WorldWideScience

Sample records for underlying voltage sensing

  1. Sensing voltage across lipid membranes

    Science.gov (United States)

    Swartz, Kenton J.

    2009-01-01

    The detection of electrical potentials across lipid bilayers by specialized membrane proteins is required for many fundamental cellular processes such as the generation and propagation of nerve impulses. These membrane proteins possess modular voltage-sensing domains, a notable example being the S1-S4 domains of voltage-activated ion channels. Ground-breaking structural studies on these domains explain how voltage sensors are designed and reveal important interactions with the surrounding lipid membrane. Although further structures are needed to fully understand the conformational changes that occur during voltage sensing, the available data help to frame several key concepts that are fundamental to the mechanism of voltage sensing. PMID:19092925

  2. Sensing charges of the Ciona intestinalis voltage-sensing phosphatase.

    Science.gov (United States)

    Villalba-Galea, Carlos A; Frezza, Ludivine; Sandtner, Walter; Bezanilla, Francisco

    2013-11-01

    Voltage control over enzymatic activity in voltage-sensitive phosphatases (VSPs) is conferred by a voltage-sensing domain (VSD) located in the N terminus. These VSDs are constituted by four putative transmembrane segments (S1 to S4) resembling those found in voltage-gated ion channels. The putative fourth segment (S4) of the VSD contains positive residues that likely function as voltage-sensing elements. To study in detail how these residues sense the plasma membrane potential, we have focused on five arginines in the S4 segment of the Ciona intestinalis VSP (Ci-VSP). After implementing a histidine scan, here we show that four arginine-to-histidine mutants, namely R223H to R232H, mediate voltage-dependent proton translocation across the membrane, indicating that these residues transit through the hydrophobic core of Ci-VSP as a function of the membrane potential. These observations indicate that the charges carried by these residues are sensing charges. Furthermore, our results also show that the electrical field in VSPs is focused in a narrow hydrophobic region that separates the extracellular and intracellular space and constitutes the energy barrier for charge crossing.

  3. Dimerization of the voltage-sensing phosphatase controls its voltage-sensing and catalytic activity.

    Science.gov (United States)

    Rayaprolu, Vamseedhar; Royal, Perrine; Stengel, Karen; Sandoz, Guillaume; Kohout, Susy C

    2018-05-07

    Multimerization is a key characteristic of most voltage-sensing proteins. The main exception was thought to be the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP). In this study, we show that multimerization is also critical for Ci-VSP function. Using coimmunoprecipitation and single-molecule pull-down, we find that Ci-VSP stoichiometry is flexible. It exists as both monomers and dimers, with dimers favored at higher concentrations. We show strong dimerization via the voltage-sensing domain (VSD) and weak dimerization via the phosphatase domain. Using voltage-clamp fluorometry, we also find that VSDs cooperate to lower the voltage dependence of activation, thus favoring the activation of Ci-VSP. Finally, using activity assays, we find that dimerization alters Ci-VSP substrate specificity such that only dimeric Ci-VSP is able to dephosphorylate the 3-phosphate from PI(3,4,5)P 3 or PI(3,4)P 2 Our results indicate that dimerization plays a significant role in Ci-VSP function. © 2018 Rayaprolu et al.

  4. Disulfide mapping the voltage-sensing mechanism of a voltage-dependent potassium channel.

    Science.gov (United States)

    Nozaki, Tomohiro; Ozawa, Shin-Ichiro; Harada, Hitomi; Kimura, Tomomi; Osawa, Masanori; Shimada, Ichio

    2016-11-17

    Voltage-dependent potassium (Kv) channels allow for the selective permeability of potassium ions in a membrane potential dependent manner, playing crucial roles in neurotransmission and muscle contraction. Kv channel is a tetramer, in which each subunit possesses a voltage-sensing domain (VSD) and a pore domain (PD). Although several lines of evidence indicated that membrane depolarization is sensed as the movement of helix S4 of the VSD, the detailed voltage-sensing mechanism remained elusive, due to the difficulty of structural analyses at resting potential. In this study, we conducted a comprehensive disulfide locking analysis of the VSD using 36 double Cys mutants, in order to identify the proximal residue pairs of the VSD in the presence or absence of a membrane potential. An intramolecular SS-bond was formed between 6 Cys pairs under both polarized and depolarized environment, and one pair only under depolarized environment. The multiple conformations captured by the SS-bond can be divided by two states, up and down, where S4 lies on the extracellular and intracellular sides of the membrane, respectively, with axial rotation of 180°. The transition between these two states is caused by the S4 translocation of 12 Å, enabling allosteric regulation of the gating at the PD.

  5. A common pathway for charge transport through voltage-sensing domains.

    Science.gov (United States)

    Chanda, Baron; Bezanilla, Francisco

    2008-02-07

    Voltage-gated ion channels derive their voltage sensitivity from the movement of specific charged residues in response to a change in transmembrane potential. Several studies on mechanisms of voltage sensing in ion channels support the idea that these gating charges move through a well-defined permeation pathway. This gating pathway in a voltage-gated ion channel can also be mutated to transport free cations, including protons. The recent discovery of proton channels with sequence homology to the voltage-sensing domains suggests that evolution has perhaps exploited the same gating pathway to generate a bona fide voltage-dependent proton transporter. Here we will discuss implications of these findings on the mechanisms underlying charge (and ion) transport by voltage-sensing domains.

  6. Heat-pump performance: voltage dip/sag, under-voltage and over-voltage

    Directory of Open Access Journals (Sweden)

    William J.B. Heffernan

    2014-12-01

    Full Text Available Reverse cycle air-source heat-pumps are an increasingly significant load in New Zealand and in many other countries. This has raised concern over the impact wide-spread use of heat-pumps may have on the grid. The characteristics of the loads connected to the power system are changing because of heat-pumps. Their performance during under-voltage events such as voltage dips has the potential to compound the event and possibly cause voltage collapse. In this study, results from testing six heat-pumps are presented to assess their performance at various voltages and hence their impact on voltage stability.

  7. In search of a consensus model of the resting state of a voltage-sensing domain.

    Science.gov (United States)

    Vargas, Ernesto; Bezanilla, Francisco; Roux, Benoît

    2011-12-08

    Voltage-sensing domains (VSDs) undergo conformational changes in response to the membrane potential and are the critical structural modules responsible for the activation of voltage-gated channels. Structural information about the key conformational states underlying voltage activation is currently incomplete. Through the use of experimentally determined residue-residue interactions as structural constraints, we determine and refine a model of the Kv channel VSD in the resting conformation. The resulting structural model is in broad agreement with results that originate from various labs using different techniques, indicating the emergence of a consensus for the structural basis of voltage sensing. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Voltage and pH sensing by the voltage-gated proton channel, HV1.

    Science.gov (United States)

    DeCoursey, Thomas E

    2018-04-01

    Voltage-gated proton channels are unique ion channels, membrane proteins that allow protons but no other ions to cross cell membranes. They are found in diverse species, from unicellular marine life to humans. In all cells, their function requires that they open and conduct current only under certain conditions, typically when the electrochemical gradient for protons is outwards. Consequently, these proteins behave like rectifiers, conducting protons out of cells. Their activity has electrical consequences and also changes the pH on both sides of the membrane. Here we summarize what is known about the way these proteins sense the membrane potential and the pH inside and outside the cell. Currently, it is hypothesized that membrane potential is sensed by permanently charged arginines (with very high p K a ) within the protein, which results in parts of the protein moving to produce a conduction pathway. The mechanism of pH sensing appears to involve titratable side chains of particular amino acids. For this purpose their p K a needs to be within the operational pH range. We propose a 'counter-charge' model for pH sensing in which electrostatic interactions within the protein are selectively disrupted by protonation of internally or externally accessible groups. © 2018 The Author.

  9. Voltage and pH sensing by the voltage-gated proton channel, HV1

    Science.gov (United States)

    2018-01-01

    Voltage-gated proton channels are unique ion channels, membrane proteins that allow protons but no other ions to cross cell membranes. They are found in diverse species, from unicellular marine life to humans. In all cells, their function requires that they open and conduct current only under certain conditions, typically when the electrochemical gradient for protons is outwards. Consequently, these proteins behave like rectifiers, conducting protons out of cells. Their activity has electrical consequences and also changes the pH on both sides of the membrane. Here we summarize what is known about the way these proteins sense the membrane potential and the pH inside and outside the cell. Currently, it is hypothesized that membrane potential is sensed by permanently charged arginines (with very high pKa) within the protein, which results in parts of the protein moving to produce a conduction pathway. The mechanism of pH sensing appears to involve titratable side chains of particular amino acids. For this purpose their pKa needs to be within the operational pH range. We propose a ‘counter-charge’ model for pH sensing in which electrostatic interactions within the protein are selectively disrupted by protonation of internally or externally accessible groups. PMID:29643227

  10. Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements.

    Science.gov (United States)

    Lundby, Alicia; Mutoh, Hiroki; Dimitrov, Dimitar; Akemann, Walther; Knöpfel, Thomas

    2008-06-25

    Ci-VSP contains a voltage-sensing domain (VSD) homologous to that of voltage-gated potassium channels. Using charge displacement ('gating' current) measurements we show that voltage-sensing movements of this VSD can occur within 1 ms in mammalian membranes. Our analysis lead to development of a genetically encodable fluorescent protein voltage sensor (VSFP) in which the fast, voltage-dependent conformational changes of the Ci-VSP voltage sensor are transduced to similarly fast fluorescence read-outs.

  11. Voltage-dependent motion of the catalytic region of voltage-sensing phosphatase monitored by a fluorescent amino acid.

    Science.gov (United States)

    Sakata, Souhei; Jinno, Yuka; Kawanabe, Akira; Okamura, Yasushi

    2016-07-05

    The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane.

  12. Voltage-dependent motion of the catalytic region of voltage-sensing phosphatase monitored by a fluorescent amino acid

    Science.gov (United States)

    Sakata, Souhei; Jinno, Yuka; Kawanabe, Akira; Okamura, Yasushi

    2016-01-01

    The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane. PMID:27330112

  13. Functional diversity of potassium channel voltage-sensing domains.

    Science.gov (United States)

    Islas, León D

    2016-01-01

    Voltage-gated potassium channels or Kv's are membrane proteins with fundamental physiological roles. They are composed of 2 main functional protein domains, the pore domain, which regulates ion permeation, and the voltage-sensing domain, which is in charge of sensing voltage and undergoing a conformational change that is later transduced into pore opening. The voltage-sensing domain or VSD is a highly conserved structural motif found in all voltage-gated ion channels and can also exist as an independent feature, giving rise to voltage sensitive enzymes and also sustaining proton fluxes in proton-permeable channels. In spite of the structural conservation of VSDs in potassium channels, there are several differences in the details of VSD function found across variants of Kvs. These differences are mainly reflected in variations in the electrostatic energy needed to open different potassium channels. In turn, the differences in detailed VSD functioning among voltage-gated potassium channels might have physiological consequences that have not been explored and which might reflect evolutionary adaptations to the different roles played by Kv channels in cell physiology.

  14. Piezoelectric self sensing actuators for high voltage excitation

    International Nuclear Information System (INIS)

    Grasso, E; Totaro, N; Janocha, H; Naso, D

    2013-01-01

    Self sensing techniques allow the use of a piezoelectric transducer simultaneously as an actuator and as a sensor. Such techniques are based on knowledge of the transducer behaviour and on measurements of electrical quantities, in particular voltage and charge. Past research work has mainly considered the linear behaviour of piezoelectric transducers, consequently restricting the operating driving voltages to low values. In this work a new self sensing technique is proposed which is able to perform self sensing reconstruction both at low and at high driving voltages. This technique, in fact, makes use of a hysteretic model to describe the nonlinear piezoelectric capacitance necessary for self sensing reconstruction. The capacitance can be measured and identified at the antiresonances of a vibrating structure with a good approximation. After providing a mathematical background to deal with the main aspects of self sensing, this technique is compared theoretically and experimentally to a typical linear one by using an aluminum plate with one bonded self sensing transducer and a positive position feedback (PPF) controller to verify the performance in self sensing based vibration control. (paper)

  15. Voltage Sensing in Membranes: From Macroscopic Currents to Molecular Motions.

    Science.gov (United States)

    Freites, J Alfredo; Tobias, Douglas J

    2015-06-01

    Voltage-sensing domains (VSDs) are integral membrane protein units that sense changes in membrane electric potential, and through the resulting conformational changes, regulate a specific function. VSDs confer voltage-sensitivity to a large superfamily of membrane proteins that includes voltage-gated Na[Formula: see text], K[Formula: see text], Ca[Formula: see text] ,and H[Formula: see text] selective channels, hyperpolarization-activated cyclic nucleotide-gated channels, and voltage-sensing phosphatases. VSDs consist of four transmembrane segments (termed S1 through S4). Their most salient structural feature is the highly conserved positions for charged residues in their sequences. S4 exhibits at least three conserved triplet repeats composed of one basic residue (mostly arginine) followed by two hydrophobic residues. These S4 basic side chains participate in a state-dependent internal salt-bridge network with at least four acidic residues in S1-S3. The signature of voltage-dependent activation in electrophysiology experiments is a transient current (termed gating or sensing current) upon a change in applied membrane potential as the basic side chains in S4 move across the membrane electric field. Thus, the unique structural features of the VSD architecture allow for competing requirements: maintaining a series of stable transmembrane conformations, while allowing charge motion, as briefly reviewed here.

  16. Voltage-sensing phosphatase: its molecular relationship with PTEN.

    Science.gov (United States)

    Okamura, Yasushi; Dixon, Jack E

    2011-02-01

    Voltage-sensing phosphoinositide phosphatase (VSP) contains voltage sensor and cytoplasmic phosphatase domains. A unique feature of this protein is that depolarization-induced motions of the voltage sensor activate PtdIns(3,4,5)P(3) and PtdIns(4,5)P(2) phosphatase activities. VSP exhibits remarkable structural similarities with PTEN, the phosphatase and tensin homolog deleted on chromosome 10. These similarities include the cytoplasmic phosphatase region, the phosphoinositide binding region, and the putative membrane interacting C2 domain.

  17. Exploration of genetically encoded voltage indicators based on a chimeric voltage sensing domain

    Directory of Open Access Journals (Sweden)

    Yukiko eMishina

    2014-09-01

    Full Text Available Deciphering how the brain generates cognitive function from patterns of electrical signals is one of the ultimate challenges in neuroscience. To this end, it would be highly desirable to monitor the activities of very large numbers of neurons while an animal engages in complex behaviours. Optical imaging of electrical activity using genetically encoded voltage indicators (GEVIs has the potential to meet this challenge. Currently prevalent GEVIs are based on the voltage-sensitive fluorescent protein (VSFP prototypical design or on the voltage dependent state transitions of microbial opsins.We recently introduced a new VSFP design in which the voltage-sensing domain (VSD is sandwiched between a FRET pair of fluorescent proteins (termed VSFP-Butterflies and also demonstrated a series of chimeric VSD in which portions of the VSD of Ciona intestinalis voltage-sensitive phosphatase (Ci-VSP are substituted by homologous portions of a voltage-gated potassium channel subunit. These chimeric VSD had faster sensing kinetics than that of the native Ci-VSD. Here, we describe a new set of VSFPs that combine chimeric VSD with the Butterfly structure. We show that these chimeric VSFP-Butterflies can report membrane voltage oscillations of up to 200 Hz in cultured cells and report sensory evoked cortical population responses in living mice. This class of GEVIs may be suitable for imaging of brain rhythms in behaving mammalians.

  18. Exploration of genetically encoded voltage indicators based on a chimeric voltage sensing domain.

    Science.gov (United States)

    Mishina, Yukiko; Mutoh, Hiroki; Song, Chenchen; Knöpfel, Thomas

    2014-01-01

    Deciphering how the brain generates cognitive function from patterns of electrical signals is one of the ultimate challenges in neuroscience. To this end, it would be highly desirable to monitor the activities of very large numbers of neurons while an animal engages in complex behaviors. Optical imaging of electrical activity using genetically encoded voltage indicators (GEVIs) has the potential to meet this challenge. Currently prevalent GEVIs are based on the voltage-sensitive fluorescent protein (VSFP) prototypical design or on the voltage-dependent state transitions of microbial opsins. We recently introduced a new VSFP design in which the voltage-sensing domain (VSD) is sandwiched between a fluorescence resonance energy transfer pair of fluorescent proteins (termed VSFP-Butterflies) and also demonstrated a series of chimeric VSD in which portions of the VSD of Ciona intestinalis voltage-sensitive phosphatase are substituted by homologous portions of a voltage-gated potassium channel subunit. These chimeric VSD had faster sensing kinetics than that of the native Ci-VSD. Here, we describe a new set of VSFPs that combine chimeric VSD with the Butterfly structure. We show that these chimeric VSFP-Butterflies can report membrane voltage oscillations of up to 200 Hz in cultured cells and report sensory evoked cortical population responses in living mice. This class of GEVIs may be suitable for imaging of brain rhythms in behaving mammalians.

  19. Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements

    DEFF Research Database (Denmark)

    Lundby, Alicia; Mutoh, Hiroki; Dimitrov, Dimitar

    2008-01-01

    Ci-VSP contains a voltage-sensing domain (VSD) homologous to that of voltage-gated potassium channels. Using charge displacement ('gating' current) measurements we show that voltage-sensing movements of this VSD can occur within 1 ms in mammalian membranes. Our analysis lead to development...

  20. Allosteric substrate switching in a voltage-sensing lipid phosphatase.

    Science.gov (United States)

    Grimm, Sasha S; Isacoff, Ehud Y

    2016-04-01

    Allostery provides a critical control over enzyme activity, biasing the catalytic site between inactive and active states. We found that the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP), which modifies phosphoinositide signaling lipids (PIPs), has not one but two sequential active states with distinct substrate specificities, whose occupancy is allosterically controlled by sequential conformations of the voltage-sensing domain (VSD). Using fast fluorescence resonance energy transfer (FRET) reporters of PIPs to monitor enzyme activity and voltage-clamp fluorometry to monitor conformational changes in the VSD, we found that Ci-VSP switches from inactive to a PIP3-preferring active state when the VSD undergoes an initial voltage-sensing motion and then into a second PIP2-preferring active state when the VSD activates fully. This two-step allosteric control over a dual-specificity enzyme enables voltage to shape PIP concentrations in time, and provides a mechanism for the complex modulation of PIP-regulated ion channels, transporters, cell motility, endocytosis and exocytosis.

  1. Allosteric substrate switching in a voltage sensing lipid phosphatase

    Science.gov (United States)

    Grimm, Sasha S.; Isacoff, Ehud Y.

    2016-01-01

    Allostery provides a critical control over enzyme activity, biasing the catalytic site between inactive and active states. We find the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP), which modifies phosphoinositide signaling lipids (PIPs), to have not one but two sequential active states with distinct substrate specificities, whose occupancy is allosterically controlled by sequential conformations of the voltage sensing domain (VSD). Using fast FRET reporters of PIPs to monitor enzyme activity and voltage clamp fluorometry to monitor conformational changes in the VSD, we find that Ci-VSP switches from inactive to a PIP3-preferring active state when the VSD undergoes an initial voltage sensing motion and then into a second PIP2-preferring active state when the VSD activates fully. This novel 2-step allosteric control over a dual specificity enzyme enables voltage to shape PIP concentrations in time, and provides a mechanism for the complex modulation of PIP-regulated ion channels, transporters, cell motility and endo/exocytosis. PMID:26878552

  2. Domain-to-domain coupling in voltage-sensing phosphatase.

    Science.gov (United States)

    Sakata, Souhei; Matsuda, Makoto; Kawanabe, Akira; Okamura, Yasushi

    2017-01-01

    Voltage-sensing phosphatase (VSP) consists of a transmembrane voltage sensor and a cytoplasmic enzyme region. The enzyme region contains the phosphatase and C2 domains, is structurally similar to the tumor suppressor phosphatase PTEN, and catalyzes the dephosphorylation of phosphoinositides. The transmembrane voltage sensor is connected to the phosphatase through a short linker region, and phosphatase activity is induced upon membrane depolarization. Although the detailed molecular characteristics of the voltage sensor domain and the enzyme region have been revealed, little is known how these two regions are coupled. In addition, it is important to know whether mechanism for coupling between the voltage sensor domain and downstream effector function is shared among other voltage sensor domain-containing proteins. Recent studies in which specific amino acid sites were genetically labeled using a fluorescent unnatural amino acid have enabled detection of the local structural changes in the cytoplasmic region of Ciona intestinalis VSP that occur with a change in membrane potential. The results of those studies provide novel insight into how the enzyme activity of the cytoplasmic region of VSP is regulated by the voltage sensor domain.

  3. Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain.

    Science.gov (United States)

    Li, Qufei; Wanderling, Sherry; Paduch, Marcin; Medovoy, David; Singharoy, Abhishek; McGreevy, Ryan; Villalba-Galea, Carlos A; Hulse, Raymond E; Roux, Benoît; Schulten, Klaus; Kossiakoff, Anthony; Perozo, Eduardo

    2014-03-01

    The transduction of transmembrane electric fields into protein motion has an essential role in the generation and propagation of cellular signals. Voltage-sensing domains (VSDs) carry out these functions through reorientations of positive charges in the S4 helix. Here, we determined crystal structures of the Ciona intestinalis VSD (Ci-VSD) in putatively active and resting conformations. S4 undergoes an ~5-Å displacement along its main axis, accompanied by an ~60° rotation. This movement is stabilized by an exchange in countercharge partners in helices S1 and S3 that generates an estimated net charge transfer of ~1 eo. Gating charges move relative to a ''hydrophobic gasket' that electrically divides intra- and extracellular compartments. EPR spectroscopy confirms the limited nature of S4 movement in a membrane environment. These results provide an explicit mechanism for voltage sensing and set the basis for electromechanical coupling in voltage-dependent enzymes and ion channels.

  4. Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements.

    Directory of Open Access Journals (Sweden)

    Alicia Lundby

    2008-06-01

    Full Text Available Ci-VSP contains a voltage-sensing domain (VSD homologous to that of voltage-gated potassium channels. Using charge displacement ('gating' current measurements we show that voltage-sensing movements of this VSD can occur within 1 ms in mammalian membranes. Our analysis lead to development of a genetically encodable fluorescent protein voltage sensor (VSFP in which the fast, voltage-dependent conformational changes of the Ci-VSP voltage sensor are transduced to similarly fast fluorescence read-outs.

  5. Voltage-dependent gating of KCNH potassium channels lacking a covalent link between voltage-sensing and pore domains

    Science.gov (United States)

    Lörinczi, Éva; Gómez-Posada, Juan Camilo; de La Peña, Pilar; Tomczak, Adam P.; Fernández-Trillo, Jorge; Leipscher, Ulrike; Stühmer, Walter; Barros, Francisco; Pardo, Luis A.

    2015-03-01

    Voltage-gated channels open paths for ion permeation upon changes in membrane potential, but how voltage changes are coupled to gating is not entirely understood. Two modules can be recognized in voltage-gated potassium channels, one responsible for voltage sensing (transmembrane segments S1 to S4), the other for permeation (S5 and S6). It is generally assumed that the conversion of a conformational change in the voltage sensor into channel gating occurs through the intracellular S4-S5 linker that provides physical continuity between the two regions. Using the pathophysiologically relevant KCNH family, we show that truncated proteins interrupted at, or lacking the S4-S5 linker produce voltage-gated channels in a heterologous model that recapitulate both the voltage-sensing and permeation properties of the complete protein. These observations indicate that voltage sensing by the S4 segment is transduced to the channel gate in the absence of physical continuity between the modules.

  6. Improved detection of electrical activity with a voltage probe based on a voltage-sensing phosphatase.

    Science.gov (United States)

    Tsutsui, Hidekazu; Jinno, Yuka; Tomita, Akiko; Niino, Yusuke; Yamada, Yoshiyuki; Mikoshiba, Katsuhiko; Miyawaki, Atsushi; Okamura, Yasushi

    2013-09-15

      One of the most awaited techniques in modern physiology is the sensitive detection of spatiotemporal electrical activity in a complex network of excitable cells. The use of genetically encoded voltage probes has been expected to enable such analysis. However, in spite of recent progress, existing probes still suffer from low signal amplitude and/or kinetics too slow to detect fast electrical activity. Here, we have developed an improved voltage probe named Mermaid2, which is based on the voltage-sensor domain of the voltage-sensing phosphatase from Ciona intestinalis and Förster energy transfer between a pair of fluorescent proteins. In mammalian cells, Mermaid2 permits ratiometric readouts of fractional changes of more than 50% over a physiologically relevant voltage range with fast kinetics, and it was used to follow a train of action potentials at frequencies of up to 150 Hz. Mermaid2 was also able to detect single action potentials and subthreshold voltage responses in hippocampal neurons in vitro, in addition to cortical electrical activity evoked by sound stimuli in single trials in living mice.

  7. A Photostable Silicon Rhodamine Platform for Optical Voltage Sensing

    Science.gov (United States)

    Huang, Yi-Lin; Walker, Alison S.; Miller, Evan W.

    2015-01-01

    This paper describes the design and synthesis of a photostable, far-red to near-infrared (NIR) platform for optical voltage sensing. We developed a new, sulfonated silicon rhodamine fluorophore and integrated it with a phenylenevinylene molecular wire to create a Berkeley Red Sensor of Transmembrane potential, or BeRST 1 (“burst”). BeRST 1 is the first member of a class of farred to NIR voltage sensitive dyes that make use of a photoinduced electron transfer (PeT) trigger for optical interrogation of membrane voltage. We show that BeRST 1 displays bright, membrane-localized fluorescence in living cells, high photostability, and excellent voltage sensitivity in neurons. Depolarization of the plasma membrane results in rapid fluorescence increases (24% ΔF/F per 100 mV). BeRST 1 can be used in conjunction with fluorescent stains for organelles, Ca2+ indicators, and voltage-sensitive fluorescent proteins. In addition, the red-shifted spectral profile of BeRST 1, relative to commonly employed optogenetic actuators like ChannelRhodopsin2 (ChR2), which require blue light, enables optical electrophysiology in neurons. The high speed, sensitivity, photostability and long-wavelength fluorescence profiles of BeRST 1 make it a useful platform for the non-invasive, optical dissection of neuronal activity. PMID:26237573

  8. Voltage-sensing phosphatase modulation by a C2 domain

    Directory of Open Access Journals (Sweden)

    Paul M. Castle

    2015-04-01

    Full Text Available The voltage-sensing phosphatase (VSP is the first example of an enzyme controlled by changes in membrane potential. VSP has four distinct regions: the transmembrane voltage-sensing domain (VSD, the inter-domain linker, the cytosolic catalytic domain and the C2 domain. The VSD transmits the changes in membrane potential through the inter-domain linker activating the catalytic domain which then dephosphorylates phosphatidylinositol phosphate lipids. The role of the C2, however, has not been established. In this study, we explore two possible roles for the C2: catalysis and membrane-binding. The Ci-VSP crystal structures show that the C2 residue Y522 lines the active site suggesting a contribution to catalysis. When we mutated Y522 to phenylalanine, we found a shift in the voltage dependence of activity. This suggests hydrogen bonding as a mechanism of action. Going one step further, when we deleted the entire C2 domain, we found voltage-dependent enzyme activity was no longer detectable. This result clearly indicates the entire C2 is necessary for catalysis as well as for modulating activity. As C2s are known membrane-binding domains, we tested whether the VSP C2 interacts with the membrane. We probed a cluster of four positively charged residues lining the top of the C2 and suggested by previous studies to interact with phosphatidylinositol 4,5-bisphosphate (PI(4,5P2 (Kalli et al., 2014. Neutralizing those positive charges significantly shifted the voltage dependence of activity to higher voltages. We tested membrane binding by depleting PI(4,5P2 from the membrane using the 5HT2C receptor and found that the VSD motions as measured by voltage clamp fluorometry were not changed. These results suggest that if the C2 domain interacts with the membrane to influence VSP function it may not occur exclusively through PI(4,5P2. Together, this data advances our understanding of the VSP C2 by demonstrating a necessary and critical role for the C2 domain in

  9. Voltage-sensing phosphatase modulation by a C2 domain.

    Science.gov (United States)

    Castle, Paul M; Zolman, Kevin D; Kohout, Susy C

    2015-01-01

    The voltage-sensing phosphatase (VSP) is the first example of an enzyme controlled by changes in membrane potential. VSP has four distinct regions: the transmembrane voltage-sensing domain (VSD), the inter-domain linker, the cytosolic catalytic domain, and the C2 domain. The VSD transmits the changes in membrane potential through the inter-domain linker activating the catalytic domain which then dephosphorylates phosphatidylinositol phosphate (PIP) lipids. The role of the C2, however, has not been established. In this study, we explore two possible roles for the C2: catalysis and membrane-binding. The Ci-VSP crystal structures show that the C2 residue Y522 lines the active site suggesting a contribution to catalysis. When we mutated Y522 to phenylalanine, we found a shift in the voltage dependence of activity. This suggests hydrogen bonding as a mechanism of action. Going one step further, when we deleted the entire C2 domain, we found voltage-dependent enzyme activity was no longer detectable. This result clearly indicates the entire C2 is necessary for catalysis as well as for modulating activity. As C2s are known membrane-binding domains, we tested whether the VSP C2 interacts with the membrane. We probed a cluster of four positively charged residues lining the top of the C2 and suggested by previous studies to interact with phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] (Kalli et al., 2014). Neutralizing those positive charges significantly shifted the voltage dependence of activity to higher voltages. We tested membrane binding by depleting PI(4,5)P2 from the membrane using the 5HT2C receptor and found that the VSD motions as measured by voltage clamp fluorometry (VCF) were not changed. These results suggest that if the C2 domain interacts with the membrane to influence VSP function it may not occur exclusively through PI(4,5)P2. Together, this data advances our understanding of the VSP C2 by demonstrating a necessary and critical role for the C2 domain in

  10. Genetically encoded fluorescent voltage sensors using the voltage-sensing domain of Nematostella and Danio phosphatases exhibit fast kinetics.

    Science.gov (United States)

    Baker, Bradley J; Jin, Lei; Han, Zhou; Cohen, Lawrence B; Popovic, Marko; Platisa, Jelena; Pieribone, Vincent

    2012-07-15

    A substantial increase in the speed of the optical response of genetically encoded fluorescent protein voltage sensors (FP voltage sensors) was achieved by using the voltage-sensing phosphatase genes of Nematostella vectensis and Danio rerio. A potential N. vectensis voltage-sensing phosphatase was identified in silico. The voltage-sensing domain (S1-S4) of the N. vectensis homolog was used to create an FP voltage sensor called Nema. By replacing the phosphatase with a cerulean/citrine FRET pair, a new FP voltage sensor was synthesized with fast off kinetics (Tau(off)voltage-sensing phosphatase homolog, designated Zahra and Zahra 2, exhibited fast on and off kinetics within 2ms of the time constants observed with the organic voltage-sensitive dye, di4-ANEPPS. Mutagenesis of the S4 region of the Danio FP voltage sensor shifted the voltage dependence to more negative potentials but did not noticeably affect the kinetics of the optical signal. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Genetically-encoded fluorescent voltage sensors using the voltage-sensing domain of Nematostella and Danio phosphatases exhibit fast kinetics

    Science.gov (United States)

    Baker, Bradley J.; Jin, Lei; Han, Zhou; Cohen, Lawrence B.; Popovic, Marko; Platisa, Jelena; Pieribone, Vincent

    2012-01-01

    A substantial increase in the speed of the optical response of genetically-encoded Fluorescent Protein voltage sensors (FP voltage sensors) was achieved by using the voltage-sensing phosphatase genes of Nematostella vectensis and Danio rerio. A potential N. vectensis voltage-sensing phosphatase was identified in silico. The voltage-sensing domain (S1–S4) of the N. vectensis homolog was used to create an FP voltage sensor called Nema. By replacing the phosphatase with a cerulean/citrine FRET pair, a new FP voltage sensor was synthesized with fast off kinetics (Tauoff voltage-sensing phosphatase homolog, designated Zahra and Zahra 2, exhibited fast on and off kinetics within 2 msec of the time constants observed with the organic voltage-sensitive dye, di4-ANEPPS. Mutagenesis of the S4 region of the Danio FP voltage sensor shifted the voltage dependence to more negative potentials but did not noticeably affect the kinetics of the optical signal. PMID:22634212

  12. Coupling between the voltage-sensing and pore domains in a voltage-gated potassium channel.

    Science.gov (United States)

    Schow, Eric V; Freites, J Alfredo; Nizkorodov, Alex; White, Stephen H; Tobias, Douglas J

    2012-07-01

    Voltage-dependent potassium (Kv), sodium (Nav), and calcium channels open and close in response to changes in transmembrane (TM) potential, thus regulating cell excitability by controlling ion flow across the membrane. An outstanding question concerning voltage gating is how voltage-induced conformational changes of the channel voltage-sensing domains (VSDs) are coupled through the S4-S5 interfacial linking helices to the opening and closing of the pore domain (PD). To investigate the coupling between the VSDs and the PD, we generated a closed Kv channel configuration from Aeropyrum pernix (KvAP) using atomistic simulations with experiment-based restraints on the VSDs. Full closure of the channel required, in addition to the experimentally determined TM displacement, that the VSDs be displaced both inwardly and laterally around the PD. This twisting motion generates a tight hydrophobic interface between the S4-S5 linkers and the C-terminal ends of the pore domain S6 helices in agreement with available experimental evidence.

  13. Comparative study of 0° X-cut and Y + 36°-cut lithium niobate high-voltage sensing

    Science.gov (United States)

    Patel, N.; Branch, D. W.; Schamiloglu, E.; Cular, S.

    2015-08-01

    A comparison study between Y + 36° and 0° X-cut lithium niobate (LiNbO3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y + 36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y + 36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz-100 kHz. Using the same conditions as the Y + 36° cut, the 0° X-cut crystal sensed a shift of 10-273 ps for DC voltages and 189-813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250-2 ns and the Y + 36°-cut crystal sensed a time shift of 0.115-1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. When the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.

  14. Comparative study of 0° X-cut and Y + 36°-cut lithium niobate high-voltage sensing

    International Nuclear Information System (INIS)

    Patel, N.; Branch, D. W.; Cular, S.; Schamiloglu, E.

    2015-01-01

    A comparison study between Y + 36° and 0° X-cut lithium niobate (LiNbO 3 ) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y + 36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y + 36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz–100 kHz. Using the same conditions as the Y + 36° cut, the 0° X-cut crystal sensed a shift of 10–273 ps for DC voltages and 189–813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250–2 ns and the Y + 36°-cut crystal sensed a time shift of 0.115–1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. When the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment

  15. Power conditioning using dynamic voltage restorers under different voltage sag types.

    Science.gov (United States)

    Saeed, Ahmed M; Abdel Aleem, Shady H E; Ibrahim, Ahmed M; Balci, Murat E; El-Zahab, Essam E A

    2016-01-01

    Voltage sags can be symmetrical or unsymmetrical depending on the causes of the sag. At the present time, one of the most common procedures for mitigating voltage sags is by the use of dynamic voltage restorers (DVRs). By definition, a DVR is a controlled voltage source inserted between the network and a sensitive load through a booster transformer injecting voltage into the network in order to correct any disturbance affecting a sensitive load voltage. In this paper, modelling of DVR for voltage correction using MatLab software is presented. The performance of the device under different voltage sag types is described, where the voltage sag types are introduced using the different types of short-circuit faults included in the environment of the MatLab/Simulink package. The robustness of the proposed device is evaluated using the common voltage sag indices, while taking into account voltage and current unbalance percentages, where maintaining the total harmonic distortion percentage of the load voltage within a specified range is desired. Finally, several simulation results are shown in order to highlight that the DVR is capable of effective correction of the voltage sag while minimizing the grid voltage unbalance and distortion, regardless of the fault type.

  16. Biophysical characterization of the fluorescent protein voltage probe VSFP2.3 based on the voltage-sensing domain of Ci-VSP

    DEFF Research Database (Denmark)

    Lundby, Alicia; Akemann, Walther; Knöpfel, Thomas

    2010-01-01

    A voltage sensitive phosphatase was discovered in the ascidian Ciona intestinalis. The phosphatase, Ci-VSP, contains a voltage-sensing domain homologous to those known from voltage-gated ion channels, but unlike ion channels, the voltage-sensing domain of Ci-VSP can reside in the cell membrane...... as a monomer. We fused the voltage-sensing domain of Ci-VSP to a pair of fluorescent reporter proteins to generate a genetically encodable voltage-sensing fluorescent probe, VSFP2.3. VSFP2.3 is a fluorescent voltage probe that reports changes in membrane potential as a FRET (fluorescence resonance energy....... Neutralization of an arginine in S4, previously suggested to be a sensing charge, and measuring associated sensing currents indicate that this charge is likely to reside at the membrane-aqueous interface rather than within the membrane electric field. The data presented give us insights into the voltage-sensing...

  17. Mitigation of voltage sag using DVR under feedback and ...

    African Journals Online (AJOL)

    The paper deals with Dynamic Voltage Restorer (DVR) that aims at the integration of series active filter with minimum VA handling. The DVR not only regulates the voltage at load end but also acts as series active filter. The scheme of DVR is modeled and simulated with MATLAB/Simulink under feedback and feedforward ...

  18. Control Strategy for Microgrid Inverter under Unbalanced Grid Voltage Conditions

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Liu, Wenzhao; Zhang, X.

    2014-01-01

    This paper presents the theoretical analysis of the inherent reason of current harmonic and power oscillation phenomena in case of operating the microgrid inverter under unbalanced grid voltage conditions. In order to flexibly control the current harmonic and power oscillation, a new stationary...... inverter. Finally, the performance evaluation tests are carried out under unbalanced grid voltage conditions. Results verify the effectiveness of the propose method....

  19. Biophysical characterization of the fluorescent protein voltage probe VSFP2.3 based on the voltage-sensing domain of Ci-VSP.

    Science.gov (United States)

    Lundby, Alicia; Akemann, Walther; Knöpfel, Thomas

    2010-11-01

    A voltage sensitive phosphatase was discovered in the ascidian Ciona intestinalis. The phosphatase, Ci-VSP, contains a voltage-sensing domain homologous to those known from voltage-gated ion channels, but unlike ion channels, the voltage-sensing domain of Ci-VSP can reside in the cell membrane as a monomer. We fused the voltage-sensing domain of Ci-VSP to a pair of fluorescent reporter proteins to generate a genetically encodable voltage-sensing fluorescent probe, VSFP2.3. VSFP2.3 is a fluorescent voltage probe that reports changes in membrane potential as a FRET (fluorescence resonance energy transfer) signal. Here we report sensing current measurements from VSFP2.3, and show that VSFP2.3 carries 1.2 e sensing charges, which are displaced within 1.5 ms. The sensing currents become faster at higher temperatures, and the voltage dependence of the decay time constants is temperature dependent. Neutralization of an arginine in S4, previously suggested to be a sensing charge, and measuring associated sensing currents indicate that this charge is likely to reside at the membrane-aqueous interface rather than within the membrane electric field. The data presented give us insights into the voltage-sensing mechanism of Ci-VSP, which will allow us to further improve the sensitivity and kinetics of the family of VSFP proteins.

  20. Field angle dependence of voltage-induced ferromagnetic resonance under DC bias voltage

    International Nuclear Information System (INIS)

    Shiota, Yoichi; Miwa, Shinji; Tamaru, Shingo; Nozaki, Takayuki; Kubota, Hitoshi; Fukushima, Akio; Suzuki, Yoshishige; Yuasa, Shinji

    2016-01-01

    We studied the rectification function of microwaves in CoFeB/MgO-based magnetic tunnel junctions using voltage-induced ferromagnetic resonance (FMR). Our findings reveal that the shape of the structure of the spectrum depends on the rotation angle of the external magnetic field, providing clear evidence that FMR dynamics are excited by voltage-induced magnetic anisotropy changes. Further, enhancement of the rectified voltage was demonstrated under a DC bias voltage. In our experiments, the highest microwave detection sensitivity obtained was 350 mV/mW, at an RF frequency of 1.0 GHz and field angle of θ_H=80°, ϕ_H=0°. The experimental results correlated with those obtained via simulation, and the calculated results revealed the magnetization dynamics at the resonance state. - Highlights: • Examined voltage-induced ferromagnetic resonance (FMR) under various field angles. • FMR dynamics are excited by voltage-induced magnetic anisotropy changes. • Microwave detection sensitivity depends on input RF and elevation angle. • Microwave detection sensitivity=350 mV/mW at RF=1.0 GHz, θ_H=80°, ϕ_H=0°.

  1. Atomistic Modeling of Ion Conduction through the Voltage-Sensing Domain of the Shaker K+ Ion Channel.

    Science.gov (United States)

    Wood, Mona L; Freites, J Alfredo; Tombola, Francesco; Tobias, Douglas J

    2017-04-20

    Voltage-sensing domains (VSDs) sense changes in the membrane electrostatic potential and, through conformational changes, regulate a specific function. The VSDs of wild-type voltage-dependent K + , Na + , and Ca 2+ channels do not conduct ions, but they can become ion-permeable through pathological mutations in the VSD. Relatively little is known about the underlying mechanisms of conduction through VSDs. The most detailed studies have been performed on Shaker K + channel variants in which ion conduction through the VSD is manifested in electrophysiology experiments as a voltage-dependent inward current, the so-called omega current, which appears when the VSDs are in their resting state conformation. Only monovalent cations appear to permeate the Shaker VSD via a pathway that is believed to be, at least in part, the same as that followed by the S4 basic side chains during voltage-dependent activation. We performed μs-time scale atomistic molecular dynamics simulations of a cation-conducting variant of the Shaker VSD under applied electric fields in an experimentally validated resting-state conformation, embedded in a lipid bilayer surrounded by solutions containing guanidinium chloride or potassium chloride. Our simulations provide insights into the Shaker VSD permeation pathway, the protein-ion interactions that control permeation kinetics, and the mechanism of voltage-dependent activation of voltage-gated ion channels.

  2. Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening.

    Science.gov (United States)

    Zaydman, Mark A; Silva, Jonathan R; Delaloye, Kelli; Li, Yang; Liang, Hongwu; Larsson, H Peter; Shi, Jingyi; Cui, Jianmin

    2013-08-06

    Voltage-gated ion channels generate dynamic ionic currents that are vital to the physiological functions of many tissues. These proteins contain separate voltage-sensing domains, which detect changes in transmembrane voltage, and pore domains, which conduct ions. Coupling of voltage sensing and pore opening is critical to the channel function and has been modeled as a protein-protein interaction between the two domains. Here, we show that coupling in Kv7.1 channels requires the lipid phosphatidylinositol 4,5-bisphosphate (PIP2). We found that voltage-sensing domain activation failed to open the pore in the absence of PIP2. This result is due to loss of coupling because PIP2 was also required for pore opening to affect voltage-sensing domain activation. We identified a critical site for PIP2-dependent coupling at the interface between the voltage-sensing domain and the pore domain. This site is actually a conserved lipid-binding site among different K(+) channels, suggesting that lipids play an important role in coupling in many ion channels.

