosciences such as internships, participation in symposia, professional society meetings, and job openings. Mentors have also been active in helping younger students cope with the major changes involved in relocating to a new region of the country or a new college culture. We believe that AGI is well-positioned to advance diversity in the geosciences through its unique standing as the major professional organization in the

  8. Computer network access to scientific information systems for minority universities

    Science.gov (United States)

    Thomas, Valerie L.; Wakim, Nagi T.

    1993-08-01

    The evolution of computer networking technology has lead to the establishment of a massive networking infrastructure which interconnects various types of computing resources at many government, academic, and corporate institutions. A large segment of this infrastructure has been developed to facilitate information exchange and resource sharing within the scientific community. The National Aeronautics and Space Administration (NASA) supports both the development and the application of computer networks which provide its community with access to many valuable multi-disciplinary scientific information systems and on-line databases. Recognizing the need to extend the benefits of this advanced networking technology to the under-represented community, the National Space Science Data Center (NSSDC) in the Space Data and Computing Division at the Goddard Space Flight Center has developed the Minority University-Space Interdisciplinary Network (MU-SPIN) Program: a major networking and education initiative for Historically Black Colleges and Universities (HBCUs) and Minority Universities (MUs). In this paper, we will briefly explain the various components of the MU-SPIN Program while highlighting how, by providing access to scientific information systems and on-line data, it promotes a higher level of collaboration among faculty and students and NASA scientists.

  9. Youth Engagement through Science (YES!) - Engaging Underrepresented Minorities in Science through High School Internships at the National Museum of Natural History

    Science.gov (United States)

    Robertson, G.; Cruz, E.; Selvans, M. M.

    2014-12-01

    The Smithsonian's Youth Engagement through Science (YES!) program at the National Museum of Natural History gives young people from the Washington, D.C. area the opportunity to engage in science out of school through 16-week internships. We will present the program's successful strategies and lessons learned around recruiting and engaging young people from underserved communities, and maintaining relationships that help to support their pursuit of STEM and other career paths. The YES! program connects Smithsonian collections, experts, and training with local DC youth from communities traditionally underrepresented in science careers. YES! is now in its fifth year and has directly served 122 students; demographics of alumni are 67% female, and 51% Latino, 31% African-American, 7% Asian, 5% Caucasian and 6% other. The program immerses students in science research by giving them the opportunity to work side-by-side with scientists and staff from the Smithsonian's National Museum of Natural History, Air and Space Museum, Smithsonian Gardens, and National Zoo. In addition to working on a research project, students have college preparatory courses, are trained in science communication, and apply their skills by interacting with the public on the exhibit floor.

  10. Science That Matters: The Importance of a Cultural Connection in Underrepresented Students’ Science Pursuit

    Science.gov (United States)

    Jackson, Matthew C.; Galvez, Gino; Landa, Isidro; Buonora, Paul; Thoman, Dustin B.

    2016-01-01

    Recent research suggests that underrepresented minority (URM) college students, and especially first-generation URMs, may lose motivation to persist if they see science careers as unable to fulfill culturally relevant career goals. In the present study, we used a mixed-methods approach to explore patterns of motivation to pursue physical and life sciences across ethnic groups of freshman college students, as moderated by generational status. Results from a longitudinal survey (N = 249) demonstrated that freshman URM students who enter with a greater belief that science can be used to help their communities identified as scientists more strongly over time, but only among first-generation college students. Analysis of the survey data were consistent with content analysis of 11 transcripts from simultaneously conducted focus groups (N = 67); together, these studies reveal important differences in motivational characteristics both across and within ethnicity across educational generation status. First-generation URM students held the strongest prosocial values for pursuing a science major (e.g., giving back to the community). URM students broadly reported additional motivation to increase the status of their family (e.g., fulfilling aspirations for a better life). These findings demonstrate the importance of culturally connected career motives and for examining intersectional identities to understand science education choices and inform efforts to broaden participation. PMID:27543631

  11. Opportunity Knocks: Pipeline Programs Offer Minority Students a Path to Dentistry

    Science.gov (United States)

    Fauteux, Nicole

    2012-01-01

    Minority students have traditionally been underrepresented in dental schools, which is why enrichment and pipeline programs aimed at helping minority students are necessary. That reality is reflected in their woeful underrepresentation among practicing dentists. Hispanics made up only 5.8 percent of practicing dentists in 2011, according to the…

  12. Crack in the Pipeline: Why Female Underrepresented Racial Minority College Students Leave Engineering

    Science.gov (United States)

    Vazquez-Akim, Jenny Amanda

    Female and underrepresented racial minority (URM) students are indicating their interest in STEM fields at increasing rates, yet when examining the engineering discipline specifically disparities in degree completion rates between female URM students and others in the racial or gender majority are even more severe. This study explored female URM college student perceptions of school and classroom climate and the impact these factors had on their decision to persist or to leave engineering. Through a qualitative interview methodology grounded in Social Cognitive Career Theory (SCCT), this study explored factors including self-efficacy, perceived barriers and supports, other-group orientation and outcome expectations that influenced students' academic decision-making. Interview participants consisted of 5 female URM students that matriculated into an engineering major at a top tier, private university but subsequently left the discipline in pursuit of another field of study. The perceptions of this target population were juxtaposed with interview data from 4 male non-URM, 4 female non-URM, and 4 male URM leavers in addition to 7 female URM engineering persisters. As a final component in the research design, 9 undergraduate engineering faculty were interviewed to understand their perceptions of why female URM students leave engineering in pursuit of other disciplines. With faculty being a central component of the academic environment, their perceptions of female URM students, as well as how they view their role in these students' retention, provided insight on this other side of retention question. Salient findings emerged that differentiated female URM leavers' experiences in engineering from other student populations. Female URM leavers were less likely to call upon self-directed learning strategies in response to academic challenges. Perceived academic barriers such as heavy course loads, lack of connection between material and application, and perceived academic

  13. The experience of minority faculty who are underrepresented in medicine, at 26 representative U.S. medical schools.

    Science.gov (United States)

    Pololi, Linda H; Evans, Arthur T; Gibbs, Brian K; Krupat, Edward; Brennan, Robert T; Civian, Janet T

    2013-09-01

    A diverse medical school faculty is critical to preparing physicians to provide quality care to an increasingly diverse nation. The authors sought to compare experiences of underrepresented in medicine minority (URMM) faculty with those of non-URMM faculty in a nationally representative sample of medical schools. In 2007-2009, the authors surveyed a stratified random sample of 4,578 MD and PhD full-time faculty from 26 U.S. medical schools. Multiple regression models were used to test for differences between URMM and other faculty on 12 dimensions of academic culture. Weights were used to adjust for oversampling of URMM and female faculty. The response rate was 52%, or 2,381 faculty. The analytic sample was 2,218 faculty: 512 (23%) were URMM, and 1,172 (53%) were female, mean age 49 years. Compared with non-URMM faculty, URMM faculty endorsed higher leadership aspirations but reported lower perceptions of relationships/inclusion, gave their institutions lower scores on URMM equity and institutional efforts to improve diversity, and more frequently engaged in disparities research. Twenty-two percent (115) had experienced racial/ethnic discrimination. For both values alignment and institutional change for diversity, URMM faculty at two institutions with high proportions (over 50%) of URMM faculty rated these characteristics significantly higher than their counterparts at traditional institutions. Encouragingly, for most aspects of academic medicine, the experiences of URMM and non-URMM faculty are similar, but the differences raise important concerns. The combination of higher leadership aspirations with lower feelings of inclusion and relationships might lead to discouragement with academic medicine.

  14. The Role of Intrinsic Motivation in the Pursuit of Health Science-Related Careers among Youth from Underrepresented Low Socioeconomic Populations.

    Science.gov (United States)

    Boekeloo, Bradley O; Jones, Chandria; Bhagat, Krishna; Siddiqui, Junaed; Wang, Min Qi

    2015-10-01

    A more diverse health science-related workforce including more underrepresented race/ethnic minorities, especially from low socioeconomic backgrounds, is needed to address health disparities in the USA. To increase such diversity, programs must facilitate youth interest in pursuing a health science-related career (HSRC). Minority youth from low socioeconomic families may focus on the secondary gains of careers, such as high income and status, given their low socioeconomic backgrounds. On the other hand, self-determination theory suggests that it is the intrinsic characteristics of careers which are most likely to sustain pursuit of an HSRC and lead to job satisfaction. Intrinsic and extrinsic motivation for pursuing an HSRC (defined in this study as health professional, health scientist, and medical doctor) was examined in a cohort of youth from the 10th to 12th grade from 2011 to 2013. The sample was from low-income area high schools, had a B- or above grade point average at baseline, and was predominantly: African American (65.7 %) or Hispanic (22.9 %), female (70.1 %), and children of foreign-born parents (64.7 %). In longitudinal general estimating equations, intrinsic motivation (but not extrinsic motivation) consistently predicted intention to pursue an HSRC. This finding provides guidance as to which youth and which qualities of HSRCs might deserve particular attention in efforts to increase diversity in the health science-related workforce.

  15. Underrepresented minority students' experiences at Baylor College of Dentistry: perceptions of cultural climate and reasons for choosing to attend.

    Science.gov (United States)

    McCann, Ann L; Lacy, Ernestine S; Miller, Barbara H

    2014-03-01

    A study was conducted at Texas A&M University Baylor College of Dentistry (TAMBCD) in fall 2011 to identify the reasons underrepresented minority (URM) students chose to attend TAMBCD, the factors that supported their success as enrolled students, and their perceptions of the institution's cultural climate. A survey distributed online to all URM students received a 79 percent response rate (129/164). The respondents were primarily Hispanic (62 percent Mexican American and other Hispanic) and African American (33 percent) and had attended a college pipeline program (53 percent). The top reasons these students chose TAMBCD were reputation, location, and automatic acceptance or familiarity from being in a predental program. Alumni had most influenced them to attend. Regarding support services, the largest percentage reported not using any (44 percent); personal advising and tutoring were reported to be the most commonly used. In terms of climate, discrimination was reported by 22 percent (n=29), mostly from classmates and clinical faculty. The majority (87 percent) reported their cultural competence program was "effective" and agreed that faculty (83 percent), staff (85 percent), and students (75 percent) were culturally competent. Overall, the students were "satisfied" with how they were treated (88 percent), their education (91 percent), and the services/resources (92 percent). This information is being used to continue to improve the school's cultural climate and to conduct a broader assessment of all students.

  16. Participation in mental health care by ethnic minority users: Case studies from the Netherlands and Brazil

    NARCIS (Netherlands)

    Soares de Freitas, C.S.

    2011-01-01

    This thesis examines participation in mental health care by users from socially disadvantaged ethnic minority groups in the Netherlands and in Brazil. Despite considerable evidence that minority users are under-represented in health participatory spaces in these and other countries around the world,

  17. "Fort Valley State University Cooperative Developmental Energy Program: Broadening the Participation of Underrepresented Minorities in the Geosciences"

    Science.gov (United States)

    Crumbly, I.; Hodges, J.; Kar, A.; Rashidi, L.

    2015-12-01

    According to the American Geological Institute's Status of Recent Geoscience Graduates, 2014, underrepresented minorities (URMs) make up only 7%, 5%, and 2% of graduates at the BS/BA, MA/MS, and Ph.D levels, respectively. Recruiting academically-talented URMs to major in the geosciences instead of majoring in other fields such as medicine, law, business, or engineering is a major undertaking. Numerous factors may contribute as to why few URMs choose geoscience careers. To address the underrepresentation of URMs in the geosciences 1992, the Cooperative Developmental Energy Program (CDEP) of Fort Valley State University (FVSU) and the College of Geosciences at the University of Oklahoma (OU) implemented a 3 + 2 dual degree program specifically in geology and geophysics. Since 1992, FVSU-CDEP has added the University of Texas at Austin (2004), Pennsylvania State University (2005), University of Arkansas (2010), and the University of Nevada at Las Vegas (2015) as partners to offer degrees in geology and geophysics. The dual degree programs consist of students majoring in chemistry or mathematics at FVSU for the first three years and transferring to one of the above partnering universities for years four and five to major in geology or geophysics. Upon completion of the program, students receive a BS degree in chemistry or mathematics from FVSU and a BS degree in geology or geophysics from a partnering university. CDEP has been responsible for recruiting 33 URMs who have earned BS degrees in geology or geophysics. Females constitute 50% of the graduates which is higher than the national average. Also, 56% of these graduates have earned the MS degree and 6% have earned the Ph.D. Currently, 60% of these graduates are employed with oil and gas companies; 20% work for academia; 12% work for governmental agencies; 6 % are professionals with environmental firms; and 2% of the graduate's employment is unknown.

  18. The establishment of minority affairs offices in schools of dentistry: pros and cons.

    Science.gov (United States)

    Ballard, Billy R

    2003-09-01

    The establishment of Minority Affairs Offices in dental schools following the American Association of Medical Colleges' model is discussed as one method of addressing the declining enrollment and compounding oral health disparities of underrepresented minorities African Americans, Hispanics, and Native Americans in U.S. dental schools. The pros and cons of the approach are discussed, with recommendations.

  19. Impact of Undergraduates' Stereotypes of Scientists on Their Intentions to Pursue a Career in Science

    Science.gov (United States)

    Schneider, Jennifer

    2010-01-01

    Women remain disproportionately underrepresented in certain science, technology, engineering, and math (STEM) majors and occupations. Stereotypes of scientists may be contributing factors in this phenomenon. However, this relationship has not yet been empirically examined. This is partly because of the dearth of literature addressing the…

  20. National Heart, Lung, and Blood Institute Workshop Summary: Enhancing Opportunities for Training and Retention of a Diverse Biomedical Workforce.

    Science.gov (United States)

    Duncan, Gregg A; Lockett, Angelia; Villegas, Leah R; Almodovar, Sharilyn; Gomez, Jose L; Flores, Sonia C; Wilkes, David S; Tigno, Xenia T

    2016-04-01

    scientists and are complicated by unique circumstances in this group, such as limited exposure to science at a young age, absence of role models and mentors from underrepresented backgrounds, and social norms that relegate their career endeavors, particularly among women, to being subordinate to their expected cultural role. The factors influencing the participation of underrepresented minorities in the biomedical workforce are complex and span several continuous or overlapping stages in the professional development of scientists from these groups. Therefore, a multipronged approach is needed to enable the professional development and retention of underrepresented minorities in biomedical research. This approach should address both individual and social factors and should involve funding agencies, academic institutions, mentoring teams, professional societies, and peer collaboration. Implementation of some of the recommendations, such as access to child care, institutional support and health benefits for trainees, teaching and entrepreneurial opportunities, grant-writing webinars, and pre-NIH career development (Pre-K) pilot programs would not only benefit biomedical scientists from underrepresented groups but also improve the situation of nondiverse junior scientists. However, other issues, such as opportunities for early exposure to science of disadvantaged/minority groups, and identifying mentors/life coaches/peer mentors who come from similar cultural backgrounds and vantage points, are unique to this group.

  1. Minority Engineering Program Pipeline: A Proposal to Increase Minority Student Enrollment and Retention in Engineering

    Science.gov (United States)

    Charity, Pamela C.; Klein, Paul B.; Wadhwa, Bhushan

    1995-01-01

    The Cleveland State University Minority Engineering Program Pipeline consist of programs which foster engineering career awareness, academic enrichment, and professional development for historically underrepresented minority studies. The programs involved are the Access to Careers in Engineering (ACE) Program for high school pre-engineering students: the LINK Program for undergraduate students pursuing degree which include engineering; and the PEP (Pre-calculus Enrichment Program) and EPIC (Enrichment Program in Calculus) mathematics programs for undergraduate academic enrichment. The pipeline is such that high school graduates from the ACE Program who enroll at Cleveland State University in pursuit of engineering degrees are admitted to the LINK Program for undergraduate level support. LINK Program students are among the minority participants who receive mathematics enrichment through the PEP and EPIC Programs for successful completion of their engineering required math courses. THese programs are interdependent and share the goal of preparing minority students for engineering careers by enabling them to achieve academically and obtain college degree and career related experience.

  2. Perceived Barriers to Success for Minority Nursing Students: An Integrative Review

    OpenAIRE

    Loftin, Collette; Newman, Susan D.; Dumas, Bonnie P.; Gilden, Gail; Bond, Mary Lou

    2012-01-01

    The objective of this paper was to identify barriers to successful program completion faced by underrepresented minority nursing students. This paper reveals that minority nursing student’s face multiple barriers to success including lack of financial support, inadequate emotional and moral support, as well as insufficient academic advising, program mentoring, technical support, and professional socialization. An additional theme—a resolve to succeed in spite of the identified barriers—was id...

  3. Status of underrepresented minority and female faculty at medical schools located within Historically Black Colleges and in Puerto Rico

    Directory of Open Access Journals (Sweden)

    Emily M. Mader

    2016-03-01

    Full Text Available Background and objectives: To assess the impact of medical school location in Historically Black Colleges and Universities (HBCU and Puerto Rico (PR on the proportion of underrepresented minorities in medicine (URMM and women hired in faculty and leadership positions at academic medical institutions. Method: AAMC 2013 faculty roster data for allopathic medical schools were used to compare the racial/ethnic and gender composition of faculty and chair positions at medical schools located within HBCU and PR to that of other medical schools in the United States. Data were compared using independent sample t-tests. Results: Women were more highly represented in HBCU faculty (mean HBCU 43.5% vs. non-HBCU 36.5%, p=0.024 and chair (mean HBCU 30.1% vs. non-HBCU 15.6%, p=0.005 positions and in PR chair positions (mean PR 38.23% vs. non-PR 15.38%, p=0.016 compared with other allopathic institutions. HBCU were associated with increased African American representation in faculty (mean HBCU 59.5% vs. non-HBCU 2.6%, p=0.011 and chair (mean HBCU 73.1% vs. non-HBCU 2.2%, p≤0.001 positions. PR designation was associated with increased faculty (mean PR 75.40% vs. non-PR 3.72%, p≤0.001 and chair (mean PR 75.00% vs. non-PR 3.54%, p≤0.001 positions filled by Latinos/Hispanics. Conclusions: Women and African Americans are better represented in faculty and leadership positions at HBCU, and women and Latino/Hispanics at PR medical schools, than they are at allopathic peer institutions.

  4. The Importance of MS PHD'S and SEEDS Mentoring and Professional Development Programs in the Retenion of Underrepresented Minorities in STEM Fields

    Science.gov (United States)

    Strickland, J.; Johnson, A.; Williamson Whitney, V.; Ricciardi, L.

    2012-12-01

    According to a recent study by the National Academy of Sciences, underrepresented minority (URM) participation in STEM disciplines represents approximately one third of the URM population in the U.S. Thus, the proportion of URM in STEM disciplines would need to triple in order to reflect the demographic makeup in the U.S. Individual programs targeting the recruitment and retention of URM students in STEM have demonstrated that principles of mentoring, community building, networking, and professional skill development are crucial in encouraging URM students to remain in STEM disciplines thereby reducing this disparity in representation. However, to paraphrase an old African proverb, "it takes a village to nurture and develop a URM student entering into the STEM community." Through programs such as the Institute for Broadening Participation's Minorities Striving and Pursuing Higher Degrees of Success (MS PHD'S) Professional Development Program in Earth system science and the Ecological Society of America's Strategies for Ecology Education, Diversity and Sustainability (SEEDS), URM students are successfully identifying and benefitting from meaningful opportunities to develop the professional skills and strategies needed to achieve their academic and career goals. Both programs share a philosophy of professional development, reciprocal mentoring, field trips, internships, employment, research partnerships, collaborations, fellowships, scholarships, grants, and professional meeting travel awards to support URM student retention in STEM. Both programs share a mission to bring more diversity and inclusivity into STEM fields. Both programs share a history of success at facilitating the preparation and advancement of URM students. This success has been documented with the multitude of URM students that have matriculated through the programs and are now actively engaged in the pursuit of advanced degrees in STEM or entering the STEM workforce. Anonymous surveys from

  5. Enhancing the Careers of Under-Represented Junior Faculty in Biomedical Research: The Summer Institute Program to Increase Diversity (SIPID).

    Science.gov (United States)

    Rice, Treva K; Liu, Li; Jeffe, Donna B; Jobe, Jared B; Boutjdir, Mohamed; Pace, Betty S; Rao, Dabeeru C

    2014-01-01

    The Summer Institute Program to Increase Diversity (SIPID) in Health-Related Research is a career advancement opportunity sponsored by the National Heart, Lung, and Blood Institute. Three mentored programs address difficulties experienced by junior investigators in establishing independent research careers and academic advancement. Aims are to increase the number of faculty from under-represented minority groups who successfully compete for external research funding. Data were collected using a centralized data-entry system from three Summer Institutes. Outcomes include mentees' satisfaction rating about the program, grant and publications productivity and specific comments. Fifty-eight junior faculty mentees (38% male) noticeably improved their rates of preparing/submitting grant applications and publications, with a 18-23% increase in confidence levels in planning and conducting research. According to survey comments, the training received in grantsmanship skills and one-on-one mentoring were the most valuable program components. The SIPID mentoring program was highly valued by the junior faculty mentees. The program will continue in 2011-2014 as PRIDE (PRogram to Increase Diversity among individuals Engaged in health-related research). Long-term follow-up of current mentees will be indexed at five years post training (2013). In summary, these mentoring programs hope to continue increasing the diversity of the next generation of scientists in biomedical research.

  6. Medical School Outcomes, Primary Care Specialty Choice, and Practice in Medically Underserved Areas by Physician Alumni of MEDPREP, a Postbaccalaureate Premedical Program for Underrepresented and Disadvantaged Students.

    Science.gov (United States)

    Metz, Anneke M

    2017-01-01

    Minorities continue to be underrepresented as physicians in medicine, and the United States currently has a number of medically underserved communities. MEDPREP, a postbaccalaureate medical school preparatory program for socioeconomically disadvantaged or underrepresented in medicine students, has a stated mission to increase the numbers of physicians from minority or disadvantaged backgrounds and physicians working with underserved populations. This study aims to determine how MEDPREP enhances U.S. physician diversity and practice within underserved communities. MEDPREP recruits disadvantaged and underrepresented in medicine students to complete a 2-year academic enhancement program that includes science coursework, standardized test preparation, study/time management training, and emphasis on professional development. Five hundred twenty-five disadvantaged or underrepresented students over 15 years completed MEDPREP and were tracked through entry into medical practice. MEDPREP accepts up to 36 students per year, with two thirds coming from the Midwest region and another 20% from nearby states in the South. Students complete science, test preparation, academic enhancement, and professionalism coursework taught predominantly by MEDPREP faculty on the Southern Illinois University Carbondale campus. Students apply broadly to medical schools in the region and nation but are also offered direct entry into our School of Medicine upon meeting articulation program requirements. Seventy-nine percent of students completing MEDPREP became practicing physicians. Fifty-eight percent attended public medical schools, and 62% attended medical schools in the Midwest. Fifty-three percent of program alumni chose primary care specialties compared to 34% of U.S. physicians, and MEDPREP alumni were 2.7 times more likely to work in medically underserved areas than physicians nationally. MEDPREP increases the number of disadvantaged and underrepresented students entering and graduating

  7. Decoupling of the minority PhD talent pool and assistant professor hiring in medical school basic science departments in the US

    Science.gov (United States)

    Gibbs, Kenneth D; Basson, Jacob; Xierali, Imam M; Broniatowski, David A

    2016-01-01

    Faculty diversity is a longstanding challenge in the US. However, we lack a quantitative and systemic understanding of how the career transitions into assistant professor positions of PhD scientists from underrepresented minority (URM) and well-represented (WR) racial/ethnic backgrounds compare. Between 1980 and 2013, the number of PhD graduates from URM backgrounds increased by a factor of 9.3, compared with a 2.6-fold increase in the number of PhD graduates from WR groups. However, the number of scientists from URM backgrounds hired as assistant professors in medical school basic science departments was not related to the number of potential candidates (R2=0.12, p>0.07), whereas there was a strong correlation between these two numbers for scientists from WR backgrounds (R2=0.48, pprofessors and posited no hiring discrimination. Simulations show that, given current transition rates of scientists from URM backgrounds to faculty positions, faculty diversity would not increase significantly through the year 2080 even in the context of an exponential growth in the population of PhD graduates from URM backgrounds, or significant increases in the number of faculty positions. Instead, the simulations showed that diversity increased as more postdoctoral candidates from URM backgrounds transitioned onto the market and were hired. DOI: http://dx.doi.org/10.7554/eLife.21393.001 PMID:27852433

  8. Concepts first: A course with improved educational outcomes and parity for underrepresented minority groups

    Science.gov (United States)

    Webb, D. J.

    2017-08-01

    Two active learning physics courses were taught and compared. The "concepts first" course was organized to teach only concepts in the first part of the class, the ultimate goal being to increase students' problem-solving abilities much later in the class. The other course was taught in the same quarter by the same instructor using the same curricular materials, but covered material in the standard (chapter-by-chapter) order. After accounting for incoming student characteristics, students from the concepts-first course scored significantly better in two outcome measures: their grade on the final exam and the grade received in their subsequent physics course. Moreover, in the concepts-first class course, students from groups underrepresented in physics had final exam scores and class grades that were indistinguishable from other students. Finally, students who took at least one concepts-first course in introductory physics were found to have significantly higher rates of graduation with a STEM major than students from this cohort who did not.

  9. Underrepresentation of Ethiopian-Israeli Minority Students in Programmes for the Gifted and Talented: A Policy Discourse Analysis

    Science.gov (United States)

    Lifshitz, Chen C.; Katz, Chana

    2015-01-01

    Students from disadvantaged or minority backgrounds are often underrepresented in public educational programmes for the gifted and talented (G&T), a phenomenon that has concerned educators for the last two decades. Ethiopian-Israeli minority students (EIMS) are a good example of this phenomenon, as more than 95% of the vast resources allocated…

  10. Increasing persistence in undergraduate science majors: a model for institutional support of underrepresented students.

    Science.gov (United States)

    Toven-Lindsey, Brit; Levis-Fitzgerald, Marc; Barber, Paul H; Hasson, Tama

    2015-01-01

    The 6-yr degree-completion rate of undergraduate science, technology, engineering, and mathematics (STEM) majors at U.S. colleges and universities is less than 40%. Persistence among women and underrepresented minorities (URMs), including African-American, Latino/a, Native American, and Pacific Islander students, is even more troubling, as these students leave STEM majors at significantly higher rates than their non-URM peers. This study utilizes a matched comparison group design to examine the academic achievement and persistence of students enrolled in the Program for Excellence in Education and Research in the Sciences (PEERS), an academic support program at the University of California, Los Angeles, for first- and second-year science majors from underrepresented backgrounds. Results indicate that PEERS students, on average, earned higher grades in most "gatekeeper" chemistry and math courses, had a higher cumulative grade point average, completed more science courses, and persisted in a science major at significantly higher rates than the comparison group. With its holistic approach focused on academics, counseling, creating a supportive community, and exposure to research, the PEERS program serves as an excellent model for universities interested in and committed to improving persistence of underrepresented science majors and closing the achievement gap. © 2015 B. Toven-Lindsey et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Research Microcultures as Socialization Contexts for Underrepresented Science Students.

    Science.gov (United States)

    Thoman, Dustin B; Muragishi, Gregg A; Smith, Jessi L

    2017-06-01

    How much does scientific research potentially help people? We tested whether prosocial-affordance beliefs (PABs) about science spread among group members and contribute to individual students' motivation for science. We tested this question within the context of research experience for undergraduates working in faculty-led laboratories, focusing on students who belong to underrepresented minority (URM) groups. Longitudinal survey data were collected from 522 research assistants in 41 labs at six institutions. We used multilevel modeling, and results supported a socialization effect for URM students: The aggregate PABs of their lab mates predicted the students' own initial PABs, as well as their subsequent experiences of interest and their motivation to pursue a career in science, even after controlling for individual-level PABs. Results demonstrate that research labs serve as microcultures of information about the science norms and values that influence motivation. URM students are particularly sensitive to this information. Efforts to broaden participation should be informed by an understanding of the group processes that convey such prosocial values.

  12. INCREASING ACHIEVEMENT AND HIGHER-EDUCATION REPRESENTATION OF UNDER-REPRESENTED GROUPS IN SCIENCE, TECHNOLOGY, ENGINEERING, AND MATHEMATICS FIELDS: A REVIEW OF CURRENT K-12 INTERVENTION PROGRAMS.

    Science.gov (United States)

    Valla, Jeffrey M; Williams, Wendy M

    2012-01-01

    The under-representation of women and ethnic minorities in Science, Technology, Engineering, and Mathematics (STEM) education and professions has resulted in a loss of human capital for the US scientific workforce and spurred the development of myriad STEM educational intervention programs. Increased allocation of resources to such programs begs for a critical, prescriptive, evidence-based review that will enable researchers to develop optimal interventions and administrators to maximize investments. We begin by providing a theoretical backdrop for K-12 STEM programs by reviewing current data on under-representation and developmental research describing individual-level social factors undergirding these data. Next, we review prototypical designs of these programs, highlighting specific programs in the literature as examples of program structures and components currently in use. We then evaluate these interventions in terms of overall effectiveness, as a function of how well they address age-, ethnicity-, or gender-specific factors, suggesting improvements in program design based on these critiques. Finally, program evaluation methods are briefly reviewed and discussed in terms of how their empirical soundness can either enable or limit our ability to delineate effective program components. "Now more than ever, the nation's changing demographics demand that we include all of our citizens in science and engineering education and careers. For the U.S. to benefit from the diverse talents of all its citizens, we must grow the pipeline of qualified, underrepresented minority engineers and scientists to fill positions in industry and academia."-Irving P. McPhail..

  13. Geoscience Education Opportunities: Partnerships to Advance TeacHing and Scholarship (GEOPATHS): A Kansas City Minority Student Recruitment Initiative

    Science.gov (United States)

    Adegoke, J. O.; Niemi, T. M.

    2009-12-01

    Geoscience Education Opportunities: Partnerships to Advance TeacHing and Scholarship (GEOPATHS) is a multi-year project funded by the National Science Foundation to address gaps in teacher preparation, improve teacher content in geosciences and help raise enrollment in the Geosciences, especially among populations that are traditionally underrepresented in the discipline. The project is a partnership between the University of Missouri Kansas City (UMKC) and the Kansas City Missouri School District (KCMSD). In this presentation we discuss strategies that we have successfully used to provide credible pathways into the discipline for minorities that have led to a significant increase in the number of underrepresented minority students who are interested in and majoring in geoscience fields at the University of Missouri-Kansas City.

  14. Developing the next generation of diverse computer scientists: the need for enhanced, intersectional computing identity theory

    Science.gov (United States)

    Rodriguez, Sarah L.; Lehman, Kathleen

    2017-10-01

    This theoretical paper explores the need for enhanced, intersectional computing identity theory for the purpose of developing a diverse group of computer scientists for the future. Greater theoretical understanding of the identity formation process specifically for computing is needed in order to understand how students come to understand themselves as computer scientists. To ensure that the next generation of computer scientists is diverse, this paper presents a case for examining identity development intersectionally, understanding the ways in which women and underrepresented students may have difficulty identifying as computer scientists and be systematically oppressed in their pursuit of computer science careers. Through a review of the available scholarship, this paper suggests that creating greater theoretical understanding of the computing identity development process will inform the way in which educational stakeholders consider computer science practices and policies.

  15. Sun-Earth Scientists and Native Americans Collaborate on Sun-Earth Day

    Science.gov (United States)

    Ng, C. Y.; Lopez, R. E.; Hawkins, I.

    2004-12-01

    Sun-Earth Connection scientists have established partnerships with several minority professional societies to reach out to the blacks, Hispanics and Native American students. Working with NSBP, SACNAS, AISES and NSHP, SEC scientists were able to speak in their board meetings and national conferences, to network with minority scientists, and to engage them in Sun-Earth Day. Through these opportunities and programs, scientists have introduced NASA research results as well indigenous views of science. They also serve as role models in various communities. Since the theme for Sun-Earth Day 2005 is Ancient Observatories: Timeless Knowledge, scientists and education specialists are hopeful to excite many with diverse backgrounds. Sun-Earth Day is a highly visible annual program since 2001 that touches millions of students and the general public. Interviews, classroom activities and other education resources are available on the web at sunearthday.nasa.gov.

  16. Weaving the native web: using social network analysis to demonstrate the value of a minority career development program.

    Science.gov (United States)

    Buchwald, Dedra; Dick, Rhonda Wiegman

    2011-06-01

    American Indian and Alaska Native scientists are consistently among the most underrepresented minority groups in health research. The authors used social network analysis (SNA) to evaluate the Native Investigator Development Program (NIDP), a career development program for junior Native researchers established as a collaboration between the University of Washington and the University of Colorado Denver. The study focused on 29 trainees and mentors who participated in the NIDP. Data were collected on manuscripts and grant proposals produced by participants from 1998 to 2007. Information on authorship of manuscripts and collaborations on grant applications was used to conduct social network analyses with three measures of centrality and one measure of network reach. Both visual and quantitative analyses were performed. Participants in the NIDP collaborated on 106 manuscripts and 83 grant applications. Although three highly connected individuals, with critical and central roles in the program, accounted for much of the richness of the network, both current core faculty and "graduates" of the program were heavily involved in collaborations on manuscripts and grants. This study's innovative application of SNA demonstrates that collaborative relationships can be an important outcome of career development programs for minority investigators and that an analysis of these relationships can provide a more complete assessment of the value of such programs.

  17. Recruitment of minority physicians into careers in internal medicine.

    Science.gov (United States)

    Potts, J T

    1992-06-15

    Despite some initial success in the early 1970s, the important goal of increasing the numbers of underrepresented minorities in medical school and on medical faculties has stalled short of proportionate representation. To further the current efforts of the Association of Professors in Medicine (APM) and other national medical groups that are devoted to improving the numbers of minorities in medicine, ideas and program information must be shared among institutions. In this spirit, we review our experience at Massachusetts General Hospital. We found that the first step toward this goal must be an institutional commitment based on increased awareness and on special effort focused on housestaff recruitment. Once the numbers of minorities increase, the department chairperson, training program directors, and other involved faculty can work with younger minority physicians; the cooperative relationship thus created can guide the development of a strong minority recruitment program without requiring an undue time commitment from minority trainees and faculty. The APM has a combined goal: to achieve early practical results in individual departments, to play a catalytic role with the community and other national medical organizations, and to increase the number of minorities entering medical school and careers in medicine generally.

  18. Media and the making of scientists

    Science.gov (United States)

    O'Keeffe, Moira

    This dissertation explores how scientists and science students respond to fictional, visual media about science. I consider how scientists think about images of science in relation to their own career paths from childhood onwards. I am especially interested in the possibility that entertainment media can inspire young people to learn about science. Such inspiration is badly needed, as schools are failing to provide it. Science education in the United States is in a state of crisis. Studies repeatedly find low levels of science literacy in the U.S. This bleak situation exists during a boom in the popularity of science-oriented television shows and science fiction movies. How might entertainment media play a role in helping young people engage with science? To grapple with these questions, I interviewed a total of fifty scientists and students interested in science careers, representing a variety of scientific fields and demographic backgrounds, and with varying levels of interest in science fiction. Most respondents described becoming attracted to the sciences at a young age, and many were able to identify specific sources for this interest. The fact that interest in the sciences begins early in life, demonstrates a potentially important role for fictional media in the process of inspiration, perhaps especially for children without access to real-life scientists. One key aspect to the appeal of fiction about science is how scientists are portrayed as characters. Scientists from groups traditionally under-represented in the sciences often sought out fictional characters with whom they could identify, and viewers from all backgrounds preferred well-rounded characters to the extreme stereotypes of mad or dorky scientists. Genre is another aspect of appeal. Some respondents identified a specific role for science fiction: conveying a sense of wonder. Visual media introduce viewers to the beauty of science. Special effects, in particular, allow viewers to explore the

  19. Looking in the Right Places: Minority-Serving Institutions as Sources of Diverse Earth Science Learners

    Science.gov (United States)

    McDaris, John R.; Manduca, Cathryn A.; Iverson, Ellen R.; Orr, Cailin Huyck

    2017-01-01

    Despite gains over the last decade, the geoscience student population in the United States today continues to lag other science, technology, engineering, and mathematics disciplines in terms of diversity. Minority-serving institutions (MSIs) can play an important role in efforts to broaden underrepresented student engagement with Earth Science…

  20. Minority recruitment and retention in dietetics: issues and interventions.

    Science.gov (United States)

    Greenwald, H P; Davis, R A

    2000-08-01

    To better understand the reasons why minorities and males are underrepresented among registered dietitians (RDs) and dietetic technicians, registered, (DTRs) and to develop focuses for intervention, the investigators performed a telephone survey of newly credentialed RDs and DTRs and directors of RD and DTR education programs. Using lists of students recruited by the American Dietetic Association for participation in the survey, the investigators interviewed 83 RDs and DTRs and 20 education program directors. RDs and DTRs attributed minority underrepresentation primarily to the field's lack of visibility and underrepresentation of men to the traditional association with women. Education program directors attributed minority underrepresentation to educational disadvantages, particularly in scientific subjects. Findings from this study support program-level interventions such as increasing program flexibility, initiating outreach to K-12 schools and lower-division college students, providing tutoring in a nondemeaning atmosphere, and visibly expressing commitment to minority representation. More fundamental changes in the profession itself appear necessary for large-scale increases in minority representation. These include increasing internship opportunities; raising the profession's level of remuneration, prestige, and independence; increasing scholarship support; and advertising nationally through channels capable of reaching minorities.

  1. Shattering the Glass Ceiling. Issues and Solutions in Promoting the Advancement of Women and Minorities to Executive Management in Corporate America. White Paper 1966.

    Science.gov (United States)

    Microquest Corp., San Rafael, CA.

    Despite their progress in the workplace in recent years, women and minorities still remain greatly underrepresented in executive roles in major U.S. companies. The barriers, attitudes, and practices that deter the advancement of women and minorities into executive ranks collectively result in the phenomenon known as the "Glass Ceiling."…

  2. Number of Minority Students in Colleges Rose by 9% from 1990 to 1991, U.S. Reports; Fact File: State-by-State Enrollment by Racial and Ethnic Group, Fall 1991.

    Science.gov (United States)

    Evangelauf, Jean

    1993-01-01

    A national survey shows that total minority enrollment in colleges is at an all-time high at 20.6 percent of overall enrollment. Despite this, minority groups continue to be underrepresented in college student populations. Enrollments by state indicate wide geographic variation in percentages of students from ethnic and racial minorities. (MSE)

  3. Appraisal Support from Natural Mentors, Self-worth, and Psychological Distress: Examining the Experiences of Underrepresented Students Transitioning Through College.

    Science.gov (United States)

    Hurd, Noelle M; Albright, Jamie; Wittrup, Audrey; Negrete, Andrea; Billingsley, Janelle

    2018-05-01

    The current study explored whether cumulative appraisal support from as many as five natural mentors (i.e., nonparental adults from youth's pre-existing social networks who serve a mentoring role in youth's lives) led to reduced symptoms of depression and anxiety via improved global self-worth among underrepresented college students. Participants in the current study included 340 college students (69% female) attending a 4-year, predominantly White institution of higher education. Participants were first-generation college students, students from economically disadvantaged backgrounds, and/or students from underrepresented racial/ethnic minority groups. Participants completed surveys during the Fall and Spring of their first year of college and in the Spring of their second and third years of college. Results of the structural equation model (including gender, race/ethnicity, and extraversion as covariates) indicated that greater total appraisal support from natural mentoring relationships predicted decreases in students' psychological distress via increases in self-worth (indirect effects assessed via boot-strapped confidence intervals; 95% CI). The strength of association between appraisal support and self-worth was not moderated by the proportion of academic natural mentors. Findings from the current study extend previous research by measuring multiple natural mentoring relationships and pinpointing supportive exchanges that may be of particular consequence for the promotion of healthy youth development. Institutional efforts to reinforce pre-existing natural mentoring relationships and encourage the onset of new natural mentoring relationships may serve to bolster the well-being and success of underrepresented students attending predominantly White universities.

  4. Predictors of Intent to Pursue a College Health Science Education among High Achieving Minority 10th Graders

    Science.gov (United States)

    Zebrak, Katarzyna A.; Le, Daisy; Boekeloo, Bradley O.; Wang, Min Qi

    2013-01-01

    Minority populations are underrepresented in fields of science, perhaps limiting scientific perspectives. Informed by recent studies using social cognitive career theory, this study examined whether three conceptual constructs: self-efficacy, perceived adult support, and perceived barriers, along with several discrete and immutable variables,…

  5. A Matrix Mentoring Model That Effectively Supports Clinical and Translational Scientists and Increases Inclusion in Biomedical Research: Lessons From the University of Utah.

    Science.gov (United States)

    Byington, Carrie L; Keenan, Heather; Phillips, John D; Childs, Rebecca; Wachs, Erin; Berzins, Mary Anne; Clark, Kim; Torres, Maria K; Abramson, Jan; Lee, Vivian; Clark, Edward B

    2016-04-01

    Physician-scientists and scientists in all the health professions are vital members of the U.S. biomedical workforce, but their numbers at academic health centers are declining. Mentorship has been identified as a key component in retention of faculty members at academic health centers. Effective mentoring may promote the retention of clinician-scientists in the biomedical workforce. The authors describe a holistic institutional mentoring program to support junior faculty members engaged in clinical and translational science at the University of Utah. The clinical and translational scholars (CATS) program leverages the resources of the institution, including the Center for Clinical and Translational Science, to augment departmental resources to support junior faculty investigators and uses a multilevel mentoring matrix that includes self, senior, scientific, peer, and staff mentorship. Begun in the Department of Pediatrics, the program was expanded in 2013 to include all departments in the school of medicine and the health sciences. During the two-year program, scholars learn management essentials and have leadership training designed to develop principal investigators. Of the 86 program participants since fiscal year 2008, 92% have received extramural awards, 99% remain in academic medicine, and 95% remain at the University of Utah. The CATS program has also been associated with increased inclusion of women and underrepresented minorities in the institutional research enterprise. The CATS program manifests institutional collaboration and coordination of resources, which have benefited faculty members and the institution. The model can be applied to other academic health centers to support and sustain the biomedical workforce.

  6. Persistence among Minority STEM Majors: A Phenomenological Study

    Science.gov (United States)

    Williams-Watson, Stacey

    The United States needs to increase the number of science, technology, engineering, and math (STEM) graduates to remain competitive in the global market and maintain national security. Minority students, specifically African-American and Hispanic, are underrepresented in STEM fields. As the minority population continues to grow it is essential that higher education institutions improve minority students' persistence in STEM education. This study examined the problem of minority students' lack of persistence in STEM programs. The purpose of this qualitative transcendental phenomenological study was to describe the lived experiences that minority students perceived as contributing to their persistence in STEM. The central research question was: What are the lived experiences of minority STEM students that have contributed to their persistence in a STEM program? The sub-questions were: a) What led participants to majors in STEM?; b) What contributed to students' success and persistence in STEM?; and c) What advice do students have to offer? The researcher interviewed 12 minority STEM students and uncovered 10 themes that described the lived experiences of minority students' persistence in STEM programs. The themes were 1) Childhood experiences and interests; 2) Positive educational experiences in secondary school; 3) Self- motivation; 4) Positive experiences with professors; 5) Family encouragement and values; 6) Lack of minorities; 7) Lack of educational preparation; 8) The need for financial assistance; 9) Clubs and organizations; and 10) Friends within the major. The significance of these findings is the potential to produce changes in curricula, programs, and retention methods that may improve the persistence of minority students in STEM programs.

  7. Engaging Diverse Students in Statistical Inquiry: A Comparison of Learning Experiences and Outcomes of Under-Represented and Non-Underrepresented Students Enrolled in a Multidisciplinary Project-Based Statistics Course

    Science.gov (United States)

    Dierker, Lisa; Alexander, Jalen; Cooper, Jennifer L.; Selya, Arielle; Rose, Jennifer; Dasgupta, Nilanjana

    2016-01-01

    Introductory statistics needs innovative, evidence-based teaching practices that support and engage diverse students. To evaluate the success of a multidisciplinary, project-based course, we compared experiences of under-represented (URM) and non-underrepresented students in 4 years of the course. While URM students considered the material more…

  8. Greatest barrier is retaining young scientists

    Science.gov (United States)

    Chandler, Mark; Hopper, John

    The National Science Foundation's top priorities as listed by director Neal Lane in Eos (November 9) are to strengthen NSF and its support of scientific research and education, to better articulate to the public why it is so important that support of science and engineering be strengthened, and to continue to lower barriers that discourage young people from choosing careers in science.While we firmly support the first two priorities, we are concerned about the underlying assumptions and implications of the third. Barriers discouraging women and minorities from considering careers in math and science do exist within our educational system, and there is now abundant statistical evidence showing these groups are under-represented in most fields of science. However, as stated in the Eos article, solving these problems and leveling the playing field is not the primary goal of the NSF policy.

  9. Asian and Pacific Islander women scientists and engineers: A narrative exploration of model minority, gender, and racial stereotypes

    Science.gov (United States)

    Chinn, Pauline W. U.

    2002-04-01

    This qualitative study uses narrative methodology to understand what becoming a scientist or engineer entails for women stereotyped as model minorities. Interviews with four Chinese and Japanese women focused on the social contexts in which science is encountered in classrooms, families, and community. Interpretation was guided by theories that individuals construct personal narratives mediated by cultural symbolic systems to make meaning of experiences. Narratives revealed that Confucian cultural scripts shaped gender expectations even in families several generations in America. Regardless of parents' level of education, country of birth, and number of children, educational expectations, and resources were lower for daughters. Parents expected daughters to be compliant, feminine, and educated enough to be marriageable. Findings suggest K-12 gender equity science practices encouraged development of the women's interests and abilities but did not affect parental beliefs. The author's 1999 study of Hawaiians/Pacific Islander and Filipina female engineers is included in implications for teacher education programs sensitive to gender, culture, ethnicity, and language.

  10. Peer-Led Team Learning Helps Minority Students Succeed.

    Science.gov (United States)

    Snyder, Julia J; Sloane, Jeremy D; Dunk, Ryan D P; Wiles, Jason R

    2016-03-01

    Active learning methods have been shown to be superior to traditional lecture in terms of student achievement, and our findings on the use of Peer-Led Team Learning (PLTL) concur. Students in our introductory biology course performed significantly better if they engaged in PLTL. There was also a drastic reduction in the failure rate for underrepresented minority (URM) students with PLTL, which further resulted in closing the achievement gap between URM and non-URM students. With such compelling findings, we strongly encourage the adoption of Peer-Led Team Learning in undergraduate Science, Technology, Engineering, and Mathematics (STEM) courses.

  11. Increasing the Number of Underrepresented Minorities in Astronomy: Executive Summary

    Science.gov (United States)

    Norman, Dara; Ernst, David J.; Agueros, Marcel; Anderson, Scott F.; Baker, Andrew; Burgasser, Adam; Cruz, Kelle; Gawiser, Eric; Krishnamurthi, Anita; Lee, Hyun-chul; Mighell, Kenneth; McGruder, Charles; Norman, Dara; Sakimoto, Philip J.; Sheth, Karthik; Soderblom, Dave; Strauss, Michael; Walter, Donald; West, Andrew; Agol, Eric; Murphy, Jeremiah; Garner, Sarah; Bellovary, Jill; Schmidt, Sarah; Cowan, Nick; Gogarten, Stephanie; Stilp, Adrienne; Christensen, Charlotte; Hilton, Eric; Haggard, Daryl; Loebman, Sarah; Rosenfield, Phil; Munshi, Ferah

    Promoting racial and ethnic diversity is critically important to the future success and growth of the field of astronomy. The raw ability, drive and interest required to excel in the field is distributed without regard to race, gender, or socioeconomic background. By not actively promoting diversity in our field we risk losing talented people to other professions (or losing them entirely), which means that there will be astronomical discoveries that simply won't get made. There is demonstrated evidence that STEM fields benefit from diverse perspectives on problems that require more complex thought processes. This is especially relevant to a field like astronomy where more and more work is being done collaboratively. The lack of notable growth in African American, Hispanic, and Native American representation in astronomy indicates that the 'pipeline' for these individuals is systemically leaky at critical junctures. Substantially more effort must be directed toward improving the educational and career development of minorities to insure that these potential colleagues are supported through the process. However, simply recognizing that the pipeline is faulty is woefully inadequate. There must be very specific, targeted solutions to help improve the situation. With this in mind, we offer two position papers addressing specific areas of improvement that we identify as (a) essential for any foreseeable progress in the field, and (b) attainable in the 2010-2020 decade. These position papers focus primarily on African Americans, Hispanics, and Native Americans. Although we do not directly address issues of Asian Americans, Pacific Islanders, and other groups, many of the recommendations made here can be adapted to address issues faced by these groups as well.

  12. Racial and ethnic minority enrollment in randomized clinical trials of behavioural weight loss utilizing technology: a systematic review.

    Science.gov (United States)

    Rosenbaum, D L; Piers, A D; Schumacher, L M; Kase, C A; Butryn, M L

    2017-07-01

    Many racial and ethnic minority groups (minorities) are disproportionately affected by overweight and obesity; however, minorities are often under-represented in clinical trials of behavioural weight loss (BWL) treatment, potentially limiting the generalizability of these trials' conclusions. Interventions involving technology may be particularly well suited to overcoming the barriers to minority enrollment in BWL trials, such as demanding or unpredictable work schedules, caregiving responsibilities and travel burdens. Thus, this systematic review aimed to describe minority enrollment in trials utilizing technology in interventions, as well as to identify which form(s) of technology yield the highest minority enrollment. Results indicated relatively low enrollment of minorities. Trials integrating smartphone use exhibited significantly greater racial minority enrollment than trials that did not; trials with both smartphone and in-person components exhibited the highest racial minority enrollment. This review is the first to explore how the inclusion of technology in BWL trials relates to minority enrollment and can help address the need to improve minority enrollment in weight loss research. © 2017 World Obesity Federation.

  13. Blood donation barriers and facilitators of Sub-Saharan African migrants and minorities in Western high-income countries: a systematic review of the literature

    NARCIS (Netherlands)

    Klinkenberg, E. F.; Huis In 't Veld, E. M. J.; de Wit, P. D.; van Dongen, A.; Daams, J. G.; de Kort, W. L. A. M.; Fransen, M. P.

    2018-01-01

    The present study aimed to gain more insight into, and summarise, blood donation determinants among migrants or minorities of Sub-Saharan heritage by systematically reviewing the current literature. Sub-Saharan Africans are under-represented in the blood donor population in Western high-income

  14. Analyzing Student Aid Packaging To Improve Low-Income and Minority Student Access, Retention and Degree Completion. AIR 1999 Annual Forum Paper.

    Science.gov (United States)

    Fenske, Robert H.; Porter, John D.; DuBrock, Caryl P.

    This study examined the persistence of and financial aid to needy students, underrepresented minority students, and women students, especially those majoring in science, engineering, and mathematics at a large public research university. An institutional student tracking and student financial aid database was used to follow four freshmen cohorts…

  15. 500 Women Scientists: Science Advocacy Through Community Action

    Science.gov (United States)

    Bohon, W.; Bartel, B. A.; Pendergrass, A. G.; Ramirez, K. S.; Vijayaraghavan, R.; Weintraub, S. R.; Zelikova, T. J.

    2017-12-01

    500 Women Scientists is a grassroots organization formed in late 2016 to empower women to grow to their full potential in science, increase scientific literacy through public engagement, and advocate for science and equality. Our organization is global but we focus on building community relationships through local action. Our "pods," or local chapters, focus on issues that resonate in their communities, rooted in our mission and values. Pod members meet regularly, develop a support network, make strategic plans, and take action. In less than a year, 500 Women Scientists has already formed important partnerships and begun to work on local, regional and national projects. Nationally, we partnered with The Cairn Project to raise money to support girls in science. In an effort led by the DC pod, our members sent postcards sharing stories of how the EPA protects their communities in the #OurEPA postcard campaign. Pods have also participated in marches, including the Women's March, the March for Science and the People's Climate March. The "Summer of Op-Ed" campaign catalyzed pods and individuals to write to their local newspapers to speak up for funding science, climate change action, and general science advocacy. We have organized "strike-teams" that are working on local issues like education, the environment, climate change, and equal access to science. Additionally, pod members serve as mentors, participate in local events, hold workshops and partner with local organizations. As women scientists, we are in the position to take action to increase diversity in science and to draw attention to unacknowledged structural biases that negatively impact historically under-represented groups. 500 Women Scientists enables women in science to embrace this advocacy role, both within our scientific system and within our local communities.

  16. Final Report National Laboratory Professional Development Workshop for Underrepresented Participants

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Valerie [Texas Engineering Experiment Station, College Station, TX (United States)

    2016-11-07

    The 2013 CMD-IT National Laboratories Professional Development Workshop for Underrepresented Participants (CMD-IT NLPDev 2013) was held at the Oak Ridge National Laboratory campus in Oak Ridge, TN. from June 13 - 14, 2013. Sponsored by the Department of Energy (DOE) Advanced Scientific Computing Research Program, the primary goal of these workshops is to provide information about career opportunities in computational science at the various national laboratories and to mentor the underrepresented participants through community building and expert presentations focused on career success. This second annual workshop offered sessions to facilitate career advancement and, in particular, the strategies and resources needed to be successful at the national laboratories.