  3. Molecular mechanism of voltage sensing in voltage-gated proton channels

    Science.gov (United States)

    Rebolledo, Santiago; Perez, Marta E.

    2013-01-01

    Voltage-gated proton (Hv) channels play an essential role in phagocytic cells by generating a hyperpolarizing proton current that electrically compensates for the depolarizing current generated by the NADPH oxidase during the respiratory burst, thereby ensuring a sustained production of reactive oxygen species by the NADPH oxidase in phagocytes to neutralize engulfed bacteria. Despite the importance of the voltage-dependent Hv current, it is at present unclear which residues in Hv channels are responsible for the voltage activation. Here we show that individual neutralizations of three charged residues in the fourth transmembrane domain, S4, all reduce the voltage dependence of activation. In addition, we show that the middle S4 charged residue moves from a position accessible from the cytosolic solution to a position accessible from the extracellular solution, suggesting that this residue moves across most of the membrane electric field during voltage activation of Hv channels. Our results show for the first time that the charge movement of these three S4 charges accounts for almost all of the measured gating charge in Hv channels. PMID:23401575

  4. One-carrier free space charge motion under applied voltage

    International Nuclear Information System (INIS)

    Camargo, P.C.; Ferreira, G.F.L.

    1976-01-01

    The system of partial differential equations describing the one-carrier free space-charge motion under a given applied voltage is transformed into a system of two ordinary differential equations. The method is applied to find the external current injection [pt

  5. Battery Cell Voltage Sensing and Balancing Using Addressable Transformers

    Science.gov (United States)

    Davies, Francis

    2009-01-01

    A document discusses the use of saturating transformers in a matrix arrangement to address individual cells in a high voltage battery. This arrangement is able to monitor and charge individual cells while limiting the complexity of circuitry in the battery. The arrangement has inherent galvanic isolation, low cell leakage currents, and allows a single bad cell in a battery of several hundred cells to be easily spotted.

  6. Performance Improvement of DFIG Wind Turbine Using Series Grid-Side Converter under Unbalanced Grid Voltage and Voltage Sag Conditions

    DEFF Research Database (Denmark)

    Shokri, Yunes; Ebrahimzadeh, Esmaeil; Lesani, Hamid

    2014-01-01

    under unbalanced grid voltage and small voltage sag conditions without needing additional DC link capacitor or energy storage unlike other methods. The control system includes negative and positive sequence controllers which make the stator voltage balanced and keep it constant at the nominal value...

  7. One-carrier free space charge motion under applied voltage

    Energy Technology Data Exchange (ETDEWEB)

    de ALMEIDA, L E.C.; FERREIRA, G F.L. [SAO PAULO UNIV., SAO CARLOS (BRAZIL). INSTITUTO DE FISICA E QUIMICA

    1975-12-01

    It is shown how to transform the system of partial differential equations, describing the free one-carrier space charge motion in solid dielectrics under a given applied voltage and while the charge distribution touches only one of the electrodes, into a first order ordinary differential equation from whose solution all the interesting quantities may be easily derived. It was found that some charge distributions can display current reversal.

  8. Liquid–Solid Dual-Gate Organic Transistors with Tunable Threshold Voltage for Cell Sensing

    KAUST Repository

    Zhang, Yu

    2017-10-17

    Liquid electrolyte-gated organic field effect transistors and organic electrochemical transistors have recently emerged as powerful technology platforms for sensing and simulation of living cells and organisms. For such applications, the transistors are operated at a gate voltage around or below 0.3 V because prolonged application of a higher voltage bias can lead to membrane rupturing and cell death. This constraint often prevents the operation of the transistors at their maximum transconductance or most sensitive regime. Here, we exploit a solid–liquid dual-gate organic transistor structure, where the threshold voltage of the liquid-gated conduction channel is controlled by an additional gate that is separated from the channel by a metal-oxide gate dielectric. With this design, the threshold voltage of the “sensing channel” can be linearly tuned in a voltage window exceeding 0.4 V. We have demonstrated that the dual-gate structure enables a much better sensor response to the detachment of human mesenchymal stem cells. In general, the capability of tuning the optimal sensing bias will not only improve the device performance but also broaden the material selection for cell-based organic bioelectronics.

  9. Liquid-Solid Dual-Gate Organic Transistors with Tunable Threshold Voltage for Cell Sensing.

    Science.gov (United States)

    Zhang, Yu; Li, Jun; Li, Rui; Sbircea, Dan-Tiberiu; Giovannitti, Alexander; Xu, Junling; Xu, Huihua; Zhou, Guodong; Bian, Liming; McCulloch, Iain; Zhao, Ni

    2017-11-08

    Liquid electrolyte-gated organic field effect transistors and organic electrochemical transistors have recently emerged as powerful technology platforms for sensing and simulation of living cells and organisms. For such applications, the transistors are operated at a gate voltage around or below 0.3 V because prolonged application of a higher voltage bias can lead to membrane rupturing and cell death. This constraint often prevents the operation of the transistors at their maximum transconductance or most sensitive regime. Here, we exploit a solid-liquid dual-gate organic transistor structure, where the threshold voltage of the liquid-gated conduction channel is controlled by an additional gate that is separated from the channel by a metal-oxide gate dielectric. With this design, the threshold voltage of the "sensing channel" can be linearly tuned in a voltage window exceeding 0.4 V. We have demonstrated that the dual-gate structure enables a much better sensor response to the detachment of human mesenchymal stem cells. In general, the capability of tuning the optimal sensing bias will not only improve the device performance but also broaden the material selection for cell-based organic bioelectronics.

  10. Voltage-sensing domain of voltage-gated proton channel Hv1 shares mechanism of block with pore domains.

    Science.gov (United States)

    Hong, Liang; Pathak, Medha M; Kim, Iris H; Ta, Dennis; Tombola, Francesco

    2013-01-23

    Voltage-gated sodium, potassium, and calcium channels are made of a pore domain (PD) controlled by four voltage-sensing domains (VSDs). The PD contains the ion permeation pathway and the activation gate located on the intracellular side of the membrane. A large number of small molecules are known to inhibit the PD by acting as open channel blockers. The voltage-gated proton channel Hv1 is made of two VSDs and lacks the PD. The location of the activation gate in the VSD is unknown and open channel blockers for VSDs have not yet been identified. Here, we describe a class of small molecules which act as open channel blockers on the Hv1 VSD and find that a highly conserved phenylalanine in the charge transfer center of the VSD plays a key role in blocker binding. We then use one of the blockers to show that Hv1 contains two intracellular and allosterically coupled gates. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Local anesthetics disrupt energetic coupling between the voltage-sensing segments of a sodium channel.

    Science.gov (United States)

    Muroi, Yukiko; Chanda, Baron

    2009-01-01

    Local anesthetics block sodium channels in a state-dependent fashion, binding with higher affinity to open and/or inactivated states. Gating current measurements show that local anesthetics immobilize a fraction of the gating charge, suggesting that the movement of voltage sensors is modified when a local anesthetic binds to the pore of the sodium channel. Here, using voltage clamp fluorescence measurements, we provide a quantitative description of the effect of local anesthetics on the steady-state behavior of the voltage-sensing segments of a sodium channel. Lidocaine and QX-314 shifted the midpoints of the fluorescence-voltage (F-V) curves of S4 domain III in the hyperpolarizing direction by 57 and 65 mV, respectively. A single mutation in the S6 of domain IV (F1579A), a site critical for local anesthetic block, abolished the effect of QX-314 on the voltage sensor of domain III. Both local anesthetics modestly shifted the F-V relationships of S4 domain IV toward hyperpolarized potentials. In contrast, the F-V curve of the S4 domain I was shifted by 11 mV in the depolarizing direction upon QX-314 binding. These antagonistic effects of the local anesthetic indicate that the drug modifies the coupling between the voltage-sensing domains of the sodium channel. Our findings suggest a novel role of local anesthetics in modulating the gating apparatus of the sodium channel.

  12. The orientation and molecular movement of a k(+) channel voltage-sensing domain.

    Science.gov (United States)

    Gandhi, Chris S; Clark, Eliana; Loots, Eli; Pralle, Arnd; Isacoff, Ehud Y

    2003-10-30

    Voltage-gated channels operate through the action of a voltage-sensing domain (membrane segments S1-S4) that controls the conformation of gates located in the pore domain (membrane segments S5-S6). Recent structural studies on the bacterial K(v)AP potassium channel have led to a new model of voltage sensing in which S4 lies in the lipid at the channel periphery and moves through the membrane as a unit with a portion of S3. Here we describe accessibility probing and disulfide scanning experiments aimed at determining how well the K(v)AP model describes the Drosophila Shaker potassium channel. We find that the S1-S3 helices have one end that is externally exposed, S3 does not undergo a transmembrane motion, and S4 lies in close apposition to the pore domain in the resting and activated state.

  13. The voltage-sensing domain of a phosphatase gates the pore of a potassium channel.

    Science.gov (United States)

    Arrigoni, Cristina; Schroeder, Indra; Romani, Giulia; Van Etten, James L; Thiel, Gerhard; Moroni, Anna

    2013-03-01

    The modular architecture of voltage-gated K(+) (Kv) channels suggests that they resulted from the fusion of a voltage-sensing domain (VSD) to a pore module. Here, we show that the VSD of Ciona intestinalis phosphatase (Ci-VSP) fused to the viral channel Kcv creates Kv(Synth1), a functional voltage-gated, outwardly rectifying K(+) channel. Kv(Synth1) displays the summed features of its individual components: pore properties of Kcv (selectivity and filter gating) and voltage dependence of Ci-VSP (V(1/2) = +56 mV; z of ~1), including the depolarization-induced mode shift. The degree of outward rectification of the channel is critically dependent on the length of the linker more than on its amino acid composition. This highlights a mechanistic role of the linker in transmitting the movement of the sensor to the pore and shows that electromechanical coupling can occur without coevolution of the two domains.

  14. Functional diversity of voltage-sensing phosphatases in two urodele amphibians.

    Science.gov (United States)

    Mutua, Joshua; Jinno, Yuka; Sakata, Souhei; Okochi, Yoshifumi; Ueno, Shuichi; Tsutsui, Hidekazu; Kawai, Takafumi; Iwao, Yasuhiro; Okamura, Yasushi

    2014-07-16

    Voltage-sensing phosphatases (VSPs) share the molecular architecture of the voltage sensor domain (VSD) with voltage-gated ion channels and the phosphoinositide phosphatase region with the phosphatase and tensin homolog (PTEN), respectively. VSPs enzymatic activities are regulated by the motions of VSD upon depolarization. The physiological role of these proteins has remained elusive, and insights may be gained by investigating biological variations in different animal species. Urodele amphibians are vertebrates with potent activities of regeneration and also show diverse mechanisms of polyspermy prevention. We cloned cDNAs of VSPs from the testes of two urodeles; Hynobius nebulosus and Cynops pyrrhogaster, and compared their expression and voltage-dependent activation. Their molecular architecture is highly conserved in both Hynobius VSP (Hn-VSP) and Cynops VSP (Cp-VSP), including the positively-charged arginine residues in the S4 segment of the VSD and the enzymatic active site for substrate binding, yet the C-terminal C2 domain of Hn-VSP is significantly shorter than that of Cp-VSP and other VSP orthologs. RT-PCR analysis showed that gene expression pattern was distinct between two VSPs. The voltage sensor motions and voltage-dependent phosphatase activities were investigated electrophysiologically by expression in Xenopus oocytes. Both VSPs showed "sensing" currents, indicating that their voltage sensor domains are functional. The phosphatase activity of Cp-VSP was found to be voltage dependent, as shown by its ability to regulate the conductance of coexpressed GIRK2 channels, but Hn-VSP lacked such phosphatase activity due to the truncation of its C2 domain. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  15. Structure and hydration of membranes embedded with voltage-sensing domains.

    Science.gov (United States)

    Krepkiy, Dmitriy; Mihailescu, Mihaela; Freites, J Alfredo; Schow, Eric V; Worcester, David L; Gawrisch, Klaus; Tobias, Douglas J; White, Stephen H; Swartz, Kenton J

    2009-11-26

    Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly charged S1-S4 voltage-sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated ion channels. Here we use neutron diffraction, solid-state nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1-S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations and cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings indicate that voltage sensors have evolved to interact with the lipid membrane while keeping energetic and structural perturbations to a minimum, and that water penetrates the membrane, to hydrate charged residues and shape the transmembrane electric field.

  16. A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels.

    Science.gov (United States)

    Schewe, Marcus; Nematian-Ardestani, Ehsan; Sun, Han; Musinszki, Marianne; Cordeiro, Sönke; Bucci, Giovanna; de Groot, Bert L; Tucker, Stephen J; Rapedius, Markus; Baukrowitz, Thomas

    2016-02-25

    Two-pore domain (K2P) K(+) channels are major regulators of excitability that endow cells with an outwardly rectifying background "leak" conductance. In some K2P channels, strong voltage-dependent activation has been observed, but the mechanism remains unresolved because they lack a canonical voltage-sensing domain. Here, we show voltage-dependent gating is common to most K2P channels and that this voltage sensitivity originates from the movement of three to four ions into the high electric field of an inactive selectivity filter. Overall, this ion-flux gating mechanism generates a one-way "check valve" within the filter because outward movement of K(+) induces filter opening, whereas inward movement promotes inactivation. Furthermore, many physiological stimuli switch off this flux gating mode to convert K2P channels into a leak conductance. These findings provide insight into the functional plasticity of a K(+)-selective filter and also refine our understanding of K2P channels and the mechanisms by which ion channels can sense voltage. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. A low-voltage sense amplifier with two-stage operational amplifier clamping for flash memory

    Science.gov (United States)

    Guo, Jiarong

    2017-04-01

    A low-voltage sense amplifier with reference current generator utilizing two-stage operational amplifier clamp structure for flash memory is presented in this paper, capable of operating with minimum supply voltage at 1 V. A new reference current generation circuit composed of a reference cell and a two-stage operational amplifier clamping the drain pole of the reference cell is used to generate the reference current, which avoids the threshold limitation caused by current mirror transistor in the traditional sense amplifier. A novel reference voltage generation circuit using dummy bit-line structure without pull-down current is also adopted, which not only improves the sense window enhancing read precision but also saves power consumption. The sense amplifier was implemented in a flash realized in 90 nm flash technology. Experimental results show the access time is 14.7 ns with power supply of 1.2 V and slow corner at 125 °C. Project supported by the National Natural Science Fundation of China (No. 61376028).

  18. DC-Voltage Fluctuation Elimination Through a DC-Capacitor Current Control for DFIG Converters Under Unbalanced Grid Voltage Conditions

    DEFF Research Database (Denmark)

    Liu, Changjin; Xu, Dehong; Zhu, Nan

    2013-01-01

    Unbalanced grid voltage causes a large second-order harmonic current in the dc-link capacitors as well as dc-voltage fluctuation, which potentially will degrade the lifespan and reliability of the capacitors in voltage source converters. This paper proposes a novel dc-capacitor current control...... method for a grid-side converter (GSC) to eliminate the negative impact of unbalanced grid voltage on the dc-capacitors. In this method, a dc-capacitor current control loop, where a negative-sequence resonant controller is used to increase the loop gain, is added to the conventional GSC current control...... loop. The rejection capability to the unbalanced grid voltage and the stability of the proposed control system are discussed. The second-order harmonic current in the dc capacitor as well as dc-voltage fluctuation is very well eliminated. Hence, the dc capacitors will be more reliable under unbalanced...

  19. Expression, purification, and reconstitution of the voltage-sensing domain from Ci-VSP.

    Science.gov (United States)

    Li, Qufei; Jogini, Vishwanath; Wanderling, Sherry; Cortes, D Marien; Perozo, Eduardo

    2012-10-16

    The voltage-sensing domain (VSD) is the common scaffold responsible for the functional behavior of voltage-gated ion channels, voltage sensitive enzymes, and proton channels. Because of the position of the voltage dependence of the available VSD structures, at present, they all represent the activated state of the sensor. Yet in the absence of a consensus resting state structure, the mechanistic details of voltage sensing remain controversial. The voltage dependence of the VSD from Ci-VSP (Ci-VSD) is dramatically right shifted, so that at 0 mV it presumably populates the putative resting state. Appropriate biochemical methods are an essential prerequisite for generating sufficient amounts of Ci-VSD protein for high-resolution structural studies. Here, we present a simple and robust protocol for the expression of eukaryotic Ci-VSD in Escherichia coli at milligram levels. The protein is pure, homogeneous, monodisperse, and well-folded after solubilization in Anzergent 3-14 at the analyzed concentration (~0.3 mg/mL). Ci-VSD can be reconstituted into liposomes of various compositions, and initial site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopic measurements indicate its first transmembrane segment folds into an α-helix, in agreement with the homologous region of other VSDs. On the basis of our results and enhanced relaxation EPR spectroscopy measurement, Ci-VSD reconstitutes essentially randomly in proteoliposomes, precluding straightforward application of transmembrane voltages in combination with spectroscopic methods. Nevertheless, these results represent an initial step that makes the resting state of a VSD accessible to a variety of biophysical and structural approaches, including X-ray crystallography, spectroscopic methods, and electrophysiology in lipid bilayers.

  20. Expression, Purification and Reconstitution of the Voltage Sensing Domain from Ci-VSP

    Science.gov (United States)

    Li, Qufei; Jogini, Vishwanath; Wanderling, Sherry; Cortes, D. Marien; Perozo, Eduardo

    2013-01-01

    The voltage-sensing domain (VSD) is the common scaffold responsible for the functional behavior of voltage gated ion channels, voltage sensitive enzymes and proton channels. Because of the position of the voltage dependence of the available VSD structures, at present, they all represent the activated state of the sensor. Yet, in the absence of a consensus resting state structure, the mechanistic details of voltage sensing remain controversial. The voltage dependence of the VSD from Ci-VSP (Ci-VSD) is dramatically right shifted, so that at 0 mV It presumably populates the putative resting state. Appropriate biochemical methods are an essential prerequisite to generate sufficient amounts of Ci-VSD protein for high-resolution structural studies. Here, we present a simple and robust protocol for the Escherichia coli expression of eukaryotic Ci-VSD at milligram levels. The protein is pure, homogeneous, mono-disperse and well folded after solubilization in Anzergent 3-14 at the analyzed concentration (~ 0.3 mg/mL). Ci-VSD can be reconstituted into liposomes of various compositions and initial site-directed spin labeling and EPR spectroscopic measurements indicate its first transmembrane segment folds into an α-helix, in agreement to the homologous region of other VSDs. Based on current results and enhanced relaxation EPR spectroscopy measurement, Ci-VSD reconstitutes essentially randomly in proteo-liposomes, precluding straightforward application of transmembrane voltages in combination with spectroscopic methods. Nevertheless, the present results represent an initial step that makes the resting state of a VSD accessible to a variety of biophysical and structural approaches, including X-ray crystallography, spectroscopic methods and electrophysiology in lipid bilayers. PMID:22989304

  1. Enzyme domain affects the movement of the voltage sensor in ascidian and zebrafish voltage-sensing phosphatases.

    Science.gov (United States)

    Hossain, Md Israil; Iwasaki, Hirohide; Okochi, Yoshifumi; Chahine, Mohamed; Higashijima, Shinichi; Nagayama, Kuniaki; Okamura, Yasushi

    2008-06-27

    The ascidian voltage-sensing phosphatase (Ci-VSP) consists of the voltage sensor domain (VSD) and a cytoplasmic phosphatase region that has significant homology to the phosphatase and tensin homolog deleted on chromosome TEN (PTEN). The phosphatase activity of Ci-VSP is modified by the conformational change of the VSD. In many proteins, two protein modules are bidirectionally coupled, but it is unknown whether the phosphatase domain could affect the movement of the VSD in VSP. We addressed this issue by whole-cell patch recording of gating currents from a teleost VSP (Dr-VSP) cloned from Danio rerio expressed in tsA201 cells. Replacement of a critical cysteine residue, in the phosphatase active center of Dr-VSP, by serine sharpened both ON- and OFF-gating currents. Similar changes were produced by treatment with phosphatase inhibitors, pervanadate and orthovanadate, that constitutively bind to cysteine in the active catalytic center of phosphatases. The distinct kinetics of gating currents dependent on enzyme activity were not because of altered phosphatidylinositol 4,5-bisphosphate levels, because the kinetics of gating current did not change by depletion of phosphatidylinositol 4,5-bisphosphate, as reported by coexpressed KCNQ2/3 channels. These results indicate that the movement of the VSD is influenced by the enzymatic state of the cytoplasmic domain, providing an important clue for understanding mechanisms of coupling between the VSD and its effector.

  2. Evolution of graphene nanoribbons under low-voltage electron irradiation

    KAUST Repository

    Zhu, Wenpeng

    2012-01-01

    Though the all-semiconducting nature of ultrathin graphene nanoribbons (GNRs) has been demonstrated in field-effect transistors operated at room temperature with ∼105 on-off current ratios, the borderline for the potential of GNRs is still untouched. There remains a great challenge in fabricating even thinner GNRs with precise width, known edge configurations and specified crystallographic orientations. Unparalleled to other methods, low-voltage electron irradiation leads to a continuous reduction in width to a sub-nanometer range until the occurrence of structural instability. The underlying mechanisms have been investigated by the molecular dynamics method herein, combined with in situ aberration-corrected transmission electron microscopy and density functional theory calculations. The structural evolution reveals that the zigzag edges are dynamically more stable than the chiral ones. Preferential bond breaking induces atomic rings and dangling bonds as the initial defects. The defects grow, combine and reconstruct to complex edge structures. Dynamic recovery is enhanced by thermal activation, especially in cooperation with electron irradiation. Roughness develops under irradiation and reaches a plateau less than 1 nm for all edge configurations after longtime exposure. These features render low-voltage electron irradiation an attractive technique in the fabrication of ultrathin GNRs for exploring the ultimate electronic properties. © 2012 The Royal Society of Chemistry.

  3. Metering error quantification under voltage and current waveform distortion

    Science.gov (United States)

    Wang, Tao; Wang, Jia; Xie, Zhi; Zhang, Ran

    2017-09-01

    With integration of more and more renewable energies and distortion loads into power grid, the voltage and current waveform distortion results in metering error in the smart meters. Because of the negative effects on the metering accuracy and fairness, it is an important subject to study energy metering combined error. In this paper, after the comparing between metering theoretical value and real recorded value under different meter modes for linear and nonlinear loads, a quantification method of metering mode error is proposed under waveform distortion. Based on the metering and time-division multiplier principles, a quantification method of metering accuracy error is proposed also. Analyzing the mode error and accuracy error, a comprehensive error analysis method is presented which is suitable for new energy and nonlinear loads. The proposed method has been proved by simulation.

  4. Depression of voltage-activated Ca2+ release in skeletal muscle by activation of a voltage-sensing phosphatase.

    Science.gov (United States)

    Berthier, Christine; Kutchukian, Candice; Bouvard, Clément; Okamura, Yasushi; Jacquemond, Vincent

    2015-04-01

    Phosphoinositides act as signaling molecules in numerous cellular transduction processes, and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) regulates the function of several types of plasma membrane ion channels. We investigated the potential role of PtdIns(4,5)P2 in Ca(2+) homeostasis and excitation-contraction (E-C) coupling of mouse muscle fibers using in vivo expression of the voltage-sensing phosphatases (VSPs) Ciona intestinalis VSP (Ci-VSP) or Danio rerio VSP (Dr-VSP). Confocal images of enhanced green fluorescent protein-tagged Dr-VSP revealed a banded pattern consistent with VSP localization within the transverse tubule membrane. Rhod-2 Ca(2+) transients generated by 0.5-s-long voltage-clamp depolarizing pulses sufficient to elicit Ca(2+) release from the sarcoplasmic reticulum (SR) but below the range at which VSPs are activated were unaffected by the presence of the VSPs. However, in Ci-VSP-expressing fibers challenged by 5-s-long depolarizing pulses, the Ca(2+) level late in the pulse (3 s after initiation) was significantly lower at 120 mV than at 20 mV. Furthermore, Ci-VSP-expressing fibers showed a reversible depression of Ca(2+) release during trains, with the peak Ca(2+) transient being reduced by ∼30% after the application of 10 200-ms-long pulses to 100 mV. A similar depression was observed in Dr-VSP-expressing fibers. Cav1.1 Ca(2+) channel-mediated current was unaffected by Ci-VSP activation. In fibers expressing Ci-VSP and a pleckstrin homology domain fused with monomeric red fluorescent protein (PLCδ1PH-mRFP), depolarizing pulses elicited transient changes in mRFP fluorescence consistent with release of transverse tubule-bound PLCδ1PH domain into the cytosol; the voltage sensitivity of these changes was consistent with that of Ci-VSP activation, and recovery occurred with a time constant in the 10-s range. Our results indicate that the PtdIns(4,5)P2 level is tightly maintained in the transverse tubule membrane of the muscle fibers

  5. Structural interactions between lipids, water and S1-S4 voltage-sensing domains.

    Science.gov (United States)

    Krepkiy, Dmitriy; Gawrisch, Klaus; Swartz, Kenton J

    2012-11-02

    Membrane proteins serve crucial signaling and transport functions, yet relatively little is known about their structures in membrane environments or how lipids interact with these proteins. For voltage-activated ion channels, X-ray structures suggest that the mobile voltage-sensing S4 helix would be exposed to the membrane, and functional studies reveal that lipid modification can profoundly alter channel activity. Here, we use solid-state NMR to investigate structural interactions of lipids and water with S1-S4 voltage-sensing domains and to explore whether lipids influence the structure of the protein. Our results demonstrate that S1-S4 domains exhibit extensive interactions with lipids and that these domains are heavily hydrated when embedded in a membrane. We also find evidence for preferential interactions of anionic lipids with S1-S4 domains and that these interactions have lifetimes on the timescale of ≤ 10(-3)s. Arg residues within S1-S4 domains are well hydrated and are positioned in close proximity to lipids, exhibiting local interactions with both lipid headgroups and acyl chains. Comparative studies with a positively charged lipid lacking a phosphodiester group reveal that this lipid modification has only modest effects on the structure and hydration of S1-S4 domains. Taken together, our results demonstrate that Arg residues in S1-S4 voltage-sensing domains reside in close proximity to the hydrophobic interior of the membrane yet are well hydrated, a requirement for carrying charge and driving protein motions in response to changes in membrane voltage. Published by Elsevier Ltd.

  6. Regulation of Na+ channel inactivation by the DIII and DIV voltage-sensing domains.

    Science.gov (United States)

    Hsu, Eric J; Zhu, Wandi; Schubert, Angela R; Voelker, Taylor; Varga, Zoltan; Silva, Jonathan R

    2017-03-06

    Functional eukaryotic voltage-gated Na + (Na V ) channels comprise four domains (DI-DIV), each containing six membrane-spanning segments (S1-S6). Voltage sensing is accomplished by the first four membrane-spanning segments (S1-S4), which together form a voltage-sensing domain (VSD). A critical Na V channel gating process, inactivation, has previously been linked to activation of the VSDs in DIII and DIV. Here, we probe this interaction by using voltage-clamp fluorometry to observe VSD kinetics in the presence of mutations at locations that have been shown to impair Na V channel inactivation. These locations include the DIII-DIV linker, the DIII S4-S5 linker, and the DIV S4-S5 linker. Our results show that, within the 10-ms timeframe of fast inactivation, the DIV-VSD is the primary regulator of inactivation. However, after longer 100-ms pulses, the DIII-DIV linker slows DIII-VSD deactivation, and the rate of DIII deactivation correlates strongly with the rate of recovery from inactivation. Our results imply that, over the course of an action potential, DIV-VSDs regulate the onset of fast inactivation while DIII-VSDs determine its recovery. © 2017 Hsu et al.

  7. alpha-helical structural elements within the voltage-sensing domains of a K(+) channel.

    Science.gov (United States)

    Li-Smerin, Y; Hackos, D H; Swartz, K J

    2000-01-01

    Voltage-gated K(+) channels are tetramers with each subunit containing six (S1-S6) putative membrane spanning segments. The fifth through sixth transmembrane segments (S5-S6) from each of four subunits assemble to form a central pore domain. A growing body of evidence suggests that the first four segments (S1-S4) comprise a domain-like voltage-sensing structure. While the topology of this region is reasonably well defined, the secondary and tertiary structures of these transmembrane segments are not. To explore the secondary structure of the voltage-sensing domains, we used alanine-scanning mutagenesis through the region encompassing the first four transmembrane segments in the drk1 voltage-gated K(+) channel. We examined the mutation-induced perturbation in gating free energy for periodicity characteristic of alpha-helices. Our results are consistent with at least portions of S1, S2, S3, and S4 adopting alpha-helical secondary structure. In addition, both the S1-S2 and S3-S4 linkers exhibited substantial helical character. The distribution of gating perturbations for S1 and S2 suggest that these two helices interact primarily with two environments. In contrast, the distribution of perturbations for S3 and S4 were more complex, suggesting that the latter two helices make more extensive protein contacts, possibly interfacing directly with the shell of the pore domain.

  8. α-Helical Structural Elements within the Voltage-Sensing Domains of a K+ Channel

    Science.gov (United States)

    Li-Smerin, Yingying; Hackos, David H.; Swartz, Kenton J.

    2000-01-01

    Voltage-gated K+ channels are tetramers with each subunit containing six (S1–S6) putative membrane spanning segments. The fifth through sixth transmembrane segments (S5–S6) from each of four subunits assemble to form a central pore domain. A growing body of evidence suggests that the first four segments (S1–S4) comprise a domain-like voltage-sensing structure. While the topology of this region is reasonably well defined, the secondary and tertiary structures of these transmembrane segments are not. To explore the secondary structure of the voltage-sensing domains, we used alanine-scanning mutagenesis through the region encompassing the first four transmembrane segments in the drk1 voltage-gated K+ channel. We examined the mutation-induced perturbation in gating free energy for periodicity characteristic of α-helices. Our results are consistent with at least portions of S1, S2, S3, and S4 adopting α-helical secondary structure. In addition, both the S1–S2 and S3–S4 linkers exhibited substantial helical character. The distribution of gating perturbations for S1 and S2 suggest that these two helices interact primarily with two environments. In contrast, the distribution of perturbations for S3 and S4 were more complex, suggesting that the latter two helices make more extensive protein contacts, possibly interfacing directly with the shell of the pore domain. PMID:10613917

  9. Prediction of power losses in silicon iron sheets under PWM voltage supply

    International Nuclear Information System (INIS)

    Amar, M.; Kaczmarek, R.; Protat, F.

    1994-01-01

    The behavior of iron losses in silicon iron steels submitted to a PWM voltage is studied. The influence of modulation parameters (the depth of modulation and the number of eliminated harmonics) is clarified. In particular, the idea of an equivalent alternating pulse voltage that gives the same iron losses as the PWM voltage is established. An estimation formula for iron losses under the PWM voltage is developed based on the loss separation model and the voltage form factor. ((orig.))

  10. MOLECULAR PATHOPHYSIOLOGY AND PHARMACOLOGY OF THE VOLTAGE-SENSING DOMAIN OF NEURONAL ION CHANNELS

    Directory of Open Access Journals (Sweden)

    Francesco eMiceli

    2015-07-01

    Full Text Available Voltage-gated ion channels (VGIC are membrane proteins that switch from a closed to open state in response to changes in membrane potential, thus enabling ion fluxes across the cell membranes. The mechanism that regulate the structural rearrangements occurring in VGIC in response to changes in membrane potential still remains one of the most challenging topic of modern biophysics. Na+, Ca2+ and K+ voltage-gated channels are structurally formed by the assembly of four similar domains, each comprising six transmembrane segments. Each domain can be divided in two main regions: the Pore Module (PM and the Voltage-Sensing Module (VSM. The PM (helices S5 and S6 and intervening linker is responsible for gate opening and ion selectivity; by contrast, the VSM, comprising the first four transmembrane helices (S1-S4, undergoes the first conformational changes in response to membrane voltage. In particular, the S4 segment of each domain, which contains several positively charged residues interspersed with hydrophobic amino acids, is located within the membrane electric field and plays an essential role in voltage sensing. In neurons, specific gating properties of each channel subtype underlie a variety of biological events, ranging from the generation and propagation of electrical impulses, to the secretion of neurotransmitters, to the regulation of gene expression. Given the important functional role played by the VSM in neuronal VGICs, it is not surprising that various VSM mutations affecting the gating process of these channels are responsible for human diseases, and that compounds acting on the VSM have emerged as important investigational tools with great therapeutic potential. In the present review we will briefly describe the most recent discoveries concerning how the VSM exerts its function, how genetically inherited diseases caused by mutations occurring in the VSM affects gating in VGICs, and how several classes of drugs and toxins selectively

  11. Molecular pathophysiology and pharmacology of the voltage-sensing module of neuronal ion channels.

    Science.gov (United States)

    Miceli, Francesco; Soldovieri, Maria Virginia; Ambrosino, Paolo; De Maria, Michela; Manocchio, Laura; Medoro, Alessandro; Taglialatela, Maurizio

    2015-01-01

    Voltage-gated ion channels (VGICs) are membrane proteins that switch from a closed to open state in response to changes in membrane potential, thus enabling ion fluxes across the cell membranes. The mechanism that regulate the structural rearrangements occurring in VGICs in response to changes in membrane potential still remains one of the most challenging topic of modern biophysics. Na(+), Ca(2+) and K(+) voltage-gated channels are structurally formed by the assembly of four similar domains, each comprising six transmembrane segments. Each domain can be divided into two main regions: the Pore Module (PM) and the Voltage-Sensing Module (VSM). The PM (helices S5 and S6 and intervening linker) is responsible for gate opening and ion selectivity; by contrast, the VSM, comprising the first four transmembrane helices (S1-S4), undergoes the first conformational changes in response to membrane voltage variations. In particular, the S4 segment of each domain, which contains several positively charged residues interspersed with hydrophobic amino acids, is located within the membrane electric field and plays an essential role in voltage sensing. In neurons, specific gating properties of each channel subtype underlie a variety of biological events, ranging from the generation and propagation of electrical impulses, to the secretion of neurotransmitters and to the regulation of gene expression. Given the important functional role played by the VSM in neuronal VGICs, it is not surprising that various VSM mutations affecting the gating process of these channels are responsible for human diseases, and that compounds acting on the VSM have emerged as important investigational tools with great therapeutic potential. In the present review we will briefly describe the most recent discoveries concerning how the VSM exerts its function, how genetically inherited diseases caused by mutations occurring in the VSM affects gating in VGICs, and how several classes of drugs and toxins

  12. Automatic Voltage Control (AVC) System under Uncertainty from Wind Power

    DEFF Research Database (Denmark)

    Qin, Nan; Abildgaard, Hans; Flynn, Damian

    2016-01-01

    An automatic voltage control (AVC) system maintains the voltage profile of a power system in an acceptable range and minimizes the operational cost by coordinating the regulation of controllable components. Typically, all of the parameters in the optimization problem are assumed to be certain...... and constant in the decision making process. However, for high shares of wind power, uncertainty in the decision process due to wind power variability may result in an infeasible AVC solution. This paper proposes a voltage control approach which considers the voltage uncertainty from wind power productions....... The proposed method improves the performance and the robustness of a scenario based approach by estimating the potential voltage variations due to fluctuating wind power production, and introduces a voltage margin to protect the decision against uncertainty for each scenario. The effectiveness of the proposed...

  13. Grid Voltage Modulated Control of Grid-Connected Voltage Source Inverters under Unbalanced Grid Conditions

    DEFF Research Database (Denmark)

    Li, Mingshen; Gui, Yonghao; Quintero, Juan Carlos Vasquez

    2017-01-01

    In this paper, an improved grid voltage modulated control (GVM) with power compensation is proposed for grid-connected voltage inverters when the grid voltage is unbalanced. The objective of the proposed control is to remove the power ripple and to improve current quality. Three power compensation...... objectives are selected to eliminate the negative sequence components of currents. The modified GVM method is designed to obtain two separate second-order systems for not only the fast convergence rate of the instantaneous active and reactive powers but also the robust performance. In addition, this method...

  14. A complicated complex: Ion channels, voltage sensing, cell membranes and peptide inhibitors.

    Science.gov (United States)

    Zhang, Alan H; Sharma, Gagan; Undheim, Eivind A B; Jia, Xinying; Mobli, Mehdi

    2018-04-21

    Voltage-gated ion channels (VGICs) are specialised ion channels that have a voltage dependent mode of action, where ion conduction, or gating, is controlled by a voltage-sensing mechanism. VGICs are critical for electrical signalling and are therefore important pharmacological targets. Among these, voltage-gated sodium channels (Na V s) have attracted particular attention as potential analgesic targets. Na V s, however, comprise several structurally similar subtypes with unique localisations and distinct functions, ranging from amplification of action potentials in nociception (e.g. Na V 1.7) to controlling electrical signalling in cardiac function (Na V 1.5). Understanding the structural basis of Na V function is therefore of great significance, both to our knowledge of electrical signalling and in development of subtype and state selective drugs. An important tool in this pursuit has been the use of peptides from animal venoms as selective Na V modulators. In this review, we look at peptides, particularly from spider venoms, that inhibit Na V s by binding to the voltage sensing domain (VSD) of this channel, known as gating modifier toxins (GMT). In the first part of the review, we look at the structural determinants of voltage sensing in VGICs, the gating cycle and the conformational changes that accompany VSD movement. Next, the modulation of the analgesic target Na V 1.7 by GMTs is reviewed to develop bioinformatic tools that, based on sequence information alone, can identify toxins that are likely to inhibit this channel. The same approach is also used to define VSD sequences, other than that from Na V 1.7, which are likely to be sensitive to this class of toxins. The final section of the review focuses on the important role of the cellular membrane in channel modulation and also how the lipid composition affects measurements of peptide-channel interactions both in binding kinetics measurements in solution and in cell-based functional assays. Copyright © 2018

  15. Coupling between the voltage-sensing and phosphatase domains of Ci-VSP.

    Science.gov (United States)

    Villalba-Galea, Carlos A; Miceli, Francesco; Taglialatela, Maurizio; Bezanilla, Francisco

    2009-07-01

    The Ciona intestinalis voltage sensor-containing phosphatase (Ci-VSP) shares high homology with the phosphatidylinositol phosphatase enzyme known as PTEN (phosphatase and tensin homologue deleted on chromosome 10). We have taken advantage of the similarity between these proteins to inquire about the coupling between the voltage sensing and the phosphatase domains in Ci-VSP. Recently, it was shown that four basic residues (R11, K13, R14, and R15) in PTEN are critical for its binding onto the membrane, required for its catalytic activity. Ci-VSP has three of the basic residues of PTEN. Here, we show that when R253 and R254 (which are the homologues of R14 and R15 in PTEN) are mutated to alanines in Ci-VSP, phosphatase activity is disrupted, as revealed by a lack of effect on the ionic currents of KCNQ2/3, where current decrease is a measure of phosphatase activity. The enzymatic activity was not rescued by the introduction of lysines, indicating that the binding is an arginine-specific interaction between the phosphatase binding domain and the membrane, presumably through the phosphate groups of the phospholipids. We also found that the kinetics and steady-state voltage dependence of the S4 segment movement are affected when the arginines are not present, indicating that the interaction of R253 and R254 with the membrane, required for the catalytic action of the phosphatase, restricts the movement of the voltage sensor.

  16. A consistent approach to estimate the breakdown voltage of high voltage electrodes under positive switching impulses

    Science.gov (United States)

    Arevalo, L.; Wu, D.; Jacobson, B.

    2013-08-01

    The main propose of this paper is to present a physical model of long air gap electrical discharges under positive switching impulses. The development and progression of discharges in long air gaps are attributable to two intertwined physical phenomena, namely, the leader channel and the streamer zone. Experimental studies have been used to develop empirical and physical models capable to represent the streamer zone and the leader channel. The empirical ones have led to improvements in the electrical design of high voltage apparatus and insulation distances, but they cannot take into account factors associated with fundamental physics and/or the behavior of materials. The physical models have been used to describe and understand the discharge phenomena of laboratory and lightning discharges. However, because of the complex simulations necessary to reproduce real cases, they are not in widespread use in the engineering of practical applications. Hence, the aim of the work presented here is to develop a model based on physics of the discharge capable to validate and complement the existing engineering models. The model presented here proposes a new geometrical approximation for the representation of the streamer and the calculation of the accumulated electrical charge. The model considers a variable streamer region that changes with the temporal and spatial variations of the electric field. The leader channel is modeled using the non local thermo-equilibrium equations. Furthermore, statistical delays before the inception of the first corona, and random distributions to represent the tortuous nature of the path taken by the leader channel were included based on the behavior observed in experimental tests, with the intention of ensuring the discharge behaved in a realistic manner. For comparison purposes, two different gap configurations were simulated. A reasonable agreement was found between the physical model and the experimental test results.

  17. Moderately nonlinear diffuse-charge dynamics under an ac voltage.

    Science.gov (United States)

    Stout, Robert F; Khair, Aditya S

    2015-09-01

    The response of a symmetric binary electrolyte between two parallel, blocking electrodes to a moderate amplitude ac voltage is quantified. The diffuse charge dynamics are modeled via the Poisson-Nernst-Planck equations for a dilute solution of point-like ions. The solution to these equations is expressed as a Fourier series with a voltage perturbation expansion for arbitrary Debye layer thickness and ac frequency. Here, the perturbation expansion in voltage proceeds in powers of V_{o}/(k_{B}T/e), where V_{o} is the amplitude of the driving voltage and k_{B}T/e is the thermal voltage with k_{B} as Boltzmann's constant, T as the temperature, and e as the fundamental charge. We show that the response of the electrolyte remains essentially linear in voltage amplitude at frequencies greater than the RC frequency of Debye layer charging, D/λ_{D}L, where D is the ion diffusivity, λ_{D} is the Debye layer thickness, and L is half the cell width. In contrast, nonlinear response is predicted at frequencies below the RC frequency. We find that the ion densities exhibit symmetric deviations from the (uniform) equilibrium density at even orders of the voltage amplitude. This leads to the voltage dependence of the current in the external circuit arising from the odd orders of voltage. For instance, the first nonlinear contribution to the current is O(V_{o}^{3}) which contains the expected third harmonic but also a component oscillating at the applied frequency. We use this to compute a generalized impedance for moderate voltages, the first nonlinear contribution to which is quadratic in V_{o}. This contribution predicts a decrease in the imaginary part of the impedance at low frequency, which is due to the increase in Debye layer capacitance with increasing V_{o}. In contrast, the real part of the impedance increases at low frequency, due to adsorption of neutral salt from the bulk to the Debye layer.