  17. Underrepresented Racial/Ethnic Minority Graduate Students in Science, Technology, Engineering, and Math (STEM) Disciplines: A Cross Institutional Analysis of their Experiences

    Science.gov (United States)

    Figueroa, Tanya

    Considering the importance of a diverse science, technology, engineering, and math (STEM) research workforce for our country's future, it is troubling that many underrepresented racial minority (URM) students start graduate STEM programs, but do not finish. However, some institutional contexts better position students for degree completion than others. The purpose of this study was to uncover the academic and social experiences, power dynamics, and programmatic/institutional structures URM students face within their graduate STEM programs that hinder or support degree progression. Using a critical socialization framework applied in a cross-comparative qualitative study, I focused on how issues of race, ethnicity, and underrepresentation within the educational contexts shape students' experiences. Data was collected from focus group interviews involving 53 URM graduate students pursuing STEM disciplines across three institution types -- a Predominately White Institution, a Hispanic-Serving Institution, and a Historically Black University. Results demonstrate that when students' relationships with faculty advisors were characterized by benign neglect, students felt lost, wasted time and energy making avoidable mistakes, had less positive views of their experiences, and had more difficulty progressing through classes or research, which could cause them to delay time to degree completion or to leave with a master's degree. Conversely, faculty empowered students when they helped them navigate difficult processes/milestones with regular check-ins, but also allowed students room to make decisions and solve problems independently. Further, faculty set the tone for the overall interactional culture and helping behavior in the classroom and lab contexts; where faculty modeled collaboration and concern for students, peers were likely to do the same. International peers sometimes excluded domestic students both socially and academically, which had a negative affect on

  18. Ethical Considerations for the Participation of Children of Minor Parents in Clinical Trials.

    Science.gov (United States)

    Ott, Mary A; Crawley, Francis P; Sáez-Llorens, Xavier; Owusu-Agyei, Seth; Neubauer, David; Dubin, Gary; Poplazarova, Tatjana; Begg, Norman; Rosenthal, Susan L

    2018-06-01

    Children of minor parents are under-represented in clinical trials. This is largely because of the ethical, legal, and regulatory complexities in the enrolment, consent, and appropriate access of children of minor parents to clinical research. Using a case-based approach, we examine appropriate access of children of minor parents in an international vaccine trial. We first consider the scientific justification for inclusion of children of minor parents in a vaccine trial. Laws and regulations governing consent generally do not address the issue of minor parents. In their absence, local community and cultural contexts may influence consent processes. Rights of the minor parent include dignity in their role as a parent and respect for their decision-making capacity in that role. Rights of the child include the right to have decisions made in their best interest and the right to the highest attainable standard of health. Children of minor parents may have vulnerabilities related to the age of their parent, such as increased rates of poverty, that have implications for consent. Neuroscience research suggests that, by age 12-14 years, minors have adult-level capacity to make research decisions in situations with low emotion and low distraction. We conclude with a set of recommendations based on these findings to facilitate appropriate access and equity related to the participation of children of minor parents in clinical research.

  19. Exploration of the lived experiences of undergraduate science, technology, engineering, and mathematics minority students

    Science.gov (United States)

    Snead-McDaniel, Kimberly

    An expanding ethnicity gap exists in the number of students pursuing science, technology, engineering, and mathematics (STEM) careers in the United States. The National Action Council for Minorities in Engineering revealed that the number of minorities pursuing STEM degrees and careers has declined over the past few years. The specific origins of this trend are not quite evident; one variable to consider is that undergraduate minority students are failing in STEM disciplines at various levels of education from elementary to postsecondary. The failure of female and minority students to enter STEM disciplines in higher education have led various initiatives to establish programs to promote STEM disciplines among these groups. Additional funding for minority STEM programs have led to a increase in undergraduate minority students entering STEM disciplines, but the minority students' graduation rate in STEM disciplines is approximately 7% lower than the graduation of nonminority students in STEM disciplines. This phenomenological qualitative research study explores the lived experiences of underrepresented minority undergraduate college students participating in an undergraduate minority-mentoring program. The following nine themes emerged from the study: (a) competitiveness, (b) public perception, (c) dedication, (d) self-perception, (e) program activities, (f) time management, (g) exposure to career and graduate opportunities, (h) rigor in the curriculum, and (i) peer mentoring. The themes provided answers and outcomes to better support a stronger minority representation in STEM disciplines.

  20. Characteristics of health professions schools, public school systems, and community-based organizations in successful partnerships to increase the numbers of underrepresented minority students entering health professions education.

    Science.gov (United States)

    Carline, Jan D; Patterson, Davis G

    2003-05-01

    To identify characteristics of health professions schools, public schools, and community-based organizations in successful partnerships to increase the number of underrepresented minority students entering health professions. The Robert Wood Johnson Foundation and the W. K. Kellogg Foundation funded the Health Professions Partnership Initiative program developed from Project 3000 by 2000 of the Association of American Medical Colleges. Semi-structured interviews were completed with awardees and representatives of the funding agencies, the national program office, and the national advisory committee between the fall of 2000 and the summer of 2002. Site visits were conducted at ten sites, with representatives of partner institutions, teachers, parents, and children. Characteristics that supported and hindered development of successful partnerships were identified using an iterative qualitative approach. Successful partnerships included professional schools that had a commitment to community service. Successful leaders could work in both cultures of the professional and public schools. Attitudes of respect and listening to the needs of partners were essential. Public school governance supported innovation. Happenstance and convergence of interests played significant roles in partnership development. The most telling statement was "We did it, together." This study identifies characteristics associated with smoothly working partnerships, and barriers to successful program development. Successful partnerships can form the basis on which educational interventions are built. The study is limited by the definition of success used, and its focus on one funded program. The authors were unable to identify outcomes in terms of numbers of children influenced by programs or instances in which lasting changes in health professions schools had occurred.

  1. Cost Effective Polymer Solar Cells Research and Education

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Sam-Shajing [Norfolk State Univ, Norfolk, VA (United States)

    2015-10-13

    The technical or research objective of this project is to investigate and develop new polymers and polymer based optoelectronic devices for potentially cost effective (or cost competitive), durable, lightweight, flexible, and high efficiency solar energy conversion applications. The educational objective of this project includes training of future generation scientists, particularly young, under-represented minority scientists, working in the areas related to the emerging organic/polymer based solar energy technologies and related optoelectronic devices. Graduate and undergraduate students will be directly involved in scientific research addressing issues related to the development of polymer based solar cell technology.

  2. Broadening Awareness and Participation in the Geosciences Among Underrepresented Minorities in STEM

    Science.gov (United States)

    Blake, R.; Liou-Mark, J.

    2012-12-01

    An acute STEM crisis exists nationally, and the problem is even more dire among the geosciences. Since about the middle of the last century, fewer undergraduate and graduate degrees have been granted in the geosciences than in any other STEM fields. To help in ameliorating this geoscience plight, particularly from among members of racial and ethnic groups that are underrepresented in STEM fields, the New York City College of Technology (City Tech) launched a vibrant geoscience program and convened a community of STEM students who are interested in learning about the geosciences. This program creates and introduces geoscience knowledge and opportunities to a diverse undergraduate student population that was never before exposed to geoscience courses at City Tech. This geoscience project is funded by the NSF OEDG program, and it brings awareness, knowledge, and geoscience opportunities to City Tech's students in a variety of ways. Firstly, two new geoscience courses have been created and introduced. One course is on Environmental Remote Sensing, and the other course is an Introduction to the Physics of Natural Disasters. The Remote Sensing course highlights the physical and mathematical principles underlying remote sensing techniques. It covers the radiative transfer equation, atmospheric sounding techniques, interferometric and lidar systems, and an introduction to image processing. Guest lecturers are invited to present their expertise on various geoscience topics. These sessions are open to all City Tech students, not just to those students who enroll in the course. The Introduction to the Physics of Natural Disasters course is expected to be offered in Spring 2013. This highly relevant, fundamental course will be open to all students, especially to non-science majors. The course focuses on natural disasters, the processes that control them, and their devastating impacts to human life and structures. Students will be introduced to the nature, causes, risks

  3. On-the-job, real-time professional development for graduate students and early career scientists at the University of Hawaii

    Science.gov (United States)

    Bruno, B. C.; Guannel, M.; Wood-Charlson, E.; Choy, A.; Wren, J.; Chang, C.; Alegado, R.; Leon Soon, S.; Needham, H.; Wiener, C.

    2015-12-01

    Here we present an overview of inter-related programs designed to promote leadership and professional development among graduate students and early career scientists. In a very short time, these young scientists have developed into an impressive cohort of leaders. Proposal Writing. The EDventures model combines proposal-writing training with the incentive of seed money. Rather than providing training a priori, the EDventures model encourages students and post-docs to write a proposal based on guidelines provided. Training occurs during a two-stage review stage: proposers respond to panel reviews and resubmit their proposal within a single review cycle. EDventures alumni self-report statistically significant confidence gains on all questions posed. Their subsequent proposal success is envious: of the 12 proposals submitted by program alumni to NSF, 50% were funded. (Wood Charlson & Bruno, in press; cmore.soest.hawaii.edu/education/edventures.htm)Mentoring. The C-MORE Scholars and SOEST Maile Mentoring Bridgeprograms give graduate students the opportunity to serve as research mentors and non-research mentors, respectively, to undergraduates. Both programs aim to develop a "majority-minority" scientist network, where Native Hawaiians and other underrepresented students receive professional development training and personal support through one-on-one mentoring relationships (Gibson and Bruno, 2012; http://cmore.soest.hawaii.edu/scholars; http://maile.soest.hawaii.edu).Outreach & Science Communication. Ocean FEST (Families Exploring Science Together), Ocean TECH (Technology Explores Career Horizons) and the Kapiolani Community College summer bridge program provide opportunities for graduate students and post-docs to design and deliver outreach activities, lead field trips, communicate their research, and organize events (Wiener et al, 2011, Bruno & Wren, 2014; http://oceanfest.soest.hawaii.edu; http://oceantech.soest.hawaii.edu)Professional Development Course. In this

  4. Transformed Science: Overcoming Barriers of Inequality and Mistrust to Pursue the Agenda of Underrepresented Communities

    Science.gov (United States)

    Lyons, Renee

    Educational programs created to provide opportunities for all, in reality often reflect social inequalities. Such is the case for Public Participation in Scientific Research (PPSR) Projects. PPSR projects have been proposed as an effective way to engage more diverse audiences in science, yet the demographics of PPSR participants do not correspond with the demographic makeup of the United States. The field of PPSR as a whole has struggled to recruit low SES and underrepresented populations to participate in project research efforts. This research study explores factors, which may be affecting an underrepresented community's willingness to engage in scientific research and provides advice from PPSR project leaders in the field, who have been able to engage underrepresented communities in scientific research, on how to overcome these barriers. Finally the study investigates the theoretical construct of a Third Space within a PPSR project. The research-based recommendations for PPSR projects desiring to initiate and sustain research partnerships with underrepresented communities well align with the theoretical construct of a Third Space. This study examines a specific scientific research partnership between an underrepresented community and scientific researchers to examine if and to what extent a Third Space was created. Using qualitative methods to understand interactions and processes involved in initiating and sustaining a scientific research partnership, this study provides advice on how PPSR research partnerships can engage underrepresented communities in scientific research. Study results show inequality and mistrust of powerful institutions stood as participation barriers for underrepresented community members. Despite these barriers PPSR project leaders recommend barriers can be confronted by open dialogue with communities about the abuse and alienation they have faced, by signaling respect for the community, and by entering the community through someone the

  5. Redefining Scientist-Educator Partnerships: Science in Service at Stanford

    Science.gov (United States)

    Beck, K.

    2005-05-01

    The Stanford Solar Observatories Group and Haas Center for Public Service have created an innovative model for scientist-educator partnerships in which science students are trained and mentored by public service education professionals to create outreach events for local communities. The program, Science in Service, is part of the EPO plan for the Solar Group's participation in NASA's Solar Dynamics Observatory mission. Based on the principles of service learning, the Science in Service Program mentors college science students in best practices for communicating science and engages these students in public service projects that center on teaching solar science. The program goals are to - Enhance and expand the learning experiences that pre-college students, from underserved and underrepresented groups in particular, have in science and technology. - Promote leadership in community service in the area of science and engineering among the next generation of scientists and engineers, today's undergraduate students. - Encourage science and engineering faculty to think creatively about their outreach requirements and to create a community of faculty committed to quality outreach programs. This talk will describe the unique advantages and challenges of a research-public service partnership, explain the structure of Stanford's Science in Service Program, and present the experiences of the undergraduates and the outreach communities that have been involved in the program.

  6. A community of scientists: cultivating scientific identity among undergraduates within the Berkeley Compass Project

    Science.gov (United States)

    Aceves, Ana V.; Berkeley Compass Project

    2015-01-01

    The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at UC Berkeley. Our goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations typically underrepresented in the physical sciences. For students who enter as freshmen, the core Compass experience consists of a summer program and several seminar courses. These programs are designed to foster a diverse, collaborative student community in which students engage in authentic research practices and regular self-reflection. Compass encourages undergraduates to develop an identity as a scientist from the beginning of their university experience.

  7. Building Bridges: College to Career for Underrepresented College Students

    Science.gov (United States)

    Means, Darris R.; Bryant, Immanuel; Crutchfield, Stacey; Jones, Michelle; Wade, Ross

    2016-01-01

    Colleges and universities have increased institutional outreach to diversify their campuses, however, campus leaders, faculty, and staff, particularly at predominantly White institutions (PWIs), must provide more and different support services as their institutional demographics shift to include more underrepresented students. The shift in…

  8. Preparing Future Geoscientists at the Critical High School-to-College Junction: Project METALS and the Value of Engaging Diverse Institutions to Serve Underrepresented Students

    Science.gov (United States)

    White, L. D.; Maygarden, D.; Serpa, L. F.

    2015-12-01

    Since 2010, the Minority Education Through Traveling and Learning in the Sciences (METALS) program, a collaboration among San Francisco State Univ., the Univ. of Texas at El Paso, the Univ. of New Orleans, and Purdue Univ., has created meaningful, field-based geoscience experiences for underrepresented minority high school students. METALS activities promote excitement about geoscience in field settings and foster mutual respect and trust among participants of different backgrounds and ethnicities. These gains are strengthened by the collective knowledge of the university partners and by faculty, graduate and undergraduate students, scientists, and science teachers who guide the field trips and who are committed to encouraging diversity in the geosciences. Through the student experiences it provides, METALS has helped shape and shift student attitudes and orientation toward geoscience, during and beyond their field experience, just as these students are poised at the critical juncture from high school to college. A review of the METALS findings and summative evaluation shows a distinct pattern of high to moderately high impact on most students in the various cohorts of the program. METALS, overall, was perceived by participants as a program that: (1) opens up opportunities for individuals who might not typically be able to experience science in outdoor settings; (2) offers high-interest geology content in field contexts, along with social and environmental connections; (3) promotes excitement about geology while encouraging the development of mutual respect, interdependence, and trust among individuals of different ethnicities; (4) influences the academic choices of students, in particular their choice of major and course selection in college. Summative data show that multiple aspects of this program were highly effective. Cross-university collaborations create a dynamic forum and a high-impact opportunity for students from different backgrounds to meet and develop

  9. Princeton University Materials Academy for underrepresented students

    Science.gov (United States)

    Steinberg, Daniel; Rodriguez Martinez, Sara; Cody, Linda

    Summer 2016 gave underrepresented high school students from Trenton New Jersey the opportunity to learn materials science, sustainability and the physics and chemistry of energy storage from Princeton University professors. New efforts to place this curriculum online so that teachers across the United States can teach materials science as a tool to teach ``real'' interdisciplinary science and meet the new Next Generation Science Standards (NGSS). The Princeton University Materials Academy (PUMA) is an education outreach program for underrepresented high school students. It is part of the Princeton Center for Complex Materials (PCCM), a National Science Foundation (NSF) funded Materials Research Engineering and Science Center (MRSEC). PUMA has been serving the community of Trenton New Jersey which is only eight miles from the Princeton University campus. We reached over 250 students from 2003-2016 with many students repeating for multiple years. 100% of our PUMA students have graduated high school and 98% have gone on for college. This is compared with overall Trenton district graduation rate of 48% and a free and reduced lunch of 83%. We discuss initiatives to share the curriculum online to enhance the reach of PCCM' PUMA and to help teachers use materials science to meet NGSS and give their students opportunities to learn interdisciplinary science. MRSEC, NSF (DMR-1420541).

  10. Fostering Under-represented Minority Student Success and Interest in the Geosciences: Outcomes of the UNC-Chapel Hill Increasing Diversity and Enhancing Academia (IDEA) Program

    Science.gov (United States)

    Hughes, M. H.; Gray, K.; Drostin, M.

    2016-12-01

    For under-represented minority (URM) students, opportunities to meaningfully participate in academic communities and develop supportive relationships with faculty and peers influence persistence in STEM majors (Figueroa, Hurtado, & Wilkins, 2015; PCAST, 2012; Tsui, 2007). Creating such opportunities is even more important in the geosciences, where a lower percentage of post-secondary degrees are awarded to URM students than in other STEM fields (NSF, 2015; O'Connell & Holmes, 2011; NSF, 2011). Since 2011, Increasing Diversity and Enhancing Academia (IDEA), a program of the UNC-Chapel Hill Institute for the Environment (UNC-IE), has provided 39 undergraduates (predominantly URM and female students) with career-relevant research experiences and professional development opportunities, including a culminating experience of presenting their research at a campus-wide research symposium. External evaluation data have helped to characterize the effectiveness of the IDEA program. These data included pre- and post-surveys assessing students' interest in geosciences, knowledge of career pathways, and perceptions of their abilities related to a specific set of scientific research skills. Additionally, progress towards degrees and dissemination outcomes were tracked. In this presentation, we will share quantitative and qualitative data that demonstrate that participation in the IDEA program has influenced students' interest and persistence in geosciences research and careers. These data range from self-reported competencies in a variety of scientific skills (such as organizing and interpreting data and reading and interpreting science literature) to documentation of student participation in geoscience study and professions. About 69% of participants continued research begun during their internships beyond the internship; and about 38% pursued graduate degrees and secured jobs in geoscience and other STEM fields. (Nearly half are still in school.) Overall, these evaluation data

  11. Preparing Scientists to be Community Partners

    Science.gov (United States)

    Pandya, R. E.

    2012-12-01

    Many students, especially students from historically under-represented communities, leave science majors or avoid choosing them because scientific careers do not offer enough opportunity to contribute to their communities. Citizen science, or public participation in scientific research, may address these challenges. At its most collaborative, it means inviting communities to partner in every step of the scientific process from defining the research question to applying the results to community priorities. In addition to attracting and retaining students, this level of community engagement will help diversify science, ensure the use and usability of our science, help buttress public support of science, and encourage the application of scientific results to policy. It also offers opportunities to tackle scientific questions that can't be accomplished in other way and it is demonstrably effective at helping people learn scientific concepts and methods. In order to learn how to prepare scientists for this kind of intensive community collaboration, we examined several case studies, including a project on disease and public health in Africa and the professionally evaluated experience of two summer interns in Southern Louisiana. In these and other cases, we learned that scientific expertise in a discipline has to be accompanied by a reservoir of humility and respect for other ways of knowing, the ability to work collaboratively with a broad range of disciplines and people, patience and enough career stability to allow that patience, and a willingness to adapt research to a broader set of scientific and non-scientific priorities. To help students achieve this, we found that direct instruction in participatory methods, mentoring by community members and scientists with participatory experience, in-depth training on scientific ethics and communication, explicit articulation of the goal of working with communities, and ample opportunity for personal reflection were essential

  12. Colin Mackerras, China’s Ethnic Minorities and Globalisation

    OpenAIRE

    Allès, Élisabeth

    2007-01-01

    In this short work, the Australian political scientist Colin Mackerras offers a general overview of the situation of ethnic minorities in China over the past twenty years. He takes as the basis for his study principal works published recently and his own interviews conducted in China since the beginning of the 1980s, while also collating statistical data. He synthesises data and elements of understanding of China’s policies with regard to minority peoples there. He analyses the economic data ...

  13. The Sangre Por Salud Biobank: Facilitating Genetic Research in an Underrepresented Latino Community

    Science.gov (United States)

    Shaibi, Gabriel; Singh, Davinder; De Filippis, Eleanna; Hernandez, Valentina; Rosenfeld, Bill; Otu, Essen; de Oca, Gregorio Montes; Levey, Sharon; Breitkopf, Carmen Radecki; Sharp, Richard; Olson, Janet; Cerhan, James; Thibodeau, Stephen; Winkler, Erin; Mandarino, Lawrence

    2018-01-01

    Background/Aims The Sangre Por Salud (Blood for Health; SPS) Biobank was created for the purpose of expanding precision medicine research to include underrepresented Latino patients. It is the result of a unique collaboration between Mayo Clinic and Mountain Park Health Center, a federally qualified community health center in Phoenix, Arizona. This report describes the rationale, development, implementation, and characteristics of the SPS Biobank. Methods Latino adults (ages 18–85 years) who were active patients within Mountain Park Health Center’s internal medicine practice in Phoenix, Ariz., and had no history of diabetes were eligible. Participants provided a personal and family history of chronic disease, completed a sociodemographic, psychosocial, and behavioral questionnaire, underwent a comprehensive cardiometabolic risk assessment (anthropometrics, blood pressure and labs), and provided blood samples for banking. Laboratory results of cardiometabolic testing were returned to the participants and their providers through the electronic health record. Results During the first 2 years of recruitment into the SPS Biobank, 2,335 patients were approached and 1,432 (61.3%) consented to participate; 1,354 (94.5%) ultimately completed all requisite questionnaires and medical evaluations. The cohort is primarily Spanish-speaking (72.9%), female (73.3%), with a mean age of 41.3 ± 12.5 years. Most participants were born outside of the US (77.9%) and do not have health insurance (77.5%). The prevalence of overweight (35.5%) and obesity (45.0%) was high, as was previously unidentified prediabetes (55.9%), type 2 diabetes (7.4%), prehypertension (46.8%), and hypertension (16.2%). The majority of participants rated their health as good to excellent (72.1%) and, as a whole, described their overall quality of life as high (7.9/10). Conclusion Collaborative efforts such as the SPS Biobank are critical for ensuring that underrepresented minority populations are included in

  14. The Sangre Por Salud Biobank: Facilitating Genetic Research in an Underrepresented Latino Community.

    Science.gov (United States)

    Shaibi, Gabriel; Singh, Davinder; De Filippis, Eleanna; Hernandez, Valentina; Rosenfeld, Bill; Otu, Essen; Montes de Oca, Gregorio; Levey, Sharon; Radecki Breitkopf, Carmen; Sharp, Richard; Olson, Janet; Cerhan, James; Thibodeau, Stephen; Winkler, Erin; Mandarino, Lawrence

    2016-01-01

    The Sangre Por Salud (Blood for Health; SPS) Biobank was created for the purpose of expanding precision medicine research to include underrepresented Latino patients. It is the result of a unique collaboration between Mayo Clinic and Mountain Park Health Center, a federally qualified community health center in Phoenix, Arizona. This report describes the rationale, development, implementation, and characteristics of the SPS Biobank. Latino adults (ages 18-85 years) who were active patients within Mountain Park Health Center's internal medicine practice in Phoenix, Ariz., and had no history of diabetes were eligible. Participants provided a personal and family history of chronic disease, completed a sociodemographic, psychosocial, and behavioral questionnaire, underwent a comprehensive cardiometabolic risk assessment (anthropometrics, blood pressure and labs), and provided blood samples for banking. Laboratory results of cardiometabolic testing were returned to the participants and their providers through the electronic health record. During the first 2 years of recruitment into the SPS Biobank, 2,335 patients were approached and 1,432 (61.3%) consented to participate; 1,354 (94.5%) ultimately completed all requisite questionnaires and medical evaluations. The cohort is primarily Spanish-speaking (72.9%), female (73.3%), with a mean age of 41.3 ± 12.5 years. Most participants were born outside of the US (77.9%) and do not have health insurance (77.5%). The prevalence of overweight (35.5%) and obesity (45.0%) was high, as was previously unidentified prediabetes (55.9%), type 2 diabetes (7.4%), prehypertension (46.8%), and hypertension (16.2%). The majority of participants rated their health as good to excellent (72.1%) and, as a whole, described their overall quality of life as high (7.9/10). Collaborative efforts such as the SPS Biobank are critical for ensuring that underrepresented minority populations are included in precision medicine initiatives and biomedical

  15. Lessons Learned Recruiting Minority Participants for Research in Urban Community Health Centers.

    Science.gov (United States)

    Fam, Elizabeth; Ferrante, Jeanne M

    2018-02-01

    To help understand and mitigate health disparities, it is important to conduct research with underserved and underrepresented minority populations under real world settings. There is a gap in the literature detailing real-time research staff experience, particularly in their own words, while conducting in-person patient recruitment in urban community health centers. This paper describes challenges faced at the clinic, staff, and patient levels, our lessons learned, and strategies implemented by research staff while recruiting predominantly low-income African-American women for an interviewer-administered survey study in four urban Federally Qualified Health Centers in New Jersey. Using a series of immersion-crystallization cycles, fieldnotes and research reflections written by recruiters, along with notes from team meetings during the study, were qualitatively analyzed. Clinic level barriers included: physical layout of clinic, very low or high patient census, limited private space, and long wait times for patients. Staff level barriers included: unengaged staff, overburdened staff, and provider and staff turnover. Patient level barriers included: disinterested patients, patient mistrust and concerns over confidentiality, no-shows or lack of patient time, and language barrier. We describe strategies used to overcome these barriers and provide recommendations for in-person recruitment of underserved populations into research studies. To help mitigate health disparities, disseminating recruiters' experiences, challenges, and effective strategies used will allow other researchers to build upon these experience in order to increase recruitment success of underserved and underrepresented minority populations into research studies. Copyright © 2018 National Medical Association. Published by Elsevier Inc. All rights reserved.

  16. Inclusive STEM High Schools Increase Opportunities for Underrepresented Students

    Science.gov (United States)

    Spillane, Nancy K.; Lynch, Sharon J.; Ford, Michael R.

    2016-01-01

    The authors report on a study of eight inclusive STEM high schools that are designed to increase the numbers of students in demographic groups underrepresented in STEM. As STEM schools, they have had broader and deeper STEM coursework (taken by all students) than required by their respective states and school districts; they also had outcome…

  17. Transfer adjustment experiences of underrepresented students of color in the sciences

    Science.gov (United States)

    Chang, June C.

    Two-year colleges have long served as the starting point for many students in higher education and particularly those of underrepresented backgrounds. In recent years, these institutions have been called upon to help address the high attrition rates facing the science and mathematics disciplines by promoting interest development and transfer of underrepresented students in these fields. This study examined the adjustment experiences of underrepresented students of color after transferring from community colleges to a four-year university in the sciences. By employing qualitative interviews with students of African, Latino, Pacific Island, and Southeast Asian descent, students' perceptions of the sciences at the two- and four-year campus, adjustment process, and benefits and detriments of taking the transfer route were the focus of this research. The findings show that transfer students experience a very different science culture at each institutional type in terms of pedagogy and curriculum and interactions with classmates and faculty. While students witnessed a collaborative science culture at the community college, they faced a highly competitive and individualistic environment at the university. The greater the difference encountered, the more difficult were students' adjustment. Adjustment was aided in two primary ways: socialization experiences before transferring and the development of common identity groups with other students who shared similar backgrounds, goals, and struggles. These groups formed organically at the two-year college but were more difficult to forge at the university. When present, however, they served as niches, sites of validation, and counter spaces within the larger university setting. It appears that starting at the community college benefited most participants by providing a nurturing environment that fostered their commitment to science. Some students felt that they would have been dissuaded from pursuing their majors had they only

  18. An Interdisciplinary Approach to Success for Underrepresented Students in STEM

    Science.gov (United States)

    Goonewardene, Anura U.; Offutt, Christine A.; Whitling, Jacqueline; Woodhouse, Donald

    2016-01-01

    To recruit underrepresented students with demonstrated financial need into STEM disciplines, Lock Haven University established the interdisciplinary Nano Scholars Program, offering National Science Foundation-funded scholarships, academic support, and social support. Small cohort sizes, a student-led science learning community (the Nano Club), and…

  19. Understanding the Prevalence of Geo-Like Degree Programs at Minority Serving Institutions

    Science.gov (United States)

    McDaris, J. R.; Manduca, C. A.; Larsen, K.

    2014-12-01

    Over the decade 2002-12, the percentage of students from underrepresented minorities (URM) graduating with geoscience degrees has increased by 50%. In 2012, of the nearly 6,000 geoscience Bachelor's degrees, 8% were awarded to students from URM. But that same year across all of STEM, 18% of Bachelors went to these students, and URM made up 30% of the US population overall. Minority Serving Institutions (MSIs) play an important role in increasing the diversity of geoscience graduates where there are appropriate degree programs or pathways to programs. To better understand opportunities at these institutions, the InTeGrate project collected information on degree programs at MSIs. A summer 2013 survey of websites for three types of MSIs confirmed that, while stand-alone Geology, Geoscience, or Environmental Science departments are present, there are a larger number of degree programs that include elements of geoscience or related disciplines (geography, GIS, etc.) offered in interdisciplinary departments (e.g. Natural Sciences and Math) or cognate science departments (Physics, Engineering, etc.). Approximately one-third of Hispanic Serving Institutions and Tribal Colleges and one-fifth of Historically Black Colleges and Universities offer at least one degree that includes elements of geoscience. The most common programs were Geology and Environmental Science (94 and 88 degrees respectively), but 21 other types of program were also found. To better profile the nature of these programs, 11 interviews were conducted focusing on strategies for attracting, supporting, and preparing minority students for the workforce. In conjunction with the February 2014 Broadening Access to the Earth and Environmental Sciences workshop, an additional 6 MSI profiles were obtained as well as 22 profiles from non-MSIs. Several common strategies emerge: Proactive marketing and outreach to local high schools and two-year colleges Community building, mentoring and advising, academic support

  20. Higher Education and Disability: Past and Future of Underrepresented Populations

    Science.gov (United States)

    Leake, David W.; Stodden, Robert A.

    2014-01-01

    Over the past half century higher education in the United States has been challenged to develop and implement policies and practices that effectively promote the access, retention, and graduation of diverse underrepresented populations. One of these populations is comprised of individuals with disabilities, whose equal access to higher education…

  1. A critical exploration of science doctoral programs: Counterstories from underrepresented women of color

    Science.gov (United States)

    Bancroft, Senetta F.

    Most studies exploring the experiences of underrepresented doctoral students of color in science fields focus on their socialization into predominantly white institutions. While the socialization process is fundamental to doctoral success and consequently deserves attention, it is critical to inquire into how the widespread and lasting perception of people of color as socioculturally deficient shapes underrepresented students` socialization into science doctoral programs. Further, the existing research literature and educational policies addressing the persistent underrepresentation of students of color in science doctorates remain fixated on increasing racial diversity for U.S. economic security rather than racial equity. In view of the limitation of existing research literature, in this study, drawing from critical race theories, fictive-kinship, and forms of capital, I use counterstorytelling to recast racial inequities in the education of science doctorates as a problem of social justice, not as an issue of the students' sociocultural deficits or as a matter of economic security. Through interviews I examined the experiences, from elementary school to current careers, of three women of color who were science doctoral students. Participants' counterstories revealed institutionalized racism embedded in doctoral programs exploited their identities and dismissed their lived experiences, thereby, relegating them to outsiders-within academe. This marginalization precluded the inclusive socialization of participants into their doctoral programs and ultimately set up barriers to their pursuit of scientific careers. This study divulges the academic and career consequences of the sustained privilege disparities between underrepresented students of color's experience and the experiences of their white and Asian counterparts. In light of the participants' experiences, I recommend that, in order to change the existing policy of socially integrating students into oppressive

  2. Women are underrepresented on the editorial boards of journals in environmental biology and natural resource management

    Directory of Open Access Journals (Sweden)

    Alyssa H. Cho

    2014-08-01

    Full Text Available Despite women earning similar numbers of graduate degrees as men in STEM disciplines, they are underrepresented in upper level positions in both academia and industry. Editorial board memberships are an important example of such positions; membership is both a professional honor in recognition of achievement and an opportunity for professional advancement. We surveyed 10 highly regarded journals in environmental biology, natural resource management, and plant sciences to quantify the number of women on their editorial boards and in positions of editorial leadership (i.e., Associate Editors and Editors-in-Chief from 1985 to 2013. We found that during this time period only 16% of subject editors were women, with more pronounced disparities in positions of editorial leadership. Although the trend was towards improvement over time, there was surprising variation between journals, including those with similar disciplinary foci. While demographic changes in academia may reduce these disparities over time, we argue journals should proactively strive for gender parity on their editorial boards. This will both increase the number of women afforded the opportunities and benefits that accompany board membership and increase the number of role models and potential mentors for early-career scientists and students.

  3. Emotional Management and Motivation: A Case Study of Underrepresented Faculty

    Science.gov (United States)

    Lechuga, Vicente M.

    2012-01-01

    The influence of emotions in the workplace rarely has been examined within the context of higher education (Neumann, 2006; Smith and Witt, 1993). Through a qualitative approach, the purpose of this chapter is to offer a perspective of faculty work that examines the role that emotions play in the academic life of 15 underrepresented faculty members…

  4. Retention and Mentorship of Minority Students via Undergraduate Internship Experiences

    Science.gov (United States)

    Cooper, P.

    2004-12-01

    The School of Ocean and Earth Science and Technology at the University of Hawaii is undertaking an Undergraduate Research Internship project to address the lack of full representation of women and underrepresented minorities in the geosciences. The overarching educational objective is to provide education and career development guidance and opportunities for students from underrepresented minorities. In collaboration with industry partners, we hope to prepare undergraduate students for life and careers in today's complex and dynamic technological world by encouraging them to attain high standards in the geosciences, thereby enabling them to compete successfully for positions in graduate programs. To achieve his goal, the project focuses on the following objectives: (1) Creating a high-quality integrated on-campus teaching and off-campus learning environment, and (2) providing an intensive introduction to geoscience careers through the guidance of experienced faculty and workplace mentors. The program will start small, collaborating with one or two companies over the next two years, offering paid summer internships. Opportunities for students include participation in geoscience-related research, obtaining experience in interpreting observations and providing information to end-users, working to improve technology and field methods, and developing the expertise to maintain, operate and deploy equipment. Program participants are assigned individual projects that relate to their academic majors, their career goals, and the ongoing research missions of our industry partners. In addition to their research activities, participants attend a series of seminars and tours dealing with current topics in geoscience to expose them to the wide variety of scientific and technical activities that occur in the workplace. The expected outcomes of this experience will be scientific growth and career development. Given that a very small percentage of all students go on to graduate

  5. Copy number variations and genetic admixtures in three Xinjiang ethnic minority groups.

    Science.gov (United States)

    Lou, Haiyi; Li, Shilin; Jin, Wenfei; Fu, Ruiqing; Lu, Dongsheng; Pan, Xinwei; Zhou, Huaigu; Ping, Yuan; Jin, Li; Xu, Shuhua

    2015-04-01

    Xinjiang is geographically located in central Asia, and it has played an important historical role in connecting eastern Eurasian (EEA) and western Eurasian (WEA) people. However, human population genomic studies in this region have been largely underrepresented, especially with respect to studies of copy number variations (CNVs). Here we constructed the first CNV map of the three major ethnic minority groups, the Uyghur, Kazakh and Kirgiz, using Affymetrix Genome-Wide Human SNP Array 6.0. We systematically compared the properties of CNVs we identified in the three groups with the data from representatives of EEA and WEA. The analyses indicated a typical genetic admixture pattern in all three groups with ancestries from both EEA and WEA. We also identified several CNV regions showing significant deviation of allele frequency from the expected genome-wide distribution, which might be associated with population-specific phenotypes. Our study provides the first genome-wide perspective on the CNVs of three major Xinjiang ethnic minority groups and has implications for both evolutionary and medical studies.

  6. Young Engineers and Scientists (YES) 2010 - Engaging Teachers in Space Research

    Science.gov (United States)

    Boice, D. C.; Reiff, P. H.

    2010-12-01

    During the past 18 years, Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI). The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering, to enhance their success in entering the college and major of their choice, and to promote teacher development in STEM fields. This is accomplished by allowing students and teachers to interact on a continuing basis with role models at SwRI in real-world research experiences in physical sciences (including space science), information sciences, and a variety of engineering fields. A total of 239 students have completed YES or are currently enrolled. Of these students, 38% are females and 56% are ethnic minorities, reflecting the local ethnic diversity, and 67% represent underserved groups. Presently, there are 21 students and 9 secondary school teachers enrolled in the YES 2010/2011 Program. YES consists of an intensive three-week summer workshop held at SwRI where students and teachers experience the research environment and a collegial mentorship where they complete individual research projects under the guidance of SwRI mentors during the academic year. YES students develop a website (yesserver.space.swri.edu) for topics in space science (this year was ESA's Rosetta Mission) and high school STEM teachers develop space-related lessons for classroom presentation. Teachers participate in an in-service workshop to share their developed classroom materials and spread awareness of space-related research. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, can positively affect students’ preparation for STEM careers via real

  7. Exploring the Impacts of School Reforms on Underrepresented Urban Students' College Persistence

    Science.gov (United States)

    Yavuz, Olcay

    2016-01-01

    This longitudinal quantitative study investigates how participation in the Comprehensive College Readiness Access and Success Program (CCRASP) affects underrepresented urban students' college persistence. Results revealed that CCRASP participation was associated with higher percentages of students enrolling in both 2- and 4-year colleges as…

  8. NASA Earth Systems, Technology and Energy Education for Minority University and Research Education Program Promotes Climate Literacy by Engaging Students at Minority Serving Institutions in STEM

    Science.gov (United States)

    Murray, B.; Alston, E. J.; Chambers, L. H.; Bynum, A.; Montgomery, C.; Blue, S.; Kowalczak, C.; Leighton, A.; Bosman, L.

    2017-12-01

    NASA Earth Systems, Technology and Energy Education for Minority University Research & Education Program - MUREP (ESTEEM) activities enhance institutional capacity of minority serving institutions (MSIs) related to Earth System Science, Technology and energy education; in turn, increasing access of underrepresented groups to science careers and opportunities. ESTEEM is a competitive portfolio that has been providing funding to institutions across the United States for 10 years. Over that time 76 separate activities have been funded. Beginning in 2011 ESTEEM awards focused on MSIs and public-school districts with high under-represented enrollment. Today ESTEEM awards focus on American Indian/Alaska Native serving institutions (Tribal Colleges and Universities), the very communities most severely in need of ability to deal with climate adaptation and resiliency. ESTEEM engages a multi-faceted approach to address economic and cultural challenges facing MSI communities. PIs (Principal Investigators) receive support from a management team at NASA, and are supported by a larger network, the ESTEEM Cohort, which connects regularly through video calls, virtual video series and in-person meetings. The cohort acts as a collective unit to foster interconnectivity and knowledge sharing in both physical and virtual settings. ESTEEM partners with NASA's Digital Learning Network (DLNTM) in a unique non-traditional model to leverage technical expertise. DLN services over 10,000 participants each year through interactive web-based synchronous and asynchronous events. These events allow for cost effective (no travel) engagement of multiple, geographically dispersed audiences to share local experiences with one another. Events allow PIs to grow their networks, technical base, professional connections, and develop a sense of community, encouraging expansion into larger and broader interactions. Over 256 connections, beyond the 76 individual members, exist within the cohort. PIs report

  9. Dictionary of minor planet names addendum to 6th edition 2012-2014

    CERN Document Server

    Schmadel, Lutz D

    2015-01-01

    The quantity of numbered minor planets is now approaching half a million. Together with this Addendum, the sixth edition of the Dictionary of Minor Planet Names, which is the IAU's official reference for the field, now covers more than 19,000 named minor planets. In addition to being of practical value for identification purposes, the Dictionary of Minor Planet Names provides authoritative information about the basis for the rich and colorful variety of ingenious names, from heavenly goddesses to artists, from scientists to Nobel laureates, from historical or political figures to ordinary women and men, from mountains to buildings, as well as a variety of compound terms and curiosities. This Addendum to the 6th edition of the Dictionary of Minor Planet Names adds approximately 2200 entries. It also contains many corrections, revisions and updates to the entries published in earlier editions. This work is an abundant source of information for anyone interested in minor planets and who enjoys reading about the ...

  10. Gender, Ethnicity, and Physics Education: Understanding How Black Women Build Their Identities as Scientists

    Science.gov (United States)

    Rosa, Katemari Diogo da

    This research focuses on the underrepresentation of minoritized groups in scientific careers. The study is an analysis of the relationships between race, gender, and those with careers in the sciences, focusing on the lived experiences of Black women physicists, as viewed through the lens of women scientists in the United States. Although the research is geographically localized, the base-line question is clear and mirrors in the researcher's own intellectual development: "How do Black women physicists describe their experiences towards the construction of a scientific identity and the pursuit of a career in physics?" Grounded on a critical race theory perspective, the study uses storytelling to analyze how these women build their identities as scientists and how they have negotiate their multiple identities within different communities in society. Findings show that social integration is a key element for Black women physicists to enter study groups, which enables access to important resources for academic success in STEM. The study has implications for physics education and policymakers. The study reveals the role of the different communities that these women are part of, and the importance of public policies targeted to increase the participation of underrepresented groups in science, especially through after-school programs and financial support through higher education.

  11. The California-Arizona Minority Partnership for Astronomy Research and Education (CAMPARE): A New Model for Promoting Minority Participation in Astronomy Research and Education

    Science.gov (United States)

    Rudolph, Alexander L.; Impey, C. D.; Bieging, J. H.; Phillips, C. B.; Tieu, J.; Prather, E. E.; Povich, M. S.

    2013-01-01

    The California-Arizona Minority Partnership for Astronomy Research and Education (CAMPARE) program represents a new and innovative kind of research program for undergraduates: one that can effectively carry out the goal of recruiting qualified minority and female students to participate in Astronomy and Planetary Science research opportunities, while mentoring them in a way to maximize the chance that these students will persist in obtaining their undergraduate degrees in STEM fields, and potentially go on to obtain their PhDs or pursue careers in those fields. The members of CAMPARE comprise a network of comprehensive universities and community colleges in Southern California and Arizona (most of which are minority serving institutions), and four major research institutions (University of Arizona Steward Observatory, the SETI Institute, and JPL/Caltech). Most undergraduate research programs focus on a single research institution. By having multiple institutions, we significantly broaden the opportunities for students, both in terms of breadth of research topics and geographical location. In its first three years, the CAMPARE program has had 20 undergraduates from two CSU campuses, both Hispanic Serving Institutions, take part in research and educational activities at four research institutions, the University of Arizona Steward Observatory, the SETI Institute, and JPL/Caltech. Of the 20 participants, 9 are women and 11 are men, a much more even split than is typical in Astronomy research programs; 10 are Hispanic, 2 are African American, and 1 is part Native American, including 2 female Hispanic and 2 female African-American participants, an exceptionally high participation rate (65%) for students from underrepresented minority groups. Of the five participants who have graduated since the program began, two are in graduate programs in Physics or Astronomy, two are pursuing a K-12 teaching credential, and one has enlisted in the Nuclear Propulsion Officer Candidate

  12. Informal and Formal Support Groups Retain Women and Minorities in Physics

    Science.gov (United States)

    Ong, Maria

    2005-10-01

    Ten U.S. minority female undergraduates who aspire to become physicists were followed over an 8-year period. Participant observation and in-depth interviews recorded the strategies they used to earn bachelor's degrees in physics or physics-related fields, and then go on to graduate school and/or careers in science. One significant strategy these women of color employed was participating in small subcommunities with other women or underrepresented ethnic minorities at the margins of their local physics community. The study found that informal peer groups offered safe spaces to counter negative experiences, to normalize their social realities, and to offer practical guidance for persevering in the field. Formal women- and minority-serving programs in physics provided foundations for community building, stronger curriculum and instruction, networking, and role models. The positive effects of informal and formal support groups on these students' experiences challenge a standard application of Pierre Bourdieu's framework of social and cultural capital. Women of color in the study initially lacked traditional capital of "acceptable" appearance, cultural background and habits, and networks that are more easily acquired by white males and are rewarded by the U.S. physics culture. However, instead of failing or leaving, as Bourdieu's theory would predict, the minority women persisted and achieved in science. The marginal communities contributed to their retention by offering safe spaces in which they could learn and share alternative ways of "accruing capital." Moreover, as these women made strides along their academic and career paths, they also engaged in social justice work in efforts to change the physics culture to be more welcoming of nontraditional members. The outcomes of the study offer empirical confirmation of the critical need for informal and institutionally supported women's and minorities' support groups to promote diversity in science.

  13. From leaky pipeline to irrigation system: minority education through the lens of community-based participatory research.

    Science.gov (United States)

    James, Rosalina; Starks, Helene; Segrest, Valerie Ann; Burke, Wylie

    2012-01-01

    Higher education has long made efforts to increase underrepresented minority participation in biomedical research and health fields. However, relatively few minority trainees complete advanced degrees or proceed to independent research careers, a loss referred to as the "leaky pipeline." Minority trainees may take alternate pathways to climbing the academic ladder, exiting to pursue multiple disciplinary or community-serving roles. The authors propose a model for understanding minority departures from the education pipeline as a basis for supporting careers that align with community goals for health. Concepts of the traditional pipeline training model are compared with a model that aligns with community-based participatory research (CBPR) principles and practices. The article describes an irrigation model that incorporates informal learning from academic and community knowledge bases to prepare trainees for CBPR and interdisciplinary research. Students serve as agents that foster individual, institutional, and social change needed to address health problems while attending to root causes of disparities. Viewing minority students as agents for community engagement allows institutions to reassess the role training can play in diversifying participation in higher education and research. An irrigation model supports development of an infrastructure that optimizes success at all post-secondary levels, and enhances CBPR capacity wherever trainees live, work, and learn. Linking formal education to informal learning in context of CBPR experiences can also reduce community mistrust of research while nurturing productive research partnerships with communities to address health disparities.

  14. Engaging Scientists in Meaningful E/PO: NASA Science4Girls and Their Families

    Science.gov (United States)

    Meinke, B. K.; Smith, D. A.; Bleacher, L.; Hauck, K.; Soeffing, C.

    2014-12-01

    The NASA Science Mission Directorate (SMD) Science Education and Public Outreach Forums coordinate the participation of SMD education and public outreach (EPO) programs in Women's History Month through the NASA Science4Girls and Their Families initiative. The initiative partners NASA science education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families. These NASA science education programs are mission- and grant-based E/PO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. As such, the initiative engages girls in all four NASA science discipline areas (Astrophysics, Earth Science, Planetary Science, and Heliophysics), which enables audiences to experience the full range of NASA science topics and the different career skills each requires. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences.

  15. 34 CFR 656.21 - What selection criteria does the Secretary use to evaluate an application for a comprehensive...

    Science.gov (United States)

    2010-07-01

    ... which the costs of the proposed activities are reasonable in relation to the objectives of the program... traditionally underrepresented, such as members of racial or ethnic minority groups, women, persons with... underrepresented, such as members of racial or ethnic minority groups, women, persons with disabilities, and the...

  16. Transfer of scientific knowledge to the general public from the scientists' point of view

    International Nuclear Information System (INIS)

    Peters, H.P.; Krueger, J.

    1985-07-01

    Our analysis demonstrates that nearly all scientists agree to having responsibilities to disseminate information about their work not only to collegues but also to the general public. More than two-thirds of the respondents perceive personal benefits for their career and/or the acquisition of research funding when reports about their work appear in the mass media. Most scientists rated the interest of the population in reports on science at least as ''medium'', but most of them are also sceptical of the population's ability to understand those reports. Only a minority of the scientists surveyed perceives hostility against science among the public. About 40% of the respondents reported having contacts with journalists. Their experiences during these contacts were often not encouraging. More than half of the scientists whose work had been reported in media answered that at least something had been incorrectly reported. Three-quarters of the scientists who have had contacts with journalists have had partially bad experiences. There are indications that scientists do not see science reporting solely as a task of journalists; they want to be involved in that process, not only as information sources. However, during the contacts with journalists, scientists will experience that their ideas of good science reporting contradict the journalistic approach. Journalists have other quality standards and emphasize other aspects than scientists do. Therefore the collision of scientific norms and values with those of the journalism leads to experiences which are probably frustrating for both sides, although scientists and journalists agree on the general goal of public information. (orig./HP) [de

  17. Mutual Mentoring for Early-Career and Underrepresented Faculty: Model, Research, and Practice

    Science.gov (United States)

    Yun, Jung H.; Baldi, Brian; Sorcinelli, Mary Deane

    2016-01-01

    In the beginning, "Mutual Mentoring" was little more than an idea, a hopeful vision of the future in which a new model of mentoring could serve as a medium to better support early-career and underrepresented faculty. Over time, Mutual Mentoring evolved from an innovative idea to an ambitious pilot program to a fully operational,…

  18. Commission release recommendations for attracting more women, minorities

    Science.gov (United States)

    Showstack, Randy

    U.S. Air Force Colonel Eileen Collins, the first woman to command a U.S. Space Shuttle mission, tries to encourage and inspire young women and minorities to follow their dreams of becoming scientists, engineers, and technicians.“I like to tell young women that there have been 12 men who have walked on the Moon, but not yet one woman, and you could be the first,” Collins, who is a member of the Commission on the Advancement of Women and Minorities in Science, Engineering, and Technology Development (CAWMSET), said at a July 13 hearing of the U.S. House of Representatives Subcommittee on Technology reviewing the commission's recommendations. Collins said she tells young women, “No one has walked on Mars, and you could be that person.”

  19. Young Engineers and Scientists (YES) 2009 - Engaging Students and Teachers in Space Research

    Science.gov (United States)

    Boice, D. C.; Reiff, P. H.

    2009-12-01

    During the past 17 years, Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI). The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering, to enhance their success in entering the college and major of their choice, and to promote teacher development in STEM fields. This is accomplished by allowing students and teachers to interact on a continuing basis with role models at SwRI in real-world research experiences in physical sciences (including space science), information sciences, and a variety of engineering fields. A total of 218 students have completed YES or are currently enrolled. Of these students, 37% are females and 56% are ethnic minorities, reflecting the local ethnic diversity, and 67% represent underserved groups. Presently, there are 20 students and 3 teachers enrolled in the YES 2009/2010 Program. YES consists of an intensive three-week summer workshop held at SwRI where students and teachers experience the research environment and a collegial mentorship where they complete individual research projects under the guidance of SwRI mentors during the academic year. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. Teachers participate in an in-service workshop to share classroom materials and spread awareness of space-related research. YES students develop a website (yesserver.space.swri.edu) for topics in space science (this year was NASA's MMS Mission) and high school science teachers develop space-related lessons for classroom presentation. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, can positively affect students’ preparation for STEM careers via real-world research experiences with

  20. Designing the Game: How a Project-Based Media Production Program Approaches STEAM Career Readiness for Underrepresented Young Adults

    Science.gov (United States)

    Bass, Kristin M.; Hu Dahl, Ingrid; Panahandeh, Shirin

    2016-12-01

    Numerous studies have indicated a need for a diverse workforce that is more highly educated in STEM and ICT fields, and one that is capable of responding creatively to demands for continual innovation. This paper, in response, chronicles the implementation of the Digital Pathways (DP) program, a two-time ITEST recipient and an ongoing initiative of the Bay Area Video Coalition. DP has provided low-income, underrepresented minority young people with 180 contact hours of activities in digital media production to prepare them to pursue higher education and technology careers. A design-based research approach synthesizes staff interviews with student observations, interviews and artifacts to identify a set of generalizable best practices or design principles for empowering young people to move from being consumers of digital media to producers. These principles are illustrated with a case study of the 3D Animation and Gaming track from the second ITEST grant. Researchers argue for the importance of attending to the noncognitive elements of learning and illustrate ways in which instructors encouraged creative expression, personal agency, and collaboration through long-term projects. They also identify strategies for sustaining young people's participation through the establishment of a supportive community environment.

  1. 34 CFR 656.22 - What selection criteria does the Secretary use to evaluate an application for an undergraduate...

    Science.gov (United States)

    2010-07-01

    ... which the costs of the proposed activities are reasonable in relation to the objectives of the program... underrepresented, such as members of racial or ethnic minority groups, women, persons with disabilities, and the... underrepresented, such as members of racial or ethnic minority groups, women, persons with disabilities, and the...

  2. Integrating Disability: Boomerang Effects When Using Positive Media Exemplars to Reduce Disability Prejudice

    Science.gov (United States)

    Kallman, Davi

    2017-01-01

    Individuals with disabilities comprise the largest minority group in the world, yet they are the most underrepresented minority group in higher education, the job market and entertainment media such as literature. This population is often underrepresented because of the overlapping physical, attitudinal and policy barriers that prevent them from…

  3. Just Like All the Other Humans? Analyzing Images of Scientists in Children's Trade Books

    Science.gov (United States)

    Rawson, Casey H.; McCool, Megan Astolfi

    2014-01-01

    Despite the efforts of researchers and national science organizations to recruit more women and minorities into the science and engineering workforce, these fields are still largely dominated by White males. Research suggests that children's mental prototypes of the scientist include a variety of negative and stereotypical features that may…

  4. NASA’s Universe of Learning: Connecting Scientists, Educators, and Learners

    Science.gov (United States)

    Smith, Denise A.; Lestition, Kathleen; Squires, Gordon K.; Greene, W. M.; Biferno, Anya A.; Cominsky, Lynn R.; Goodman, Irene; Walker, Allyson; Universe of Learning Team

    2017-01-01

    NASA’s Universe of Learning (UoL) is one of 27 competitively awarded education programs selected by NASA’s Science Mission Directorate (SMD) in its newly restructured education effort. Through these 27 programs, SMD aims to infuse NASA science experts and content more effectively and efficiently into learning environments serving audiences of all ages. UoL is a unique partnership between the Space Telescope Science Institute, Chandra X-ray Center, IPAC at Caltech, Jet Propulsion Laboratory Exoplanet Exploration Program, and Sonoma State University that will connect the scientists, engineers, science, technology and adventure of NASA Astrophysics with audience needs, proven infrastructure, and a network of partners to advance SMD education objectives. External evaluation is provided through a partnership with Goodman Research Group and Cornerstone Evaluation Associates. The multi-institutional team is working to develop and deliver a unified, consolidated and externally evaluated suite of education products, programs, and professional development offerings that spans the full spectrum of NASA Astrophysics, including the Cosmic Origins, Physics of the Cosmos, and Exoplanet Exploration themes. Products and programs focus on out-of-school-time learning environments and include enabling educational use of Astrophysics mission data and offering participatory experiences; creating multimedia and immersive experiences; designing exhibits and community programs; and producing resources for special needs and underserved/underrepresented audiences. The UoL team also works with a network of partners to provide professional learning experiences for informal educators, pre-service educators, and undergraduate instructors. This presentation will provide an overview of the UoL team’s approach to partnering scientists and educators to engage learners in Astrophysics discoveries and data; progress to date; and pathways for science community involvement.

  5. Toward inclusive science education: University scientists' views of students,instructional practices, and the nature of science

    Science.gov (United States)

    Bianchini, Julie A.; Whitney, David J.; Breton, Therese D.; Hilton-Brown, Bryan A.

    2002-01-01

    This study examined the perceptions and self-reported practices of 18 scientists participating in a yearlong seminar series designed to explore issues of gender and ethnicity in science. Scientists and seminar were part of the Promoting Women and Scientific Literacy project, a curriculum transformation and professional development initiative undertaken by science, science education, and women's studies faculty at their university. Researchers treated participating scientists as critical friends able to bring clarity to and raise questions about conceptions of inclusion in science education. Through questionnaires and semistructured interviews, we explored their (a) rationales for differential student success in undergraduate science education; (b) self-reports of ways they structure, teach, and assess courses to promote inclusion; and (c) views of androcentric and ethnocentric bias in science. Statistical analysis of questionnaires yielded few differences in scientists' views and reported practices by sex or across time. Qualitative analysis of interviews offered insight into how scientists can help address the problem of women and ethnic minorities in science education; constraints encountered in attempts to implement pedagogical and curricular innovations; and areas of consensus and debate across scientists and science studies scholars' descriptions of science. From our findings, we provided recommendations for other professional developers working with scientists to promote excellence and equity in undergraduate science education.