  18. Moderately nonlinear diffuse-charge dynamics under an ac voltage

    Science.gov (United States)

    Stout, Robert F.; Khair, Aditya S.

    2015-09-01

    The response of a symmetric binary electrolyte between two parallel, blocking electrodes to a moderate amplitude ac voltage is quantified. The diffuse charge dynamics are modeled via the Poisson-Nernst-Planck equations for a dilute solution of point-like ions. The solution to these equations is expressed as a Fourier series with a voltage perturbation expansion for arbitrary Debye layer thickness and ac frequency. Here, the perturbation expansion in voltage proceeds in powers of Vo/(kBT /e ) , where Vo is the amplitude of the driving voltage and kBT /e is the thermal voltage with kB as Boltzmann's constant, T as the temperature, and e as the fundamental charge. We show that the response of the electrolyte remains essentially linear in voltage amplitude at frequencies greater than the RC frequency of Debye layer charging, D /λDL , where D is the ion diffusivity, λD is the Debye layer thickness, and L is half the cell width. In contrast, nonlinear response is predicted at frequencies below the RC frequency. We find that the ion densities exhibit symmetric deviations from the (uniform) equilibrium density at even orders of the voltage amplitude. This leads to the voltage dependence of the current in the external circuit arising from the odd orders of voltage. For instance, the first nonlinear contribution to the current is O (Vo3) which contains the expected third harmonic but also a component oscillating at the applied frequency. We use this to compute a generalized impedance for moderate voltages, the first nonlinear contribution to which is quadratic in Vo. This contribution predicts a decrease in the imaginary part of the impedance at low frequency, which is due to the increase in Debye layer capacitance with increasing Vo. In contrast, the real part of the impedance increases at low frequency, due to adsorption of neutral salt from the bulk to the Debye layer.

  19. Hysteresis analysis of graphene transistor under repeated test and gate voltage stress

    International Nuclear Information System (INIS)

    Yang Jie; Jia Kunpeng; Su Yajuan; Zhao Chao; Chen Yang

    2014-01-01

    The current transport characteristic is studied systematically based on a back-gate graphene field effect transistor, under repeated test and gate voltage stress. The interface trapped charges caused by the gate voltage sweep process screens the gate electric field, and results in the neutral point voltage shift between the forth and back sweep direction. In the repeated test process, the neutral point voltage keeps increasing with test times in both forth and back sweeps, which indicates the existence of interface trapped electrons residual and accumulation. In gate voltage stress experiment, the relative neutral point voltage significantly decreases with the reducing of stress voltage, especially in −40 V, which illustrates the driven-out phenomenon of trapped electrons under negative voltage stress. (semiconductor devices)

  20. PLL strategies of grid connected converters under distorted input voltages

    Czech Academy of Sciences Publication Activity Database

    Šimek, Petr; Škramlík, Jiří; Valouch, Viktor

    2014-01-01

    Roč. 59, č. 1 (2014), s. 1-12 ISSN 0001-7043 Institutional support: RVO:61388998 Keywords : voltage source converter * grid - connected applications * phase locked loop Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  1. Coordinated control to mitigate over voltage and under voltage in LV networks

    NARCIS (Netherlands)

    Viyathukattuva Mohamed Ali, M.M.; Nguyen, H.P.; Cobben, J.F.G.

    2016-01-01

    Increasing penetration of distributed renewable energy resources (DRES) and smart loads into the LV network lead to new power quality challenges. Important power quality challenges are overvoltage and undervoltage. A number of solutions are already developed to mitigate these voltage variations. In

  2. Flexible voltage support control for three-phase distributed generation inverters under grid fault

    DEFF Research Database (Denmark)

    Camacho, Antonio; Castilla, Miguel; Miret, Jaume

    2013-01-01

    Operators describe the behavior of the energy source, regulating voltage limits and reactive power injection to remain connected and support the grid under fault. On the basis that different kinds of voltage sags require different voltage support strategies, a flexible control scheme for three phase grid...... connected inverters is proposed. In three phase balanced voltage sags, the inverter should inject reactive power in order to raise the voltage in all phases. In one or two phase faults, the main concern of the distributed generation inverter is to equalize voltages by reducing the negative symmetric...... sequence and clear the phase jump. Due to system limitations, a balance between these two extreme policies is mandatory. Thus, over-voltage and undervoltage can be avoided, and the proposed control scheme prevents disconnection while achieving the desired voltage support service. The main contribution...

  3. KCNQ1 channel modulation by KCNE proteins via the voltage-sensing domain.

    Science.gov (United States)

    Nakajo, Koichi; Kubo, Yoshihiro

    2015-06-15

    The gating of the KCNQ1 potassium channel is drastically regulated by auxiliary subunit KCNE proteins. KCNE1, for example, slows the activation kinetics of KCNQ1 by two orders of magnitude. Like other voltage-gated ion channels, the opening of KCNQ1 is regulated by the voltage-sensing domain (VSD; S1-S4 segments). Although it has been known that KCNE proteins interact with KCNQ1 via the pore domain, some recent reports suggest that the VSD movement may be altered by KCNE. The altered VSD movement of KCNQ1 by KCNE proteins has been examined by site-directed mutagenesis, the scanning cysteine accessibility method (SCAM), voltage clamp fluorometry (VCF) and gating charge measurements. These accumulated data support the idea that KCNE proteins interact with the VSDs of KCNQ1 and modulate the gating of the KCNQ1 channel. In this review, we will summarize recent findings and current views of the KCNQ1 modulation by KCNE via the VSD. In this context, we discuss our recent findings that KCNE1 may alter physical interactions between the S4 segment (VSD) and the S5 segment (pore domain) of KCNQ1. Based on these findings from ourselves and others, we propose a hypothetical mechanism for how KCNE1 binding alters the VSD movement and the gating of the channel. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  4. Mapping the membrane-aqueous border for the voltage-sensing domain of a potassium channel.

    Science.gov (United States)

    Neale, Edward J; Rong, Honglin; Cockcroft, Christopher J; Sivaprasadarao, Asipu

    2007-12-28

    Voltage-sensing domains (VSDs) play diverse roles in biology. As integral components, they can detect changes in the membrane potential of a cell and couple these changes to activity of ion channels and enzymes. As independent proteins, homologues of the VSD can function as voltage-dependent proton channels. To sense voltage changes, the positively charged fourth transmembrane segment, S4, must move across the energetically unfavorable hydrophobic core of the bilayer, which presents a barrier to movement of both charged species and protons. To reduce the barrier to S4 movement, it has been suggested that aqueous crevices may penetrate the protein, reducing the extent of total movement. To investigate this hypothesis in a system containing fully functional channels in a native environment with an intact membrane potential, we have determined the contour of the membrane-aqueous border of the VSD of KvAP in Escherichia coli by examining the chemical accessibility of introduced cysteines. The results revealed the contour of the membrane-aqueous border of the VSD in its activated conformation. The water-inaccessible regions of S1 and S2 correspond to the standard width of the membrane bilayer (~28 A), but those of S3 and S4 are considerably shorter (> or = 40%), consistent with aqueous crevices pervading both the extracellular and intracellular ends. One face of S3b and the entire S3a were water-accessible, reducing the water-inaccessible region of S3 to just 10 residues, significantly shorter than for S4. The results suggest a key role for S3 in reducing the distance S4 needs to move to elicit gating.

  5. Characterization of chaotic electroconvection near flat electrodes under oscillatory voltages

    Science.gov (United States)

    Kim, Jeonglae; Davidson, Scott; Mani, Ali

    2017-11-01

    Onset of hydrodynamic instability and chaotic electroconvection in aqueous systems are studied by directly solving the two-dimensional coupled Poisson-Nernst-Planck and Navier-Stokes equations. An aqueous binary electrolyte is bounded by two planar electrodes where time-harmonic voltage is applied at a constant oscillation frequency. The governing equations are solved using a fully-conservative second-order-accurate finite volume discretization and a second-order implicit Euler time advancement. At a sufficiently high amplitude of applied voltage, the system exhibits chaotic behaviors involving strong hydrodynamic mixing and enhanced electroconvection. The system responses are characterized as a function of oscillation frequency, voltage magnitude, and the ratio of diffusivities of two ion species. Our results indicate that electroconvection is most enhanced for frequencies on the order of inverse system RC time scale. We will discuss the dependence of this optimal frequency on the asymmetry of the diffusion coefficients of ionic species. Supported by the Stanford's Precourt Institute.

  6. Loss characteristics of FLTD magnetic cores under fast pulsed voltage

    International Nuclear Information System (INIS)

    Wang Zhiguo; Sun Fengju; Qiu Aici; Jiang Xiaofeng; Liang Tianxue; Yin Jiahui; Liu Peng; Wei Hao; Zhang Pengfei; Zhang Zhong

    2012-01-01

    The test platform has been developed to generate exciting pulsed voltages with the rise time less than 30 ns. The loss characteristics of cores of 25 μm 2605TCA Metglas and 50 μm DG6 electrical steel were then studied. A characteristic parameter, the gradient of the voltage pulse applied per unit core area, is proposed to describe the exciting condition applied on magnetic cores. The loss of the DG6 core is about 4 times that of the 2605TCA core. Most loss of the DG6 core, about 75%, is due to eddy current. For the 2605TCA core, the percentage is about 28%. (authors)

  7. BEHAVIOUR OF BACKFILL MATERIALS FOR ELECTRICAL GROUNDING SYSTEMS UNDER HIGH VOLTAGE CONDITIONS

    Directory of Open Access Journals (Sweden)

    S. C. LIM

    2015-06-01

    Full Text Available Backfill materials like Bentonite and cement are effective in lowering grounding resistance of electrodes for a considerable period. During lightning, switching impulses and earth fault occurrences in medium and high voltage networks, the grounding system needs to handle extremely high currents either for a short duration or prolonged period respectively. This paper investigates the behaviour of bentonite, cement and sand under impulse and alternating high voltage (50Hz conditions. Fulguritic-formation was observed in all materials under alternating high voltage. The findings reveal that performance of grounding systems under high voltage conditions may significantly change from the outcomes anticipated at design stage.

  8. Giant, Voltage-Actuated Deformation of a Dielectric Elastomer under Dead Load

    OpenAIRE

    Huang, Jiangshui; Li, Tiefeng; Foo, Choon Chiang; Clarke, David R.; Zhu, Jian; Suo, Zhigang

    2012-01-01

    Far greater voltage-actuated deformation is achievable for a dielectric elastomer under equal-biaxial dead load than under rigid constraint usually employed. Areal strains of 488% are demonstrated. The dead load suppresses electric breakdown, enabling the elastomer to survive the snap-through electromechanical instability. The breakdown voltage is found to increase with the voltage ramp rate. A nonlinear model for viscoelastic dielectric elastomers is developed and shown to be consistent with...

  9. Control of DFIG-WT under unbalanced grid voltage conditions

    DEFF Research Database (Denmark)

    Luna, Alvaro; Lina, Kleber; Corcoles, Felipe

    2009-01-01

    The voltage oriented control in the synchronous reference frame (VOC-SRF) have been extensively used for controlling wind turbines based on doubly fed induction generators (DFIG-WTs) through the rotor side converter of a back to back power processor. Although its performance is fast and accurate ...

  10. Doubly-Fed Induction Generator Control Under Voltage Sags

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Blaabjerg, Frede; Lima, K.

    2008-01-01

    This paper proposes a new control technique to improve the fault-ride through capability of doubly fed induction generators (DFIG). In such generators the appearance of severe voltage sags at the coupling point make rise to high over currents at the rotor/stator windings, something that makes...

  11. Study on the streamer inception characteristics under positive lightning impulse voltage

    Directory of Open Access Journals (Sweden)

    Zezhong Wang

    2017-11-01

    Full Text Available The streamer is the main process in an air gap discharge, and the inception characteristics of streamers have been widely applied in engineering. Streamer inception characteristics under DC voltage have been studied by many researchers, but the inception characteristics under impulse voltage, and particularly under lightning impulse voltage with a high voltage rise rate have rarely been studied. A measurement system based on integrated optoelectronic technology has been proposed in this paper, and the streamer inception characteristics in a 1-m-long rod-plane air gap that was energized by a positive lightning impulse voltage have been researched. We have also measured the streamer inception electric field using electrodes with different radii of curvature and different voltage rise rates. As a result, a modified empirical criterion for the streamer inception electric field that considers the voltage rise rate has been proposed, and the wide applicability of this criterion has been proved. Based on the streamer inception time-lag obtained, we determined that the field distribution obeys a Rayleigh distribution, which explains the change law of the streamer inception time-lag. The characteristic parameter of the Rayleigh distribution lies in the range from 0.6 to 2.5 when the radius of curvature of the electrode head is in the range from 0.5 cm to 2.5 cm and the voltage rise rate ranges from 80 kV/μs to 240kV/μs under positive lightning impulse voltage.

  12. Study on the streamer inception characteristics under positive lightning impulse voltage

    Science.gov (United States)

    Wang, Zezhong; Geng, Yinan

    2017-11-01

    The streamer is the main process in an air gap discharge, and the inception characteristics of streamers have been widely applied in engineering. Streamer inception characteristics under DC voltage have been studied by many researchers, but the inception characteristics under impulse voltage, and particularly under lightning impulse voltage with a high voltage rise rate have rarely been studied. A measurement system based on integrated optoelectronic technology has been proposed in this paper, and the streamer inception characteristics in a 1-m-long rod-plane air gap that was energized by a positive lightning impulse voltage have been researched. We have also measured the streamer inception electric field using electrodes with different radii of curvature and different voltage rise rates. As a result, a modified empirical criterion for the streamer inception electric field that considers the voltage rise rate has been proposed, and the wide applicability of this criterion has been proved. Based on the streamer inception time-lag obtained, we determined that the field distribution obeys a Rayleigh distribution, which explains the change law of the streamer inception time-lag. The characteristic parameter of the Rayleigh distribution lies in the range from 0.6 to 2.5 when the radius of curvature of the electrode head is in the range from 0.5 cm to 2.5 cm and the voltage rise rate ranges from 80 kV/μs to 240kV/μs under positive lightning impulse voltage.

  13. A localized interaction surface for voltage-sensing domains on the pore domain of a K+ channel.

    Science.gov (United States)

    Li-Smerin, Y; Hackos, D H; Swartz, K J

    2000-02-01

    Voltage-gated K+ channels contain a central pore domain and four surrounding voltage-sensing domains. How and where changes in the structure of the voltage-sensing domains couple to the pore domain so as to gate ion conduction is not understood. The crystal structure of KcsA, a bacterial K+ channel homologous to the pore domain of voltage-gated K+ channels, provides a starting point for addressing this question. Guided by this structure, we used tryptophan-scanning mutagenesis on the transmembrane shell of the pore domain in the Shaker voltage-gated K+ channel to localize potential protein-protein and protein-lipid interfaces. Some mutants cause only minor changes in gating and when mapped onto the KcsA structure cluster away from the interface between pore domain subunits. In contrast, mutants producing large changes in gating tend to cluster near this interface. These results imply that voltage-sensing domains interact with localized regions near the interface between adjacent pore domain subunits.

  14. Charging and absorption characteristics of small particulates under alternative and electrostatic voltages in an electrostatic precipitator

    International Nuclear Information System (INIS)

    Jiang Xue-Dong; Xu He; Wang Xin

    2014-01-01

    The charge quantity of small particulates such as PM2.5 plays a key role in the collection efficiency of an electrostatic precipitator (ESP). Under a single electrostatic voltage, it is difficult to charge and absorb small particulates. A new method of superimposing an alternative voltage on the electrostatic voltage is provided in this paper. Characteristics of small particulates are analyzed under alternative and electrostatic voltages. It is demonstrated that an alternative voltage can significantly improve the collection efficiency in three aspects: preventing anti-corona, increasing the charge quantity of small particulates, and increasing the median particulate size by electric agglomeration. In addition, practical usage with the superposition of alternative voltage is provided, and the results are in agreement with the theoretical analysis. (physics of gases, plasmas, and electric discharges)

  15. The Voltage-Sensing Domain of Kv7.2 Channels as a Molecular Target for Epilepsy-Causing Mutations and Anticonvulsants

    Science.gov (United States)

    Miceli, Francesco; Soldovieri, Maria Virginia; Iannotti, Fabio Arturo; Barrese, Vincenzo; Ambrosino, Paolo; Martire, Maria; Cilio, Maria Roberta; Taglialatela, Maurizio

    2010-01-01

    Understanding the molecular mechanisms underlying voltage-dependent gating in voltage-gated ion channels (VGICs) has been a major effort over the last decades. In recent years, changes in the gating process have emerged as common denominators for several genetically determined channelopathies affecting heart rhythm (arrhythmias), neuronal excitability (epilepsy, pain), or skeletal muscle contraction (periodic paralysis). Moreover, gating changes appear as the main molecular mechanism by which several natural toxins from a variety of species affect ion channel function. In this work, we describe the pathophysiological and pharmacological relevance of the gating process in voltage-gated K+ channels encoded by the Kv7 gene family. After reviewing the current knowledge on the molecular mechanisms and on the structural models of voltage-dependent gating in VGICs, we describe the physiological relevance of these channels, with particular emphasis on those formed by Kv7.2–Kv7.5 subunits having a well-established role in controlling neuronal excitability in humans. In fact, genetically determined alterations in Kv7.2 and Kv7.3 genes are responsible for benign familial neonatal convulsions, a rare seizure disorder affecting newborns, and the pharmacological activation of Kv7.2/3 channels can exert antiepileptic activity in humans. Both mutation-triggered channel dysfunction and drug-induced channel activation can occur by impeding or facilitating, respectively, channel sensitivity to membrane voltage and can affect overlapping molecular sites within the voltage-sensing domain of these channels. Thus, understanding the molecular steps involved in voltage-sensing in Kv7 channels will allow to better define the pathogenesis of rare human epilepsy, and to design innovative pharmacological strategies for the treatment of epilepsies and, possibly, other human diseases characterized by neuronal hyperexcitability. PMID:21687499

  16. The voltage-sensing domain of kv7.2 channels as a molecular target for epilepsy-causing mutations and anticonvulsants

    Directory of Open Access Journals (Sweden)

    Francesco eMiceli

    2011-02-01

    Full Text Available Understanding the molecular mechanisms underlying voltage-dependent gating in voltage-gated ion channels (VGICs has been a major effort over the last decades. In recent years, changes in the gating process have emerged as common denominators for several genetically-determined channelopathies affecting heart rhythm (arrhythmias, neuronal excitability (epilepsy, pain or skeletal muscle contraction (periodic paralysis. Moreover, gating changes appear as the main molecular mechanism by which several natural toxins from a variety of species affect ion channel function.In this work, we describe the pathophysiological and pharmacological relevance of the gating process in voltage-gated K+ channels encoded by the Kv7 gene family. After reviewing the current knowledge on the molecular mechanisms and on the structural models of voltage-dependent gating in VGICs, we describe the physiological relevance of these channels, with particular emphasis on those formed by Kv7.2-5 subunits having a well-established role in controlling neuronal excitability in humans. In fact, genetically-determined alterations in Kv7.2 and Kv7.3 genes are responsible for benign familial neonatal convulsions, a rare seizure disorder affecting newborns, and the pharmacological activation of Kv7.2/3 channels can exert antiepileptic activity in humans. Both mutation-triggered channel dysfunction and drug-induced channel activation can occur by impeding or facilitating, respectively, channel sensitivity to membrane voltage and can affect overlapping molecular sites within the voltage-sensing domain of these channels. Thus, understanding the molecular steps involved in voltage-sensing in Kv7 channels will allow to better define the pathogenesis of rare human epilepsy, and to design innovative pharmacological strategies for the treatment of epilepsies and, possibly, other human diseases characterized by neuronal hyperexcitability.

  17. The Voltage-Sensing Domain of K(v)7.2 Channels as a Molecular Target for Epilepsy-Causing Mutations and Anticonvulsants.

    Science.gov (United States)

    Miceli, Francesco; Soldovieri, Maria Virginia; Iannotti, Fabio Arturo; Barrese, Vincenzo; Ambrosino, Paolo; Martire, Maria; Cilio, Maria Roberta; Taglialatela, Maurizio

    2011-01-01

    Understanding the molecular mechanisms underlying voltage-dependent gating in voltage-gated ion channels (VGICs) has been a major effort over the last decades. In recent years, changes in the gating process have emerged as common denominators for several genetically determined channelopathies affecting heart rhythm (arrhythmias), neuronal excitability (epilepsy, pain), or skeletal muscle contraction (periodic paralysis). Moreover, gating changes appear as the main molecular mechanism by which several natural toxins from a variety of species affect ion channel function. In this work, we describe the pathophysiological and pharmacological relevance of the gating process in voltage-gated K(+) channels encoded by the K(v)7 gene family. After reviewing the current knowledge on the molecular mechanisms and on the structural models of voltage-dependent gating in VGICs, we describe the physiological relevance of these channels, with particular emphasis on those formed by K(v)7.2-K(v)7.5 subunits having a well-established role in controlling neuronal excitability in humans. In fact, genetically determined alterations in K(v)7.2 and K(v)7.3 genes are responsible for benign familial neonatal convulsions, a rare seizure disorder affecting newborns, and the pharmacological activation of K(v)7.2/3 channels can exert antiepileptic activity in humans. Both mutation-triggered channel dysfunction and drug-induced channel activation can occur by impeding or facilitating, respectively, channel sensitivity to membrane voltage and can affect overlapping molecular sites within the voltage-sensing domain of these channels. Thus, understanding the molecular steps involved in voltage-sensing in K(v)7 channels will allow to better define the pathogenesis of rare human epilepsy, and to design innovative pharmacological strategies for the treatment of epilepsies and, possibly, other human diseases characterized by neuronal hyperexcitability.

  18. Independent and cooperative motions of the Kv1.2 channel: voltage sensing and gating.

    Science.gov (United States)

    Yeheskel, Adva; Haliloglu, Turkan; Ben-Tal, Nir

    2010-05-19

    Voltage-gated potassium (Kv) channels, such as Kv1.2, are involved in the generation and propagation of action potentials. The Kv channel is a homotetramer, and each monomer is composed of a voltage-sensing domain (VSD) and a pore domain (PD). We analyzed the fluctuations of a model structure of Kv1.2 using elastic network models. The analysis suggested a network of coupled fluctuations of eight rigid structural units and seven hinges that may control the transition between the active and inactive states of the channel. For the most part, the network is composed of amino acids that are known to affect channel activity. The results suggested allosteric interactions and cooperativity between the subunits in the coupling between the motion of the VSD and the selectivity filter of the PD, in accordance with recent empirical data. There are no direct contacts between the VSDs of the four subunits, and the contacts between these and the PDs are loose, suggesting that the VSDs are capable of functioning independently. Indeed, they manifest many inherent fluctuations that are decoupled from the rest of the structure. In general, the analysis suggests that the two domains contribute to the channel function both individually and cooperatively. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. The twisted ion-permeation pathway of a resting voltage-sensing domain.

    Science.gov (United States)

    Tombola, Francesco; Pathak, Medha M; Gorostiza, Pau; Isacoff, Ehud Y

    2007-02-01

    Proteins containing voltage-sensing domains (VSDs) translate changes in membrane potential into changes in ion permeability or enzymatic activity. In channels, voltage change triggers a switch in conformation of the VSD, which drives gating in a separate pore domain, or, in channels lacking a pore domain, directly gates an ion pathway within the VSD. Neither mechanism is well understood. In the Shaker potassium channel, mutation of the first arginine residue of the S4 helix to a smaller uncharged residue makes the VSD permeable to ions ('omega current') in the resting conformation ('S4 down'). Here we perform a structure-guided perturbation analysis of the omega conductance to map its VSD permeation pathway. We find that there are four omega pores per channel, which is consistent with one conduction path per VSD. Permeating ions from the extracellular medium enter the VSD at its peripheral junction with the pore domain, and then plunge into the core of the VSD in a curved conduction pathway. Our results provide a model of the resting conformation of the VSD.

  20. Characterization and gas sensing properties of CuO synthesized by DC directly applying voltage

    Energy Technology Data Exchange (ETDEWEB)

    Klinbumrung, Arrak [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Titipun [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Somchai, E-mail: schthongtem@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-09-15

    Highlights: • CuO as a p-type semiconductor. • It was synthesized by directly applying voltage. • A promising material for ammonia detection. - Abstract: CuO microstructure was successfully synthesized by 50 A and 3.6 V DC directly applying voltage. Crystalline structure was characterized by X-ray diffraction (XRD), morphology by scanning and transmission electron microscopy (SEM, TEM). The sample of the 15 min processing time has an irregular shape with diameter about several hundreds of nanometer. Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible (UV–vis) absorption spectroscopy and photoluminescence (PL) were used to determine vibrational modes and optical properties of the as-synthesized samples: 529 and 585 cm{sup −1} vibrational modes, 3.95 eV band gap, and 402 nm emitting wavelength in violet region of CuO. X-ray photoelectron (XPS) spectroscopy was used to determine chemical composition, Cu(II)O, of the metal oxide surface. Gas sensing performance exposing to NH{sub 3} mixed with air at various working temperatures and NH{sub 3} concentrations of the as-synthesized CuO has the best response at the optimal working temperature of 250 °C: sensitivity of 56.6% exposed to 5275 ppm NH{sub 3}.

  1. Characterization and gas sensing properties of CuO synthesized by DC directly applying voltage

    International Nuclear Information System (INIS)

    Klinbumrung, Arrak; Thongtem, Titipun; Thongtem, Somchai

    2014-01-01

    Highlights: • CuO as a p-type semiconductor. • It was synthesized by directly applying voltage. • A promising material for ammonia detection. - Abstract: CuO microstructure was successfully synthesized by 50 A and 3.6 V DC directly applying voltage. Crystalline structure was characterized by X-ray diffraction (XRD), morphology by scanning and transmission electron microscopy (SEM, TEM). The sample of the 15 min processing time has an irregular shape with diameter about several hundreds of nanometer. Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible (UV–vis) absorption spectroscopy and photoluminescence (PL) were used to determine vibrational modes and optical properties of the as-synthesized samples: 529 and 585 cm −1 vibrational modes, 3.95 eV band gap, and 402 nm emitting wavelength in violet region of CuO. X-ray photoelectron (XPS) spectroscopy was used to determine chemical composition, Cu(II)O, of the metal oxide surface. Gas sensing performance exposing to NH 3 mixed with air at various working temperatures and NH 3 concentrations of the as-synthesized CuO has the best response at the optimal working temperature of 250 °C: sensitivity of 56.6% exposed to 5275 ppm NH 3

  2. Two distinct voltage-sensing domains control voltage sensitivity and kinetics of current activation in CaV1.1 calcium channels.

    Science.gov (United States)

    Tuluc, Petronel; Benedetti, Bruno; Coste de Bagneaux, Pierre; Grabner, Manfred; Flucher, Bernhard E

    2016-06-01

    Alternative splicing of the skeletal muscle CaV1.1 voltage-gated calcium channel gives rise to two channel variants with very different gating properties. The currents of both channels activate slowly; however, insertion of exon 29 in the adult splice variant CaV1.1a causes an ∼30-mV right shift in the voltage dependence of activation. Existing evidence suggests that the S3-S4 linker in repeat IV (containing exon 29) regulates voltage sensitivity in this voltage-sensing domain (VSD) by modulating interactions between the adjacent transmembrane segments IVS3 and IVS4. However, activation kinetics are thought to be determined by corresponding structures in repeat I. Here, we use patch-clamp analysis of dysgenic (CaV1.1 null) myotubes reconstituted with CaV1.1 mutants and chimeras to identify the specific roles of these regions in regulating channel gating properties. Using site-directed mutagenesis, we demonstrate that the structure and/or hydrophobicity of the IVS3-S4 linker is critical for regulating voltage sensitivity in the IV VSD, but by itself cannot modulate voltage sensitivity in the I VSD. Swapping sequence domains between the I and the IV VSDs reveals that IVS4 plus the IVS3-S4 linker is sufficient to confer CaV1.1a-like voltage dependence to the I VSD and that the IS3-S4 linker plus IS4 is sufficient to transfer CaV1.1e-like voltage dependence to the IV VSD. Any mismatch of transmembrane helices S3 and S4 from the I and IV VSDs causes a right shift of voltage sensitivity, indicating that regulation of voltage sensitivity by the IVS3-S4 linker requires specific interaction of IVS4 with its corresponding IVS3 segment. In contrast, slow current kinetics are perturbed by any heterologous sequences inserted into the I VSD and cannot be transferred by moving VSD I sequences to VSD IV. Thus, CaV1.1 calcium channels are organized in a modular manner, and control of voltage sensitivity and activation kinetics is accomplished by specific molecular mechanisms

  3. Performance Evaluation of Type-3 PLLs Under Wide Variation in Input Voltage and Frequency

    DEFF Research Database (Denmark)

    Aravind, C. K.; Rani, B.Indu; Chakkarapani, M.

    2017-01-01

    This paper presents a detailed analysis of Type-3 PLL under wide variation in input voltage and frequency. Using small signal modeling, the performance of both single loop and dual loop type-3 PLL for variation in input voltage and frequency is studied. The analysis shows that for the same bandwi...... verified by implementing in ALTERA cyclone II FPGA board....

  4. Inter-subunit interactions across the upper voltage sensing-pore domain interface contribute to the concerted pore opening transition of Kv channels.

    Directory of Open Access Journals (Sweden)

    Tzilhav Shem-Ad

    Full Text Available The tight electro-mechanical coupling between the voltage-sensing and pore domains of Kv channels lies at the heart of their fundamental roles in electrical signaling. Structural data have identified two voltage sensor pore inter-domain interaction surfaces, thus providing a framework to explain the molecular basis for the tight coupling of these domains. While the contribution of the intra-subunit lower domain interface to the electro-mechanical coupling that underlies channel opening is relatively well understood, the contribution of the inter-subunit upper interface to channel gating is not yet clear. Relying on energy perturbation and thermodynamic coupling analyses of tandem-dimeric Shaker Kv channels, we show that mutation of upper interface residues from both sides of the voltage sensor-pore domain interface stabilizes the closed channel state. These mutations, however, do not affect slow inactivation gating. We, moreover, find that upper interface residues form a network of state-dependent interactions that stabilize the open channel state. Finally, we note that the observed residue interaction network does not change during slow inactivation gating. The upper voltage sensing-pore interaction surface thus only undergoes conformational rearrangements during channel activation gating. We suggest that inter-subunit interactions across the upper domain interface mediate allosteric communication between channel subunits that contributes to the concerted nature of the late pore opening transition of Kv channels.

  5. Inter-subunit interactions across the upper voltage sensing-pore domain interface contribute to the concerted pore opening transition of Kv channels.

    Science.gov (United States)

    Shem-Ad, Tzilhav; Irit, Orr; Yifrach, Ofer

    2013-01-01

    The tight electro-mechanical coupling between the voltage-sensing and pore domains of Kv channels lies at the heart of their fundamental roles in electrical signaling. Structural data have identified two voltage sensor pore inter-domain interaction surfaces, thus providing a framework to explain the molecular basis for the tight coupling of these domains. While the contribution of the intra-subunit lower domain interface to the electro-mechanical coupling that underlies channel opening is relatively well understood, the contribution of the inter-subunit upper interface to channel gating is not yet clear. Relying on energy perturbation and thermodynamic coupling analyses of tandem-dimeric Shaker Kv channels, we show that mutation of upper interface residues from both sides of the voltage sensor-pore domain interface stabilizes the closed channel state. These mutations, however, do not affect slow inactivation gating. We, moreover, find that upper interface residues form a network of state-dependent interactions that stabilize the open channel state. Finally, we note that the observed residue interaction network does not change during slow inactivation gating. The upper voltage sensing-pore interaction surface thus only undergoes conformational rearrangements during channel activation gating. We suggest that inter-subunit interactions across the upper domain interface mediate allosteric communication between channel subunits that contributes to the concerted nature of the late pore opening transition of Kv channels.

  6. Electrical Tree Initiation and Growth in Silicone Rubber under Combined DC-Pulse Voltage

    Directory of Open Access Journals (Sweden)

    Tao Han

    2018-03-01

    Full Text Available Electrical tree is a serious threat to silicone rubber (SIR insulation and can even cause breakdown. Electrical trees under alternating current (AC and direct current (DC voltage have been widely researched. While there are pulses in high-voltage direct current (HVDC cables under operating conditions caused by lightning and operating overvoltage in the power system, little research has been reported about trees under combined DC-pulse voltage. Their inception and growth mechanism is still not clear. In this paper, electrical trees are studied under several types of combined DC-pulse voltage. The initiation and growth process was recorded by a digital microscope system. The experimental results indicate that the inception pulse voltage is different under each voltage type and is influenced by the combined DC. The initial tree has two structures, determined by the pulse polarity. With increased DC prestressing time, tree inception pulse voltage with the same polarity is clearly decreased. Moreover, a special initial bubble tree was observed after the prestressing DC.

  7. Power Quality Assessment in Real Shipboard Microgrid Systems under Unbalanced and Harmonic AC Bus Voltage

    DEFF Research Database (Denmark)

    Liu, Wenzhao; Tarasiuk, Tomasz; Gorniak, Mariusz

    2018-01-01

    were proposed and carried out in a real ship under sea-going conditions to address this problem. The ship experimental results were presented and discussed considering non-linear bow thruster load and high power ballast pump loads under unbalanced and harmonic voltage conditions. In addition......, the analysis of voltage transient dips during ballast pump starting up is presented. Further, the voltage/current distortions of working generator, bow thruster and pump loads are analyzed. The paper provides a valuable analysis for coping with PQ issues in the real ship power system....

  8. Flexible operation of parallel grid-connecting converters under unbalanced grid voltage

    DEFF Research Database (Denmark)

    Lu, Jinghang; Savaghebi, Mehdi; Guerrero, Josep M.

    2017-01-01

    -link voltage ripple, and overloading. Moreover, under grid voltage unbalance, the active power delivery ability is decreased due to the converter's current rating limitation. In this paper, a thorough study on the current limitation of the grid-connecting converter under grid voltage unbalance is conducted....... In addition, based on the principle that total output active power should be oscillation free, a coordinated control strategy is proposed for the parallel grid-connecting converters. The case study has been conducted to demonstrate the effectiveness of this proposed control strategy....

  9. Combinatorial mutagenesis of the voltage-sensing domain enables the optical resolution of action potentials firing at 60 Hz by a genetically encoded fluorescent sensor of membrane potential.

    Science.gov (United States)

    Piao, Hong Hua; Rajakumar, Dhanarajan; Kang, Bok Eum; Kim, Eun Ha; Baker, Bradley J

    2015-01-07

    ArcLight is a genetically encoded fluorescent voltage sensor using the voltage-sensing domain of the voltage-sensing phosphatase from Ciona intestinalis that gives a large but slow-responding optical signal in response to changes in membrane potential (Jin et al., 2012). Fluorescent voltage sensors using the voltage-sensing domain from other species give faster yet weaker optical signals (Baker et al., 2012; Han et al., 2013). Sequence alignment of voltage-sensing phosphatases from different species revealed conserved polar and charged residues at 7 aa intervals in the S1-S3 transmembrane segments of the voltage-sensing domain, suggesting potential coil-coil interactions. The contribution of these residues to the voltage-induced optical signal was tested using a cassette mutagenesis screen by flanking each transmembrane segment with unique restriction sites to allow for the testing of individual mutations in each transmembrane segment, as well as combinations in all four transmembrane segments. Addition of a counter charge in S2 improved the kinetics of the optical response. A double mutation in the S4 domain dramatically reduced the slow component of the optical signal seen in ArcLight. Combining that double S4 mutant with the mutation in the S2 domain yielded a probe with kinetics voltage-sensing domain could potentially lead to fluorescent sensors capable of optically resolving neuronal inhibition and subthreshold synaptic activity. Copyright © 2015 the authors 0270-6474/15/350372-15$15.00/0.

  10. Current-voltage characteristic of a resonant tunneling diode under electromagnetic radiation

    Directory of Open Access Journals (Sweden)

    N Hatefi Kargan

    2013-09-01

    Full Text Available  In this paper, current-voltage characteristic of a resonant tunneling diode under electromagnetic radiation has been calculated and compared with the results when there is no electromagnetic radiation. For calculating current -voltage characteristic, it is required to calculate the transmission coefficient of electrons from the well and barrier structures of this device. For calculating the transmission coefficient of electrons at the presence of electromagnetic radiation, Finite Difference Time Domain (FDTD method has been used and when there is no electromagnetic radiation Transfer Matrix Method (TMM and finite diffirence time domain method have been used. The results show that the presence of electromagnetic radiation causes resonant states other than principal resonant state (without presence of electromagnetic radiation to appear on the transmition coefficient curve where they are in distances from the principal peak and from each other. Also, the presence of electromagnetic radiation causes peaks other than principal peak to appear on the current-voltage characteristics of the device. Under electromagnetic radiation, the number of peaks on the current-voltage curve is smaller than the number of peaks on the current-voltage transmission coefficient. This is due to the fact that current-voltage curve is the result of integration on the energy of electrons, Thus, the sharper and low height peaks on the transmission coefficient do not appear on the current-voltage characteristic curve.

  11. Investigation of Vacuum Arc Voltage Characteristics Under Different Axial Magnetic Field Profiles

    International Nuclear Information System (INIS)

    Jia Shenli; Song Xiaochuan; Huo Xintao; Shi Zongqian; Wang Lijun

    2010-01-01

    Characteristics of the arc voltage under different profiles of axial magnetic field were investigated experimentally in a detachable vacuum chamber with five pairs of specially designed electrodes generating both bell-shaped and saddle-shaped magnetic field profile. The arc column and cathode spot images were photographed by a high speed digital camera. The dependence of the arc voltage on arcing evolution is analyzed. It is indicated that the axial magnetic field profile could affect the arc behaviors significantly, and the arc voltage is closely related to the arc light intensity.

  12. Luminescence evolution from alumina ceramic surface before flashover under direct and alternating current voltage in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Su, Guo-Qiang; Wang, Yi-Bo; Song, Bai-Peng; Mu, Hai-Bao, E-mail: haibaomu@xjtu.edu.cn, E-mail: gjzhang@xjtu.edu.cn; Zhang, Guan-Jun, E-mail: haibaomu@xjtu.edu.cn, E-mail: gjzhang@xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Li, Feng; Wang, Meng [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China)

    2016-06-15

    The luminescence evolution phenomena from alumina ceramic surface in vacuum under high voltage of direct and alternating current are reported, with the voltage covering a large range from far below to close to the flashover voltage. Its time resolved and spatial distributed behaviors are examined by a photon counting system and an electron-multiplying charge-coupled device (EMCCD) together with a digital camera, respectively. The luminescence before flashover exhibits two stages as voltage increasing, i.e., under a relative low voltage (Stage A), the luminescence is ascribed to radiative recombination of hetero-charges injected into the sample surface layer by Schottky effect; under a higher voltage (Stage B), a stable secondary electron emission process, resulting from the Fowler-Nordheim emission at the cathode triple junction (CTJ), is responsible for the luminescence. Spectrum analysis implies that inner secondary electrons within the surface layer of alumina generated during the SSEE process also participate in the luminescence of Stage B. A comprehensive interpretation of the flashover process is formulated, which might promote a better understanding of flashover issue in vacuum.

  13. Domain cooperativity in the β1a subunit is essential for dihydropyridine receptor voltage sensing in skeletal muscle.

    Science.gov (United States)

    Dayal, Anamika; Bhat, Vinayakumar; Franzini-Armstrong, Clara; Grabner, Manfred

    2013-04-30

    The dihydropyridine receptor (DHPR) β1a subunit is crucial for enhancement of DHPR triad expression, assembly of DHPRs in tetrads, and elicitation of DHPRα1S charge movement--the three prerequisites of skeletal muscle excitation-contraction coupling. Despite the ability to fully target α1S into triadic junctions and tetradic arrays, the neuronal isoform β3 was unable to restore considerable charge movement (measure of α1S voltage sensing) upon expression in β1-null zebrafish relaxed myotubes, unlike the other three vertebrate β-isoforms (β1a, β2a, and β4). Thus, we used β3 for chimerization with β1a to investigate whether any of the five distinct molecular regions of β1a is dominantly involved in inducing the voltage-sensing function of α1S. Surprisingly, systematic domain swapping between β1a and β3 revealed a pivotal role of the src homology 3 (SH3) domain and C terminus of β1a in charge movement restoration. More interestingly, β1a SH3 domain and C terminus, when simultaneously engineered into β3 sequence background, were able to fully restore charge movement together with proper intracellular Ca(2+) release, suggesting cooperativity of these two domains in induction of the α1S voltage-sensing function in skeletal muscle excitation-contraction coupling. Furthermore, substitution of a proline by alanine in the putative SH3-binding polyproline motif in the proximal C terminus of β1a (also of β2a and β4) fully obstructed α1S charge movement. Consequently, we postulate a model according to which β subunits, probably via the SH3-C-terminal polyproline interaction, adapt a discrete conformation required to modify the α1S conformation apt for voltage sensing in skeletal muscle.

  14. State reference design and saturated control of doubly-fed induction generators under voltage dips

    Science.gov (United States)

    Tilli, Andrea; Conficoni, Christian; Hashemi, Ahmad

    2017-04-01

    In this paper, the stator/rotor currents control problem of doubly-fed induction generator under faulty line voltage is carried out. Common grid faults cause a steep decline in the line voltage profile, commonly denoted as voltage dip. This point is critical for such kind of machines, having their stator windings directly connected to the grid. In this respect, solid methodological nonlinear control theory arguments are exploited and applied to design a novel controller, whose main goal is to improve the system behaviour during voltage dips, endowing it with low voltage ride through capability, a fundamental feature required by modern Grid Codes. The proposed solution exploits both feedforward and feedback actions. The feedforward part relies on suitable reference trajectories for the system internal dynamics, which are designed to prevent large oscillations in the rotor currents and command voltages, excited by line perturbations. The feedback part uses state measurements and is designed according to Linear Matrix Inequalities (LMI) based saturated control techniques to further reduce oscillations, while explicitly accounting for the system constraints. Numerical simulations verify the benefits of the internal dynamics trajectory planning, and the saturated state feedback action, in crucially improving the Doubly-Fed Induction Machine response under severe grid faults.

  15. Study the flashover voltage for outdoor polymer insulators under desert climatic conditions

    Directory of Open Access Journals (Sweden)

    L.S. Nasrat

    2013-06-01

    Results showed that flashover voltage reaches to 38 kV for samples without filler and 47 kV for samples containing 50% of ATH filler in dry condition. A comparison between inorganic fillers under various environmental conditions showed higher flashover voltage values for samples containing ATH filler than that of samples containing H3BO3 and Mg(OH2 fillers at all filler concentrations. Flashover voltage increases 24% by adding ATH filler for polyester samples under sandstorm conditions. Also, in this study, the effects of sandstorm, ultra violet (UV radiation, mechanical strength (compressive and tensile strengths and thermal performance with respect to surface of the sample under test have been investigated in detail.

  16. Non-contact current and voltage sensing method using a clamshell housing and a ferrite cylinder

    Science.gov (United States)

    Carpenter, Gary D.; El-Essawy, Wael; Ferreira, Alexandre Peixoto; Keller, Thomas Walter; Rubio, Juan C.; Schappert, Michael

    2016-04-26

    A method of measurement using a detachable current and voltage sensor provides an isolated and convenient technique for to measuring current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing that contains the current and voltage sensors, which may be a ferrite cylinder with a hall effect sensor disposed in a gap along the circumference to measure current, or alternative a winding provided through the cylinder along its axis and a capacitive plate or wire disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.

  17. Control Strategy of Three-Phase Photovoltaic Inverter under Low-Voltage Ride-Through Condition

    Directory of Open Access Journals (Sweden)

    Xianbo Wang

    2015-01-01

    Full Text Available The new energy promoting community has recently witnessed a surge of developments in photovoltaic power generation technologies. To fulfill the grid code requirement of photovoltaic inverter under low-voltage ride-through (LVRT condition, by utilizing the asymmetry feature of grid voltage, this paper aims to control both restraining negative sequence current and reactive power fluctuation on grid side to maintain balanced output of inverter. Two mathematical inverter models of grid-connected inverter containing LCL grid-side filter under both symmetrical and asymmetric grid are proposed. PR controller method is put forward based on inverter model under asymmetric grid. To ensure the stable operation of the inverter, grid voltage feedforward method is introduced to restrain current shock at the moment of voltage drop. Stable grid-connected operation and LVRT ability at grid drop have been achieved via a combination of rapid positive and negative sequence component extraction of accurate grid voltage synchronizing signals. Simulation and experimental results have verified the superior effectiveness of our proposed control strategy.

  18. Dynamic response characteristics analysis of the doubly-fed wind power system under grid voltage drop

    Science.gov (United States)

    Chen, Y.; Wang, J.; Wang, H. H.; Yang, L.; Chen, W.; Xu, Y. T.

    2016-08-01

    Double-fed induction generator (DFIG) is sensitive to the disturbances of grid, so the security and stability of the grid and the DFIG itself are under threat with the rapid increase of DFIG. Therefore, it is important to study dynamic response of the DFIG when voltage drop failure is happened in power system. In this paper, firstly, mathematical models and the control strategy about mechanical and electrical response processes is respectively introduced. Then through the analysis of response process, it is concluded that the dynamic response characteristics are related to voltage drop level, operating status of DFIG and control strategy adapted to rotor side. Last, the correctness of conclusion is validated by the simulation about mechanical and electrical response processes in different voltage levels drop and different DFIG output levels under DIgSILENT/PowerFactory software platform.

  19. NMR structural and dynamical investigation of the isolated voltage-sensing domain of the potassium channel KvAP: implications for voltage gating.

    Science.gov (United States)

    Shenkarev, Zakhar O; Paramonov, Alexander S; Lyukmanova, Ekaterina N; Shingarova, Lyudmila N; Yakimov, Sergei A; Dubinnyi, Maxim A; Chupin, Vladimir V; Kirpichnikov, Mikhail P; Blommers, Marcel J J; Arseniev, Alexander S

    2010-04-28

    The structure and dynamics of the isolated voltage-sensing domain (VSD) of the archaeal potassium channel KvAP was studied by high-resolution NMR. The almost complete backbone resonance assignment and partial side-chain assignment of the (2)H,(13)C,(15)N-labeled VSD were obtained for the protein domain solubilized in DPC/LDAO (2:1) mixed micelles. Secondary and tertiary structures of the VSD were characterized using secondary chemical shifts and NOE contacts. These data indicate that the spatial structure of the VSD solubilized in micelles corresponds to the structure of the domain in an open state of the channel. NOE contacts and secondary chemical shifts of amide protons indicate the presence of tightly bound water molecule as well as hydrogen bond formation involving an interhelical salt bridge (Asp62-R133) that stabilizes the overall structure of the domain. The backbone dynamics of the VSD was studied using (15)N relaxation measurements. The loop regions S1-S2 and S2-S3 were found mobile, while the S3-S4 loop (voltage-sensor paddle) was found stable at the ps-ns time scale. The moieties of S1, S2, S3, and S4 helices sharing interhelical contacts (at the level of the Asp62-R133 salt bridge) were observed in conformational exchange on the micros-ms time scale. Similar exchange-induced broadening of characteristic resonances was observed for the VSD solubilized in the membrane of lipid-protein nanodiscs composed of DMPC, DMPG, and POPC/DOPG lipids. Apparently, the observed interhelical motions represent an inherent property of the VSD of the KvAP channel and can play an important role in the voltage gating.

  20. Caution Is Required in Interpretation of Mutations in the Voltage Sensing Domain of Voltage Gated Channels as Evidence for Gating Mechanisms

    Directory of Open Access Journals (Sweden)

    Alisher M. Kariev

    2015-01-01

    Full Text Available The gating mechanism of voltage sensitive ion channels is generally considered to be the motion of the S4 transmembrane segment of the voltage sensing domains (VSD. The primary supporting evidence came from R→C mutations on the S4 transmembrane segment of the VSD, followed by reaction with a methanethiosulfonate (MTS reagent. The cys side chain is –SH (reactive form –S−; the arginine side chain is much larger, leaving space big enough to accommodate the MTS sulfonate head group. The cavity created by the mutation has space for up to seven more water molecules than were present in wild type, which could be displaced irreversibly by the MTS reagent. Our quantum calculations show there is major reorientation of three aromatic residues that face into the cavity in response to proton displacement within the VSD. Two phenylalanines reorient sufficiently to shield/unshield the cysteine from the intracellular and extracellular ends, depending on the proton positions, and a tyrosine forms a hydrogen bond to the cysteine sulfur with its side chain –OH. These could produce the results of the experiments that have been interpreted as evidence for physical motion of the S4 segment, without physical motion of the S4 backbone. The computations strongly suggest that the interpretation of cysteine substitution reaction experiments be re-examined in the light of these considerations.

  1. Study of electric field distorted by space charges under positive lightning impulse voltage

    Science.gov (United States)

    Wang, Zezhong; Geng, Yinan

    2018-03-01

    Actually, many insulation problems are related to electric fields. And measuring electric fields is an important research topic of high-voltage engineering. In particular, the electric field distortion caused by space charge is the basis of streamer theory, and thus quantitatively measuring the Poisson electric field caused by space charge is significant to researching the mechanism of air gap discharge. In this paper, we used our photoelectric integrated sensor to measure the electric field distribution in a 1-m rod-plane gap under positive lightning impulse voltage. To verify the reliability of this quantitative measurement, we compared the measured results with calculated results from a numerical simulation. The electric-field time domain waveforms on the axis of the 1-m rod-plane out of the space charge zone were measured with various electrodes. The Poisson electric fields generated by space charge were separated from the Laplace electric field generated by applied voltages, and the amplitudes and variations were measured for various applied voltages and at various locations. This work also supplies the feasible basis for directly measuring strong electric field under high voltage.

  2. Divided Attention and Processes Underlying Sense of Agency

    Directory of Open Access Journals (Sweden)

    Wen eWen

    2016-01-01

    Full Text Available Sense of agency refers to the subjective feeling of controlling events through one’s behavior or will. Sense of agency results from matching predictions of one’s own actions with actual feedback regarding the action. Furthermore, when an action involves a cued goal, performance-based inference contributes to sense of agency. That is, if people achieve their goal, they would believe themselves to be in control. Previous studies have shown that both action-effect comparison and performance-based inference contribute to sense of agency; however, the dominance of one process over the other may shift based on task conditions such as the presence or absence of specific goals. In this study, we examined the influence of divided attention on these two processes underlying sense of agency in two conditions. In the experimental task, participants continuously controlled a moving dot for 10 s while maintaining a string of three or seven digits in working memory. We found that when there was no cued goal (no-cued-goal condition, sense of agency was impaired by high cognitive load. Contrastingly, when participants controlled the dot based on a cued goal (cued-goal-directed condition, their sense of agency was lower than in the no-cued-goal condition and was not affected by cognitive load. The results suggest that the action-effect comparison process underlying sense of agency requires attention. On the other hand, the weaker influence of divided attention in the cued-goal-directed condition could be attributed to the dominance of performance-based inference, which is probably automatic.

  3. Low-voltage analog front-end processor design for ISFET-based sensor and H+ sensing applications

    Science.gov (United States)

    Chung, Wen-Yaw; Yang, Chung-Huang; Peng, Kang-Chu; Yeh, M. H.

    2003-04-01

    This paper presents a modular-based low-voltage analog-front-end processor design in a 0.5mm double-poly double-metal CMOS technology for Ion Sensitive Field Effect Transistor (ISFET)-based sensor and H+ sensing applications. To meet the potentiometric response of the ISFET that is proportional to various H+ concentrations, the constant-voltage and constant current (CVCS) testing configuration has been used. Low-voltage design skills such as bulk-driven input pair, folded-cascode amplifier, bootstrap switch control circuits have been designed and integrated for 1.5V supply and nearly rail-to-rail analog to digital signal processing. Core modules consist of an 8-bit two-step analog-digital converter and bulk-driven pre-amplifiers have been developed in this research. The experimental results show that the proposed circuitry has an acceptable linearity to 0.1 pH-H+ sensing conversions with the buffer solution in the range of pH2 to pH12. The processor has a potential usage in battery-operated and portable healthcare devices and environmental monitoring applications.

  4. Control Method for DC-Link Voltage Ripple Cancellation in Voltage Source Inverter under Unbalanced Three-Phase Voltage Supply Conditions

    Czech Academy of Sciences Publication Activity Database

    Chomát, Miroslav; Schreier, Luděk

    2005-01-01

    Roč. 152, č. 3 (2005), s. 494-500 ISSN 1350-2352 R&D Projects: GA ČR(CZ) GA102/02/0554 Institutional research plan: CEZ:AV0Z20570509 Keywords : DC-link voltage * unbalanced three-phase voltage Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.587, year: 2005

  5. Investigation of Grid-connected Voltage Source Converter Performance under Unbalanced Faults

    DEFF Research Database (Denmark)

    Jia, Jundi; Yang, Guangya; Nielsen, Arne Hejde

    2016-01-01

    Renewable energy sources (RES) and HVDC links are typically interfaced with the grid by power converters, whose performance during grid faults is significantly different from that of traditional synchronous generators. This paper investigates the performance of grid-connected voltage source...... that the performance of VSCs varies with their control strategies. Negative-sequence current control is necessary to restrict converter current in each phase under unbalanced faults. Among presented control strategies, the balanced current control strategy complies with the present voltage support requirement best...

  6. Structural basis of lipid-driven conformational transitions in the KvAP voltage-sensing domain.

    Science.gov (United States)

    Li, Qufei; Wanderling, Sherry; Sompornpisut, Pornthep; Perozo, Eduardo

    2014-02-01

    Voltage-gated ion channels respond to transmembrane electric fields through reorientations of the positively charged S4 helix within the voltage-sensing domain (VSD). Despite a wealth of structural and functional data, the details of this conformational change remain controversial. Recent electrophysiological evidence showed that equilibrium between the resting ('down') and activated ('up') conformations of the KvAP VSD from Aeropyrum pernix can be biased through reconstitution in lipids with or without phosphate groups. We investigated the structural transition between these functional states, using site-directed spin-labeling and EPR spectroscopic methods. Solvent accessibility and interhelical distance determinations suggest that KvAP gates through S4 movements involving an ∼3-Å upward tilt and simultaneous ∼2-Å axial shift. This motion leads to large accessibly changes in the intracellular water-filled crevice and supports a new model of gating that combines structural rearrangements and electric-field remodeling.

  7. False Operation of Static Random Access Memory Cells under Alternating Current Power Supply Voltage Variation

    Science.gov (United States)

    Sawada, Takuya; Takata, Hidehiro; Nii, Koji; Nagata, Makoto

    2013-04-01

    Static random access memory (SRAM) cores exhibit susceptibility against power supply voltage variation. False operation is investigated among SRAM cells under sinusoidal voltage variation on power lines introduced by direct RF power injection. A standard SRAM core of 16 kbyte in a 90 nm 1.5 V technology is diagnosed with built-in self test and on-die noise monitor techniques. The sensitivity of bit error rate is shown to be high against the frequency of injected voltage variation, while it is not greatly influenced by the difference in frequency and phase against SRAM clocking. It is also observed that the distribution of false bits is substantially random in a cell array.

  8. New digital reference current generation for shunt active power filter under distorted voltage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Abdusalam, Mohamed; Karimi, Shahram; Saadate, Shahrokh [Groupe de Recherche en Electrotechnique et Electronique de Nancy (GREEN), CNRS UMR 7037 (France); Poure, Philippe [Laboratoire d' Instrumentation Electronique de Nancy (LIEN), EA 3440, Universite Henri Poincare - Nancy Universite, B.P. 239, 54506 Vandoeuvre les Nancy Cedex (France)

    2009-05-15

    In this paper, a new reference current computation method suitable for shunt active power filter control under distorted voltage conditions is proposed. The active power filter control is based on the use of self-tuning filters (STF) for the reference current generation and on a modulated hysteresis current controller. This active filter is intended for harmonic compensation of a diode rectifier feeding a RL load under distorted voltage conditions. The study of the active filter control is divided in two parts. The first one deals with the harmonic isolator which generates the harmonic reference currents and is experimentally implemented in a DS1104 card of a DSPACE prototyping system. The second part focuses on the generation of the switching pattern of the inverter by using a modulated hysteresis current controller, implemented in an analogue card. The use of STF instead of classical extraction filters allows extracting directly the voltage and current fundamental components in the {alpha}-{beta} axis without phase locked loop (PLL). The performances are good even under distorted voltage conditions. First, the effectiveness of the new proposed method is mathematically studied and verified by computer simulation. Then, experimental results are presented using a DSPACE system associated with the analogue current controller for a real shunt active power filter. (author)

  9. Electrical treeing behaviors in silicone rubber under an impulse voltage considering high temperature

    Science.gov (United States)

    Yunxiao, ZHANG; Yuanxiang, ZHOU; Ling, ZHANG; Zhen, LIN; Jie, LIU; Zhongliu, ZHOU

    2018-05-01

    In this paper, work was conducted to reveal electrical tree behaviors (initiation and propagation) of silicone rubber (SIR) under an impulse voltage with high temperature. Impulse frequencies ranging from 10 Hz to 1 kHz were applied and the temperature was controlled between 30 °C and 90 °C. Experimental results show that tree initiation voltage decreases with increasing pulse frequency, and the descending amplitude is different in different frequency bands. As the pulse frequency increases, more frequent partial discharges occur in the channel, increasing the tree growth rate and the final shape intensity. As for temperature, the initiation voltage decreases and the tree shape becomes denser as the temperature gets higher. Based on differential scanning calorimetry results, we believe that partial segment relaxation of SIR at high temperature leads to a decrease in the initiation voltage. However, the tree growth rate decreases with increasing temperature. Carbonization deposition in the channel under high temperature was observed under microscope and proven by Raman analysis. Different tree growth models considering tree channel characteristics are proposed. It is believed that increasing the conductivity in the tree channel restrains the partial discharge, holding back the tree growth at high temperature.

  10. Performance Analysis of a Voltage Source Converter (VSC based HVDC Transmission System under Faulted Conditions

    Directory of Open Access Journals (Sweden)

    Amiri RABIE

    2009-12-01

    Full Text Available Voltage Source Converter (VSC based HVDC transmission technology hasbeen selected as the basis for several recent projects due to its controllability,compact modular design, ease of system interface, and low environmentalimpact. This paper investigates the dynamic performance of a 200MW,±100kV VSC-HVDC transmission system under some faulted conditionsusing MATLAB/Simulink. Simulation results confirm the satisfactoryperformance of the proposed system under active and reactive powervariations and fault conditions.

  11. Functional characterization of Kv11.1 (hERG) potassium channels split in the voltage-sensing domain.

    Science.gov (United States)

    de la Peña, Pilar; Domínguez, Pedro; Barros, Francisco

    2018-03-23

    Voltage-dependent KCNH family potassium channel functionality can be reconstructed using non-covalently linked voltage-sensing domain (VSD) and pore modules (split channels). However, the necessity of a covalent continuity for channel function has not been evaluated at other points within the two functionally independent channel modules. We find here that by cutting Kv11.1 (hERG, KCNH2) channels at the different loops linking the transmembrane spans of the channel core, not only channels split at the S4-S5 linker level, but also those split at the intracellular S2-S3 and the extracellular S3-S4 loops, yield fully functional channel proteins. Our data indicate that albeit less markedly, channels split after residue 482 in the S2-S3 linker resemble the uncoupled gating phenotype of those split at the C-terminal end of the VSD S4 transmembrane segment. Channels split after residues 514 and 518 in the S3-S4 linker show gating characteristics similar to those of the continuous wild-type channel. However, breaking the covalent link at this level strongly accelerates the voltage-dependent accessibility of a membrane impermeable methanethiosulfonate reagent to an engineered cysteine at the N-terminal region of the S4 transmembrane helix. Thus, besides that of the S4-S5 linker, structural integrity of the intracellular S2-S3 linker seems to constitute an important factor for proper transduction of VSD rearrangements to opening and closing the cytoplasmic gate. Furthermore, our data suggest that the short and probably rigid characteristics of the extracellular S3-S4 linker are not an essential component of the Kv11.1 voltage sensing machinery.

  12. Distributed Low Voltage Ride-Through Operation of Power Converters in Grid-Connected Microgrids under Voltage Sags

    DEFF Research Database (Denmark)

    Zhao, Xin; Meng, Lexuan; Dragicevic, Tomislav

    2015-01-01

    it can make the MG a contributor in smooth ride through the faults. In this paper, a reactive power support strategy using droop controlled converters is proposed to aid MG riding through three phase symmetrical voltage sags. In such a case, the MGs should inject reactive power to the grid to boost...... the voltage in all phases at AC common bus. However, since the line admittances from each converter to point of common coupling (PCC) are not identical, the injected reactive power may not be equally shared. In order to achieve low voltage ride through (LVRT) capability along with a good power sharing...

  13. Mutations in the voltage-sensing domain affect the alternative ion permeation pathway in the TRPM3 channel.

    Science.gov (United States)

    Held, Katharina; Gruss, Fabian; Aloi, Vincenzo Davide; Janssens, Annelies; Ulens, Chris; Voets, Thomas; Vriens, Joris

    2018-03-31

    Mutagenesis at positively charged amino acids (arginines and lysines) (R1-R4) in the voltage-sensor domain (transmembrane segment (S) 4) of voltage-gated Na + , K + and Ca 2+ channels can lead to an alternative ion permeation pathway distinct from the central pore. Recently, a non-canonical ion permeation pathway was described in TRPM3, a member of the transient receptor potential (TRP) superfamily. The non-canonical pore exists in the native TRPM3 channel and can be activated by co-stimulation of the endogenous agonist pregnenolone sulphate and the antifungal drug clotrimazole or by stimulation of the synthetic agonist CIM0216. Alignment of the voltage sensor of Shaker K + channels with the entire TRPM3 sequence revealed the highest degree of similarity in the putative S4 region of TRPM3, and suggested that only one single gating charge arginine (R2) in the putative S4 region is conserved. Mutagenesis studies in the voltage-sensing domain of TRPM3 revealed several residues in the voltage sensor (S4) as well as in S1 and S3 that are crucial for the occurrence of the non-canonical inward currents. In conclusion, this study provides evidence for the involvement of the voltage-sensing domain of TRPM3 in the formation of an alternative ion permeation pathway. Transient receptor potential (TRP) channels are cationic channels involved in a broad array of functions, including homeostasis, motility and sensory functions. TRP channel subunits consist of six transmembrane segments (S1-S6), and form tetrameric channels with a central pore formed by the region encompassing S5 and S6. Recently, evidence was provided for the existence of an alternative ion permeation pathway in TRPM3, which allows large inward currents upon hyperpolarization independently of the central pore. However, very little knowledge is available concerning the localization of this alternative pathway in the native TRPM3 channel protein. Guided by sequence homology with Shaker K + channels, in which

  14. Phase-lock loop of Grid-connected Voltage Source Converter under non-ideal grid condition

    DEFF Research Database (Denmark)

    Wang, Haojie; Sun, Hai; Han, Minxiao

    2015-01-01

    It is a normal practice that the DC micro-grid is connected to AC main grid through Grid-connected Voltage Source Converter (G-VSC) for voltage support. Accurate control of DC micro-grid voltage is difficult for G-VSC under unbalanced grid condition as the fundamental positive-sequence component...... and distorted system voltage the proposed PLL can accurately detect the fundamental positive-sequence component of grid voltage thus accurate control of DC micro-grid voltage can be realized....... phase information cannot be accurately tracked. Based on analysis of the cause of double-frequency ripple when unbalance exists in main grid, a phase-locked loop (PLL) detection technique is proposed. Under the conditions of unsymmetrical system voltage, varying system frequency, single-phase system...

  15. Stability of high current diode under 100-nanosecond-pulse voltage

    International Nuclear Information System (INIS)

    Lai Dingguo; Qiu Aici; Zhang Yongmin; Huang Jianjun; Ren Shuqing; Yang Li

    2012-01-01

    Stability of high current diode under pulse voltage with 80 ns and 34 ns rise time was studied on the flash Ⅱ accelerator. Influence of rise time of diode voltage on startup time and cathode emission uniformity and repeatability of diode impedance was analyzed by comparing the experimental results with numerically simulated results, and the influence mechanism was discussed. The startup time of diode increases with the increasing of rise time of voltage, and the repeatability of diode impedance decreases. Discal plane cathode is prone to emit rays intensely in the center area, the time that plasma covers the surface of the cathode increases and the shielding effect has more impact on cathode emission according to the increase of rise time. Local intense emission on the cathode increases expansion speed of plasma and reduces the effective emission area. The stability of characteristic impedance of diode under a pulse voltage with slow rise time is decreased by the combined action of expansion speed of plasma and the effective emission area. (authors)

  16. Liquid–Solid Dual-Gate Organic Transistors with Tunable Threshold Voltage for Cell Sensing

    KAUST Repository

    Zhang, Yu; Li, Jun; Li, Rui; Sbircea, Dan-Tiberiu; Giovannitti, Alexander; Xu, Junling; Xu, Huihua; Zhou, Guodong; Bian, Liming; McCulloch, Iain; Zhao, Ni

    2017-01-01

    mesenchymal stem cells. In general, the capability of tuning the optimal sensing bias will not only improve the device performance but also broaden the material selection for cell-based organic bioelectronics.

  17. Functional interactions at the interface between voltage-sensing and pore domains in the Shaker K(v) channel.

    Science.gov (United States)

    Soler-Llavina, Gilberto J; Chang, Tsg-Hui; Swartz, Kenton J

    2006-11-22

    Voltage-activated potassium (K(v)) channels contain a central pore domain that is partially surrounded by four voltage-sensing domains. Recent X-ray structures suggest that the two domains lack extensive protein-protein contacts within presumed transmembrane regions, but whether this is the case for functional channels embedded in lipid membranes remains to be tested. We investigated domain interactions in the Shaker K(v) channel by systematically mutating the pore domain and assessing tolerance by examining channel maturation, S4 gating charge movement, and channel opening. When mapped onto the X-ray structure of the K(v)1.2 channel the large number of permissive mutations support the notion of relatively independent domains, consistent with crystallographic studies. Inspection of the maps also identifies portions of the interface where residues are sensitive to mutation, an external cluster where mutations hinder voltage sensor activation, and an internal cluster where domain interactions between S4 and S5 helices from adjacent subunits appear crucial for the concerted opening transition.

  18. Localization and Molecular Determinants of the Hanatoxin Receptors on the Voltage-Sensing Domains of a K+ Channel

    Science.gov (United States)

    Li-Smerin, Yingying; Swartz, Kenton J.

    2000-01-01

    Hanatoxin inhibits voltage-gated K+ channels by modifying the energetics of activation. We studied the molecular determinants and physical location of the Hanatoxin receptors on the drk1 voltage-gated K+ channel. First, we made multiple substitutions at three previously identified positions in the COOH terminus of S3 to examine whether these residues interact intimately with the toxin. We also examined a region encompassing S1–S3 using alanine-scanning mutagenesis to identify additional determinants of the toxin receptors. Finally, guided by the structure of the KcsA K+ channel, we explored whether the toxin interacts with the peripheral extracellular surface of the pore domain in the drk1 K+ channel. Our results argue for an intimate interaction between the toxin and the COOH terminus of S3 and suggest that the Hanatoxin receptors are confined within the voltage-sensing domains of the channel, at least 20–25 Å away from the central pore axis. PMID:10828242

  19. Expression of the voltage-sensing phosphatase gene in the chick embryonic tissues and in the adult cerebellum.

    Science.gov (United States)

    Yamaguchi, Shinji; Aoki, Naoya; Kitajima, Takaaki; Okamura, Yasushi; Homma, Koichi J

    2014-10-01

    Voltage-sensing phosphatase (VSP) consists of a transmembrane voltage sensor domain (VSD) and the cytoplasmic domain with phosphoinositide-phosphatase activities. It operates as the voltage sensor and directly translates membrane potential into phosphoinositide turnover by coupling VSD to the cytoplasmic domain. VSPs are evolutionarily conserved from marine invertebrate up to humans. Recently, we demonstrated that ectopic expression of the chick ortholog of VSP, Gg-VSP, in a fibroblast cell line caused characteristic cell process outgrowths. Co-expression of chick PTEN suppressed such morphological change, suggesting that VSP regulates cell shape by increasing PI(3,4)P2. However, the in vivo function of Gg-VSP remains unclear. Here, we showed that in chick embryos Gg-VSP is expressed in the stomach, mesonephros, pharyngeal arch, limb bud, somites, floor plate of neural tube, and notochord. In addition, both Gg-VSP transcripts and the protein were found in the cerebellar Purkinje neurons. These findings provide an insight into the physiological functions of VSP.

  20. Interactions between charged residues in the transmembrane segments of the voltage-sensing domain in the hERG channel.

    Science.gov (United States)

    Zhang, M; Liu, J; Jiang, M; Wu, D-M; Sonawane, K; Guy, H R; Tseng, G-N

    2005-10-01

    Studies on voltage-gated K channels such as Shaker have shown that positive charges in the voltage-sensor (S4) can form salt bridges with negative charges in the surrounding transmembrane segments in a state-dependent manner, and different charge pairings can stabilize the channels in closed or open states. The goal of this study is to identify such charge interactions in the hERG channel. This knowledge can provide constraints on the spatial relationship among transmembrane segments in the channel's voltage-sensing domain, which are necessary for modeling its structure. We first study the effects of reversing S4's positive charges on channel activation. Reversing positive charges at the outer (K525D) and inner (K538D) ends of S4 markedly accelerates hERG activation, whereas reversing the 4 positive charges in between either has no effect or slows activation. We then use the 'mutant cycle analysis' to test whether D456 (outer end of S2) and D411 (inner end of S1) can pair with K525 and K538, respectively. Other positive charges predicted to be able, or unable, to interact with D456 or D411 are also included in the analysis. The results are consistent with predictions based on the distribution of these charged residues, and confirm that there is functional coupling between D456 and K525 and between D411 and K538.

  1. Analysis of Back-to-Back MMC for Medium Voltage Applications under Faulted Condition

    DEFF Research Database (Denmark)

    Bose, Anurag; Martins, Joäo Pedro Rodrigues; Chaudhary, Sanjay K.

    2017-01-01

    This paper analyzes a 10MW medium voltage Back-to-Back (BTB) Modular Multilevel Converter (MMC) without a DC-Link capacitor with halfbridge submodules. It focusses on the system behavior under single-line-to-ground (SLG) fault when there is no capacitor on the DC-Link.The fault current is compute...... to prevent DC overvoltages in the sub-modules during faults....

  2. Comparative Study of Breakdown Voltage of Mineral, Synthetic and Natural Oils and Based Mineral Oil Mixtures under AC and DC Voltages

    Directory of Open Access Journals (Sweden)

    Abderrahmane Beroual

    2017-04-01

    Full Text Available This paper deals with a comparative study of AC and DC breakdown voltages of based mineral oil mixtures with natural and synthetic esters mainly used in high voltage power transformers. The goal was to analyze the performances of oil mixtures from the dielectric withstand point of view and to predict the behavior of transformers originally filled with mineral oil and re-filled with synthetic or natural ester oils when emptied for maintenance. The study concerns mixtures based on 20%, 50%, and 80% of natural and synthetic ester oils. AC breakdown voltages were measured using a sphere-sphere electrode system according to IEC 60156 specifications; the same specification was adopted for DC measurements since there is no standard specifications for this voltage waveform. A statistical analysis of the mean values, standard deviations, and histograms of breakdown voltage data was carried out. The Normal and Weibull distribution functions were used to analyze the experimental data and the best function that the data followed was used to estimate the breakdown voltage with risk of 1%, 10%, and 50% probability. It was shown that whatever the applied voltage waveforms, ester oils always have a significantly higher breakdown voltage than mineral oil. The addition of only 20% of natural or synthetic ester oil was sufficient to considerably increase the breakdown voltage of mineral oil. The dielectric strength of such a mixture is much higher than that of mineral oil alone and can reach that of ester oils. From the point of view of dielectric strength, the mixtures constitute an option for improving the performance of mineral oil. Thus, re-filling of transformers containing up to 20% mineral oil residues with ester oils, does not present any problem; it is even advantageous when considering only the breakdown voltage. Under AC, the mixtures with natural ester always follow the behavior of vegetable oil alone. With the exception of the 20% mixture of natural

  3. Gating of the two-pore cation channel AtTPC1 in the plant vacuole is based on a single voltage-sensing domain.

    Science.gov (United States)

    Jaślan, D; Mueller, T D; Becker, D; Schultz, J; Cuin, T A; Marten, I; Dreyer, I; Schönknecht, G; Hedrich, R

    2016-09-01

    The two-pore cation channel TPC1 operates as a dimeric channel in animal and plant endomembranes. Each subunit consists of two homologous Shaker-like halves, with 12 transmembrane domains in total (S1-S6, S7-S12). In plants, TPC1 channels reside in the vacuolar membrane, and upon voltage stimulation, give rise to the well-known slow-activating SV currents. Here, we combined bioinformatics, structure modelling, site-directed mutagenesis, and in planta patch clamp studies to elucidate the molecular mechanisms of voltage-dependent channel gating in TPC1 in its native plant background. Structure-function analysis of the Arabidopsis TPC1 channel in planta confirmed that helix S10 operates as the major voltage-sensing site, with Glu450 and Glu478 identified as possible ion-pair partners for voltage-sensing Arg537. The contribution of helix S4 to voltage sensing was found to be negligible. Several conserved negative residues on the luminal site contribute to calcium binding, stabilizing the closed channel. During evolution of plant TPC1s from two separate Shaker-like domains, the voltage-sensing function in the N-terminal Shaker-unit (S1-S4) vanished. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. Probing α-3(10) transitions in a voltage-sensing S4 helix.

    Science.gov (United States)

    Kubota, Tomoya; Lacroix, Jérôme J; Bezanilla, Francisco; Correa, Ana M

    2014-09-02

    The S4 helix of voltage sensor domains (VSDs) transfers its gating charges across the membrane electrical field in response to changes of the membrane potential. Recent studies suggest that this process may occur via the helical conversion of the entire S4 between α and 310 conformations. Here, using LRET and FRET, we tested this hypothesis by measuring dynamic changes in the transmembrane length of S4 from engineered VSDs expressed in Xenopus oocytes. Our results suggest that the native S4 from the Ciona intestinalis voltage-sensitive phosphatase (Ci-VSP) does not exhibit extended and long-lived 310 conformations and remains mostly α-helical. Although the S4 of NavAb displays a fully extended 310 conformation in x-ray structures, its transplantation in the Ci-VSP VSD scaffold yielded similar results as the native Ci-VSP S4. Taken together, our study does not support the presence of long-lived extended α-to-310 helical conversions of the S4 in Ci-VSP associated with voltage activation. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Synchronization of grid-connected renewable energy sources under highly distorted voltages and unbalanced grid faults

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Blaabjerg, Frede

    2013-01-01

    Renewable energy sources require accurate and appropriate performance not only under normal grid operation but also under abnormal and faulty grid conditions according to the modern grid codes. This paper proposes a novel phase-locked loop algorithm (MSHDC-PLL), which can enable the fast...... and dynamic synchronization of the interconnected renewable energy system under unbalanced grid faults and under highly harmonic distorted voltage. The outstanding performance of the suggested PLL is achieved by implementing an innovative multi-sequence/harmonic decoupling cell in order to dynamically cancel...... renewable energy systems. Therefore, the performance of the new PLL can increase the quality of the injected power under abnormal conditions and in addition enable the renewable energy systems to provide the appropriate support to the grid under balanced and unbalanced grid faults....

  6. Non-sparking anodization process of AZ91D magnesium alloy under low AC voltage

    International Nuclear Information System (INIS)

    Li, Weiping; Li, Wen; Zhu, Liqun; Liu, Huicong; Wang, Xiaofang

    2013-01-01

    Highlights: ► Four different processes appear on magnesium alloys with applied voltage increase. ► Non-sparking film formation process occurred in the range of 6–10 V AC. ► The film was composed of Mg 2 SiO 4 with a stable growth rate in 30 min. ► Film growth was a balance of electrochemical dissolution and chemical deposition. -- Abstract: Anodization is widely recognized as one of the most important surface treatments for magnesium alloys. However, since high voltage oxidation films are limited in some applications due to porosity and brittleness, it is worthwhile to explore the non-sparking oxidizing process. In this work, AZ91D was electrochemically anodized at different AC voltages in an electrolyte containing 120 g/L NaOH and 80 g/L Na 2 SiO 3 ·9H 2 O. The effects of voltage on the surface morphology, composition and reaction process, especially the non-sparking discharge anodic film formation process, were investigated. The results showed that four different processes would appear according to the applied voltage variation from 6 V to 40 V, and that the non-sparking film formation process occurred in the range of 6–10 V. The film formed on the AZ91D surface under 10 V AC was mainly composed of Mg 2 SiO 4 with a lamellar structure. The horizontal and vertical expansion of the lamellar structure resulted in the formation of a multi-layered structure with a stable, linear growth rate for 30 min. The non-sparking film formation process can be considered to be the result of a balance of electrochemical dissolution and chemical deposition reaction

  7. Non-sparking anodization process of AZ91D magnesium alloy under low AC voltage

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weiping, E-mail: liweiping@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li, Wen [AVIC Beijing Aeronautical Manufacturing Technology Research Institue, Beijing 100024 (China); Zhu, Liqun; Liu, Huicong; Wang, Xiaofang [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2013-04-20

    Highlights: ► Four different processes appear on magnesium alloys with applied voltage increase. ► Non-sparking film formation process occurred in the range of 6–10 V AC. ► The film was composed of Mg{sub 2}SiO{sub 4} with a stable growth rate in 30 min. ► Film growth was a balance of electrochemical dissolution and chemical deposition. -- Abstract: Anodization is widely recognized as one of the most important surface treatments for magnesium alloys. However, since high voltage oxidation films are limited in some applications due to porosity and brittleness, it is worthwhile to explore the non-sparking oxidizing process. In this work, AZ91D was electrochemically anodized at different AC voltages in an electrolyte containing 120 g/L NaOH and 80 g/L Na{sub 2}SiO{sub 3}·9H{sub 2}O. The effects of voltage on the surface morphology, composition and reaction process, especially the non-sparking discharge anodic film formation process, were investigated. The results showed that four different processes would appear according to the applied voltage variation from 6 V to 40 V, and that the non-sparking film formation process occurred in the range of 6–10 V. The film formed on the AZ91D surface under 10 V AC was mainly composed of Mg{sub 2}SiO{sub 4} with a lamellar structure. The horizontal and vertical expansion of the lamellar structure resulted in the formation of a multi-layered structure with a stable, linear growth rate for 30 min. The non-sparking film formation process can be considered to be the result of a balance of electrochemical dissolution and chemical deposition reaction.

  8. Aspects of a generic photovoltaic model examined under the German grid code for medium voltage

    Energy Technology Data Exchange (ETDEWEB)

    Theologitis, Ioannis-Thomas; Troester, Eckehard; Ackermann, Thomas [Energynautics GmbH, Langen (Germany)

    2011-07-01

    The increasing peneration of photovoltaic power systems into the power grid has attached attention to the issue of ensuring the smooth absorbance of the solar energy, while securing the normal and steady operation of the grid as well. Nowadays, the PV systems must meet a number of technical requirements to address this issue. This paper investigates a generic grid-connected photovoltaic model that was developed by DIgSILENT and is part of the library in the new version of PowerFactory v.14.1 software that is used in this study. The model has a nominal rated peak power of 0.5 MVA and a designed power factor cos{phi}0.95. The study focuses on the description of the model, its control system and its ability to reflect important requirements that a grid-connected PV system should have by January 2011 according to the German grid code for medium voltage. The model undergoes various simulations. Static voltage support, active power control and dynamic voltage support - Fault Ride Through (FRT) is examined. The results show that the generic model is capable for active power reduction under over-frequency occasions and FRT behavior in cases of voltage dips. The reactive power control that is added in the model improves the control system and makes the model capable for static voltage support in sudden active power injection changes at the point of common coupling. Beside the simplifications and shortcomings of this generic model, basic requirements of the modern PV systems can be addressed. Further improvements could make it more complete and applicable for more detailed studies. (orig.)

  9. Derating of an induction machine under voltage unbalance combined with over or undervoltages

    International Nuclear Information System (INIS)

    Gnacinski, P.

    2009-01-01

    This work deals with the load carrying capacity of an induction cage machine under voltage unbalance combined with over- or undervoltage. The effect of complex voltage unbalance factor (CVUF) angle on the derating factor is taken into consideration. The derating curves obtained with two different methods are compared. The machine efficiency, stator currents and temperature-rise distribution after applying the required derating factor are discussed. The results of experimental investigations and computer calculations are presented for two low-power induction motors of opposite properties. One of them has a comparatively weakly saturated magnetic circuit and is especially exposed to the risk of overheating for undervoltage. The other investigated machine has a comparatively strongly saturated magnetic circuit and is especially exposed to overheating in the conditions of overvoltage

  10. Derating of an induction machine under voltage unbalance combined with over or undervoltages

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime University, Department of Ship Electrical Power Engineering, Morska St. 83, 81-225 Gdynia (Poland)

    2009-04-15

    This work deals with the load carrying capacity of an induction cage machine under voltage unbalance combined with over- or undervoltage. The effect of complex voltage unbalance factor (CVUF) angle on the derating factor is taken into consideration. The derating curves obtained with two different methods are compared. The machine efficiency, stator currents and temperature-rise distribution after applying the required derating factor are discussed. The results of experimental investigations and computer calculations are presented for two low-power induction motors of opposite properties. One of them has a comparatively weakly saturated magnetic circuit and is especially exposed to the risk of overheating for undervoltage. The other investigated machine has a comparatively strongly saturated magnetic circuit and is especially exposed to overheating in the conditions of overvoltage. (author)

  11. Coordinated control of a DFIG-based wind-power generation system with SGSC under distorted grid voltage conditions

    DEFF Research Database (Denmark)

    Yao, Jun; Li, Qing; Chen, Zhe

    2013-01-01

    in the multiple synchronous rotating reference frames. In order to counteract the adverse effects of the voltage harmonics upon the DFIG, the SGSC generates series compensation control voltages to keep the stator voltage sinusoidal and symmetrical, which allows the use of the conventional vector control strategy......This paper presents a coordinated control method for a doubly-fed induction generator (DFIG)-based wind-power generation system with a series grid-side converter (SGSC) under distorted grid voltage conditions. The detailed mathematical models of the DFIG system with SGSC are developed...

  12. NMR investigation of the isolated second voltage-sensing domain of human Nav1.4 channel.

    Science.gov (United States)

    Paramonov, A S; Lyukmanova, E N; Myshkin, M Yu; Shulepko, M A; Kulbatskii, D S; Petrosian, N S; Chugunov, A O; Dolgikh, D A; Kirpichnikov, M P; Arseniev, A S; Shenkarev, Z O

    2017-03-01

    Voltage-gated Na + channels are essential for the functioning of cardiovascular, muscular, and nervous systems. The α-subunit of eukaryotic Na + channel consists of ~2000 amino acid residues and encloses 24 transmembrane (TM) helices, which form five membrane domains: four voltage-sensing (VSD) and one pore domain. The structural complexity significantly impedes recombinant production and structural studies of full-sized Na + channels. Modular organization of voltage-gated channels gives an idea for studying of the isolated second VSD of human skeletal muscle Nav1.4 channel (VSD-II). Several variants of VSD-II (~150a.a., four TM helices) with different N- and C-termini were produced by cell-free expression. Screening of membrane mimetics revealed low stability of VSD-II samples in media containing phospholipids (bicelles, nanodiscs) associated with the aggregation of electrically neutral domain molecules. The almost complete resonance assignment of 13 C, 15 N-labeled VSD-II was obtained in LPPG micelles. The secondary structure of VSD-II showed similarity with the structures of bacterial Na + channels. The fragment of S4 TM helix between the first and second conserved Arg residues probably adopts 3 10 -helical conformation. Water accessibility of S3 helix, observed by the Mn 2+ titration, pointed to the formation of water-filled crevices in the micelle embedded VSD-II. 15 N relaxation data revealed characteristic pattern of μs-ms time scale motions in the VSD-II regions sharing expected interhelical contacts. VSD-II demonstrated enhanced mobility at ps-ns time scale as compared to isolated VSDs of K + channels. These results validate structural studies of isolated VSDs of Na + channels and show possible pitfalls in application of this 'divide and conquer' approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Ultra-Low Voltage Sixth-Order Low Pass Filter for Sensing the T-Wave Signal in ECGs

    Directory of Open Access Journals (Sweden)

    Panagiotis Bertsias

    2014-11-01

    Full Text Available An ultra-low voltage sixth-order low pass filter topology, suitable for sensing the T-wave signal in an electrocardiogram (ECG, is presented in this paper. This is realized using a cascade connection of second-order building blocks constructed from a sinh-domain two-integrator loop. The performance of the filter has been evaluated using the Cadence Analog Design Environment and the design kit provided by the Austria Mikro Systeme (AMS 0.35-µm CMOS process. The power consumption of filters was 7.21 nW, while a total harmonic distortion (THD level of 4% was observed for an input signal of 220 pA. The RMS value of the input referred noise was 0.43 pA, and the simulated value of the dynamic range (DR was 51.1 dB. A comparison with already published counterparts shows that the proposed topology offers the benefits of 0.5-V supply voltage operation and significantly improved power efficiency.