  6. Recent admissions trends at UNLV-SDM: perspectives on recruitment of female and minority students at a new dental school.

    Science.gov (United States)

    Sewell, Jeremy; Hawley, Nathan; Kingsley, Karl; O'Malley, Susan; Ancajas, Christine C

    2008-11-01

    As the U.S. population continues to become more diverse, there has been a movement toward the recruitment of more diverse students into the dental profession. The purpose of this study was to assess the current and historical trends in diversity among dental school applicants and enrollees at a new dental institution, the University of Nevada, Las Vegas, School of Dental Medicine (UNLV-SDM). Applicant and enrollment data for the first four cohorts, sorted by gender and ethnicity, were retrieved and summarized by the Office of Admissions and Student Affairs at UNLV-SDM. The principal findings of this analysis revealed enrollment of females at UNLV-SDM was relatively consistent during this time interval, although significantly lower than the U.S. average of all dental schools. The enrollment of minorities at UNLV-SDM, however, was consistent and comparable to the U.S. average, although these percentages were disproportionately smaller than the percentage of minorities in the general population. Based upon these findings, a new model for outreach and recruitment of females and minorities was recently created, based in part upon evidence of successful strategies by dental educators at other institutions, in order to increase the enrollment of female and underrepresented minority students.

  7. John Wheatley Award Talk: Promoting Under-Represented Physicists in Asian and Arab Countries and Muslim Women in Science

    Science.gov (United States)

    Nahar, Sultana

    2013-04-01

    Physics fascinates people's minds regardless of their geographic location. Often the best students choose the challending profession of physics. Physicists in developing countries in Asia and Arab countries work mostly on their own with limited resources or external collaboration and some do extraordinarily well. However, these dedicated individuals need the support and interactive modalities with their fellow physicists, particularly from developed countries, for coherent and rapid advances in knowledge, discoveries and inventions. My main objective is to promote and motivate physics education and research in developing and Arab countries to a level of excellence commensurate with that at U.S. institutions, and to facilitate connection through the strong network of APS. I have developed a general STEM based program. Another focus of this initiative is the very weak community of Muslim women in science, who have have remained behind owing to surrounding circumstances. To encourage them in scientific professions, and to enable them to nurture their intellectuality, we have formed a network called the International Society of Muslim Women in Science. It now has 85 enthusiastic and aspiring members from 21 countries. I will discuss these and the special needs of the these under-represented scientists, and how APS might lend them its valuable support.

  8. "Going Going....." Why Are Males Underrepresented in Pre-Service Primary Education Courses at University?

    Science.gov (United States)

    Lovett, Trevor

    2014-01-01

    This sociological qualitative study identifies reasons why female pre-service teachers believe males are underrepresented in primary education courses at Australian universities. The findings of the study suggest that the nineteenth century naturalistic discourse of nurturance continues to sustain the notion that primary school teaching is a…

  9. Nobelist TD LEE Scientist Cooperation Network and Scientist Innovation Ability Model

    Directory of Open Access Journals (Sweden)

    Jin-Qing Fang

    2013-01-01

    Full Text Available Nobelist TD Lee scientist cooperation network (TDLSCN and their innovation ability are studied. It is found that the TDLSCN not only has the common topological properties both of scale-free and small-world for a general scientist cooperation networks, but also appears the creation multiple-peak phenomenon for number of published paper with year evolution, which become Nobelist TD Lee’s significant mark distinguished from other scientists. This new phenomenon has not been revealed in the scientist cooperation networks before. To demonstrate and explain this new finding, we propose a theoretical model for a nature scientist and his/her team innovation ability. The theoretical results are consistent with the empirical studies very well. This research demonstrates that the model has a certain universality and can be extended to estimate innovation ability for any nature scientist and his/her team. It is a better method for evaluating scientist innovation ability and his/her team for the academic profession and is of application potential.

  10. Doctoral Programs Need Changes to Attract and Retain Underrepresented Groups

    Science.gov (United States)

    Bernard, R. E.; Mayfield, K. K.

    2017-12-01

    Geoscience is currently recognized as the least diverse of all STEM fields. While attention typically focuses on K-12 and undergraduate populations, the extreme lack of diversity among graduate students, and doctoral students in particular, should be examined and addressed. In 2016, members of underrepresented minority (URM) groups made up only 6% of those graduating with geoscience PhDs. In all STEM fields, only 48% of Hispanic/Latino and 38% of Black/African American doctoral studies had earned doctorates within 7 years, with 36% of members of these groups leaving the program entirely. Recent studies suggest that these high attrition rates can be attributed, in part, to a mismatch between motivations of URM members and PhD-granting institutions while students are pursuing scientific education and careers. Traditional STEM doctoral programs do not offer, facilitate, or incentivize substantial opportunities to integrate social justice issues, community involvement, and altruism—factors which have been found to be of more importance to these populations than to male members of well-represented groups. URM members are also less likely to be interested in purely academic research careers, so doctoral programs may be failing to attract (and failing to prepare) diverse populations by not offering experiences beyond typical research and TA duties. In this presentation, trends in motivation and persistence among URM students in STEM will be discussed, in addition to highlighting education and outreach activities that can be successfully incorporated for a more fulfilling, balanced, attractive, and preparatory education experience. Specific activities undertaken and recommended by the presenter in her PhD experience include the following: a federal research internship, a state government policy internship, a formal partnership with a local K-12 teacher though a former NSF GK-12 program, a two-week education workshop aboard a scientific research drillship, and attending a

  11. Sexual and Gender Minority Adolescents' Views On HIV Research Participation and Parental Permission: A Mixed-Methods Study.

    Science.gov (United States)

    Mustanski, Brian; Coventry, Ryan; Macapagal, Kathryn; Arbeit, Miriam R; Fisher, Celia B

    2017-06-01

    Sexual and gender minority adolescents are underrepresented in HIV research, partly because institutional review boards (IRBs) are reluctant to waive parental permission requirements for these studies. Understanding teenagers' perspectives on parental permission and the risks and benefits of participating in HIV research is critical to informing evidence-based IRB decisions. Data from 74 sexual and gender minority adolescents aged 14-17 who participated in an online focus group in 2015 were used to examine perspectives on the risks and benefits of participation in a hypothetical HIV surveillance study and the need for parental permission and adequate protections. Data were analyzed thematically; mixed methods analyses examined whether concerns about parental permission differed by whether teenagers were out to their parents. Most adolescents, especially those who were not out to their parents, would be unwilling to participate in an HIV study if parental permission were required. Perceived benefits of participation included overcoming barriers to HIV testing and contributing to the health of sexual and gender minority youth. Few risks of participation were identified. Adolescents suggested steps that researchers could take to facilitate informed decision making about research participation and ensure minors' safety in the absence of parental permission; these included incorporating multimedia presentations into the consent process and explaining researchers' motivations for conducting the study. Respondents believed that the benefits of HIV surveillance research outweighed the risks. Requiring parental permission may exclude many sexual and gender minority teenagers from taking part in HIV research, especially if they are not out. Copyright © 2017 by the Guttmacher Institute.

  12. Recruitment of racial and ethnic minorities to clinical trials conducted within specialty clinics: an intervention mapping approach.

    Science.gov (United States)

    Amorrortu, Rossybelle P; Arevalo, Mariana; Vernon, Sally W; Mainous, Arch G; Diaz, Vanessa; McKee, M Diane; Ford, Marvella E; Tilley, Barbara C

    2018-02-17

    Despite efforts to increase diversity in clinical trials, racial/ethnic minority groups generally remain underrepresented, limiting researchers' ability to test the efficacy and safety of new interventions across diverse populations. We describe the use of a systematic framework, intervention mapping (IM), to develop an intervention to modify recruitment behaviors of coordinators and specialist investigators with the goal of increasing diversity in trials conducted within specialty clinics. To our knowledge IM has not been used in this setting. The IM framework was used to ensure that the intervention components were guided by health behavior theories and the evidence. The IM steps consisted of (1) conducting a needs assessment, (2) identification of determinants and objectives, (3) selection of theory-informed methods and practical applications, (4) development and creation of program components, (5) development of an adoption and implementation plan, and (6) creation of an evaluation plan. The intervention included five educational modules, one in-person and four web-based, plus technical assistance calls to coordinators. Modules addressed the intervention rationale, development of clinic-specific plans to obtain minority-serving physician referrals, physician-centered and patient-centered communication, and patient navigation. The evaluation, a randomized trial, was recently completed in 50 specialty clinics and is under analysis. Using IM we developed a recruitment intervention that focused on building relationships with minority-serving physicians to encourage minority patient referrals. IM enhanced our understanding of factors that may influence minority recruitment and helped us integrate strategies from multiple disciplines that were relevant for our audience.

  13. The Natural Science Institute for Teachers of Minority Students: Performance report

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, C.J.

    1995-02-01

    The purpose of the Natural Science Institute for Teachers of Minority Students is to enhance the science knowledge and skills of grades four through twelve science teachers in the District of Columbia Public Schools. The Institute brings school teachers together with practicing scientists and experienced science educators who are currently doing or involved in research and publication, especially in the area of global change. Special emphasis is placed on the interdisciplinary nature of science and the part played by the understanding and teaching about the dynamics of the environment and global change. In addition to these goals, teachers will learn a number of successful alternate strategies for teaching science to minority, disabled and non-English speaking students.

  14. Competition Between Lemna minuta, Lemna minor, and Azolla filiculoides. Growing Fast or Being Steadfast?

    Directory of Open Access Journals (Sweden)

    Simona Paolacci

    2018-06-01

    Full Text Available A substantial number of Lemnaceae are invasive outside their natural distribution area. Lemna minuta is considered invasive in several European countries, where it can occur in the same habitat as invasive Azolla filiculoides and native Lemna minor. In this study the presence, abundance and growth rates of all three species were monitored across 24 natural ponds and in a series of mesocosms in order to explore the importance of species invasiveness and habitat invisibility. Field monitoring showed that the distribution of the three species of macrophytes is heterogeneous in space and time. However, the data show no association of nutrient or light levels with plant distribution. Indeed, using reciprocal transplanting experiments it was demonstrated that all species are able to grow in all ponds, even ponds where the species do not naturally occur. It is concluded that distribution of L. minor, L. minuta, and A. filiculoides is not limited by the prevailing physicochemical characteristics of the ponds during the summer period. Remarkably, in these experiments A. filiculoides displayed the highest RGR, and exerted a negative influence on growth rates and surface cover of L. minor and L. minuta. Despite such apparent invasiveness, A. filiculoides was relatively rare in the study area. Rather, the species most abundant was L. minor which has the lowest RGR under field conditions in summer. Therefore, this study shows that the invasiveness of the species during the summer months is not necessarily reflected in the actual distribution pattern in natural ponds. In fact, alien L. minuta and A. filiculoides are under-represented in the monitored area. It is concluded that the interaction of several factors, including growth under winter-conditions and/or dispersal after disturbances, is the major determinant of the abundance and heterogeneous distribution of L. minor, L. minuta, and A. filiculoides in the study area.

  15. The Impact of Career Exploration upon the Success of Underrepresented Students in Higher Education

    Science.gov (United States)

    Blair, Elaine J.

    2012-01-01

    Factors that contribute to college student success are multiple. Career exploration as a student success strategy was explored in this study. The purpose of this exploratory mixed-methods study was to explore whether there was a relationship between career exploration and the success of underrepresented students in higher education. Quantitative…

  16. The Oratorical Scientist: A Guide for Speechcraft and Presentation for Scientists

    Science.gov (United States)

    Lau, G. E.

    2015-12-01

    Public speaking organizations are highly valuable for individuals seeking to improve their skills in speech development and delivery. The methodology of such groups usually focuses on repetitive, guided practice. Toastmasters International, for instance, uses a curriculum based on topical manuals that guide their members through some number of prepared speeches with specific goals for each speech. I have similarly developed a public speaking manual for scientists with the intention of guiding scientists through the development and presentation of speeches that will help them hone their abilities as public speakers. I call this guide The Oratorical Scientist. The Oratorical Scientist will be a free, digital publication that is meant to guide scientists through five specific types of speech that the scientist may be called upon to deliver during their career. These five speeches are: The Coffee Talk, The Educational Talk, Research Talks for General Science Audiences, Research Talks for Specific Subdiscipline Audiences, and Taking the Big Stage (talks for public engagement). Each section of the manual focuses on speech development, rehearsal, and presentation for each of these specific types of speech. The curriculum was developed primarily from my personal experiences in public engagement. Individuals who use the manual may deliver their prepared speeches to groups of their peers (e.g. within their research group) or through video sharing websites like Youtube and Vimeo. Speeches that are broadcast online can then be followed and shared through social media networks (e.g. #OratoricalScientist), allowing a larger audience to evaluate the speech and to provide criticism. I will present The Oratorical Scientist, a guide for scientists to become better public speakers. The process of guided repetitive practice of scientific talks will improve the speaking capabilities of scientists, in turn benefitting science communication and public engagement.

  17. Teacher-Scientist-Communicator-Learner Partnerships: Reimagining Scientists in the Classroom.

    Science.gov (United States)

    Noel-Storr, Jacob; Terwilliger, Michael; InsightSTEM Teacher-Scientist-Communicator-Learner Partnerships Team

    2016-01-01

    We present results of our work to reimagine Teacher-Scientist partnerships to improve relationships and outcomes. We describe our work in implementing Teacher-Scientist partnerships that are expanded to include a communicator, and the learners themselves, as genuine members of the partnership. Often times in Teacher-Scientist partnerships, the scientist can often become more easily described as a special guest into the classroom, rather than a genuine partner in the learning experience. We design programs that take the expertise of the teacher and the scientist fully into account to develop practical and meaningful partnerships, that are further enhanced by using an expert in communications to develop rich experiences for and with the learners. The communications expert may be from a broad base of backgrounds depending on the needs and desires of the partners -- the communicators include, for example: public speaking gurus; journalists; web and graphic designers; and American Sign Language interpreters. Our partnership programs provide online support and professional development for all parties. Outcomes of the program are evaluated in terms of not only learning outcomes for the students, but also attitude, behavior, and relationship outcomes for the teachers, scientists, communicators and learners alike.

  18. The Double Bind: The Price of Being a Minority Woman in Science. Report of a Conference of Minority Women Scientists, Arlie House, Warrenton, Virginia.

    Science.gov (United States)

    Malcom, Shirley Mahaley; And Others

    This report summarizes a conference of thirty minority women in science, engineering, medicine, and dentistry that was held in December 1975, with the support of the National Science Foundation. In addition to a general discussion of the conference and the conferees, the following topics are discussed with respect to the experiences of the…

  19. The Howard University Program in Atmospheric Sciences: A Program Exemplifying Diversity and Excellence

    Science.gov (United States)

    Morria, V. R.; Demoz, B.; Joseph, E.

    2017-12-01

    The Howard University Graduate Program in Atmospheric Sciences (HUPAS) is the first advanced degree program in the atmospheric sciences instituted at a Historically Black College/University (HBCU) or at a Minority-Serving Institution (MSI). MSI in this context refers to academic institutions whose histories are grounded in serving minority students from their inception, rather than institutions whose student body demographics have evolved along with the "browning of America" and now meet recent Federal criteria for "minority-serving". HUPAS began in 1996 when initiatives within the Howard University Graduate School overlapped with the motivations of investigators within a NASA-funded University research center for starting a sustainable interdisciplinary program. After twenty years, the results have been the production of greater institutional depth and breadth of research in the geosciences and significant production of minority scientists contributing to the atmospheric sciences enterprise in various sectors. This presentation will highlight the development of the Howard University graduate program in atmospheric sciences, its impact on the national statistics for the production of underrepresented minority (URM) advanced degree holders in the atmospheric sciences, and some of the program's contributions to the diversity in geosciences and the National pipeline of talent from underrepresented groups. Over the past decade, Howard University is leading producer of African American and Hispanic female doctorates in atmospheric sciences - producing nearly half of all degree holders in the Nation. Specific examples of successful partnerships between this program and federal funding agencies such as NASA and NOAA which have been critical in the development process will also be highlighted. Finally, some of the student recruitment and retention strategies that have enabled the success of this program and statistics of student graduation will also be shared and

  20. Scientists: Engage the Public!

    OpenAIRE

    Shugart, Erika C.; Racaniello, Vincent R.

    2015-01-01

    ABSTRACT Scientists must communicate about science with public audiences to promote an understanding of complex issues that we face in our technologically advanced society. Some scientists may be concerned about a social stigma or ?Sagan effect? associated with participating in public communication. Recent research in the social sciences indicates that public communication by scientists is not a niche activity but is widely done and can be beneficial to a scientist?s career. There are a varie...

  1. Women Are Underrepresented in Fields Where Success is Believed to Require Brilliance

    OpenAIRE

    Meredith eMeyer; Andrei eCimpian; Sarah-Jane eLeslie

    2015-01-01

    Women’s underrepresentation in science, technology, engineering, and mathematics (STEM) fields is a prominent concern in our society and many others. Closer inspection of this phenomenon reveals a more nuanced picture, however, with women achieving parity with men at the PhD level in certain STEM fields, while also being underrepresented in some non-STEM fields. It is important to consider and provide an account of this field-by-field variability. The Field-specific Ability Beliefs (FAB) hypo...

  2. Methods and Contexts in the Study of Muslim Minorities

    DEFF Research Database (Denmark)

    Research on Islam and Muslim minorities in Europe has generally been focused on the active representatives of these groups, in the form of research on the development of movements and organizations, their legal and political status, activities and relations with the wider political contexts both ...... in the fields of race relations and migration have increasingly mobilized ‘Muslims’ and ‘Islam’ as a common denominator. Initially, among social scientists the motivation seems often to have been the necessity of refining larger unmanageable ethnic groupings....

  3. A Pre-Engineering Program Using Robots to Attract Underrepresented High School and Community College Students

    Science.gov (United States)

    Mosley, Pauline Helen; Liu, Yun; Hargrove, S. Keith; Doswell, Jayfus T.

    2010-01-01

    This paper gives an overview of a new pre-engineering program--Robotics Technician Curriculum--that uses robots to solicit underrepresented students pursuing careers in science, technology, engineering, and mathematics (STEM). The curriculum uses a project-based learning environment, which consists of part lecture and part laboratory. This program…

  4. An Earth System Scientist Network for Student and Scientist Partnerships

    Science.gov (United States)

    Ledley, T. S.

    2001-05-01

    Successful student and scientist partnerships require that there is a mutual benefit from the partnership. This means that the scientist needs to be able to see the advantage of having students work on his/her project, and the students and teachers need to see that the students contribute to the project and develop the skills in inquiry and the content knowledge in the geosciences that are desired. Through the Earth System Scientist Network (ESSN) for Student and Scientist Partnerships project we are working toward developing scientific research projects for the participation of high school students. When these research projects are developed they will be posted on the ESSN web site that will appear in the Digital Library for Earth System Education (DLESE). In DLESE teachers and students who are interested in participating in a research program will be able to examine the criteria for each project and select the one that matches their needs and situation. In this paper we will report on how the various ESSN research projects are currently being developed to assure that both the scientist and the students benefit from the partnership. The ESSN scientists are working with a team of scientists and educators to 1) completely define the research question that the students will be addressing, 2) determine what role the students will have in the project, 3) identify the data that the students and teachers will work with, 4) map out the scientific protocols that the students will follow, and 5) determine the background and support materials needed to facilitate students successfully participating in the project. Other issues that the team is addressing include 1) identifying the selection criteria for the schools, 2) identifying rewards and recognition for the students and teacher by the scientist, and 3) identifying issues in Earth system science, relevant to the scientists data, that the students and teachers could use as a guide help develop students investigative

  5. Scientists as writers

    Science.gov (United States)

    Yore, Larry D.; Hand, Brian M.; Prain, Vaughan

    2002-09-01

    This study attempted to establish an image of a science writer based on a synthesis of writing theory, models, and research literature on academic writing in science and other disciplines and to contrast this image with an actual prototypical image of scientists as writers of science. The synthesis was used to develop a questionnaire to assess scientists' writing habits, beliefs, strategies, and perceptions about print-based language. The questionnaire was administered to 17 scientists from science and applied science departments of a large Midwestern land grant university. Each respondent was interviewed following the completion of the questionnaire with a custom-designed semistructured protocol to elaborate, probe, and extend their written responses. These data were analyzed in a stepwise fashion using the questionnaire responses to establish tentative assertions about the three major foci (type of writing done, criteria of good science writing, writing strategies used) and the interview responses to verify these assertions. Two illustrative cases (a very experienced, male physical scientist and a less experienced, female applied biological scientist) were used to highlight diversity in the sample. Generally, these 17 scientists are driven by the academy's priority of publishing their research results in refereed, peer-reviewed journals. They write their research reports in isolation or as a member of a large research team, target their writing to a few journals that they also read regularly, use writing in their teaching and scholarship to inform and persuade science students and other scientists, but do little border crossing into other discourse communities. The prototypical science writer found in this study did not match the image based on a synthesis of the writing literature in that these scientists perceived writing as knowledge telling not knowledge building, their metacognition of written discourse was tacit, and they used a narrow array of genre

  6. Scientists Shaping the Discussion

    Science.gov (United States)

    Abraham, J. A.; Weymann, R.; Mandia, S. A.; Ashley, M.

    2011-12-01

    Scientific studies which directly impact the larger society require an engagement between the scientists and the larger public. With respect to research on climate change, many third-party groups report on scientific findings and thereby serve as an intermediary between the scientist and the public. In many cases, the third-party reporting misinterprets the findings and conveys inaccurate information to the media and the public. To remedy this, many scientists are now taking a more active role in conveying their work directly to interested parties. In addition, some scientists are taking the further step of engaging with the general public to answer basic questions related to climate change - even on sub-topics which are unrelated to scientists' own research. Nevertheless, many scientists are reluctant to engage the general public or the media. The reasons for scientific reticence are varied but most commonly are related to fear of public engagement, concern about the time required to properly engage the public, or concerns about the impact to their professional reputations. However, for those scientists who are successful, these engagement activities provide many benefits. Scientists can increase the impact of their work, and they can help society make informed choices on significant issues, such as mitigating global warming. Here we provide some concrete steps that scientists can take to ensure that their public engagement is successful. These steps include: (1) cultivating relationships with reporters, (2) crafting clear, easy to understand messages that summarize their work, (3) relating science to everyday experiences, and (4) constructing arguments which appeal to a wide-ranging audience. With these steps, we show that scientists can efficiently deal with concerns that would otherwise inhibit their public engagement. Various resources will be provided that allow scientists to continue work on these key steps.

  7. ECNS '99 - Young scientists forum

    DEFF Research Database (Denmark)

    Ceretti, M.; Janssen, S.; McMorrow, D.F.

    2000-01-01

    The Young Scientists Forum is a new venture for ECNS and follows the established tradition of an active participation by young scientists in these conferences. At ECNS '99 the Young Scientists Forum brought together 30 young scientists from 13 European countries. In four working groups, they disc......The Young Scientists Forum is a new venture for ECNS and follows the established tradition of an active participation by young scientists in these conferences. At ECNS '99 the Young Scientists Forum brought together 30 young scientists from 13 European countries. In four working groups......, they discussed emerging scientific trends in their areas of expertise and the instrumentation required to meet the scientific challenges. The outcome was presented in the Young Scientists Panel on the final day of ECNS '99. This paper is a summary of the four working group reports prepared by the Group Conveners...

  8. Difference in Career Attitudes of Elementary Minority Female Students after Participation in a STEM Event

    Science.gov (United States)

    Pumphrey, Karyn Christine

    Science, Technology, Engineering and Mathematics (STEM) professionals are responsible for the development of new technologies and breaking scientific discoveries. However, in the United States, racial minorities and females are vastly underrepresented in STEM professions. This problem is multiplied for individuals falling into both categories. Educators in must develop effective strategies to increase the number of minority females in STEM jobs. The purpose of this quantitative study was to investigate if there was a difference in attitudes about future STEM educational choices and career opportunities after participation in a theme-based STEM event. The significant points reflected in the literature are statistics that demonstrate the extreme underrepresentation of this population and the importance of having all segments of the population represented in these important jobs. A descriptive non-experimental design study utilizing survey data taken before and after a STEM day at a public school was employed. The analysis tool was the Hopes and Goals Survey which has been found valid and reliable with similar samples of students. The data sets were pre-event and post-event surveys from minority females in grades 3, 4, and 5. The two data sets were compared using descriptive statistics to investigate any differences in opinions before and after the event. The results showed a difference in minority female student's attitudes regarding future STEM educational opportunities and careers after participation in a theme-based STEM event. The results indicate a need for increasing the number of STEM events in public schools. Future research may explore the differences between the opinion changes of males versus females to ascertain which gender responded most positively to STEM day.

  9. Forensic scientists' conclusions: how readable are they for non-scientist report-users?

    Science.gov (United States)

    Howes, Loene M; Kirkbride, K Paul; Kelty, Sally F; Julian, Roberta; Kemp, Nenagh

    2013-09-10

    Scientists have an ethical responsibility to assist non-scientists to understand their findings and expert opinions before they are used as decision-aids within the criminal justice system. The communication of scientific expert opinion to non-scientist audiences (e.g., police, lawyers, and judges) through expert reports is an important but under-researched issue. Readability statistics were used to assess 111 conclusions from a proficiency test in forensic glass analysis. The conclusions were written using an average of 23 words per sentence, and approximately half of the conclusions were expressed using the active voice. At an average Flesch-Kincaid Grade level of university undergraduate (Grade 13), and Flesch Reading Ease score of difficult (42), the conclusions were written at a level suitable for people with some tertiary education in science, suggesting that the intended non-scientist readers would find them difficult to read. To further analyse the readability of conclusions, descriptive features of text were used: text structure; sentence structure; vocabulary; elaboration; and coherence and unity. Descriptive analysis supported the finding that texts were written at a level difficult for non-scientists to read. Specific aspects of conclusions that may pose difficulties for non-scientists were located. Suggestions are included to assist scientists to write conclusions with increased readability for non-scientist readers, while retaining scientific integrity. In the next stage of research, the readability of expert reports in their entirety is to be explored. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. How to Grow Project Scientists: A Systematic Approach to Developing Project Scientists

    Science.gov (United States)

    Kea, Howard

    2011-01-01

    The Project Manager is one of the key individuals that can determine the success or failure of a project. NASA is fully committed to the training and development of Project Managers across the agency to ensure that highly capable individuals are equipped with the competencies and experience to successfully lead a project. An equally critical position is that of the Project Scientist. The Project Scientist provides the scientific leadership necessary for the scientific success of a project by insuring that the mission meets or exceeds the scientific requirements. Traditionally, NASA Goddard project scientists were appointed and approved by the Center Science Director based on their knowledge, experience, and other qualifications. However the process to obtain the necessary knowledge, skills and abilities was not documented or done in a systematic way. NASA Goddard's current Science Director, Nicholas White saw the need to create a pipeline for developing new projects scientists, and appointed a team to develop a process for training potential project scientists. The team members were Dr. Harley Thronson, Chair, Dr. Howard Kea, Mr. Mark Goldman, DACUM facilitator and the late Dr. Michael VanSteenberg. The DACUM process, an occupational analysis and evaluation system, was used to produce a picture of the project scientist's duties, tasks, knowledge, and skills. The output resulted in a 3-Day introductory course detailing all the required knowledge, skills and abilities a scientist must develop over time to be qualified for selections as a Project Scientist.

  11. Early Opportunities Research Partnership Between Howard University, University of Maryland Baltimore County and NASA Goddard for Engaging Underrepresented STEM Students in Earth and Space Sciences

    Science.gov (United States)

    Misra, P.; Venable, D. D.; Hoban, S.; Demoz, B.; Bleacher, L.; Meeson, B. W.; Farrell, W. M.

    2017-12-01

    Howard University, University of Maryland Baltimore County and NASA Goddard Space Flight Center (GSFC) are collaborating to engage underrepresented STEM students and expose them to an early career pathway in NASA-related Earth & Space Science research. The major goal is to instill interest in Earth and Space Science to STEM majors early in their academic careers, so that they become engaged in ongoing NASA-related research, motivated to pursue STEM careers, and perhaps become part of the future NASA workforce. The collaboration builds on a program established by NASA's Dynamic Response of the Environments of Asteroids, the Moon and the moons of Mars (DREAM2) team to engage underrepresented students from Howard in summer internships. Howard leveraged this program to expand via NASA's Minority University Research and Education Project (MUREP) funding. The project pairs Howard students with GSFC mentors and engages them in cutting-edge Earth and Space Science research throughout their undergraduate tenure. The project takes a multi-faceted approach, with each year of the program specifically tailored to each student's strengths and addressing their weaknesses, so that they experience a wide array of enriching research and professional development activities that help them grow both academically and professionally. During the academic year, the students are at Howard taking a full load of courses towards satisfying their degree requirements and engaging in research with their GSFC mentors via regular telecons, e-mail exchanges, video chats & on an average one visit per semester to GSFC for an in-person meeting with their research mentor. The students extend their research with full-time summer internships at GSFC, culminating in a Capstone Project and Senior Thesis. As a result, these Early Opportunities Program students, who have undergone rigorous training in the Earth and Space Sciences, are expected to be well-prepared for graduate school and the NASA workforce.

  12. Analyzing prospective teachers' images of scientists using positive, negative and stereotypical images of scientists

    Science.gov (United States)

    Subramaniam, Karthigeyan; Esprívalo Harrell, Pamela; Wojnowski, David

    2013-04-01

    Background and purpose : This study details the use of a conceptual framework to analyze prospective teachers' images of scientists to reveal their context-specific conceptions of scientists. The conceptual framework consists of context-specific conceptions related to positive, stereotypical and negative images of scientists as detailed in the literature on the images, role and work of scientists. Sample, design and method : One hundred and ninety-six drawings of scientists, generated by prospective teachers, were analyzed using the Draw-A-Scientist-Test Checklist (DAST-C), a binary linear regression and the conceptual framework. Results : The results of the binary linear regression analysis revealed a statistically significant difference for two DAST-C elements: ethnicity differences with regard to drawing a scientist who was Caucasian and gender differences for indications of danger. Analysis using the conceptual framework helped to categorize the same drawings into positive, stereotypical, negative and composite images of a scientist. Conclusions : The conceptual framework revealed that drawings were focused on the physical appearance of the scientist, and to a lesser extent on the equipment, location and science-related practices that provided the context of a scientist's role and work. Implications for teacher educators include the need to understand that there is a need to provide tools, like the conceptual framework used in this study, to help prospective teachers to confront and engage with their multidimensional perspectives of scientists in light of the current trends on perceiving and valuing scientists. In addition, teacher educators need to use the conceptual framework, which yields qualitative perspectives about drawings, together with the DAST-C, which yields quantitative measure for drawings, to help prospective teachers to gain a holistic outlook on their drawings of scientists.

  13. Entrepreneurship for Creative Scientists

    Science.gov (United States)

    Parker, Dawood; Raghu, Surya; Brooks, Richard

    2018-05-01

    Through patenting and commercialization, scientists today can develop their work beyond a publication in a learned journal. Indeed, universities and governments are encouraging today's scientists and engineers to break their research out of the laboratory and into the commercial world. However, doing so is complicated and can be daunting for those more used to a research seminar than a board room. This book, written by experienced scientists and entrepreneurs, deals with businesses started by scientists based on innovation and sets out to clarify for scientists and engineers the steps necessary to take an idea along the path to commercialization and maximise the potential for success, regardless of the path taken.

  14. Photonics, Diversity and Mentoring -- 30 Years of Experiences and Strategies of an African-American Physicist

    Science.gov (United States)

    Johnson, Anthony M.

    2010-03-01

    As requested by our Session Chair, I hope to share a career that emphasizes cutting edge research in ultrafast optical phenomena, as well as outreach to women and underrepresented minorities that began over three decades ago at Bell Laboratories. My research career in Optical Physics owes it foundation and perspective to my mid-70s participation in the Bell Labs diversity programs the Summer Research Program for Minorities and Women (SRP) and the Cooperative Research Fellowship Program for Minorities (CRFP). In addition to striving to produce leading edge research, these programs made me a strong proponent of the recruitment and retention of women and underrepresented minorities into the scientific enterprise. Now approaching 15 years in academia, I have had the good fortune to continue the research tradition, where the majority of my graduate students are women and underrepresented minorities. Indeed, these students are out there, hungry for the experience, motivated to give their best effort, and thrive when given supportive and nurturing environments -- but you must expend the energy and resources to find them and I guarantee it will be worth it!

  15. Programs for Increasing the Engagement of Underrepresented Ethnic Groups and People with Disabilities in HPC. Final assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Valerie

    2012-12-23

    Given the significant impact of computing on society, it is important that all cultures, especially underrepresented cultures, are fully engaged in the field of computing to ensure that everyone benefits from the advances in computing. This proposal is focused on the field of high performance computing. The lack of cultural diversity in computing, in particular high performance computing, is especially evident with respect to the following ethnic groups – African Americans, Hispanics, and Native Americans – as well as People with Disabilities. The goal of this proposal is to organize and coordinate a National Laboratory Career Development Workshop focused on underrepresented cultures (ethnic cultures and disability cultures) in high performance computing. It is expected that the proposed workshop will increase the engagement of underrepresented cultures in HPC through increased exposure to the excellent work at the national laboratories. The National Laboratory Workshops are focused on the recruitment of senior graduate students and the retention of junior lab staff through the various panels and discussions at the workshop. Further, the workshop will include a community building component that extends beyond the workshop. The workshop was held was held at the Lawrence Livermore National Laboratory campus in Livermore, CA. from June 14 - 15, 2012. The grant provided funding for 25 participants from underrepresented groups. The workshop also included another 25 local participants in the summer programs at Lawrence Livermore National Laboratory. Below are some key results from the assessment of the workshops: 86% of the participants indicated strongly agree or agree to the statement "I am more likely to consider/continue a career at a national laboratory as a result of participating in this workshop." 77% indicated strongly agree or agree to the statement "I plan to pursue a summer internship at a national laboratory." 100% of the participants indicated strongly

  16. Intervention to Improve Engineering Self-Efficacy and Sense of Belonging of First-Year Engineering Students

    Science.gov (United States)

    Jordan, Kari L.

    The percentage of bachelor's degrees in STEM awarded to women and underrepresented minority students needs to increase dramatically to reach parity with their majority counterparts. While three key underrepresented minority (URM) groups, African Americans, Hispanic/Latinos, and Native Americans constitute some 30 percent of the overall undergraduate student population in the United States, the share of engineering degrees earned by members of these groups declines as degree level increases. Underrepresented minority students accounted for about 12% of engineering bachelor's degrees awarded in 2009, 7% of master's degrees and 3% of doctorates (NSF Science Resource Statistics, 2009). The percent in engineering has been steadily decreasing, while overall participation in higher education among these groups has increased considerably. Keeping those thoughts in mind it is important to examine the historical theories and frameworks that will help us not only understand why underrepresented minority students pursue and persist in STEM majors in low numbers, but to also develop interventions to improve the alarming statistics that hamper engineering diversity. As indicated by our past two U.S. Presidents, there has been an increased discussion on the national and state level regarding the number of students entering engineering disciplines in general and underrepresented minority students in particular. Something happens between a student's freshman year and the point they decide to either switch their major or drop out of school altogether. Some researchers attribute the high dropout rate of underrepresented minority students in engineering programs to low engineering self-efficacy (e.g. Jordan et al., 2011). A student's engineering self-efficacy is his/her belief that he/she can successfully navigate the engineering curriculum and eventually become a practicing engineer. A student's engineering self-efficacy is formed by mastery experiences, vicarious experiences, his

  17. Drawings of Scientists

    Science.gov (United States)

    experiment can be reduplicated. He/she must check and double-check all of his/her work. A scientist is very , environment, nutrition, and other aspects of our daily and future life." . . . Marisa The scientists

  18. Nobelist TD LEE Scientist Cooperation Network and Scientist Innovation Ability Model

    OpenAIRE

    Fang, Jin-Qing; Liu, Qiang

    2013-01-01

    Nobelist TD Lee scientist cooperation network (TDLSCN) and their innovation ability are studied. It is found that the TDLSCN not only has the common topological properties both of scale-free and small-world for a general scientist cooperation networks, but also appears the creation multiple-peak phenomenon for number of published paper with year evolution, which become Nobelist TD Lee’s significant mark distinguished from other scientists. This new phenomenon has not been revealed in the scie...

  19. Black Scientists and Inventors in the United States: 1731-1980. Curriculum Guide: Department of Science, Cambridge Rindge and Latin School.

    Science.gov (United States)

    Walcott, Phyllis B.

    Four units focusing on 16 different Black scientists or inventors who have contributed to American life and research are presented. As part of an interdisciplinary high school science course, the units are designed to help students develop an understanding of and appreciation for the talents of the individuals studied, motivate minority students…

  20. Careers in science and technology

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The objective of this book is to expose junior and senior high school students to the science and technology fields. It also will convey the importance of getting a general education in science and mathematics while still in high school and of continuing such studies in college. This is intended to encourge students, particularly underrepresented minorities and women, to consider and prepare for careers in science and technology. This book attempts to point out the increasing importance of such knowledge in daily life regardless of occupational choice. This book is intended to be used by junior and senior high school students, as a classroom reference by teachers, and by scientist and engineers participating in outreach activities.

  1. SIAM Workshop: Focus on Diversity 2001

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-01-01

    The Society for Industrial and Applied Mathematics (SIAM) held a workshop focused on underrepresented minorities--graduate and undergraduate students, postdocs, and recent Ph.D's--in the mathematical and computational sciences on July 11, 2001, as part of the SIAM Annual Meeting in San Diego, California. The workshop was intended to accomplish several goals: (1) to a provide workshop focused on careers for and retention of minority students in the mathematical and computational sciences; (2) to bring together a mixture of people from different levels of professional experience, ranging from undergraduate students to senior scientists in an informal setting in order to share career experiences and options; (3) to provide an opportunity for minority graduate students, postdocs, and recent Ph.D's to present their research at an international meeting; (4) to expose undergraduate students to the many professional opportunities resulting from graduate degrees in science and mathematics; and (5) to encourage undergraduate and graduate students to speak frankly with each other about personal issues and experiences associated with pursuing a scientific career.

  2. Meaningful Engagement of Organizational and Agency Partnerships to Enhance Diversity within the Earth System Science Community: A Case Study

    Science.gov (United States)

    Pyrtle, A. J.; Whitney, V. W.; Powell, J. M.; Bailey, K. L.

    2006-12-01

    The Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science Initiative (MS PHD'S) was established by and for underrepresented minorities to facilitate increased and sustained participation in Earth system science community. The MS PHD'S launched its pilot program in 2003 with twenty professional organizations, agencies and institutions as partners. Each year partnership alliances have grown. In the second year or programming, thirty-one partnering agencies/institutions supported involvement of MS PHD'S student participants and for 2005-2006, representatives from forty-five agencies and institutions have provided similar support and exposure to the third cohort of student participants. Nineteen scientists served as meeting mentors during the MS PHD'S pilot program in 2003. By the following year, twenty-two additional scientists partnered with MS PHD'S mentees. During 2005-2006, twenty-one new scientists served as program mentors. Thus far, the MS PHD'S program has successfully engaged sixty-two minority and non-minority scientists as mentors to MS PHD'S student participants. AGU, AMS, ASLO, ESA, TOS, NAS OSB and JOI continue to serve as MS PHD'S Society Partners and hosts for MS PHD'S student activities in conjunction with their meetings. Each of the five professional society partners provided assistance in identifying mentors, provided complimentary memberships and meeting registrations for MS PHD'S student participants. AGU, AMS, ASLO, JOI and TOS have sponsored more than 90 conference registration and travel awards for the purpose of student participants engaging in MS PHD'S Professional Development Program Phase 2 activities at their international meetings. How did MS PHD'S establish meaningful engagement of organizational and agency partnerships to enhance diversity within the Earth system science community? This case study reveals replicable processes and constructs to enhance the quality of meaningful collaboration and engagement

  3. Scientists must speak

    National Research Council Canada - National Science Library

    Walters, D. Eric; Walters, Gale Climenson

    2011-01-01

    .... Scientists Must Speak: Bringing Presentations to Life helps readers do just that. At some point in their careers, the majority of scientists have to stand up in front of an inquisitive audience or board and present information...

  4. Scientists feature their work in Arctic-focused short videos by FrontierScientists

    Science.gov (United States)

    Nielsen, L.; O'Connell, E.

    2013-12-01

    Whether they're guiding an unmanned aerial vehicle into a volcanic plume to sample aerosols, or documenting core drilling at a frozen lake in Siberia formed 3.6 million years ago by a massive meteorite impact, Arctic scientists are using video to enhance and expand their science and science outreach. FrontierScientists (FS), a forum for showcasing scientific work, produces and promotes radically different video blogs featuring Arctic scientists. Three- to seven- minute multimedia vlogs help deconstruct researcher's efforts and disseminate stories, communicating scientific discoveries to our increasingly connected world. The videos cover a wide range of current field work being performed in the Arctic. All videos are freely available to view or download from the FrontierScientists.com website, accessible via any internet browser or via the FrontierScientists app. FS' filming process fosters a close collaboration between the scientist and the media maker. Film creation helps scientists reach out to the public, communicate the relevance of their scientific findings, and craft a discussion. Videos keep audience tuned in; combining field footage, pictures, audio, and graphics with a verbal explanation helps illustrate ideas, allowing one video to reach people with different learning strategies. The scientists' stories are highlighted through social media platforms online. Vlogs grant scientists a voice, letting them illustrate their own work while ensuring accuracy. Each scientific topic on FS has its own project page where easy-to-navigate videos are featured prominently. Video sets focus on different aspects of a researcher's work or follow one of their projects into the field. We help the scientist slip the answers to their five most-asked questions into the casual script in layman's terms in order to free the viewers' minds to focus on new concepts. Videos are accompanied by written blogs intended to systematically demystify related facts so the scientists can focus

  5. Scientists in the public sphere: Interactions of scientists and journalists in Brazil.

    Science.gov (United States)

    Massarani, Luisa; Peters, Hans P

    2016-06-07

    In order to map scientists' views on media channels and explore their experiences interacting with journalists, the authors conducted a survey of about 1,000 Brazilian scientists. Results indicate that scientists have clear and high expectations about how journalists should act in reporting scientific information in the media, but such expectations, in their opinion, do not always seem to be met. Nonetheless, the results show that surveyed scientists rate their relation with the media positively: 67% say that having their research covered by media has a positive impact on their colleagues. One quarter of the respondents expressed that talking to the media can facilitate acquisition of more funds for research. Moreover, 38% of the total respondents believe that writing about an interesting topic for release on media channels can also facilitate research publication in a scientific journal. However, 15% of the respondents outright agree that research reported in the media beforehand can threaten acceptance for publication by a scientific journal. We hope that these results can foster some initiatives for improving awareness of the two cultures, scientists and journalists; increasing the access of journalists to Brazilian scientific endeavors; stimulating scientists to communicate with the public via social networks.

  6. College Graduation Rates for Minority Students in a Selective Technical University: Will Participation in a Summer Bridge Program Contribute to Success?

    Science.gov (United States)

    Murphy, Terrence E; Gaughan, Monica; Hume, Robert; Moore, S Gordon

    2010-03-01

    There are many approaches to solving the problem of underrepresentation of some racial and ethnic groups and women in scientific and technical disciplines. Here, the authors evaluate the association of a summer bridge program with the graduation rate of underrepresented minority (URM) students at a selective technical university. They demonstrate that this 5-week program prior to the fall of the 1st year contains elements reported as vital for successful student retention. Using multivariable survival analysis, they show that for URM students entering as fall-semester freshmen, relative to their nonparticipating peers, participation in this accelerated summer bridge program is associated with higher likelihood of graduation. The longitudinal panel data include more than 2,200 URM students.

  7. Workshop initial report: Expanding the geoscience pipeline by connecting educators with early career IODP scientists

    Science.gov (United States)

    Lewis, J. C.; Cooper, S. K.; Hovan, S. A.; Leckie, R. M.; White, L. D.

    2017-12-01

    The U.S. is facing challenges in attracting, retaining and diversifying the workforce in the geosciences. A likely contributing factor is the homogeneity of the pool of mentors/role models available both within the workforce and in the U.S. professoriate. Another probable factor is "exposure gaps" among U.S. student populations; i.e., differing access to engaging facets of science, technology, engineering and mathematics (STEM). In response, we organized an 18-day School of Rock workshop onboard the International Ocean Discovery Program (IODP) drilling vessel JOIDES Resolution during a July 2017 transit in the western Pacific. Our objectives were diversity driven, focusing on measures to broaden participation at all levels (i.e., K-12, undergraduate and beyond) in innovative ways (e.g., from place-base curriculum to longitudinal peer mentoring through extracurricular STEM communities). To accomplish this, we designed a recruiting scheme to attract pairs of participants, specifically a teacher from a diverse community and a nearby early-career scientist with an interest in IODP science. By partnering in this way we sought to foster connections that might not naturally emerge, and therein to establish new mechanisms for increased engagement, broader recruitment, enhanced support, and improved retention of students from underrepresented communities in STEM education. We report on initial workshop outcomes that include new curriculum proposals, nascent funding proposals, and innovative connections among secondary educators and early-career scientists. Survey results of our participants gauge the expected impacts of the workshop on perceptions and on plans for future actions aimed at broadening participation.

  8. Topologies of an Effective Mentoring Model: At the Intersection of Community Colleges, Underrepresented Students, and Completion

    Science.gov (United States)

    Leslie, Janet Lee

    2012-01-01

    This evidenced-based study was conducted using a systemic review of the literature to verify scholarly consensus about the effectiveness of mentoring as an intervention to impact college completion for underrepresented students in a community college setting. The study explored the impact of having access to mentors for the target population:…

  9. Alternate Reality Games as an Informal Learning Tool for Generating STEM Engagement among Underrepresented Youth: a Qualitative Evaluation of the Source

    Science.gov (United States)

    Gilliam, Melissa; Jagoda, Patrick; Fabiyi, Camille; Lyman, Phoebe; Wilson, Claire; Hill, Brandon; Bouris, Alida

    2017-06-01

    This project developed and studied The Source, an alternate reality game (ARG) designed to foster interest and knowledge related to science, technology, engineering, and math (STEM) among youth from populations underrepresented in STEM fields. ARGs are multiplayer games that engage participants across several media such as shared websites, social media, personal communications, and real-world settings to complete activities and collaborate with team members. The Source was a five-week summer program with 144 participants from Chicago aged 13 to 18 years. The Source incorporated six socio-contextual factors derived from three frameworks: Chang's (ERIC Digest, 2002) recommendations for engaging underrepresented populations in STEM careers, Lave and Wenger's (Cambridge University Press, 1991) situated learning model, and Barron's (Human Development, 49(4); 193-224, 2006) learning ecology perspective. These factors aligned with the program's aims of promoting (1) social community and peer support, (2) collaboration and teamwork, (3) real-world relevance and investigative learning, (4) mentoring and exposure to STEM professionals, (5) hands-on activities to foster transferable skill building, and (6) interface with technology. This paper presents results from 10 focus groups and 10 individual interviews conducted with a subset of the 144 youth participants who completed the game. It describes how these six factors were realized through The Source and uses them as a lens for considering how The Source functioned pedagogically. Qualitative findings describe youth's perception of The Source's potential influence on STEM interest, engagement, and identity formation. Despite limitations, study results indicate that underrepresented youth can engage in an immersive, narrative, and game-based experience as a potential mechanism for piquing and developing STEM interest and skills, particularly among underrepresented youth.

  10. Not going it alone: scientists and their work featured online at FrontierScientists

    Science.gov (United States)

    O'Connell, E. A.; Nielsen, L.

    2015-12-01

    Science outreach demystifies science, and outreach media gives scientists a voice to engage the public. Today scientists are expected to communicate effectively not only with peers but also with a braod public audience, yet training incentiives are sometimes scarce. Media creation training is even less emphasized. Editing video to modern standards takes practice; arrangling light and framing shots isn't intuitive. While great tutorials exist, learning videography, story boarding, editing and sharing techniques will always require a commitment of time and effort. Yet ideally sharing science should be low-hanging fruit. FrontierScientists, a science-sharing website funded by the NSF, seeks to let scientists display their breakthroughs and share their excitement for their work with the public by working closely yet non-exhaustively with a professional media team. A director and videographer join scientists to film first-person accounts in the field or lab. Pictures and footage with field site explanations give media creators raw material. Scientists communicate efficiently and retain editorial control over the project, but a small team of media creators craft the public aimed content. A series of engaging short videos with narrow focuses illuminate the science. Written articles support with explanations. Social media campaigns spread the word, link content, welcome comments and keep abreast of changing web requirements. All FrontierScientists featured projects are aggregated to one mobile-friendly site available online or via an App. There groupings of Arctic-focused science provide a wealth of topics and content to explore. Scientists describe why their science is important, what drew them to it, and why the average American should care. When scientists share their work it's wonderful; a team approach is a schedule-friendly way that lets them serve as science communicators without taking up a handful of extra careers.

  11. Birth of prominent scientists.

    Science.gov (United States)

    Reyes Gonzalez, Leonardo; González Brambila, Claudia N; Veloso, Francisco

    2018-01-01

    This paper analyzes the influence key scientists have in the development of a science and technology system. In particular, this work appraises the influence that star scientists have on the productivity and impact of young faculty, as well as on the likelihood that these young researchers become a leading personality in science. Our analysis confirms previous results that eminent scientist have a prime role in the development of a scientific system, especially within the context of an emerging economy like Mexico. In particular, in terms of productivity and visibility, this work shows that between 1984 and 2001 the elite group of physicists in Mexico (approximate 10% of all scientists working in physics and its related fields) published 42% of all publications, received 50% of all citations and bred 18% to 26% of new entrants. In addition our work shows that scientists that enter the system by the hand of a highly productive researcher increased their productivity on average by 28% and the ones that did it by the hand of a highly visible scientist received on average 141% more citations, vis-à-vis scholars that did not published their first manuscripts with an eminent scientist. Furthermore, scholars that enter the system by the hand of a highly productive researcher were on average 2.5 more likely to also become a star.

  12. Birth of prominent scientists

    Science.gov (United States)

    Reyes Gonzalez, Leonardo; Veloso, Francisco

    2018-01-01

    This paper analyzes the influence key scientists have in the development of a science and technology system. In particular, this work appraises the influence that star scientists have on the productivity and impact of young faculty, as well as on the likelihood that these young researchers become a leading personality in science. Our analysis confirms previous results that eminent scientist have a prime role in the development of a scientific system, especially within the context of an emerging economy like Mexico. In particular, in terms of productivity and visibility, this work shows that between 1984 and 2001 the elite group of physicists in Mexico (approximate 10% of all scientists working in physics and its related fields) published 42% of all publications, received 50% of all citations and bred 18% to 26% of new entrants. In addition our work shows that scientists that enter the system by the hand of a highly productive researcher increased their productivity on average by 28% and the ones that did it by the hand of a highly visible scientist received on average 141% more citations, vis-à-vis scholars that did not published their first manuscripts with an eminent scientist. Furthermore, scholars that enter the system by the hand of a highly productive researcher were on average 2.5 more likely to also become a star. PMID:29543855

  13. Increasing Underrepresented Students in Geophysics and Planetary Science Through the Educational Internship in Physical Sciences (EIPS)

    Science.gov (United States)

    Terrazas, S.; Olgin, J. G.; Enriquez, F.

    2017-12-01

    The number of underrepresented minorities pursuing STEM fields, specifically in the sciences, has declined in recent times. In response, the Educational Internship in Physical Sciences (EIPS), an undergraduate research internship program in collaboration with The University of Texas at El Paso (UTEP) Geological Sciences Department and El Paso Community College (EPCC), was created; providing a mentoring environment so that students can actively engage in science projects with professionals in their field so as to gain the maximum benefits in an academic setting. This past year, interns participated in planetary themed projects which exposed them to the basics of planetary geology, and worked on projects dealing with introductory digital image processing and synthesized data on two planetary bodies; Pluto and Enceladus respectively. Interns harnessed and built on what they have learned through these projects, and directly applied it in an academic environment in solar system astronomy classes at EPCC. Since the majority of interns are transfer students or alums from EPCC, they give a unique perspective and dimension of interaction; giving them an opportunity to personally guide and encourage current students there on available STEM opportunities. The goal was to have interns gain experience in planetary geology investigations and networking with professionals in the field; further promoting their interests and honing their abilities for future endeavors in planetary science. The efficacy of these activities toward getting interns to pursue STEM careers, enhance their education in planetary science, and teaching key concepts in planetary geophysics are demonstrated in this presentation.

  14. Impact of a Scientist-Teacher Collaborative Model on Students, Teachers, and Scientists

    Science.gov (United States)

    Shein, Paichi Pat; Tsai, Chun-Yen

    2015-09-01

    Collaborations between the K-12 teachers and higher education or professional scientists have become a widespread approach to science education reform. Educational funding and efforts have been invested to establish these cross-institutional collaborations in many countries. Since 2006, Taiwan initiated the High Scope Program, a high school science curriculum reform to promote scientific innovation and inquiry through an integration of advanced science and technology in high school science curricula through partnership between high school teachers and higher education scientists and science educators. This study, as part of this governmental effort, a scientist-teacher collaborative model (STCM) was constructed by 8 scientists and 4 teachers to drive an 18-week high school science curriculum reform on environmental education in a public high school. Partnerships between scientists and teachers offer opportunities to strengthen the elements of effective science teaching identified by Shulman and ultimately affect students' learning. Mixed methods research was used for this study. Qualitative methods of interviews were used to understand the impact on the teachers' and scientists' science teaching. A quasi-experimental design was used to understand the impact on students' scientific competency and scientific interest. The findings in this study suggest that the use of the STCM had a medium effect on students' scientific competency and a large effect on students' scientific individual and situational interests. In the interviews, the teachers indicated how the STCM allowed them to improve their content knowledge and pedagogical content knowledge (PCK), and the scientists indicated an increased knowledge of learners, knowledge of curriculum, and PCK.

  15. The National Technical Association: A Hallmark for Access and Success

    Science.gov (United States)

    Jearld, A., Jr.