  14. Low-Power, Low-Voltage Resistance-to-Digital Converter for Sensing Applications

    Directory of Open Access Journals (Sweden)

    Sergey Y. YURISH

    2016-09-01

    Full Text Available IC (ASIP of Universal Sensors and Transducers Interface (USTI-MOB with low power consumption, working in the resistive measurement mode (one of 26 possible measuring modes is described in the article. The proposed IC has 20 W to 4.5 M W range of measurement, relative error< ±0.04 %, 0.85 mA supply current and 1.2 V supply voltage. The worst-case error of about< ±1.54 % is observed. IC has three popular serial interfaces: I2C, SPI and RS232/USB. Due to high metrological performance and technical characteristics the USTI- MOB is well suitable for such application as: sensor systems for IoT, wearable and mobile devices, and digital multimeters. The ICs can also work with any quasi-digital resistive converters, in which the resistance is converted to frequency, period, duty-cycle or pulse width.

  15. Grid Voltage Synchronization for Distributed Generation Systems under Grid Fault Conditions

    DEFF Research Database (Denmark)

    Luna, Alvaro; Rocabert, J.; Candela, I.

    2015-01-01

    on the installation of STATCOMs and DVRs, as well as on advanced control functionalities for the existing power converters of distributed generation plants, have contributed to enhance their response under faulty and distorted scenarios and, hence, to fulfill these requirements. In order to achieve satisfactory......The actual grid code requirements for the grid connection of distributed generation systems, mainly wind and PV systems, are becoming very demanding. The Transmission System Operators (TSOs) are especially concerned about the Low Voltage Ride Through requirements. Solutions based...

  16. Fire extinguishing of electrical equipment under voltage at nuclear power plants

    International Nuclear Information System (INIS)

    Capek, Josef

    2009-01-01

    Fire extinguishing on equipment that is under voltage is always hazardous. Conventional fire fighting equipment applicable to this task includes powder and gas extinguishers, which, however, have some drawbacks. Therefore, attention has been increasingly devoted to high-pressure fire extinguishing, whose assets include better heat removal as compared to a full water flow where the majority of the water runs off without any cooling effect. This article describes the testing of some types and combinations of extinguishing techniques and their interpretation based on earth-leakage current measurement and determination of a safe distance for fire extinguishing. Methodology described in CSN IEC 60-1:1994 and CSN EN 3-7:2004 was applied. To meet the criterion, none of the tests was to exhibit an earth-leakage current higher than 0.5 mA. In the accredited laboratory test room setup, 3 extinguishing equipment arrangements proved to extinguish fire on electrical equipment under voltage at a safe distance of 1 m (or 3 m). (orig.)

  17. Current-voltage characteristics of the semiconductor nanowires under the metal-semiconductor-metal structure

    Science.gov (United States)

    Wen, Jing; Zhang, Xitian; Gao, Hong; Wang, Mingjiao

    2013-12-01

    We present a method to calculate the I-V characteristics of semiconductor nanowires under the metal-semiconductor-metal (MSM) structure. The carrier concentration as an important parameter is introduced into the expression of the current. The subband structure of the nanowire has been considered for associating it with the position of the Fermi level and circumventing the uncertainties of the contact areas in the contacts. The tunneling and thermionic emission currents in the two Schottky barriers at the two metal-semiconductor contacts are discussed. We find that the two barriers have different influences on the I-V characteristics of the MSM structure, one of which under the forward bias plays the role of threshold voltage if its barrier height is large and the applied voltage is small, and the other under the reverse bias controls the shapes of I-V curves. Our calculations show that the shapes of the I-V curves for the MSM structure are mainly determined by the barrier heights of the contacts and the carrier concentration. The nearly identical I-V characteristics can be obtained by using different values of the barrier heights and carrier concentration, which means that the contact type conversion can be ascribed not only to the changes of the barrier heights but also that of the carrier concentration. We also discuss the mechanisms of the ohmic-Schottky conversions and clarify the ambiguity in the literature. The possibility about the variation of the carrier concentration under the applied fields has been confirmed by experimental results.

  18. C-terminal modulatory domain controls coupling of voltage-sensing to pore opening in Cav1.3 L-type Ca(2+) channels.

    Science.gov (United States)

    Lieb, Andreas; Ortner, Nadine; Striessnig, Jörg

    2014-04-01

    Activity of voltage-gated Cav1.3 L-type Ca(2+) channels is required for proper hearing as well as sinoatrial node and brain function. This critically depends on their negative activation voltage range, which is further fine-tuned by alternative splicing. Shorter variants miss a C-terminal regulatory domain (CTM), which allows them to activate at even more negative potentials than C-terminally long-splice variants. It is at present unclear whether this is due to an increased voltage sensitivity of the Cav1.3 voltage-sensing domain, or an enhanced coupling of voltage-sensor conformational changes to the subsequent opening of the activation gate. We studied the voltage-dependence of voltage-sensor charge movement (QON-V) and of current activation (ICa-V) of the long (Cav1.3L) and a short Cav1.3 splice variant (Cav1.342A) expressed in tsA-201 cells using whole cell patch-clamp. Charge movement (QON) of Cav1.3L displayed a much steeper voltage-dependence and a more negative half-maximal activation voltage than Cav1.2 and Cav3.1. However, a significantly higher fraction of the total charge had to move for activation of Cav1.3 half-maximal conductance (Cav1.3: 68%; Cav1.2: 52%; Cav3.1: 22%). This indicated a weaker coupling of Cav1.3 voltage-sensor charge movement to pore opening. However, the coupling efficiency was strengthened in the absence of the CTM in Cav1.342A, thereby shifting ICa-V by 7.2 mV to potentials that were more negative without changing QON-V. We independently show that the presence of intracellular organic cations (such as n-methyl-D-glucamine) induces a pronounced negative shift of QON-V and a more negative activation of ICa-V of all three channels. These findings illustrate that the voltage sensors of Cav1.3 channels respond more sensitively to depolarization than those of Cav1.2 or Cav3.1. Weak coupling of voltage sensing to pore opening is enhanced in the absence of the CTM, allowing short Cav1.342A splice variants to activate at lower voltages

  19. Assessing soil carbon stocks under pastures through orbital remote sensing

    Directory of Open Access Journals (Sweden)

    Gabor Gyula Julius Szakács

    2011-10-01

    Full Text Available The growing demand of world food and energy supply increases the threat of global warming due to higher greenhouse gas emissions by agricultural activity. Therefore, it is widely admitted that agriculture must establish a new paradigm in terms of environmental sustainability that incorporate techniques for mitigation of greenhouse gas emissions. This article addresses to the scientific demand to estimate in a fast and inexpensive manner current and potential soil organic carbon (SOC stocks in degraded pastures, using remote sensing techniques. Four pastures on sandy soils under Brazilian Cerrado vegetation in São Paulo state were chosen due to their SOC sequestration potential, which was characterized for the soil depth 0-50 cm. Subsequently, a linear regression analysis was performed between SOC and Leaf Area Index (LAI measured in the field (LAIfield and derived by satellite (LAIsatellite as well as SOC and pasture reflectance in six spectra from 450 nm - 2350 nm, using the Enhanced Thematic Mapper (ETM+ sensor of satellite Landsat 7. A high correlation between SOC and LAIfield (R² = 0.9804 and LAIsatellite (R² = 0.9812 was verified. The suitability of satellite derived LAI for SOC determination leads to the assumption, that orbital remote sensing is a very promising SOC estimation technique from regional to global scale.

  20. Current-voltage characteristics of a superconducting slab under a superimposed small AC magnetic field

    International Nuclear Information System (INIS)

    Matsushita, Teruo; Yamafuji, Kaoru; Sakamoto, Nobuyoshi.

    1977-01-01

    In case of applying superconductors to electric machinery or high intensity field magnets for fusion reactors, the superconductors are generally expected to be sensible to small field fluctuation besides DC magnetic field. The behavior of superconductors in DC magnetic field superimposed with small AC magnetic field has been investigated often experimentally, and the result has been obtained that the critical current at which DC flow voltage begins to appear extremely decreased or disappeared. Some theoretical investigations have been carried out on this phenomenon so far, however, their application has been limited to the region where frequency is sufficiently low or which is close to the critical magnetic field. Purpose of this report is to deal with the phenomenon in more unified way by analyzing the behavior of magnetic flux lines in a superconductor under a superimposed small AC field using the criticalstate model including viscous force. In order to solve the fundamental equation in this report, first the solution has been obtained in the quasi-static state neglecting viscous force, then about the cases that current density J is not more than Jc and J is larger than Jc, concerning the deviation from the quasi-static limit by employing successive approximation. Current-voltage characteristics have been determined by utilizing the above results. This method seems to be most promising at present except the case of extremely high frequency. (Wakatsuki, Y.)

  1. Microscopic degradation mechanism of polyimide film caused by surface discharge under bipolar continuous square impulse voltage

    International Nuclear Information System (INIS)

    Luo Yang; Wu Guang-Ning; Liu Ji-Wu; Peng Jia; Gao Guo-Qiang; Zhu Guang-Ya; Wang Peng; Cao Kai-Jiang

    2014-01-01

    Polyimide (PI) film is an important type of insulating material used in inverter-fed motors. Partial discharge (PD) under a sequence of high-frequency square impulses is one of the key factors that lead to premature failures in insulation systems of inverter-fed motors. In order to explore the damage mechanism of PI film caused by discharge, an aging system of surface discharge under bipolar continuous square impulse voltage (BCSIV) is designed based on the ASTM 2275 01 standard and the electrical aging tests of PI film samples are performed above the partial discharge inception voltage (PDIV). The chemical bonds of PI polymer chains are analyzed through Fourier transform infrared spectroscopy (FTIR) and the dielectric properties of unaged and aged PI samples are investigated by LCR testers HIOKI 3532-50. Finally, the micro-morphology and micro-structure changes of PI film samples are observed through scanning electron microscopy (SEM). The results show that the physical and chemical effects of discharge cut off the chemical bonds of PI polymer chains. The fractures of ether bond (C—O—C) and imide ring (C—N—C) on the backbone of a PI polymer chain leads to the decrease of molecular weight, which results in the degradation of PI polymers and the generation of new chemical groups and materials, like carboxylic acid, ketone, aldehydes, etc. The variation of microscopic structure of PI polymers can change the orientation ability of polarizable units when the samples are under an AC electric field, which would cause the dielectric constant ε to increase and dielectric loss tan δ to decrease. The SEM images show that the degradation path of PI film is initiated from the surface and then gradually extends to the interior with continuous aging. The injection charge could result in the PI macromolecular chain degradation and increase the trap density in the PI polymer bulk. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. Analytical and semi-analytical formalism for the voltage and the current sources of a superconducting cavity under dynamic detuning

    CERN Document Server

    Doleans, M

    2003-01-01

    Elliptical superconducting radio frequency (SRF) cavities are sensitive to frequency detuning because they have a high Q value in comparison with normal conducting cavities and weak mechanical properties. Radiation pressure on the cavity walls, microphonics, and tuning system are possible sources of dynamic detuning during SRF cavity-pulsed operation. A general analytic relation between the cavity voltage, the dynamic detuning function, and the RF control function is developed. This expression for the voltage envelope in a cavity under dynamic detuning and dynamic RF controls is analytically expressed through an integral formulation. A semi-analytical scheme is derived to calculate the voltage behavior in any practical case. Examples of voltage envelope behavior for different cases of dynamic detuning and RF control functions are shown. The RF control function for a cavity under dynamic detuning is also investigated and as an application various filling schemes are presented.

  3. Condition for the occurrence of phase slip centers in superconducting nanowires under applied current or voltage

    DEFF Research Database (Denmark)

    Michotte, S.; Mátéfi-Tempfli, Stefan; Piraux, L.

    2004-01-01

    Experimental results on the phase slip process in superconducting lead nanowires are presented under two different experimental conditions: constant applied current or constant voltage. Based on these experiments we established a simple model which gives us the condition of the appearance of phase...... slip centers in a quasi-one-dimensional wire. The competition between two relaxations times (relaxation time of the absolute value of the order parameter τ and relaxation time of the phase of the order parameter in the phase slip center τ) governs the phase slip process. Phase slips, as periodic...... oscillations in time of the order parameter, are only possible if the gradient of the phase grows faster than the value of the order parameter in the phase slip center, or equivalently if τ≤ τ....

  4. Potential role of voltage-sensing phosphatases in regulation of cell structure through the production of PI(3,4)P2.

    Science.gov (United States)

    Yamaguchi, Shinji; Kurokawa, Tatsuki; Taira, Ikuko; Aoki, Naoya; Sakata, Souhei; Okamura, Yasushi; Homma, Koichi J

    2014-04-01

    Voltage-sensing phosphatase, VSP, consists of the transmembrane domain, operating as the voltage sensor, and the cytoplasmic domain with phosphoinositide-phosphatase activities. The voltage sensor tightly couples with the cytoplasmic phosphatase and membrane depolarization induces dephosphorylation of several species of phosphoinositides. VSP gene is conserved from urochordate to human. There are some diversities among VSP ortholog proteins; range of voltage of voltage sensor motions as well as substrate selectivity. In contrast with recent understandings of biophysical mechanisms of VSPs, little is known about its physiological roles. Here we report that chick ortholog of VSP (designated as Gg-VSP) induces morphological feature of cell process outgrowths with round cell body in DF-1 fibroblasts upon its forced expression. Expression of the voltage sensor mutant, Gg-VSPR153Q with shifted voltage dependence to a lower voltage led to more frequent changes of cell morphology than the wild-type protein. Coexpression of PTEN that dephosphorylates PI(3,4)P2 suppressed this effect by Gg-VSP, indicating that the increase of PI(3,4)P2 leads to changes of cell shape. In addition, visualization of PI(3,4)P2 with the fluorescent protein fused with the TAPP1-derived pleckstrin homology (PH) domain suggested that Gg-VSP influenced the distribution of PI(3,4)P2 . These findings raise a possibility that one of the VSP's functions could be to regulate cell morphology through voltage-sensitive tuning of phosphoinositide profile. © 2013 Wiley Periodicals, Inc.

  5. Substitutions in the domain III voltage-sensing module enhance the sensitivity of an insect sodium channel to a scorpion beta-toxin.

    Science.gov (United States)

    Song, Weizhong; Du, Yuzhe; Liu, Zhiqi; Luo, Ningguang; Turkov, Michael; Gordon, Dalia; Gurevitz, Michael; Goldin, Alan L; Dong, Ke

    2011-05-06

    Scorpion β-toxins bind to the extracellular regions of the voltage-sensing module of domain II and to the pore module of domain III in voltage-gated sodium channels and enhance channel activation by trapping and stabilizing the voltage sensor of domain II in its activated state. We investigated the interaction of a highly potent insect-selective scorpion depressant β-toxin, Lqh-dprIT(3), from Leiurus quinquestriatus hebraeus with insect sodium channels from Blattella germanica (BgNa(v)). Like other scorpion β-toxins, Lqh-dprIT(3) shifts the voltage dependence of activation of BgNa(v) channels expressed in Xenopus oocytes to more negative membrane potentials but only after strong depolarizing prepulses. Notably, among 10 BgNa(v) splice variants tested for their sensitivity to the toxin, only BgNa(v)1-1 was hypersensitive due to an L1285P substitution in IIIS1 resulting from a U-to-C RNA-editing event. Furthermore, charge reversal of a negatively charged residue (E1290K) at the extracellular end of IIIS1 and the two innermost positively charged residues (R4E and R5E) in IIIS4 also increased the channel sensitivity to Lqh-dprIT(3). Besides enhancement of toxin sensitivity, the R4E substitution caused an additional 20-mV negative shift in the voltage dependence of activation of toxin-modified channels, inducing a unique toxin-modified state. Our findings provide the first direct evidence for the involvement of the domain III voltage-sensing module in the action of scorpion β-toxins. This hypersensitivity most likely reflects an increase in IIS4 trapping via allosteric mechanisms, suggesting coupling between the voltage sensors in neighboring domains during channel activation.

  6. Robust and Energy-Efficient Ultra-Low-Voltage Circuit Design under Timing Constraints in 65/45 nm CMOS

    Directory of Open Access Journals (Sweden)

    David Bol

    2011-01-01

    Full Text Available Ultra-low-voltage operation improves energy efficiency of logic circuits by a factor of 10×, at the expense of speed, which is acceptable for applications with low-to-medium performance requirements such as RFID, biomedical devices and wireless sensors. However, in 65/45 nm CMOS, variability and short-channel effects significantly harm robustness and timing closure of ultra-low-voltage circuits by reducing noise margins and jeopardizing gate delays. The consequent guardband on the supply voltage to meet a reasonable manufacturing yield potentially ruins energy efficiency. Moreover, high leakage currents in these technologies degrade energy efficiency in case of long stand-by periods. In this paper, we review recently published techniques to design robust and energy-efficient ultra-low-voltage circuits in 65/45 nm CMOS under relaxed yet strict timing constraints.

  7. Simple Moving Voltage Average Incremental Conductance MPPT Technique with Direct Control Method under Nonuniform Solar Irradiance Conditions

    Directory of Open Access Journals (Sweden)

    Amjad Ali

    2015-01-01

    Full Text Available A new simple moving voltage average (SMVA technique with fixed step direct control incremental conductance method is introduced to reduce solar photovoltaic voltage (VPV oscillation under nonuniform solar irradiation conditions. To evaluate and validate the performance of the proposed SMVA method in comparison with the conventional fixed step direct control incremental conductance method under extreme conditions, different scenarios were simulated. Simulation results show that in most cases SMVA gives better results with more stability as compared to traditional fixed step direct control INC with faster tracking system along with reduction in sustained oscillations and possesses fast steady state response and robustness. The steady state oscillations are almost eliminated because of extremely small dP/dV around maximum power (MP, which verify that the proposed method is suitable for standalone PV system under extreme weather conditions not only in terms of bus voltage stability but also in overall system efficiency.

  8. High Voltage Overhead Power Line Routing under an Objective Observability Criterion

    Directory of Open Access Journals (Sweden)

    L. Alfredo Fernandez-Jimenez

    2017-10-01

    Full Text Available The construction of new high voltage overhead power lines (HVOPLs has become a controversial issue for electricity companies due to social opposition. Citizens are concerned about how these power lines may have an impact on their lives, basically caused by their effects on health and safety. Visual impact is one of the most easily perceived. Although there are several published works that deal with the assessment of the visual impact produced by HVOPLs, no methodology has been proposed to assess this impact from an objective perspective. This work presents an original methodology which helps to identify the optimal routes for a new HVOPL under an objective observability criterion, enabling the selection of those with the lowest visibility in a zone. The application of the proposed methodology achieves a set of routes that links new HVOPL origin and destination points creating a corridor which includes all possible routes with an observability of its towers under a threshold limit. This methodology is illustrated by a real-life use corresponding to the selection of the route with least observability for a new power line in La Rioja (Spain. The results obtained may help to achieve a consensus between key stakeholders since it is focused on the specific issues of the planned HVOPL and its observability from an objective perspective.

  9. Characterization and comprehension of corona partial discharge in air under power frequency to very low frequency voltage

    Science.gov (United States)

    Yuanxiang, ZHOU; Zhongliu, ZHOU; Ling, ZHANG; Yunxiao, ZHANG; Yajun, MO; Jiantao, SUN

    2018-05-01

    For the partial discharge test of electrical equipment with large capacitance, the use of low-frequency voltage instead of power frequency voltage can effectively reduce the capacity requirements of test power supply. However, the validity of PD test under low frequency voltage needs to be evaluated. In order to investigate the influence of voltage frequency on corona discharge in the air, the discharge test of the tip-plate electrode under the frequency from 50 to 0.1 Hz is carried out based on the impulse current method. The results show that some of the main features of corona under low frequency do not change. The magnitude of discharge in a positive half cycle is obviously larger than that in a negative cycle. The magnitude of discharge and interval in positive cycle are random, while that in negative cycle are regular. With the decrease of frequency, the inception voltage increases. The variation trend of maximum and average magnitude and repetition rate of the discharge in positive and negative half cycle with the variation of voltage frequency and magnitude is demonstrated, with discussion and interpretation from the aspects of space charge transportation, effective discharge time and transition of discharge modes. There is an obvious difference in the phase resolved pattern of partial discharge and characteristic parameters of discharge patterns between power and low frequency. The experimental results can be the reference for mode identification of partial discharge under low frequency tests. The trend of the measured parameters with the variation of frequency provides more information about the insulation defect than traditional measurements under a single frequency (usually 50 Hz). Also it helps to understand the mechanism of corona discharge with an explanation of the characteristics under different frequencies.

  10. Optimal Cooperative Management of Energy Storage Systems to Deal with Over- and Under-Voltages

    DEFF Research Database (Denmark)

    Mokhtari, Ghassem; Nourbakhsh, Ghavameddin; Anvari-Moghaddam, Amjad

    2017-01-01

    This paper presents an optimal cooperative voltage control approach, which coordinates storage units in a distribution network. This technique is developed for storage systems’ active power management with a local strategy to provide robust voltage control and a distributed strategy to deliver op...

  11. Power System Stability Using Decentralized Under Frequency and Voltage Load Shedding

    DEFF Research Database (Denmark)

    Hoseinzadeh, Bakhtyar; Silva, Filipe Faria Da; Bak, Claus Leth

    2014-01-01

    information to shed the loads with higher voltage decay first. Therefore, this approach deals with coordination of voltage and frequency information instead of independent methods. Numerical simulations which are carried out in DigSilent PowerFactory software confirm the efficiency of proposed methodology...

  12. Modelling of the negative discharge in long air gaps under impulse voltages

    International Nuclear Information System (INIS)

    Rakotonandrasana, J H; Beroual, A; Fofana, I

    2008-01-01

    This paper presents a self-consistent model enabling the description of the whole negative discharge sequence, initiated in long air gaps under impulse voltage waves. This sequence includes the different phases of the propagation such as the initiation of the first corona, the pilot leader, the electrode and space leaders, and their junction. The model consists of using a RLC equivalent electrical network, the parameters of which vary with time according to the discharge characteristics and geometry (R, L and C being, respectively, the resistance, the inductance and the capacitance). This model provides the spatial and temporal evolution of the entire discharge, the current and the corresponding electrical charge, the power and energy injected into the gap and the velocity. It also allows us to simulate an image converter working in streak or frame mode and the leader propagation velocities as well as the trajectory of the discharge obtained from a probabilistic distribution. The computed results are compared with experimental data. Good agreement between computed and experimental results was obtained for various test configurations

  13. Large time-dependent coercivity and resistivity modification under sustained voltage application in a Pt/Co/AlOx/Pt junction.

    NARCIS (Netherlands)

    Brink, van den A.; van der Heijden, M.A.J.; Swagten, H.J.M.; Koopmans, B.

    2015-01-01

    The coercivity and resistivity of a Pt/Co/AlOx/Pt junction are measured under sustained voltage application. High bias voltages of either polarity are determined to cause a strongly enhanced, reversible coercivity modification compared to low voltages. Time-resolved measurements show a logarithmic

  14. Simulation of cold plasma in a chamber under high- and low-frequency voltage conditions for a capacitively coupled plasma

    Institute of Scientific and Technical Information of China (English)

    Hao Daoxin; Cheng Jia; Ji Linhong; Sun Yuchun

    2012-01-01

    The characteristics of cold plasma,especially for a dual-frequency capacitively coupled plasma (CCP),play an important role for plasma enhanced chemical vapor deposition,which stimulates further studies using different methods.In this paper,a 2D fluid model was constructed for N2 gas plasma simulations with CFD-ACE+,a commercial multi-physical software package.First,the distributions of electric potential (Epot),electron number density (Ne),N number density (N) and electron temperature (Te) are described under the condition of high frequency (HF),13.56 MHz,HF voltage,300 V,and low-frequency (LF) voltage,0 V,particularly in the sheath.Based on this,the influence of HF on Ne is further discussed under different HF voltages of 200 V,300 V,400 V,separately,along with the influence of LF,0.3 MHz,and various LF voltages of 500 V,600 V,700 V.The results show that sheaths of about 3 mm are formed near the two electrodes,in which Epot and Te vary extensively with time and space,while in the plasma bulk Epot changes synchronously with an electric potential of about 70 V and Te varies only in a small range.N is also modulated by the radio frequency,but the relative change in N is small.Ne varies only in the sheath,while in the bulk it is steady at different time steps.So,by comparing Ne in the plasma bulk at the steady state,we can see that Ne will increase when HF voltage increases.Yet,Ne will slightly decrease with the increase of LF voltage.At the same time,the homogeneity will change in both x and y directions.So both HF and LF voltages should be carefully considered in order to obtain a high-density,homogeneous plasma.

  15. Balanced Current Control Strategy for Current Source Rectifier Stage of Indirect Matrix Converter under Unbalanced Grid Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Yeongsu Bak

    2016-12-01

    Full Text Available This paper proposes a balanced current control strategy for the current source rectifier (CSR stage of an indirect matrix converter (IMC under unbalanced grid voltage conditions. If the three-phase grid connected to the voltage source inverter (VSI of the IMC has unbalanced voltage conditions, it affects the currents of the CSR stage and VSI stage, and the currents are distorted. Above all, the distorted currents of the CSR stage cause instability in the overall system, which can affect the life span of the system. Therefore, in this paper, a control strategy for balanced currents in the CSR stage is proposed. To achieve balanced currents in the CSR stage, the VSI stage should receive DC power without ripple components from the CSR stage. This is implemented by controlling the currents in the VSI stage. Therefore, the proposed control strategy decouples the positive and negative phase-sequence components existing in the unbalanced voltages and currents of the VSI stage. Using the proposed control strategy under unbalanced grid voltage conditions, the stability and life span of the overall system can be improved. The effectiveness of the proposed control strategy is verified by simulation and experimental results.

  16. Voltage-dependent gating of hERG potassium channels

    Directory of Open Access Journals (Sweden)

    Yen May eCheng

    2012-05-01

    Full Text Available The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4-S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-a-go-go related gene, hERG, which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure-function relationships underlying voltage-dependent gating in Shaker and hERG channels, with a focus on the roles of the voltage sensing domain and the S4-S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter charge interactions. More recent data suggest that key amino acid differences in the hERG voltage sensing unit and S4-S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor.

  17. Risk Assessment of Failure of Outdoor High Voltage Polluted Insulators under Combined Stresses Near Shoreline

    Directory of Open Access Journals (Sweden)

    Muhammad Majid Hussain

    2017-10-01

    Full Text Available The aim of this paper is to investigate the various effects of climate conditions on outdoor insulators in coastal areas as a result of saline contamination under acidic and normal cold fog, determining significant electrical and physico-chemical changes on the insulator surface and considering the effect of discharge current, electric field distribution and surface roughness. To replicate similar conditions near the shoreline, experimental investigations have been carried out on insulation materials with the combined application of saline contamination and acidic or normal cold fog. The test samples included silicone rubber (SiR, ethylene propylene diene monomer (EPDM and high-density polyethylene (HDPE, which were used as reference. The materials are of the same composition as those used in real-life outdoor high voltage insulators. All samples were aged separately in an environmental chamber for 150 h for various saline contaminations combined with acidic and normal cold fog, and were generated by means of the adopted experimental setup. This analysis represented conditions similar to those existing near the shoreline exposed to saline and acid spray during winter and early spring. Electric field and discharge current along polymeric samples were examined under acidic and normal cold fog. Fourier transform infrared (FTIR spectroscopy and scanning electron microscopic (SEM were used to probe the physico-chemical changes on the samples surface and investigate the hydrophobicity recovery property after aging tests. Finally, a comparative study was carried out on polymeric samples before and after being exposed to the acidic and normal cold fog based on the results obtained from the experiment. Research data may provide references for the better prediction of surface degradation as well as for the better material coating and design of external insulation.

  18. Gigaseal Mechanics: Creep of the Gigaseal under the Action of Pressure, Adhesion, and Voltage

    Science.gov (United States)

    2015-01-01

    Patch clamping depends on a tight seal between the cell membrane and the glass of the pipet. Why does the seal have such high electric resistance? Why does the patch adhere so strongly to the glass? Even under the action of strong hydrostatic, adhesion, and electrical forces, it creeps at a very low velocity. To explore possible explanations, we examined two physical models for the structure of the seal zone and the adhesion forces and two respective mechanisms of patch creep and electric conductivity. There is saline between the membrane and glass in the seal, and the flow of this solution under hydrostatic pressure or electroosmosis should drag a patch. There is a second possibility: the lipid core of the membrane is liquid and should be able to flow, with the inner monolayer slipping over the outer one. Both mechanisms predict the creep velocity as a function of the properties of the seal and the membrane, the pipet geometry, and the driving force. These model predictions are compared with experimental data for azolectin liposomes with added cholesterol or proteins. It turns out that to obtain experimentally observed creep velocities, a simple viscous flow in the seal zone requires ∼10 Pa·s viscosity; it is unclear what structure might provide that because that viscosity alone severely constrains the electric resistance of the gigaseal. Possibly, it is the fluid bilayer that allows the motion. The two models provide an estimate of the adhesion energy of the membrane to the glass and membrane’s electric characteristics through the comparison between the velocities of pressure-, adhesion-, and voltage-driven creep. PMID:25295693

  19. Blue Light-excited Light-Oxygen-Voltage-sensing Domain 2 (LOV2) Triggers a Rearrangement of the Kinase Domain to Induce Phosphorylation Activity in Arabidopsis Phototropin1.

    Science.gov (United States)

    Oide, Mao; Okajima, Koji; Kashojiya, Sachiko; Takayama, Yuki; Oroguchi, Tomotaka; Hikima, Takaaki; Yamamoto, Masaki; Nakasako, Masayoshi

    2016-09-16

    Phototropin1 is a blue light (BL) receptor in plants and shows BL-dependent kinase activation. The BL-excited light-oxygen-voltage-sensing domain 2 (LOV2) is primarily responsible for the activation of the kinase domain; however, the molecular mechanism by which conformational changes in LOV2 are transmitted to the kinase domain remains unclear. Here, we investigated BL-induced structural changes of a minimum functional fragment of Arabidopsis phototropin1 composed of LOV2, the kinase domain, and a linker connecting the two domains using small-angle x-ray scattering (SAXS). The fragment existed as a dimer and displayed photoreversible SAXS changes reflected in the radii of gyration of 42.9 Å in the dark and 48.8 Å under BL irradiation. In the dark, the molecular shape reconstructed from the SAXS profiles appeared as two bean-shaped lobes in a twisted arrangement that was 170 Å long, 80 Å wide, and 50 Å thick. The molecular shape under BL became slightly elongated from that in the dark. By fitting the crystal structure of the LOV2 dimer and a homology model of the kinase domain to their inferred shapes, the BL-dependent change could be interpreted as the positional shift in the kinase domain relative to that of the LOV2 dimer. In addition, we found that lysine 475, a functionally important residue, in the N-terminal region of LOV2 plays a critical role in transmitting the structural changes in LOV2 to the kinase domain. The interface between the domains is critical for signaling, suitably changing the structure to activate the kinase in response to conformational changes in the adjoining LOV2. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Loading Analysis of Modular Multi-level Converter for Offshore High-voltage DC Application under Various Grid Faults

    DEFF Research Database (Denmark)

    Liu, Hui; Ma, Ke; Loh, Poh Chiang

    2016-01-01

    challenges but may also result in overstressed components for the modular multi-level converter. However, the thermal loading of the modular multi-level converter under various grid faults has not yet been clarified. In this article, the power loss and thermal performance of the modular multi-level converter...... low-voltage ride-through strongly depend on the types and severity values of grid voltage dips. The thermal distribution among the three phases of the modular multi-level converter may be quite uneven, and some devices are much more stressed than the normal operating condition, which may...

  1. High-resolution orientation and depth of insertion of the voltage-sensing S4 helix of a potassium channel in lipid bilayers.

    Science.gov (United States)

    Doherty, Tim; Su, Yongchao; Hong, Mei

    2010-08-27

    The opening and closing of voltage-gated potassium (Kv) channels are controlled by several conserved Arg residues in the S4 helix of the voltage-sensing domain. The interaction of these positively charged Arg residues with the lipid membrane has been of intense interest for understanding how membrane proteins fold to allow charged residues to insert into lipid bilayers against free-energy barriers. Using solid-state NMR, we have now determined the orientation and insertion depth of the S4 peptide of the KvAP channel in lipid bilayers. Two-dimensional (15)N correlation experiments of macroscopically oriented S4 peptide in phospholipid bilayers revealed a tilt angle of 40 degrees and two possible rotation angles differing by 180 degrees around the helix axis. Remarkably, the tilt angle and one of the two rotation angles are identical to those of the S4 helix in the intact voltage-sensing domain, suggesting that interactions between the S4 segment and other helices of the voltage-sensing domain are not essential for the membrane topology of the S4 helix. (13)C-(31)P distances between the S4 backbone and the lipid (31)P indicate a approximately 9 A local thinning and 2 A average thinning of the DMPC (1,2-dimyristoyl-sn-glycero-3-phosphochloline)/DMPG (1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol) bilayer, consistent with neutron diffraction data. Moreover, a short distance of 4.6 A from the guanidinium C(zeta) of the second Arg to (31)P indicates the existence of guanidinium phosphate hydrogen bonding and salt bridges. These data suggest that the structure of the Kv gating helix is mainly determined by protein-lipid interactions instead of interhelical protein-protein interactions, and the S4 amino acid sequence encodes sufficient information for the membrane topology of this crucial gating helix. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Compositional redistribution in alloy films under high-voltage electron microscope irradiation

    Science.gov (United States)

    Lam, Nghi Q.; Leaf, O. K.; Minkoff, M.

    1983-10-01

    The problem of nonequilibrium segregation in alloy films under high-voltage electron microscope (HVEM) irradiation at elevated temperatures is re-examined in the present work, taking into account the damage-rate gradients caused by radial variation in the electron flux. Axial and radial compositional redistributions in model solid solutions, representative of concentrated Ni-Cu, Ni-Al and Ni-Si alloys, were calculated as a function of time, temperature, and film thickness, using a kinetic theory of segregation in binary alloys. The numerical results were achieved by means of a new software package (DISPL2) for solving convection-diffusion-kinetics problems with general orthogonal geometries. It was found that HVEM irradiation-induced segregation in thin films consists of two stages. Initially, due to the proximity of the film surfaces as sinks for point defects, the usual axial segregation (to surfaces) occurs at relatively short irradiation times, and rapidly attains quasi-steady state. Then, radial segregation becomes more and more competitive, gradually affecting the kinetics of axial segregation. At a given temperature, the buildup time to steady state is much longer in the present situation than in the simple case of one-dimensional segregation with uniform defect production. Changes in the alloy composition occur in a much larger zone than the irradiated volume. As a result, the average alloy composition within the irradiated region can differ greatly from that of the unirradiated alloy. The present calculations may be useful in the interpretation of the kinetics of certain HVEM irradiation-induced processes in alloys.

  3. Voltage-Dependent Gating of hERG Potassium Channels

    Science.gov (United States)

    Cheng, Yen May; Claydon, Tom W.

    2012-01-01

    The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv) channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4–S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-à-go-go related gene, hERG), which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure–function relationships underlying activation and deactivation gating in Shaker and hERG channels, with a focus on the roles of the voltage-sensing domain and the S4–S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter-charge interactions. More recent data suggest that key amino acid differences in the hERG voltage-sensing unit and S4–S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor. PMID:22586397

  4. Circuit-field coupled finite element analysis method for an electromagnetic acoustic transducer under pulsed voltage excitation

    International Nuclear Information System (INIS)

    Hao Kuan-Sheng; Huang Song-Ling; Zhao Wei; Wang Shen

    2011-01-01

    This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs including the non-uniform biased magnetic field, a pulsed eddy current field and the acoustic field is built up. The pulsed voltage excitation is transformed to the frequency domain by fast Fourier transformation (FFT). In terms of the time harmonic field equations of the EMAT system, the impedances of the coils under different frequencies are calculated according to the circuit-field coupling method and Poynting's theorem. Then the currents under different frequencies are calculated according to Ohm's law and the pulsed current excitation is obtained by inverse fast Fourier transformation (IFFT). Lastly, the sequentially coupled finite element method (FEM) is used to calculate the Lorentz force in the EMATs under the current excitation. An actual EMAT with a two-layer two-bundle printed circuit board (PCB) coil, a rectangular permanent magnet and an aluminium specimen is analysed. The coil impedances and the pulsed current are calculated and compared with the experimental results. Their agreement verified the validity of the proposed method. Furthermore, the influences of lift-off distances and the non-uniform static magnetic field on the Lorentz force under pulsed voltage excitation are studied. (interdisciplinary physics and related areas of science and technology)

  5. Integral Plus Resonant Sliding Mode Direct Power Control for VSC-HVDC Systems under Unbalanced Grid Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Weipeng Yang

    2017-10-01

    Full Text Available An integral plus resonant sliding mode direct power control (IRSMC DPC strategy for voltage source converter high voltage direct current (VSC-HVDC systems under unbalanced grid voltage conditions is proposed in this paper. Through detailed instantaneous power flow analysis, a generalized power compensation method, by which the ratio between the amplitude of active and reactive power ripples can be controlled continuously, is obtained. This enables the system to provide flexible power control, so that the desired performance of the system on both the ac and dc sides can be attained under different operating conditions. When the grid voltage is unbalanced, one or both of the active and reactive power terms contain ripples, oscillating at twice the grid frequency, to obtain non-distorted ac current. A power controller consisting of the proportional, integral and resonant control laws is designed using the sliding mode control approach, to achieve accurate power control objective. Simulation studies on a two-terminal VSC-HVDC system using MATLAB/SIMULINK (R2013b, Mathworks, Natick, MA, USA are conducted to verify the effectiveness of the IRSMC DPC strategy. The results show that this strategy ensures satisfactory performance of the system over a wide range of operating conditions.

  6. Voltage-sensing domain mode shift is coupled to the activation gate by the N-terminal tail of hERG channels.

    Science.gov (United States)

    Tan, Peter S; Perry, Matthew D; Ng, Chai Ann; Vandenberg, Jamie I; Hill, Adam P

    2012-09-01

    Human ether-a-go-go-related gene (hERG) potassium channels exhibit unique gating kinetics characterized by unusually slow activation and deactivation. The N terminus of the channel, which contains an amphipathic helix and an unstructured tail, has been shown to be involved in regulation of this slow deactivation. However, the mechanism of how this occurs and the connection between voltage-sensing domain (VSD) return and closing of the gate are unclear. To examine this relationship, we have used voltage-clamp fluorometry to simultaneously measure VSD motion and gate closure in N-terminally truncated constructs. We report that mode shifting of the hERG VSD results in a corresponding shift in the voltage-dependent equilibrium of channel closing and that at negative potentials, coupling of the mode-shifted VSD to the gate defines the rate of channel closure. Deletion of the first 25 aa from the N terminus of hERG does not alter mode shifting of the VSD but uncouples the shift from closure of the cytoplasmic gate. Based on these observations, we propose the N-terminal tail as an adaptor that couples voltage sensor return to gate closure to define slow deactivation gating in hERG channels. Furthermore, because the mode shift occurs on a time scale relevant to the cardiac action potential, we suggest a physiological role for this phenomenon in maximizing current flow through hERG channels during repolarization.

  7. Active and reactive power control schemes for distributed generation systems under voltage dips

    NARCIS (Netherlands)

    Wang, F.; Duarte, J.L.; Hendrix, M.A.M.

    2009-01-01

    During voltage dips continuous power delivery from distributed generation systems to the grid is desirable for the purpose of grid support. In order to facilitate the control of distributed generation systems adapted to the expected change of grid requirements, generalized power control schemes

  8. Operation of grid-connected DFIG under unbalanced grid voltage condition

    NARCIS (Netherlands)

    Zhou, Y.; Bauer, P.; Ferreira, J.A.; Pierik, J.

    2009-01-01

    Doubly fed induction generator (DFIG) still shares a large part in today's wind power market. It provides the benefits of variable speed operation cost-effectively, and can control its active and reactive power independently. Crowbar protection is often adopted to protect the rotor-side voltage

  9. Regulation of an Induction Motor under Broad Changes in DC-Link Voltage

    Czech Academy of Sciences Publication Activity Database

    Kokeš, Petr; Semerád, Radko

    2006-01-01

    Roč. 51, č. 4 (2006), s. 363-394 ISSN 0001-7043 Institutional research plan: CEZ:AV0Z20570509 Keywords : induction motor (IM) * DC-link voltage drop * stator flux vector control (SFVC) Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  10. Breakdown Characteristic Analysis of Paper- Oil Insulation under AC and DC Voltage

    Science.gov (United States)

    Anuar, N. F.; Jamail, N. A. M.; Rahman, R. A.; Kamarudin, M. S.

    2017-08-01

    This paper presents the study of breakdown characteristic of Kraft paper insulated with two different types of insulating fluid, which are Palm oil and Coconut oil. Palm oil and Coconut oil are chosen as the alternative fluid to the transformer oil because it has high potential and environmentally-friendly. The Segezha Kraft papers with various thicknesses (65.5 gsm, 75 gsm, 85gsm, 90 gsm) have been used in this research. High Voltage Direct Current (HVDC), High Voltage Alternating Current (HVAC) and carbon track and severity analysis is conducted to observe the sample of aging Kraft paper. These samples have been immersed using Palm oil and Coconut oil up to 90 days to observe the absorption rate. All samples started to reach saturation level at 70 days of immersion. HVDC and HVAC breakdown experiments have been done after the samples had reached the saturation level based on normal condition, immersed in Palm oil and immersed in Coconut oil. All samples immersed in liquid show different breakdown voltage reading compared to normal condition. The analysis of carbon track and severity on surface has been done using Analytical Scanning Electron Microscope (SEM) Analysis. The results of the experiment show that the sample of Kraft paper immersed in Palm oil was better than Coconut oil immersed sample. Therefore the sample condition was the main factor that determines the value of breakdown voltage test. Introduction

  11. Dynamic responses of a wind turbine drivetrain under turbulent wind and voltage disturbance conditions

    Directory of Open Access Journals (Sweden)

    Chengwu Li

    2016-05-01

    Full Text Available Wind energy is known as one of the most efficient clean renewable energy sources and has attracted extensive research interests in both academic and industry fields. In this study, the effects of turbulent wind and voltage disturbance on a wind turbine drivetrain are analyzed, and a wind turbine drivetrain dynamic model combined with the electric model of a doubly fed induction generator is established. The proposed model is able to account for the dynamic interaction between turbulent wind, voltage disturbance, and mechanical system. Also, the effects of time-varying meshing stiffness, transmission error, and bearing stiffness are included in the mechanical part of the coupled dynamic model. From the resultant model, system modes are computed. In addition, by considering the actual control strategies in the simulation process, the effects of turbulent wind and voltage disturbance on the geared rotor system are analyzed. The computational results show that the turbulent wind and voltage disturbance can cause adverse effects on the wind turbine drivetrain, especially the gearbox. A series of parametric studies are also performed to understand the influences of generator and gearbox parameters on the drivetrain system dynamics. Finally, the appropriate generator parameters having a positive effect on the gearbox in alleviating the extreme loads and the modeling approach for investigating the transient performance of generator are discussed.