    2017-12-01

    Minority Technical Organizations (MTO) are under-utilized as a valuable resource that can help develop the next generation of scientists and engineers. For over 90 years, the National Technical Association (NTA) (www.ntaonline.org) has been the premiere technical association for scientists, engineers, architects, technologist, educators, and technical business entrepreneurs for people of color, offering professional development, mentoring and awards recognition to technical professionals. NTA and its partners are developing a diverse workforce by emphasizing enhanced access opportunities to skills development for youth among underrepresented STEM populations. Established in 1925 by Charles Summer Duke, the first African American to receive an engineering degree from Harvard University, NTA served as the model organization for more than 40 other minority technical organizations that began forming in the 1970's. NTA has served as consultants to the US government on the status of African Americans in science and engineering. The first technical organization to establish community based technical mentoring programs targeting minorities, NTA shares information and assists institutions in identifying minority talent. Members developed the first science and engineering curriculum at Historically Black Colleges and Universities (HBCU's), and are working to produce more students with geoscience degrees to ensure greater career placement with increased minority participation in the geosciences. NTA addresses the lack of access, support, and the need for networking through the longest running annual conference for technical practitioners of color. A hallmark of NTA has been access and success through inter-organizational collaborations with communities of scholars, highly experienced professionals and students to discuss the definition of what is successful geoscience education, research, and employment.

  16. Increasing Graduate Management Education Candidate Diversity: Improving Attraction to Underrepresented Segments. GMAC® Research Report RR-16-03

    Science.gov (United States)

    White, Sabrina; Rea, Jeff

    2016-01-01

    This white paper, "Increasing Graduate Management Education Candidate Diversity: Improving Attraction to Underrepresented Segments," presents findings from a research study that GMAC commissioned from globalsojourn, a market strategy and research firm, to gain insights into the dynamics of the perceptions and interest of U.S.…

  17. A Mentor Training Program Improves Mentoring Competency for Researchers Working with Early-Career Investigators from Underrepresented Backgrounds

    Science.gov (United States)

    Johnson, Mallory O.; Gandhi, Monica

    2015-01-01

    Mentoring is increasingly recognized as a critical element in supporting successful careers in academic research in medicine and related disciplines, particularly for trainees and early career investigators from underrepresented backgrounds. Mentoring is often executed ad hoc; there are limited programs to train faculty to become more effective…

  18. Exclusion and Inclusion of Nonwhite Ethnic Minority Groups in 72 North American and European Cardiovascular Cohort Studies.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available BACKGROUND: Cohort studies are recommended for understanding ethnic disparities in cardiovascular disease. Our objective was to review the process for identifying, including, and excluding ethnic minority populations in published cardiovascular cohort studies in Europe and North America. METHODS AND FINDINGS: We found the literature using Medline (1966-2005, Embase (1980-2001, Cinahl, Web of Science, and citations from references; consultations with colleagues; Internet searches; and RB's personal files. A total of 72 studies were included, 39 starting after 1975. Decision-making on inclusion and exclusion of racial/ethnic groups, the conceptual basis of race/ethnicity, and methods of classification of racial/ethnic groups were rarely explicit. Few publications provided details on the racial/ethnic composition of the study setting or sample, and 39 gave no description. Several studies were located in small towns or in occupational settings, where ethnic minority populations are underrepresented. Studies on general populations usually had too few participants for analysis by race/ethnicity. Eight studies were explicitly on Caucasians/whites, and two excluded ethnic minority groups from the whole or part of the study on the basis of language or birthplace criteria. Ten studies were designed to compare white and nonwhite populations, while five studies focused on one nonwhite racial/ethnic group; all 15 of these were performed in the US. CONCLUSIONS: There is a shortage of information from cardiovascular cohort studies on racial/ethnic minority populations, although this has recently changed in the US. There is, particularly in Europe, an inequity resulting from a lack of research data in nonwhite populations. Urgent action is now required in Europe to address this disparity.

  19. The Impact of Scientist-Educator Collaborations: an early-career scientist's perspective

    Science.gov (United States)

    Roop, H. A.

    2017-12-01

    A decade ago, a forward-thinking faculty member exposed a group of aspiring scientists to the impacts and career benefits of working directly with K-12 students and educators. Ten years later, as one of those young scientists, it is clear that the relationships born out of this early experience can transform a researcher's impact and trajectory in science. Connections with programs like the NSF-funded PolarTREC program, the teacher-led Scientists in the Classroom effort, and through well-coordinated teacher training opportunities there are clear ways in which these partnerships can a) transform student learning; b) serve as a powerful and meaningful way to connect students to authentic research and researchers; and c) help researchers become more effective communicators by expanding their ability to connect their work to society. The distillation of science to K-12 students, with the expert eye of educators, makes scientists better at their work with tangible benefits to skills that matter in academia - securing funding, writing and communicating clearly and having high-value broader impacts. This invited abstract is submitted as part of this session's panel discussion and will explore in detail, with concrete examples, the mutual benefits of educator-scientist partnerships and how sustained engagement can transform the reach, connection and application of research science.

  20. Area Health Education Center (AHEC) programs for rural and underrepresented minority students in the Alabama Black Belt.

    Science.gov (United States)

    Patel, Ashruta; Knox, Regina J; Logan, Alicia; Summerville, Katie

    2017-01-01

    This paper evaluated the implementation West Central Alabama Area Health Education Center programs for high school students in grades 9-12 through participant-reported evaluations and feedback during the  September 1st, 2013 to August 31st, 2014 fiscal year. The programs targeted racial/ethnic minorities and/or rural individuals interested in pursuing a career as a healthcare provider in medically underserved counties of Alabama. Students participated in enrichment activities related to prospective health careers that included: successful college preparedness, knowledge about health careers, and the types of primary care health professions that are needed in underserved Alabama communities. The curriculum studied 593 (ACT preparation: n  = 172, AHEC 101: n  = 56, FAFSA: n  = 109, Health Career Exploration: n  = 159, College Career Readiness: n  = 67, Dixie Scholars NERD: n  = 30) baseline measures for the programs to evaluate effectiveness when rated by participants both quantitatively and qualitatively. Interactive activities with video incorporation, hands-on experiences, and group discussions paired with student motivation and interest in specific health career-related activities provided the highest program ratings. It is important to use a variety of successful program strategies when forming healthcare workforce development interventions. Student evaluations can help adapt methods for future program implementation to ultimately achieve strategies for health professional recruitment, training, and retention in areas that lack access to quality healthcare.

  1. Scientist impact factor (SIF): a new metric for improving scientists' evaluation?

    Science.gov (United States)

    Lippi, Giuseppe; Mattiuzzi, Camilla

    2017-08-01

    The publication of scientific research is the mainstay for knowledge dissemination, but is also an essential criterion of scientists' evaluation for recruiting funds and career progression. Although the most widespread approach for evaluating scientists is currently based on the H-index, the total impact factor (IF) and the overall number of citations, these metrics are plagued by some well-known drawbacks. Therefore, with the aim to improve the process of scientists' evaluation, we developed a new and potentially useful indicator of recent scientific output. The new metric scientist impact factor (SIF) was calculated as all citations of articles published in the two years following the publication year of the articles, divided by the overall number of articles published in that year. The metrics was then tested by analyzing data of the 40 top scientists of the local University. No correlation was found between SIF and H-index (r=0.15; P=0.367) or 2 years H-index (r=-0.01; P=0.933), whereas the H-index and 2 years H-index values were found to be highly correlated (r=0.57; Particles published in one year and the total number of citations to these articles in the two following years (r=0.62; Pscientists, wherein the SIF reflects the scientific output over the past two years thus increasing their chances to apply to and obtain competitive funding.

  2. University of New Mexico Undergraduate Breast Cancer Training Program: Pathway to Research Careers

    National Research Council Canada - National Science Library

    Griffith, Jeffrey

    2004-01-01

    We have established a three-phase training program to motivate talented undergraduate students, especially students from under-represented Southwestern minorIties, to pursue careers in breast cancer research...

  3. Robust Scientists

    DEFF Research Database (Denmark)

    Gorm Hansen, Birgitte

    their core i nterests, 2) developing a selfsupply of industry interests by becoming entrepreneurs and thus creating their own compliant industry partner and 3) balancing resources within a larger collective of researchers, thus countering changes in the influx of funding caused by shifts in political...... knowledge", Danish research policy seems to have helped develop politically and economically "robust scientists". Scientific robustness is acquired by way of three strategies: 1) tasting and discriminating between resources so as to avoid funding that erodes academic profiles and push scientists away from...

  4. Long Term Benefits for Women in a Science, Technology, Engineering, and Mathematics Living-Learning Community

    Science.gov (United States)

    Maltby, Jennifer L.; Brooks, Christopher; Horton, Marjorie; Morgan, Helen

    2016-01-01

    Science, technology, engineering and math (STEM) degrees provide opportunities for economic mobility. Yet women, underrepresented minority (URM), and first-generation college students remain disproportionately underrepresented in STEM fields. This study examined the effectiveness of a living-learning community (LLC) for URM and first-generation…

  5. Women are underrepresented in fields where success is believed to require brilliance.

    Science.gov (United States)

    Meyer, Meredith; Cimpian, Andrei; Leslie, Sarah-Jane

    2015-01-01

    Women's underrepresentation in science, technology, engineering, and mathematics (STEM) fields is a prominent concern in our society and many others. Closer inspection of this phenomenon reveals a more nuanced picture, however, with women achieving parity with men at the Ph.D. level in certain STEM fields, while also being underrepresented in some non-STEM fields. It is important to consider and provide an account of this field-by-field variability. The field-specific ability beliefs (FAB) hypothesis aims to provide such an account, proposing that women are likely to be underrepresented in fields thought to require raw intellectual talent-a sort of talent that women are stereotyped to possess less of than men. In two studies, we provide evidence for the FAB hypothesis, demonstrating that the academic fields believed by laypeople to require brilliance are also the fields with lower female representation. We also found that the FABs of participants with college-level exposure to a field were more predictive of its female representation than those of participants without college exposure, presumably because the former beliefs mirror more closely those of the field's practitioners (the direct "gatekeepers"). Moreover, the FABs of participants with college exposure to a field predicted the magnitude of the field's gender gap above and beyond their beliefs about the level of mathematical and verbal skills required. Finally, we found that beliefs about the importance of brilliance to success in a field may predict its female representation in part by fostering the impression that the field demands solitary work and competition with others. These results suggest new solutions for enhancing diversity within STEM and across the academic spectrum.

  6. Frontier Scientists use Modern Media

    Science.gov (United States)

    O'connell, E. A.

    2013-12-01

    Engaging Americans and the international community in the excitement and value of Alaskan Arctic discovery is the goal of Frontier Scientists. With a changing climate, resources of polar regions are being eyed by many nations. Frontier Scientists brings the stories of field scientists in the Far North to the public. With a website, an app, short videos, and social media channels; FS is a model for making connections between the public and field scientists. FS will demonstrate how academia, web content, online communities, evaluation and marketing are brought together in a 21st century multi-media platform, how scientists can maintain their integrity while engaging in outreach, and how new forms of media such as short videos can entertain as well as inspire.

  7. Minor actinide transmutation using minor actinide burner reactors

    International Nuclear Information System (INIS)

    Mukaiyama, T.; Yoshida, H.; Gunji, Y.

    1991-01-01

    The concept of minor actinide burner reactor is proposed as an efficient way to transmute long-lived minor actinides in order to ease the burden of high-level radioactive waste disposal problem. Conceptual design study of minor actinide burner reactors was performed to obtain a reactor model with very hard neutron spectrum and very high neutron flux in which minor actinides can be fissioned efficiently. Two models of burner reactors were obtained, one with metal fuel core and the other with particle fuel core. Minor actinide transmutation by the actinide burner reactors is compared with that by power reactors from both the reactor physics and fuel cycle facilities view point. (author)

  8. Enhancing Diversity in Undergraduate Science: Self-Efficacy Drives Performance Gains with Active Learning

    Science.gov (United States)

    Ballen, Cissy J.; Wieman, Carl; Salehi, Shima; Searle, Jeremy B.; Zamudio, Kelly R.

    2017-01-01

    Efforts to retain underrepresented minority (URM) students in science, technology, engineering, and mathematics (STEM) have shown only limited success in higher education, due in part to a persistent achievement gap between students from historically underrepresented and well-represented backgrounds. To test the hypothesis that active learning…

  9. Leveling the field: The role of training, safety programs, and knowledge management systems in fostering inclusive field settings

    Science.gov (United States)

    Starkweather, S.; Crain, R.; Derry, K. R.

    2017-12-01

    Knowledge is empowering in all settings, but plays an elevated role in empowering under-represented groups in field research. Field research, particularly polar field research, has deep roots in masculinized and colonial traditions, which can lead to high barriers for women and minorities (e.g. Carey et al., 2016). While recruitment of underrepresented groups into polar field research has improved through the efforts of organizations like the Association of Polar Early Career Scientists (APECS), the experiences and successes of these participants is often contingent on the availability of specialized training opportunities or the quality of explicitly documented information about how to survive Arctic conditions or how to establish successful measurement protocols in harsh environments. In Arctic field research, knowledge is often not explicitly documented or conveyed, but learned through "experience" or informally through ad hoc advice. The advancement of field training programs and knowledge management systems suggest two means for unleashing more explicit forms of knowledge about field work. Examples will be presented along with a case for how they level the playing field and improve the experience of field work for all participants.

  10. How Scientists Can Become Entrepreneurs.

    Science.gov (United States)

    Thon, Jonathan N; Karlsson, Sven

    2017-05-01

    Translating basic research discoveries through entrepreneurship must be scientist driven and institutionally supported to be successful (not the other way around). Here, we describe why scientists should engage in entrepreneurship, where institutional support for scientist-founders falls short, and how these challenges can be overcome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. New Media and Models for Engaging Under-Represented Students in Science

    Science.gov (United States)

    Mayhew, Laurel M.; Finkelstein, Noah D.

    2008-10-01

    We describe the University of Colorado Partnerships for Informal Science Education in the Community (PISEC) program in which university students participate in classroom and after school science activities with local precollege children. Across several different formal and informal educational environments, we use new technological tools, such as stop action motion (SAM) movies [1] to engage children so that they may develop an understanding of science through play and "show and tell". This approach provides a complementary avenue for reaching children who are otherwise underrepresented in science and under-supported in more formal educational settings. We present the model of university community partnership and demonstrate its utility in a case study involving an African American third grade student learning about velocity and acceleration.

  12. Young Scientist Wetenschapskalender 2018

    NARCIS (Netherlands)

    van Dalen-Oskam, K.H.; van Zundert, Joris J.; Koolen, Corina

    2017-01-01

    Bijdragen scheurkalender Young Scientist Wetenschapskalender 2018. Karina van Dalen-Oskam, Belangrijk woord: Wat is het belangrijkste woord in de Nederlandse taal? In: Young Scientist Wetenschapskalender 2018, 1 september Corina Koolen, Op naar het boekenbal: Hoe wordt je beroemd als schrijver? In:

  13. The Celebrity Scientists

    OpenAIRE

    Fahy, Declan

    2010-01-01

    This collective case study examines how four contemporary British scientists and popular science writers, Stephen Hawking, Richard Dawkins, Susan Greenfield and James Lovelock, are portrayed in mass media as celebrities. It finds that the scientists’ private and public lives merge in their representations, their images commodified and marketed by the cultural industries, their mediated personae embodying abstract ideas of truth and reason. The celebrity scientists base their authority on thei...

  14. Building Mobile Apps for Underrepresented Mental Health care Consumers: A Grounded Theory Approach.

    Science.gov (United States)

    Leung, Ricky; Hastings, Julia F; Keefe, Robert H; Brownstein-Evans, Carol; Chan, Keith T; Mullick, Rosemary

    2016-01-01

    Cell phone mobile application ("app") use has risen dramatically within the past several years. Many individuals access apps to address mental health issues. Unlike individuals from privileged backgrounds, individuals from oppressed backgrounds may rely on apps rather than costly mental health treatment. To date, very little research has been published evaluating mental health apps' effectiveness. This paper focuses on three methods through which grounded theory can facilitate app development and evaluation for people underrepresented in mental health care. Recommendations are made to advance mobile app technology that will help clinicians provide effective treatment, and consumers to realize positive treatment outcomes.

  15. Building Mobile Apps for Underrepresented Mental Health care Consumers: A Grounded Theory Approach

    Science.gov (United States)

    Leung, Ricky; Hastings, Julia F.; Keefe, Robert H.; Brownstein-Evans, Carol; Chan, Keith T.; Mullick, Rosemary

    2017-01-01

    Cell phone mobile application (“app”) use has risen dramatically within the past several years. Many individuals access apps to address mental health issues. Unlike individuals from privileged backgrounds, individuals from oppressed backgrounds may rely on apps rather than costly mental health treatment. To date, very little research has been published evaluating mental health apps’ effectiveness. This paper focuses on three methods through which grounded theory can facilitate app development and evaluation for people underrepresented in mental health care. Recommendations are made to advance mobile app technology that will help clinicians provide effective treatment, and consumers to realize positive treatment outcomes. PMID:29056878

  16. Women Are Underrepresented in Fields Where Success is Believed to Require Brilliance

    Directory of Open Access Journals (Sweden)

    Meredith eMeyer

    2015-03-01

    Full Text Available Women’s underrepresentation in science, technology, engineering, and mathematics (STEM fields is a prominent concern in our society and many others. Closer inspection of this phenomenon reveals a more nuanced picture, however, with women achieving parity with men at the PhD level in certain STEM fields, while also being underrepresented in some non-STEM fields. It is important to consider and provide an account of this field-by-field variability. The Field-specific Ability Beliefs (FAB hypothesis aims to provide such an account, proposing that women are likely to be underrepresented in fields thought to require raw intellectual talent—a sort of talent that women are stereotyped to possess less of than men. In two studies, we provide evidence for the FAB hypothesis, demonstrating that the academic fields believed by laypeople to require brilliance are also the fields with lower female representation. We also found that the field-specific ability beliefs of participants with college-level exposure to a field were more predictive of its female representation than those of participants without college exposure, presumably because the former beliefs mirror more closely those of the field’s practitioners (the direct gatekeepers. Moreover, the field-specific ability beliefs of participants with college exposure to a field predicted the magnitude of the field’s gender gap above and beyond their beliefs about the level of mathematical and verbal skills required. Finally, we found that beliefs about the importance of brilliance to success in a field may predict its female representation in part by fostering the impression that the field demands solitary work and competition with others. These results suggest new solutions for enhancing diversity within STEM and across the academic spectrum.

  17. Preparing Planetary Scientists to Engage Audiences

    Science.gov (United States)

    Shupla, C. B.; Shaner, A. J.; Hackler, A. S.

    2017-12-01

    While some planetary scientists have extensive experience sharing their science with audiences, many can benefit from guidance on giving presentations or conducting activities for students. The Lunar and Planetary Institute (LPI) provides resources and trainings to support planetary scientists in their communication efforts. Trainings have included sessions for students and early career scientists at conferences (providing opportunities for them to practice their delivery and receive feedback for their poster and oral presentations), as well as separate communication workshops on how to engage various audiences. LPI has similarly begun coaching planetary scientists to help them prepare their public presentations. LPI is also helping to connect different audiences and their requests for speakers to planetary scientists. Scientists have been key contributors in developing and conducting activities in LPI education and public events. LPI is currently working with scientists to identify and redesign short planetary science activities for scientists to use with different audiences. The activities will be tied to fundamental planetary science concepts, with basic materials and simple modifications to engage different ages and audience size and background. Input from the planetary science community on these efforts is welcome. Current results and resources, as well as future opportunities will be shared.

  18. On the Gender-Science Stereotypes held by Scientists: Explicit accord with Gender-Ratios, Implicit accord with Scientific Identity

    OpenAIRE

    Frederick L Smyth; Brian A. Nosek; Brian A. Nosek

    2015-01-01

    Women’s representation in science has changed substantially, but unevenly, over the past 40 years. In health and biological sciences, for example, women’s representation among U.S. scientists is now on par with or greater than men’s, while in physical sciences and engineering they remain a clear minority. We investigated whether variation in proportions of women in scientific disciplines is related to differing levels of male-favoring explicit or implicit stereotypes held by students and sc...

  19. An Interdisciplinary Collaboration between Computer Engineering and Mathematics/Bilingual Education to Develop a Curriculum for Underrepresented Middle School Students

    Science.gov (United States)

    Celedón-Pattichis, Sylvia; LópezLeiva, Carlos Alfonso; Pattichis, Marios S.; Llamocca, Daniel

    2013-01-01

    There is a strong need in the United States to increase the number of students from underrepresented groups who pursue careers in Science, Technology, Engineering, and Mathematics. Drawing from sociocultural theory, we present approaches to establishing collaborations between computer engineering and mathematics/bilingual education faculty to…

  20. Minority Language Rights.

    Science.gov (United States)

    O Riagain, Padraig; Shuibhne, Niamh Nic

    1997-01-01

    A survey of literature since 1990 on minority languages and language rights focuses on five issues: definition of minorities; individual vs. collective rights; legal bases for minority linguistic rights; applications and interpretations of minority language rights; and assessments of the impact of minority rights legislation. A nine-item annotated…

  1. Making Lists, Enlisting Scientists

    DEFF Research Database (Denmark)

    Jensen, Casper Bruun

    2011-01-01

    was the indicator conceptualised? How were notions of scientific knowledge and collaboration inscribed and challenged in the process? The analysis shows a two-sided process in which scientists become engaged in making lists but which is simultaneously a way for research policy to enlist scientists. In conclusion...

  2. Cal-Bridge and CAMPARE: Engaging Underrepresented Students in Physics and Astronomy

    Science.gov (United States)

    Rudolph, Alexander L.; Smecker-Hane, Tammy A.; Cal-Bridge Team; CAMPARE Team

    2018-06-01

    We describe two programs, Cal-Bridge and CAMPARE, with the common mission of increasing participation of groups traditionally underrepresented in astronomy, through summer research opportunities, in the case of CAMPARE, scholarships in the case of Cal-Bridge, and significant mentoring in both programs, creating a national impact on their numbers successfully pursuing a PhD in the field. In 9 years, the CAMPARE program has sent 150 students, >80% from underrepresented groups, to conduct summer research at one of 14 major research institutions throughout the country. Of the CAMPARE scholars who have graduated with a Bachelor’s degree, almost two-thirds (65%) have completed or are pursuing graduate education in physics, astronomy, or a related field, at institutions including UCLA, UC Riverside, UC Irvine, UC Santa Barbara, USC, Stanford, Univ. of Arizona, Univ. of Washington, Univ. of Rochester, Michigan State Univ., Georgia Tech, Georgia State Univ., Kent State, Indiana Univ., Univ. of Oregon, Syracuse Univ., Montana State Univ., and the Fisk- Vanderbilt Master’s-to-PhD program. Now in its fourth year, the Cal-Bridge program is a CSU-UC Bridge program comprised of physics and astronomy faculty from 9 University of California (UC), 15 California State University (CSU), and more than 30 California Community College (CCC) campuses throughout California. In the first four years, 34 Cal-Bridge Scholars have been selected, including 22 Hispanic, 3 African-American and 13 women students, 10 of whom are from URM groups. Thirty (30) of the 34 Cal-Bridge Scholars are first generation college students. In the last three years, 17 of 21 Cal-Bridge Scholars have begun or been accepted PhD programs in physics or astronomy at top PhD programs nationally. Three (3) of these scholars have won NSF Graduate Research Fellowships; one more received an Honorable Mention. Once selected, Cal-Bridge Scholars benefit from substantial financial support, intensive, joint mentoring by CSU

  3. Promoting careers in health care for urban youth: What students, parents and educators can teach us.

    Science.gov (United States)

    Holden, Lynne; Rumala, Bernice; Carson, Patricia; Siegel, Elliot

    2014-01-01

    There are many obstacles that urban youth experience in pursuing health careers, but the benefits of diversifying the classroom and workforce are clear. This is especially true today as educators and policymakers seek to enhance underrepresented minority students' access to health careers, and also achieve the health workforce needed to support the Affordable Care Act. The creation of student pipeline programs began more than 40 years ago, but success has been equivocal. In 2008, Mentoring in Medicine (MIM) conducted a research project to identify how students learn about health careers; develop strategies for an integrated, experiential learning program that encourages underrepresented minority students to pursue careers in health; and translate these into best practices for supporting students through their entire preparatory journey. Six focus groups were conducted with educators, students, and their parents. The inclusion of parents was unusual in studies of this kind. The outcome yielded important and surprising differences between student and parent knowledge, attitudes and beliefs. They informed our understanding of the factors that motivate and deter underrepresented minority students to pursue careers in health care. Specific programmatic strategies emerged that found their place in the subsequent development of new MIM programming that falls into the following three categories: community-based, school-based and Internet based. Best practices derived from these MIM programs are summarized and offered for consideration by other health career education program developers targeting underrepresented minority students, particularly those located in urban settings.

  4. Earth2Class Overview: An Innovative Program Linking Classroom Educators and Research Scientists

    Science.gov (United States)

    Passow, M.; Iturrino, G. J.; Baggio, F. D.; Assumpcao, C. M.

    2005-12-01

    The Earth2Class (E2C) workshops, held at the Lamont-Doherty Earth Observatory (LDEO), provide an effective model for improving knowledge, teaching, and technology skills of middle and high school science educators through ongoing interactions with research scientists and educational technology. With support from an NSF GeoEd grant, E2C has developed monthly workshops, web-based resources, and summer institutes in which classroom teachers and research scientists have produced exemplar curriculum materials about a wide variety of cutting-edge geoscience investigations suitable for dissemination to teachers and students. Some of the goals of this program are focused to address questions such as: (1) What aspects of the E2C format and educational technology most effectively connect research discoveries with classroom teachers and their students? (2) What benefits result through interactions among teachers from highly diverse districts and backgrounds with research scientists, and what benefits do the scientists gain from participation? (3) How can the E2C format serve as a model for other research institution-school district partnerships as a mechanism for broader dissemination of scientific discoveries? E2C workshops have linked LDEO scientists from diverse research specialties-seismology, marine geology, paleoclimatology, ocean drilling, dendrochronology, remote sensing, impact craters, and others-with teachers from schools in the New York metropolitan area. Through the workshops, we have trained teachers to enhance content knowledge in the Earth Sciences and develop skills to incorporate new technologies. We have made a special effort to increase the teaching competency of K-12 Earth Sciences educators serving in schools with high numbers of students from underrepresented groups, thereby providing greater role models to attract students into science and math careers. E2C sponsored Earth Science Teachers Conferences, bringing together educators from New York and New

  5. Multiple Minority Stress and LGBT Community Resilience among Sexual Minority Men.

    Science.gov (United States)

    McConnell, Elizabeth A; Janulis, Patrick; Phillips, Gregory; Truong, Roky; Birkett, Michelle

    2018-03-01

    Minority stress theory has widespread research support in explaining health disparities experienced by sexual and gender minorities. However, less is known about how minority stress impacts multiply marginalized groups, such as lesbian, gay, bisexual, and transgender people of color (LGBT POC). Also, although research has documented resilience in the face of minority stress at the individual level, research is needed that examines macro-level processes such as community resilience (Meyer, 2015). In the current study, we integrate minority stress theory and intersectionality theory to examine multiple minority stress (i.e., racial/ethnic stigma in LGBT spaces and LGBT stigma in one's neighborhood) and community resilience (i.e., connection to LGBT community) among sexual minority men of different racial/ethnic groups who use a geosocial networking application for meeting sexual partners. Results showed that Black sexual minority men reported the highest levels of racial/ethnic stigma in LGBT spaces and White sexual minority men reported the lowest levels, with Asian and Hispanic/Latino men falling in between. Consistent with minority stress theory, racial/ethnic stigma in LGBT spaces and LGBT stigma in one's neighborhood were associated with greater stress for sexual minority men of all racial/ethnic groups. However, connection to LGBT community played more central role in mediating the relationship between stigma and stress for White than POC sexual minority men. Results suggest that minority stress and community resilience processes may differ for White and POC sexual minority men. Potential processes driving these differences and implications for minority stress theory are discussed.

  6. Mentoring Through Research as a Catalyst for the Success of Under-represented Minority Students in the Geosciences

    Science.gov (United States)

    Marsaglia, K.; Simila, G.; Pedone, V.; Yule, D.

    2003-12-01

    The Catalyst Program of the Department of Geological Sciences at California State University Northridge has been developed by four faculty members who were the recipients of a three-year award (2002-2005) from the National Science Foundation. The goal of the program is to increase minority participation and success in the geosciences. The program seeks to enrich the educational experience by introducing students at all levels (individual and team) to research in the geosciences (such as data analysis for earthquake hazards for 1994 Northridge event, paleoseismology of San Andreas fault, Waipaoa, New Zealand sedimentary system and provenance studies, and the Barstow formation geochronology and geochemistry), and to decrease obstacles that affect academic success. Both these goals are largely achieved by the formation of integrated high school, undergraduate, and graduate research groups, which also provide fulfilling and successful peer mentorship. New participants first complete a specially designed course that introduces them to peer-mentoring, collaborative learning (think-pair share), and research on geological data sets. Students of all experience levels then become members of research teams and conduct four mini-projects and associated poster presentations, which deepens academic and research skills as well as peer-mentor relationships. This initial research experience has been very beneficial for the student's degree requirements of a senior research project and oral presentation. Evaluation strategies include the student research course presentations, summer field projects, and external review of student experiences. The Catalyst Program provides significant financial support to participants to allow them to focus their time on their education. A component of peer-tutoring has been implemented for promoting additional student success. The program has been highly successful in its two year development. To date, undergraduates and graduate students have

  7. Developing science talent in minority students: Perspectives of past participants in a summer mentorship program

    Science.gov (United States)

    Schimmel, Dale Bishop

    The underrepresentation of women and ethnic minorities in science has been well documented. Research efforts are directed toward understanding the high attrition rate in science course selection as students advance through high school and college. The attrition rate is especially high for females and minority students. Since 1980 the Department of Biological Sciences at the University of Connecticut has conducted a "Minority Research Apprentice Program" to attract students by expanding their knowledge of research and technology. The goal of the program is to encourage students from underrepresented groups to eventually select careers in the field of science. This qualitative study of past participants explored factors that related to students' decisions to pursue or not to pursue careers in science. Descriptive statistics and qualitative data collected from surveys and interviews of twenty former apprentices, along with comparative case studies of four selected individuals, revealed the educational interventions, personal traits and social supports that helped guide students' eventual career choice decisions. Participation in gifted programs, advanced placement courses, and talented high school science teachers all played a critical role in assisting these individuals in developing their potential interest. Qualitative data revealed the role of the Minority Research Apprentice Program played in helping talented individuals gain an appreciation of the nature of scientific research through apprenticeship and involvement with authentic projects. For all those involved, it assisted them in clarifying their eventual career choices. Individuals identified the lack of challenge of the introductory science courses, the commitment science requires, and the nature of laboratory work as reasons for leaving the field. Females who left science switched majors more frequently than males. Qualitative data revealed the dilemma that multipotentiality and lack of career counseling

  8. Mentoring Interventions for Underrepresented Scholars in Biomedical and Behavioral Sciences: Effects on Quality of Mentoring Interactions and Discussions

    Science.gov (United States)

    Lewis, Vivian; Martina, Camille A.; McDermott, Michael P.; Chaudron, Linda; Trief, Paula M.; LaGuardia, Jennifer G.; Sharp, Daryl; Goodman, Steven R.; Morse, Gene D.; Ryan, Richard M.

    2017-01-01

    Mentors rarely receive education about the unique needs of underrepresented scholars in the biomedical and behavioral sciences. We hypothesized that mentor-training and peer-mentoring interventions for these scholars would enrich the perceived quality and breadth of discussions between mentor-protégé dyads (i.e., mentor-protégé pairs). Our…

  9. Attitudes toward Science (ATS): An Examination of Scientists' and Native Americans' Cultural Values and ATS and Their Effect on Action Priorities

    Science.gov (United States)

    Murry, Adam T.

    Science has been identified as a crucial element in the competitiveness and sustainability of America in the global economy. American citizens, especially minority populations, however, are not pursuing science education or careers. Past research has implicated ‘attitudes toward science’ as an important factor in the public’s participation in science. I applied Ajzen’s (1991) Theory of Planned Behavior to attitudes toward science to predict science-related sustainability-action intentions and evaluated whether scientists and Native Americans differed in their general attitudes toward science, cultural values, and specific beliefs about science. Analyses revealed that positive attitude toward science and the cultural value of individualism predicted intentions to engage with science-related sustainability actions. Unexpectedly, scientists and Native Americans did not differ in their cultural values or positive attitude toward science. However, Natives Americans held significantly more negative attitude toward science than scientists. Implications for science education and attitudes towards science theory and application are discussed.

  10. Bioremediation Education Science and Technology (BEST) Program Annual Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2000-07-01

    The Bioremediation, Education, Science and Technology (BEST) partnership provides a sustainable and contemporary approach to developing new bioremedial technologies for US Department of Defense (DoD) priority contaminants while increasing the representation of underrepresented minorities and women in an exciting new biotechnical field. This comprehensive and innovative bioremediation education program provides under-represented groups with a cross-disciplinary bioremediation cirruculum and financial support, coupled with relevant training experiences at advanced research laboratories and field sites. These programs are designed to provide a stream of highly trained minority and women professionals to meet national environmental needs.

  11. Bioremediation Education Science and Technology (BEST) Program Annual Report 1999; TOPICAL

    International Nuclear Information System (INIS)

    Hazen, Terry C.

    2000-01-01

    The Bioremediation, Education, Science and Technology (BEST) partnership provides a sustainable and contemporary approach to developing new bioremedial technologies for US Department of Defense (DoD) priority contaminants while increasing the representation of underrepresented minorities and women in an exciting new biotechnical field. This comprehensive and innovative bioremediation education program provides under-represented groups with a cross-disciplinary bioremediation cirruculum and financial support, coupled with relevant training experiences at advanced research laboratories and field sites. These programs are designed to provide a stream of highly trained minority and women professionals to meet national environmental needs

  12. Code of conduct for scientists (abstract)

    International Nuclear Information System (INIS)

    Khurshid, S.J.

    2011-01-01

    The emergence of advanced technologies in the last three decades and extraordinary progress in our knowledge on the basic Physical, Chemical and Biological properties of living matter has offered tremendous benefits to human beings but simultaneously highlighted the need of higher awareness and responsibility by the scientists of 21 century. Scientist is not born with ethics, nor science is ethically neutral, but there are ethical dimensions to scientific work. There is need to evolve an appropriate Code of Conduct for scientist particularly working in every field of Science. However, while considering the contents, promulgation and adaptation of Codes of Conduct for Scientists, a balance is needed to be maintained between freedom of scientists and at the same time some binding on them in the form of Code of Conducts. The use of good and safe laboratory procedures, whether, codified by law or by common practice must also be considered as part of the moral duties of scientists. It is internationally agreed that a general Code of Conduct can't be formulated for all the scientists universally, but there should be a set of 'building blocks' aimed at establishing the Code of Conduct for Scientists either as individual researcher or responsible for direction, evaluation, monitoring of scientific activities at the institutional or organizational level. (author)

  13. Scientist Spotlight Homework Assignments Shift Students’ Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class

    Science.gov (United States)

    Schinske, Jeffrey N.; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments (“Scientist Spotlights”) that featured counterstereotypical examples of scientists in an introductory biology class at a diverse community college. Scientist Spotlights additionally served as tools for content coverage, as scientists were selected to match topics covered each week. We analyzed beginning- and end-of-course essays completed by students during each of five courses with Scientist Spotlights and two courses with equivalent homework assignments that lacked connections to the stories of diverse scientists. Students completing Scientist Spotlights shifted toward counterstereotypical descriptions of scientists and conveyed an enhanced ability to personally relate to scientists following the intervention. Longitudinal data suggested these shifts were maintained 6 months after the completion of the course. Analyses further uncovered correlations between these shifts, interest in science, and course grades. As Scientist Spotlights require very little class time and complement existing curricula, they represent a promising tool for enhancing science identity, shifting stereotypes, and connecting content to issues of equity and diversity in a broad range of STEM classrooms. PMID:27587856

  14. Marketing for scientists

    CERN Document Server

    Kuchner, Marc J

    2012-01-01

    It's a tough time to be a scientist: universities are shutting science departments, funding organisations are facing flat budgets, and many newspapers have dropped their science sections altogether. But according to Marc Kuchner, this anti-science climate doesn't have to equal a career death knell - it just means scientists have to be savvier about promoting their work and themselves. In "Marketing for Scientists", he provides clear, detailed advice about how to land a good job, win funding, and shape the public debate. As an astrophysicist at NASA, Kuchner knows that "marketing" can seem like a superficial distraction, whether your daily work is searching for new planets or seeking a cure for cancer. In fact, he argues, it's a critical component of the modern scientific endeavour, not only advancing personal careers but also society's knowledge. Kuchner approaches marketing as a science in itself. He translates theories about human interaction and sense of self into methods for building relationships - one o...

  15. Effect of two Howard Hughes Medical Institute research training programs for medical students on the likelihood of pursuing research careers.

    Science.gov (United States)

    Fang, Di; Meyer, Roger E

    2003-12-01

    To assess the effect of Howard Hughes Medical Institute's (HHMI) two one-year research training programs for medical students on the awardees' research careers. Awardees of the HHMI Cloister Program who graduated between 1987 and 1995 and awardees of the HHMI Medical Fellows Program who graduated between 1991 and 1995 were compared with unsuccessful applicants to the programs and MD-PhD students who graduated during the same periods. Logistic regression analyses were conducted to assess research career outcomes while controlling for academic and demographic variables that could affect selection to the programs. Participation in both HHMI programs increased the likelihood of receiving National Institutes of Health postdoctoral support. Participation in the Cloister Program also increased the likelihood of receiving a faculty appointment with research responsibility at a medical school. In addition, awardees of the Medical Fellows Program were not significantly less likely than Medical Scientist Training Program (MSTP) and non-MSTP MD-PhD program participants to receive a National Institutes of Health postdoctoral award, and awardees of the Cloister Program were not significantly less likely than non-MSTP MD-PhD students to receive a faculty appointment with research responsibility. Women and underrepresented minority students were proportionally represented among awardees of the two HHMI programs whereas they were relatively underrepresented in MD-PhD programs. The one-year intensive research training supported by the HHMI training programs appears to provide an effective imprinting experience on medical students' research careers and to be an attractive strategy for training physician-scientists.

  16. Results from a Pilot REU Program: Exploring the Cosmos Using Sloan Digital Sky Survey Data

    Science.gov (United States)

    Chanover, Nancy J.; Holley-Bockelmann, Kelly; Holtzman, Jon A.

    2017-01-01

    In the Summer of 2016 we conducted a 10-week pilot Research Experience for Undergraduates (REU) program aimed at increasing the participation of underrepresented minority undergraduate students in research using data from the Sloan Digital Sky Survey (SDSS). This program utilized a distributed REU model, whereby students worked with SDSS scientists on exciting research projects while serving as members of a geographically distributed research community. The format of this REU is similar to that of the SDSS collaboration itself, and since this collaboration structure has become a model for the next generation of large scale astronomical surveys, the students participating in the SDSS REU received early exposure and familiarity with this approach to collaborative scientific research. The SDSS REU also provided the participants with a low-risk opportunity to audition for graduate schools and to explore opportunities afforded by a career as a research scientist. The six student participants were placed at SDSS REU host sites at the Center for Astrophysics at Harvard University, University of Wisconsin-Madison, Vanderbilt University, and the University of Portsmouth. Their research projects covered a broad range of topics related to stars, galaxies, and quasars, all making use of SDSS data. At the start of the summer the REU students participated in a week-long Boot Camp at NMSU, which served as a program orientation, an introduction to skills relevant to their research projects, and an opportunity for team-building and cohort-forming. To foster a sense of community among our distributed students throughout the summer, we conducted a weekly online meeting for all students in the program via virtual meeting tools. These virtual group meetings served two purposes: as a weekly check-in to find out how their projects were progressing, and to conduct professional development seminars on topics of interest and relevance to the REU participants. We discuss the outcomes of this

  17. Exposing Underrepresented Groups to Climate Change and Atmospheric Science Through Service Learning and Community-Based Participatory Research

    Science.gov (United States)

    Padgett, D.

    2016-12-01

    Tennessee State University (TSU) is among seven partner institutions in the NASA-funded project "Mission Earth: Fusing Global Learning and Observations to Benefit the Environment (GLOBE) with NASA Assets to Build Systemic Innovation in STEM Education." The primary objective at the TSU site is to expose high school students from racial and ethnic groups traditionally underrepresented in STEM to atmospheric science and physical systems associated with climate change. Currently, undergraduate students enrolled in TSU's urban and physical courses develop lessons for high school students focused upon the analysis of global warming phenomena and related extreme weather events. The GLOBE Atmosphere Protocols are emphasized in exercises focused upon the urban heat island (UHI) phenomenon and air quality measurements. Pre-service teachers at TSU, and in-service teachers at four local high schools are being certified in the Atmosphere Protocols. Precipitation, ambient air temperature, surface temperature and other data are collected at the schools through a collaborative learning effort among the high school students, TSU undergraduates, and high school teachers. Data collected and recorded manually in the field are compared to each school's automated Weatherbug station measurements. Students and teachers engage in analysis of NASA imagery as part of the GLOBE Surface Temperature Protocol. At off-campus locations, US Clean Air Act (CAA) criteria air pollutant and Toxic Release Inventory (TRI) air pollutant sampling is being conducted in community-based participatory research (CBPR) format. Students partner with non-profit environmental organizations. Data collected using low-cost air sampling devices is being compared with readings from government air monitors. The GLOBE Aerosols Protocol is used in comparative assessments with air sampling results. Project deliverables include four new GLOBE schools, the enrollment of which is nearly entirely comprised of students

  18. Scientists Like Me: Faces of Discovery

    Science.gov (United States)

    Enevoldsen, A. A. G.; Culp, S.; Trinh, A.

    2010-08-01

    During the International Year of Astronomy, Pacific Science Center is hosting a photography exhibit: Scientists Like Me: Faces of Discovery. The exhibit contains photographs of real, current astronomers and scientists working in astronomy and aerospace-related fields from many races, genders, cultural affiliations and walks of life. The photographs were taken and posters designed by Alyssa Trinh and Sarah Culp, high school interns in Discovery Corps, Pacific Science Center's youth development program. The direct contact between the scientists and the interns helps the intended audience of teachers and families personally connect with scientists. The finished posters from this exhibit are available online (http://pacificsciencecenter.org/scientists) for teachers to use in their classrooms, in addition to being displayed at Pacific Science Center and becoming part of Pacific Science Center's permanent art rotation. The objective of this project was to fill a need for representative photographs of scientists in the world community. It also met two of the goals of International Year of Astronomy: to provide a modern image of science and scientists, and to improve the gender-balanced representation of scientists at all levels and promote greater involvement by all people in scientific and engineering careers. We would like to build on the success of this project and create an annual summer internship, with different interns, focusing on creating posters for different fields of science.

  19. Career Coaches as a Source of Vicarious Learning for Racial and Ethnic Minority PhD Students in the Biomedical Sciences: A Qualitative Study.

    Science.gov (United States)

    Williams, Simon N; Thakore, Bhoomi K; McGee, Richard

    2016-01-01

    Many recent mentoring initiatives have sought to help improve the proportion of underrepresented racial and ethnic minorities (URMs) in academic positions across the biomedical sciences. However, the intractable nature of the problem of underrepresentation suggests that many young scientists may require supplemental career development beyond what many mentors are able to offer. As an adjunct to traditional scientific mentoring, we created a novel academic career "coaching" intervention for PhD students in the biomedical sciences. To determine whether and how academic career coaches can provide effective career-development-related learning experiences for URM PhD students in the biomedical sciences. We focus specifically on vicarious learning experiences, where individuals learn indirectly through the experiences of others. The intervention is being tested as part of a longitudinal randomized control trial (RCT). Here, we describe a nested qualitative study, using a framework approach to analyze data from a total of 48 semi-structured interviews from 24 URM PhD students (2 interviews per participant, 1 at baseline, 1 at 12-month follow-up) (16 female, 8 male; 11 Black, 12 Hispanic, 1 Native-American). We explored the role of the coach as a source of vicarious learning, in relation to the students' goal of being future biomedical science faculty. Coaches were resources through which most students in the study were able to learn vicariously about how to pursue, and succeed within, an academic career. Coaches were particularly useful in instances where students' research mentors are unable to provide such vicarious learning opportunities, for example because the mentor is too busy to have career-related discussions with a student, or because they have, or value, a different type of academic career to the type the student hopes to achieve. Coaching can be an important way to address the lack of structured career development that students receive in their home training

  20. Communicating Ecology Through Art: What Scientists Think

    Directory of Open Access Journals (Sweden)

    David J. Curtis

    2012-06-01

    Full Text Available Many environmental issues facing society demand considerable public investment to reverse. However, this investment will only arise if the general community is supportive, and community support is only likely if the issues are widely understood. Scientists often find it difficult to communicate with the general public. The role of the visual and performing arts is often overlooked in this regard, yet the arts have long communicated issues, influenced and educated people, and challenged dominant paradigms. To assess the response of professional ecologists to the role of the arts in communicating science, a series of constructed performances and exhibitions was integrated into the program of a national ecological conference over five days. At the conclusion of the conference, responses were sought from the assembled scientists and research students toward using the arts for expanding audiences to ecological science. Over half the delegates said that elements of the arts program provided a conducive atmosphere for receiving information, encouraged them to reflect on alternative ways to communicate science, and persuaded them that the arts have a role in helping people understand complex scientific concepts. A sizeable minority of delegates (24% said they would consider incorporating the arts in their extension or outreach efforts. Incorporating music, theatre, and dance into a scientific conference can have many effects on participants and audiences. The arts can synthesize and convey complex scientific information, promote new ways of looking at issues, touch people's emotions, and create a celebratory atmosphere, as was evident in this case study. In like manner, the visual and performing arts should be harnessed to help extend the increasingly unpalatable and urgent messages of global climate change science to a lay audience worldwide.

  1. The Academy for Future Science Faculty: randomized controlled trial of theory-driven coaching to shape development and diversity of early-career scientists.

    Science.gov (United States)

    Thakore, Bhoomi K; Naffziger-Hirsch, Michelle E; Richardson, Jennifer L; Williams, Simon N; McGee, Richard

    2014-08-02

    Approaches to training biomedical scientists have created a talented research community. However, they have failed to create a professional workforce that includes many racial and ethnic minorities and women in proportion to their representation in the population or in PhD training. This is particularly true at the faculty level. Explanations for the absence of diversity in faculty ranks can be found in social science theories that reveal processes by which individuals develop identities, experiences, and skills required to be seen as legitimate within the profession. Using the social science theories of Communities of Practice, Social Cognitive Career Theory, identity formation, and cultural capital, we have developed and are testing a novel coaching-based model to address some of the limitations of previous diversity approaches. This coaching intervention (The Academy for Future Science Faculty) includes annual in-person meetings of students and trained faculty Career Coaches, along with ongoing virtual coaching, group meetings and communication. The model is being tested as a randomized controlled trial with two cohorts of biomedical PhD students from across the U.S., one recruited at the start of their PhDs and one nearing completion. Stratification into the experimental and control groups, and to coaching groups within the experimental arms, achieved equal numbers of students by race, ethnicity and gender to the extent possible. A fundamental design element of the Academy is to teach and make visible the social science principles which highly influence scientific advancement, as well as acknowledging the extra challenges faced by underrepresented groups working to be seen as legitimate within the scientific communities. The strategy being tested is based upon a novel application of the well-established principles of deploying highly skilled coaches, selected and trained for their ability to develop talents of others. This coaching model is intended to be a

  2. Pathway to STEM: Using Outreach Initiatives as a Method of Identifying, Educating and Recruiting the Next Generation of Scientists and Engineers

    Science.gov (United States)

    Ortiz-Arias, Deedee; Zwicker, Andrew; Dominguez, Arturo; Greco, Shannon

    2017-10-01

    The Princeton Plasma Physics Laboratory (PPPL) uses a host of outreach initiatives to inform the general population: the Young Women's Conference, Science Bowl, Science Undergraduate Laboratory Internship, My Brother's Keeper, a variety of workshops for university faculty and undergraduate students, public and scheduled lab tours, school and community interactive plasma science demonstrations. In addition to informing and educating the public about the laboratory's important work in the areas of Plasma and Fusion, these outreach initiatives, are also used as an opportunity to identify/educate/recruit the next generation of the STEM workforce. These programs provide the laboratory with the ability to: engage the next generation at different paths along their development (K-12, undergraduate, graduate, professional), at different levels of scientific content (science demonstrations, remote experiments, lectures, tours), in some instances, targeting underrepresented groups in STEM (women and minorities), and train additional STEM educators to take learned content into their own classrooms.

  3. Book Review: Higher Education and the Palestinian Minority in Israel by Khalid Arar and Kussai Haj-Yehia, Palgrave Macmillan (US, 2016

    Directory of Open Access Journals (Sweden)

    Bogdan Florian

    2016-10-01

    Full Text Available For both Prof. Arar and Haj-Yehia the study of education related topics in the context of the Palestinian Arab minority in Israel has been a career guiding theme. Their previous research projects and publications have touched on various dimensions of this issue, mainly emphasizing issues such as access to education, but also documentation of migration for study relation purposes of members of this community. Their latest book, “Higher Education and the Palestinian Arab Minority in Israel”, published in 2016 by Palgrave Macmillan, can be described as a synthesis of previous research and, at the same time, an argument for supporting access to education for underrepresented groups. From the prologue even of the book the authors state their objective clearly: “to raise pertinent questions concerning the dual marginality of Palestinian Arab minority in Israel (PAMI, […] in Israel’s HE system and employment market” (p. 1. The book is structured in seven chapters and an Epilogue, starting with general historical information about the PAMI and the formation of the state of Israel and ending with policy proposals to widen access to education for members of the PAMI minority. The narrative follows a classical structure, with each chapter approaching a different dimension of the more general topics of access to education, outcomes of education on the labor market and finally policy evaluation and proposals for improvement of both. Using data and research results from both quantitative and qualitative previous studies, the authors argue that the existence of numerous hurdles hampering access to higher education, in particular, foster further inequalities on the labor market for members of the PAMI community

  4. The future of warfarin pharmacogenetics in under-represented minority groups

    Science.gov (United States)

    Cavallari, Larisa H; Perera, Minoli A

    2012-01-01

    Genotype-based dosing recommendations are provided in the US FDA-approved warfarin labeling. However, data that informed these recommendations were from predominately Caucasian populations. Studies show that variants contributing to warfarin dose requirements in Caucasians provide similar contributions to dose requirements in US Hispanics, but significantly lesser contributions in African–Americans. Further data demonstrate that variants occurring commonly in individuals of African ancestry, but rarely in other racial groups, significantly influence dose requirements in African–Americans. These data suggest that it is important to consider variants specific for African–Americans when implementing genotype-guided warfarin dosing in this population. PMID:22871196

  5. Hot topics, urgent priorities, and ensuring success for racial/ethnic minority young investigators in academic pediatrics.

    Science.gov (United States)

    Flores, Glenn; Mendoza, Fernando S; Fuentes-Afflick, Elena; Mendoza, Jason A; Pachter, Lee; Espinoza, Juan; Fernandez, Cristina R; Arnold, Danielle D P; Brown, Nicole M; Gonzalez, Kymberly M; Lopez, Cynthia; Owen, Mikah C; Parks, Kenya M; Reynolds, Kimberly L; Russell, Christopher J

    2016-12-09

    The number of racial/ethnic minority children will exceed the number of white children in the USA by 2018. Although 38% of Americans are minorities, only 12% of pediatricians, 5% of medical-school faculty, and 3% of medical-school professors are minorities. Furthermore, only 5% of all R01 applications for National Institutes of Health grants are from African-American, Latino, and American Indian investigators. Prompted by the persistent lack of diversity in the pediatric and biomedical research workforces, the Academic Pediatric Association Research in Academic Pediatrics Initiative on Diversity (RAPID) was initiated in 2012. RAPID targets applicants who are members of an underrepresented minority group (URM), disabled, or from a socially, culturally, economically, or educationally disadvantaged background. The program, which consists of both a research project and career and leadership development activities, includes an annual career-development and leadership conference which is open to any resident, fellow, or junior faculty member from an URM, disabled, or disadvantaged background who is interested in a career in academic general pediatrics. As part of the annual RAPID conference, a Hot Topic Session is held in which the young investigators spend several hours developing a list of hot topics on the most useful faculty and career-development issues. These hot topics are then posed in the form of six "burning questions" to the RAPID National Advisory Committee (comprised of accomplished, nationally recognized senior investigators who are seasoned mentors), the RAPID Director and Co-Director, and the keynote speaker. The six compelling questions posed by the 10 young investigators-along with the responses of the senior conference leadership-provide a unique resource and "survival guide" for ensuring the academic success and optimal career development of young investigators in academic pediatrics from diverse backgrounds. A rich conversation ensued on the topics

  6. Engaging Scientists in NASA Education and Public Outreach: Tools for Scientist Engagement

    Science.gov (United States)

    Buxner, Sanlyn; Meinke, B. K.; Hsu, B.; Shupla, C.; Grier, J. A.; E/PO Community, SMD

    2014-01-01

    The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community through a coordinated effort to enhance the coherence and efficiency of SMD-funded E/PO programs. The Forums foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present tools and resources to support astronomers’ engagement in E/PO efforts. Among the tools designed specifically for scientists are a series of one-page E/PO-engagement Tips and Tricks guides, a sampler of electromagnetic-spectrum-related activities, and NASA SMD Scientist Speaker’s Bureau (http://www.lpi.usra.edu/education/speaker). Scientists can also locate resources for interacting with diverse audiences through a number of online clearinghouses, including: NASA Wavelength, a digital collection of peer-reviewed Earth and space science resources for educators of all levels (http://nasawavelength.org), and EarthSpace (http://www.lpi.usra.edu/earthspace), a community website where faculty can find and share teaching resources for the undergraduate Earth and space sciences classroom. Learn more about the opportunities to become involved in E/PO and to share your science with students, educators, and the general public at http://smdepo.org.

  7. Helping Young People Engage with Scientists

    Science.gov (United States)

    Leggett, Maggie; Sykes, Kathy

    2014-01-01

    There can be multiple benefits of scientists engaging with young people, including motivation and inspiration for all involved. But there are risks, particularly if scientists do not consider the interests and needs of young people or listen to what they have to say. We argue that "dialogue" between scientists, young people and teachers…

  8. Professional Ethics for Climate Scientists

    Science.gov (United States)

    Peacock, K.; Mann, M. E.

    2014-12-01

    Several authors have warned that climate scientists sometimes exhibit a tendency to "err on the side of least drama" in reporting the risks associated with fossil fuel emissions. Scientists are often reluctant to comment on the implications of their work for public policy, despite the fact that because of their expertise they may be among those best placed to make recommendations about such matters as mitigation and preparedness. Scientists often have little or no training in ethics or philosophy, and consequently they may feel that they lack clear guidelines for balancing the imperative to avoid error against the need to speak out when it may be ethically required to do so. This dilemma becomes acute in cases such as abrupt ice sheet collapse where it is easier to identify a risk than to assess its probability. We will argue that long-established codes of ethics in the learned professions such as medicine and engineering offer a model that can guide research scientists in cases like this, and we suggest that ethical training could be regularly incorporated into graduate curricula in fields such as climate science and geology. We recognize that there are disanalogies between professional and scientific ethics, the most important of which is that codes of ethics are typically written into the laws that govern licensed professions such as engineering. Presently, no one can legally compel a research scientist to be ethical, although legal precedent may evolve such that scientists are increasingly expected to communicate their knowledge of risks. We will show that the principles of professional ethics can be readily adapted to define an ethical code that could be voluntarily adopted by scientists who seek clearer guidelines in an era of rapid climate change.

  9. Scientist Spotlight Homework Assignments Shift Students' Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class.

    Science.gov (United States)

    Schinske, Jeffrey N; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments ("Scientist Spotlights") that featured counterstereotypical examples of scientists in an introductory biology class at a diverse community college. Scientist Spotlights additionally served as tools for content coverage, as scientists were selected to match topics covered each week. We analyzed beginning- and end-of-course essays completed by students during each of five courses with Scientist Spotlights and two courses with equivalent homework assignments that lacked connections to the stories of diverse scientists. Students completing Scientist Spotlights shifted toward counterstereotypical descriptions of scientists and conveyed an enhanced ability to personally relate to scientists following the intervention. Longitudinal data suggested these shifts were maintained 6 months after the completion of the course. Analyses further uncovered correlations between these shifts, interest in science, and course grades. As Scientist Spotlights require very little class time and complement existing curricula, they represent a promising tool for enhancing science identity, shifting stereotypes, and connecting content to issues of equity and diversity in a broad range of STEM classrooms. © 2016 J. N. Schinske et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. ERA Ranger tailings corridor review. Supervising Scientist report 154

    International Nuclear Information System (INIS)

    Merz, S.K.

    2000-01-01

    Sinclair Knight Merz (SKM) were commissioned by the Office of the Supervising Scientist on 25 May 2000 to undertake a review and complete a report on the tailings corridor at the ERA Ranger Mine. The objective of the study was to undertake an 'as is' and to some extent historic and look ahead, review of the corridor system sufficient to: assess the current suitability of key aspects of the design; assess the suitability of current operating, maintenance and system development regimes and responsibilities; and record any recommended actions or further investigations arising out of the review; in order to ensure the adequacy of the design, operation and maintenance. The scope of the study report was limited to the corridor itself, its associated sump and sump contents discharge and the branch corridors carrying pipelines to Pit 1. A representative report contents was discussed and agreed with the Office of the Supervising Scientist prior to commencement of the study and this is included as appendix A to this report. The originally agreed content is, with only minor amendment, reflected in this report. The study methodology comprised a review and assessment by SKM of the design of the existing system and current operations documentation and information obtained from investigations on site and discussions with ERA site personnel. Whilst, a number of modifications affecting the corridor are recommended for further consideration, the main findings of the report relate to operating and maintenance practices which should be adopted for the remainder of the mine/mill life

  11. Collaboration between research scientists and educators in implementation of a Masters program for training new Earth Science teachers in New York State

    Science.gov (United States)

    Nadeau, P. A.; Flores, K. E.; Zirakparvar, N. A.; Grcevich, J.; Ustunisik, G. K.; Kinzler, R. J.; Macdonald, M.; Mathez, E. A.; Mac Low, M.

    2012-12-01

    Educators and research scientists at the American Museum of Natural History are collaborating to implement a teacher education program with the goal of addressing a critical shortage of qualified Earth Science teachers in New York State (NYS), particularly in high-needs schools with diverse populations. This pilot program involves forging a one-of-a-kind partnership between a world-class research museum and high-needs schools in New York City. By placing teaching candidates in such schools, the project has potential to engage, motivate, and improve Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. The program, which is part of the state's Race to the Top initiative, is approved by the NYS Board of Regents and will prepare a total of 50 candidates in two cohorts to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The museum is in a unique position of being able to break traditional educational barriers as a result of a long history of interdisciplinary collaborations between educators and research scientists, as well as being the only stand-alone science graduate degree-granting museum in the United States. The intensive 15-month curriculum for MAT candidates comprises one summer of museum teaching residency, a full academic year of residency in high-needs public schools, one summer of science research residency, and concurrent graduate-level courses in Earth and space sciences, pedagogy, and adolescent psychology. We emphasize field-based geological studies and experiential learning, in contrast to many traditional teacher education programs. In an effort to ensure that MAT candidates have a robust knowledge base in Earth science, and per NYS Department of Education requirements, we selected candidates with strong

  12. Reaching and recruiting Turkish migrants for a clinical trial through Facebook: A process evaluation

    NARCIS (Netherlands)

    Unlu, B.; Cuijpers, P.; van t Hof, E.; Riper, H.

    2014-01-01

    Ethnic minorities are underrepresented in mental health research, especially in randomized controlled trials. Recruiting ethnic minorities is challenging and there is a need to develop effective recruitment strategies. This study used data from a randomized controlled trial examining the

  13. Contending with Stereotype Threat at Work: A Model of Long-Term Responses

    Science.gov (United States)

    Block, Caryn J.; Koch, Sandy M.; Liberman, Benjamin E.; Merriweather, Tarani J.; Roberson, Loriann

    2011-01-01

    Women and people of color are still underrepresented in many occupational roles. Being in a situation where one is underrepresented, and thus in the demographic minority, has been shown to be a factor leading to the experience of stereotype threat--the expectation that one will be judged or perceived on the basis of social identity group…

  14. Diversity Matters in Academic Radiology: Acknowledging and Addressing Unconscious Bias.

    Science.gov (United States)

    Allen, Brenda J; Garg, Kavita

    2016-12-01

    To meet challenges related to changing demographics, and to optimize the promise of diversity, radiologists must bridge the gap between numbers of women and historically underrepresented minorities in radiology and radiation oncology as contrasted with other medical specialties. Research reveals multiple ways that women and underrepresented minorities can benefit radiology education, research, and practice. To achieve those benefits, promising practices promote developing and implementing strategies that support diversity as an institutional priority and cultivate shared responsibility among all members to create inclusive learning and workplace environments. Strategies also include providing professional development to empower and equip members to accomplish diversity-related goals. Among topics for professional development about diversity, unconscious bias has shown positive results. Unconscious bias refers to ways humans unknowingly draw upon assumptions about individuals and groups to make decisions about them. Researchers have documented unconscious bias in a variety of contexts and professions, including health care, in which they have studied differential treatment, diagnosis, prescribed care, patient well-being and compliance, physician-patient interactions, clinical decision making, and medical school education. These studies demonstrate unfavorable impacts on members of underrepresented groups and women. Learning about and striving to counteract unconscious bias points to promising practices for increasing the numbers of women and underrepresented minorities in the radiology and radiation oncology workforce. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  15. Gifted and Talented Students’ Images of Scientists

    Directory of Open Access Journals (Sweden)

    Sezen Camcı-Erdoğan

    2013-06-01

    Full Text Available The purpose of this study was to investigate gifted students’ images of scientists. The study involved 25 students in grades 7 and 8. The Draw-a-Scientist Test (DAST (Chamber, 183 was used to collect data. Drawings were eval-uated using certain criterion such as a scien-tist’s appearance and investigation, knowledge and technology symbols and gender and working style, place work, expressions, titles-captions-symbols and alternative images and age. The results showed that gifted students’ perceptions about scientists were stereotypical, generally with glasses and laboratory coats and working with experiment tubes, beakers indoors and using books, technological tools and dominantly lonely males. Most gifted stu-dents drew male scientists. Although females drew male scientists, none of the boys drew female scientist.

  16. Juggling the life-puzzle with Geosciences: personal experience and strategies from a female leader

    Science.gov (United States)

    Arheimer, Berit

    2017-04-01

    People are very complex and difficult to categorize. For instance, in the Geosciences community I am representing both minorities and majorities. When being in minority, I am both Underrepresented and Overrepresented by the composition of this community vs the global population, and also at EGU I am both under- and over-represented vs the total geoscience community. At present, I am underrepresented being a Woman in Geosciences but earlier in my carrier, I was also underrepresented being a Young Leader - so I will focus my presentation on both gender and age, as it is difficult for me to separate these two barriers from various sorts of exclusions I experienced. Underrepresentation is bad for several reasons, for instance (i) We might miss talents if equality of opportunities are not given in geosciences; (ii) Teams work less efficient than if they are composed by different characters, competences and skills; (iii) We are less prepared for new circumstances in this rapidly changing and unstable world; (iv) We degrade in communication skills and perception, if we don't understand similarities and differences. I will discuss some representative differences that may lead to unequal opportunities in geosciences. However, we need to be careful when searching for representation as it involves attribution of characteristics, which may lead to stigmatization and oversimplify the complexity of personality. Differences between individuals in a population are still much larger than between the averages of the populations. In my presentation I will give examples from my personal experience of barriers during 25 years in geosciences and the strategies I have used to overcome them. I will also give examples of successful methods that I have used in my 17 years of leadership when building efficient teams, to make them benefit from differences between individuals. I am currently leading a group of 26 scientists with origin from 13 countries world-wide. Finally, I will give some

  17. Cal-Bridge and CAMPARE: Engaging Underrepresented Students in Physics and Astronomy

    Science.gov (United States)

    Rudolph, Alexander L.; Cal-Bridge and CAMPARE Teams

    2018-01-01

    We describe two programs, Cal-Bridge and CAMPARE, with the common mission of increasing participation of groups traditionally underrepresented in astronomy, through summer research opportunities, in the case of CAMPARE, scholarships in the case of Cal-Bridge, and significant mentoring in both programs, creating a national impact on their numbers successfully pursuing a PhD in the field.In 8 years, the CAMPARE program has sent 112 students, >80% from underrepresented groups, to conduct summer research at one of 14 major research institutions throughout the country. Of the CAMPARE scholars who have graduated with a Bachelor’s degree, almost two-thirds (65%) have completed or are pursuing graduate education in physics, astronomy, or a related field, at institutions including UCLA, UC Riverside, UC Irvine, UC Santa Barbara, USC, Stanford, Univ. of Arizona, Univ. of Washington, Univ. of Rochester, Michigan State Univ., Georgia Tech, Georgia State Univ., Kent State, Indiana Univ., Univ. of Oregon, Syracuse Univ., Montana State Univ., and the Fisk-Vanderbilt Master’s-to-PhD program.Now entering its fourth year, the Cal-Bridge program is a CSU-UC Bridge program comprised of >140 physics and astronomy faculty from 9 University of California (UC), 15 California State University (CSU), and 30 California Community College (CCC) campuses throughout California. In the first four years, 34 Cal-Bridge Scholars have been selected, including 22 Hispanic, 3 African-American and 13 women students, 10 of whom are from URM groups. Thirty (30) of the 34 Cal-Bridge Scholars are first generation college students. In the last two years, 11 of 13 Cal-Bridge Scholars have begun PhD programs in physics or astronomy at top PhD programs nationally. Three (3) of these 11 scholars have won NSF Graduate Research Fellowships; one more received an Honorable Mention. The next cohort applies this fall.Cal-Bridge provides much deeper mentoring and professional development experiences over the last

  18. Ethnic differences in problem perception : Immigrant mothers in a parenting intervention to reduce disruptive child behavior

    NARCIS (Netherlands)

    Leijten, P.; Raaijmakers, M.A.J.; Orobio de Castro, B.; Matthys, W.

    2016-01-01

    Ethnic minority families in Europe are underrepresented in mental health care—a profound problem for clinicians and policymakers. One reason for their underrepresentation seems that, on average, ethnic minority families tend to perceive externalizing and internalizing child behavior as less

  19. Conceptualizing Culturally Infused Engagement and Its Measurement for Ethnic Minority and Immigrant Children and Families

    Science.gov (United States)

    Pottick, Kathleen J.; Chen, Yun

    2017-01-01

    Despite the central role culture plays in racial and ethnic disparities in mental health among ethnic minority and immigrant children and families, existing measures of engagement in mental health services have failed to integrate culturally specific factors that shape these families' engagement with mental health services. To illustrate this gap, the authors systematically review 119 existing instruments that measure the multi-dimensional and developmental process of engagement for ethnic minority and immigrant children and families. The review is anchored in a new integrated conceptualization of engagement, the culturally infused engagement model. The review assesses culturally relevant cognitive, attitudinal, and behavioral mechanisms of engagement from the stages of problem recognition and help seeking to treatment participation that can help illuminate the gaps. Existing measures examined four central domains pertinent to the process of engagement for ethnic minority and immigrant children and families: (a) expressions of mental distress and illness, (b) causal explanations of mental distress and illness, (c) beliefs about mental distress and illness, and (d) beliefs and experiences of seeking help. The findings highlight the variety of tools that are used to measure behavioral and attitudinal dimensions of engagement, showing the limitations of their application for ethnic minority and immigrant children and families. The review proposes directions for promising research methodologies to help intervention scientists and clinicians improve engagement and service delivery and reduce disparities among ethnic minority and immigrant children and families at large, and recommends practical applications for training, program planning, and policymaking. PMID:28275923

  20. The physician-scientists: rare species in Africa.

    Science.gov (United States)

    Adefuye, Anthonio Oladele; Adeola, Henry Ademola; Bezuidenhout, Johan

    2018-01-01

    There is paucity of physician-scientists in Africa, resulting in overt dependence of clinical practice on research findings from advanced "first world" countries. Physician-scientists include individuals with a medical degree alone or combined with other advanced degrees (e.g. MD/MBChB and PhD) with a career path in biomedical/ translational and patient-oriented/evaluative science research. The paucity of clinically trained research scientists in Africa could result in dire consequences as exemplified in the recent Ebola virus epidemic in West Africa, where shortage of skilled clinical scientists, played a major role in disease progression and mortality. Here we contextualise the role of physician-scientist in health care management, highlight factors limiting the training of physician-scientist in Africa and proffer implementable recommendations to address these factors.

  1. What is a good death? Minority and non-minority perspectives.

    Science.gov (United States)

    Tong, Elizabeth; McGraw, Sarah A; Dobihal, Edward; Baggish, Rosemary; Cherlin, Emily; Bradley, Elizabeth H

    2003-01-01

    While much attention has been directed at improving the quality of care at the end of life, few studies have examined what determines a good death in different individuals. We sought to identify common domains that characterize a good death in a diverse range of community-dwelling individuals, and to describe differences that might exist between minority and non-minority community-dwelling individuals' views. Using data from 13 focus groups, we identified 10 domains that characterize the quality of the death experience: 1) physical comfort, 2) burdens on family, 3) location and environment, 4) presence of others, 5) concerns regarding prolongation of life, 6) communication, 7) completion and emotional health, 8) spiritual care, 9) cultural concerns, 10) individualization. Differences in minority compared to non-minority views were apparent within the domains of spiritual concerns, cultural concerns, and individualization. The findings may help in efforts to encourage more culturally sensitive and humane end-of-life care for both minority and non-minority individuals.

  2. Chinese Scientists | Women in Science | Initiatives | Indian Academy ...

    Indian Academy of Sciences (India)

    Home; Initiatives; Women in Science; Chinese Scientists. Chinese Scientists. One third Chinese scientists are women [What about India?] ... scientists, at a young age of 52, after a valiant battle with cancer, today on 29th March 2016 in Delhi.

  3. Responsability of scientists

    CERN Document Server

    Harigel, G G

    1997-01-01

    This seminar is intended to give some practical help for CERN guides,who are confronted with questions from visitors concerning the purpose of research in general and - in paticular - of the work in our laboratory, its possible application and benefits.The dual use of scientific results will be emphasised by examples across natural sciences. Many investigations were neutral,others aimed at peaceful and beneficial use for humanity, a few were made for destructive purposes. Researchers have no or very little influence on the application of their results. The interplay between natural scientists ,social scientists,politicians,and their dependence on economic factors will be discussed.

  4. Evaluating Career Development Resources: Lessons from the Earth Science Women's Network (ESWN)

    Science.gov (United States)

    Kogan, M.; Laursen, S. L.

    2010-12-01

    Retention of geoscientists throughout the professional pipeline is especially challenging in the case of groups that are already underrepresented in science, including racial minorities and women. The Earth Science Women’s Network (ESWN) is a professional network of early-career female geoscientists that provides its members with a variety of career resources, through both informal, online and in-person networking and formal career development workshops. The group’s members are of diverse nationalities and racial/ethnic backgrounds, of various age cohorts and career stages, but primarily graduate students, postdocs, and early-career researchers. With funding from an NSF ADVANCE grant to ESWN, we have conducted a detailed survey of ESWN members as part of an evaluation-with-research study that aims to determine the career needs of young geoscientists. The survey data provide information about members’ personal and professional situations, their professional development needs, and obstacles they face as young women scientists. ESWN members indicated a variety of areas of professional growth that would advance their scientific careers, but at all career stages, members chose expanding their professional networks as among their top career needs. Professional networking has established benefits for retention of people from groups underrepresented in science, including women: it introduces young scientists to career best practices and advancement opportunities, provides access to role models, and creates a sense of community. ESWN members strongly indicate that their professional networks benefited from their involvement with the Network. The community aspect of network-building is especially important for people from underrepresented groups, as they often feel alone due to the lack of role models. The intimate character of the ESWN discussion list greatly contributes to its members’ sense of community. Moreover, personal concerns and professional success are

  5. Disseminated Museum Displays and Participation of Students from Underrepresented Populations in Polar Research: Education and Outreach for Joint Projects in GPS and Seismology Solid Earth Science Community

    Science.gov (United States)

    Eriksson, S. C.; Wilson, T. J.; Anandakrishnan, S.; Aster, R. C.; Johns, B.; Anderson, K.; Taber, J.

    2006-12-01

    Two Antarctic projects developed by solid earth scientists in the GPS and seismology communities have rich education and outreach activities focused on disseminating information gleaned from this research and on including students from underrepresented groups. Members of the UNAVCO and IRIS research consortia along with international partners from Australia, Canada, Chile, Germany, Italy, New Zealand and the U.K. aim to deploy an ambitious GPS/seismic network to observe the Antarctic glaciological and geologic system using a multidisciplinary and internationally coordinated approach. The second project supports this network. UNAVCO and IRIS are designing and building a reliable power and communication system for autonomous polar station operation which use the latest power and communication technologies for ease of deployment and reliable multi-year operation in severe polar environments. This project will disseminate research results through an IPY/POLENET web-based museum style display based on the next-generation "Museum Lite" capability primarily supported by IRIS. "Museum Lite" uses a standard PC, touch-screen monitor, and standard Internet browsers to exploit the scalability and access of the Internet and to provide customizable content in an interactive setting. The unit is suitable for research departments, public schools, and an assortment of public venues, and can provide wide access to real-time geophysical data, ongoing research, and general information. The POLENET group will work with members of the two consortia to provide content about the project and polar science in general. One unit is to be installed at Barrow's Ilisagvit College through the Barrow Arctic Science Consortium, one at McMurdo Station in Antarctica, and two at other sites to be determined (likely in New Zealand/Australia and in the U.S.). In January, 2006, Museum Lite exhibit was installed at the Amundsen-Scott South Pole Station. Evaluation of this prototype is underway. These

  6. Growing Minority Student Interest in Earth and Space Science with Suborbital and Space-related Investigations

    Science.gov (United States)

    Austin, S. A.

    2009-12-01

    This presentation describes the transformative impact of student involvement in suborbital and Cubesat investigations under the MECSAT program umbrella at Medgar Evers College (MEC). The programs evolved from MUSPIN, a NASA program serving minority institutions. The MUSPIN program supported student internships for the MESSENGER and New Horizons missions at the Applied Physics Lab at John Hopkins University. The success of this program motivated the formation of smaller-scale programs at MEC to engage a wider group of minority students using an institutional context. The programs include an student-instrument BalloonSAT project, ozone investigations using sounding vehicles and a recently initiated Cubesat program involving other colleges in the City University of New York (CUNY). The science objectives range from investigations of atmospheric profiles, e.g. temperature, humidity, pressure, and CO2 to ozone profiles in rural and urban areas including comparisons with Aura instrument retrievals to ionospheric scintillation experiments for the Cubesat project. Through workshops and faculty collaborations, the evolving programs have mushroomed to include the development of parallel programs with faculty and students at other minority institutions both within and external to CUNY. The interdisciplinary context of these programs has stimulated student interest in Earth and Space Science and includes the use of best practices in retention and pipelining of underrepresented minority students in STEM disciplines. Through curriculum integration initiatives, secondary impacts are also observed supported by student blogs, social networking sites, etc.. The program continues to evolve including related student internships at Goddard Space Flight Center and the development of a CUNY-wide interdisciplinary team of faculty targeting research opportunities for undergraduate and graduate students in Atmospheric Science, Space Weather, Remote Sensing and Astrobiology primarily for

  7. Smooth Transition for Advancement to Graduate Education (STAGE) for Underrepresented Groups in the Mathematical Sciences Pilot Project: Broadening Participation through Mentoring

    Science.gov (United States)

    Eubanks-Turner, Christina; Beaulieu, Patricia; Pal, Nabendu

    2018-01-01

    The Smooth Transition for Advancement to Graduate Education (STAGE) project was a three-year pilot project designed to mentor undergraduate students primarily from under-represented groups in the mathematical sciences. The STAGE pilot project focused on mentoring students as they transitioned from undergraduate education to either graduate school…

  8. Minorities and majorities

    NARCIS (Netherlands)

    Nijman, J.E.; Fassbender, B.; Peters, A.

    2012-01-01

    This chapter discusses the paradox of minorities as a constitutive Other of international law. While minorities have been viewed as outside the international legal system for centuries, minorities have at the same time made a significant and fundamental contribution to precisely that system, as they

  9. Science Possible Selves and the Desire to be a Scientist: Mindsets, Gender Bias, and Confidence during Early Adolescence.

    Science.gov (United States)

    Hill, Patricia Wonch; McQuillan, Julia; Talbert, Eli; Spiegel, Amy; Gauthier, G Robin; Diamond, Judy

    2017-06-01

    In the United States, gender gaps in science interest widen during the middle school years. Recent research on adults shows that gender gaps in some academic fields are associated with mindsets about ability and gender-science biases. In a sample of 529 students in a U.S. middle school, we assess how explicit boy-science bias, science confidence, science possible self (belief in being able to become a scientist), and desire to be a scientist vary by gender. Guided by theories and prior research, we use a series of multivariate logistic regression models to examine the relationships between mindsets about ability and these variables. We control for self-reported science grades, social capital, and race/ethnic minority status. Results show that seeing academic ability as innate ("fixed mindsets") is associated with boy-science bias, and that younger girls have less boy-science bias than older girls. Fixed mindsets and boy-science bias are both negatively associated with a science possible self; science confidence is positively associated with a science possible self. In the final model, high science confident and having a science possible self are positively associated with a desire to be a scientist. Facilitating growth mindsets and countering boy-science bias in middle school may be fruitful interventions for widening participation in science careers.

  10. Frederic Joliot-Curie, a tormented scientist

    International Nuclear Information System (INIS)

    Pinault, M.

    2000-01-01

    This article is a short biography of the French scientist Frederic Joliot-Curie. His fight for a peaceful use of atomic energy, his responsibilities as nuclear physicist and as the first director of the French atomic commission (CEA) have led him to face contradictions very difficult to manage. All along his career as a scientist and as a high ranked civil servant, F.Joliot-Curie tried to find an ethical way for scientists in modern societies. (A.C.)

  11. A Nursing Workforce Diversity Project: Strategies for Recruitment, Retention, Graduation, and NCLEX-RN Success.

    Science.gov (United States)

    Murray, Ted A; Pole, David C; Ciarlo, Erica M; Holmes, Shearon

    2016-01-01

    The purpose of this article is to describe a collaborative project designed to recruit and retain students from underrepresented minorities and disadvantaged backgrounds into nursing education. Ethnic minorities remain underrepresented in the nursing workforce in comparison to the general population. The numbers of minorities enrolled in nursing education programs are insufficient to meet the health care workforce diversity needs of the future. High school students were provided with a preprofessional education program to prepare them for admission into a nursing program. Retention strategies were implemented for newly admitted and enrolled nursing education students. Twenty-one high school students enrolled in a nursing education program. The students enrolled in the nursing education program graduated and passed the licensure examination. Early recruitment and multiprong retention programs can be successful in diversifying the registered nurse workforce.

  12. Do scientists trace hot topics?

    Science.gov (United States)

    Wei, Tian; Li, Menghui; Wu, Chensheng; Yan, Xiao-Yong; Fan, Ying; Di, Zengru; Wu, Jinshan

    2013-01-01

    Do scientists follow hot topics in their scientific investigations? In this paper, by performing analysis to papers published in the American Physical Society (APS) Physical Review journals, it is found that papers are more likely to be attracted by hot fields, where the hotness of a field is measured by the number of papers belonging to the field. This indicates that scientists generally do follow hot topics. However, there are qualitative differences among scientists from various countries, among research works regarding different number of authors, different number of affiliations and different number of references. These observations could be valuable for policy makers when deciding research funding and also for individual researchers when searching for scientific projects.

  13. Lessons and Perspectives on Balancing Research and Diversity-Oriented Service

    Science.gov (United States)

    Emanuel, R. E.

    2012-12-01

    Diversity among scientists is necessary to bring together the range of personal and professional perspectives required to address many grand challenges of research in the earth and environmental sciences. Despite gains in recent decades, African Americans and American Indians remain severely under-represented at the graduate level in the environmental sciences, posing an impediment to ethnic diversity in the ranks of professional scientists. For example, the US National Science Foundation reported that in one recent year African Americans received 1,041 (3%) and American Indians received 120 (0.4%) of the 33,284 science and engineering doctoral degrees granted in the US. These fractions are smaller than African American and American Indian representation among bachelor's degree recipients, and they are smaller than representation in the general US population. Lessons from multiple disciplines (chemistry, medicine and geoscience) suggest that group learning, longitudinal mentoring and networking opportunities are critical elements in the retention of under-represented minority students and their conversion to professionals in scientific fields. With this in mind, I have worked to incorporate these elements into my own research program, which moved recently from a predominantly undergraduate institution to a research extensive university. I discuss the outcomes, successes and challenges of a recent project engaging 14 students and 5 faculty mentors from 6 institutions, including 2 HBCUs, in a yearlong study of secondary ecosystem succession in North Carolina. I frame this discussion in the general context of my own experience, as an American Indian academic, balancing diversity-related service and more traditionally recognized forms of scholarship (i.e. teaching and research) at both predominantly undergraduate and research extensive universities.

  14. MS PHD'S: Bridging the Gap of Academic and Career Success Through Educational and Professional Development for Minorities

    Science.gov (United States)

    Brown, D.; Vargas, W.; Padilla, E.; Strickland, J.; Echols, E.; Johnson, A.; Williamson Whitney, V.; Ithier-Guzman, W.; Ricciardi, L.; Johnson, A.; Braxton, L.

    2011-12-01

    Historically, there has been a lack of ethnic and gender diversity in the geo-sciences. The Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science (MS PHD'S) Professional Development Program provides a bridge to young scientists of diverse backgrounds who in turn will impact many. In a process of 3 phases, the program introduces the students to the scientific community through participation in professional and society meetings and networking with scientists and personnel within federal agencies, academic institutions and STEM-based industries. The program builds confidence, offers role models for professional development and provides students support during their education. Upon completion, students achieve a high level of self-actualization and self-esteem combined with individual growth. They become part of a community that continuously provides support and security to each other. This support is tangible through the mentor/mentee relationships which will help with individual growth throughout the mentoring cycle. Having role models and familiar faces to whom mentees can relate to will encourage our students to succeed in the STEM's field. To date, 159 students have participated in the program: 26 have successfully completed their PhD and 56 are currently enrolled in the PhD programs nationwide. The MS PHD'S Program creates a forum of diverse peoples by diverse peoples with diverse interest and strength, where the ongoing goal is to continually raise the bar for each individual. MS PHD'S establishes a nurturing goal-oriented environment for the geo scientist of the future who in turn will make profound contributions on a local, national and global scale. To conclude, MSPHD'S not only bridges the gap of unrepresented minorities in STEM careers, but also generates educational approaches to make the earth system sciences available to more, impacting all.

  15. Do Double Minority Students Face Double Jeopardy? Testing Minority Stress Theory

    Science.gov (United States)

    Hayes, Jeffrey A.; Chun-Kennedy, Caitlin; Edens, Astrid; Locke, Benjamin D.

    2011-01-01

    Data from 2 studies revealed that ethnic and sexual minority clients experienced greater psychological distress on multiple dimensions than did European American or heterosexual clients, respectively, as did ethnic and sexual minority students who were not clients. Among sexual minority students, ethnicity was not an added source of distress.…

  16. Vaccines for minor use and minor species (MUMS)--industry's views.

    Science.gov (United States)

    Bönisch, B

    2004-01-01

    Over the past 30 years the importance of vaccines for minor use and minor species has changed for multinational animal health companies. The major reasons for this are being reviewed, with a particular focus on technical, financial and business aspects. Key regulatory obstacles to the development of new products for minor uses and minor species are identified, and examples of vaccines falling into the various categories are provided. A number of proposals are offered with the intention of resolving the medicines availability problem between all the stakeholders involved. Finally, based on the presented scientific and regulatory considerations, ideas are shared as to where the legal and economical framework would need to change to reach a viable solution.

  17. Enhancing Diversity in Undergraduate Science: Self-Efficacy Drives Performance Gains with Active Learning

    OpenAIRE

    Ballen, Cissy J.; Wieman, Carl; Salehi, Shima; Searle, Jeremy B.; Zamudio, Kelly R.

    2017-01-01

    Efforts to retain underrepresented minority (URM) students in science, technology, engineering, and mathematics (STEM) have shown only limited success in higher education, due in part to a persistent achievement gap between students from historically underrepresented and well-represented backgrounds. To test the hypothesis that active learning disproportionately benefits URM students, we quantified the effects of traditional versus active learning on student academic performance, science self...

  18. 34 CFR 429.31 - What selection criteria does the Secretary use?

    Science.gov (United States)

    2010-07-01

    ... been traditionally underrepresented, such as— (A) Members of racial or ethnic minority groups; (B... racial or ethnic minority groups; (B) Women; (C) Handicapped persons; and (D) The elderly. (3) To...) Costs are reasonable in relation to the objectives of the project. (e) Evaluation plan. (10 points) (1...

  19. Scientists' coping strategies in an evolving research system: the case of life scientists in the UK

    NARCIS (Netherlands)

    Morris, Norma; Rip, Arie

    2006-01-01

    Scientists in academia have struggled to adjust to a policy climate of uncertain funding and loss of freedom from direction and control. How UK life scientists have negotiated this challenge, and with what consequences for their research and the research system, is the empirical entrance point of

  20. A Geoscience Workforce Model for Non-Geoscience and Non-Traditional STEM Students

    Science.gov (United States)

    Liou-Mark, J.; Blake, R.; Norouzi, H.; Vladutescu, D. V.; Yuen-Lau, L.

    2016-12-01

    The Summit on the Future of Geoscience Undergraduate Education has recently identified key professional skills, competencies, and conceptual understanding necessary in the development of undergraduate geoscience students (American Geosciences Institute, 2015). Through a comprehensive study involving a diverse range of the geoscience academic and employer community, the following professional scientist skills were rated highly important: 1) critical thinking/problem solving skills; 2) effective communication; 3) ability to access and integrate information; 4) strong quantitative skills; and 5) ability to work in interdisciplinary/cross cultural teams. Based on the findings of the study above, the New York City College of Technology (City Tech) has created a one-year intensive training program that focusses on the development of technical and non-technical geoscience skills for non-geoscience, non-traditional STEM students. Although City Tech does not offer geoscience degrees, the primary goal of the program is to create an unconventional pathway for under-represented minority STEM students to enter, participate, and compete in the geoscience workforce. The selected cohort of STEM students engage in year-round activities that include a geoscience course, enrichment training workshops, networking sessions, leadership development, research experiences, and summer internships at federal, local, and private geoscience facilities. These carefully designed programmatic elements provide both the geoscience knowledge and the non-technical professional skills that are essential for the geoscience workforce. Moreover, by executing this alternate, robust geoscience workforce model that attracts and prepares underrepresented minorities for geoscience careers, this unique pathway opens another corridor that helps to ameliorate the dire plight of the geoscience workforce shortage. This project is supported by NSF IUSE GEOPATH Grant # 1540721.

  1. Reciprocal Engagement Between a Scientist and Visual Displays

    Science.gov (United States)

    Nolasco, Michelle Maria

    In this study the focus of investigation was the reciprocal engagement between a professional scientist and the visual displays with which he interacted. Visual displays are considered inextricable from everyday scientific endeavors and their interpretation requires a "back-and-forthness" between the viewers and the objects being viewed. The query that drove this study was: How does a scientist engage with visual displays during the explanation of his understanding of extremely small biological objects? The conceptual framework was based in embodiment where the scientist's talk, gesture, and body position were observed and microanalyzed. The data consisted of open-ended interviews that positioned the scientist to interact with visual displays when he explained the structure and function of different sub-cellular features. Upon microanalyzing the scientist's talk, gesture, and body position during his interactions with two different visual displays, four themes were uncovered: Naming, Layering, Categorizing, and Scaling . Naming occurred when the scientist added markings to a pre-existing, hand-drawn visual display. The markings had meaning as stand-alone label and iconic symbols. Also, the markings transformed the pre-existing visual display, which resulted in its function as a new visual object. Layering occurred when the scientist gestured over images so that his gestures aligned with one or more of the image's features, but did not touch the actual visual display. Categorizing occurred when the scientist used contrasting categories, e.g. straight vs. not straight, to explain his understanding about different characteristics that the small biological objects held. Scaling occurred when the scientist used gesture to resize an image's features so that they fit his bodily scale. Three main points were drawn from this study. First, the scientist employed a variety of embodied strategies—coordinated talk, gesture, and body position—when he explained the structure

  2. ‘Speaking Truth’ Protects Underrepresented Minorities’ Intellectual Performance and Safety in STEM

    Science.gov (United States)

    Ben-Zeev, Avi; Paluy, Yula; Milless, Katlyn L.; Goldstein, Emily J.; Wallace, Lyndsey; Márquez-Magaña, Leticia; Bibbins-Domingo, Kirsten; Estrada, Mica

    2017-01-01

    We offer and test a brief psychosocial intervention, Speaking Truth to EmPower (STEP), designed to protect underrepresented minorities’ (URMs) intellectual performance and safety in science, technology, engineering, and math (STEM). STEP takes a ‘knowledge as power’ approach by: (a) providing a tutorial on stereotype threat (i.e., a social contextual phenomenon, implicated in underperformance and early exit) and (b) encouraging URMs to use lived experiences for generating be-prepared coping strategies. Participants were 670 STEM undergraduates [URMs (Black/African American and Latina/o) and non-URMs (White/European American and Asian/Asian American)]. STEP protected URMs’ abstract reasoning and class grades (adjusted for grade point average [GPA]) as well as decreased URMs’ worries about confirming ethnic/racial stereotypes. STEP’s two-pronged approach—explicating the effects of structural ‘isms’ while harnessing URMs’ existing assets—shows promise in increasing diversification and equity in STEM. PMID:28835879

  3. ‘Speaking Truth’ Protects Underrepresented Minorities’ Intellectual Performance and Safety in STEM

    Directory of Open Access Journals (Sweden)

    Avi Ben-Zeev

    2017-06-01

    Full Text Available We offer and test a brief psychosocial intervention, Speaking Truth to EmPower (STEP, designed to protect underrepresented minorities’ (URMs intellectual performance and safety in science, technology, engineering, and math (STEM. STEP takes a ‘knowledge as power’ approach by: (a providing a tutorial on stereotype threat (i.e., a social contextual phenomenon, implicated in underperformance and early exit and (b encouraging URMs to use lived experiences for generating be-prepared coping strategies. Participants were 670 STEM undergraduates [URMs (Black/African American and Latina/o and non-URMs (White/European American and Asian/Asian American]. STEP protected URMs’ abstract reasoning and class grades (adjusted for grade point average [GPA] as well as decreased URMs’ worries about confirming ethnic/racial stereotypes. STEP’s two-pronged approach—explicating the effects of structural ‘isms’ while harnessing URMs’ existing assets—shows promise in increasing diversification and equity in STEM.

  4. Preparing new Earth Science teachers via a collaborative program between Research Scientists and Educators

    Science.gov (United States)

    Grcevich, Jana; Pagnotta, Ashley; Mac Low, Mordecai-Mark; Shara, Michael; Flores, Kennet; Nadeau, Patricia A.; Sessa, Jocelyn; Ustunisik, Gokce; Zirakparvar, Nasser; Ebel, Denton; Harlow, George; Webster, James D.; Kinzler, Rosamond; MacDonald, Maritza B.; Contino, Julie; Cooke-Nieves, Natasha; Howes, Elaine; Zachowski, Marion

    2015-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a innovative program designed to prepare participants to be world-class Earth Science teachers. New York State is experiencing a lack of qualified Earth Science teachers, leading in the short term to a reduction in students who successfully complete the Earth Science Regents examination, and in the long term potential reductions in the number of students who go on to pursue college degrees in Earth Science related disciplines. The MAT program addresses this problem via a collaboration between practicing research scientists and education faculty. The faculty consists of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level education experts. During the 15-month, full-time program, students participate in a residency program at local urban classrooms as well as taking courses and completing field work in astrophysics, geology, earth science, and paleontology. The program targets high-needs schools with diverse populations. We seek to encourage, stimulate interest, and inform the students impacted by our program, most of whom are from traditionally underrepresented backgrounds, about the rich possibilities for careers in Earth Science related disciplines and the intrinsic value of the subject. We report on the experience of the first and second cohorts, all of whom are now employed in full time teaching positions, and the majority in high needs schools in New York State.

  5. History and Outcomes of 50 Years of Physician-Scientist Training in Medical Scientist Training Programs.

    Science.gov (United States)

    Harding, Clifford V; Akabas, Myles H; Andersen, Olaf S

    2017-10-01

    Physician-scientists are needed to continue the great pace of recent biomedical research and translate scientific findings to clinical applications. MD-PhD programs represent one approach to train physician-scientists. MD-PhD training started in the 1950s and expanded greatly with the Medical Scientist Training Program (MSTP), launched in 1964 by the National Institute of General Medical Sciences (NIGMS) at the National Institutes of Health. MD-PhD training has been influenced by substantial changes in medical education, science, and clinical fields since its inception. In 2014, NIGMS held a 50th Anniversary MSTP Symposium highlighting the program and assessing its outcomes. In 2016, there were over 90 active MD-PhD programs in the United States, of which 45 were MSTP supported, with a total of 988 trainee slots. Over 10,000 students have received MSTP support since 1964. The authors present data for the demographic characteristics and outcomes for 9,683 MSTP trainees from 1975-2014. The integration of MD and PhD training has allowed trainees to develop a rigorous foundation in research in concert with clinical training. MSTP graduates have had relative success in obtaining research grants and have become prominent leaders in many biomedical research fields. Many challenges remain, however, including the need to maintain rigorous scientific components in evolving medical curricula, to enhance research-oriented residency and fellowship opportunities in a widening scope of fields targeted by MSTP graduates, to achieve greater racial diversity and gender balance in the physician-scientist workforce, and to sustain subsequent research activities of physician-scientists.

  6. 34 CFR 655.31 - What general selection criteria does the Secretary use?

    Science.gov (United States)

    2010-07-01

    ... underrepresented, such as— (A) Members of racial or ethnic minority groups; (B) Women; and (C) Handicapped persons... members of racial or ethnic minority groups, women, handicapped persons, and the elderly. (3) To determine...) Costs are reasonable in relation to the objectives of the project. (d) Evaluation plan. (1) The...

  7. Pressurizing the STEM Pipeline: An Expectancy-Value Theory Analysis of Youths' STEM Attitudes

    Science.gov (United States)

    Ball, Christopher; Huang, Kuo-Ting; Cotten, Shelia R.; Rikard, R. V.

    2017-01-01

    Over the past decade, there has been a strong national push to increase minority students' positive attitudes towards STEM-related careers. However, despite this focus, minority students have remained underrepresented in these fields. Some researchers have directed their attention towards improving the STEM pipeline which carries students through…

  8. The Local-Cosmopolitan Scientist

    Directory of Open Access Journals (Sweden)

    Barney G. Glaser, Ph.D., Hon. Ph.D.

    2011-12-01

    Full Text Available In contrast to previous discussions in the literature treating cosmopolitan and local as two distinct groups of scientists, this paperi demonstrates the notion of cosmopolitan and local as a dual orientation of highly motivated scientists. This dual orientation is derived from institutional motivation, which is a determinant of both high quality basic research and accomplishment of non-research organizational activities. The dual orientation arises in a context of similarity of the institutional goal of science with the goal of the organization; the distinction between groups of locals and cosmopolitans derives from a conflict between two goals.

  9. Chinese, US scientists find new particle

    CERN Multimedia

    2003-01-01

    "Chinese and US scientists have discovered a new particle at the Beijing Electron Position Collider, which is hard to be explained with any known particles, according to scientists from the Institute of High Energy Physics under the Chinese Academy of Sciences Wednesday" (1/2 page).

  10. Lower Rates of Promotion of Generalists in Academic Medicine: A Follow-up to the National Faculty Survey.

    Science.gov (United States)

    Blazey-Martin, Deborah; Carr, Phyllis L; Terrin, Norma; Breeze, Janis L; Luk, Carolyn; Raj, Anita; Freund, Karen M

    2017-07-01

    Prior cross-sectional research has found that generalists have lower rates of academic advancement than specialists and basic science faculty. Our objective was to examine generalists relative to other medical faculty in advancement and academic productivity. In 2012, we conducted a follow-up survey (n = 607) of 1214 participants in the 1995 National Faculty Survey cohort and supplemented survey responses with publicly available data. Participants were randomly selected faculty from 24 US medical schools, oversampling for generalists, underrepresented minorities, and senior women. The primary outcomes were (1) promotion to full professor and (2) productivity, as indicated by mean number of peer-reviewed publications, and federal grant support in the prior 2 years. When comparing generalists with medical specialists, surgical specialists, and basic scientists on these outcomes, we adjusted for gender, race/ethnicity, effort distribution, parental and marital status, retention in academic career, and years in academia. When modeling promotion to full professor, we also adjusted for publications. In the intervening 17 years, generalists were least likely to have become full professors (53%) compared with medical specialists (67%), surgeons (66%), and basic scientists (78%, p advancement appears to be related to their lower rate of publication.

  11. High school students as science researchers: Opportunities and challenges

    Science.gov (United States)

    Smith, W. R.; Grannas, A. M.

    2007-12-01

    Today's K-12 students will be the scientists and engineers who bring currently emerging technologies to fruition. Existing research endeavors will be continued and expanded upon in the future only if these students are adequately prepared. High school-university collaborations provide an effective means of recruiting and training the next generation of scientists and engineers. Here, we describe our successful high school-university collaboration in the context of other models. We have developed an authentic inquiry-oriented environmental chemistry research program involving high school students as researchers. The impetus behind the development of this project was twofold. First, participation in authentic research may give some of our students the experience and drive to enter technical studies after high school. One specific goal was to develop a program to recruit underrepresented minorities into university STEM (science, technology, engineering, and mathematics) programs. Second, inquiry-oriented lessons have been shown to be highly effective in developing scientific literacy among the general population of students. This collaboration involves the use of local resources and equipment available to most high schools and could serve as a model for developing high school- university partnerships.

  12. Minority engineering scholarships, 2012.

    Science.gov (United States)

    2014-02-01

    Scholarships for Minority Students Studying Engineering and Science: Support will make scholarships available to minority students : interested in engineering and science and will increase significantly the number of minority students that Missouri S...

  13. The Rehabilitation Medicine Scientist Training Program

    Science.gov (United States)

    Whyte, John; Boninger, Michael; Helkowski, Wendy; Braddom-Ritzler, Carolyn

    2016-01-01

    Physician scientists are seen as important in healthcare research. However, the number of physician scientists and their success in obtaining NIH funding have been declining for many years. The shortage of physician scientists in Physical Medicine and Rehabilitation is particularly severe, and can be attributed to many of the same factors that affect physician scientists in general, as well as to the lack of well developed models for research training. In 1995, the Rehabilitation Medicine Scientist Training Program (RMSTP) was funded by a K12 grant from the National Center of Medical Rehabilitation Research (NCMRR), as one strategy for increasing the number of research-productive physiatrists. The RMSTP's structure was revised in 2001 to improve the level of preparation of incoming trainees, and to provide a stronger central mentorship support network. Here we describe the original and revised structure of the RMSTP and review subjective and objective data on the productivity of the trainees who have completed the program. These data suggest that RMSTP trainees are, in general, successful in obtaining and maintaining academic faculty positions and that the productivity of the cohort trained after the revision, in particular, shows impressive growth after about 3 years of training. PMID:19847126

  14. Exploring Scientists' Working Timetable: A Global Survey

    OpenAIRE

    Wang, Xianwen; Peng, Lian; Zhang, Chunbo; Xu, Shenmeng; Wang, Zhi; Wang, Chuanli; Wang, Xianbing

    2013-01-01

    In our previous study (Wang et al., 2012), we analyzed scientists' working timetable of 3 countries, using realtime downloading data of scientific literatures. In this paper, we make a through analysis about global scientists' working habits. Top 30 countries/territories from Europe, Asia, Australia, North America, Latin America and Africa are selected as representatives and analyzed in detail. Regional differences for scientists' working habits exists in different countries. Besides differen...

  15. Models of Interinstitutional Partnerships between Research Intensive Universities and Minority Serving Institutions (MSI) across the Clinical Translational Science Award (CTSA) Consortium

    Science.gov (United States)

    Fair, Alecia; Norris, Keith; Verbalis, Joseph G.; Poland, Russell; Bernard, Gordon; Stephens, David S.; Dubinett, Steven M.; Imperato‐McGinley, Julianne; Dottin, Robert P.; Pulley, Jill; West, Andrew; Brown, Arleen; Mellman, Thomas A.

    2013-01-01

    Abstract Health disparities are an immense challenge to American society. Clinical and Translational Science Awards (CTSAs) housed within the National Center for Advancing Translational Science (NCATS) are designed to accelerate the translation of experimental findings into clinically meaningful practices and bring new therapies to the doorsteps of all patients. Research Centers at Minority Institutions (RCMI) program at the National Institute on Minority Health and Health Disparities (NIMHD) are designed to build capacity for biomedical research and training at minority serving institutions. The CTSA created a mechanism fostering formal collaborations between research intensive universities and minority serving institutions (MSI) supported by the RCMI program. These consortium‐level collaborations activate unique translational research approaches to reduce health disparities with credence to each academic institutions history and unique characteristics. Five formal partnerships between research intensive universities and MSI have formed as a result of the CTSA and RCMI programs. These partnerships present a multifocal approach; shifting cultural change and consciousness toward addressing health disparities, and training the next generation of minority scientists. This collaborative model is based on the respective strengths and contributions of the partnering institutions, allowing bidirectional interchange and leveraging NIH and institutional investments providing measurable benchmarks toward the elimination of health disparities. PMID:24119157

  16. The Dilemma of Scientists in the Nuclear Age

    International Nuclear Information System (INIS)

    Broda, E.

    1982-01-01

    Scientists have made possible the nuclear arms race. The cases of some of the individual scientists are discussed. Most scientists on military work were and are not only justifying their work, but they are enjoying their lives. A general strike of the military scientists against the arms race is an illusion. A pragmatic approach to the problem is need. In any case it is imperative that concerned scientists concentrate on the struggle against the threat of nuclear war. They must interact with the people at large, especially the people in the mass organizations, and help them to judge the situation and to evolve suitable countermeasures. A few words are said about the possibility of world government. (author)

  17. Scientists must speak

    National Research Council Canada - National Science Library

    Walters, D. Eric; Walters, Gale Climenson

    2011-01-01

    .... This can be a stressful experience for many. For scientists, the experience may be further complicated by the specialist nature of the data and the fact that most self-help books are aimed at business or social situations...

  18. OF MICROBES AND MEN: A SPECIAL REPORT IN THE JOURNAL FOR MINORITY MEDICAL STUDENTS

    Energy Technology Data Exchange (ETDEWEB)

    BILL BOWERS

    2008-11-12

    In support of the mission for the Office of Science and the Office of Biological and Environmental Research (BER), Spectrum Publishers proposes an editorial project to inform and educate minority undergraduate students in the sciences, minority medical students and minority medical residents of the opportunities and challenges available to them as they complete their training. This editorial project will take the form of a 32-page insert in the Journal for Minority Medical Students. The subject matter will be determined by BER based on mission requirements. The material will be compiled, assembled, edited, revised, designed, printed and distributed as a total package with a vast majority of the work performed by our staff. Our objective is to provide the special report without added (and burdensome) work to the BER staff. The 32-page report will be distributed to our readership of 10,000 future scientists and physicians. In addition, we will prepare the insert so that it can also be used by BER as a stand-alone piece and outreach tool. After publication, we will solicit feedback from our readers through our unique Campus Rep Program of students strategically located on campuses across the nation who will provide valuable editorial feedback. This innovative program will give BER a quick read on the effectiveness of its message. The total cost for this mission-related project is only $30,000.00. Based on our earlier experience with DOE, we are confident that this level of funding will be sufficient to develop an effective educational campaign.

  19. The Value of Understanding Indigenous Thinking in the Geosciences: The Understudied Genius of Hawaiian Schoolchildren

    Science.gov (United States)

    Slater, S. J.; Dye, A.; Veincent, L.; Slater, T. F.; CenterAstronomy; Physics Education Research

    2011-12-01

    The national effort to describe the "learning progressions" that students undertake as they come to master the Big Ideas of science has evolved into a machine that is making a great deal of motion, but that may not actually be taking us into new territory. The original vision of thoughtful, long-term collaborations between scientists, anthropologists, linguists, and other who could shed new light on students' science learning has been replaced by a research agenda that sounds rigorous, but may or may not provide new insight. Moreover, there is little evidence that the learning pathways of under-represented populations are being taken into account in this work, even though these are the very students that were intended to benefit from potential learning progression-driven curricular changes. Our observations of a sample of Native Hawaiian elementary school children indicate that their particular scientific strengths provide sufficient cause to slow the engines of the learning progressions movement to allow for careful research into the thinking of underrepresented populations. This paper presents preliminary results of our mixed methods analysis of interviews and artifacts related to K-2 students' understanding of the celestial sphere. Our findings indicate that contrary to all previous research and rationale tasks analyses, these students possess full mastery of the constellations, starlines, right ascension and declination within the celestial sphere, and can generatively use this knowledge. This knowledge is flexible to include two culture's starmaps and languages. This study suggests that in order to respond to the needs of underrepresented minorities, further research across indigenous populations is warranted prior to the nationalization of learning progression-based curriculum materials.

  20. Team-Based Learning in a Pipeline Course in Medical Microbiology for Under-Represented Student Populations in Medicine Improves Learning of Microbiology Concepts.

    Science.gov (United States)

    Behling, K C; Murphy, M M; Mitchell-Williams, J; Rogers-McQuade, H; Lopez, O J

    2016-12-01

    As part of an undergraduate pipeline program at our institution for students from underrepresented minorities in medicine backgrounds, we created an intensive four-week medical microbiology course. Team-based learning (TBL) was implemented in this course to enhance student learning of course content. Three different student cohorts participated in the study, and there were no significant differences in their prior academic achievement based on their undergraduate grade point average (GPA) and pre-course examination scores. Teaching techniques included engaged lectures using an audience response system, TBL, and guided self-directed learning. We hypothesized that more active learning exercises, irrespective of the amount of lecture time, would help students master course content. In year 2 as compared with year 1, TBL exercises were decreased from six to three with a concomitant increase in lecture time, while in year 3, TBL exercises were increased from three to six while maintaining the same amount of lecture time as in year 2. As we hypothesized, there was significant ( p < 0.01) improvement in performance on the post-course examination in years 1 and 3 compared with year 2, when only three TBL exercises were used. In contrast to the students' perceptions that more lecture time enhances learning of course content, our findings suggest that active learning strategies, such as TBL, are more effective than engaged lectures in improving student understanding of course content, as measured by post-course examination performance. Introduction of TBL in pipeline program courses may help achieve better student learning outcomes.

  1. Team-Based Learning in a Pipeline Course in Medical Microbiology for Under-Represented Student Populations in Medicine Improves Learning of Microbiology Concepts

    Directory of Open Access Journals (Sweden)

    Kathryn C. Behling

    2016-12-01

    Full Text Available As part of an undergraduate pipeline program at our institution for students from underrepresented minorities in medicine backgrounds, we created an intensive four-week medical microbiology course. Team-based learning (TBL was implemented in this course to enhance student learning of course content. Three different student cohorts participated in the study, and there were no significant differences in their prior academic achievement based on their undergraduate grade point average (GPA and pre-course examination scores. Teaching techniques included engaged lectures using an audience response system, TBL, and guided self-directed learning. We hypothesized that more active learning exercises, irrespective of the amount of lecture time, would help students master course content. In year 2 as compared with year 1, TBL exercises were decreased from six to three with a concomitant increase in lecture time, while in year 3, TBL exercises were increased from three to six while maintaining the same amount of lecture time as in year 2. As we hypothesized, there was significant (p < 0.01 improvement in performance on the post-course examination in years 1 and 3 compared with year 2, when only three TBL exercises were used. In contrast to the students’ perceptions that more lecture time enhances learning of course content, our findings suggest that active learning strategies, such as TBL, are more effective than engaged lectures in improving student understanding of course content, as measured by post-course examination performance. Introduction of TBL in pipeline program courses may help achieve better student learning outcomes.

  2. Building the Next Generation of Earth Scientists: the Deep Carbon Observatory Early Career Scientist Workshops

    Science.gov (United States)

    Pratt, K.; Fellowes, J.; Giovannelli, D.; Stagno, V.

    2016-12-01

    Building a network of collaborators and colleagues is a key professional development activity for early career scientists (ECS) dealing with a challenging job market. At large conferences, young scientists often focus on interacting with senior researchers, competing for a small number of positions in leading laboratories. However, building a strong, international network amongst their peers in related disciplines is often as valuable in the long run. The Deep Carbon Observatory (DCO) began funding a series of workshops in 2014 designed to connect early career researchers within its extensive network of multidisciplinary scientists. The workshops, by design, are by and for early career scientists, thus removing any element of competition and focusing on peer-to-peer networking, collaboration, and creativity. The successful workshops, organized by committees of early career deep carbon scientists, have nucleated a lively community of like-minded individuals from around the world. Indeed, the organizers themselves often benefit greatly from the leadership experience of pulling together an international workshop on budget and on deadline. We have found that a combination of presentations from all participants in classroom sessions, professional development training such as communication and data management, and field-based relationship building and networking is a recipe for success. Small groups within the DCO ECS network have formed; publishing papers together, forging new research directions, and planning novel and ambitious field campaigns. Many DCO ECS also have come together to convene sessions at major international conferences, including the AGU Fall Meeting. Most of all, there is a broad sense of camaraderie and accessibility within the DCO ECS Community, providing the foundation for a career in the new, international, and interdisciplinary field of deep carbon science.