  12. Measuring the phase difference in network and residual voltages under the GTsN-195M pump self-starting

    International Nuclear Information System (INIS)

    Druba, V.V.; Druba, T.A.; Reznik, V.R.

    1989-01-01

    Determination of time dependence of phase difference of residual voltage on motor windings of the main circulation pumps (MCP) and voltage of power supply section under MCP self-starting under conditions of short-time breaks in electric power supply is one of the main problems to which reliability and safety of NPP operation is related. A method to measure this dependence in real conditions in case of MCP free run-out and run-out in generating mode is suggested. The method considered is used for tests of the Kalinin NPP-2 MCP-195M self-starting. Analysis of run-out curves in the case of a break in MCP power supply for 1.8 s shows that the most favourable conditions for MCP self-starting are 0.63±0.03 s after de-energizing. 2 refs.; 3 figs.; 1 tab

  13. Design of the corona current measurement sensor with wide bandwidth under dc ultra-high-voltage environment

    International Nuclear Information System (INIS)

    Liu, Yingyi; Yuan, Haiwen; Yang, Qinghua; Cui, Yong

    2011-01-01

    The research in the field of corona discharge, which is one of the key technologies, can help us to realize ultra-high-voltage (UHV) power transmission. This paper proposes a new sampling resistance sensor to measure the dc UHV corona current in a wide band. By designing the structural and distributed parameters of the sensor, the UHV dielectric breakdown performance and the wide-band measuring characteristics of the sensor are satisfied. A high-voltage discharge test shows that the designed sensor can work under a 1200 kV dc environment without the occurrence of corona discharge. A frequency characteristic test shows that the measuring bandwidth of the sensor can be improved from the current 4.5 to 20 MHz. The test results in an actual dc UHV transmission line demonstrate that the sensor can accurately measure the corona current under the dc UHV environment

  14. Finding the Quickest Straight-Line Trajectory for a Three-Wheeled Omnidirectional Robot under Input Voltage Constraints

    Directory of Open Access Journals (Sweden)

    Ki Bum Kim

    2015-01-01

    Full Text Available We provide an analytical solution to the problem of generating the quickest straight-line trajectory for a three-wheeled omnidirectional mobile robot, under the practical constraint of limited voltage. Applying the maximum principle to the geometric properties of the input constraints, we find that an optimal input vector of motor voltages has at least one extreme value when the orientation of the robot is fixed and two extreme values when rotation is allowed. We can find an explicit representation of the optimal vector for a motion under fixed orientation. We derive several properties of quickest straight-line trajectories and verify them through simulation. We show that the quickest trajectory when rotation is allowed is always faster than the quickest with fixed orientation.

  15. Under Voltage Lock-Out Design Rules for Proper Start-Up of Energy Autonomous Systems Powered by Supercapacitors

    Science.gov (United States)

    Boitier, V.; Durand Estèbe, P.; Monthéard, R.; Bafleur, M.; Dilhac, J. M.

    2013-12-01

    This paper deals with the issue of the initial start-up of an autonomous and battery-free system powered by an energy harvester associated with a storage subsystem based on supercapacitors initially discharged. A review of different low power Under Voltage Lock-Out (UVLO) solutions used to delay the load start-up and to avoid a useless discharge of supercapacitors is presented and discussed.

  16. Bodily Experience in Schizophrenia : Factors Underlying a Disturbed Sense of Body Ownership

    NARCIS (Netherlands)

    Klaver, Maayke; Dijkerman, H Chris

    2016-01-01

    Emerging evidence is now challenging the view that patients diagnosed with schizophrenia experience a selective deficit in their sense of agency. Additional disturbances seem to exist in their sense of body ownership. However, the factors underlying this disturbance in body ownership remain elusive.

  17. Pull-in behavior analysis of vibrating functionally graded micro-cantilevers under suddenly DC voltage

    Directory of Open Access Journals (Sweden)

    Jamal Zare

    2015-01-01

    Full Text Available The present research attempts to explain dynamic pull-in instability of functionally graded micro-cantilevers actuated by step DC voltage while the fringing-field effect is taken into account in the vibrational equation of motion. By employing modern asymptotic approach namely Homotopy Perturbation Method with an auxiliary term, high-order frequency-amplitude relation is obtained, then the influences of material properties and actuation voltage on dynamic pull-in behavior are investigated. It is demonstrated that the auxiliary term in the homotopy perturbation method is extremely effective for higher order approximation and two terms in series expansions are sufficient to produce an acceptable solution. The strength of this analytical procedure is verified through comparison with numerical results.

  18. DC-bus voltage control of grid-connected voltage source converter by using space vector modulated direct power control under unbalanced network conditions

    DEFF Research Database (Denmark)

    Xiao, Lei; Huang, Shoudao; Lu, Kaiyuan

    2013-01-01

    Unbalanced grid voltage will cause large dc-bus voltage ripple and introduce high harmonic current components on the grid side. This will severely threaten the safety of the grid-connected voltage source converter (VSC) and consequently, affect the healthy operation condition of the load. In this......Unbalanced grid voltage will cause large dc-bus voltage ripple and introduce high harmonic current components on the grid side. This will severely threaten the safety of the grid-connected voltage source converter (VSC) and consequently, affect the healthy operation condition of the load....... In this study, a new proportional-integral-resonant (PI-RES) controller-based, space vector modulated direct power control topology is proposed to suppress the dc-bus voltage ripple and in the same time, controlling effectively the instantaneous power of the VSC. A special ac reactive power reference component...... is introduced in the controller, which is necessary in order to reduce the dc-bus voltage ripple and active power harmonics at the same time. The proposed control topology is implemented in the lab. Simulation and experimental results are provided to validate its performance and the analysis presented...

  19. Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment

    Energy Technology Data Exchange (ETDEWEB)

    Farajpour, A., E-mail: ariobarzan.oderj@gmail.com; Rastgoo, A.; Mohammadi, M.

    2017-03-15

    Piezoelectric nanomaterials such as zinc oxide (ZnO) are of low toxicity and have many biomedical applications including optical imaging, drug delivery, biosensing and harvesting biomechanical energy using hybrid nanogenerators. In this paper, the vibration, buckling and smart control of microtubules (MTs) embedded in an elastic medium in thermal environment using a piezoelectric nanoshell (PNS) are investigated. The MT and PNS are considered to be coupled by a filament network. The PNS is subjected to thermal loads and an external electric voltage which operates to control the mechanical behavior of the MT. Using the nonlocal continuum mechanics, the governing differential equations are derived. An exact solution is presented for simply supported boundary conditions. The differential quadrature method is also used to solve the governing equations for other boundary conditions. A detailed parametric study is conducted to investigate the effects of the elastic constants of surrounding medium and internal filament matrix, scale coefficient, electric voltage, the radius-to-thickness ratio of PNSs and temperature change on the smart control of MTs. It is found that the applied electric voltage can be used as an effective controlling parameter for the vibration and buckling of MTs.

  20. Soft cooperative spectrum sensing performance under imperfect and non identical reporting channels

    KAUST Repository

    Ben Ghorbel, Mahdi

    2015-02-01

    Cooperation among cognitive radio users improves the spectrum sensing performance by combining local decisions measured over independent sensing channels, allowing reduction of miss-detection and false alarm probabilities. While most of the works in cooperative spectrum sensing techniques assume perfect channels between the cooperating users, this paper studies the effect of imperfect channels when local users report their sensed information to the fusion center. Cooperative detection and false-alarm probabilities are derived for a general scheme of imperfect reporting channels under non necessarily identical sensing and reporting channels. Numerical simulations show that imperfect reporting channels should be considered to optimize the cooperative sensing in terms of consumed energy and probability of error.

  1. Co-ordinated Control Strategy for Hybrid Wind Farms with PMSG and FSIG under Unbalanced Grid Voltage Condition

    DEFF Research Database (Denmark)

    Zeng, Xin; Yao, Jun; Chen, Zhiqian

    2016-01-01

    -sequence current from the PMSG-based wind farm by the modified negative-sequence voltage and current double closed-loop control system is then developed. Finally, the correctness of theoretical analysis and the effectiveness of the proposed control strategy are validated by the experimental results....... to inject negative-sequence current for decreasing voltage unbalance factor (VUF) at point of common coupling (PCC), the double grid frequency oscillations in electromagnetic torque, active and reactive power output from the FSIG-based wind farm can be suppressed. In this paper, the maximum amplitude...... of the negative-sequence current provided by the PMSG-based wind farm under different average active power output and different VUF conditions is deduced, and the impacts of its phase angle on the VUF mitigation control effect are further studied. The improved control strategy of injecting negative...

  2. Optical and Electrical Performance of MOS-Structure Silicon Solar Cells with Antireflective Transparent ITO and Plasmonic Indium Nanoparticles under Applied Bias Voltage.

    Science.gov (United States)

    Ho, Wen-Jeng; Sue, Ruei-Siang; Lin, Jian-Cheng; Syu, Hong-Jang; Lin, Ching-Fuh

    2016-08-10

    This paper reports impressive improvements in the optical and electrical performance of metal-oxide-semiconductor (MOS)-structure silicon solar cells through the incorporation of plasmonic indium nanoparticles (In-NPs) and an indium-tin-oxide (ITO) electrode with periodic holes (perforations) under applied bias voltage. Samples were prepared using a plain ITO electrode or perforated ITO electrode with and without In-NPs. The samples were characterized according to optical reflectance, dark current voltage, induced capacitance voltage, external quantum efficiency, and photovoltaic current voltage. Our results indicate that induced capacitance voltage and photovoltaic current voltage both depend on bias voltage, regardless of the type of ITO electrode. Under a bias voltage of 4.0 V, MOS cells with perforated ITO and plain ITO, respectively, presented conversion efficiencies of 17.53% and 15.80%. Under a bias voltage of 4.0 V, the inclusion of In-NPs increased the efficiency of cells with perforated ITO and plain ITO to 17.80% and 16.87%, respectively.

  3. Optical and Electrical Performance of MOS-Structure Silicon Solar Cells with Antireflective Transparent ITO and Plasmonic Indium Nanoparticles under Applied Bias Voltage

    Directory of Open Access Journals (Sweden)

    Wen-Jeng Ho

    2016-08-01

    Full Text Available This paper reports impressive improvements in the optical and electrical performance of metal-oxide-semiconductor (MOS-structure silicon solar cells through the incorporation of plasmonic indium nanoparticles (In-NPs and an indium-tin-oxide (ITO electrode with periodic holes (perforations under applied bias voltage. Samples were prepared using a plain ITO electrode or perforated ITO electrode with and without In-NPs. The samples were characterized according to optical reflectance, dark current voltage, induced capacitance voltage, external quantum efficiency, and photovoltaic current voltage. Our results indicate that induced capacitance voltage and photovoltaic current voltage both depend on bias voltage, regardless of the type of ITO electrode. Under a bias voltage of 4.0 V, MOS cells with perforated ITO and plain ITO, respectively, presented conversion efficiencies of 17.53% and 15.80%. Under a bias voltage of 4.0 V, the inclusion of In-NPs increased the efficiency of cells with perforated ITO and plain ITO to 17.80% and 16.87%, respectively.

  4. A voltage-gated H+ channel underlying pH homeostasis in calcifying coccolithophores.

    Directory of Open Access Journals (Sweden)

    Alison R Taylor

    2011-06-01

    Full Text Available Marine coccolithophorid phytoplankton are major producers of biogenic calcite, playing a significant role in the global carbon cycle. Predicting the impacts of ocean acidification on coccolithophore calcification has received much recent attention and requires improved knowledge of cellular calcification mechanisms. Uniquely amongst calcifying organisms, coccolithophores produce calcified scales (coccoliths in an intracellular compartment and secrete them to the cell surface, requiring large transcellular ionic fluxes to support calcification. In particular, intracellular calcite precipitation using HCO₃⁻ as the substrate generates equimolar quantities of H+ that must be rapidly removed to prevent cytoplasmic acidification. We have used electrophysiological approaches to identify a plasma membrane voltage-gated H+ conductance in Coccolithus pelagicus ssp braarudii with remarkably similar biophysical and functional properties to those found in metazoans. We show that both C. pelagicus and Emiliania huxleyi possess homologues of metazoan H(v1 H+ channels, which function as voltage-gated H+ channels when expressed in heterologous systems. Homologues of the coccolithophore H+ channels were also identified in a diversity of eukaryotes, suggesting a wide range of cellular roles for the H(v1 class of proteins. Using single cell imaging, we demonstrate that the coccolithophore H+ conductance mediates rapid H+ efflux and plays an important role in pH homeostasis in calcifying cells. The results demonstrate a novel cellular role for voltage gated H+ channels and provide mechanistic insight into biomineralisation by establishing a direct link between pH homeostasis and calcification. As the coccolithophore H+ conductance is dependent on the trans-membrane H+ electrochemical gradient, this mechanism will be directly impacted by, and may underlie adaptation to, ocean acidification. The presence of this H+ efflux pathway suggests that there is no obligate

  5. Control of SiC Based Front-End Rectifier under Unbalanced Supply Voltage

    DEFF Research Database (Denmark)

    Maheshwari, Ramkrishan; Trintis, Ionut; Gohil, Ghanshyamsinh Vijaysinh

    2015-01-01

    A voltage source converter is used as a front end converter typically. In this paper, a converter which is realized using SiC MOSFET is considered. Due to SiC MOSFET, a switching frequency more than 50 kHz can be achieved. This can help increasing the current control loop bandwidth, which is not ...... together with a positive-sequence current controller for the front-end rectifier. A gain in the feedforward term can be changed to control the negative-sequence current. Simulation results are presented to verify the theory....

  6. Dynamic characteristics of motor-gear system under load saltations and voltage transients

    Science.gov (United States)

    Bai, Wenyu; Qin, Datong; Wang, Yawen; Lim, Teik C.

    2018-02-01

    In this paper, a dynamic model of a motor-gear system is proposed. The model combines a nonlinear permeance network model (PNM) of a squirrel-cage induction motor and a coupled lateral-torsional dynamic model of a planetary geared rotor system. The external excitations including voltage transients and load saltations, as well as the internal excitations such as spatial effects, magnetic circuits topology and material nonlinearity in the motor, and time-varying mesh stiffness and damping in the planetary gear system are considered in the proposed model. Then, the simulation results are compared with those predicted by the electromechanical model containing a dynamic motor model with constant inductances. The comparison showed that the electromechanical system model with the PNM motor model yields more reasonable results than the electromechanical system model with the lumped-parameter electric machine. It is observed that electromechanical coupling effect can induce additional and severe gear vibrations. In addition, the external conditions, especially the voltage transients, will dramatically affect the dynamic characteristics of the electromechanical system. Finally, some suggestions are offered based on this analysis for improving the performance and reliability of the electromechanical system.

  7. Structural refinement of the hERG1 pore and voltage-sensing domains with ROSETTA-membrane and molecular dynamics simulations.

    Science.gov (United States)

    Subbotina, Julia; Yarov-Yarovoy, Vladimir; Lees-Miller, James; Durdagi, Serdar; Guo, Jiqing; Duff, Henry J; Noskov, Sergei Yu

    2010-11-01

    The hERG1 gene (Kv11.1) encodes a voltage-gated potassium channel. Mutations in this gene lead to one form of the Long QT Syndrome (LQTS) in humans. Promiscuous binding of drugs to hERG1 is known to alter the structure/function of the channel leading to an acquired form of the LQTS. Expectably, creation and validation of reliable 3D model of the channel have been a key target in molecular cardiology and pharmacology for the last decade. Although many models were built, they all were limited to pore domain. In this work, a full model of the hERG1 channel is developed which includes all transmembrane segments. We tested a template-driven de-novo design with ROSETTA-membrane modeling using side-chain placements optimized by subsequent molecular dynamics (MD) simulations. Although backbone templates for the homology modeled parts of the pore and voltage sensors were based on the available structures of KvAP, Kv1.2 and Kv1.2-Kv2.1 chimera channels, the missing parts are modeled de-novo. The impact of several alignments on the structure of the S4 helix in the voltage-sensing domain was also tested. Herein, final models are evaluated for consistency to the reported structural elements discovered mainly on the basis of mutagenesis and electrophysiology. These structural elements include salt bridges and close contacts in the voltage-sensor domain; and the topology of the extracellular S5-pore linker compared with that established by toxin foot-printing and nuclear magnetic resonance studies. Implications of the refined hERG1 model to binding of blockers and channels activators (potent new ligands for channel activations) are discussed. © 2010 Wiley-Liss, Inc.

  8. Niflumic acid alters gating of HCN2 pacemaker channels by interaction with the outer region of S4 voltage sensing domains.

    Science.gov (United States)

    Cheng, Lan; Sanguinetti, Michael C

    2009-05-01

    Niflumic acid, 2-[[3-(trifluoromethyl)phenyl]amino]pyridine-3-carboxylic acid (NFA), is a nonsteroidal anti-inflammatory drug that also blocks or modifies the gating of many ion channels. Here, we investigated the effects of NFA on hyperpolarization-activated cyclic nucleotide-gated cation (HCN) pacemaker channels expressed in X. laevis oocytes using site-directed mutagenesis and the two-electrode voltage-clamp technique. Extracellular NFA acted rapidly and caused a slowing of activation and deactivation and a hyperpolarizing shift in the voltage dependence of HCN2 channel activation (-24.5 +/- 1.2 mV at 1 mM). Slowed channel gating and reduction of current magnitude was marked in oocytes treated with NFA, while clamped at 0 mV but minimal in oocytes clamped at -100 mV, indicating the drug preferentially interacts with channels in the closed state. NFA at 0.1 to 3 mM shifted the half-point for channel activation in a concentration-dependent manner, with an EC(50) of 0.54 +/- 0.068 mM and a predicted maximum shift of -38 mV. NFA at 1 mM also reduced maximum HCN2 conductance by approximately 20%, presumably by direct block of the pore. The rapid onset and state-dependence of NFA-induced changes in channel gating suggests an interaction with the extracellular region of the S4 transmembrane helix, the primary voltage-sensing domain of HCN2. Neutralization (by mutation to Gln) of any three of the outer four basic charged residues in S4, but not single mutations, abrogated the NFA-induced shift in channel activation. We conclude that NFA alters HCN2 gating by interacting with the extracellular end of the S4 voltage sensor domains.

  9. Harmonic Injection-Based Power Fluctuation Control of Three-Phase PV Systems under Unbalanced Grid Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Nian-Cheng Zhou

    2015-02-01

    Full Text Available Unbalanced voltage will inevitably cause power and DC voltage fluctuations in a three-phase PV system. The deterioration of power quality will do great harm to the PV panels and the loads, so it is necessary to suppress the power fluctuations. This paper further explores the coefficients control strategy of PV converters under unbalanced voltage conditions, aiming to suppress power fluctuations by controlling the injection of some specific orders of current harmonics into the grid. In order to achieve this, the current reference of the PV inverter has been changed by bringing in two control coefficients, and the expression of each order of the current harmonics has been deduced. Based on the standards of PV systems, the regions from which the coefficients can be selected are determined. Then, by tuning these coefficients in the feasible regions, the output parameters (power fluctuation, current THD and odd harmonics can be controlled precisely. The model of this method is built and simulated in PSCAD/EMTDC, and as a result, it is shown that the power fluctuations can be restricted according to different power quality requirements.

  10. Dual-loop control strategy for DFIG-based Wind turbines under grid voltage disturbances

    DEFF Research Database (Denmark)

    Zhu, Rongwu; Chen, Zhe; Tang, Yi

    2016-01-01

    , but also decay the stator transient flux, and avoid the accumulation of the stator transient flux. Moreover, the proposed strategy can obtain nearly constant stator active power and electromagnetic torque, which may prolong the lifetime of the drive train. A case study on a typical 2-MW DFIG-based wind......For a multimegawatts doubly-fed induction generator (DFIG), the grid voltage disturbances may affect the stator flux and induce the transient stator flux, due to the direct connection of the stator and the grid. The accumulation of the transient stator flux caused by the variations of the stator...... turbine demonstrating the effectiveness of the proposed control methods is verified with simulations in MATLAB/Simulink. The proposed control methods are also experimentally validated using a scaled-down 7.5-kW DFIG. The simulation and experimental results clearly validate the effectiveness...

  11. Identification of an evolutionarily conserved extracellular threonine residue critical for surface expression and its potential coupling of adjacent voltage-sensing and gating domains in voltage-gated potassium channels.

    Science.gov (United States)

    Mckeown, Lynn; Burnham, Matthew P; Hodson, Charlotte; Jones, Owen T

    2008-10-31

    The dynamic expression of voltage-gated potassium channels (Kvs) at the cell surface is a fundamental factor controlling membrane excitability. In exploring possible mechanisms controlling Kv surface expression, we identified a region in the extracellular linker between the first and second of the six (S1-S6) transmembrane-spanning domains of the Kv1.4 channel, which we hypothesized to be critical for its biogenesis. Using immunofluorescence microscopy, flow cytometry, patch clamp electrophysiology, and mutagenesis, we identified a single threonine residue at position 330 within the Kv1.4 S1-S2 linker that is absolutely required for cell surface expression. Mutation of Thr-330 to an alanine, aspartate, or lysine prevented surface expression. However, surface expression occurred upon co-expression of mutant and wild type Kv1.4 subunits or mutation of Thr-330 to a serine. Mutation of the corresponding residue (Thr-211) in Kv3.1 to alanine also caused intracellular retention, suggesting that the conserved threonine plays a generalized role in surface expression. In support of this idea, sequence comparisons showed conservation of the critical threonine in all Kv families and in organisms across the evolutionary spectrum. Based upon the Kv1.2 crystal structure, further mutagenesis, and the partial restoration of surface expression in an electrostatic T330K bridging mutant, we suggest that Thr-330 hydrogen bonds to equally conserved outer pore residues, which may include a glutamate at position 502 that is also critical for surface expression. We propose that Thr-330 serves to interlock the voltage-sensing and gating domains of adjacent monomers, thereby yielding a structure competent for the surface expression of functional tetramers.

  12. An efficient diagnostic technique for distribution systems based on under fault voltages and currents

    Energy Technology Data Exchange (ETDEWEB)

    Campoccia, A.; Di Silvestre, M.L.; Incontrera, I.; Riva Sanseverino, E. [Dipartimento di Ingegneria Elettrica elettronica e delle Telecomunicazioni, Universita degli Studi di Palermo, viale delle Scienze, 90128 Palermo (Italy); Spoto, G. [Centro per la Ricerca Elettronica in Sicilia, Monreale, Via Regione Siciliana 49, 90046 Palermo (Italy)

    2010-10-15

    Service continuity is one of the major aspects in the definition of the quality of the electrical energy, for this reason the research in the field of faults diagnostic for distribution systems is spreading ever more. Moreover the increasing interest around modern distribution systems automation for management purposes gives faults diagnostics more tools to detect outages precisely and in short times. In this paper, the applicability of an efficient fault location and characterization methodology within a centralized monitoring system is discussed. The methodology, appropriate for any kind of fault, is based on the use of the analytical model of the network lines and uses the fundamental components rms values taken from the transient measures of line currents and voltages at the MV/LV substations. The fault location and identification algorithm, proposed by the authors and suitably restated, has been implemented on a microprocessor-based device that can be installed at each MV/LV substation. The speed and precision of the algorithm have been tested against the errors deriving from the fundamental extraction within the prescribed fault clearing times and against the inherent precision of the electronic device used for computation. The tests have been carried out using Matlab Simulink for simulating the faulted system. (author)

  13. Improved Control Strategies for a DFIG-Based Wind-Power Generation System with SGSC under Unbalanced and Distorted Grid Voltage Conditions

    DEFF Research Database (Denmark)

    Yao, Jun; Yu, Mengting; Hu, Weihao

    2016-01-01

    This paper investigates an improved control strategy for a doubly-fed induction generator (DFIG) based wind-power generation system with series grid-side converter (SGSC) under network unbalance and harmonic grid voltage distortion conditions. The integrated mathematical modeling of the DFIG system...... with SGSC is established by taking both the negative-sequence and harmonic components of the grid voltages into consideration with multiple synchronous rotating reference frames. Under network unbalance and harmonic distortion situations, stator voltage can be kept symmetrical and sinusoidal by the control...

  14. 3' Phosphatase activity toward phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] by voltage-sensing phosphatase (VSP).

    Science.gov (United States)

    Kurokawa, Tatsuki; Takasuga, Shunsuke; Sakata, Souhei; Yamaguchi, Shinji; Horie, Shigeo; Homma, Koichi J; Sasaki, Takehiko; Okamura, Yasushi

    2012-06-19

    Voltage-sensing phosphatases (VSPs) consist of a voltage-sensor domain and a cytoplasmic region with remarkable sequence similarity to phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor phosphatase. VSPs dephosphorylate the 5' position of the inositol ring of both phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)] and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] upon voltage depolarization. However, it is unclear whether VSPs also have 3' phosphatase activity. To gain insights into this question, we performed in vitro assays of phosphatase activities of Ciona intestinalis VSP (Ci-VSP) and transmembrane phosphatase with tensin homology (TPTE) and PTEN homologous inositol lipid phosphatase (TPIP; one human ortholog of VSP) with radiolabeled PI(3,4,5)P(3). TLC assay showed that the 3' phosphate of PI(3,4,5)P(3) was not dephosphorylated, whereas that of phosphatidylinositol 3,4-bisphosphate [PI(3,4)P(2)] was removed by VSPs. Monitoring of PI(3,4)P(2) levels with the pleckstrin homology (PH) domain from tandem PH domain-containing protein (TAPP1) fused with GFP (PH(TAPP1)-GFP) by confocal microscopy in amphibian oocytes showed an increase of fluorescence intensity during depolarization to 0 mV, consistent with 5' phosphatase activity of VSP toward PI(3,4,5)P(3). However, depolarization to 60 mV showed a transient increase of GFP fluorescence followed by a decrease, indicating that, after PI(3,4,5)P(3) is dephosphorylated at the 5' position, PI(3,4)P(2) is then dephosphorylated at the 3' position. These results suggest that substrate specificity of the VSP changes with membrane potential.

  15. Damage classification of pipelines under water flow operation using multi-mode actuated sensing technology

    International Nuclear Information System (INIS)

    Lee, Changgil; Park, Seunghee

    2011-01-01

    In a structure, several types of damage can occur, ranging from micro-cracking to corrosion or loose bolts. This makes identifying the damage difficult with a single mode of sensing. Therefore, a multi-mode actuated sensing system is proposed based on a self-sensing circuit using a piezoelectric sensor. In self-sensing-based multi-mode actuated sensing, one mode provides a wide frequency-band structural response from the self-sensed impedance measurement and the other mode provides a specific frequency-induced structural wavelet response from the self-sensed guided wave measurement. In this experimental study, a pipeline system under water flow operation was examined to verify the effectiveness and robustness of the proposed structural health monitoring approach. Different types of structural damage were inflicted artificially on the pipeline system. To classify the multiple types of structural damage, supervised learning-based statistical pattern recognition was implemented by composing a three-dimensional space using the damage indices extracted from the impedance and guided wave features as well as temperature variations. For a more systematic damage classification, several control parameters were optimized to determine an optimal decision boundary for the supervised learning-based pattern recognition. Further research issues are also discussed for real-world implementations of the proposed approach

  16. Experimental Analysis of Linear Induction Motor under Variable Voltage Variable Frequency (VVVF Power Supply

    Directory of Open Access Journals (Sweden)

    Prasenjit D. Wakode

    2016-07-01

    Full Text Available This paper presents the complete analysis of Linear Induction Motor (LIM under VVVF. The complete variation of LIM air gap flux under ‘blocked Linor’ condition and starting force is analyzed and presented when LIM is given VVVF supply. The analysis of this data is important in further understanding of the equivalent circuit parameters of LIM and to study the magnetic circuit of LIM. The variation of these parameters is important to know the LIM response at different frequencies. The simulation and application of different control strategies such as vector control thus becomes quite easy to apply and understand motor’s response under such strategy of control.

  17. Characteristics of MAO coating obtained on ZK60 Mg alloy under two and three steps voltage-increasing modes in dual electrolyte

    Science.gov (United States)

    Yang, Jun; Wang, Ze-Xin; Lu, Sheng; Lv, Wei-gang; Jiang, Xi-zhi; Sun, Lei

    2017-03-01

    The micro-arc oxidation process was conducted on ZK60 Mg alloy under two and three steps voltage-increasing modes by DC pulse electrical source. The effect of each mode on current-time responses during MAO process and the coating characteristic were analysed and discussed systematically. The microstructure, thickness and corrosion resistance of MAO coatings were evaluated by scanning electron microscopy (SEM), energy disperse spectroscopy (EDS), microscope with super-depth of field and electrochemical impedance spectroscopy (EIS). The results indicate that two and three steps voltage-increasing modes can improve weak spark discharges with insufficient breakdown strength in later period during the MAO process. Due to higher value of voltage and voltage increment, the coating with maximum thickness of about 20.20μm formed under two steps voltage-increasing mode shows the best corrosion resistance. In addition, the coating fabricated under three steps voltage-increasing mode shows a smoother coating with better corrosion resistance due to the lower amplitude of voltage-increasing.

  18. A Robust FLOM Based Spectrum Sensing Scheme under Middleton Class A Noise in IoT

    Directory of Open Access Journals (Sweden)

    Enwei Xu

    2017-01-01

    Full Text Available Accessibility to remote users in dynamic environment, high spectrum utilization, and no spectrum purchase make Cognitive Radio (CR a feasible solution of wireless communications in the Internet of Things (IoT. Reliable spectrum sensing becomes the prerequisite for the establishment of communication between IoT-capable objects. Considering the application environment, spectrum sensing not only has to cope with man-made impulsive noises but also needs to overcome noise fluctuations. In this paper, we study the Fractional Lower Order Moments (FLOM based spectrum sensing method under Middleton Class A noise and incorporate a Noise Power Estimation (NPE module into the sensing system to deal with the issue of noise uncertainty. Moreover, the NPE process does not need noise-only samples. The analytical expressions of the probabilities of detection and the probability of false alarm are derived. The impact on sensing performance of the parameters of the NPE module is also analyzed. The theoretical analysis and simulation results show that our proposed sensing method achieves a satisfactory performance at low SNR.

  19. Characteristics of Partial Discharge and Ozone Generation for Twisted-pair of Enameled Wires under High-repetitive Impulse Voltage Application

    Science.gov (United States)

    Kanazawa, Seiji; Enokizono, Masato; Shibakita, Toshihide; Umehara, Eiji; Toshimitsu, Jun; Ninomiya, Shinji; Taniguchi, Hideki; Abe, Yukari

    In recent years, inverter drive machines such as a hybrid vehicle and an electric vehicle are operated under high voltage pulse with high repetition rate. In this case, inverter surge is generated and affected the machine operation. Especially, the enameled wire of a motor is deteriorated due to the partial discharge (PD) and finally breakdown of the wire will occur. In order to investigate a PD on a resistant enameled wire, characteristics of PD in the twisted pair sample under bipolar repetitive impulse voltages are investigated experimentally. The relationship between the applied voltage and discharge current was measured at PD inception and extinction, and we estimated the repetitive PD inception and extinction voltages experimentally. The corresponding optical emission of the discharge was also observed by using an ICCD camera. Furthermore, ozone concentration due to the discharge was measured during the life-time test of the resistant enameled wires from a working environmental point of view.

  20. Vibration and acoustic noise emitted by dry-type air-core reactors under PWM voltage excitation

    Science.gov (United States)

    Li, Jingsong; Wang, Shanming; Hong, Jianfeng; Yang, Zhanlu; Jiang, Shengqian; Xia, Shichong

    2018-05-01

    According to coupling way between the magnetic field and the structural order, structure mode is discussed by engaging finite element (FE) method and both natural frequency and modal shape for a dry-type air-core reactor (DAR) are obtained in this paper. On the basis of harmonic response analysis, electromagnetic force under PWM (Pulse Width Modulation) voltage excitation is mapped with the structure mesh, the vibration spectrum is gained and the consequences represents that the whole structure vibration predominates in the radial direction, with less axial vibration. Referring to the test standard of reactor noise, the rules of emitted noise of the DAR are measured and analyzed at chosen switching frequency matches the sample resonant frequency and the methods of active vibration and noise reduction are put forward. Finally, the low acoustic noise emission of a prototype DAR is verified by measurement.

  1. Estimation of flashover voltage probability of overhead line insulators under industrial pollution, based on maximum likelihood method

    International Nuclear Information System (INIS)

    Arab, M.N.; Ayaz, M.

    2004-01-01

    The performance of transmission line insulator is greatly affected by dust, fumes from industrial areas and saline deposit near the coast. Such pollutants in the presence of moisture form a coating on the surface of the insulator, which in turn allows the passage of leakage current. This leakage builds up to a point where flashover develops. The flashover is often followed by permanent failure of insulation resulting in prolong outages. With the increase in system voltage owing to the greater demand of electrical energy over the past few decades, the importance of flashover due to pollution has received special attention. The objective of the present work was to study the performance of overhead line insulators in the presence of contaminants such as induced salts. A detailed review of the literature and the mechanisms of insulator flashover due to the pollution are presented. Experimental investigations on the behavior of overhead line insulators under industrial salt contamination are carried out. A special fog chamber was designed in which the contamination testing of insulators was carried out. Flashover behavior under various degrees of contamination of insulators with the most common industrial fume components such as Nitrate and Sulphate compounds was studied. Substituting the normal distribution parameter in the probability distribution function based on maximum likelihood develops a statistical method. The method gives a high accuracy in the estimation of the 50% flashover voltage, which is then used to evaluate the critical flashover index at various contamination levels. The critical flashover index is a valuable parameter in insulation design for numerous applications. (author)

  2. High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    Science.gov (United States)

    Shimer, Daniel W.; Lange, Arnold C.

    1995-01-01

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  3. High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    Science.gov (United States)

    Shimer, D.W.; Lange, A.C.

    1995-05-23

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

  4. Dynamic Pull-In Investigation of a Clamped-Clamped Nanoelectromechanical Beam under Ramp-Input Voltage and the Casimir Force

    Directory of Open Access Journals (Sweden)

    Amir R. Askari

    2014-01-01

    Full Text Available The influence of the Casimir excitation on dynamic pull-in instability of a nanoelectromechanical beam under ramp-input voltage is studied. The ramp-input actuation has applications in frequency sweeping of RF-N/MEMS. The presented model is nonlinear due to the inherent nonlinearity of electrostatics and the Casimir excitations as well as the geometric nonlinearity of midplane stretching. A Galerkin based reduced order modeling is utilized. It is found that the calculated dynamic pull-in ramp input voltage leads to dynamic pull-in step input voltage by increasing the slope of voltage-time diagram. This fact is utilized to verify the results of present study.

  5. An implementation of particle swarm optimization to evaluate optimal under-voltage load shedding in competitive electricity markets

    Science.gov (United States)

    Hosseini-Bioki, M. M.; Rashidinejad, M.; Abdollahi, A.

    2013-11-01

    Load shedding is a crucial issue in power systems especially under restructured electricity environment. Market-driven load shedding in reregulated power systems associated with security as well as reliability is investigated in this paper. A technoeconomic multi-objective function is introduced to reveal an optimal load shedding scheme considering maximum social welfare. The proposed optimization problem includes maximum GENCOs and loads' profits as well as maximum loadability limit under normal and contingency conditions. Particle swarm optimization (PSO) as a heuristic optimization technique, is utilized to find an optimal load shedding scheme. In a market-driven structure, generators offer their bidding blocks while the dispatchable loads will bid their price-responsive demands. An independent system operator (ISO) derives a market clearing price (MCP) while rescheduling the amount of generating power in both pre-contingency and post-contingency conditions. The proposed methodology is developed on a 3-bus system and then is applied to a modified IEEE 30-bus test system. The obtained results show the effectiveness of the proposed methodology in implementing the optimal load shedding satisfying social welfare by maintaining voltage stability margin (VSM) through technoeconomic analyses.

  6. Diffuse mode and diffuse-to-filamentary transition in a high pressure nanosecond scale corona discharge under high voltage

    International Nuclear Information System (INIS)

    Tardiveau, P; Moreau, N; Bentaleb, S; Postel, C; Pasquiers, S

    2009-01-01

    The dynamics of a point-to-plane corona discharge induced in high pressure air under nanosecond scale high overvoltage is investigated. The electrical and optical properties of the discharge can be described in space and time with fast and precise current measurements coupled to gated and intensified imaging. Under atmospheric pressure, the discharge exhibits a diffuse pattern like a multielectron avalanche propagating through a direct field ionization mechanism. The diffuse regime can exist since the voltage rise time is much shorter than the characteristic time of the field screening effects, and as long as the local field is higher than the critical ionization field in air. As one of these conditions is not fulfilled, the discharge turns into a multi-channel regime and the diffuse-to-filamentary transition strongly depends on the overvoltage, the point-to-plane gap length and the pressure. When pressure is increased above atmospheric pressure, the diffuse stage and its transition to streamers seem to satisfy similarity rules as the key parameter is the reduced critical ionization field only. However, above 3 bar, neither diffuse avalanche nor streamer filaments are observed but a kind of streamer-leader regime, due to the fact that mechanisms such as photoionization and heat diffusion are not similar to pressure.

  7. Room temperature direct bonding of LiNbO3 crystal layers and its application to high-voltage optical sensing

    International Nuclear Information System (INIS)

    Tulli, D; Janner, D; Pruneri, V

    2011-01-01

    LiNbO 3 is a crystal widely used in photonics and acoustics, for example in electro-optic modulation, nonlinear optical frequency conversion, electric field sensing and surface acoustic wave filtering. It often needs to be combined with other materials and used in thin layers to achieve the adequate device performance. In this paper, we investigate direct bonding of LiNbO 3 crystals with other dielectric materials, such as Si and fused silica (SiO 2 ), and we show that specific surface chemical cleaning, together with Ar or O 2 plasma activation, can be used to increase the surface free energy and achieve effective bonding at room temperature. The resulting hybrid material bonding is very strong, making the dicing and grinding of LiNbO 3 layers as thin as 15 µm possible. To demonstrate the application potentials of the proposed bonding technique, we have fabricated and characterized a high-voltage field sensor with high sensitivity in a domain inverted and bonded LiNbO 3 waveguide substrate

  8. On Transform Domain Communication Systems under Spectrum Sensing Mismatch: A Deterministic Analysis.

    Science.gov (United States)

    Jin, Chuanxue; Hu, Su; Huang, Yixuan; Luo, Qu; Huang, Dan; Li, Yi; Gao, Yuan; Cheng, Shaochi

    2017-07-08

    Towards the era of mobile Internet and the Internet of Things (IoT), numerous sensors and devices are being introduced and interconnected. To support such an amount of data traffic, traditional wireless communication technologies are facing challenges both in terms of the increasing shortage of spectrum resources and massive multiple access. The transform-domain communication system (TDCS) is considered as an alternative multiple access system, where 5G and mobile IoT are mainly focused. However, previous studies about TDCS are under the assumption that the transceiver has the global spectrum information, without the consideration of spectrum sensing mismatch (SSM). In this paper, we present the deterministic analysis of TDCS systems under arbitrary given spectrum sensing scenarios, especially the influence of the SSM pattern to the signal to noise ratio (SNR) performance. Simulation results show that arbitrary SSM pattern can lead to inferior bit error rate (BER) performance.

  9. Index-Based Assessment of Voltage Rise and Reverse Power Flow Phenomena in a Distribution Feeder Under High PV Penetration

    DEFF Research Database (Denmark)

    Hasheminamin, Maryam; Agelidis, Vassilios G.; Salehi, Vahid

    2015-01-01

    -based methodology for assessing the impact of high solar PV generation, considering the reverse power flow and voltage rise phenomena. Indices are defined that link these two phenomena and their impact on the voltage profile across the feeder. This assessment relies on detailed modeling of the network and the solar......The proliferation of photovoltaic (PV) generation in low- and medium-voltage distribution networks is expected to continue. Qualified studies can quantify adverse impacts of high PV penetration on distribution networks and assist utilities in decision making. This paper proposes an index...

  10. No Correlation between Distorted Body Representations Underlying Tactile Distance Perception and Position Sense

    Directory of Open Access Journals (Sweden)

    Matthew R. Longo

    2016-11-01

    Full Text Available Both tactile distance perception and position sense are believed to require that immediate afferent signals be referenced to a stored representation of body size and shape (the body model. For both of these abilities, recent studies have reported that the stored body representations involved are highly distorted, at least in the case of the hand, with the hand dorsum represented as wider and squatter than it actually is. Here, we investigated whether individual differences in the magnitude of these distortions are shared between tactile distance perception and position sense, as would be predicted by the hypothesis that a single distorted body model underlies both tasks. We used established task to measure distortions of the represented shape of the hand dorsum. Consistent with previous results, in both cases there were clear biases to overestimate distances oriented along the medio-lateral axis of the hand compared to the proximo-distal axis. Moreover, within each task there were clear split-half correlations, demonstrating that both tasks show consistent individual differences. Critically, however, there was no correlation between the magnitudes of distortion in the two tasks. This casts doubt on the proposal that a common body model underlies both tactile distance perception and position sense.

  11. Control of Active Front-End Rectifier in Electric Drive under Unbalanced Voltage Supply in Transient States

    Czech Academy of Sciences Publication Activity Database

    Chomát, Miroslav; Schreier, Luděk; Bendl, Jiří

    2012-01-01

    Roč. 88, 1A (2012), s. 177-180 ISSN 0033-2097 R&D Projects: GA ČR GA102/09/1273 Institutional research plan: CEZ:AV0Z20570509 Keywords : unbalanced voltage supply * DC-link voltage pulsations * pulse-width modulation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.244, year: 2011 http://www.red.pe.org.pl/abstract_pl.php?nid=5479

  12. Optimal Coordinated Management of a Plug-In Electric Vehicle Charging Station under a Flexible Penalty Contract for Voltage Security

    Directory of Open Access Journals (Sweden)

    Jip Kim

    2016-07-01

    Full Text Available The increasing penetration of plug-in electric vehicles (PEVs may cause a low-voltage problem in the distribution network. In particular, the introduction of charging stations where multiple PEVs are simultaneously charged at the same bus can aggravate the low-voltage problem. Unlike a distribution network operator (DNO who has the overall responsibility for stable and reliable network operation, a charging station operator (CSO may schedule PEV charging without consideration for the resulting severe voltage drop. Therefore, there is a need for the DNO to impose a coordination measure to induce the CSO to adjust its charging schedule to help mitigate the voltage problem. Although the current time-of-use (TOU tariff is an indirect coordination measure that can motivate the CSO to shift its charging demand to off-peak time by imposing a high rate at the peak time, it is limited by its rigidity in that the network voltage condition cannot be flexibly reflected in the tariff. Therefore, a flexible penalty contract (FPC for voltage security to be used as a direct coordination measure is proposed. In addition, the optimal coordinated management is formulated. Using the Pacific Gas and Electric Company (PG&E 69-bus test distribution network, the effectiveness of the coordination was verified by comparison with the current TOU tariff.

  13. Electric field-induced ferromagnetic resonance in a CoFeB/MgO magnetic tunnel junction under dc bias voltages

    Science.gov (United States)

    Kanai, Shun; Gajek, Martin; Worledge, D. C.; Matsukura, Fumihiro; Ohno, Hideo

    2014-12-01

    We measure homodyne-detected ferromagnetic resonance (FMR) induced by the electric-field effect in a CoFeB/MgO/CoFeB magnetic tunnel junction (MTJ) with perpendicular magnetic easy axis under dc bias voltages up to 0.1 V. From the bias dependence of the resonant frequency, we find that the first order perpendicular magnetic anisotropy is modulated by the applied electric field, whereas the second order component is virtually independent of the electric field. The lineshapes of the FMR spectra are bias dependent, which are explained by the combination of electric-field effect and reflection of the bias voltage from the MTJ.

  14. A Modular Cascaded Multilevel Inverter Based Shunt Hybrid Active Power Filter for Selective Harmonic and Reactive Power Compensation Under Distorted/Unbalanced Grid Voltage Conditions

    Directory of Open Access Journals (Sweden)

    T. Demirdelen

    2016-10-01

    Full Text Available In recent years, shunt hybrid active power filters are being increasingly considered as a viable alternative to both passive filters and active power filters for compensating harmonics. In literature, their applications are restricted to balanced systems and low voltage applications and therefore not for industrial applications. This paper investigates the performance of a modular cascaded multilevel inverter based Shunt Hybrid Active Power Filter (SHAPF for reactive power compensation and selective harmonics elimination under distorted/unbalanced grid voltage conditions in medium voltage levels. In the proposed control method, reactive power compensation is achieved successfully with a perceptible amount and the performance results of harmonic compensation are satisfactory. Theoretical analysis and simulation results are obtained from an actual industrial network model in PSCAD. The simulation results are presented for a proposed system in order to demonstrate that the harmonic compensation performance meets the IEEE-519 standard.

  15. The TDDB Characteristics of Ultra-Thin Gate Oxide MOS Capacitors under Constant Voltage Stress and Substrate Hot-Carrier Injection

    Directory of Open Access Journals (Sweden)

    Jingyu Shen

    2018-01-01

    Full Text Available The breakdown characteristics of ultra-thin gate oxide MOS capacitors fabricated in 65 nm CMOS technology under constant voltage stress and substrate hot-carrier injection are investigated. Compared to normal thick gate oxide, the degradation mechanism of time-dependent dielectric breakdown (TDDB of ultra-thin gate oxide is found to be different. It is found that the gate current (Ig of ultra-thin gate oxide MOS capacitor is more likely to be induced not only by Fowler-Nordheim (F-N tunneling electrons, but also by electrons surmounting barrier and penetrating electrons in the condition of constant voltage stress. Moreover it is shown that the time to breakdown (tbd under substrate hot-carrier injection is far less than that under constant voltage stress when the failure criterion is defined as a hard breakdown according to the experimental results. The TDDB mechanism of ultra-thin gate oxide will be detailed. The differences in TDDB characteristics of MOS capacitors induced by constant voltage stress and substrate hot-carrier injection will be also discussed.

  16. Control of grid integrated voltage source converters under unbalanced conditions: development of an on-line frequency-adaptive virtual flux-based approach

    Energy Technology Data Exchange (ETDEWEB)

    Suul, Jon Are

    2012-03-15

    Three-Phase Voltage Source Converters (VSCs) are finding widespread applications in grid integrated power conversion systems. The control systems of such VSCs are in an increasing number of these applications required to operate during voltage disturbances and unbalanced conditions. Control systems designed for grid side voltagesensor-less operation are at the same time becoming attractive due to the continuous drive for cost reduction and increased reliability of VSCs, but are not commonly applied for operation during unbalanced conditions. Methods for voltage-sensor-less grid synchronization and control of VSCs under unbalanced grid voltage conditions will therefore be the main focus of this Thesis. Estimation methods based on the concept of Virtual Flux, considering the integral of the converter voltage in analogy to the flux of an electric machine, are among the simplest and most well known techniques for achieving voltage-sensor-less grid synchronization. Most of the established techniques for Virtual Flux estimation are, however, either sensitive to grid frequency variations or they are not easily adaptable for operation under unbalanced grid voltage conditions. This Thesis addresses both these issues by proposing a simple approach for Virtual Flux estimation by utilizing a frequency-adaptive filter based on a Second Order Generalized Integrator (SOGI). The proposed approach can be used to achieve on-line frequency-adaptive varieties of conventional strategies for Virtual Flux estimation. The main advantage is, however, that the SOGI-based Virtual Flux estimation can be arranged in a structure that achieves inherent symmetrical component sequence separation under unbalanced conditions. The proposed method for Virtual Flux estimation can be used as a general basis for voltage-sensor-less grid synchronization and control during unbalanced conditions. In this Thesis, the estimated Virtual Flux signals are used to develop a flexible strategy for control of active

  17. Speed Control of Matrix Converter-Fed Five-Phase Permanent Magnet Synchronous Motors under Unbalanced Voltages

    Directory of Open Access Journals (Sweden)

    Borzou Yousefi

    2017-09-01

    Full Text Available Five-phase permanent magnet synchronous motors (PMSM have special applications in which highly accurate speed and torque control of the motor are a strong requirement. Direct Torque Control (DTC is a suitable method for the driver structure of these motors. If in this method, instead of using a common five-phase voltage source inverter, a three-phase to five-phase matrix converter is used, the low-frequency current harmonics and the high torque ripple are limited, and an improved input power factor is obtained. Because the input voltages of such converters are directly supplied by input three-phase supply voltages, an imbalance in the voltages will cause problems such as unbalanced stator currents and electromagnetic torque fluctuations. In this paper, a new method is introduced to remove speed and torque oscillator factors. For this purpose, motor torque equations were developed and the oscillation components created by the unbalanced source voltage, determined. Then, using the active and reactive power reference generator, the controller power reference was adjusted in such a way that the electromagnetic torque of the motor did not change. By this means, a number of features including speed, torque, and flux of the motor were improved in terms of the above-mentioned conditions. Simulations were analyzed using Matlab/Simulink software.

  18. Experimental characterization of self-sensing SMA actuators under controlled convective cooling

    International Nuclear Information System (INIS)

    Lewis, N; York, A; Seelecke, S

    2013-01-01

    Shape memory alloy (SMA) wires are attractive for actuation systems due to their high energy density, light weight and silent operation. In addition, they feature self-sensing capabilities by relating electrical resistance measurements to strain changes. In real world applications SMAs typically operate in non-ambient air and it is imperative to understand an actuator’s behavior under varying convective cooling conditions, especially for smaller diameter wires, where convective effects are amplified. This paper shows that the multi-functionality of SMA actuators can be further extended by related heating power to convective air speed. It investigates the relationship between the normalized excess power needed and corresponding airspeed under controlled, laminar airflow patterns in a small-scale wind tunnel. For each experiment, airflow through the wind tunnel, strain in the SMA wire, and power supplied to the SMA wire were controlled, while the stress and resistance of the wire were measured. The ability to understand and predict an SMA wire’s behavior under various external airflows will aid in the design and understanding of future SMA actuated structures, such as micro-air vehicles, and shows that SMAs can function as self-sensing actuators and airspeed sensors. (paper)

  19. Newton Output Blocking Force under Low-Voltage Stimulation for Carbon Nanotube-Electroactive Polymer Composite Artificial Muscles.

    Science.gov (United States)

    Chen, I-Wen Peter; Yang, Ming-Chia; Yang, Chia-Hui; Zhong, Dai-Xuan; Hsu, Ming-Chun; Chen, YiWen

    2017-02-15

    This is a study on the development of carbon nanotube-based composite actuators using a new ionic liquid-doped electroactive ionic polymer. For scalable production purposes, a simple hot-pressing method was used. Carbon nanotube/ionic liquid-Nafion/carbon nanotube composite films were fabricated that exhibited a large output blocking force and a stable cycling life with low alternating voltage stimuli in air. Of particular interest and importance, a blocking force of 1.5 N was achieved at an applied voltage of 6 V. Operational durability was confirmed by testing in air for over 30 000 cycles (or 43 h). The superior actuation performance of the carbon nanotube/ionic liquid-Nafion/carbon nanotube composite, coupled with easy manufacturability, low driving voltage, and reliable operation, promises great potential for artificial muscle and biomimetic applications.

  20. Research and Application of Remote Sensing Monitoring Method for Desertification Land Under Time and Space Constraints

    Science.gov (United States)

    Zhang, Nannnan; Wang, Rongbao; Zhang, Feng

    2018-04-01

    Serious land desertification and sandified threaten the urban ecological security and the sustainable economic and social development. In recent years, a large number of mobile sand dunes in Horqin sandy land flow into the northwest of Liaoning Province under the monsoon, make local agriculture suffer serious harm. According to the characteristics of desertification land in northwestern Liaoning, based on the First National Geographical Survey data, the Second National Land Survey data and the 1984-2014 Landsat satellite long time sequence data and other multi-source data, we constructed a remote sensing monitoring index system of desertification land in Northwest Liaoning. Through the analysis of space-time-spectral characteristics of desertification land, a method for multi-spectral remote sensing image recognition of desertification land under time-space constraints is proposed. This method was used to identify and extract the distribution and classification of desertification land of Chaoyang City (a typical citie of desertification in northwestern Liaoning) in 2008 and 2014, and monitored the changes and transfers of desertification land from 2008 to 2014. Sandification information was added to the analysis of traditional landscape changes, improved the analysis model of desertification land landscape index, and the characteristics and laws of landscape dynamics and landscape pattern change of desertification land from 2008 to 2014 were analyzed and revealed.

  1. Compressive Sensing of Roller Bearing Faults via Harmonic Detection from Under-Sampled Vibration Signals.

    Science.gov (United States)

    Tang, Gang; Hou, Wei; Wang, Huaqing; Luo, Ganggang; Ma, Jianwei

    2015-10-09

    The Shannon sampling principle requires substantial amounts of data to ensure the accuracy of on-line monitoring of roller bearing fault signals. Challenges are often encountered as a result of the cumbersome data monitoring, thus a novel method focused on compressed vibration signals for detecting roller bearing faults is developed in this study. Considering that harmonics often represent the fault characteristic frequencies in vibration signals, a compressive sensing frame of characteristic harmonics is proposed to detect bearing faults. A compressed vibration signal is first acquired from a sensing matrix with information preserved through a well-designed sampling strategy. A reconstruction process of the under-sampled vibration signal is then pursued as attempts are conducted to detect the characteristic harmonics from sparse measurements through a compressive matching pursuit strategy. In the proposed method bearing fault features depend on the existence of characteristic harmonics, as typically detected directly from compressed data far before reconstruction completion. The process of sampling and detection may then be performed simultaneously without complete recovery of the under-sampled signals. The effectiveness of the proposed method is validated by simulations and experiments.

  2. Voltage-Balancing Method for Modular Multilevel Converters Under Phase-Shifted Carrier-Based Pulsewidth Modulation

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2015-01-01

    The modular multilevel converter (MMC) becomes attractive for medium- or high-power applications because of the advantages of high modularity, availability, and power quality. One of the technical challenges associated with an MMC is the balancing of the capacitors' voltages. In this paper...

  3. Thermal Optimized Operation of the Single-Phase Full-Bridge PV Inverter under Low Voltage Ride-Through Mode

    DEFF Research Database (Denmark)

    Wang, Huai; Yang, Yongheng; Blaabjerg, Frede

    2013-01-01

    The efficiency of 98% has been reported on transformer-less photovoltaic (PV) inverters and the penetration of grid-connected PV systems is booming as well. In the future, the PV systems are expected to contribute to the grid stability by means of low voltage ride-through operation and grid suppo...

  4. An Enhanced LVRT Scheme for DFIG-based WECSs under Both Balanced and Unbalanced Grid Voltage Sags

    DEFF Research Database (Denmark)

    Mohammadi, Jafar; Afsharnia, Saeed; Ebrahimzadeh, Esmaeil

    2017-01-01

    reactive power into the grid. The passive compensator is based on a three-phase stator damping resistor (SDR) located in series with the stator windings. The proposed scheme decreases the negative effects of grid voltage sags in the DFIG system including the rotor over-currents, electromagnetic torque...

  5. Analytical closed-form investigation of PWM inverter induction motor drive performance under DC bus voltage pulsation

    Czech Academy of Sciences Publication Activity Database

    Klíma, J.; Chomát, Miroslav; Schreier, Luděk

    2008-01-01

    Roč. 2, č. 6 (2008), s. 341-352 ISSN 1751-8660 R&D Projects: GA ČR GA102/08/0424 Institutional research plan: CEZ:AV0Z20570509 Keywords : DC-link voltage pulsations * torque ripple * induction motor Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.660, year: 2008

  6. A thermalization energy analysis of the threshold voltage shift in amorphous indium gallium zinc oxide thin film transistors under positive gate bias stress

    Energy Technology Data Exchange (ETDEWEB)

    Niang, K. M.; Flewitt, A. J., E-mail: ajf@eng.cam.ac.uk [Electrical Engineering Division, Cambridge University, J J Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Barquinha, P. M. C.; Martins, R. F. P. [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica (Portugal); Cobb, B. [Holst Centre/TNO, High Tech Campus 31, 5656AE Eindhoven (Netherlands); Powell, M. J. [252, Valley Drive, Kendal LA9 7SL (United Kingdom)

    2016-02-29

    Thin film transistors (TFTs) employing an amorphous indium gallium zinc oxide (a-IGZO) channel layer exhibit a positive shift in the threshold voltage under the application of positive gate bias stress (PBS). The time and temperature dependence of the threshold voltage shift was measured and analysed using the thermalization energy concept. The peak energy barrier to defect conversion is extracted to be 0.75 eV and the attempt-to-escape frequency is extracted to be 10{sup 7} s{sup −1}. These values are in remarkable agreement with measurements in a-IGZO TFTs under negative gate bias illumination stress (NBIS) reported recently (Flewitt and Powell, J. Appl. Phys. 115, 134501 (2014)). This suggests that the same physical process is responsible for both PBS and NBIS, and supports the oxygen vacancy defect migration model that the authors have previously proposed.

  7. Performance Comparison of BPL, EtherLoop and SHDSL technology performance on existing pilot cable circuits under the presence of induced voltage

    International Nuclear Information System (INIS)

    Che, Y X; Ong, H S; Lai, L C; Ong, X J; Do, N Q; Karuppiah, S

    2013-01-01

    Pilot cable is originally used for utility protection. Then, pilot cable is further utilized for SCADA communication with low frequency PSK modem in the early 1990. However, the quality of pilot cable communication drops recently. Pilot cable starts to deteriorate due to aging and other unknown factors. It is also believed that the presence of induced voltage causes interference to existing modem communication which operates at low frequency channel. Therefore, BPL (Broadband Power Line), EtherLoop and SHDSL (Symmetrical High-speed Digital Subscriber Line) modem technology are proposed as alternative communication solutions for pilot cable communication. The performance of the 3 selected technologies on existing pilot cable circuits under the presence of induced voltage are measured and compared. Total of 11 pilot circuits with different length and level of induced voltage influence are selected for modem testing. The performance of BPL, EtherLoop and SHDSL modem technology are measured by the delay, bandwidth, packet loss and the long term usability SCADA (Supervisory Control and Data Acquisition) application. The testing results are presented and discussed in this paper. The results show that the 3 selected technologies are dependent on distance and independent on the level of induced voltage.

  8. Single Step Formation of C-TiO2 Nanotubes: Influence of Applied Voltage and Their Photocatalytic Activity under Solar Illumination

    Directory of Open Access Journals (Sweden)

    Chin Wei Lai

    2013-01-01

    Full Text Available Self-aligned and high-uniformity carbon (C- titania (TiO2 nanotube arrays were successfully formed via single step anodization of titanium (Ti foil at 30 V for 1 h in a bath composed of ethylene glycol (EG, ammonium fluoride (NH4F, and hydrogen peroxide (H2O2. It was well established that applied voltage played an important role in controlling field-assisted oxidation and field-assisted dissolution during electrochemical anodization process. Therefore, the influences of applied voltage on the formation of C-TiO2 nanotube arrays were discussed. It was found that a minimal applied voltage of 30 V was required to form the self-aligned and high-uniformity C-TiO2 nanotube arrays with diameter of ~75 nm and length of ~2 μm. The samples synthesized using different applied voltages were then subjected to heat treatment for the conversion of amorphous phase to crystalline phase. The photocatalytic activity evaluation of C-TiO2 samples was made under degradation of organic dye (methyl orange (MO solution. The results revealed that controlled nanoarchitecture C-TiO2 photocatalyst led to a significant enhancement in photocatalytic activity due to the creation of more specific active surface areas for incident photons absorption from the solar illumination.

  9. Remote-sensing based approach to forecast habitat quality under climate change scenarios.

    Directory of Open Access Journals (Sweden)

    Juan M Requena-Mullor

    Full Text Available As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071-2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the

  10. Improved Power Control Using Optimal Adjustable Coefficients for Three-Phase Photovoltaic Inverter under Unbalanced Grid Voltage

    Science.gov (United States)

    Wang, Qianggang; Zhou, Niancheng; Lou, Xiaoxuan; Chen, Xu

    2014-01-01

    Unbalanced grid faults will lead to several drawbacks in the output power quality of photovoltaic generation (PV) converters, such as power fluctuation, current amplitude swell, and a large quantity of harmonics. The aim of this paper is to propose a flexible AC current generation method by selecting coefficients to overcome these problems in an optimal way. Three coefficients are brought in to tune the output current reference within the required limits of the power quality (the current harmonic distortion, the AC current peak, the power fluctuation, and the DC voltage fluctuation). Through the optimization algorithm, the coefficients can be determined aiming to generate the minimum integrated amplitudes of the active and reactive power references with the constraints of the inverter current and DC voltage fluctuation. Dead-beat controller is utilized to track the optimal current reference in a short period. The method has been verified in PSCAD/EMTDC software. PMID:25243215

  11. Improved power control using optimal adjustable coefficients for three-phase photovoltaic inverter under unbalanced grid voltage.

    Science.gov (United States)

    Wang, Qianggang; Zhou, Niancheng; Lou, Xiaoxuan; Chen, Xu

    2014-01-01

    Unbalanced grid faults will lead to several drawbacks in the output power quality of photovoltaic generation (PV) converters, such as power fluctuation, current amplitude swell, and a large quantity of harmonics. The aim of this paper is to propose a flexible AC current generation method by selecting coefficients to overcome these problems in an optimal way. Three coefficients are brought in to tune the output current reference within the required limits of the power quality (the current harmonic distortion, the AC current peak, the power fluctuation, and the DC voltage fluctuation). Through the optimization algorithm, the coefficients can be determined aiming to generate the minimum integrated amplitudes of the active and reactive power references with the constraints of the inverter current and DC voltage fluctuation. Dead-beat controller is utilized to track the optimal current reference in a short period. The method has been verified in PSCAD/EMTDC software.

  12. Soft cooperative spectrum sensing performance under imperfect and non identical reporting channels

    KAUST Repository

    Ben Ghorbel, Mahdi; Nam, Haewoon; Alouini, Mohamed-Slim

    2015-01-01

    in cooperative spectrum sensing techniques assume perfect channels between the cooperating users, this paper studies the effect of imperfect channels when local users report their sensed information to the fusion center. Cooperative detection and false

  13. Integrative Approach with Electrophysiological and Theoretical Methods Reveals a New Role of S4 Positively Charged Residues in PKD2L1 Channel Voltage-Sensing.

    Science.gov (United States)

    Numata, Tomohiro; Tsumoto, Kunichika; Yamada, Kazunori; Kurokawa, Tatsuki; Hirose, Shinichi; Nomura, Hideki; Kawano, Mitsuhiro; Kurachi, Yoshihisa; Inoue, Ryuji; Mori, Yasuo

    2017-08-29

    Numerical model-based simulations provide important insights into ion channel gating when experimental limitations exist. Here, a novel strategy combining numerical simulations with patch clamp experiments was used to investigate the net positive charges in the putative transmembrane segment 4 (S4) of the atypical, positively-shifted voltage-dependence of polycystic kidney disease 2-like 1 (PKD2L1) channel. Charge-neutralising mutations (K452Q, K455Q and K461Q) in S4 reduced gating charges, positively shifted the Boltzmann-type activation curve [i.e., open probability (P open )-V curve] and altered the time-courses of activation/deactivation of PKD2L1, indicating that this region constitutes part of a voltage sensor. Numerical reconstruction of wild-type (WT) and mutant PKD2L1-mediated currents necessitated, besides their voltage-dependent gating parameters, a scaling factor that describes the voltage-dependence of maximal conductance, G max . Subsequent single-channel conductance (γ) measurements revealed that voltage-dependence of G max in WT can be explained by the inward-rectifying property of γ, which is greatly changed in PKD2L1 mutants. Homology modelling based on PKD2 and Na V Ab structures suggest that such voltage dependence of P open and γ in PKD2L1 could both reflect the charged state of the S4 domain. The present conjunctive experimental and theoretical approaches provide a framework to explore the undetermined mechanism(s) regulating TRP channels that possess non-classical voltage-dependent properties.

  14. Bird Migration Under Climate Change - A Mechanistic Approach Using Remote Sensing

    Science.gov (United States)

    Smith, James A.; Blattner, Tim; Messmer, Peter

    2010-01-01

    The broad-scale reductions and shifts that may be expected under climate change in the availability and quality of stopover habitat for long-distance migrants is an area of increasing concern for conservation biologists. Researchers generally have taken two broad approaches to the modeling of migration behaviour to understand the impact of these changes on migratory bird populations. These include models based on causal processes and their response to environmental stimulation, "mechanistic models", or models that primarily are based on observed animal distribution patterns and the correlation of these patterns with environmental variables, i.e. "data driven" models. Investigators have applied the latter technique to forecast changes in migration patterns with changes in the environment, for example, as might be expected under climate change, by forecasting how the underlying environmental data layers upon which the relationships are built will change over time. The learned geostatstical correlations are then applied to the modified data layers.. However, this is problematic. Even if the projections of how the underlying data layers will change are correct, it is not evident that the statistical relationships will remain the same, i.e. that the animal organism may not adapt its' behaviour to the changing conditions. Mechanistic models that explicitly take into account the physical, biological, and behaviour responses of an organism as well as the underlying changes in the landscape offer an alternative to address these shortcomings. The availability of satellite remote sensing observations at multiple spatial and temporal scales, coupled with advances in climate modeling and information technologies enable the application of the mechanistic models to predict how continental bird migration patterns may change in response to environmental change. In earlier work, we simulated the impact of effects of wetland loss and inter-annual variability on the fitness of

  15. Voltage gated potassium channel antibodies positive autoimmune encephalopathy in a child: A case report and literature review of an under-recognized condition

    Directory of Open Access Journals (Sweden)

    Subramanian Ganesan

    2013-01-01

    Full Text Available Autoimmune limbic encephalitis (LE associated with voltage gated potassium channel antibodies (VGKC-Abs in children is more common than previously thought and is not always paraneoplastic. Non-neoplastic, autoimmune LE associated with VGKC-Abs has been described recently. However, only few case reports in children as the disease is predominantly described in the adult population. It is likely that this type of autoimmune encephalitis is currently under-diagnosed and hence, under-treated, especially in children. We present a 13-year-old previously fit and healthy African girl diagnosed with LE and we reviewed the literature for its current management.

  16. Voltage gated potassium channel antibodies positive autoimmune encephalopathy in a child: A case report and literature review of an under-recognized condition

    Science.gov (United States)

    Ganesan, Subramanian; Beri, Sushil; Khan, Beri; Hussain, Nahin

    2013-01-01

    Autoimmune limbic encephalitis (LE) associated with voltage gated potassium channel antibodies (VGKC-Abs) in children is more common than previously thought and is not always paraneoplastic. Non-neoplastic, autoimmune LE associated with VGKC-Abs has been described recently. However, only few case reports in children as the disease is predominantly described in the adult population. It is likely that this type of autoimmune encephalitis is currently under-diagnosed and hence, under-treated, especially in children. We present a 13-year-old previously fit and healthy African girl diagnosed with LE and we reviewed the literature for its current management. PMID:24339586

  17. Underlying Physics of Conductive Polymer Composites and Force Sensing Resistors (FSRs). A Study on Creep Response and Dynamic Loading.

    Science.gov (United States)

    Paredes-Madrid, Leonel; Matute, Arnaldo; Bareño, Jorge O; Parra Vargas, Carlos A; Gutierrez Velásquez, Elkin I

    2017-11-21

    Force Sensing Resistors (FSRs) are manufactured by sandwiching a Conductive Polymer Composite (CPC) between metal electrodes. The piezoresistive property of FSRs has been exploited to perform stress and strain measurements, but the rheological property of polymers has undermined the repeatability of measurements causing creep in the electrical resistance of FSRs. With the aim of understanding the creep phenomenon, the drift response of thirty two specimens of FSRs was studied using a statistical approach. Similarly, a theoretical model for the creep response was developed by combining the Burger's rheological model with the equations for the quantum tunneling conduction through thin insulating films. The proposed model and the experimental observations showed that the sourcing voltage has a strong influence on the creep response; this observation-and the corresponding model-is an important contribution that has not been previously accounted. The phenomenon of sensitivity degradation was also studied. It was found that sensitivity degradation is a voltage-related phenomenon that can be avoided by choosing an appropriate sourcing voltage in the driving circuit. The models and experimental observations from this study are key aspects to enhance the repeatability of measurements and the accuracy of FSRs.

  18. Influence of the braking power control of the traction asynchronous machine in the voltage vector control system under DC

    Directory of Open Access Journals (Sweden)

    Юлія Олександрівна Слободенюк

    2016-11-01

    Full Text Available At braking the traction motors are transferred to generator mode and produce electrical energy which passes to the contact mains or storage device in the DC mains for further use. Such braking is called regenerative. The resulting electrical energy can be spent by trains in traction mode. Regenerative braking reduces the consumption of electric power for traction. In electric railways of our country more than 3% of the consumed electrical energy is given back to contact mains annually. As this takes place there arises the task to control the braking of the traction motors with minimal impact on electric power quality and maintaining proper braking performance. Based on the analysis of the characteristics of the brake traction of an electric locomotive with asynchronous electric machines the main braking modes have been chosen: at a constant sliding speed and the stator constant voltage; at constant braking power and the stator constant voltage; at a power value more than the nominal braking power; at a constant load torque; at a constant frequency of the stator. The vector control system with the formation of the reactive component of the stator current and the EMF regulator was chosen, basing on the working conditions characteristics in the electric braking mode (recuperation; namely, that the characteristics are defined by the laws regulating the frequency and voltage across the stator windings. This control system can fully reproduce any predetermined trajectory of traction and braking performance and adjust braking power. The offered system with recuperation can be used as a means of compensation in emergency situations with a power failure

  19. Fault Ride Though Control of Photovoltaic Grid-connected Inverter with Current-limited Capability under Offshore Unbalanced Voltage Conditions

    DEFF Research Database (Denmark)

    Liu, Wenzhao; Guo, Xiaoqiang; Savaghebi, Mehdi

    2016-01-01

    The photovoltaic (PV) inverter installed on board experiences the excessive current stress in case of the offshore unbalanced voltage fault ride through (FRT), which significantly affects the operation reliability of the power supply system. In order to solve the problem, the inherent mechanism...... of the excessive current phenomenon with the conventional fault ride through control is discussed. The quantitative analysis of the current peak value is conducted and a new current-limiting control strategy is proposed to achieve the flexible power control and successful fault ride through in a safe current...

  20. Flexible Power Regulation and Current-limited Control of Grid-connected Inverter under Unbalanced Grid Voltage Faults

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Liu, Wenzhao; Lu, Zhigang

    2017-01-01

    The grid-connected inverters may experience excessive current stress in case of unbalanced grid voltage Fault Ride Through (FRT), which significantly affects the reliability of the power supply system. In order to solve the problem, the inherent mechanisms of the excessive current phenomenon...... with the conventional FRT solutions are discussed. The quantitative analysis of three phase current peak values are conducted and a novel current-limited control strategy is proposed to achieve the flexible active and reactive power regulation and successful FRT in a safe current operation area with the aim...

  1. Mathematical model of voltage-current characteristics of Bi(2223)/Ag magnets under an external magnetic field

    CERN Document Server

    Pitel, J; Lehtonen, J; Kovács, P

    2002-01-01

    We have developed a mathematical model, which enables us to predict the voltage-current V(I) characteristics of a solenoidal high-temperature superconductor (HTS) magnet subjected to an external magnetic field parallel to the magnet axis. The model takes into account the anisotropy in the critical current-magnetic field (I sub c (B)) characteristic and the n-value of Bi(2223)Ag multifilamentary tape at 20 K. From the power law between the electric field and the ratio of the operating and critical currents, the voltage on the magnet terminals is calculated by integrating the contributions of individual turns. The critical current of each turn, at given values of operating current and external magnetic field, is obtained by simple linear interpolation between the two suitable points of the I sub c (B) characteristic, which corresponds to the angle alpha between the vector of the resulting magnetic flux density and the broad tape face. In fact, the model is valid for any value and orientation of external magneti...

  2. Flood Inundation Modelling Under Uncertainty Using Globally and Freely Available Remote Sensing Data

    Science.gov (United States)

    Yan, K.; Di Baldassarre, G.; Giustarini, L.; Solomatine, D. P.

    2012-04-01

    The extreme consequences of recent catastrophic events have highlighted that flood risk prevention still needs to be improved to reduce human losses and economic damages, which have considerably increased worldwide in recent years. Flood risk management and long term floodplain planning are vital for living with floods, which is the currently proposed approach to cope with floods. To support the decision making processes, a significant issue is the availability of data to build appropriate and reliable models, from which the needed information could be obtained. The desirable data for model building, calibration and validation are often not sufficient or available. A unique opportunity is offered nowadays by globally available data which can be freely downloaded from internet. This might open new opportunities for filling the gap between available and needed data, in order to build reliable models and potentially lead to the development of global inundation models to produce floodplain maps for the entire globe. However, there remains the question of what is the real potential of those global remote sensing data, characterized by different accuracy, for global inundation monitoring and how to integrate them with inundation models. This research aims at contributing to understand whether the current globally and freely available remote sensing data (e.g. SRTM, SAR) can be actually used to appropriately support inundation modelling. In this study, the SRTM DEM is used for hydraulic model building, while ENVISAT-ASAR satellite imagery is used for model validation. To test the usefulness of these globally and freely available data, a model based on the high resolution LiDAR DEM and ground data (high water marks) is used as benchmark. The work is carried out on a data-rich test site: the River Alzette in the north of Luxembourg City. Uncertainties are estimated for both SRTM and LiDAR based models. Probabilistic flood inundation maps are produced under the framework of

  3. Voltage-gated calcium flux mediates Escherichia coli mechanosensation.

    Science.gov (United States)

    Bruni, Giancarlo N; Weekley, R Andrew; Dodd, Benjamin J T; Kralj, Joel M

    2017-08-29

    Electrically excitable cells harness voltage-coupled calcium influx to transmit intracellular signals, typically studied in neurons and cardiomyocytes. Despite intense study in higher organisms, investigations of voltage and calcium signaling in bacteria have lagged due to their small size and a lack of sensitive tools. Only recently were bacteria shown to modulate their membrane potential on the timescale of seconds, and little is known about the downstream effects from this modulation. In this paper, we report on the effects of electrophysiology in individual bacteria. A genetically encoded calcium sensor expressed in Escherichia coli revealed calcium transients in single cells. A fusion sensor that simultaneously reports voltage and calcium indicated that calcium influx is induced by voltage depolarizations, similar to metazoan action potentials. Cytoplasmic calcium levels and transients increased upon mechanical stimulation with a hydrogel, and single cells altered protein concentrations dependent on the mechanical environment. Blocking voltage and calcium flux altered mechanically induced changes in protein concentration, while inducing calcium flux reproduced these changes. Thus, voltage and calcium relay a bacterial sense of touch and alter cellular lifestyle. Although the calcium effectors remain unknown, these data open a host of new questions about E. coli , including the identity of the underlying molecular players, as well as other signals conveyed by voltage and calcium. These data also provide evidence that dynamic voltage and calcium exists as a signaling modality in the oldest domain of life, and therefore studying electrophysiology beyond canonical electrically excitable cells could yield exciting new findings.

  4. Mathematical Modeling of Interacting Glucose-Sensing Mechanisms and Electrical Activity Underlying Glucagon-Like Peptide 1 Secretion.

    Directory of Open Access Journals (Sweden)

    Michela Riz

    2015-12-01

    Full Text Available Intestinal L-cells sense glucose and other nutrients, and in response release glucagon-like peptide 1 (GLP-1, peptide YY and other hormones with anti-diabetic and weight-reducing effects. The stimulus-secretion pathway in L-cells is still poorly understood, although it is known that GLP-1 secreting cells use sodium-glucose co-transporters (SGLT and ATP-sensitive K+-channels (K(ATP-channels to sense intestinal glucose levels. Electrical activity then transduces glucose sensing to Ca2+-stimulated exocytosis. This particular glucose-sensing arrangement with glucose triggering both a depolarizing SGLT current as well as leading to closure of the hyperpolarizing K(ATP current is of more general interest for our understanding of glucose-sensing cells. To dissect the interactions of these two glucose-sensing mechanisms, we build a mathematical model of electrical activity underlying GLP-1 secretion. Two sets of model parameters are presented: one set represents primary mouse colonic L-cells; the other set is based on data from the GLP-1 secreting GLUTag cell line. The model is then used to obtain insight into the differences in glucose-sensing between primary L-cells and GLUTag cells. Our results illuminate how the two glucose-sensing mechanisms interact, and suggest that the depolarizing effect of SGLT currents is modulated by K(ATP-channel activity. Based on our simulations, we propose that primary L-cells encode the glucose signal as changes in action potential amplitude, whereas GLUTag cells rely mainly on frequency modulation. The model should be useful for further basic, pharmacological and theoretical investigations of the cellular signals underlying endogenous GLP-1 and peptide YY release.

  5. Characterization of clay-modified thermoset polymers under various environmental conditions for the use in high-voltage power pylons

    DEFF Research Database (Denmark)

    Kliem, Mathias; Høgsberg, Jan Becker; Wang, Qian

    2017-01-01

    The effect of nanoclay on various material properties like damping and strength of typical thermoset polymers, such as epoxy and vinyl ester, was investigated. Different environmental conditions typical for high-voltage transmission pylons made of composite materials were taken into account. Resin...... samples were prepared with various clay weight fractions ranging from 0% to 3%. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction and rheological analysis were used to study the morphology and the structure of the nanocomposites. For all nanoclay-modified thermoset polymers......, the morphology was found to be of exfoliated structure mainly. Static, uniaxial tensile tests showed that the addition of nanoclay to thermoset polymers led to a beneficial effect on the stiffness, whereas the tensile strength and ductility significantly decreased. When exposed to different environmental...

  6. Investigations into the locomotor activity of white rats under the effect of 50 Hz high voltage fields

    Energy Technology Data Exchange (ETDEWEB)

    Hilmer, H.; Tembrock, G.

    1970-07-01

    Tests were carried out on white rats to determine the effect of high-voltage 50 Hz ac electric fields on their locomotor activity. Short-term tests showed that, when they were able to choose between a box not subjected to a field (or subjected to a light field) and one exposed to the field, they stayed for only 27% of the time in the "field box". In the long-term tests, when exposed to the field for three hours, the principal activity peak which occurred during the last hour of the test period was shifted by one hour. Exposure to the field resulted in a change in the ratio between activity during darkness and that during periods of light. It seems probable that this ratio, as well as the daily activity pattern, will be subject to certain afer-effects of an exposure to the field lasting several weeks. 13 refs., 2 figs.

  7. Capacity limits introduced by data fusion on cooperative spectrum sensing under correlated environments

    DEFF Research Database (Denmark)

    Pratas, Nuno; Marchetti, Nicola; Rodrigues, Antonio

    2010-01-01

    spectrum sensing scheme, by measuring the perceived capacity limits introduced by the use of data fusion on cooperative sensing schemes. The analysis is supported by evaluation metrics which account for the perceived capacity limits. The analysis is performed along the data fusion chain, comparing several...... scenarios encompassing different degree of environment correlation between the cluster nodes, number of cluster nodes and sensed channel occupation statistics. Through this study we motivate that to maximize the perceived capacity by the cooperative spectrum sensing, the use of data fusion needs...

  8. A thermalization energy analysis of the threshold voltage shift in amorphous indium gallium zinc oxide thin film transistors under simultaneous negative gate bias and illumination

    Energy Technology Data Exchange (ETDEWEB)

    Flewitt, A. J., E-mail: ajf@eng.cam.ac.uk [Electrical Engineering Division, Cambridge University, J J Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Powell, M. J. [252, Valley Drive, Kendal LA9 7SL (United Kingdom)

    2014-04-07

    It has been previously observed that thin film transistors (TFTs) utilizing an amorphous indium gallium zinc oxide (a-IGZO) semiconducting channel suffer from a threshold voltage shift when subjected to a negative gate bias and light illumination simultaneously. In this work, a thermalization energy analysis has been applied to previously published data on negative bias under illumination stress (NBIS) in a-IGZO TFTs. A barrier to defect conversion of 0.65–0.75 eV is extracted, which is consistent with reported energies of oxygen vacancy migration. The attempt-to-escape frequency is extracted to be 10{sup 6}−10{sup 7} s{sup −1}, which suggests a weak localization of carriers in band tail states over a 20–40 nm distance. Models for the NBIS mechanism based on charge trapping are reviewed and a defect pool model is proposed in which two distinct distributions of defect states exist in the a-IGZO band gap: these are associated with states that are formed as neutrally charged and 2+ charged oxygen vacancies at the time of film formation. In this model, threshold voltage shift is not due to a defect creation process, but to a change in the energy distribution of states in the band gap upon defect migration as this allows a state formed as a neutrally charged vacancy to be converted into one formed as a 2+ charged vacancy and vice versa. Carrier localization close to the defect migration site is necessary for the conversion process to take place, and such defect migration sites are associated with conduction and valence band tail states. Under negative gate bias stressing, the conduction band tail is depleted of carriers, but the bias is insufficient to accumulate holes in the valence band tail states, and so no threshold voltage shift results. It is only under illumination that the quasi Fermi level for holes is sufficiently lowered to allow occupation of valence band tail states. The resulting charge localization then allows a negative threshold voltage

  9. Electrochemical performance of lithium-ion capacitors evaluated under high temperature and high voltage stress using redox stable electrolytes and additives

    Science.gov (United States)

    Boltersdorf, Jonathan; Delp, Samuel A.; Yan, Jin; Cao, Ben; Zheng, Jim P.; Jow, T. Richard; Read, Jeffrey A.

    2018-01-01

    Lithium-ion capacitors (LICs) were investigated for high power, moderate energy density applications for operation in extreme environments with prolonged cycle-life performance. The LICs were assembled as three-layered pouch cells in an asymmetric configuration employing Faradaic pre-lithiated hard carbon anodes and non-Faradaic ion adsorption-desorption activated carbon (AC) cathodes. The capacity retention was measured under high stress conditions, while the design factor explored was electrolyte formulation using a set of carbonates and electrolyte additives, with a focus on their stability. The LIC cells were evaluated using critical performance tests under the following high stress conditions: long-term voltage floating-cycling stability at room temperature (2.2-3.8 V), high temperature storage at 3.8 V, and charge voltages up to 4.4 V. The rate performance of different electrolytes and additives was measured after the initial LIC cell formation for a 1C-10C rate. The presence of vinylene carbonate (VC) and tris (trimethylsilyl) phosphate (TMSP) were found to be essential to the improved electrochemical performance of the LIC cells under all testing conditions.

  10. Low-Energy Real-Time OS Using Voltage Scheduling Algorithm for Variable Voltage Processors

    OpenAIRE

    Okuma, Takanori; Yasuura, Hiroto

    2001-01-01

    This paper presents a real-time OS based on $ mu $ITRON using proposed voltage scheduling algorithm for variable voltage processors which can vary supply voltage dynamically. The proposed voltage scheduling algorithms assign voltage level for each task dynamically in order to minimize energy consumption under timing constraints. Using the presented real-time OS, running tasks with low supply voltage leads to drastic energy reduction. In addition, the presented voltage scheduling algorithm is ...

  11. Model for Predicting DC Flashover Voltage of Pre-Contaminated and Ice-Covered Long Insulator Strings under Low Air Pressure

    Directory of Open Access Journals (Sweden)

    Zhijin Zhang

    2011-04-01

    Full Text Available In the current study, a multi-arc predicting model for DC critical flashover voltage of iced and pre-contaminated long insulator strings under low atmospheric pressure is developed. The model is composed of a series of different polarity surface arcs, icicle-icicle air gap arcs, and residual layer resistance. The calculation method of the residual resistance of the ice layer under DC multi-arc condition is established. To validate the model, 7-unit and 15-unit insulator strings were tested in a multi-function artificial climate chamber under the coexistent conditions of low air pressure, pollution, and icing. The test results showed that the values calculated by the model satisfactorily agreed with those experimentally measured, with the errors within the range of 10%, validating the rationality of the model.