  3. Scientists' Prioritization of Communication Objectives for Public Engagement.

    Directory of Open Access Journals (Sweden)

    Anthony Dudo

    Full Text Available Amid calls from scientific leaders for their colleagues to become more effective public communicators, this study examines the objectives that scientists' report drive their public engagement behaviors. We explore how scientists evaluate five specific communication objectives, which include informing the public about science, exciting the public about science, strengthening the public's trust in science, tailoring messages about science, and defending science from misinformation. We use insights from extant research, the theory of planned behavior, and procedural justice theory to identify likely predictors of scientists' views about these communication objectives. Results show that scientists most prioritize communication designed to defend science from misinformation and educate the public about science, and least prioritize communication that seeks to build trust and establish resonance with the public. Regression analyses reveal factors associated with scientists who prioritize each of the five specific communication objectives. Our findings highlight the need for communication trainers to help scientists select specific communication objectives for particular contexts and audiences.

  4. 34 CFR 642.31 - Selection criteria the Secretary uses.

    Science.gov (United States)

    2010-07-01

    ... as— (A) Members of racial or ethnic minority groups; (B) Women; (C) Handicapped persons; and (D) The... underrepresented, such as— (A) Members of racial or ethnic minority groups; (B) Women; (C) Handicapped persons; and... support the project activities; and (ii) Costs are reasonable in relation to the objectives of the project...

  5. INSPIRED High School Computing Academies

    Science.gov (United States)

    Doerschuk, Peggy; Liu, Jiangjiang; Mann, Judith

    2011-01-01

    If we are to attract more women and minorities to computing we must engage students at an early age. As part of its mission to increase participation of women and underrepresented minorities in computing, the Increasing Student Participation in Research Development Program (INSPIRED) conducts computing academies for high school students. The…

  6. University of New Mexico Undergraduate Breast Cancer Training Program: Pathway to Research Careers

    National Research Council Canada - National Science Library

    Griffith, Jeffrey

    2003-01-01

    We have established a three-phase training program to motivate talented undergraduate students, especially students from under-represented southwester minorities, to pursue careers in breast cancer research...

  7. University of New Mexico Undergraduate Breast Cancer Training Program: Pathway to Research Careers

    National Research Council Canada - National Science Library

    Griffith, Jeffrey K

    2005-01-01

    We have established a three-phase training program to motivate talented undergraduate students, especially students from under-represented Southwestern minorities, to pursue careers in breast cancer research...

  8. Improving Communication Skills in Early Career Scientists

    Science.gov (United States)

    Saia, S. M.

    2013-12-01

    The AGU fall meeting is a time for scientists to share what we have been hard at work on for the past year, to share our trials and tribulations, and of course, to share our science (we hope inspirational). In addition to sharing, the AGU fall meeting is also about collaboration as it brings old and new colleagues together from diverse communities across the planet. By sharing our ideas and findings, we build new relationships with the potential to cross boundaries and solve complex and pressing environmental issues. With ever emerging and intensifying water scarcity, extreme weather, and water quality issues across the plant, it is especially important that scientists like us share our ideas and work together to put these ideas into action. My vision of the future of water sciences embraces this fact. I believe that better training is needed to help early career scientists, like myself, build connections within and outside of our fields. First and foremost, more advanced training in effective storytelling concepts and themes may improve our ability to provide context for our research. Second, training in the production of video for internet-based media (e.g. YouTube) may help us bring our research to audiences in a more personalized way. Third, opportunities to practice presenting at highly visible public events such as the AGU fall meeting, will serve to prepare early career scientists for a variety of audiences. We hope this session, ';Water Sciences Pop-Ups', will provide the first steps to encourage and train early career scientists as they share and collaborate with scientists and non-scientists around the world.

  9. Scientists want more children.

    Science.gov (United States)

    Ecklund, Elaine Howard; Lincoln, Anne E

    2011-01-01

    Scholars partly attribute the low number of women in academic science to the impact of the science career on family life. Yet, the picture of how men and women in science--at different points in the career trajectory--compare in their perceptions of this impact is incomplete. In particular, we know little about the perceptions and experiences of junior and senior scientists at top universities, institutions that have a disproportionate influence on science, science policy, and the next generation of scientists. Here we show that having fewer children than wished as a result of the science career affects the life satisfaction of science faculty and indirectly affects career satisfaction, and that young scientists (graduate students and postdoctoral fellows) who have had fewer children than wished are more likely to plan to exit science entirely. We also show that the impact of science on family life is not just a woman's problem; the effect on life satisfaction of having fewer children than desired is more pronounced for male than female faculty, with life satisfaction strongly related to career satisfaction. And, in contrast to other research, gender differences among graduate students and postdoctoral fellows disappear. Family factors impede talented young scientists of both sexes from persisting to research positions in academic science. In an era when the global competitiveness of US science is at risk, it is concerning that a significant proportion of men and women trained in the select few spots available at top US research universities are considering leaving science and that such desires to leave are related to the impact of the science career on family life. Results from our study may inform university family leave policies for science departments as well as mentoring programs in the sciences.

  10. Scientists want more children.

    Directory of Open Access Journals (Sweden)

    Elaine Howard Ecklund

    Full Text Available Scholars partly attribute the low number of women in academic science to the impact of the science career on family life. Yet, the picture of how men and women in science--at different points in the career trajectory--compare in their perceptions of this impact is incomplete. In particular, we know little about the perceptions and experiences of junior and senior scientists at top universities, institutions that have a disproportionate influence on science, science policy, and the next generation of scientists. Here we show that having fewer children than wished as a result of the science career affects the life satisfaction of science faculty and indirectly affects career satisfaction, and that young scientists (graduate students and postdoctoral fellows who have had fewer children than wished are more likely to plan to exit science entirely. We also show that the impact of science on family life is not just a woman's problem; the effect on life satisfaction of having fewer children than desired is more pronounced for male than female faculty, with life satisfaction strongly related to career satisfaction. And, in contrast to other research, gender differences among graduate students and postdoctoral fellows disappear. Family factors impede talented young scientists of both sexes from persisting to research positions in academic science. In an era when the global competitiveness of US science is at risk, it is concerning that a significant proportion of men and women trained in the select few spots available at top US research universities are considering leaving science and that such desires to leave are related to the impact of the science career on family life. Results from our study may inform university family leave policies for science departments as well as mentoring programs in the sciences.

  11. Scientists Involved in K-12 Education

    Science.gov (United States)

    Robigou, V.

    2004-12-01

    The publication of countless reports documenting the dismal state of science education in the 1980s, and the Third International Mathematics and Science Study (TIMMS) report (1996) called for a wider involvement of the scientific community in K-12 education and outreach. Improving science education will not happen without the collaboration of educators and scientists working in a coordinated manner and it requires a long-term, continuous effort. To contribute effectively to K-12 education all scientists should refer to the National Science Education Standards, a set of policies that guide the development of curriculum and assessment. Ocean scientists can also specifically refer to the COSEE recommendations (www.cosee.org) that led to the creation of seven regional Centers for Ocean Sciences Education Excellence. Scientists can get involved in K-12 education in a multitude of ways. They should select projects that will accommodate time away from their research and teaching obligations, their talent, and their interest but also contribute to the education reform. A few examples of effective involvement are: 1) collaborating with colleagues in a school of education that can lead to better education of all students and future teachers, 2) acting as a resource for a national program or a local science fair, 3) serving on the advisory board of a program that develops educational material, 4) speaking out at professional meetings about the value of scientists' involvement in education, 5) speaking enthusiastically about the teaching profession. Improving science education in addition to research can seem a large, overwhelming task for scientists. As a result, focusing on projects that will fit the scientist's needs as well as benefit the science reform is of prime importance. It takes an enormous amount of work and financial and personnel resources to start a new program with measurable impact on students. So, finding the right opportunity is a priority, and stepping

  12. Development and Field Test of the Modified Draw-a-Scientist Test and the Draw-a-Scientist Rubric

    Science.gov (United States)

    Farland-Smith, Donna

    2012-01-01

    Even long before children are able to verbalize which careers may be interesting to them, they collect and store ideas about scientists. For these reasons, asking children to draw a scientist has become an accepted method to provide a glimpse into how children represent and identify with those in the science fields. Years later, these…

  13. First record of Molorchus minor minor (Linnaeus (Coleoptera, Cerambycidae in Brazil

    Directory of Open Access Journals (Sweden)

    Ubirajara R. Martins

    2015-03-01

    Full Text Available Molorchus minor minor (Linnaeus (Coleoptera, Cerambycidae is recorded for the first time in Brazil (Bahia. It was originally described from Europe and is currently widely distributed in that continent and Asia.

  14. The Trojan minor planets

    Science.gov (United States)

    Spratt, Christopher E.

    1988-08-01

    There are (March, 1988) 3774 minor planets which have received a permanent number. Of these, there are some whose mean distance to the sun is very nearly equal to that of Jupiter, and whose heliocentric longitudes from that planet are about 60°, so that the three bodies concerned (sun, Jupiter, minor planet) make an approximate equilateral triangle. These minor planets, which occur in two distinct groups, one preceding Jupiter and one following, have received the names of the heroes of the Trojan war. This paper concerns the 49 numbered minor planets of this group.

  15. Effective Recruiting and Intrusive Retention Strategies for Diversifying the Geosciences through a Research Experiences for Undergraduate Program

    Science.gov (United States)

    Liou-Mark, J.; Blake, R.; Norouzi, H.; Yuen-Lau, L.; Ikramova, M.

    2016-12-01

    Worse than in most Science, Technology, Engineering, and Mathematics (STEM) fields, underrepresented minority (URM) groups in the geosciences are reported to be farthest beneath the national benchmarks. Even more alarming, the geosciences have the lowest diversity of all the STEM disciplines at all three levels of higher education. In order to increase the number of underrepresented groups in the geosciences, a National Science Foundation funded Research Experiences for Undergraduates (REU) program at the New York City College of Technology has implemented effective recruitment strategies to attract and retain diverse student cohorts. Recruitment efforts include: 1) establishing partnership with the local community colleges; 2) forging collaborations with scientists of color; 3) reaching out to the geoscience departments; and 4) forming relationships with STEM organizations. Unlike the other REU programs which primarily provide a summer-only research experience, this REU program engages students in a year-long research experience. Students begin their research in the summer for nine weeks, and they continue their research one day a week in the fall and spring semesters. During the academic year, they present their projects at conferences. They also serve as STEM ambassadors to community and high school outreach events. This one-year triad connection of 1) professional organizations/conferences, 2) continual research experience, and 3) service constituent has resulted in higher retention and graduation rates of URMs in the STEM disciplines. Both formative and summative program assessment have uncovered and shown that strong recruitment efforts accompanied by intrusive retention strategies are essential to: a) sustain and support STEM URMs in developing confidence as scientists; b) create formal and informal STEM communities; and c) provide a clear pathway to advanced degrees and to the geoscience workforce. This project is supported by NSF REU Grant #1560050.

  16. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Information Optical Illusions Printables Ask a Scientist Video Series Why can’t you see colors well in ... and more with our Ask a Scientist video series. Dr. Sheldon Miller answers questions about color blindness, ...

  17. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Ask a Scientist Video Series Listen All About Vision About the Eye Ask a Scientist Video Series ... Eye Health and Safety First Aid Tips Healthy Vision Tips Protective Eyewear Sports and Your Eyes Fun ...

  18. Minorities in Iran

    DEFF Research Database (Denmark)

    Elling, Rasmus Christian

    Contrary to the popular understanding of Iran as a Persian nation, half of the country's population consists of minorities, among whom there has been significant ethnic mobilization at crucial stages in Iranian history. One such stage is now: suppressed minority demands, identity claims, and deba......Contrary to the popular understanding of Iran as a Persian nation, half of the country's population consists of minorities, among whom there has been significant ethnic mobilization at crucial stages in Iranian history. One such stage is now: suppressed minority demands, identity claims......, and debates on diversity have entered public discourse and politics. In 2005–2007, Iran was rocked by the most widespread ethnic unrest experienced in that country since the revolution. The same period was also marked by the re-emergence of nationalism. This interdisciplinary book takes a long-overdue step...

  19. The California-Arizona Minority Partnership for Astronomy Research and Education (CAMPARE): an Educational Experience for Undergraduates at the University of Arizona Alumni Association's Astronomy Camp.

    Science.gov (United States)

    Lemon, Courtney; McCarthy, D.; Rudolph, A.

    2011-01-01

    The California-Arizona Minority Partnership for Astronomy Research and Education (CAMPARE) is an NSF-funded partnership between the Astronomy Program at Cal Poly Pomona (CPP) and the University of Arizona Steward Observatory designed to promote participation of underrepresented minorities (including women) in astronomy research and education. As part of the education component of the program, CPP undergraduate physics majors and minors are eligible to work as a counselor at the University of Arizona's Astronomy Camp, one of the premier astronomy outreach opportunities in the world. CAMPARE students have the opportunity to work in this learn-by-doing environment with a wide range of students to gain first hand experience of teaching astronomy to students of a wide variety of ages in highly structured educational setting. Cal Poly Pomona students who are interested in education, both formal and informal, work in a variety of camps, from Girl Scout camps to camps for advanced high school students, to further their understanding of what it means to be a professional in the field of education. The CAMPARE student who participated in this program during summer 2010 had the opportunity to work under Dr. Don McCarthy, camp director of University of Arizona's Astronomy Camps for 20 years, and observe the interpersonal relations between campers and staff that is so vital to the learning the students receive. Through these observations, the CAMPARE student was able to learn to gauge students' interest in the material, and experience real life teaching and learning scenarios in the informal education realm.

  20. Managing scientists leadership strategies in research and development

    CERN Document Server

    Sapienza, Alice M

    1995-01-01

    Managing Scientists Leadership Strategies in Research and Development Alice M. Sapienza "I found ...this book to be exciting ...Speaking as someone who has spent 30 years grappling with these issues, I certainly would be a customer." -Robert I. Taber, PhD Senior Vice President of Research & Development Synaptic Pharmaceutical Corporation In today's climate of enormous scientific and technologic competition, it is more crucial than ever that scientists involved in research and development be managed well. Often trained as individual researchers, scientists can find integration into teams difficult. Managers, from both scientific and nonscientific backgrounds, who are responsible for these teams frequently find effective team building a long and challenging process. Managing Scientists offers strategies for fostering communication and collaboration among scientists. It shows how to build cohesive, productive, and focused teams to succeed in the competitive research and development marketplace. This book wil...

  1. Navigating the transition to college: First-generation undergraduates negotiate identities and search for success in STEM and non-STEM fields

    Science.gov (United States)

    Mussey, Season Shelly

    2009-12-01

    Historically, racial and ethnic minority students from low income backgrounds have faced unequal access to colleges and universities. Recently, both K-12 and higher education institutions, specifically the University of California, in response to Proposition 209, have made efforts to increase access and opportunities for all students. Similarly, female minority students are underrepresented in selected science, technology, engineering and math (STEM) majors and careers. Using a qualitative research design, this study investigates how first generation, low income, underrepresented minority students who graduated from an innovative college preparatory high school enact coping strategies that they were explicitly taught to achieve success within the context of university science and math courses. The presence of a unique, college-prep high school on the campus of UC San Diego, which accepts exclusively low-income students through a randomized lottery system, creates an unusual opportunity to study the transition from high school to college for this population, a cohort of underrepresented students who were taught similar academic coping strategies for success in college. This study aims to understand how students develop their college-going, academic identities within the context of their colleges and universities. Furthermore, this study intends to understand the phenomenon of "transition to college" as a lived experience of first-generation, low income, minority students, who all share a similar college preparatory, high school background. The main research questions are: (1) How do underrepresented students experience the transition from a college preparatory high school to college? (2) How are students developing their college-going, academic identities in the context of their educational institutions? and (3) What factors support or constrain student participation and success in college science courses? Twenty-eight students participated in this study. Based on

  2. Education and Outreach: Advice to Young Scientists

    Science.gov (United States)

    Lopes, R. M. C.

    2005-08-01

    Carl Sagan set an example to all scientists when he encouraged us to reach out to the public and share the excitement of discovery and exploration. The prejudice that ensued did not deter Sagan and, with the passing of years, more and more scientists have followed his example. Although at present scientists at all ranks are encouraged by their institutions to do outreach, the balancing of a successful scientific career with teaching and outreach is often not an easy one. Young scientists, in particular, may worry about how their outreach efforts are viewed in the community and how they will find the time and energy for these efforts. This talk will offer suggestions on how to balance an active science research program with outreach activities, the many different ways to engage in education and public outreach, and how the rewards are truly priceless.

  3. Women Young Scientists of INSA | Women in Science | Initiatives ...

    Indian Academy of Sciences (India)

    Home; Initiatives; Women in Science; Women Young Scientists of INSA. Women Young Scientists of INSA. INSA - Indian National Science Academy .... Charusita Chakravarty, one of the stars of our community of women scientists, at a young ...

  4. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Stuff Cool Eye Tricks Links to More Information Optical Illusions Printables Ask a Scientist Video Series Why can’ ... a scientist? Click to Watch What is an optical illusion? Click to Watch What is color blindness? Click ...

  5. A day of immersive physiology experiments increases knowledge and excitement towards physiology and scientific careers in Native American students.

    Science.gov (United States)

    Becker, Bryan K; Schiller, Alicia M; Zucker, Irving H; Eager, Eric A; Bronner, Liliana P; Godfrey, Maurice

    2017-03-01

    Underserved minority groups are disproportionately absent from the pursuit of careers in science, technology, engineering, and mathematics (STEM) fields. One such underserved population, Native Americans, are particularly underrepresented in STEM fields. Although recent advocacy and outreach designed toward increasing minority involvement in health care-related occupations have been mostly successful, little is known about the efficacy of outreach programs in increasing minority enthusiasm toward careers in traditional scientific professions. Furthermore, very little is known about outreach among Native American schools toward increasing involvement in STEM. We collaborated with tribal middle and high schools in South Dakota and Nebraska through a National Institutes of Health Science Education Partnership Award to hold a day-long physiology, activity-based event to increase both understanding of physiology and enthusiasm to scientific careers. We recruited volunteer biomedical scientists and trainees from the University of Nebraska Medical Center, Nebraska Wesleyan University, and University of South Dakota. To evaluate the effectiveness of the day of activities, 224 of the ~275-300 participating students completed both a pre- and postevent evaluation assessment. We observed increases in both students self-perceived knowledge of physiology and enthusiasm toward scientific career opportunities after the day of outreach activities. We conclude that activity-based learning opportunities in underserved populations are effective in increasing both knowledge of science and interest in scientific careers. Copyright © 2017 the American Physiological Society.

  6. Barriers and Perceptions of Natural Resource Careers by Minority Students

    Science.gov (United States)

    Haynes, Nia A.; Jacobson, Susan

    2015-01-01

    Using a framework based on social cognitive career theory, we conducted 38 interviews and four focus groups with college students to identify motivations and barriers faced by underrepresented groups to natural resource careers. Interviews revealed career satisfaction as the most important goal for both natural resource and a comparison of liberal…

  7. Future goal setting, task motivation and learning of minority and non-minority students in Dutch schools.

    Science.gov (United States)

    Andriessen, Iris; Phalet, Karen; Lens, Willy

    2006-12-01

    Cross-cultural research on minority school achievement yields mixed findings on the motivational impact of future goal setting for students from disadvantaged minority groups. Relevant and recent motivational research, integrating Future Time Perspective Theory with Self-Determination Theory, has not yet been validated among minority students. To replicate across cultures the known motivational benefits of perceived instrumentality and internal regulation by distant future goals; to clarify when and how the future motivates minority students' educational performance. Participants in this study were 279 minority students (100 of Turkish and 179 of Moroccan origin) and 229 native Dutch students in Dutch secondary schools. Participants rated the importance of future goals, their perceptions of instrumentality, their task motivation and learning strategies. Dependent measures and their functional relations with future goal setting were simultaneously validated across minority and non-minority students, using structural equation modelling in multiple groups. As expected, Positive Perceived Instrumentality for the future increases task motivation and (indirectly) adaptive learning of both minority and non-minority students. But especially internally regulating future goals are strongly related to more task motivation and indirectly to more adaptive learning strategies. Our findings throw new light on the role of future goal setting in minority school careers: distant future goals enhance minority and non-minority students' motivation and learning, if students perceive positive instrumentality and if their schoolwork is internally regulated by future goals.

  8. Increasing both the public health potential of basic research and the scientist satisfaction. An international survey of bio-scientists.

    Science.gov (United States)

    Sorrentino, Carmen; Boggio, Andrea; Confalonieri, Stefano; Hemenway, David; Scita, Giorgio; Ballabeni, Andrea

    2016-01-01

    Basic scientific research generates knowledge that has intrinsic value which is independent of future applications. Basic research may also lead to practical benefits, such as a new drug or diagnostic method. Building on our previous study of basic biomedical and biological researchers at Harvard, we present findings from a new survey of similar scientists from three countries. The goal of this study was to design policies to enhance both the public health potential and the work satisfaction and test scientists' attitudes towards these factors. The present survey asked about the scientists' motivations, goals and perspectives along with their attitudes concerning  policies designed to increase both the practical (i.e. public health) benefits of basic research as well as their own personal satisfaction. Close to 900 basic investigators responded to the survey; results corroborate the main findings from the previous survey of Harvard scientists. In addition, we find that most bioscientists disfavor present policies that require a discussion of the public health potential of their proposals in grants but generally favor softer policies aimed at increasing the quality of work and the potential practical benefits of basic research. In particular, bioscientists are generally supportive of those policies entailing the organization of more meetings between scientists and the general public, the organization of more academic discussion about the role of scientists in the society, and the implementation of a "basic bibliography" for each new approved drug.

  9. Scientists, government, and nuclear power

    International Nuclear Information System (INIS)

    Katz, J.E.

    1982-01-01

    Scientists in less-developed countries (LDCs) that undertake nuclear programs become involved in political decisions on manpower and resource allocations that will preclude other options. Controversy over the adoption of sophisticated technology has put those who see science as the servant of society in conflict with those who see the pursuit of science as a social service. The role model which LDC scientists present in this issue has given them increasing power, which can be either in accord with or in conflict with the perceived national interest. 29 references

  10. Sexual Minority Stressors, Internalizing Symptoms, and Unhealthy Eating Behaviors in Sexual Minority Youth

    Science.gov (United States)

    Katz-Wise, Sabra L.; Calzo, Jerel P.; Scherer, Emily A.; Sarda, Vishnudas; Jackson, Benita; Haines, Jess; Austin, S. Bryn

    2015-01-01

    Background Sexual minorities are more likely than heterosexuals to engage in unhealthy eating behaviors. Purpose To examine sexual minority stressors and internalizing symptoms as predictors of unhealthy eating behaviors among sexual minority youth. Methods We used longitudinal data from 1461 sexual minority youth in the Growing Up Today Study, across ages 14-28 years. We hypothesized that sexual minority stressors would predict unhealthy eating behaviors, in part due to internalizing symptoms. Linear regression models fit via generalized estimating equations were stratified by gender and sexual orientation. Results Significant positive and inverse associations between stressors and eating behaviors were detected among females and males, with more significant associations among females. Associations were attenuated by up to 71% for females and 12% for males when internalizing symptoms were added to the models. Conclusions Sexual minority stressors predicted unhealthy eating behaviors overall and more so for some sexual orientation and gender groups; associations were partially explained by internalizing symptoms. The conceptual model appears to best describe the experiences of bisexual females. Findings have clinical implications for adolescent health. PMID:26156678

  11. Scientists' Perceptions of Communicating During Crises

    Science.gov (United States)

    Dohaney, J. A.; Hudson-Doyle, E.; Brogt, E.; Wilson, T. M.; Kennedy, B.

    2015-12-01

    To further our understanding of how to enhance student science and risk communication skills in natural hazards and earth science courses, we conducted a pilot study to assess the different perceptions of expert scientists and risk communication practitioners versus the perceptions of students. These differences will be used to identify expert views on best practice, and improve the teaching of communication skills at the University level. In this pilot study, a perceptions questionnaire was developed and validated. Within this, respondents (geoscientists, engineers, and emergency managers; n=44) were asked to determine their agreement with the use and effectiveness of specific communication strategies (within the first 72 hours after a devastating earthquake) when communicating to the public. In terms of strategies and information to the public, the respondents were mostly in agreement, but there were several statements which elicited large differences between expert responses: 1) the role and purpose of the scientific communication during crises (to persuade people to care, to provide advice, to empower people to take action); 2) the scientist's delivery (showing the scientists emotions and enthusiasm for scientific concepts they are discussing); and 3) the amount of data that is discussed (being comprehensive versus 'only the important' data). The most disagreed upon dimension was related to whether to disclose any political influence on the communication. Additionally, scientists identified that being an effective communicator was an important part of their job, and agreed that it is important to practice these skills. Respondents generally indicated that while scientists should be accountable for the science advice provided, they should not be held liable.

  12. Photonics4All Crossword: Light Scientist

    OpenAIRE

    Dr. Adam, Aurèle

    2015-01-01

    Photonics4All developed the quiz “The Optics Scientist“. It tests our knowledge regarding famous people in optics & photonics. 14 famous scientists you should know, if you consider yourself a photoncis experts, are presented! For instance: Do you know the Dutch scientist who lived in Delft and invented the microscope? …find our more & test yourself, your friends, co-workers, students or family members!

  13. Women scientists reflections, challenges, and breaking boundaries

    CERN Document Server

    Hargittai, Magdolna

    2015-01-01

    Magdolna Hargittai uses over fifteen years of in-depth conversation with female physicists, chemists, biomedical researchers, and other scientists to form cohesive ideas on the state of the modern female scientist. The compilation, based on sixty conversations, examines unique challenges that women with serious scientific aspirations face. In addition to addressing challenges and the unjustifiable underrepresentation of women at the higher levels of academia, Hargittai takes a balanced approach by discussing how some of the most successful of these women have managed to obtain professional success and personal happiness. Women Scientists portrays scientists from different backgrounds, different geographical regions-eighteen countries from four continents-and leaders from a variety of professional backgrounds, including eight Nobel laureate women. The book is divided into three sections: "Husband and Wife Teams," "Women at the Top," and "In High Positions." Hargittai uses her own experience to introduce her fi...

  14. Scientist Spotlight Homework Assignments Shift Students' Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class

    Science.gov (United States)

    Schinske, Jeffrey N.; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments ("Scientist Spotlights") that featured counterstereotypical…

  15. Minority workers or minority human beings? A European dilemma

    Science.gov (United States)

    Skutnabb-Kangas, Tove; Phillipson, Robert

    1996-07-01

    "European" identities may be politonymic, toponymic, ethnomyic or linguonymic (Bromley 1984). Each dimension may affect whether migrant minorities are treated as "European", and influence their schooling, integration and rights. Treatment and terminology vary in different states and periods of migration. However, the position for immigrated minorities is that they are still largely seen as workers rather than human beings with equal rights. Lack of success in schools is blamed on the migrants themselves rather than the educational system. This construction of migrants as being deficient is parallel to educational practice which falls within a UN definition of linguistic genocide, and contributes to mis-education. If current efforts in international bodies to codify educational linguistic human rights were to lead to greater support for minorities, this could assist in a redefinition of national identities and a reduction of racism and conflict.

  16. Improving adolescent and young adult health - training the next generation of physician scientists in transdisciplinary research.

    Science.gov (United States)

    Emans, S Jean; Austin, S Bryn; Goodman, Elizabeth; Orr, Donald P; Freeman, Robert; Stoff, David; Litt, Iris F; Schuster, Mark A; Haggerty, Robert; Granger, Robert; Irwin, Charles E

    2010-02-01

    To address the critical shortage of physician scientists in the field of adolescent medicine, a conference of academic leaders and representatives from foundations, National Institutes of Health, Maternal and Child Health Bureau, and the American Board of Pediatrics was convened to discuss training in transdisciplinary research, facilitators and barriers of successful career trajectories, models of training, and mentorship. The following eight recommendations were made to improve training and career development: incorporate more teaching and mentoring on adolescent health research in medical schools; explore opportunities and electives to enhance clinical and research training of residents in adolescent health; broaden educational goals for Adolescent Medicine fellowship research training and develop an intensive transdisciplinary research track; redesign the career pathway for the development of faculty physician scientists transitioning from fellowship to faculty positions; expand formal collaborations between Leadership Education in Adolescent Health/other Adolescent Medicine Fellowship Programs and federal, foundation, and institutional programs; develop research forums at national meetings and opportunities for critical feedback and mentoring across programs; educate Institutional Review Boards about special requirements for high quality adolescent health research; and address the trainee and faculty career development issues specific to women and minorities to enhance opportunities for academic success. Copyright 2010 Society for Adolescent Medicine. All rights reserved.

  17. Minorities and Malnutrition.

    Science.gov (United States)

    Kornegay, Francis A.

    Various aspects of the relationship between minorities and malnutrition are discussed in this brief paper. Malnutrition, one of the byproducts of low economic status, is creating a crisis-proportion health problem affecting minority citizens. Malnutrition seriously affects children, older people in poverty, and chronically unemployed or…

  18. Exploring the Potential of Using Stories about Diverse Scientists and Reflective Activities to Enrich Primary Students' Images of Scientists and Scientific Work

    Science.gov (United States)

    Sharkawy, Azza

    2012-01-01

    The purpose of this qualitative study was to explore the potential of using stories about diverse scientists to broaden primary students' images of scientists and scientific work. Stories featuring scientists from diverse socio-cultural backgrounds (i.e., physical ability, gender, ethnicity) were presented to 11 grade one students over a 15-week…

  19. Assessing scientists for hiring, promotion, and tenure.

    Science.gov (United States)

    Moher, David; Naudet, Florian; Cristea, Ioana A; Miedema, Frank; Ioannidis, John P A; Goodman, Steven N

    2018-03-01

    Assessment of researchers is necessary for decisions of hiring, promotion, and tenure. A burgeoning number of scientific leaders believe the current system of faculty incentives and rewards is misaligned with the needs of society and disconnected from the evidence about the causes of the reproducibility crisis and suboptimal quality of the scientific publication record. To address this issue, particularly for the clinical and life sciences, we convened a 22-member expert panel workshop in Washington, DC, in January 2017. Twenty-two academic leaders, funders, and scientists participated in the meeting. As background for the meeting, we completed a selective literature review of 22 key documents critiquing the current incentive system. From each document, we extracted how the authors perceived the problems of assessing science and scientists, the unintended consequences of maintaining the status quo for assessing scientists, and details of their proposed solutions. The resulting table was used as a seed for participant discussion. This resulted in six principles for assessing scientists and associated research and policy implications. We hope the content of this paper will serve as a basis for establishing best practices and redesigning the current approaches to assessing scientists by the many players involved in that process.

  20. Assessing scientists for hiring, promotion, and tenure

    Science.gov (United States)

    Naudet, Florian; Cristea, Ioana A.; Miedema, Frank; Ioannidis, John P. A.; Goodman, Steven N.

    2018-01-01

    Assessment of researchers is necessary for decisions of hiring, promotion, and tenure. A burgeoning number of scientific leaders believe the current system of faculty incentives and rewards is misaligned with the needs of society and disconnected from the evidence about the causes of the reproducibility crisis and suboptimal quality of the scientific publication record. To address this issue, particularly for the clinical and life sciences, we convened a 22-member expert panel workshop in Washington, DC, in January 2017. Twenty-two academic leaders, funders, and scientists participated in the meeting. As background for the meeting, we completed a selective literature review of 22 key documents critiquing the current incentive system. From each document, we extracted how the authors perceived the problems of assessing science and scientists, the unintended consequences of maintaining the status quo for assessing scientists, and details of their proposed solutions. The resulting table was used as a seed for participant discussion. This resulted in six principles for assessing scientists and associated research and policy implications. We hope the content of this paper will serve as a basis for establishing best practices and redesigning the current approaches to assessing scientists by the many players involved in that process. PMID:29596415

  1. Minority engineering scholarships renewal, 2011.

    Science.gov (United States)

    2012-08-01

    Scholarships for Minority Students Studying Engineering and Science : Support will make scholarships available to minority students : interested in engineering and science and will increase significantly the number of minority students that Missouri ...

  2. Pathways for impact: scientists' different perspectives on agricultural innovation

    NARCIS (Netherlands)

    Röling, N.G.

    2009-01-01

    This paper takes the viewpoint of a social scientist and looks at agricultural scientists' pathways for science impact. Awareness of these pathways is increasingly becoming part and parcel of the professionalism of the agricultural scientist, now that the pressure is on to mobilize smallholders and

  3. Thinking like a scientist: innateness as a case study.

    Science.gov (United States)

    Knobe, Joshua; Samuels, Richard

    2013-01-01

    The concept of innateness appears in systematic research within cognitive science, but it also appears in less systematic modes of thought that long predate the scientific study of the mind. The present studies therefore explore the relationship between the properly scientific uses of this concept and its role in ordinary folk understanding. Studies 1-4 examined the judgments of people with no specific training in cognitive science. Results showed (a) that judgments about whether a trait was innate were not affected by whether or not the trait was learned, but (b) such judgments were impacted by moral considerations. Study 5 looked at the judgments of both non-scientists and scientists, in conditions that encouraged either thinking about individual cases or thinking about certain general principles. In the case-based condition, both non-scientists and scientists showed an impact of moral considerations but little impact of learning. In the principled condition, both non-scientists and scientists showed an impact of learning but little impact of moral considerations. These results suggest that both non-scientists and scientists are drawn to a conception of innateness that differs from the one at work in contemporary scientific research but that they are also both capable of 'filtering out' their initial intuitions and using a more scientific approach. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Taking the Scientist's Perspective - The Nonfiction Narrative Engages Episodic Memory to Enhance Students' Understanding of Scientists and Their Practices

    Science.gov (United States)

    Larison, Karen D.

    2018-03-01

    The Next Generation Science Standards (NGSS Lead States 2013) mandates that schools provide students an understanding of the skills and knowledge that scientists use to engage in scientific practices. In this article, I argue that one of the best ways to accomplish this goal is to have students take the perspective of the scientist by reading nonfiction narratives written by scientists and science writers. I explore the anthropological and neurological evidence that suggests that perspective-taking is an essential component in the learning process. It has been shown that by around age 4, the human child begins to be able to take the perspective of others—a process that neuroscientists have shown engages episodic memory, a memory type that some neurocognitive scientists believe is central in organizing human cognition. Neuroscientists have shown that the brain regions in which episodic memory resides undergo pronounced anatomical changes during adolescence, suggesting that perspective-taking assumes an even greater role in cognition during adolescence and young adulthood. Moreover, I argue that the practice of science itself is narrative in nature. With each new observation and experiment, the scientist is acting to reveal an emerging story. It is the story-like nature of science that motivates the scientist to push onward with new experiments and new observations. It is also the story-like nature of the practice of science that can potentially engage the student. The classroom studies that I review here confirm the power of the narrative in increasing students' understanding of science.

  5. Taking the Scientist's Perspective. The Nonfiction Narrative Engages Episodic Memory to Enhance Students' Understanding of Scientists and Their Practices

    Science.gov (United States)

    Larison, Karen D.

    2018-03-01

    The Next Generation Science Standards (NGSS Lead States 2013) mandates that schools provide students an understanding of the skills and knowledge that scientists use to engage in scientific practices. In this article, I argue that one of the best ways to accomplish this goal is to have students take the perspective of the scientist by reading nonfiction narratives written by scientists and science writers. I explore the anthropological and neurological evidence that suggests that perspective-taking is an essential component in the learning process. It has been shown that by around age 4, the human child begins to be able to take the perspective of others—a process that neuroscientists have shown engages episodic memory, a memory type that some neurocognitive scientists believe is central in organizing human cognition. Neuroscientists have shown that the brain regions in which episodic memory resides undergo pronounced anatomical changes during adolescence, suggesting that perspective-taking assumes an even greater role in cognition during adolescence and young adulthood. Moreover, I argue that the practice of science itself is narrative in nature. With each new observation and experiment, the scientist is acting to reveal an emerging story. It is the story-like nature of science that motivates the scientist to push onward with new experiments and new observations. It is also the story-like nature of the practice of science that can potentially engage the student. The classroom studies that I review here confirm the power of the narrative in increasing students' understanding of science.

  6. 34 CFR 366.15 - What selection criteria does the Secretary use?

    Science.gov (United States)

    2010-07-01

    ... groups that have been traditionally under-represented, including members of racial or ethnic minority... the project; and (2) Costs are reasonable in relation to the objectives of the project. (f) Evaluation...

  7. How Scientists Develop Competence in Visual Communication

    Science.gov (United States)

    Ostergren, Marilyn

    2013-01-01

    Visuals (maps, charts, diagrams and illustrations) are an important tool for communication in most scientific disciplines, which means that scientists benefit from having strong visual communication skills. This dissertation examines the nature of competence in visual communication and the means by which scientists acquire this competence. This…

  8. Scientists vs. the administration

    CERN Multimedia

    2004-01-01

    Article denouncing the supposed impartiality of signatories of a report released by the Union of Concerned Scientists (UCS), which accused the Bush administration of systemically suborning objective science to a political agenda (1 page).

  9. Title: The Impact of 2006-2012 CReSIS Summer Research Programs that Influence Student's Choice of a STEM Related Major in College Authors: Dr. Darnell Johnson Djohnson@mail.ecsu.edu Elizabeth City State University, Elizabeth City, North Carolina 27909 Dr. Linda Hayden Haydenl@mindspring.com Elizabeth City State University, Elizabeth City, North Carolina, 27909

    Science.gov (United States)

    Johnson, D.

    2013-12-01

    Abstract: Researchers, policymakers, business, and industry have indicated that the United States will experience a future shortage of professionals in the Science, Technology, Engineering, and Mathematics (STEM) fields. Several strategies have been suggested to address this impending shortage, one of which includes increasing the representation of females and minorities in the STEM fields. In order to increase the representation of underrepresented students in the STEM fields, it is important to understand the motivational factors that impact underrepresented students' interest in STEM academics and extracurricular programs. Research indicates that greater confidence leads to greater interest and vice versa (Denissen et al., 2007). In this paper, the mathematics research team examined the role of practical research experience during the summer for talented minority secondary students studying in STEM fields. An undergraduate research mathematics team focused on the link between summer research and the choice of an undergraduate discipline. A Chi Square Statistical Test was used to examine Likert Scale results on the attitude of students participating in the 2006-2012 Center for Remote Sensing of Ice Sheets (CReSIS) Summer Research Programs for secondary students. This research was performed at Elizabeth City State University located in northeastern North Carolina about the factors that impact underrepresented students' choices of STEM related majors in college. Results can be used to inform and guide educators, administrators, and policy makers in developing programs and policy that support and encourage the STEM development of underrepresented students. Index Terms: Science, Technology, Engineering, and Mathematics (STEM), Underrepresented students

  10. 7 CFR 91.18 - Financial interest of a scientist.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Financial interest of a scientist. 91.18 Section 91.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... SERVICES AND GENERAL INFORMATION Laboratory Service § 91.18 Financial interest of a scientist. No scientist...

  11. Tens of Romanian scientists work at CERN

    CERN Multimedia

    Silian, Sidonia

    2007-01-01

    "The figures regarding the actual number of Romanian scientists working at the European Center for Nuclear Research, or CERN, differ. The CERN data base lists some 30 Romanians on its payroll, while the scientists with the Nuclear Center at Magurele, Romania, say they should be around 50." (1 page)

  12. Student Pugwash Conference Probes Scientists' Individual Responsibility.

    Science.gov (United States)

    Seltzer, Richard J.

    1985-01-01

    Students from 25 nations and senior scientists examined ethical and social dimensions of decision making about science and technology during the 1985 Student Pugwash Conference on scientists' individual responsibilities. Working groups focused on toxic wastes, military uses of space, energy and poverty, genetic engineering, and individual rights.…

  13. How Middle Schoolers Draw Engineers and Scientists

    Science.gov (United States)

    Fralick, Bethany; Kearn, Jennifer; Thompson, Stephen; Lyons, Jed

    2009-01-01

    The perceptions young students have of engineers and scientists are often populated with misconceptions and stereotypes. Although the perceptions that young people have of engineers and of scientists have been investigated separately, they have not been systematically compared. The research reported in this paper explores the question "How are…

  14. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Ask a Scientist Video Series Glossary The Visual System Your Eyes’ Natural Defenses Eye Health and Safety First Aid Tips Healthy Vision Tips Protective Eyewear Sports and Your Eyes Fun Stuff Cool Eye Tricks Links to More Information Optical Illusions Printables Ask a Scientist Video Series ...

  15. Why Are Women Underrepresented in Computer Science? Gender Differences in Stereotypes, Self-Efficacy, Values, and Interests and Predictors of Future CS Course-Taking and Grades

    Science.gov (United States)

    Beyer, Sylvia

    2014-01-01

    This study addresses why women are underrepresented in Computer Science (CS). Data from 1319 American first-year college students (872 female and 447 male) indicate that gender differences in computer self-efficacy, stereotypes, interests, values, interpersonal orientation, and personality exist. If students had had a positive experience in their…

  16. Overcoming the obstacles: Life stories of scientists with learning disabilities

    Science.gov (United States)

    Force, Crista Marie

    Scientific discovery is at the heart of solving many of the problems facing contemporary society. Scientists are retiring at rates that exceed the numbers of new scientists. Unfortunately, scientific careers still appear to be outside the reach of most individuals with learning disabilities. The purpose of this research was to better understand the methods by which successful learning disabled scientists have overcome the barriers and challenges associated with their learning disabilities in their preparation and performance as scientists. This narrative inquiry involved the researcher writing the life stories of four scientists. These life stories were generated from extensive interviews in which each of the scientists recounted their life histories. The researcher used narrative analysis to "make sense" of these learning disabled scientists' life stories. The narrative analysis required the researcher to identify and describe emergent themes characterizing each scientist's life. A cross-case analysis was then performed to uncover commonalities and differences in the lives of these four individuals. Results of the cross-case analysis revealed that all four scientists had a passion for science that emerged at an early age, which, with strong drive and determination, drove these individuals to succeed in spite of the many obstacles arising from their learning disabilities. The analysis also revealed that these scientists chose careers based on their strengths; they actively sought mentors to guide them in their preparation as scientists; and they developed coping techniques to overcome difficulties and succeed. The cross-case analysis also revealed differences in the degree to which each scientist accepted his or her learning disability. While some demonstrated inferior feelings about their successes as scientists, still other individuals revealed feelings of having superior abilities in areas such as visualization and working with people. These individuals revealed

  17. Under-represented students' engagement in secondary science learning: A non-equivalent control group design

    Science.gov (United States)

    Vann-Hamilton, Joy J.

    Problem. A significant segment of the U.S. population, under-represented students, is under-engaged or disengaged in secondary science education. International and national assessments and various research studies illuminate the problem and/or the disparity between students' aspirations in science and the means they have to achieve them. To improve engagement and address inequities among these students, more contemporary and/or inclusive pedagogy is recommended. More specifically, multicultural science education has been suggested as a potential strategy for increased equity so that all learners have access to and are readily engaged in quality science education. While multicultural science education emphasizes the integration of students' backgrounds and experiences with science learning , multimedia has been suggested as a way to integrate the fundamentals of multicultural education into learning for increased engagement. In addition, individual characteristics such as race, sex, academic track and grades were considered. Therefore, this study examined the impact of multicultural science education, multimedia, and individual characteristics on under-represented students' engagement in secondary science. Method. The Under-represented Students Engagement in Science Survey (USESS), an adaptation of the High School Survey of Student Engagement, was used with 76 high-school participants. The USESS was used to collect pretest and posttest data concerning their types and levels of student engagement. Levels of engagement were measured with Strongly Agree ranked as 5, down to Strongly Disagree ranked at 1. Participants provided this feedback prior to and after having interacted with either the multicultural or the non-multicultural version of the multimedia science curriculum. Descriptive statistics for the study's participants and the survey items, as well as Cronbach's alpha coefficient for internal consistency reliability with respect to the survey subscales, were

  18. The Development of a Communication Tool to Facilitate the Cancer Trial Recruitment Process and Increase Research Literacy among Underrepresented Populations.

    Science.gov (United States)

    Torres, Samantha; de la Riva, Erika E; Tom, Laura S; Clayman, Marla L; Taylor, Chirisse; Dong, Xinqi; Simon, Melissa A

    2015-12-01

    Despite increasing need to boost the recruitment of underrepresented populations into cancer trials and biobanking research, few tools exist for facilitating dialogue between researchers and potential research participants during the recruitment process. In this paper, we describe the initial processes of a user-centered design cycle to develop a standardized research communication tool prototype for enhancing research literacy among individuals from underrepresented populations considering enrollment in cancer research and biobanking studies. We present qualitative feedback and recommendations on the prototype's design and content from potential end users: five clinical trial recruiters and ten potential research participants recruited from an academic medical center. Participants were given the prototype (a set of laminated cards) and were asked to provide feedback about the tool's content, design elements, and word choices during semi-structured, in-person interviews. Results suggest that the prototype was well received by recruiters and patients alike. They favored the simplicity, lay language, and layout of the cards. They also noted areas for improvement, leading to card refinements that included the following: addressing additional topic areas, clarifying research processes, increasing the number of diverse images, and using alternative word choices. Our process for refining user interfaces and iterating content in early phases of design may inform future efforts to develop tools for use in clinical research or biobanking studies to increase research literacy.

  19. Communicating Like a Scientist with Multimodal Writing

    Science.gov (United States)

    McDermott, Mark; Kuhn, Mason

    2012-01-01

    If students are to accurately model how scientists use written communication, they must be given opportunities to use creative means to describe science in the classroom. Scientists often integrate pictures, diagrams, charts, and other modes within text and students should also be encouraged to use multiple modes of communication. This article…

  20. The Navigator: Role of the Cultural Mentor in Ensuring the Evolution of Diverse STEM Scientists and Researchers in the 21st Century and Beyond.

    Science.gov (United States)

    Bolman, J. R.

    2012-12-01

    Have you ever been lost? Knowing where you want to go yet unsure how to get there? In today's contemporary society you deploy the use of a navigator or navigation system. This is also one role of the cultural mentor in ensuring diverse students complete with excellence and success their route to research and education. The responsibilities of the cultural mentor are broad and the opportunity to expand one's own personal and professional success in science and society is immense. There remains a critical need and challenge to increase the representation of underrepresented people in the sciences. To address this challenge a navigational mentoring approach was developed centered on the incorporation of traditional knowledge into modern research and education. The approach incorporates defining cultural/personal choices for a STEM vocation, developing science research with a "purpose", and refining leadership. The model incorporates a mentor's personal oral histories and experiences in education, research and life. The goal is to ensure the next generation of scientists and researchers are more diverse, highly educated, experienced and leadership orientated by the time they complete STEM programs - then by the time they are our age, have our level of education and experience.

  1. THE NATIONAL MINORITY CONSULTATIVE MECHANISMS - THE COUNCILS OF NATIONAL MINORITIES IN BOSNIA AND HERZEGOVINA

    Directory of Open Access Journals (Sweden)

    Aleksandar Čorni

    2016-09-01

    Full Text Available The article tries to explore the practical application of the soft law, in concrete terms, the documents adopted by the Organization for Security and Co-operation in Europe, referring to the models of participation of national minorities in public life in the case of Bosnia and Herzegovina. The objective of the research was to assess the legal and political grounds for functioning national minority councils as participation and consultative mechanisms, scope of responsibilities and capacities in relation to their effectiveness and impact and to identify relevant good practices on such mechanisms. The political and decision-making structures in Bosnia and Herzegovina demonstrated lack of actual commitment to the realization of the rights of minorities referring to participation in decision-making processes. Bearing in mind formal position within parliaments, visibility, and a significant promotional capacity for presence in the public sphere, the councils on national minorities may represent a significant body and channel for the minority – majority dialogue. However, at the moment, the national minority councils’ capacity to ensure participation of national minorities in Bosnian political life and their influence in decision-making process remains insufficient. In general, the consultative mechanisms, within their mandated responsibilities, have had insignificant and minimal impact on the practical, political and legislative segment.

  2. Ethnic and Gender Diversity in Radiology Fellowships.

    Science.gov (United States)

    West, Derek L; Nguyen, HaiThuy

    2017-06-01

    The purpose of the study is to assess ethnic and gender diversity in US radiology fellowship programs from 2006 to 2013. Data for this study was obtained from Journal of the American Medical Association supplements publications from 2005 to 2006 to 2012-2013 (Gonzalez-Moreno, Innov Manag Policy Pract. 15(2):149, 2013; Nivet, Acad Med. 86(12):1487-9, 2011; Reede, Health Aff. 22(4):91-3, 2003; Chapman et al., Radiology 270(1):232-40, 2014; Getto, 2005; Rivo and Satcher, JAMA 270(9):1074-8, 1993; Schwartz et al., Otolaryngol Head Neck Surg. 149(1):71-6, 2013; Simon, Clin Orthop Relat Res. 360:253-9, 1999) and the US census 2010. For each year, Fisher's exact test was used to compare the percentage of women and under-represented minorities in each Accreditation Council for Graduate Medical Education (ACGME)-certified radiology fellowship to the percentage of women and under-represented minorities in (1) all ACGME-certified radiology fellowships combined, (2) radiology residents, (3) ACGME-certified fellows in all of medicine combined, (4) ACGME-certified residents in all of medicine combined, and (5) graduating medical students. Chi-Squared test was used to compare the percentage of women and under-represented minorities and the 2010 US census. p gender and ethnic disparities. Outreach efforts, pipeline programs, and mentoring may be helpful in addressing this issue.

  3. Scientists planning new internet

    CERN Multimedia

    Cookson, C

    2000-01-01

    British scientists are preparing to build the next generation internet - 'The Grid'. The government is expected to announce about 100 million pounds of funding for the project, to be done in collaboration with CERN (1/2 p).

  4. Exploring Discrimination and Mental Health Disparities Faced By Black Sexual Minority Women Using a Minority Stress Framework.

    Science.gov (United States)

    Calabrese, Sarah K; Meyer, Ilan H; Overstreet, Nicole M; Haile, Rahwa; Hansen, Nathan B

    2015-09-01

    Black sexual minority women are triply marginalized due to their race, gender, and sexual orientation. We compared three dimensions of discrimination-frequency (regularity of occurrences), scope (number of types of discriminatory acts experienced), and number of bases (number of social statuses to which discrimination was attributed)-and self-reported mental health (depressive symptoms, psychological well-being, and social well-being) between 64 Black sexual minority women and each of two groups sharing two of three marginalized statuses: (a) 67 White sexual minority women and (b) 67 Black sexual minority men. Black sexual minority women reported greater discrimination frequency, scope, and number of bases and poorer psychological and social well-being than White sexual minority women and more discrimination bases, a higher level of depressive symptoms, and poorer social well-being than Black sexual minority men. We then tested and contrasted dimensions of discrimination as mediators between social status (race or gender) and mental health outcomes. Discrimination frequency and scope mediated the association between race and mental health, with a stronger effect via frequency among sexual minority women. Number of discrimination bases mediated the association between gender and mental health among Black sexual minorities. Future research and clinical practice would benefit from considering Black sexual minority women's mental health in a multidimensional minority stress context.

  5. Sexual minority-related victimization as a mediator of mental health disparities in sexual minority youth: a longitudinal analysis.

    Science.gov (United States)

    Burton, Chad M; Marshal, Michael P; Chisolm, Deena J; Sucato, Gina S; Friedman, Mark S

    2013-03-01

    Sexual minority youth (youth who are attracted to the same sex or endorse a gay/lesbian/bisexual identity) report significantly higher rates of depression and suicidality than heterosexual youth. The minority stress hypothesis contends that the stigma and discrimination experienced by sexual minority youth create a hostile social environment that can lead to chronic stress and mental health problems. The present study used longitudinal mediation models to directly test sexual minority-specific victimization as a potential explanatory mechanism of the mental health disparities of sexual minority youth. One hundred ninety-seven adolescents (14-19 years old; 70 % female; 29 % sexual minority) completed measures of sexual minority-specific victimization, depressive symptoms, and suicidality at two time points 6 months apart. Compared to heterosexual youth, sexual minority youth reported higher levels of sexual minority-specific victimization, depressive symptoms, and suicidality. Sexual minority-specific victimization significantly mediated the effect of sexual minority status on depressive symptoms and suicidality. The results support the minority stress hypothesis that targeted harassment and victimization are partly responsible for the higher levels of depressive symptoms and suicidality found in sexual minority youth. This research lends support to public policy initiatives that reduce bullying and hate crimes because reducing victimization can have a significant impact on the health and well-being of sexual minority youth.

  6. The impact of minority stress on mental health and substance use among sexual minority women.

    Science.gov (United States)

    Lehavot, Keren; Simoni, Jane M

    2011-04-01

    We examined the direct and indirect impact of minority stress on mental health and substance use among sexual minority women. A combination of snowball and targeted sampling strategies was used to recruit lesbian and bisexual women (N = 1,381) for a cross-sectional, online survey. Participants (M age = 33.54 years; 74% White) completed a questionnaire assessing gender expression, minority stressors (i.e., victimization, internalized homophobia, and concealment), social-psychological resources (i.e., social support, spirituality), and health-related outcomes. We used structural equation modeling to test associations among these factors, with gender expression as an antecedent and social-psychological resources as a mediator between minority stress and health. The final model demonstrated acceptable fit, χ²(79) = 414.00, p accounting for significant portions of the variance in mental health problems (56%) and substance use (14%), as well as the mediator social-psychological resources (24%). Beyond indirect effects of minority stress on health outcomes, direct links emerged between victimization and substance use and between internalized homophobia and substance use. Findings indicate a significant impact of minority stressors and social-psychological resources on mental health and substance use among sexual minority women. The results improve understanding of the distinct role of various minority stressors and their mechanisms on health outcomes. Health care professionals should assess for minority stress and coping resources and refer for evidence-based psychosocial treatments. (c) 2011 APA, all rights reserved.

  7. U.S. Directory of Marine Scientists 1982

    Science.gov (United States)

    1982-01-01

    Processes & Engineering. MACLEAN, SHARON A, Fishery Biologist. FINKELSTEIN, KENNETH, Coastal Geologist. Zooplankton; Crustacea. Sedimentology; Stratigraphy... SHARON T, Aszt Scientist. Pasadena, CA 91109 Taxonomy and Systematics; Zooplankton. HOWEY, TERRY W, Scientist. CHELTON, DUDLEY BOYD, JR, Senior...Oceanography. Monterey, CA 93940 Optics; Descriptive Physical Oceanography, Instrumentation Engineering. BOURKE , ROBERT H, Assoc Professor of VON SCHWIND

  8. Exploring the potential of using stories about diverse scientists and reflective activities to enrich primary students' images of scientists and scientific work

    Science.gov (United States)

    Sharkawy, Azza

    2012-06-01

    The purpose of this qualitative study was to explore the potential of using stories about diverse scientists to broaden primary students' images of scientists and scientific work. Stories featuring scientists from diverse socio-cultural backgrounds (i.e., physical ability, gender, ethnicity) were presented to 11 grade one students over a 15 -week period. My analysis of pre-and post audio-taped interview transcripts, draw-a-scientist-tests (Chambers 1983), participant observations and student work suggest that the stories about scientists and follow-up reflective activities provided resources for students that helped them: (a) acquire images of scientists from less dominant socio-cultural backgrounds; (b) enrich their views of scientific work from predominantly hands-on/activity-oriented views to ones that includes cognitive and positive affective dimensions. One of the limitations of using stories as a tool to extend students' thinking about science is highlighted in a case study of a student who expresses resistance to some of the counter-stereotypic images presented in the stories. I also present two additional case studies that illustrate how shifts in student' views of the nature of scientific work can change their interest in future participation in scientific work.

  9. Scientist's Perceptions of Uncertainty During Discussions of Global Climate

    Science.gov (United States)

    Romanello, S.; Fortner, R.; Dervin, B.

    2003-04-01

    This research examines the nature of disagreements between natural and social scientists during discussions of global climate change. In particular, it explores whether the disagreements between natural and social scientists are related to the ontological, epistemological, or methodological nature of the uncertainty of global climate change during these discussions. A purposeful sample of 30 natural and social scientists recognized as experts in global climate change by the United States Global Change Research Program (USGCRP) and National Academies Committee on Global Change were interviewed to elicit their perceptions of disagreements during their three most troublesome discussions on global climate change. A mixed-method (qualitative plus quantitative research) approach with three independent variables was used to explore nature of uncertainty as a mediating variable in the relationships between academic training, level of sureness, level of knowledge, and position on global climate change, and the nature of disagreements and bridging strategies of natural and social scientists (Patton, 1997; Frechtling et al., 1997). This dissertation posits that it is the differences in the nature of uncertainty communicated by natural and social scientists and not sureness, knowledge, and position on global climate change that causes disagreements between the groups. By describing the nature of disagreements between natural and social scientists and illuminating bridging techniques scientists use during these disagreements, it is hoped that information collected from this research will create a better dialogue between the scientists studying global climate change by providing communication strategies which will allow those versed in one particular area to speak to non-experts whether they be other scientists, media officials, or the public. These tangible strategies can then be used by government agencies to create better communications and education plans, which can

  10. Increasing retention of early career female atmospheric scientists

    Science.gov (United States)

    Edwards, L. M.; Hallar, A. G.; Avallone, L. M.; Thiry, H.

    2010-12-01

    Atmospheric Science Collaborations and Enriching NeTworks (ASCENT) is a workshop series designed to bring together early career female scientists in the field of atmospheric science and related disciplines. ASCENT uses a multi-faceted approach to provide junior scientists with tools that will help them meet the challenges in their research and teaching career paths and will promote their retention in the field. During the workshop, senior women scientists discuss their career and life paths. They also lead seminars on tools, resources and methods that can help early career scientists to be successful and prepared to fill vacancies created by the “baby boomer” retirees. Networking is a significant aspect of ASCENT, and many opportunities for both formal and informal interactions among the participants (of both personal and professional nature) are blended in the schedule. The workshops are held in Steamboat Springs, Colorado, home of a high-altitude atmospheric science laboratory, Storm Peak Laboratory, which also allows for nearby casual outings and a pleasant environment for participants. Near the conclusion of each workshop, junior and senior scientists are matched in mentee-mentor ratios of two junior scientists per senior scientist. Post-workshop reunion events are held at national scientific meetings to maintain connectivity among each year’s participants, and for collaborating among participants of all workshops held to date. Evaluations of the two workshop cohorts thus far conclude that the workshops have been successful in achieving the goals of establishing and expanding personal and research-related networks, and that seminars have been useful in creating confidence and sharing resources for such things as preparing promotion and tenure packages, interviewing and negotiating job offers, and writing successful grant proposals.

  11. Socioeconomic status and parenting in ethnic minority families: testing a minority family stress model.

    Science.gov (United States)

    Emmen, Rosanneke A G; Malda, Maike; Mesman, Judi; van Ijzendoorn, Marinus H; Prevoo, Mariëlle J L; Yeniad, Nihal

    2013-12-01

    According to the family stress model (Conger & Donnellan, 2007), low socioeconomic status (SES) predicts less-than-optimal parenting through family stress. Minority families generally come from lower SES backgrounds than majority families, and may experience additional stressors associated with their minority status, such as acculturation stress. The primary goal of this study was to test a minority family stress model with a general family stress pathway, as well as a pathway specific to ethnic minority families. The sample consisted of 107 Turkish-Dutch mothers and their 5- to 6-year-old children, and positive parenting was observed during a 7-min problem-solving task. In addition, mothers reported their daily hassles, psychological distress, and acculturation stress. The relation between SES and positive parenting was partially mediated by both general maternal psychological stress and maternal acculturation stress. Our study contributes to the argument that stressors specific to minority status should be considered in addition to more general demographic and family stressors in understanding parenting behavior in ethnic minority families.

  12. Science experiences of citizen scientists in entomology research

    Science.gov (United States)

    Lynch, Louise I.

    Citizen science is an increasingly popular collaboration between members of the public and the scientific community to pursue current research questions. In addition to providing researchers with much needed volunteer support, it is a unique and promising form of informal science education that can counter declining public science literacy, including attitudes towards and understanding of science. However, the impacts of citizen science programs on participants' science literacy remains elusive. The purpose of this study was to balance the top-down approach to citizen science research by exploring how adult citizen scientists participate in entomology research based on their perceptions and pioneer mixed methods research to investigate and explain the impacts of citizen science programs. Transference, in which citizen scientists transfer program impacts to people around them, was uncovered in a grounded theory study focused on adults in a collaborative bumble bee research program. Most of the citizen scientists involved in entomology research shared their science experiences and knowledge with people around them. In certain cases, expertise was attributed to the individual by others. Citizen scientists then have the opportunity to acquire the role of expert to those around them and influence knowledge, attitudinal and behavioral changes in others. An intervention explanatory sequential mixed methods design assessed how entomology-based contributory citizen science affects science self-efficacy, self-efficacy for environmental action, nature relatedness and attitude towards insects in adults. However, no statistically significant impacts were evident. A qualitative follow-up uncovered a discrepancy between statistically measured changes and perceived influences reported by citizen scientists. The results have important implications for understanding how citizen scientists learn, the role of citizen scientists in entomology research, the broader program impacts and

  13. Science Teachers' Views and Stereotypes of Religion, Scientists and Scientific Research: A call for scientist-science teacher partnerships to promote inquiry-based learning

    Science.gov (United States)

    Mansour, Nasser

    2015-07-01

    Despite a growing consensus regarding the value of inquiry-based learning (IBL) for students' learning and engagement in the science classroom, the implementation of such practices continues to be a challenge. If science teachers are to use IBL to develop students' inquiry practices and encourage them to think and act as scientists, a better understanding of factors that influence their attitudes towards scientific research and scientists' practices is very much needed. Within this context there is a need to re-examine the science teachers' views of scientists and the cultural factors that might have an impact on teachers' views and pedagogical practices. A diverse group of Egyptian science teachers took part in a quantitative-qualitative study using a questionnaire and in-depth interviews to explore their views of scientists and scientific research, and to understand how they negotiated their views of scientists and scientific research in the classroom, and how these views informed their practices of using inquiry in the classroom. The findings highlighted how the teachers' cultural beliefs and views of scientists and scientific research had constructed idiosyncratic pedagogical views and practices. The study suggested implications for further research and argued for teacher professional development based on partnerships with scientists.

  14. Collaboration around Research and Education (Care) in Prostate Cancer

    National Research Council Canada - National Science Library

    Price, Marva M

    2008-01-01

    ...) an historically black college or university (HBCU). Our goal is to build a collaborative relationship between Duke University and Bennett that brings together students and faculty mentors to facilitate opportunities for underrepresented minority...

  15. The Normative Orientations of Climate Scientists.

    Science.gov (United States)

    Bray, Dennis; von Storch, Hans

    2017-10-01

    In 1942 Robert K. Merton tried to demonstrate the structure of the normative system of science by specifying the norms that characterized it. The norms were assigned the abbreviation CUDOs: Communism, Universalism, Disinterestedness, and Organized skepticism. Using the results of an on-line survey of climate scientists concerning the norms of science, this paper explores the climate scientists' subscription to these norms. The data suggests that while Merton's CUDOs remain the overall guiding moral principles, they are not fully endorsed or present in the conduct of climate scientists: there is a tendency to withhold results until publication, there is the intention of maintaining property rights, there is external influence defining research and the tendency to assign the significance of authored work according to the status of the author rather than content of the paper. These are contrary to the norms of science as proposed by Robert K. Merton.

  16. Scientists warn DOE of dwindling funding

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Fusion scientists have raised their voices to let the Department of Energy know that they are concerned about the DOE's commitment to fusion research. In a letter dated February 28, 1994, 37 scientists from 21 institutions noted that open-quotes US funding for fusion has steadily decreased: It is now roughly half its level of 1980. This peculiar and painful circumstance has forced the program to contract drastically, losing skilled technical personnel, even as it faces its most exciting opportunities.close quotes The letter was addressed to Martha Krebs, the DOE's director of the Office of Energy Research, and N. Anne Davies, associated director for fusion energy. The scientists wanted to make two points. The first was that fusion energy research, only midway between concept and commercialization, deserves major reinvestment. The second was that basic scientific knowledge in the area of fusion, not just applied engineering, must remain a priority

  17. Professional identity in clinician-scientists: brokers between care and science.

    Science.gov (United States)

    Kluijtmans, Manon; de Haan, Else; Akkerman, Sanne; van Tartwijk, Jan

    2017-06-01

    Despite increasing numbers of publications, science often fails to significantly improve patient care. Clinician-scientists, professionals who combine care and research activities, play an important role in helping to solve this problem. However, despite the ascribed advantages of connecting scientific knowledge and inquiry with health care, clinician-scientists are scarce, especially amongst non-physicians. The education of clinician-scientists can be complex because they must form professional identities at the intersection of care and research. The successful education of clinician-scientists requires insight into how these professionals view their professional identity and how they combine distinct practices. This study sought to investigate how recently trained nurse- and physiotherapist-scientists perceive their professional identities and experience the crossing of boundaries between care and research. Semi-structured interviews were conducted with 14 nurse- and physiotherapist-scientists at 1 year after they had completed MSc research training. Interviews were thematically analysed using insights from the theoretical frameworks of dialogical self theory and boundary crossing. After research training, the initial professional identity, of clinician, remained important for novice clinician-scientists, whereas the scientist identity was experienced as additional and complementary. A meta-identity as broker, referred to as a 'bridge builder', seemed to mediate competing demands or tensions between the two positions. Obtaining and maintaining a dual work position were experienced as logistically demanding; nevertheless, it was considered beneficial for crossing the boundaries between care and research because it led to reflection on the health profession, knowledge integration, inquiry and innovation in care, improved data collection, and research with a focus on clinical applicability. Novice clinician-scientists experience dual professional identities as care

  18. A systematic identification and analysis of scientists on Twitter.

    Directory of Open Access Journals (Sweden)

    Qing Ke

    Full Text Available Metrics derived from Twitter and other social media-often referred to as altmetrics-are increasingly used to estimate the broader social impacts of scholarship. Such efforts, however, may produce highly misleading results, as the entities that participate in conversations about science on these platforms are largely unknown. For instance, if altmetric activities are generated mainly by scientists, does it really capture broader social impacts of science? Here we present a systematic approach to identifying and analyzing scientists on Twitter. Our method can identify scientists across many disciplines, without relying on external bibliographic data, and be easily adapted to identify other stakeholder groups in science. We investigate the demographics, sharing behaviors, and interconnectivity of the identified scientists. We find that Twitter has been employed by scholars across the disciplinary spectrum, with an over-representation of social and computer and information scientists; under-representation of mathematical, physical, and life scientists; and a better representation of women compared to scholarly publishing. Analysis of the sharing of URLs reveals a distinct imprint of scholarly sites, yet only a small fraction of shared URLs are science-related. We find an assortative mixing with respect to disciplines in the networks between scientists, suggesting the maintenance of disciplinary walls in social media. Our work contributes to the literature both methodologically and conceptually-we provide new methods for disambiguating and identifying particular actors on social media and describing the behaviors of scientists, thus providing foundational information for the construction and use of indicators on the basis of social media metrics.

  19. A systematic identification and analysis of scientists on Twitter

    Science.gov (United States)

    Ke, Qing; Ahn, Yong-Yeol; Sugimoto, Cassidy R.

    2017-01-01

    Metrics derived from Twitter and other social media—often referred to as altmetrics—are increasingly used to estimate the broader social impacts of scholarship. Such efforts, however, may produce highly misleading results, as the entities that participate in conversations about science on these platforms are largely unknown. For instance, if altmetric activities are generated mainly by scientists, does it really capture broader social impacts of science? Here we present a systematic approach to identifying and analyzing scientists on Twitter. Our method can identify scientists across many disciplines, without relying on external bibliographic data, and be easily adapted to identify other stakeholder groups in science. We investigate the demographics, sharing behaviors, and interconnectivity of the identified scientists. We find that Twitter has been employed by scholars across the disciplinary spectrum, with an over-representation of social and computer and information scientists; under-representation of mathematical, physical, and life scientists; and a better representation of women compared to scholarly publishing. Analysis of the sharing of URLs reveals a distinct imprint of scholarly sites, yet only a small fraction of shared URLs are science-related. We find an assortative mixing with respect to disciplines in the networks between scientists, suggesting the maintenance of disciplinary walls in social media. Our work contributes to the literature both methodologically and conceptually—we provide new methods for disambiguating and identifying particular actors on social media and describing the behaviors of scientists, thus providing foundational information for the construction and use of indicators on the basis of social media metrics. PMID:28399145

  20. Assessing the bibliometric productivity of forest scientists in Italy

    Directory of Open Access Journals (Sweden)

    Francesca Giannetti

    2016-07-01

    Full Text Available Since 2010, the Italian Ministry of University and Research issued new evaluation protocols to select candidates for University professorships and assess the bibliometric productivity of Universities and Research Institutes based on bibliometric indicators, i.e. scientific paper and citation numbers and the h-index. Under this framework, the objective of this study was to quantify the bibliometric productivity of the Italian forest research community during the 2002-2012 period. We examined the following productivity parameters: (i the bibliometric productivity under the Forestry subject category at the global level; (ii compared the aggregated bibliometric productivity of Italian forest scientists with scientists from other countries; (iii analyzed publication and citation temporal trends of Italian forest scientists and their international collaborations; and (iv characterized productivity distribution among Italian forest scientists at different career levels. Results indicated the following: (i the UK is the most efficient country based on the ratio between Gross Domestic Spending (GDS on Research and Development (R&D and bibliometric productivity under the Forestry subject category, followed by Italy; (ii Italian forest scientist productivity exhibited a significant positive time trend, but was characterized by high inequality across authors; (iii one-half of the Italian forest scientist publications were written in collaboration with foreign scientists; (iv a strong relationship exists between bibliometric indicators calculated by WOS and SCOPUS, suggesting these two databases have the same potential to evaluate the forestry research community; and (v self-citations did not significantly affect the rank of Italian forest scientists.

  1. Exploring Native American Students' Perceptions of Scientists

    Science.gov (United States)

    Laubach, Timothy A.; Crofford, Geary Don; Marek, Edmund A.

    2012-07-01

    The purpose of this descriptive study was to explore Native American (NA) students' perceptions of scientists by using the Draw-A-Scientist Test and to determine if differences in these perceptions exist between grade level, gender, and level of cultural tradition. Data were collected for students in Grades 9-12 within a NA grant off-reservation boarding school. A total of 133 NA students were asked to draw a picture of a scientist at work and to provide a written explanation as to what the scientist was doing. A content analysis of the drawings indicated that the level of stereotype differed between all NA subgroups, but analysis of variance revealed that these differences were not significant between groups except for students who practised native cultural tradition at home compared to students who did not practise native cultural tradition at home (p educational and career science, technology, engineering, and mathematics paths in the future. The educational implication is that once initial perceptions are identified, researchers and teachers can provide meaningful experiences to combat the stereotypes.

  2. Social Interaction and the Minority-Majority Earnings Inequality : Why Being a Minority Hurts but being a big Minority Hurts More

    NARCIS (Netherlands)

    Kahanec, M.

    2004-01-01

    Empirical findings that minorities typically attain lower economic status than majorities and that relatively larger minorities perform worse than smaller ones pose a challenge to economics.To explain this scale puzzle, I model an economy where the society is bifurcated into two social groups that

  3. Women scientists joining Rokkasho women to sciences

    Energy Technology Data Exchange (ETDEWEB)

    Aratani, Michi [Office of Regional Collaboration, Institute for Environmental Sciences, Rokkasho, Aomori (Japan); Sasagawa, Sumiko

    1999-09-01

    Women scientists generally play a great role in the public acceptance (PA) for the national policy of atomic energy developing in Japan. The reason may be that, when a woman scientist stands in the presence of women audience, she will be ready to be accepted by them as a person with the same gender, emotion and thought to themselves. A case of interchange between the Rokkasho women and the women scientists either resident at the nuclear site of Rokkasho or staying for a short time at Rokkasho by invitation has been described from the viewpoint of PA for the national policy of atomic energy developing, and more fundamentally, for promotion of science education. (author)

  4. Women scientists joining Rokkasho women to sciences

    International Nuclear Information System (INIS)

    Aratani, Michi; Sasagawa, Sumiko

    1999-01-01

    Women scientists generally play a great role in the public acceptance (PA) for the national policy of atomic energy developing in Japan. The reason may be that, when a woman scientist stands in the presence of women audience, she will be ready to be accepted by them as a person with the same gender, emotion and thought to themselves. A case of interchange between the Rokkasho women and the women scientists either resident at the nuclear site of Rokkasho or staying for a short time at Rokkasho by invitation has been described from the viewpoint of PA for the national policy of atomic energy developing, and more fundamentally, for promotion of science education. (author)

  5. Exploring Discrimination and Mental Health Disparities Faced By Black Sexual Minority Women Using a Minority Stress Framework

    Science.gov (United States)

    Calabrese, Sarah K.; Meyer, Ilan H.; Overstreet, Nicole M.; Haile, Rahwa; Hansen, Nathan B.

    2015-01-01

    Black sexual minority women are triply marginalized due to their race, gender, and sexual orientation. We compared three dimensions of discrimination—frequency (regularity of occurrences), scope (number of types of discriminatory acts experienced), and number of bases (number of social statuses to which discrimination was attributed)—and self-reported mental health (depressive symptoms, psychological well-being, and social well-being) between 64 Black sexual minority women and each of two groups sharing two of three marginalized statuses: (a) 67 White sexual minority women and (b) 67 Black sexual minority men. Black sexual minority women reported greater discrimination frequency, scope, and number of bases and poorer psychological and social well-being than White sexual minority women and more discrimination bases, a higher level of depressive symptoms, and poorer social well-being than Black sexual minority men. We then tested and contrasted dimensions of discrimination as mediators between social status (race or gender) and mental health outcomes. Discrimination frequency and scope mediated the association between race and mental health, with a stronger effect via frequency among sexual minority women. Number of discrimination bases mediated the association between gender and mental health among Black sexual minorities. Future research and clinical practice would benefit from considering Black sexual minority women's mental health in a multidimensional minority stress context. PMID:26424904

  6. Do Gender Differences in Perceived Prototypical Computer Scientists and Engineers Contribute to Gender Gaps in Computer Science and Engineering?

    Science.gov (United States)

    Ehrlinger, Joyce; Plant, E Ashby; Hartwig, Marissa K; Vossen, Jordan J; Columb, Corey J; Brewer, Lauren E

    2018-01-01

    Women are vastly underrepresented in the fields of computer science and engineering (CS&E). We examined whether women might view the intellectual characteristics of prototypical individuals in CS&E in more stereotype-consistent ways than men might and, consequently, show less interest in CS&E. We asked 269 U.S. college students (187, 69.5% women) to describe the prototypical computer scientist (Study 1) or engineer (Study 2) through open-ended descriptions as well as through a set of trait ratings. Participants also rated themselves on the same set of traits and rated their similarity to the prototype. Finally, participants in both studies were asked to describe their likelihood of pursuing future college courses and careers in computer science (Study 1) or engineering (Study 2). Across both studies, we found that women offered more stereotype-consistent ratings than did men of the intellectual characteristics of prototypes in CS (Study 1) and engineering (Study 2). Women also perceived themselves as less similar to the prototype than men did. Further, the observed gender differences in prototype perceptions mediated the tendency for women to report lower interest in CS&E fields relative to men. Our work highlights the importance of prototype perceptions for understanding the gender gap in CS&E and suggests avenues for interventions that may increase women's representation in these vital fields.

  7. The Economics of Minorities

    Science.gov (United States)

    Coles, Flournoy A., Jr.

    1973-01-01

    This article discusses some of the more important economic problems of minorities in the United States, identifying the economics of minorities with the economics of poverty, discrimination, exploitation, urban life, and alienation. (JM)

  8. The Current Situation of Female Scientists in Argentina

    Science.gov (United States)

    Llois, Ana María; Dawson, Silvina Ponce

    2009-04-01

    We report the changes that have taken place recently regarding the situation of female scientists in Argentina. We comment on the rules for maternity leave that have been passed recently for research scholars doing their PhDs and on the number of women scientists that occupy decision making-positions in science. We also present some evidence that seems to indicate that, among young scientists, women are more willing to occupy leadership positions and that the Argentinean society is more accepting of this new role.

  9. From Local to EXtreme Environments (FLEXE) Student-Scientist Online Forums: hypothesis-based research examining ways to involve scientists in effective science education

    Science.gov (United States)

    Goehring, L.; Carlsen, W.; Fisher, C. R.; Kerlin, S.; Trautmann, N.; Petersen, W.

    2011-12-01

    Science education reform since the mid-1990's has called for a "new way of teaching and learning about science that reflects how science itself is done, emphasizing inquiry as a way of achieving knowledge and understanding about the world" (NRC, 1996). Scientists and engineers, experts in inquiry thinking, have been called to help model these practices for students and demonstrate scientific habits of mind. The question, however, is "how best to involve these experts?" given the very real challenges of limited availability of scientists, varying experience with effective pedagogy, widespread geographic distribution of schools, and the sheer number of students involved. Technology offers partial solutions to enable Student-Scientist Interactions (SSI). The FLEXE Project has developed online FLEXE Forums to support efficient, effective SSIs, making use of web-based and database technology to facilitate communication between students and scientists. More importantly, the FLEXE project has approached this question of "how best to do this?" scientifically, combining program evaluation with hypothesis-based research explicitly testing the effects of such SSIs on student learning and attitudes towards science. FLEXE Forums are designed to showcase scientific practices and habits of mind through facilitated interaction between students and scientists. Through these Forums, students "meet" working scientists and learn about their research and the environments in which they work. Scientists provide students with intriguing "real-life" datasets and challenge students to analyze and interpret the data through guiding questions. Students submit their analyses to the Forum, and scientists provide feedback and connect the instructional activity with real-life practice, showcasing their activities in the field. In the FLEXE project, Forums are embedded within inquiry-based instructional units focused on essential learning concepts, and feature the deep-sea environment in contrast

  10. Assessing the impact of Native American elders as co-educators for university students in STEM

    Science.gov (United States)

    Alkholy, Sarah Omar

    Introduction: Minorities are underrepresented in the science, technology, engineering, and mathematics (STEM) workforce, post-secondary STEM education, and show high academic attrition rates. Academic performance and retention improve when culturally relevant support is provided. The interface of Western Science and Indigenous Science provides an opportunity for bridging this divide. This three parts project is an example of Community-based participatory research (CBPR) that aims to support academic institutions that serve minority students in STEM, and implement educational components (pedagogy) to serve the needs of the underserved community. Method: Part 1: was a cross-sectional used a survey given to participants designed to assess prevalence of natural health products use by students, and to determine how students learn about NHPs. Part 2: was a longitudinal survey pilot study based upon an online STEM course offer at four universities to determine the differences between U.S. vs. Canadian and minority vs. non-minority university students regarding their perceptions of traditional Elders as STEM co-educators, interest in STEM, and science identity by using a pre-and post- course survey. Part 3: was a longitudinal quasi-experiment based upon an online STEM course offered at four universities show what Indigenous science claims regarding: Elders are viewed as valuable STEM co-educators; Elders increase student interest in STEM; students exposed to Indigenous science improve their identity as a scientist; students exposed to Indigenous Science/Elders show improved learning outcomes. Result: We found that Native/Aboriginal students learn information about natural health products from traditional Elders significantly more so than non-Native/Aboriginal students. There were no statistically significant results from the pilot study. Findings from the quasi-experiment show that students taught with Indigenous science Elder co-educators have significantly greater

  11. Partnering Research Involving Mentoring and Education (PRIME) in Prostate Cancer

    National Research Council Canada - National Science Library

    Price, Marva M

    2006-01-01

    ...), an historically black college or university (HBCU). Our goal is to build a collaborative relationship between Duke University and NCCU that brings together students and faculty mentors to facilitate opportunities for underrepresented minority students...

  12. Has ADVANCE Affected Senior Compared to Junior Women Scientists Differently?

    Science.gov (United States)

    Rosser, Sue

    2015-01-01

    Substantial evidence exists to demonstrate that the NSF ADVANCE Inititiative has made a positive impact upon institutions. Since it began in 2001, ADVANCE has changed the conversation, policies, and practices in ways to remove obstacles and systemic barriers preventing success for academic women scientists and engineers. Results from ADVANCE projects on campuses have facilitated consensus nationally about policies and practices that institutions may implement to help to alleviate issues, particularly for junior women scientists.Although getting women into senior and leadership positions in STEM constituted an initial impetus for ADVANCE, less emphasis was placed upon the needs of senior women scientists. Surveys of academic women scientists indicate that the issues faced by junior and senior women scientists differ significantly. The focus of ADVANCE on junior women in many ways seemed appropriate--the senior cohort of women scinetists is fed by the junior cohort of scientists; senior women serve as mentors, role models, and leaders for the junior colleagues, while continuing to struggle to achieve full status in the profession. This presentation will center on the differences in issues faced by senior compared to junior women scientists to explore whether a next step for ADVANCE should be to address needs of senior academic women scientists.

  13. The mentoring of male and female scientists during their doctoral studies

    Science.gov (United States)

    Filippelli, Laura Ann

    The mentoring relationships of male and female scientists during their doctoral studies were examined. Male and female biologists, chemists, engineers and physicists were compared regarding the importance of doctoral students receiving career enhancing and psychosocial mentoring from their doctoral chairperson and student colleagues. Scientists' satisfaction with their chairperson and colleagues as providers of these mentoring functions was also investigated. In addition, scientists identified individuals other than their chairperson and colleagues who were positive influencers on their professional development as scientists and those who hindered their development. A reliable instrument, "The Survey of Accomplished Scientists' Doctoral Experiences," was developed to assess career enhancing and psychosocial mentoring of doctoral chairpersons and student colleagues based on the review of literature, interviews with scientists and two pilot studies. Surveys were mailed to a total of 400 men and women scientists with earned doctorates, of which 209 were completed and returned. The findings reveal that female scientists considered the doctoral chairperson furnishing career enhancing mentoring more important than did the men, while both were in accordance with the importance of them providing psychosocial mentoring. In addition, female scientists were not as satisfied as men with their chairperson providing most of the career enhancing and psychosocial mentoring functions. For doctoral student colleagues, female scientists, when compared to men, indicated that they considered student colleagues more important in providing career enhancing and psychosocial mentoring. However, male and female scientists were equally satisfied with their colleagues as providers of these mentoring functions. Lastly, the majority of male scientists indicated that professors served as a positive influencer, while women revealed that spouses and friends positively influenced their professional

  14. Phobias and underutilization of university scientists

    International Nuclear Information System (INIS)

    Mandra, Y.T.

    1992-01-01

    This paper reports that there is an urgent need for a large scale, nationwide education program designed to correct the almost ubiquitous misconceptions that exist because of the public's misinformation about commercial nuclear power. It is suggested that this program use only university professors and that it have a precisely defined target of community colleges. To do this a Distinguished Visiting Scientist Program needs to be established by the Department of Energy. This would be the means by which these visiting scientists could get invited for 2-day visits at community colleges. When on campus the visiting scientist would give lectures in the morning and it the afternoon to student and professors on just two topics dealing with commercial nuclear power: nuclear plants and disposal of the waste. It is suggested that a pilot program be done in California and selected hub-centers, and that it be evaluated by an independent agency so that it can be improved

  15. Including everyone: A peer learning program that works for under-represented minorities?

    Directory of Open Access Journals (Sweden)

    Jacques van der Meer

    2013-04-01

    Full Text Available Peer learning has long been recognised as an effective way to induct first-year students into the academic skills required to succeed at university. One recognised successful model that has been extensively researched is the Supplemental Instruction (SI model; it has operated in the US since the mid-1970s. This model is commonly known in Australasia as the Peer Assisted Study Sessions (PASS program. Although there is a considerable amount of research into SI and PASS, very little has been published about the impact of peer learning on different student groups, for example indigenous and other ethnic groups. This article reports on the results from one New Zealand university of the effectiveness of PASS for Māori and Pasifika students. The questions this article seeks to address are whether attendance of the PASS program results in better final marks for these two groups of students, and whether the number of sessions attended has an impact on the final marks.

  16. The subjectivity of scientists and the Bayesian approach

    CERN Document Server

    Press, James S

    2001-01-01

    Comparing and contrasting the reality of subjectivity in the work of history's great scientists and the modern Bayesian approach to statistical analysisScientists and researchers are taught to analyze their data from an objective point of view, allowing the data to speak for themselves rather than assigning them meaning based on expectations or opinions. But scientists have never behaved fully objectively. Throughout history, some of our greatest scientific minds have relied on intuition, hunches, and personal beliefs to make sense of empirical data-and these subjective influences have often a

  17. The Scientist as Sentinel (Invited)

    Science.gov (United States)

    Oreskes, N.

    2013-12-01

    Scientists have been warning the world for some time about the risks of anthropogenic interference in the climate system. But we struggle with how, exactly, to express that warning. The norms of scientific behavior enjoin us from the communication strategies normally associated with warnings. If a scientist sounds excited or emotional, for example, it is often assumed that he has lost his capac¬ity to assess data calmly and therefore his conclusions are suspect. If the scientist is a woman, the problem is that much worse. In a recently published article my colleagues and I have shown that scientists have systematically underestimated the threat of climate change (Brysse et al., 2012). We suggested that this occurs for norma¬tive reasons: The scientific values of rationality, dispassion, and self-restraint lead us to demand greater levels of evidence in support of surprising, dramatic, or alarming conclusions than in support of less alarming conclusions. We call this tendency 'err¬ing on the side of least drama.' However, the problem is not only that we err on the side of least drama in our assessment of evidence, it's also that we speak without drama, even when our conclusions are dramatic. We speak without the emotional cadence that people expect to hear when the speaker is worried. Even when we are worried, we don't sound as if we are. In short, we are trying to act as sentinels, but we lack the register with which to do so. Until we find those registers, or partner with colleagues who are able to speak in the cadences that communicating dangers requires, our warnings about climate change will likely continue to go substantially unheeded.

  18. Quantum Physics for Scientists and Technologists Fundamental Principles and Applications for Biologists, Chemists, Computer Scientists, and Nanotechnologists

    CERN Document Server

    Sanghera, Paul

    2011-01-01

    Presenting quantum physics for the non-physicists, Quantum Physics for Scientists and Technologists is a self-contained, cohesive, concise, yet comprehensive, story of quantum physics from the fields of science and technology, including computer science, biology, chemistry, and nanotechnology. The authors explain the concepts and phenomena in a practical fashion with only a minimum amount of math. Examples from, and references to, computer science, biology, chemistry, and nanotechnology throughout the book make the material accessible to biologists, chemists, computer scientists, and non-techn

  19. American Indian and Indigenous Geoscience Program: Ensuring the Evolution of Diverse STEM Scientists and Researchers in the 21st Century and Beyond

    Science.gov (United States)

    Bolman, J. R.

    2013-05-01

    Have you ever been lost? Knowing where you want to go yet unsure how to get there? In today's contemporary society you deploy the use of a navigator or navigation system. This is also one component of a cultural geoscience program in ensuring diverse students complete with excellence and success their route to research and education. The critical components of a cultural geoscience program and the role of cultural mentors are broad and the opportunity to expand one's own personal and professional success in science and society is immense. There remains a critical need and challenge to increase the representation of underrepresented people in the sciences. To address this challenge a navigational geoscience program approach was developed centered on the incorporation of traditional knowledge into modern research and education. The approach incorporates defining cultural/personal choices for a STEM vocation, developing science research with a "purpose", and refining leadership. The program model incorporates a mentor's personal oral histories and experiences in education, research and life. The goal is to ensure the next generation of scientists and researchers are more diverse, highly educated, experienced and leadership orientated by the time they complete STEM programs - then by the time they are our age, have our level of education and experience.

  20. Involving Practicing Scientists in K-12 Science Teacher Professional Development

    Science.gov (United States)

    Bertram, K. B.

    2011-12-01

    The Science Teacher Education Program (STEP) offered a unique framework for creating professional development courses focused on Arctic research from 2006-2009. Under the STEP framework, science, technology, engineering, and math (STEM) training was delivered by teams of practicing Arctic researchers in partnership with master teachers with 20+ years experience teaching STEM content in K-12 classrooms. Courses based on the framework were offered to educators across Alaska. STEP offered in-person summer-intensive institutes and follow-on audio-conferenced field-test courses during the academic year, supplemented by online scientist mentorship for teachers. During STEP courses, teams of scientists offered in-depth STEM content instruction at the graduate level for teachers of all grade levels. STEP graduate-level training culminated in the translation of information and data learned from Arctic scientists into standard-aligned lessons designed for immediate use in K-12 classrooms. This presentation will focus on research that explored the question: To what degree was scientist involvement beneficial to teacher training and to what degree was STEP scientist involvement beneficial to scientist instructors? Data sources reveal consistently high levels of ongoing (4 year) scientist and teacher participation; high STEM content learning outcomes for teachers; high STEM content learning outcomes for students; high ratings of STEP courses by scientists and teachers; and a discussion of the reasons scientists indicate they benefited from STEP involvement. Analyses of open-ended comments by teachers and scientists support and clarify these findings. A grounded theory approach was used to analyze teacher and scientist qualitative feedback. Comments were coded and patterns analyzed in three databases. The vast majority of teacher open-ended comments indicate that STEP involvement improved K-12 STEM classroom instruction, and the vast majority of scientist open-ended comments

  1. Association of Polar Early Career Scientists Promotes Professional Skills

    Science.gov (United States)

    Pope, Allen; Fugmann, Gerlis; Kruse, Frigga

    2014-06-01

    As a partner organization of AGU, the Association of Polar Early Career Scientists (APECS; http://www.apecs.is) fully supports the views expressed in Wendy Gordon's Forum article "Developing Scientists' `Soft' Skills" (Eos, 95(6), 55, doi:10.1002/2014EO060003). Her recognition that beyond research skills, people skills and professional training are crucial to the success of any early-career scientist is encouraging.

  2. Science communication a practical guide for scientists

    CERN Document Server

    Bowater, Laura

    2012-01-01

    Science communication is a rapidly expanding area and meaningful engagement between scientists and the public requires effective communication. Designed to help the novice scientist get started with science communication, this unique guide begins with a short history of science communication before discussing the design and delivery of an effective engagement event. Along with numerous case studies written by highly regarded international contributors, the book discusses how to approach face-to-face science communication and engagement activities with the public while providing tips to avoid potential pitfalls. This book has been written for scientists at all stages of their career, including undergraduates and postgraduates wishing to engage with effective science communication for the first time, or looking to develop their science communication portfolio.

  3. Using Videoconferencing in a School-Scientist Partnership: Students' Perceptions and Scientists' Challenges

    Science.gov (United States)

    Falloon, Garry

    2012-01-01

    This research studied a series of videoconference teaching workshops and virtual labs, which formed a component of a school-scientist partnership involving a New Zealand science research institute and year 13 students at a Wellington high school. It explored students' perceptions of the effectiveness of the videoconferences as an interactive…

  4. Diversity and Equity in the Lab: Preparing Scientists and Engineers for Inclusive Teaching in Courses and Research Environments

    Science.gov (United States)

    Hunter, L.; Seagroves, S.; Metevier, A. J.; Kluger-Bell, B.; Raschke, L.; Jonsson, P.; Porter, J.; Brown, C.; Roybal, G.; Shaw, J.

    2010-12-01

    Despite high attrition rates in college-level science, technology, engineering, and math (STEM) courses, with even higher rates for women and underrepresented minorities, not enough attention has been given to higher education STEM classroom practices that may limit the retention of students from diverse backgrounds. The Professional Development Program (PDP) has developed a range of professional development activities aimed at helping participants learn about diversity and equity issues, integrate inclusive teaching strategies into their own instructional units, and reflect on their own teaching practices. In the PDP, all participants develop and teach a STEM laboratory activity that enables their students to practice scientific inquiry processes as they gain an understanding of scientific concepts. In addition, they are asked to consider diversity and equity issues in their activity design and teaching. The PDP supports participants in this challenging endeavor by engaging them in activities that are aligned with a PDP-defined Diversity & Equity Focus Area that includes five emphases: 1) Multiple ways to learn, communicate and succeed; 2) Learners' goals, interests, motivation, and values; 3) Beliefs and perceptions about ability to achieve; 4) Inclusive collaboration and equitable participation; 5) Social identification within STEM culture. We describe the PDP Diversity & Equity focus, the five emphases, and the supporting activities that have been designed and implemented within the PDP, as well as future directions for our diversity and equity efforts.

  5. Ernest Rutherford: scientist supreme

    International Nuclear Information System (INIS)

    Campbell, J.

    1998-01-01

    One hundred years ago this month, Ernest Rutherford a talented young New Zealander who had just spent three years as a postgraduate student in Britain left for Canada, where he was to do the work that won him a Nobel prize. All three countries can justifiably claim this great scientist as their own. Ernest Rutherford is one of the most illustrious scientists that the world has ever seen. He achieved enduring international fame because of an incredibly productive life, during which he altered our view of nature on three separate occasions. Combining brilliantly conceived experiments with much hard work and special insight, he explained the perplexing problem of naturally occurring radioactivity, determined the structure of the atom, and was the world's first successful alchemist, changing nitrogen into oxygen. Rutherford received a Nobel prize for the first discovery, but the other two would have been equally worthy candidates, had they been discovered by someone else. Indeed, any one of his other secondary achievements many of which are now almost forgotten would have been enough to bring fame to a lesser scientist. For example, he invented an electrical method for detecting individual ionizing radiations, he dated the age of the Earth, and briefly held the world record for the distance over which wireless waves could be detected. He predicted the existence of neutrons, he oversaw the development of large-scale particle accelerators, and, during the First World War, he led the allied research into the detection of submarines. In this article the author describes the life and times of Ernest Rutherford. (UK)

  6. Clinician-scientists in Canada: barriers to career entry and progress.

    Directory of Open Access Journals (Sweden)

    Bryn Lander

    Full Text Available BACKGROUND: Clinician-scientists play an important role in translating between research and clinical practice. Significant concerns about a decline in their numbers have been raised. Potential barriers for career entry and progress are explored in this study. METHODS: Case-study research methods were used to identify barriers perceived by clinician-scientists and their research teams in two Canadian laboratories. These perceptions were then compared against statistical analysis of data from Canadian Institutes of Health Research (CIHR databases on grant and award performance of clinician-scientists and non-clinical PhDs for fiscal years 2000 to 2008. RESULTS: Three main barriers were identified through qualitative analysis: research training, research salaries, and research grants. We then looked for evidence of these barriers in the Canada-wide statistical dataset for our study period. Clinician-scientists had a small but statistically significant higher mean number of degrees (3.3 than non-clinical scientists (3.2, potentially confirming the perception of longer training times. But evidence of the other two barriers was equivocal. For example, while overall growth in salary awards was minimal, awards to clinician-scientists increased by 45% compared to 6.3% for non-clinical PhDs. Similarly, in terms of research funding, awards to clinician-scientists increased by more than 25% compared with 5% for non-clinical PhDs. However, clinician-scientist-led grants funded under CIHR's Clinical thematic area decreased significantly from 61% to 51% (p-value<0.001 suggesting that clinician-scientists may be shifting their attention to other research domains. CONCLUSION: While clinician-scientists continue to perceive barriers to career entry and progress, quantitative results suggest improvements over the last decade. Clinician-scientists are awarded an increasing proportion of CIHR research grants and salary awards. Given the translational importance of

  7. To Boldly Go: Practical Career Advice for Young Scientists

    Science.gov (United States)

    Fiske, P.

    1998-05-01

    Young scientists in nearly every field are finding the job market of the 1990's a confusing and frustrating place. Ph.D. supply is far larger than that needed to fill entry-level positions in "traditional" research careers. More new Ph.D. and Master's degree holders are considering a wider range of careers in and out of science, but feel ill-prepared and uninformed about their options. Some feel their Ph.D. training has led them to a dead-end. I present a thorough and practical overview to the process of career planning and job hunting in the 1990's, from the perspective of a young scientist. I cover specific steps that young scientists can take to broaden their horizons, strengthen their skills, and present their best face to potential employers. An important part of this is the realization that most young scientists possess a range of valuable "transferable skills" that are highly sought after by employers in and out of science. I will summarize the specifics of job hunting in the 90's, including informational interviewing, building your network, developing a compelling CV and resume, cover letters, interviewing, based on my book "To Boldly Go: A Practical Career Guide for Scientists". I will also identify other resources available for young scientists. Finally, I will highlight individual stories of Ph.D.-trained scientists who have found exciting and fulfilling careers outside the "traditional" world of academia.

  8. Programs for attracting under-represented minority students to graduate school and research careers in computational science. Final report for period October 1, 1995 - September 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Turner, James C. Jr.; Mason, Thomas; Guerrieri, Bruno

    1997-10-01

    Programs have been established at Florida A & M University to attract minority students to research careers in mathematics and computational science. The primary goal of the program was to increase the number of such students studying computational science via an interactive multimedia learning environment One mechanism used for meeting this goal was the development of educational modules. This academic year program established within the mathematics department at Florida A&M University, introduced students to computational science projects using high-performance computers. Additional activities were conducted during the summer, these included workshops, meetings, and lectures. Through the exposure provided by this program to scientific ideas and research in computational science, it is likely that their successful applications of tools from this interdisciplinary field will be high.

  9. The Importance of Minority Teachers: Student Perceptions of Minority versus White Teachers

    Science.gov (United States)

    Cherng, Hua-Yu Sebastian; Halpin, Peter F.

    2016-01-01

    The demographic divide between teachers and students is of growing public concern. However, few studies have explicitly addressed the common argument that students, and particularly minority students, have more favorable perceptions of minority versus White teachers. Using data from the Measure of Effective Teaching study, we find that students…

  10. Values in environmental research: Citizens’ views of scientists who acknowledge values

    Science.gov (United States)

    McCright, Aaron M.; Allen, Summer; Dietz, Thomas

    2017-01-01

    Scientists who perform environmental research on policy-relevant topics face challenges when communicating about how values may have influenced their research. This study examines how citizens view scientists who publicly acknowledge values. Specifically, we investigate whether it matters: if citizens share or oppose a scientist’s values, if a scientist’s conclusions seem contrary to or consistent with the scientist’s values, and if a scientist is assessing the state of the science or making a policy recommendation. We conducted two 3x2 factorial design online experiments. Experiment 1 featured a hypothetical scientist assessing the state of the science on the public-health effects of exposure to Bisphenol A (BPA), and Experiment 2 featured a scientist making a policy recommendation on use of BPA. We manipulated whether or not the scientist expressed values and whether the scientist’s conclusion appeared contrary to or consistent with the scientist’s values, and we accounted for whether or not subjects’ values aligned with the scientist’s values. We analyzed our data with ordinary least squares (OLS) regression techniques. Our results provide at least preliminary evidence that acknowledging values may reduce the perceived credibility of scientists within the general public, but this effect differs depending on whether scientists and citizens share values, whether scientists draw conclusions that run contrary to their values, and whether scientists make policy recommendations. PMID:29069087

  11. NREL Scientists Model Methane-Eating Bacteria | News | NREL

    Science.gov (United States)

    Scientists Model Methane-Eating Bacteria News Release: NREL Scientists Model Methane-Eating Bacteria February 13, 2018 Nature is full of surprises - not to mention solutions. A research team ) recently explored the possibilities provided by the natural world by researching how the bacteria

  12. The BCLA Minor: Business, Communication, and Liberal Arts Minor at Towson University

    Science.gov (United States)

    Mahin, Linda

    2008-01-01

    In this article, the author describes a cross-disciplinary minor that combines elements of business, communication, and the liberal arts. The BCLA Minor enhances employment opportunities and cultural awareness for students with majors in the Colleges of Business and Economics, Fine Arts and Communication, and Liberal Arts by integrating the…

  13. Mentoring Through Research as a Catalyst for the Success of Under-represented Minority Students in the Geosciences at California State University Northridge

    Science.gov (United States)

    Marsaglia, K. M.; Pedone, V.; Simila, G. W.; Yule, J. D.

    2002-12-01

    The Catalyst Program of the Department of Geological Sciences at California State University Northridge has been developed by four faculty members who were the recipients of a three-year award (2002-2005) from the National Science Foundation. The goal of the program is to increase minority participation and success in the geosciences. The program seeks to enrich the educational experience by introducing students at all levels to research in the geosciences and to decrease obstacles that affect academic success. Both these goals are largely achieved by the formation of integrated high school, undergraduate, and graduate research groups, which also provide fulfilling and successful peer mentorship. The Catalyst Program provides significant financial support to participants to allow them to focus their time on their education. New participants first complete a specially designed course that introduces them to peer-mentoring, collaborative learning, and geological research. Students of all experience levels then become members of research teams, which deepens academic and research skills as well as peer-mentor relationships. The program was highly successful in its inaugural year. To date, undergraduates and graduate students in the program coauthored six abstracts at professional meetings and one conference paper. High-school students gained first hand experience of a college course and geologic research. Perhaps the most important impacts of the program are the close camaraderie that has developed and the increased ability of the Catalyst students to plan and execute research with greater confidence and self-esteem.

  14. Challenges in translational research: the views of addiction scientists.

    Science.gov (United States)

    Ostergren, Jenny E; Hammer, Rachel R; Dingel, Molly J; Koenig, Barbara A; McCormick, Jennifer B

    2014-01-01

    To explore scientists' perspectives on the challenges and pressures of translating research findings into clinical practice and public health policy. We conducted semi-structured interviews with a purposive sample of 20 leading scientists engaged in genetic research on addiction. We asked participants for their views on how their own research translates, how genetic research addresses addiction as a public health problem and how it may affect the public's view of addiction. Most scientists described a direct translational route for their research, positing that their research will have significant societal benefits, leading to advances in treatment and novel prevention strategies. However, scientists also pointed to the inherent pressures they feel to quickly translate their research findings into actual clinical or public health use. They stressed the importance of allowing the scientific process to play out, voicing ambivalence about the recent push to speed translation. High expectations have been raised that biomedical science will lead to new prevention and treatment modalities, exerting pressure on scientists. Our data suggest that scientists feel caught in the push for immediate applications. This overemphasis on rapid translation can lead to technologies and applications being rushed into use without critical evaluation of ethical, policy, and social implications, and without balancing their value compared to public health policies and interventions currently in place.

  15. Provider portrayals and patient-provider communication in drama and reality medical entertainment television shows.

    Science.gov (United States)

    Jain, Parul; Slater, Michael D

    2013-01-01

    Portrayals of physicians on medical dramas have been the subject of research attention. However, such research has not examined portrayals of interactions between physicians and patients, has not compared physician portrayals on medical dramas versus on medical reality programs, and has not fully examined portrayals of physicians who are members of minority groups or who received their education internationally. This study content-analyzes 101 episodes (85 hours) of such programs broadcast during the 2006-2007 viewing season. Findings indicate that women are underrepresented as physicians on reality shows, though they are no longer underrepresented as physicians on dramas. However, they are not as actively portrayed in patient-care interactions as are male physicians on medical dramas. Asians and international medical graduates are underrepresented relative to their proportion in the U.S. physician population, the latter by almost a factor of 5. Many (but certainly not all) aspects of patient-centered communication are modeled, more so on reality programs than on medical dramas. Differences in patient-provider communication portrayals by minority status and gender are reported. Implications for public perception of physicians and expectations regarding provider-patient interaction are discussed.

  16. Institutional Investors as Minority Shareholders

    OpenAIRE

    Assaf Hamdani; Yishay Yafeh

    2013-01-01

    We examine the link between minority shareholders' rights and corporate governance by studying institutional investors' voting patterns in a concentrated ownership environment. Institutions rarely vote against insider-sponsored proposals even when the law empowers the minority. Institutions vote against compensation-related proposals more often than against related party transactions even when minority shareholders cannot influence outcomes. Potentially conflicted institutions are more likely...

  17. Self-Esteem Comparisons among Intellectually Gifted Minority/Non-Minority Junior High Students.

    Science.gov (United States)

    Legin-Bucell, Cynthia; And Others

    Differences in self-esteem between 48 minority and 62 non-minority intellectually gifted and 75 intellectually average junior-high students were assessed using the Coopersmith Self-Esteem Inventory. Results indicated a higher level of self-esteem for the gifted students than for the control group. Significant differences were also found to exist…

  18. Minority stressors, rumination, and psychological distress in monozygotic twins discordant for sexual minority status.

    Science.gov (United States)

    Timmins, Liam; Rimes, Katharine A; Rahman, Qazi

    2017-11-07

    Lesbian, gay, and bisexual (LGB) individuals report higher levels of depression and anxiety than heterosexual people. Genetic factors may be a 'common cause' of sexual minority status and psychological distress. Alternatively, these may be correlated because of non-genetic environmental factors (e.g. minority stressors). This study investigated minority stressors and distress in monozygotic twins discordant for sexual minority status. This design provides a test of the role of non-shared environmental factors while minimizing differences due to genetics. Thirty-eight twin pairs in which one was heterosexual and the other was LGB completed a survey. Differences between twin pairs in minority stressors, rumination, psychological distress, and gender non-conformity were examined. Associations between these variables were also tested. Although there were no significant group differences for distress, LGB twins had higher rumination, a vulnerability factor for distress, than heterosexual co-twins. LGB twins also had higher scores than heterosexual co-twins on expectations of rejection, active concealment, self-stigma, prejudice events, childhood gender non-conformity, and lower scores on sexual orientation disclosure. Differences between twin pairs in rumination were positively associated with differences in acceptance concerns and self-stigma. Finally, self-stigma was positively associated with rumination in the full sample of heterosexual co-twins and microaggressions were positively associated with rumination when looking at exclusively heterosexual co-twins. These results support environmental factors as a causal explanation for disparities in rumination between LGB and heterosexual individuals. These factors likely include minority stressors. Rumination may also be associated with minority stressors in heterosexual MZ co-twins of LGB individuals.

  19. Continuous professional training of medical laboratory scientists in ...

    African Journals Online (AJOL)

    Background. Training and re-training of healthcare workers is pivotal to improved service delivery. Objective. To determine the proportion of practising medical laboratory scientists with in-service training in Benin City, Nigeria and areas covered by these programmes. Methods. Medical laboratory scientists from Benin City ...

  20. Representations of scientists in high school biology textbooks.

    NARCIS (Netherlands)

    Eijck, van M.W.; Roth, W.-M.

    2007-01-01

    ABSTRACT: High school students’ images of scientists are reported as being stereotypic and narrow. We investigated in this study the potential of science textbooks to mediate the emergence of such images. We selected evidence for how ten noted scientists are represented in four widely used high

  1. Scientists as communicators: A randomized experiment to assess public reactions to scientists' social media communication along the science-advocacy continuum

    Science.gov (United States)

    Kotcher, J.; Vraga, E.; Myers, T.; Stenhouse, N.; Roser-Renouf, C.; Maibach, E.

    2014-12-01

    The question of what type of role scientists, or experts more generally, should play in policy debates is a perennial point of discussion within the scientific community. It is often thought that communication containing some form of policy advocacy is likely to compromise the perceived credibility of the individual scientist engaged in such behavior, with the possibility that it may also harm the credibility of the scientific community more broadly. Rather than evaluating statements in a binary fashion as representing either pure objectivity or pure advocacy, one recent model proposes that public communication by scientists should instead be thought of as falling along a continuum based upon the extent of normative judgment implicit in a statement. This approach predicts that as the extent of normative judgment increases, it poses a relatively greater risk to a scientist's perceived credibility. Though such a model is conceptually useful, little empirical social science research has systematically explored how individuals form judgments about different types of advocacy to examine common assumptions about the relative risks associated with such behaviors. In this presentation, we will report results from a national online experiment (N=1200) that examines audience responses to fictional social media posts written by either a climate scientist or a television weathercaster. Following the above model, the posts represent differing degrees of advocacy defined by the extent of normative judgment implicit in each statement. In instances where a specific policy is advocated, we examine whether participants' reactions are shaped by the extent to which the policy mentioned is congruent with one's political ideology. We hope this study will serve as an exemplar of applied science communication research that can begin to help inform scientists and other experts about the potential implications of different communication options they may choose from in deciding how to engage

  2. Relations between scientists and government: the case of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Katz, J E

    1982-05-01

    This article discusses the role and influence of the scientific communities in less-developed countries (LDC) on national high-technology policy by examining the particular case of nuclear energy. This area has been largely overlooked by other literature on LDC's scientific development. Based on an examination of scientific involvement in nuclear energy policy in selected countries, it becomes clear that the influence of scientists can range from making cardinal decisions about programs to simply legitimating or implementing decisions made by political or bureaucratic leaders. Within governmental structures, there are opportunities for scientists to incrementally shape technology policies, despite the fact that the magnitude of this influence is circumscribed by domestic considerations, not only of physical resources, but also intangibles such as national prestige and security. While a scientist can on rare occasion seize opportunities to dramatically restructure a nation's scientific or nuclear program, the overwhelming majority of scientists never exercise any such power. But even in day-to-day operations of government scientists can exert subtle influence, not only on nuclear energy programs, but also in an indirect way on the fabric of a nation's culture. Despite this significant impact, in any direct contest between the scientist and the politician, the scientist inevitably loses. In conclusion, scientists seem much more aware of their limitations rather than their potential to influence national technology policy, and tend to act in accord with priorities and goals as defined by their nation-state. 18 references.

  3. Defining minors' abortion rights.

    Science.gov (United States)

    Rhodes, A M

    1988-01-01

    The right to abortion is confirmed in the Roe versus Wade case, by the US Supreme Court. It is a fundamental right of privacy but not an absolute right, and must consider state interests. During the first trimester of pregnancy abortion is a decision of the woman and her doctor. During the second trimester of pregnancy the state may control the abortion practice to protect the mothers health, and in the last trimester, it may prohibit abortion, except in cases where the mother's life or health are in danger. The states enacted laws, including one that required parents to give written consent for a unmarried minor's abortion. This law was struck down by the US Court, but laws on notification were upheld as long as there was alternative procedures where the minor's interests are upheld. Many of these law have been challenged successfully, where the minor was judged mature and where it served her best interests. The state must enact laws on parental notification that take into consideration basic rights of the minor woman. Health professionals and workers should be aware of these laws and should encourage the minor to let parents in on the decision making process where possible.

  4. Partnerships and Grassroots Action in the 500 Women Scientists Network

    Science.gov (United States)

    Weintraub, S. R.; Zelikova, T. J.; Pendergrass, A. G.; Bohon, W.; Ramirez, K. S.

    2017-12-01

    The past year has presented real challenges for scientists, especially in the US. The political context catalyzed the formation of many new organizations with a range of goals, from increasing the role of science in decision making to improving public trust in science and scientists. The grassroots organization 500 Women Scientists formed in the wake of the 2016 US election as a response to widespread anti-science, intolerant rhetoric and to form a community that could take action together. Within months, the network grew to more than 20,000 women scientists from across the globe. We evolved from our reactionary beginnings towards a broader mission to serve society by making science open, inclusive, and accessible. With the goal of transforming scientific institutions towards a more inclusive and just enterprise, we have been building alliances with diverse groups to provide training and mentorship opportunities to our members. In so doing, we created space for scientists from across disciplines to work together, speak out, and channel their energies toward making a difference. In partnership with the Union of Concerned Scientists and Rise Stronger, we assembled resources to help scientists write op-eds and letters to the editor about the importance of science in their communities. We partnered with researchers in Jordan to explore a new peer-to-peer mentoring model. Along with a healthcare advocacy group, we participated in dialogue to examine the role of science in affordable medicine. Finally, we are working with other groups to expand peer networks and career development resources for international STEM women. Our local chapters often initiate this work, teaming up with diverse organizations to bring science to their communities and, in the process, shift perceptions of what a scientist looks like. While as scientists, we would rather be conducting experiments or running models, what brings us together is an urgent sense that our scientific expertise is needed

  5. Attitudes and working conditions of ICES advisory scientists

    DEFF Research Database (Denmark)

    Hegland, Troels Jacob; Wilson, Douglas Clyde

    2009-01-01

    give a fuller picture. One important task is to compare the experience of fisheries scientists who are more involved in the advice generation system with that of their colleagues who are less involved. Most of the tables draw comparisons between scientists who work for different kinds of employers...

  6. The diversity and disparity in biomedical informatics (DDBI) workshop.

    Science.gov (United States)

    Southerland, William M; Swamidass, S Joshua; Payne, Philip R O; Wiley, Laura; Williams-DeVane, ClarLynda

    2018-01-01

    The Diversity and Disparity in Biomedical Informatics (DDBI) workshop will be focused on complementary and critical issues concerned with enhancing diversity in the informatics workforce as well as diversity in patient cohorts. According to the National Institute of Minority Health and Health Disparities (NIMHD) at the NIH, diversity refers to the inclusion of the following traditionally underrepresented groups: African Americans/Blacks, Asians (>30 countries), American Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, Latino or Hispanic (20 countries). Gender, culture, and socioeconomic status are also important dimensions of diversity, which may define some underrepresented groups. The under-representation of specific groups in both the biomedical informatics workforce as well as in the patient-derived data that is being used for research purposes has contributed to an ongoing disparity; these groups have not experienced equity in contributing to or benefiting from advancements in informatics research. This workshop will highlight innovative efforts to increase the pool of minority informaticians and discuss examples of informatics research that addresses the health concerns that impact minority populations. This workshop topics will provide insight into overcoming pipeline issues in the development of minority informaticians while emphasizing the importance of minority participation in health related research. The DDBI workshop will occur in two parts. Part I will discuss specific minority health & health disparities research topics and Part II will cover discussions related to overcoming pipeline issues in the training of minority informaticians.

  7. Science Educational Outreach Programs That Benefit Students and Scientists.

    Directory of Open Access Journals (Sweden)

    Greg Clark

    2016-02-01

    Full Text Available Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs--"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist"--that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities.

  8. Minority students benefit from mentoring programs.

    Science.gov (United States)

    Cullen, D L; Rodak, B; Fitzgerald, N; Baker, S

    1993-01-01

    Mentoring has been proposed as one strategy to attract minority students to the radiologic sciences profession. This case study describes a minority mentoring program conducted for pre-radiologic science students at a Midwestern university during the 1991-92 academic year. Ten minority radiologic science students enrolled in the mentoring program. The study showed that mentoring may be a viable option to serve the special needs of minorities for recruitment and retention.

  9. Politics and scientific expertise: Scientists, risk perception, and nuclear waste policy

    International Nuclear Information System (INIS)

    Barke, R.P.; Jenkins-Smith, H.C.

    1993-01-01

    To study the homogeneity and influences on scientists' perspectives of environmental risks, the authors have examined similarities and differences in risk perceptions, particularly regarding nuclear wastes, and policy preferences among 1011 scientists and engineers. Significant differences (p<0.05) were found in the patterns of beliefs among scientists from different fields of research. In contrast to physicists, chemists, and engineers, life scientists tend to: (a) perceive the greatest risks from nuclear energy and nuclear waste management; (b) perceive higher levels of overall environmental risk; (c) strongly oppose imposing risks on unconsenting individuals; and (d) prefer stronger requirements for environmental management. On some issues related to priorities among public problems and calls for government action, there are significant variations among life scientists or physical scientists. It was also found that-independently of field of research-perceptions of risk and its correlates are significantly associated with the type of institution in which the scientist is employed. Scientists in universities or state and local governments tend to see the risks of nuclear energy and wastes as greater than scientists who work as business consultants, for federal organizations, or for private research laboratories. Significant differences also are found in priority given to environmental risks, the perceived proximity of environmental disaster, willingness to impose risks on an unconsenting population, and the necessity of accepting risks and sacrifices. 33 refs., 3 figs., 9 tabs

  10. Superheroes and supervillains: reconstructing the mad-scientist stereotype in school science

    Science.gov (United States)

    Avraamidou, Lucy

    2013-04-01

    Background. Reform recommendations around the world call for an understanding about the nature of science and the work of scientists. However, related research findings provide evidence that students hold stereotypical views of scientists and the nature of their work. Purpose The aim of this case study was to examine the impact of an intervention on 15 elementary school students' views of scientists. Sample An urban, fifth-grade, European elementary school classroom defined the context of this study. Design and method The intervention was an 11-week-long investigation of a local problem concerning water quality. In carrying out this investigation the students collaborated with a young metrology scientist to collect and analyse authentic data that would help them to construct a claim about the quality of the water. The students' initial views of scientists were investigated through a drawing activity, classroom discussions and interviews. Results Analysis of these data indicated that all students but one girl held very stereotypical views on scientists and the nature of their work. Analysis of interviews with each student and classroom discussions after the intervention illustrated that they reconstructed their stereotypical views of scientists and the nature of their work owing to their personal engagement in the investigation and their collaboration with the scientist. Conclusions The findings of this study suggest that more in-depth study into project-based approaches, out-of-school learning and school-scientist partnerships is warranted, for the purpose of determining appropriate pedagogies that support students in developing up-to-date understanding about scientists and the nature of their work.

  11. At the Beginning of the STEM Pipeline: A Case Study Exploring Preadolescent Female Students' Attitudes Toward Science, Perceptions of Scientists, and Developing Career Aspirations

    Science.gov (United States)

    Heacock, Lucy Vogel

    The continuous underrepresentation of women in science, technology, engineering, and math (STEM), referred to as the leaky pipeline, has been examined from multiple perspectives internationally, while the attitudes and perceptions of preadolescent girls regarding STEM remain largely ignored. Employing a constructivist paradigm, this qualitative case study explored the perceptions and attitudes of 40 public elementary school female students across three grade levels regarding science, scientists, and career aspirations. Mixed-methods data collections included three survey instruments combined with semi-structured interviews. Self-efficacy, stereotype threat, and career choice theory provided the framework for the overarching research question: What are the attitudes and perceptions of female preadolescent students at the third, fourth, and fifth grade levels regarding science and scientists, and how might these dispositions affect their early development of STEM career aspirations and interests? The Three-Dimensions of Student Attitude Towards Science (TDSAS) instrument informed the exploration of self-efficacy; the modified Draw-A-Scientist Test (mDAST) and Rubric informed the exploration of stereotype threat; and the STEM-Career Interest Survey (CIS) informed the exploration of career aspirations. Semi-structured interviews were conducted with six participants. Results from this study indicated that the majority of the preadolescent girls thought science was an important topic to study and displayed an attitude of self-confident ability to learn science and be successful in science class. They highly enjoyed scientific experimentation and deeply valued problem solving. While they inferred they did not experience gender bias, the girls did engage in stereotyping scientists. Over half the girls expected to use science in their future careers, while a minority had already determined they wanted to be scientists when they grow up. The study concludes with

  12. Finding Meaningful Roles for Scientists in science Education Reform

    Science.gov (United States)

    Evans, Brenda

    Successful efforts to achieve reform in science education require the active and purposeful engagement of professional scientists. Working as partners with teachers, school administrators, science educators, parents, and other stakeholders, scientists can make important contributions to the improvement of science teaching and learning in pre-college classrooms. The world of a practicing university, corporate, or government scientist may seem far removed from that of students in an elementary classroom. However, the science knowledge and understanding of all future scientists and scientifically literate citizens begin with their introduction to scientific concepts and phenomena in childhood and the early grades. Science education is the responsibility of the entire scientific community and is not solely the responsibility of teachers and other professional educators. Scientists can serve many roles in science education reform including the following: (1) Science Content Resource, (2) Career Role Model, (3) Interpreter of Science (4) Validator for the Importance of Learning Science and Mathematics, (5) Champion of Real World Connections and Value of Science, (6) Experience and Access to Funding Sources, (7) Link for Community and Business Support, (8) Political Supporter. Special programs have been developed to assist scientists and engineers to be effective partners and advocates of science education reform. We will discuss the rationale, organization, and results of some of these partnership development programs.

  13. Career Management for Scientists and Engineers

    Science.gov (United States)

    Borchardt, John K.

    2000-05-01

    This book will be an important resource for both new graduates and mid-career scientists, engineers, and technicians. Through taking stock of existing or desired skills and goals, it provides both general advice and concrete examples to help asses a current job situation or prospect, and to effectively pursue and attain new ones. Many examples of properly adapted resumes and interview techniques, as well as plenty of practical advice about adaptation to new workplace cultural paradigms, such as team-based management, make this book an invaluable reference for the professional scientist in today's volatile job market.

  14. On the gender-science stereotypes held by scientists: explicit accord with gender-ratios, implicit accord with scientific identity.

    Science.gov (United States)

    Smyth, Frederick L; Nosek, Brian A

    2015-01-01

    Women's representation in science has changed substantially, but unevenly, over the past 40 years. In health and biological sciences, for example, women's representation among U.S. scientists is now on par with or greater than men's, while in physical sciences and engineering they remain a clear minority. We investigated whether variation in proportions of women in scientific disciplines is related to differing levels of male-favoring explicit or implicit stereotypes held by students and scientists in each discipline. We hypothesized that science-is-male stereotypes would be weaker in disciplines where women are better represented. This prediction was tested with a sample of 176,935 college-educated participants (70% female), including thousands of engineers, physicians, and scientists. The prediction was supported for the explicit stereotype, but not for the implicit stereotype. Implicit stereotype strength did not correspond with disciplines' gender ratios, but, rather, correlated with two indicators of disciplines' scientific intensity, positively for men and negatively for women. From age 18 on, women who majored or worked in disciplines perceived as more scientific had substantially weaker science-is-male stereotypes than did men in the same disciplines, with gender differences larger than 0.8 standard deviations in the most scientifically-perceived disciplines. Further, particularly for women, differences in the strength of implicit stereotypes across scientific disciplines corresponded with the strength of scientific values held by women in the disciplines. These results are discussed in the context of dual process theory of mental operation and balanced identity theory. The findings point to the need for longitudinal study of the factors' affecting development of adults' and, especially, children's implicit gender stereotypes and scientific identity.

  15. On the gender–science stereotypes held by scientists: explicit accord with gender-ratios, implicit accord with scientific identity

    Science.gov (United States)

    Smyth, Frederick L.; Nosek, Brian A.

    2015-01-01

    Women's representation in science has changed substantially, but unevenly, over the past 40 years. In health and biological sciences, for example, women's representation among U.S. scientists is now on par with or greater than men's, while in physical sciences and engineering they remain a clear minority. We investigated whether variation in proportions of women in scientific disciplines is related to differing levels of male-favoring explicit or implicit stereotypes held by students and scientists in each discipline. We hypothesized that science-is-male stereotypes would be weaker in disciplines where women are better represented. This prediction was tested with a sample of 176,935 college-educated participants (70% female), including thousands of engineers, physicians, and scientists. The prediction was supported for the explicit stereotype, but not for the implicit stereotype. Implicit stereotype strength did not correspond with disciplines' gender ratios, but, rather, correlated with two indicators of disciplines' scientific intensity, positively for men and negatively for women. From age 18 on, women who majored or worked in disciplines perceived as more scientific had substantially weaker science-is-male stereotypes than did men in the same disciplines, with gender differences larger than 0.8 standard deviations in the most scientifically-perceived disciplines. Further, particularly for women, differences in the strength of implicit stereotypes across scientific disciplines corresponded with the strength of scientific values held by women in the disciplines. These results are discussed in the context of dual process theory of mental operation and balanced identity theory. The findings point to the need for longitudinal study of the factors' affecting development of adults' and, especially, children's implicit gender stereotypes and scientific identity. PMID:25964765

  16. On the Gender-Science Stereotypes held by Scientists: Explicit accord with Gender-Ratios, Implicit accord with Scientific Identity

    Directory of Open Access Journals (Sweden)

    Frederick L Smyth

    2015-04-01

    Full Text Available Women’s representation in science has changed substantially, but unevenly, over the past 40 years. In health and biological sciences, for example, women’s representation among U.S. scientists is now on par with or greater than men’s, while in physical sciences and engineering they remain a clear minority. We investigated whether variation in proportions of women in scientific disciplines is related to differing levels of male-favoring explicit or implicit stereotypes held by students and scientists in each discipline. We hypothesized that science-is-male stereotypes would be weaker in disciplines where women are better represented. This prediction was tested with a sample of 176,935 college-educated participants (70% female, including thousands of engineers, physicians, and scientists. The prediction was supported for the explicit stereotype, but not for the implicit stereotype. Implicit stereotype strength did not correspond with disciplines’ gender ratios, but, rather, correlated with two indicators of disciplines’ scientific intensity, positively for men and negatively for women. From age 18 on, women who majored or worked in disciplines perceived as more scientific had substantially weaker science-is-male stereotypes than did men in the same disciplines, with gender differences larger than 0.8 standard deviations in the most scientifically-perceived disciplines. Further, particularly for women, differences in the strength of implicit stereotypes across scientific disciplines corresponded with the strength of scientific values held by women in the disciplines. These results are discussed in the context of dual process theory of mental operation and balanced identity theory. The findings point to the need for longitudinal study of the factors’ affecting development of adults’ and, especially, children’s implicit gender stereotypes and scientific identity.

  17. American and Greek Children's Visual Images of Scientists

    Science.gov (United States)

    Christidou, Vasilia; Bonoti, Fotini; Kontopoulou, Argiro

    2016-08-01

    This study explores American and Greek primary pupils' visual images of scientists by means of two nonverbal data collection tasks to identify possible convergences and divergences. Specifically, it aims to investigate whether their images of scientists vary according to the data collection instrument used and to gender. To this end, 91 third-grade American ( N = 46) and Greek ( N = 45) pupils were examined. Data collection was conducted through a drawing task based on Chambers (1983) `Draw-A-Scientist-Test' (DAST) and a picture selection task during which the children selected between 14 pairs of illustrations those that were most probable to represent scientists. Analysis focused on stereotype indicators related with scientists' appearance and work setting. Results showed that the two groups' performance varied significantly across the tasks used to explore their stereotypic perceptions, although the overall stereotypy was not differentiated according to participants' ethnic group. Moreover, boys were found to use more stereotypic indicators than girls, while the picture selection task elicited more stereotypic responses than the drawing task. In general, data collected by the two instruments revealed convergences and divergences concerning the stereotypic indicators preferred. Similarities and differences between national groups point to the influence of a globalized popular culture on the one hand and of the different sociocultural contexts underlying science curricula and their implementation on the other. Implications for science education are discussed.

  18. Increasing student diversity and cultural competence as part of Loma Linda University School of Dentistry's service mission.

    Science.gov (United States)

    Arnett, Margie R; Forde, Ron

    2012-06-01

    For many years, studies have identified a need for greater racial and ethnic diversity among dental professionals. However, the ability of the field to collectively address the problem has been hindered by the low numbers of underrepresented minority students who apply to dental school. Over the past two decades, college attendance rates have increased and U.S. dental school applications have tripled, but the number of underrepresented minority dental applicants has remained about the same. With the increasing diversity of the U.S. population and specifically that of the state of California, the dental workforce would be enhanced by the presence of more underrepresented minority dentists. Additionally, curricular changes should be implemented to better prepare dental students to meet the oral health care needs of diverse populations. There is general agreement that these workforce and curricular changes would enhance access to care for underserved populations. For seven years, Loma Linda University School of Dentistry participated in the Pipeline, Profession, and Practice: Community-Based Dental Education program. The first phase of this national program addressed deficiencies in diversity in dentistry and in access to oral health care. In the second phase, Loma Linda University continued to collaborate with other California dental schools on specific state initiatives. This article provides an overview of the school's efforts to enroll a more diverse student body, enhance all its students' cultural competence, and expand care to underserved populations.

  19. SEBACEOUS CYSTS MINOR SURGERY

    Directory of Open Access Journals (Sweden)

    I Gusti Ayu Agung Laksemi

    2013-12-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Minor surgery is small surgery or localized example cut ulcers and boils, cyst excision, and suturing. Somethings that need to be considered in the preparation of the surgery is minor tools, operating rooms and operating tables, lighting, maintenance of tools and equipment, sterilization and desinfection equipment, preparation of patients and anesthesia. In general cysts is walled chamber that consist of fluid, cells and the remaining cells. Cysts are formed not due to inflammation although then be inflamed. Lining of the cysts wall is composed of fibrous tissue and usually coated epithelial cells or endothelial. Cysts formed by dilated glands and closed channels, glands, blood vessels, lymph channels or layers of the epidermis. Contents of the cysts wall consists of the results is serum, lymph, sweat sebum, epithelial cells, the stratum corneum, and hair. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  20. Multichoice minority game

    International Nuclear Information System (INIS)

    Ein-Dor, Liat; Metzler, Richard; Kanter, Ido; Kinzel, Wolfgang

    2001-01-01

    The generalization of the problem of adaptive competition, known as the minority game, to the case of K possible choices for each player, is addressed, and applied to a system of interacting perceptrons with input and output units of a type of K-state Potts spins. An optimal solution of this minority game, as well as the dynamic evolution of the adaptive strategies of the players, are solved analytically for a general K and compared with numerical simulations

  1. Tools You Can Use! E/PO Resources for Scientists and Faculty to Use and Contribute To: EarthSpace and the NASA SMD Scientist Speaker’s Bureau

    Science.gov (United States)

    Buxner, Sanlyn; Shupla, C.; CoBabe-Ammann, E.; Dalton, H.; Shipp, S.

    2013-10-01

    The Planetary Science Education and Public Outreach (E/PO) Forum has helped to create two tools that are designed to help scientists and higher-education science faculty make stronger connections with their audiences: EarthSpace, an education clearinghouse for the undergraduate classroom; and NASA SMD Scientist Speaker’s Bureau, an online portal to help bring science - and scientists - to the public. Are you looking for Earth and space science higher education resources and materials? Come explore EarthSpace, a searchable database of undergraduate classroom materials for faculty teaching Earth and space sciences at both the introductory and upper division levels! In addition to classroom materials, EarthSpace provides news and information about educational research, best practices, and funding opportunities. All materials submitted to EarthSpace are peer reviewed, ensuring that the quality of the EarthSpace materials is high and also providing important feedback to authors. Your submission is a reviewed publication! Learn more, search for resources, join the listserv, sign up to review materials, and submit your own at http://www.lpi.usra.edu/earthspace. Join the new NASA SMD Scientist Speaker’s Bureau, an online portal to connect scientists interested in getting involved in E/PO projects (e.g., giving public talks, classroom visits, and virtual connections) with audiences! The Scientist Speaker’s Bureau helps educators and institutions connect with NASA scientists who are interested in giving presentations, based upon the topic, logistics, and audience. The information input into the database will be used to help match scientists (you!) with the requests being placed by educators. All Earth and space scientists funded by NASA - and/or engaged in active research using NASA’s science - are invited to become part of the Scientist Speaker’s Bureau. Submit your information into the short form at http://www.lpi.usra.edu/education/speaker.

  2. Autonomy and minority rights

    DEFF Research Database (Denmark)

    Barten, Ulrike

    2008-01-01

    on the content of the syllabus. When autonomy is understood in the literal sense, of giving oneself one's own laws, then there is a clear connection. Autonomy is usually connected to politics and a geographically limited territory. Special political rights of minorities - e.g. is the Danish minority party SSW...

  3. Intersectionality as a Framework for Inclusive Environments

    Science.gov (United States)

    Nunez, A. M.

    2016-12-01

    To create more inclusive environments for the advancement of scientific inquiry, it is critical to consider the role of intersectionality. Originating in activism and legal scholarship grounded in the realities of women of color, the concept of intersectionality emphasizes how societal power dynamics shape the differential construction of life opportunities of diverse demographic groups across a variety of social identities, contexts, and historical conditions. Importantly, intersectionality also recognizes that individuals can simultaneously hold privileged and marginalized identities. For example, while white women scientists are less represented in leadership and decision-making positions than their male counterparts, but they typically do not experience the marginalization of being mistaken for cleaning staff at their institutions, as many African American and Latina scientists report. Thus, white women are relatively privileged in this context. This case and national survey data demonstrate the critical importance of recognizing that the intersection of racial and gender identities creates complex and multi-faceted challenges for diverse women scientists in navigating the organizational culture of science. Educational research indicates that interventions seeking to create more inclusivity in science should take into account the relationships between various social identities, contexts, and broader historical conditions that affect the advancement of historically underrepresented minority groups. Therefore, this presentation will provide a conceptual framework of intersectionality to guide interventions to encourage all scientists to recognize the distinctive intellectual and social contributions of those from diverse gender, race, class, disability, sexual orientation, and other identity backgrounds. It will also address how this framework can be applied to develop programs, policies, and practices that transform organizational cultures to be more inclusive

  4. Talk Like a Scientist

    Science.gov (United States)

    Marcum-Dietrich, Nanette

    2010-01-01

    In the scientific community, the symposium is one formal structure of conversation. Scientists routinely hold symposiums to gather and talk about a common topic. To model this method of communication in the classroom, the author designed an activity in which students conduct their own science symposiums. This article presents the science symposium…

  5. Developing Scientists' "Soft" Skills

    Science.gov (United States)

    Gordon, Wendy

    2014-02-01

    A great deal of professional advice directed at undergraduates, graduate students, postdoctoral fellows, and even early-career scientists focuses on technical skills necessary to succeed in a complex work environment in which problems transcend disciplinary boundaries. Collaborative research approaches are emphasized, as are cross-training and gaining nonacademic experiences [Moslemi et al., 2009].

  6. Poll of radiation health scientists

    International Nuclear Information System (INIS)

    Cohen, B.L.

    1986-01-01

    A sampling of 210 university-employed radiation health scientists randomly selected from the membership lists of the Health Physics Society and the Radiation Research Society was polled in a secret ballot. The results support the positions that the public's fear of radiation is substantially greater than realistic, that TV, newspapers and magazines substantially exaggerate the dangers of radiation, that the amount of money now being spent on radiation protection is sufficient, and that the openness and honesty of U.S. government agencies about dangers of radiation were below average before 1972 but have been above average since then. Respondents give very high credibility ratings to BEIR, UNSCEAR, ICRP, and NCRP and to the individual scientists associated with their reports, and very low credibility ratings to those who have disputed them

  7. Mentoring Interventions for Underrepresented Scholars in Biomedical and Behavioral Sciences: Effects on Quality of Mentoring Interactions and Discussions.

    Science.gov (United States)

    Lewis, Vivian; Martina, Camille A; McDermott, Michael P; Chaudron, Linda; Trief, Paula M; LaGuardia, Jennifer G; Sharp, Daryl; Goodman, Steven R; Morse, Gene D; Ryan, Richard M

    2017-01-01

    Mentors rarely receive education about the unique needs of underrepresented scholars in the biomedical and behavioral sciences. We hypothesized that mentor-training and peer-mentoring interventions for these scholars would enrich the perceived quality and breadth of discussions between mentor-protégé dyads (i.e., mentor-protégé pairs). Our multicenter, randomized study of 150 underrepresented scholar-mentor dyads compared: 1) mentor training, 2) protégé peer mentoring, 3) combined mentor training and peer mentoring, and 4) a control condition (i.e., usual practice of mentoring). In this secondary analysis, the outcome variables were quality of dyad time and breadth of their discussions. Protégé participants were graduate students, fellows, and junior faculty in behavioral and biomedical research and healthcare. Dyads with mentor training were more likely than those without mentor training to have discussed teaching and work-life balance. Dyads with peer mentoring were more likely than those without peer mentoring to have discussed clinical care and career plans. The combined intervention dyads were more likely than controls to perceive that the quality of their time together was good/excellent. Our study supports the value of these mentoring interventions to enhance the breadth of dyad discussions and quality of time together, both important components of a good mentoring relationship. © 2017 V. Lewis et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. Partnering with a Community College and Research University to attract Underrepresented Students to the Geosciences: The Student Experience

    Science.gov (United States)

    Wickham, J. S.; Saunders, D.; Smith, G.

    2015-12-01

    A NSF sponsored partnership between the University of Texas at Arlington and the Tarrant County College District aimed to attract underrepresented lower-division students interested in STEM to the geosciences. The program recruited 32 students over 3 years, developed an innovative field course, provided tutoring and mentoring programs, and offered research assistantships for students to work with the research university faculty on funded projects. Under-represented students were 66% of the group. The data was gathered via a web-based survey from April 2nd to April 17th, 2015, using both open ended and item-level responses. Out of 32 participants, the response rate was a significant 50%. Some of the survey results include: 1) Most students heard about the program from faulty who recruited them in introductory level classes; 2) Almost all agreed that the geosciences were interesting, fun, important and a good career path; 3) 92% of the community college respondents found transferring to a research university somewhat or not too difficult; 4) The most helpful parts of the program included faculty mentors, the field course, research assistant experiences and relationships with faculty. The least helpful parts included the tutoring services, relationships with other students, and the semester kickoff meetings; 5) over 60% of the students felt very confident in research skills, formulating research questions, lab skills, quantitative skills, time management, collaborating and working independently. They were less confident in planning research, graphing results, writing papers and making oral presentations; 6) most found the faculty very helpful in advising and mentoring, and 86% said they were comfortable asking at least one faculty member for a reference letter; 7) 93% said they were likely to pursue a geoscience career and 86% were confident or somewhat confident they would be successful.

  9. The seven secrets of how to think like a rocket scientist

    CERN Document Server

    Longuski, James

    2007-01-01

    This book explains the methods that rocket scientists use - expressed in a way that could be applied in everyday life. It's short and snappy and written by a rocket scientist. It is intended for general "armchair" scientists.

  10. Scientists' perspectives on consent in the context of biobanking research.

    Science.gov (United States)

    Master, Zubin; Campo-Engelstein, Lisa; Caulfield, Timothy

    2015-05-01

    Most bioethics studies have focused on capturing the views of patients and the general public on research ethics issues related to informed consent for biobanking and only a handful of studies have examined the perceptions of scientists. Capturing the opinions of scientists is important because they are intimately involved with biobanks as collectors and users of samples and health information. In this study, we performed interviews with scientists followed by qualitative analysis to capture the diversity of perspectives on informed consent. We found that the majority of scientists in our study reported their preference for a general consent approach although they do not believe there to be a consensus on consent type. Despite their overall desire for a general consent model, many reported several concerns including donors needing some form of assurance that nothing unethical will be done with their samples and information. Finally, scientists reported mixed opinions about incorporating exclusion clauses in informed consent as a means of limiting some types of contentious research as a mechanism to assure donors that their samples and information are being handled appropriately. This study is one of the first to capture the views of scientists on informed consent in biobanking. Future studies should attempt to generalize findings on the perspectives of different scientists on informed consent for biobanking.

  11. Mentors, networks, and resources for early career female atmospheric scientists

    Science.gov (United States)

    Hallar, A. G.; Avallone, L. M.; Edwards, L. M.; Thiry, H.; Ascent

    2011-12-01

    Atmospheric Science Collaborations and Enriching NeTworks (ASCENT) is a workshop series designed to bring together early career female scientists in the field of atmospheric science and related disciplines. ASCENT is a multi-faceted approach to retaining these junior scientists through the challenges in their research and teaching career paths. During the workshop, senior women scientists discuss their career and life paths. They also lead seminars on tools, resources and methods that can help early career scientists to be successful. Networking is a significant aspect of ASCENT, and many opportunities for both formal and informal interactions among the participants (of both personal and professional nature) are blended in the schedule. The workshops are held in Steamboat Springs, Colorado, home of a high-altitude atmospheric science laboratory - Storm Peak Laboratory, which also allows for nearby casual outings and a pleasant environment for participants. Near the conclusion of each workshop, junior and senior scientists are matched in mentee-mentor ratios of two junior scientists per senior scientist. An external evaluation of the three workshop cohorts concludes that the workshops have been successful in establishing and expanding personal and research-related networks, and that seminars have been useful in creating confidence and sharing resources for such things as preparing promotion and tenure packages, interviewing and negotiating job offers, and writing successful grant proposals.

  12. Refugee scientists under the spotlight

    Science.gov (United States)

    Extance, Andy

    2017-07-01

    Thousands of people are forced to flee war-torn regions every year, but the struggles of scientists who have to leave their homeland often goes under the radar. Andy Extance reports on initiatives to help

  13. Scientists and Science Education: Working at the Interface

    Science.gov (United States)

    DeVore, E. K.

    2004-05-01

    "Are we alone?" "Where did we come from?" "What is our future?" These questions lie at the juncture of astronomy and biology: astrobiology. It is intrinsically interdisciplinary in its study of the origin, evolution and future of life on Earth and beyond. The fundamental concepts of origin and evolution--of both living and non-living systems--are central to astrobiology, and provide powerful themes for unifying science teaching, learning, and appreciation in classrooms and laboratories, museums and science centers, and homes. Research scientists play a key role in communicating the nature of science and joy of scientific discovery with the public. Communicating the scientific discoveries with the public brings together diverse professionals: research scientists, graduate and undergraduate faculty, educators, journalists, media producers, web designers, publishers and others. Working with these science communicators, research scientists share their discoveries through teaching, popular articles, lectures, broadcast and print media, electronic publication, and developing materials for formal and informal education such as textbooks, museum exhibits and documentary television. There's lots of activity in science communication. Yet, the NSF and NASA have both identified science education as needing improvement. The quality of schools and the preparation of teachers receive national attention via "No Child Left Behind" requirements. The number of students headed toward careers in science, technology, engineering and mathematics (STEM) is not sufficient to meet national needs. How can the research community make a difference? What role can research scientists fulfill in improving STEM education? This talk will discuss the interface between research scientists and science educators to explore effective roles for scientists in science education partnerships. Astronomy and astrobiology education and outreach projects, materials, and programs will provide the context for

  14. Teacher Candidates' Perceptions of Scientists: Images and Attributes

    Science.gov (United States)

    McCarthy, Deborah

    2015-01-01

    The masculine image of scientists as elderly men wearing white coats and glasses, working alone in the laboratory has been documented since the 1950s. Because it is important that teacher candidates have a scientifically literate image of scientists due to the impact they have on their future students, this investigation is salient. This study…

  15. Wellness of Minority Female Counselor Educators

    Science.gov (United States)

    Shillingford, M. Ann; Trice-Black, Shannon; Butler, S. Kent

    2013-01-01

    Minority female counselor educators are faced with numerous challenges. This qualitative study revealed that for female minority counselor educators, these challenges continue to negatively affect their professional and personal experiences. It is through operational wellness practices and optimal balance and functioning that minority female…

  16. Scientists' views of the philosophy of science

    OpenAIRE

    Riesch, H.

    2008-01-01

    Many studies in public understanding of science emphasise that learning how to do science also involves learning about the philosophical issues surrounding the nature of science. This thesis aims to find out how scientists themselves talk and write about these philosophical topics, and how these topics get used in scientific thought. It contrasts scientists' opinions on these issues with how they are portrayed in popular science, and also contrasts them with how philosophers themselves have j...

  17. Women underrepresented on editorial boards of 60 major medical journals.

    Science.gov (United States)

    Amrein, Karin; Langmann, Andrea; Fahrleitner-Pammer, Astrid; Pieber, Thomas R; Zollner-Schwetz, Ines

    2011-12-01

    Although there has been a continuous increase in the number of women working in the field of medicine, women rarely reach the highest academic positions as full professors or editorial board members. We aimed to determine the proportion of women on the editorial boards of top-ranked medical journals in different medical specialties. We analyzed the gender of editorial board members of 60 top-ranked journals of 12 Thomson Reuters Web of Knowledge Journal Citation Reports categories. A total of 4175 editors were included in our analysis. Only 15.9% (10 of 63) editors-in-chief were female. In the 5 categories, critical care, anesthesiology, orthopedics, ophthalmology and radiology, nuclear medicine and medical imaging, currently not 1 woman holds the position of editor-in-chief. Less than one fifth (17.5%, 719 of 4112) of all editorial board members were women. There were significant differences among the evaluated categories, with the highest percentage of women in the category of medicine, general and internal and the lowest in the category critical care, followed by orthopedics. In every category, the proportion of women as editorial board members was substantially lower than that of men. Women are underrepresented on the editorial boards of major medical journals, although there is a great variability among the journals and categories analyzed. If more women are nominated to serve on editorial boards, they will be a visible sign of continuing progress and serve as important role models for young women contemplating a career in academic medicine. Copyright © 2011 Elsevier HS Journals, Inc. All rights reserved.

  18. Ethics for life scientists

    NARCIS (Netherlands)

    Korthals, M.J.J.A.A.; Bogers, R.J.

    2004-01-01

    In this book we begin with two contributions on the ethical issues of working in organizations. A fruitful side effect of this start is that it gives a good insight into business ethics, a branch of applied ethics that until now is far ahead of ethics for life scientists. In the second part, ethics

  19. Search Results | Page 20 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Results 191 - 200 of 8491 ... The world needs more women scientists. Women are significantly underrepresented in science, making up only 28% of all researchers globally — and the disparity is even greater in the fields of natural sciences and engineering. Story. Information and Communication Development Gender ...

  20. From conflict to cooperation

    DEFF Research Database (Denmark)

    Svith, Flemming

    An in-depth study of front-page stories during 40 years in Danish newspapers. Commonly it’s stated that many journalists find experts, including social scientists, difficult “to use”, and consequently such experts are underrepresented in daily news media. However, in countries where fields of med...

  1. Intra-professional dynamics in translational health research: the perspective of social scientists.

    Science.gov (United States)

    Currie, Graeme; El Enany, Nellie; Lockett, Andy

    2014-08-01

    In contrast to previous studies, which focus upon the professional dynamics of translational health research between clinician scientists and social scientists (inter-professional contestation), we focus upon contestation within social science (intra-professional contestation). Drawing on the empirical context of Collaborations for Leadership in Applied Health Research and Care (CLAHRCs) in England, we highlight that although social scientists accept subordination to clinician scientists, health services researchers attempt to enhance their position in translational health research vis-à-vis organisation scientists, whom they perceive as relative newcomers to the research domain. Health services researchers do so through privileging the practical impact of their research, compared to organisation scientists' orientation towards development of theory, which health services researchers argue is decoupled from any concern with healthcare improvement. The concern of health services researchers lies with maintaining existing patterns of resource allocation to support their research endeavours, working alongside clinician scientists, in translational health research. The response of organisation scientists is one that might be considered ambivalent, since, unlike health services researchers, they do not rely upon a close relationship with clinician scientists to carry out research, or more generally, garner resource. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Scientist-Image Stereotypes: The Relationships among Their Indicators

    Science.gov (United States)

    Karaçam, Sedat

    2016-01-01

    The aim of this study is to examine primary school students' scientist-image stereotypes by considering the relationships among indicators. A total of 877 students attending Grades 6 and 7 in Düzce, Turkey participated in this study. The Draw-A-Scientist Test (DAST) was implemented during the 2013-2014 academic year to determine students' images…

  3. Historical Trends of Participation of Women Scientists in Robotic Spacecraft Mission Science Teams: Effect of Participating Scientist Programs

    Science.gov (United States)

    Rathbun, Julie A.; Castillo-Rogez, Julie; Diniega, Serina; Hurley, Dana; New, Michael; Pappalardo, Robert T.; Prockter, Louise; Sayanagi, Kunio M.; Schug, Joanna; Turtle, Elizabeth P.; Vasavada, Ashwin R.

    2016-10-01

    Many planetary scientists consider involvement in a robotic spacecraft mission the highlight of their career. We have searched for names of science team members and determined the percentage of women on each team. We have limited the lists to members working at US institutions at the time of selection. We also determined the year each team was selected. The gender of each team member was limited to male and female and based on gender expression. In some cases one of the authors knew the team member and what pronouns they use. In other cases, we based our determinations on the team member's name or photo (obtained via a google search, including institution). Our initial analysis considered 22 NASA planetary science missions over a period of 41 years and only considered NASA-selected PI and Co-Is and not participating scientists, postdocs, or graduate students. We found that there has been a dramatic increase in participation of women on spacecraft science teams since 1974, from 0-2% in the 1970s - 1980s to an average of 14% 2000-present. This, however, is still lower than the recent percentage of women in planetary science, which 3 different surveys found to be ~25%. Here we will present our latest results, which include consideration of participating scientists. As in the case of PIs and Co-Is, we consider only participating scientists working at US institutions at the time of their selection.

  4. MS PHD'S PDP: Vision, Design, Implementation, and Outcomes of a Minority-Focused Earth System Sciences Program

    Science.gov (United States)

    Habtes, S. Y.; Mayo, M.; Ithier-Guzman, W.; Pyrtle, A. J.; Williamson Whitney, V.

    2007-05-01

    As minorities are predicted to comprise at least 33% of the US population by the year 2010, their representation in the STEM fields, including the ocean sciences, is still poorly established. In order to advance the goal of better decision making, the Ocean Sciences community must achieve greater levels of diversity in membership. To achieve this objective of greater diversity in the sciences, the Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science® Professional Development Program (MS PHD'S PDP), which was launched in 2003, is supported via grants from NASA's Office of Earth Science, and NSF's Directorate for Geosciences. The MS PHD'S PDP is designed to provide professional and mentoring experiences that facilitate the advancement of minorities committed to achieving outstanding Earth System Science careers. The MS PHD'S PDP is structured in three phases, connected by engagement in a virtual community, continuous peer and mentor to mentee interactions, and the professional support necessary for ensuring the educational success of the student participants. Since the pilot program in 2003, the MSPHD'S PDP, housed at the University of South Florida's College of Marine Science, has produced 4 cohorts of students. Seventy-five have completed the program; of those 6 have earned their doctoral degrees. Of the 45 current participants 10 are graduate students in Marine Science and 15 are still undergraduates, the remaining 10 participants are graduate students in other STEM fields. Since the implementation of the MSPHD'S PDP a total of 87 students and 33 scientist mentors have become part of the MSPHD'S virtual community, helping to improve the learning environment for current and future participants as well as build a community of minority students that encourages each other to pursue their academic degrees.

  5. Scientists in an alternative vision of a globalized world

    Science.gov (United States)

    Erzan, Ayse

    2008-03-01

    Why should ``increasing the visibility of scientists in emergent countries'' be of interest? Can increasing the relevance and connectedness of scientific output, both to technological applications at home and cutting edge basic research abroad contribute to the general welfare in such countries? For this to happen, governments, inter-governmental and non-governmental organizations must provide incentives for the local industry to help fund and actively engage in the creation of new technologies, rather than settling for the solution of well understood engineering problems under the rubric of collaboration between scientists and industry. However, the trajectory of the highly industrialized countries cannot be retraced. Globalization facilitates closer interaction and collaboration between scientists but also deepens the contrasts between the center and the periphery, both world wide and within national borders; as it is understood today, it can lead to the redundancy of local technology oriented research, as the idea of a ``local industry'' is rapidly made obsolete. Scientists from all over the world are sucked into the vortex as both the economic and the cultural world increasingly revolve around a single axis. The challenge is to redefine our terms of reference under these rapidly changing boundary conditions and help bring human needs, human security and human happiness to the fore in elaborating and forging alternative visions of a globalized world. Both natural scientists and social scientists will be indispensable in such an endeavor.

  6. Bridging the Research-to-Practice Gap: The Role of the Nurse Scientist.

    Science.gov (United States)

    Brant, Jeannine M

    2015-11-01

    To describe the emerging role of the nurse scientist in health care organizations. Historical perspectives of the role are explored along with the roles of the nurse scientist, facilitators, barriers, and future implications. Relevant literature on evidence-based practice and research in health care organizations; nurse scientist role; interview with University of Colorado nurse scientist. The nurse scientist role is integral for expanding evidence-based decisions and nursing research. A research mentor is considered the most important facilitator for a successful nursing research program. Organizations should consider including the nurse scientist role to facilitate evidence-based practice and expand opportunities for nursing research. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. The Immoral Landscape? Scientists Are Associated with Violations of Morality.

    Science.gov (United States)

    Rutjens, Bastiaan T; Heine, Steven J

    2016-01-01

    Do people think that scientists are bad people? Although surveys find that science is a highly respected profession, a growing discourse has emerged regarding how science is often judged negatively. We report ten studies (N = 2328) that investigated morality judgments of scientists and compared those with judgments of various control groups, including atheists. A persistent intuitive association between scientists and disturbing immoral conduct emerged for violations of the binding moral foundations, particularly when this pertained to violations of purity. However, there was no association in the context of the individualizing moral foundations related to fairness and care. Other evidence found that scientists were perceived as similar to others in their concerns with the individualizing moral foundations of fairness and care, yet as departing for all of the binding foundations of loyalty, authority, and purity. Furthermore, participants stereotyped scientists particularly as robot-like and lacking emotions, as well as valuing knowledge over morality and being potentially dangerous. The observed intuitive immorality associations are partially due to these explicit stereotypes but do not correlate with any perceived atheism. We conclude that scientists are perceived not as inherently immoral, but as capable of immoral conduct.

  8. The Immoral Landscape? Scientists Are Associated with Violations of Morality.

    Directory of Open Access Journals (Sweden)

    Bastiaan T Rutjens

    Full Text Available Do people think that scientists are bad people? Although surveys find that science is a highly respected profession, a growing discourse has emerged regarding how science is often judged negatively. We report ten studies (N = 2328 that investigated morality judgments of scientists and compared those with judgments of various control groups, including atheists. A persistent intuitive association between scientists and disturbing immoral conduct emerged for violations of the binding moral foundations, particularly when this pertained to violations of purity. However, there was no association in the context of the individualizing moral foundations related to fairness and care. Other evidence found that scientists were perceived as similar to others in their concerns with the individualizing moral foundations of fairness and care, yet as departing for all of the binding foundations of loyalty, authority, and purity. Furthermore, participants stereotyped scientists particularly as robot-like and lacking emotions, as well as valuing knowledge over morality and being potentially dangerous. The observed intuitive immorality associations are partially due to these explicit stereotypes but do not correlate with any perceived atheism. We conclude that scientists are perceived not as inherently immoral, but as capable of immoral conduct.

  9. One More Legacy of Paul F. Brandwein: Creating Scientists

    Science.gov (United States)

    Fort, Deborah C.

    2011-06-01

    This paper studies the influence of Paul F. Brandwein, author, scientist, teacher and mentor, publisher, humanist, and environmentalist, on gifted youngsters who later became scientists, based primarily on information gathered from surveys completed by 25 of his students and one colleague. It also traces his profound interactions with science educators. It illuminates the theories of Brandwein and his protégés and colleagues about the interaction of environment, schooling, and education and Brandwein's belief in having students do original research (that is, research whose results are unknown) on their way to discovering their future scientific paths. It tests Brandwein's 1955 hypothesis on the characteristics typical of the young who eventually become scientists, namely: Three factors are considered as being significant in the development of future scientists: a Genetic Factor with a primary base in heredity (general intelligence, numerical ability, and verbal ability); a Predisposing Factor, with a primary base in functions which are psychological in nature; an Activating Factor, with a primary base in the opportunities offered in school and in the special skills of the teacher. High intelligence alone does not make a youngster a scientist (p xix).

  10. Moving beyond the Lone Scientist: Helping 1st-Grade Students Appreciate the Social Context of Scientific Work Using Stories about Scientists

    Science.gov (United States)

    Sharkawy, Azza

    2009-01-01

    While several studies have documented young children's (K-2) stereotypic views of scientists and scientific work, few have examined students' views of the social nature of scientific work and the strategies effective in broadening these views. The purpose of this study is to examine how stories about scientists influence 1st-grade students' views…

  11. Science fiction by scientists an anthology of short stories

    CERN Document Server

    2017-01-01

    This anthology contains fourteen intriguing short stories by active research scientists and other writers trained in science. Science is at the heart of real science fiction, which is more than just westerns with ray guns or fantasy with spaceships. The people who do science and love science best are scientists. Scientists like Isaac Asimov, Arthur C. Clarke, and Fred Hoyle wrote some of the legendary tales of golden age science fiction. Today there is a new generation of scientists writing science fiction informed with the expertise of their fields, from astrophysics to computer science, biochemistry to rocket science, quantum physics to genetics, speculating about what is possible in our universe. Here lies the sense of wonder only science can deliver. All the stories in this volume are supplemented by afterwords commenting on the science underlying each story.

  12. Language, Ethnicity and Education: Case Studies on Immigrant Minority Groups and Immigrant Minority Languages. Multilingual Matters 111.

    Science.gov (United States)

    Broeder, Peter; Extra, Guus

    Immigrant minority groups and immigrant minority languages in Europe are viewed from three perspectives (demographic, sociolinguistic, and educational) through case studies. The first part, using a demographic approach, includes research on immigrant minority groups in population statistics of both European Union and English-dominant countries…

  13. Caring for nanotechnology? Being an integrated social scientist.

    Science.gov (United States)

    Viseu, Ana

    2015-10-01

    One of the most significant shifts in science policy of the past three decades is a concern with extending scientific practice to include a role for 'society'. Recently, this has led to legislative calls for the integration of the social sciences and humanities in publicly funded research and development initiatives. In nanotechnology--integration's primary field site--this policy has institutionalized the practice of hiring social scientists in technical facilities. Increasingly mainstream, the workings and results of this integration mechanism remain understudied. In this article, I build upon my three-year experience as the in-house social scientist at the Cornell NanoScale Facility and the United States' National Nanotechnology Infrastructure Network to engage empirically and conceptually with this mode of governance in nanotechnology. From the vantage point of the integrated social scientist, I argue that in its current enactment, integration emerges as a particular kind of care work, with social scientists being fashioned as the main caretakers. Examining integration as a type of care practice and as a 'matter of care' allows me to highlight the often invisible, existential, epistemic, and affective costs of care as governance. Illuminating a framework where social scientists are called upon to observe but not disturb, to reify boundaries rather than blur them, this article serves as a word of caution against integration as a novel mode of governance that seemingly privileges situatedness, care, and entanglement, moving us toward an analytically skeptical (but not dismissive) perspective on integration.

  14. Sky Fest: A Model of Successful Scientist Participation in E/PO

    Science.gov (United States)

    Dalton, H.; Shipp, S. S.; Shaner, A. J.; LaConte, K.; Shupla, C. B.

    2014-12-01

    Participation in outreach events is an easy way for scientists to get involved with E/PO and reach many people with minimal time commitment. At the Lunar and Planetary Institute (LPI) in Houston, Texas, the E/PO team holds Sky Fest outreach events several times a year. These events each have a science content theme and include several activities for children and their parents, night sky viewing through telescopes, and scientist presentations. LPI scientists have the opportunity to participate in Sky Fest events either by helping lead an activity or by giving the scientist presentation (a short lecture and/or demonstration). Scientists are involved in at least one preparation meeting before the event. This allows them to ask questions, understand what activity they will be leading, and learn the key points that they should be sharing with the public, as well as techniques for effectively teaching members of the public about the event topic. During the event, each activity is run by one E/PO specialist and one scientist, enabling the scientist to learn about effective E/PO practices from the E/PO specialist and the E/PO specialist to get more science information about the event topic. E/PO specialists working together with scientists at stations provides a more complete, richer experience for event participants. Surveys of event participants have shown that interacting one-on-one with scientists is often one of their favorite parts of the events. Interviews with scientists indicated that they enjoyed Sky Fest because there was very little time involved on their parts outside of the actual event; the activities were created and/or chosen by the E/PO professionals, and setup for the events was completed before they arrived. They also enjoyed presenting their topic to people without a background in science, and who would not have otherwise sought out the information that was presented.

  15. The Minority Game : An Economics Perspective

    NARCIS (Netherlands)

    Kets, W.

    2007-01-01

    This paper gives a critical account of the minority game literature. The minority game is a simple congestion game: players need to choose between two options, and those who have selected the option chosen by the minority win. The learning model proposed in this literature seems to differ markedly

  16. The Role of the Physician-Scientist in Our Evolving Society

    OpenAIRE

    Michael R. Rosen

    2011-01-01

    The physician-scientist represents the medical-scientific version of the ?triple threat? athlete. Yet, in medicine as in sports, specialization and business are ever more in the forefront. As the field of medicine evolves, it is likely that the role of the physician, the scientist, and the physician-scientist will continue to change. Whether this is for the good or bad will only be known in hindsight.

  17. Underrepresentation of Women and Minorities in the United States IR Academic Physician Workforce.

    Science.gov (United States)

    Higgins, Mikhail C S S; Hwang, Wei-Ting; Richard, Chase; Chapman, Christina H; Laporte, Angelique; Both, Stefan; Thomas, Charles R; Deville, Curtiland

    2016-12-01

    To assess the United States interventional radiology (IR) academic physician workforce diversity and comparative specialties. Public registries were used to assess demographic differences among 2012 IR faculty and fellows, diagnostic radiology (DR) faculty and residents, DR subspecialty fellows (pediatric, abdominal, neuroradiology, and musculoskeletal), vascular surgery and interventional cardiology trainees, and 2010 US medical school graduates and US Census using binomial tests with .001 significance level (Bonferroni adjustment for multiple comparisons). Significant trends in IR physician representation were evaluated from 1992 to 2012. Women (15.4%), blacks (2.0%), and Hispanics (6.2%) were significantly underrepresented as IR fellows compared with the US population. Women were underrepresented as IR (7.3%) versus DR (27.8%) faculty and IR fellows (15.4%) versus medical school graduates (48.3%), DR residents (27.8%), pediatric radiology fellows (49.4%), and vascular surgery trainees (27.7%) (all P < .001). IR ranked last in female representation among radiologic subspecialty fellows. Blacks (1.8%, 2.1%, respectively, for IR faculty and fellows); Hispanics (1.8%, 6.2%); and combined American Indians, Alaska Natives, Native Hawaiians, and Pacific Islanders (1.8%, 0) showed no significant differences in representation as IR fellows compared with IR faculty, DR residents, other DR fellows, or interventional cardiology or vascular surgery trainees. Over 20 years, there was no significant increase in female or black representation as IR fellows or faculty. Women, blacks, and Hispanics are underrepresented in the IR academic physician workforce relative to the US population. Given prevalent health care disparities and an increasingly diverse society, research and training efforts should address IR physician workforce diversity. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  18. Opportunities and Resources for Scientist Participation in Education and Public Outreach

    Science.gov (United States)

    Buxner, Sanlyn; CoBabe-Ammann, E.; Shipp, S.; Hsu, B.

    2012-10-01

    Active engagement of scientists in Education and Public Outreach (E/PO) activities results in benefits for both the audience and scientists. Most scientists are trained in research but have little formal training in education. The Planetary Science Education and Public Outreach (E/PO) Forum helps the Science Mission Directorate support scientists currently involved in E/PO and to help scientists who are interested in becoming involved in E/PO efforts find ways to do so through a variety of avenues. We will present current and future opportunities and resources for scientists to become engaged in education and public outreach. These include upcoming NASA SMD E/PO funding opportunities, professional development resources for writing NASA SMD E/PO proposals (webinars and other online tools), toolkits for scientists interested in best practices in E/PO (online guides for K-12 education and public outreach), EarthSpace (a community web space where instructors can find and share about teaching space and earth sciences in the undergraduate classroom, including class materials news and funding opportunities, and the latest education research), thematic resources for teaching about the solar system (archived resources from Year of the Solar System), and an online database of scientists interested in connecting with education programs. Learn more about the Forum and find resources at http://smdepo.org/.

  19. Diversity Networking Reception

    Science.gov (United States)

    2014-03-01

    Join us at the APS Diversity Reception to relax, network with colleagues, and learn about programs and initiatives for women, underrepresented minorities, and LGBT physicists. You'll have a great time meeting friends in a supportive environment and making connections.

  20. Gender, representation and online participation : a quantitative study

    NARCIS (Netherlands)

    Vasilescu, B.N.; Capiluppi, A.; Serebrenik, A.

    2014-01-01

    Online communities are flourishing as social meeting web spaces for users and peer community members. Different online communities require different levels of competence for participants to join, and scattered evidence suggests that females and minorities as participants can be under-represented.