  12. Evaluation of water distribution under pivot irrigation systems using remote sensing imagery in eastern Nile delta

    Directory of Open Access Journals (Sweden)

    E. Farg

    2017-04-01

    Full Text Available Traditional methods for center pivot evaluation depend on the water depth distribution along the pivot arm. Estimation and mapping the water depth under pivot irrigation systems using remote sensing data is essential for calculating the coefficient of uniformity (CU of water distribution. This study focuses on estimating and mapping water depth using Landsat OLI 8 satellite data integrated with Heerman and Hein (1968 modified equation for center pivot evaluation. Landsat OLI 8 image was geometrically and radiometrically corrected to calculate the vegetation and water indices (NDVI and NDWI in addition to land surface temperature. Results of the statistical analysis showed that the collected water depth in catchment cans is also highly correlated negatively with NDVI. On the other hand water, depth was positively correlated with NDWI and LST. Multi-linear regression analysis using stepwise selection method was applied to estimate and map the water depth distribution. The results showed R2 and adjusted R2 0.93 and 0.88 respectively. Study area or field level verification was applied for estimation equation with correlation 0.93 between the collected water depth and estimated values.

  13. Sensing performances of ZnO nanostructures grown under different oxygen pressures to hydrogen

    International Nuclear Information System (INIS)

    Chu, Jin; Peng, Xiaoyan; Wang, Zhenbo; Feng, Peter

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► Surface morphology depends on the oxygen pressure. ► Structural degradation was observed for the ZnO samples when oxygen pressure was overhigh. ► The sensitivity of the ZnO-based sensors increase with grown oxygen pressure. -- Abstract: For extensive use in an industrialized process of individual ZnO nanostructures applied in gas sensors, a simple, inexpensive, and safe synthesis process is required. Here, nanostructured ZnO films were grown by a pulsed laser deposition technique under different oxygen pressures. Scanning electron microscopy images show nanopores, nanotips, and nanoparticles are obtained and energy dispersive X-ray spectroscopy data indicate oxygen concentration of the synthesized samples increases monotonously with oxygen pressure. The sensor based on ZnO with high oxygen concentration has high sensitivity, rapid response (9 s) and recovery (80 s) behavior to 500 ppm hydrogen below 150 °C. Experimental data indicate that high oxygen concentration effectively improves the sensing properties of nanostructured ZnO.

  14. OH density measured by PLIF in a nanosecond atmospheric pressure diffuse discharge in humid air under steep high voltage pulses

    Science.gov (United States)

    Ouaras, K.; Magne, L.; Pasquiers, S.; Tardiveau, P.; Jeanney, P.; Bournonville, B.

    2018-04-01

    The spatiotemporal distributions of the OH radical density are measured using planar laser induced fluorescence in the afterglow of a nanosecond diffuse discharge at atmospheric pressure in humid air. The diffuse discharge is generated between a pin and a grounded plate electrodes within a gap of 18 mm. The high voltage pulse applied to the pin ranges from 65 to 85 kV with a rise time of 2 ns. The specific electrical energy transferred to the gas ranges from 5 to 40 J l‑1. The influence of H2O concentration is studied from 0.5% to 1.5%. An absolute calibration of OH density is performed using a six-level transient rate equation model to simulate the dynamics of OH excitation by the laser, taking into account collisional processes during the optical pumping and the fluorescence. Rayleigh scattering measurements are used to achieve the geometrical part of the calibration. A local maximum of OH density is found in the pin area whatever the operating conditions. For 85 kV and 1% of H2O, this peak reaches a value of 2.0 × 1016 cm‑3 corresponding to 8% of H2O dissociation. The temporal decay of the spatially averaged OH density is found to be similar as in the afterglow of a homogeneous photo-triggered discharge for which a self-consistent modeling is done. These tools are then used to bring discussion elements on OH kinetics.

  15. Voltage-controlled Enzymes: The new Janus Bifrons

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Villalba-Galea

    2012-09-01

    Full Text Available The Ciona intestinalis voltage sensitive phosphatase, Ci-VSP, was the first Voltage-controlled Enzyme (VEnz proven to be under direct command of the membrane potential. The discovery of Ci-VSP conjugated voltage sensitivity and enzymatic activity in a single protein. These two facets of Ci-VSP activity have provided a unique model for studying how membrane potential is sensed by proteins and a novel mechanism for control of enzymatic activity. These facets make Ci-VSP a fascinating and versatile enzyme.Ci-VSP has a voltage sensing domain (VSD that resembles those found in voltage-gated channels (VGC. The VSD resides in the N-terminus and is formed by four putative trans-membrane segments. The fourth segment contains charged residues which are likely involved in voltage sensing. Ci-VSP produces sensing currents in response to changes in potential, within a defined range of voltages. Sensing currents are analogous to gating currents in VGC. As known, these latter proteins contain four VSDs which are entangled in a complex interaction with the pore domain –the effector domain in VGC. This complexity makes studying the basis of voltage sensing in VGC a difficult enterprise. In contrast, Ci-VSP is thought to be monomeric and its catalytic domain –the VSP’s effector domain– can be cleaved off without disrupting the basic electrical functioning of the VSD. For these reasons, VSPs are considered a great model for studying the activity of a VSD in isolation. Finally, VSPs are also phosphoinositide phosphatases. Phosphoinositides are signaling lipids found in eukaryotes and are involved in many processes, including modulation of VGC activity and regulation of cell proliferation. Understanding VSPs as VEnz has been the center of attention in recent years and several reviews has been dedicated to this area. Thus, this review will be focused instead on the other face of this true Janus Bifrons and recapitulate what is known about VSPs as electrically

  16. Using Modified Remote Sensing Imagery to Interpret Changes in Cultivated Land under Saline-Alkali Conditions

    Directory of Open Access Journals (Sweden)

    Hui Gao

    2016-07-01

    Full Text Available Managing the rapidly changing saline-alkali land under cultivation in the coastal areas of China is important not only for mitigating the negative impacts of such land on the environment, but also for ensuring long-term sustainability of agriculture. In this light, setting up rapid monitoring systems to assist decision-making in developing sustainable management plans is therefore an absolute necessity. In this study, we developed a new interpretation system where symbols are used to grade and classify saline-alkali lands in space and time, based on the characteristics of plant cover and features of remote sensing images. The system was used in combination with the maximum likelihood supervised classification to analyze the changes in cultivated lands under saline-alkali conditions in Huanghua City. The analysis revealed changes in the area and spatial distribution of cultivated under saline-alkali conditions in the region. The total area of saline-alkali land was 139,588.8 ha in 1992 and 134,477.5 ha in 2011. Compared with 1992, severely and moderately saline-alkali land areas decreased in 2011. However, non/slightly saline land areas increased over that in 1992. The results showed that the salinization rate of arable lands in Huanghua City decreased from 1992 to 2011. The moderately saline-alkali land southeast of the city transformed into non/slightly saline-alkaline. Then, severely saline-alkali land far from the coastal zone west of the city became moderately saline-alkaline. Spatial changes in cultivated saline-alkali lands in Huanghua City were such that the centers of gravity (CG of severely and non/slightly saline-alkali land moved closer the coastline, while that of the moderately saline-alkali land moved from southwest coastal line to northwest. Factors influencing changes in cultivated lands in the saline-alkali ecosystem included climate, hydrology and human activity. Thus, studies are required to further explore these factors in

  17. System Capacity Limits Introduced by Data Fusion on Cooperative Spectrum Sensing under Correlated Environments

    DEFF Research Database (Denmark)

    Pratas, Nuno; Marchetti, Nicola; Prasad, Neeli R.

    2010-01-01

    on cooperative sensing schemes. The analysis is supported by evaluation metrics which accounts for the perceived capacity limits. The analysis is performed along the data fusion chain, comparing several scenarios encompassing different degrees of environment correlation between the cluster nodes, number......Spectrum sensing, the cornerstone of the Cognitive Radio paradigm, has been the focus of intensive research, from which the main conclusion was that its performance can be greatly enhanced through the use of cooperative sensing schemes. Nevertheless, if a proper design of the cooperative scheme...... is not followed, then the use of cooperative schemes will introduce some limitations in the network perceived capacity. In this paper, we analyze the performance of a cooperative spectrum sensing scheme based on Data Fusion, by measuring the perceived capacity limits introduced by the use of Data Fusion...

  18. Exact performance of cooperative spectrum sensing for cognitive radios with quantized information under imperfect reporting channels

    KAUST Repository

    Ben Ghorbel, Mahdi; Nam, Haewoon; Alouini, Mohamed-Slim

    2013-01-01

    between the sensing channels to overcome the fading and shadowing effects which allows reduction of miss-detection and false alarm probabilities. Information can be exchanged between cooperating users in different formats from the binary hard information

  19. Accurate measurement of junctional conductance between electrically coupled cells with dual whole-cell voltage-clamp under conditions of high series resistance.

    Science.gov (United States)

    Hartveit, Espen; Veruki, Margaret Lin

    2010-03-15

    Accurate measurement of the junctional conductance (G(j)) between electrically coupled cells can provide important information about the functional properties of coupling. With the development of tight-seal, whole-cell recording, it became possible to use dual, single-electrode voltage-clamp recording from pairs of small cells to measure G(j). Experiments that require reduced perturbation of the intracellular environment can be performed with high-resistance pipettes or the perforated-patch technique, but an accompanying increase in series resistance (R(s)) compromises voltage-clamp control and reduces the accuracy of G(j) measurements. Here, we present a detailed analysis of methodologies available for accurate determination of steady-state G(j) and related parameters under conditions of high R(s), using continuous or discontinuous single-electrode voltage-clamp (CSEVC or DSEVC) amplifiers to quantify the parameters of different equivalent electrical circuit model cells. Both types of amplifiers can provide accurate measurements of G(j), with errors less than 5% for a wide range of R(s) and G(j) values. However, CSEVC amplifiers need to be combined with R(s)-compensation or mathematical correction for the effects of nonzero R(s) and finite membrane resistance (R(m)). R(s)-compensation is difficult for higher values of R(s) and leads to instability that can damage the recorded cells. Mathematical correction for R(s) and R(m) yields highly accurate results, but depends on accurate estimates of R(s) throughout an experiment. DSEVC amplifiers display very accurate measurements over a larger range of R(s) values than CSEVC amplifiers and have the advantage that knowledge of R(s) is unnecessary, suggesting that they are preferable for long-duration experiments and/or recordings with high R(s). Copyright (c) 2009 Elsevier B.V. All rights reserved.

  20. Functional Connectivity Analysis of NIRS Data under Rubber Hand Illusion to Find a Biomarker of Sense of Ownership

    Directory of Open Access Journals (Sweden)

    Naoki Arizono

    2016-01-01

    Full Text Available The self-identification, which is called sense of ownership, has been researched through methodology of rubber hand illusion (RHI because of its simple setup. Although studies with neuroimaging technique, such as fMRI, revealed that several brain areas are associated with the sense of ownership, near-infrared spectroscopy (NIRS has not yet been utilized. Here we introduced an automated setup to induce RHI, measured the brain activity during the RHI with NIRS, and analyzed the functional connectivity so as to understand dynamical brain relationship regarding the sense of ownership. The connectivity was evaluated by multivariate Granger causality. In this experiment, the peaks of oxy-Hb on right frontal and right motor related areas during the illusion were significantly higher compared with those during the nonillusion. Furthermore, by analyzing the NIRS recordings, we found a reliable connectivity from the frontal to the motor related areas during the illusion. This finding suggests that frontal cortex and motor related areas communicate with each other when the sense of ownership is induced. The result suggests that the sense of ownership is related to neural mechanism underlying human motor control, and it would be determining whether motor learning (i.e., neural plasticity will occur. Thus RHI with the functional connectivity analysis will become an appropriate biomarker for neurorehabilitation.

  1. Functional Connectivity Analysis of NIRS Data under Rubber Hand Illusion to Find a Biomarker of Sense of Ownership.

    Science.gov (United States)

    Arizono, Naoki; Ohmura, Yuji; Yano, Shiro; Kondo, Toshiyuki

    2016-01-01

    The self-identification, which is called sense of ownership, has been researched through methodology of rubber hand illusion (RHI) because of its simple setup. Although studies with neuroimaging technique, such as fMRI, revealed that several brain areas are associated with the sense of ownership, near-infrared spectroscopy (NIRS) has not yet been utilized. Here we introduced an automated setup to induce RHI, measured the brain activity during the RHI with NIRS, and analyzed the functional connectivity so as to understand dynamical brain relationship regarding the sense of ownership. The connectivity was evaluated by multivariate Granger causality. In this experiment, the peaks of oxy-Hb on right frontal and right motor related areas during the illusion were significantly higher compared with those during the nonillusion. Furthermore, by analyzing the NIRS recordings, we found a reliable connectivity from the frontal to the motor related areas during the illusion. This finding suggests that frontal cortex and motor related areas communicate with each other when the sense of ownership is induced. The result suggests that the sense of ownership is related to neural mechanism underlying human motor control, and it would be determining whether motor learning (i.e., neural plasticity) will occur. Thus RHI with the functional connectivity analysis will become an appropriate biomarker for neurorehabilitation.

  2. Comparison and analysis of transient performances for doubly fed induction generator wind turbine under grid voltage dip

    DEFF Research Database (Denmark)

    Li, H.; Ye, R.; Han, L.

    2010-01-01

    In order to entirely analyze the transient performances of a grid-connected doubly fed induction generator (DFIG) wind turbine under the different operational states, based on the transient models of DFIG, a two-mass wind turbine electrical equivalent model considering the torsional flexibility o...

  3. 'Robot' Hand Illusion under Delayed Visual Feedback: Relationship between the Senses of Ownership and Agency.

    Directory of Open Access Journals (Sweden)

    Mohamad Arif Fahmi Ismail

    Full Text Available The rubber hand illusion (RHI is an illusion of the self-ownership of a rubber hand that is touched synchronously with one's own hand. While the RHI relates to visual and tactile integration, we can also consider a similar illusion with visual and motor integration on a fake hand. We call this a "robot hand illusion" (RoHI, which relates to both the senses of ownership and agency. Here we investigate the effect of delayed visual feedback on the RoHI. Participants viewed a virtual computer graphic hand controlled by their hand movement recorded using a data glove device. We inserted delays of various lengths between the participant's hand and the virtual hand movements (90-590 ms, and the RoHI effects for each delay condition were systematically tested using a questionnaire. The results showed that the participants felt significantly greater RoHI effects with temporal discrepancies of less than 190 ms compared with longer temporal discrepancies, both in the senses of ownership and agency. Additionally, participants felt significant, but weaker, RoHI effects with temporal discrepancies of 290-490 ms in the sense of agency, but not in the sense of ownership. The participants did not feel a RoHI with temporal discrepancies of 590 ms in either the senses of agency or ownership. Our results suggest that a time window of less than 200 ms is critical for multi-sensory integration processes constituting self-body image.

  4. 'Robot' Hand Illusion under Delayed Visual Feedback: Relationship between the Senses of Ownership and Agency.

    Science.gov (United States)

    Ismail, Mohamad Arif Fahmi; Shimada, Sotaro

    2016-01-01

    The rubber hand illusion (RHI) is an illusion of the self-ownership of a rubber hand that is touched synchronously with one's own hand. While the RHI relates to visual and tactile integration, we can also consider a similar illusion with visual and motor integration on a fake hand. We call this a "robot hand illusion" (RoHI), which relates to both the senses of ownership and agency. Here we investigate the effect of delayed visual feedback on the RoHI. Participants viewed a virtual computer graphic hand controlled by their hand movement recorded using a data glove device. We inserted delays of various lengths between the participant's hand and the virtual hand movements (90-590 ms), and the RoHI effects for each delay condition were systematically tested using a questionnaire. The results showed that the participants felt significantly greater RoHI effects with temporal discrepancies of less than 190 ms compared with longer temporal discrepancies, both in the senses of ownership and agency. Additionally, participants felt significant, but weaker, RoHI effects with temporal discrepancies of 290-490 ms in the sense of agency, but not in the sense of ownership. The participants did not feel a RoHI with temporal discrepancies of 590 ms in either the senses of agency or ownership. Our results suggest that a time window of less than 200 ms is critical for multi-sensory integration processes constituting self-body image.

  5. Quorum sensing: an under-explored phenomenon in the phylum Actinobacteria

    Directory of Open Access Journals (Sweden)

    Ashish Vasant Polkade

    2016-02-01

    Full Text Available Quorum sensing is known to play a major role in the regulation of secondary metabolite production, especially antibiotics, and morphogenesis in the phylum Actinobacteria. Although it is one of the largest bacterial phylum, only 25 of the 342 genera have been reported to use quorum sensing. Of these, only nine have accompanying experimental evidence; the rest are only known through bioinformatic analysis of gene/genome sequences. It is evident that this important communication mechanism is not extensively explored in Actinobacteria. In this review, we summarize the different quorum sensing systems while identifying the limitations of the existing screening strategies and addressing the improvements that have taken place in this field in recent years. The γ-butyrolactone system turned out to be almost exclusively limited to this phylum. In addition, methylenomycin furans, AI-2 and other putative AHL-like signaling molecules are also reported in Actinobacteria. The lack of existing screening systems in detecting minute quantities and of a wider range of signaling molecules was a major reason behind the limited information available on quorum sensing in this phylum. However, recent improvements in screening strategies hold a promising future and are likely to increase the discovery of new signaling molecules. Further, the quorum quenching ability in many Actinobacteria has a great potential in controlling the spread of plant and animal pathogens. A systematic and coordinated effort is required to screen and exploit the enormous potential that quorum sensing in the phylum Actinobacteria has to offer for human benefit.

  6. Crystal structure of the cytoplasmic phosphatase and tensin homolog (PTEN)-like region of Ciona intestinalis voltage-sensing phosphatase provides insight into substrate specificity and redox regulation of the phosphoinositide phosphatase activity.

    Science.gov (United States)

    Matsuda, Makoto; Takeshita, Kohei; Kurokawa, Tatsuki; Sakata, Souhei; Suzuki, Mamoru; Yamashita, Eiki; Okamura, Yasushi; Nakagawa, Atsushi

    2011-07-01

    Ciona intestinalis voltage-sensing phosphatase (Ci-VSP) has a transmembrane voltage sensor domain and a cytoplasmic region sharing similarity to the phosphatase and tensin homolog (PTEN). It dephosphorylates phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate upon membrane depolarization. The cytoplasmic region is composed of a phosphatase domain and a putative membrane interaction domain, C2. Here we determined the crystal structures of the Ci-VSP cytoplasmic region in three distinct constructs, wild-type (248-576), wild-type (236-576), and G365A mutant (248-576). The crystal structure of WT-236 and G365A-248 had the disulfide bond between the catalytic residue Cys-363 and the adjacent residue Cys-310. On the other hand, the disulfide bond was not present in the crystal structure of WT-248. These suggest the possibility that Ci-VSP is regulated by reactive oxygen species as found in PTEN. These structures also revealed that the conformation of the TI loop in the active site of the Ci-VSP cytoplasmic region was distinct from the corresponding region of PTEN; Ci-VSP has glutamic acid (Glu-411) in the TI loop, orienting toward the center of active site pocket. Mutation of Glu-411 led to acquirement of increased activity toward phosphatidylinositol 3,5-bisphosphate, suggesting that this site is required for determining substrate specificity. Our results provide the basic information of the enzymatic mechanism of Ci-VSP.

  7. Monitoring and Assessment of Military Installation Land Condition under Training Disturbance Using Remote Sensing

    Science.gov (United States)

    Rijal, Santosh

    Various military training activities are conducted in more than 11.3 million hectares of land (> 5,500 training sites) in the United States (U.S.). These training activities directly and indirectly degrade the land. Land degradation can impede continuous military training. In order to sustain long term training missions and Army combat readiness, the environmental conditions of the military installations need to be carefully monitored and assessed. Furthermore, the National Environmental Policy Act of 1969 (NEPA) and the U.S. Army Regulation 200-2 require the DoD to minimize the environmental impacts of training and document the environmental consequences of their actions. To achieve these objectives, the Department of Army initiated an Integrated Training Area Management (ITAM) program to manage training lands through assessing their environmental requirements and establishing policies and procedures to achieve optimum, sustainable use of training lands. One of the programs under ITAM, Range and Training Land Assessment (RTLA) was established to collect field-based data for monitoring installation's environmental condition. Due to high cost and inefficiencies involved in the collection of field data, the RTLA program was stopped in several military installations. Therefore, there has been a strong need to develop an efficient and low cost remote sensing based methodology for assessing and monitoring land conditions of military installations. It is also important to make a long-term assessment of installation land condition for understanding cumulative impacts of continuous military training activities. Additionally, it is unclear that compared to non-military land condition, to what extent military training activities have led to the degradation of land condition for military installations. The first paper of this dissertation developed a soil erosion relevant and image derived cover factor (ICF) based on linear spectral mixture (LSM) analysis to assess and

  8. Global Harmonic Current Rejection of Nonlinear Backstepping Control with Multivariable Adaptive Internal Model Principle for Grid-Connected Inverter under Distorted Grid Voltage

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2013-01-01

    Full Text Available Based on a brief review on current harmonics generation mechanism for grid-connected inverter under distorted grid voltage, the harmonic disturbances and uncertain items are immersed into the original state-space differential equation of grid-connected inverter. A new algorithm of global current harmonic rejection based on nonlinear backstepping control with multivariable internal model principle is proposed for grid-connected inverter with exogenous disturbances and uncertainties. A type of multivariable internal model for a class of nonlinear harmonic disturbances is constructed. Based on application of backstepping control law of the nominal system, a multivariable adaptive state feedback controller combined with multivariable internal model and adaptive control law is designed to guarantee the closed-loop system globally uniformly bounded, which is proved by a constructed Lyapunov function. The presented algorithm extends rejection of nonlinear single-input systems to multivariable globally defined normal form, the correctness and effectiveness of which are verified by the simulation results.

  9. Thermal Analysis of Multilevel Grid-side Converters for 10-MW Wind turbines under Low-Voltage Ride Through

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede; Liserre, Marco

    2013-01-01

    in the power network and able to contribute to the grid recovery by injecting reactive current during grid faults. Consequently, the full-scale power converter solutions are becoming more and more popular to fulfill the growing challenges in the wind power application. Nevertheless, the loading of the power...... devices (particularly the diodes) under LVRT operation. Moreover, the three-level and five-level H-bridge topologies show more potential to reduce the inequality and level of device stress than the well-known three-level neutral point clamped topology....

  10. Exact performance of cooperative spectrum sensing for cognitive radios with quantized information under imperfect reporting channels

    KAUST Repository

    Ben Ghorbel, Mahdi

    2013-09-01

    Spectrum sensing is the first and main step for cognitive radio systems to achieve an efficient use of the spectrum. Cooperation among cognitive radio users is a technique employed to improve the sensing performance by exploiting the diversity between the sensing channels to overcome the fading and shadowing effects which allows reduction of miss-detection and false alarm probabilities. Information can be exchanged between cooperating users in different formats from the binary hard information to the full soft information. Quantized information has shown its efficiency as a trade-off between binary hard and full soft for other cooperative schemes, in this paper, we investigate the use of quantized information between cooperating cognitive users. We derive closed-form expressions of the cooperative average false alarm and detection probabilities over fading channels for a generalized system model with not necessarily identical average sensing Signal-to-Noise Ratio (SNR) and imperfect reporting channels. Numerical simulations allow us to conclude a tradeoff between the quantization size and the reporting energy in order to achieve the optimal cooperative error probability. Copyright © 2013 by the Institute of Electrical and Electronic Engineers, Inc.

  11. Experimental investigation on the development characteristics of initial electrons in a gas pressurized closing switch under DC voltage

    Science.gov (United States)

    Rongxiao, ZHAI; Mengtong, QIU; Weixi, LUO; Peitian, CONG; Tao, HUANG; Jiahui, YIN; Tianyang, ZHANG

    2018-04-01

    As one of the most important elements in linear transformer driver (LTD) based systems, the gas pressurized closing switches are required to operate with a very low prefire probability during the DC-charging process to ensure reliable operation and stable output of the whole pulsed power system. The most direct and effective way to control the prefire probability is to select a suitable working coefficient. The study of the development characteristics of the initially generated electrons is useful for optimizing the working coefficient and improving the prefire characteristic of the switches. In this paper an ultraviolet pulsed laser is used to generate initial electrons inside the gap volume. A current measuring system is used to measure the time-dependent current generated by the growth of the initial electrons so as to study the development characteristics of the electrons under different working coefficients. Experimental results show that the development characteristics of the initial electrons are influenced obviously by the working coefficient. With the increase of the working coefficient, the development degree of the electrons increases consequently. At the same times, there is a threshold of working coefficient which produces the effect of ionization on electrons. The range of the threshold has a slow growth but remains close to 65% with the gas pressure increase. When the working coefficient increases further, γ processes are starting to be generated inside the gap volume. In addition, an optimal working coefficient beneficial for improving the prefire characteristic is indicated and further tested.

  12. Study of medieval fortified settlements destruction under natural and anthropogenic factors using remote sensing data

    Science.gov (United States)

    Gainullin, I. I.; Khomyakov, P. V.; Usmanov, B. M.

    2018-01-01

    Archaeological monuments are an essential part of the cultural landscape. Modern condition of archaeological monuments of the Republic of Tatarstan is discussed in this article. Fortified settlements, with the system of defensive fortifications were selected as the objects of study, as they are easily identified by remote sensing data. Due to the fact, that most of monuments are located on the small rivers banks, the first task of our study was to assess the risk of their destruction by natural processes. The second objective was to evaluate the role of the human factor in archaeological sites destruction. One of the main used methods is archival and modern remote sensing data analysis that also made able to correct the form of study settlements in comparison with existing plans as well as their size and location in the landscape. The results of research will help to identify trends in monuments state and to quantify the risks of their destruction.

  13. Sense of control under uncertainty depends on people's childhood environment: a life history theory approach.

    Science.gov (United States)

    Mittal, Chiraag; Griskevicius, Vladas

    2014-10-01

    Past research found that environmental uncertainty leads people to behave differently depending on their childhood environment. For example, economic uncertainty leads people from poor childhoods to become more impulsive while leading people from wealthy childhoods to become less impulsive. Drawing on life history theory, we examine the psychological mechanism driving such diverging responses to uncertainty. Five experiments show that uncertainty alters people's sense of control over the environment. Exposure to uncertainty led people from poorer childhoods to have a significantly lower sense of control than those from wealthier childhoods. In addition, perceptions of control statistically mediated the effect of uncertainty on impulsive behavior. These studies contribute by demonstrating that sense of control is a psychological driver of behaviors associated with fast and slow life history strategies. We discuss the implications of this for theory and future research, including that environmental uncertainty might lead people who grew up poor to quit challenging tasks sooner than people who grew up wealthy. 2014 APA, all rights reserved

  14. Voltage-dependent gating in a "voltage sensor-less" ion channel.

    Directory of Open Access Journals (Sweden)

    Harley T Kurata

    2010-02-01

    Full Text Available The voltage sensitivity of voltage-gated cation channels is primarily attributed to conformational changes of a four transmembrane segment voltage-sensing domain, conserved across many levels of biological complexity. We have identified a remarkable point mutation that confers significant voltage dependence to Kir6.2, a ligand-gated channel that lacks any canonical voltage-sensing domain. Similar to voltage-dependent Kv channels, the Kir6.2[L157E] mutant exhibits time-dependent activation upon membrane depolarization, resulting in an outwardly rectifying current-voltage relationship. This voltage dependence is convergent with the intrinsic ligand-dependent gating mechanisms of Kir6.2, since increasing the membrane PIP2 content saturates Po and eliminates voltage dependence, whereas voltage activation is more dramatic when channel Po is reduced by application of ATP or poly-lysine. These experiments thus demonstrate an inherent voltage dependence of gating in a "ligand-gated" K+ channel, and thereby provide a new view of voltage-dependent gating mechanisms in ion channels. Most interestingly, the voltage- and ligand-dependent gating of Kir6.2[L157E] is highly sensitive to intracellular [K+], indicating an interaction between ion permeation and gating. While these two key features of channel function are classically dealt with separately, the results provide a framework for understanding their interaction, which is likely to be a general, if latent, feature of the superfamily of cation channels.

  15. A Voltage Quality Detection Method

    DEFF Research Database (Denmark)

    Chen, Zhe; Wei, Mu

    2008-01-01

    This paper presents a voltage quality detection method based on a phase-locked loop (PLL) technique. The technique can detect the voltage magnitude and phase angle of each individual phase under both normal and fault power system conditions. The proposed method has the potential to evaluate various...

  16. Beyond voltage-gated ion channels: Voltage-operated membrane proteins and cellular processes.

    Science.gov (United States)

    Zhang, Jianping; Chen, Xingjuan; Xue, Yucong; Gamper, Nikita; Zhang, Xuan

    2018-04-18

    Voltage-gated ion channels were believed to be the only voltage-sensitive proteins in excitable (and some non-excitable) cells for a long time. Emerging evidence indicates that the voltage-operated model is shared by some other transmembrane proteins expressed in both excitable and non-excitable cells. In this review, we summarize current knowledge about voltage-operated proteins, which are not classic voltage-gated ion channels as well as the voltage-dependent processes in cells for which single voltage-sensitive proteins have yet to be identified. Particularly, we will focus on the following. (1) Voltage-sensitive phosphoinositide phosphatases (VSP) with four transmembrane segments homologous to the voltage sensor domain (VSD) of voltage-gated ion channels; VSPs are the first family of proteins, other than the voltage-gated ion channels, for which there is sufficient evidence for the existence of the VSD domain; (2) Voltage-gated proton channels comprising of a single voltage-sensing domain and lacking an identified pore domain; (3) G protein coupled receptors (GPCRs) that mediate the depolarization-evoked potentiation of Ca 2+ mobilization; (4) Plasma membrane (PM) depolarization-induced but Ca 2+ -independent exocytosis in neurons. (5) Voltage-dependent metabolism of phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P 2 , PIP 2 ) in the PM. These recent discoveries expand our understanding of voltage-operated processes within cellular membranes. © 2018 Wiley Periodicals, Inc.

  17. Collective Behavior of Quorum-Sensing Run-and-Tumble Particles under Confinement.

    Science.gov (United States)

    Rein, Markus; Heinß, Nike; Schmid, Friederike; Speck, Thomas

    2016-02-05

    We study a generic model for quorum-sensing bacteria in circular confinement. Every bacterium produces signaling molecules, the local concentration of which triggers a response when a certain threshold is reached. If this response lowers the motility, then an aggregation of bacteria occurs which differs fundamentally from standard motility-induced phase separation due to the long-ranged nature of the concentration of signal molecules. We analyze this phenomenon analytically and by numerical simulations employing two different protocols leading to stationary cluster and ring morphologies, respectively.

  18. Estimation of the under-surface temperature pattern by dynamic remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Inamura, M [Univ. of Tokyo; Tao, R; Katsuma, T; Toyota, H

    1977-10-01

    There are three basic classifications of remote sensing: passive RS, which involves measurement of reflected solar radiation; active RS, which involves the use of microwaves or laser radar; and infrared scanning. These methods make possible the determination of an object's surface temperature, its effective emissivity, and its effective reflectivity. The surface temperature, in effect, contains information concerning the structure below the surface. Fundamental experiments were conducted to extract sub-surface information by means of 'dynamic remote sensing.' Aluminum objects were embedded in a container filled with sand, and the container was heated from below. First, the spatial transfer function of the medium (sand) was determined, the surface temperature pattern was filtered, and the subsurface temperature pattern was calculated, allowing the subsurface forms of the aluminum objects to be estimated. The relationship between the thermal input (bottom temperature) and the thermal output (surface temperature) was expressed in terms of electrical circuit analogs, and the heat capacity and thermal conductivity of the sample were calculated, permitting estimation of its composition. This technique will be useful for groundwater and mineral exploration and for nondestructive testing.

  19. Effects of microscale damage evolution on piezoresistive sensing in nanocomposite bonded explosives under dynamic loading via electromechanical peridynamics

    Science.gov (United States)

    Prakash, Naveen; Seidel, Gary D.

    2018-01-01

    Polymer bonded explosives can sustain microstructural damage due to accidental impact, which may reduce their operational reliability or even cause unwanted ignition leading to detonation of the explosive. Therefore a nanocomposite piezoresistivity based sensing solution is discussed here that employs a carbon nanotube based nanocomposite binder in the explosive material by which in situ real-time sensing can be obtained. A coupled electromechanical peridynamics code is used to numerically obtain the piezoresistive response of such a material under dynamic conditions, which allows one to capture damage initiation and propagation mechanisms due to stress waves. The relative change in resistance at three locations along the length of the microstructure is monitored, and found to correlate well with deformation and damage mechanisms within the material. This response can depend on many factors, such as carbon nanotube content, electrical conductivity of the grain, impact velocity and fracture properties, which are explored through numerical simulations. For example, it is found that the piezoresistive response is highly dependent on preferential pathways of electrical current , i.e. the phase through which the current flows, which is in turn affected by the conductivity of the grain and the specific pattern of damage. It is found that the results qualitatively agree with experimental data on the dynamic piezoresistive response of nanocomposites and look promising as a sensing mechanism for explosive materials.

  20. The vectorial photoelectric effect under solar irradiance and its application to sun sensing

    International Nuclear Information System (INIS)

    Hechenblaikner, Gerald; Ziegler, Tobias

    2014-01-01

    Sun sensors are an integral part of the attitude and orbit control system onboard almost any spacecraft. While the majority of standard analogue sun sensors is based on photo-detectors which produce photo-currents proportional to the cosine of the incidence angle (cosine detectors), we propose an alternative scheme where the vectorial photoelectric effect is exploited to achieve a higher sensitivity of the sensed photo-current to the incidence angle. The vectorial photo-effect is investigated in detail for metal cathode detectors in a space environment. Besides long operational lifetimes without significant degradation, metal cathode detectors are insensitive to earth albedo, which may significantly reduce the errors affecting attitude measurements in low earth orbits. Sensitivity curves are calculated and trade-offs performed with the aim of optimizing the sensitivity whilst also providing currents sufficient for detection. Simple applications and detector configurations are also discussed and compared to the existing designs. (paper)

  1. Mapping of Residues Forming the Voltage Sensor of the Voltage-Dependent Anion-Selective Channel

    Science.gov (United States)

    Thomas, Lorie; Blachly-Dyson, Elizabeth; Colombini, Marco; Forte, Michael

    1993-06-01

    Voltage-gated ion-channel proteins contain "voltage-sensing" domains that drive the conformational transitions between open and closed states in response to changes in transmembrane voltage. We have used site-directed mutagenesis to identify residues affecting the voltage sensitivity of a mitochondrial channel, the voltage-dependent anion-selective channel (VDAC). Although charge changes at many sites had no effect, at other sites substitutions that increased positive charge also increased the steepness of voltage dependance and substitutions that decreased positive charge decreased voltage dependance by an appropriate amount. In contrast to the plasma membrane K^+ and Na^+ channels, these residues are distributed over large parts of the VDAC protein. These results have been used to define the conformational transitions that accompany voltage gating of an ion channel. This gating mechanism requires the movement of large portions of the VDAC protein through the membrane.

  2. Asymptotic and numerical prediction of current-voltage curves for an organic bilayer solar cell under varying illumination and comparison to the Shockley equivalent circuit

    KAUST Repository

    Foster, J. M.; Kirkpatrick, J.; Richardson, G.

    2013-01-01

    In this study, a drift-diffusion model is used to derive the current-voltage curves of an organic bilayer solar cell consisting of slabs of electron acceptor and electron donor materials sandwiched together between current collectors. A simplified

  3. Control of Grid Integrated Voltage Source Converters under Unbalanced Conditions: Development of an On-line Frequency-adaptive Virtual Flux-based Approach

    OpenAIRE

    Suul, Jon Are

    2012-01-01

    Three-Phase Voltage Source Converters (VSCs) are finding widespread applications in grid integrated power conversion systems. The control systems of such VSCs are in an increasing number of these applications required to operate during voltage disturbances and unbalanced conditions. Control systems designed for grid side voltagesensor- less operation are at the same time becoming attractive due to the continuous drive for cost reduction and increased reliability of VSCs, but are not commonly ...

  4. Methods for validating the performance of wearable motion-sensing devices under controlled conditions

    International Nuclear Information System (INIS)

    Bliley, Kara E; Kaufman, Kenton R; Gilbert, Barry K

    2009-01-01

    This paper presents validation methods for assessing the accuracy and precision of motion-sensing device (i.e. accelerometer) measurements. The main goals of this paper were to assess the accuracy and precision of these measurements against a gold standard, to determine if differences in manufacturing and assembly significantly affected device performance and to determine if measurement differences due to manufacturing and assembly could be corrected by applying certain post-processing techniques to the measurement data during analysis. In this paper, the validation of a posture and activity detector (PAD), a device containing a tri-axial accelerometer, is described. Validation of the PAD devices required the design of two test fixtures: a test fixture to position the device in a known orientation, and a test fixture to rotate the device at known velocities and accelerations. Device measurements were compared to these known orientations and accelerations. Several post-processing techniques were utilized in an attempt to reduce variability in the measurement error among the devices. In conclusion, some of the measurement errors due to the inevitable differences in manufacturing and assembly were significantly improved (p < 0.01) by these post-processing techniques

  5. Study of the input-side subsurface reorganization vs. the outside current density in hydrogen permeation under constant cell voltage through iron membrane according to RHC concept

    International Nuclear Information System (INIS)

    DePetris-Wery, M.; Wery, S.; Catonne, J.C.

    2010-01-01

    In this work, hydrogen permeation tests were performed on pure iron membrane in 1 M sodium hydroxide at 298 K, subjected to hydrogen charging under 'quasi-potentiostatic' polarization conditions, i.e. constant cell voltage applied between the cathode (membrane entry side) and the anode (counter electrode), which is a typical situation during metal electrodeposition or cathodic degreasing on steel in metal finishing industry. Two consecutive charging-discharging runs were carried out. Prolonged hydrogen charging under quasi-potentiostatic polarization was investigated and the change of cathodic current density (i in ) chg and electrode potential (E in ) chg as well as permeation current density (i out ) chg were analysed. Three singularities were underlined for each experiment: (i) the curve (i in ) chg = f((E in ) chg ), illustrating the inverse of hydrogen charge resistance R HC -1 evolution which was negative, equal to zero and then became positive; (ii) quasi-periodic instabilities during the R HC -1 zero period, probably induced by atomic reorganizing due to subsurface hydrogen insertion in the input-side; (iii) the same ratio (i out ) chg /(i in ) chg = -6 x 10 -5 . During discharge runs, both sides of the membrane were polarized at the same potential (E in ) dischg = (E out ) dischg = -0.285 V/Hg/HgO/NaOH 1 M and the current densities, (i in ) dischg and (i out ) dischg which corresponded to the desorption rates of hydrogen, were measured. The following correlation (i out ) dischg vs.(i in ) dischg = -6 x 10 -5 was confirmed leading us to introduce the R HC -1 mirror concept to observe the input-side subsurface reorganization by the survey of its potential vs. outside current density during the hydrogen charge. Thus, this R HC -1 mirror concept showed: (i) a non-stop and irreversible progress in the subsurface reorganization during the two permeations; (ii) a probable structural evolution to a stable subsurface structure, the only condition of a real steady

  6. Voltage regulating circuit

    NARCIS (Netherlands)

    2005-01-01

    A voltage regulating circuit comprising a rectifier (2) for receiving an AC voltage (Vmains) and for generating a rectified AC voltage (vrec), and a capacitor (3) connected in parallel with said rectified AC voltage for providing a DC voltage (VDC) over a load (5), characterized by a unidirectional

  7. Contributions of counter-charge in a potassium channel voltage-sensor domain

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Galpin, Jason D; Niciforovic, Ana P

    2011-01-01

    Voltage-sensor domains couple membrane potential to conformational changes in voltage-gated ion channels and phosphatases. Highly coevolved acidic and aromatic side chains assist the transfer of cationic side chains across the transmembrane electric field during voltage sensing. We investigated...... the functional contribution of negative electrostatic potentials from these residues to channel gating and voltage sensing with unnatural amino acid mutagenesis, electrophysiology, voltage-clamp fluorometry and ab initio calculations. The data show that neutralization of two conserved acidic side chains...

  8. E-beam high voltage switching power supply

    Science.gov (United States)

    Shimer, Daniel W.; Lange, Arnold C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  9. E-beam high voltage switching power supply

    International Nuclear Information System (INIS)

    Shimer, D.W.; Lange, A.C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360 degree/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs

  10. Do heart failure disease management programs make financial sense under a bundled payment system?

    Science.gov (United States)

    Eapen, Zubin J; Reed, Shelby D; Curtis, Lesley H; Hernandez, Adrian F; Peterson, Eric D

    2011-05-01

    Policy makers have proposed bundling payments for all heart failure (HF) care within 30 days of an HF hospitalization in an effort to reduce costs. Disease management (DM) programs can reduce costly HF readmissions but have not been economically attractive for caregivers under existing fee-for-service payment. Whether a bundled payment approach can address the negative financial impact of DM programs is unknown. Our study determined the cost-neutral point for the typical DM program and examined whether published HF DM programs can be cost saving under bundled payment programs. We used a decision analytic model using data from retrospective cohort studies, meta-analyses, 5 randomized trials evaluating DM programs, and inpatient claims for all Medicare beneficiaries discharged with an HF diagnosis from 2001 to 2004. We determined the costs of DM programs and inpatient care over 30 and 180 days. With a baseline readmission rate of 22.9%, the average cost for readmissions over 30 days was $2,272 per patient. Under base-case assumptions, a DM program that reduced readmissions by 21% would need to cost $477 per patient to be cost neutral. Among evaluated published DM programs, 2 of the 5 would increase provider costs (+$15 to $283 per patient), whereas 3 programs would be cost saving (-$241 to $347 per patient). If bundled payments were broadened to include care over 180 days, then program saving estimates would increase, ranging from $419 to $1,706 per patient. Proposed bundled payments for HF admissions provide hospitals with a potential financial incentive to implement DM programs that efficiently reduce readmissions. Copyright © 2011 Mosby, Inc. All rights reserved.

  11. Optimization Approach for Multi-scale Segmentation of Remotely Sensed Imagery under k-means Clustering Guidance

    Directory of Open Access Journals (Sweden)

    WANG Huixian

    2015-05-01

    Full Text Available In order to adapt different scale land cover segmentation, an optimized approach under the guidance of k-means clustering for multi-scale segmentation is proposed. At first, small scale segmentation and k-means clustering are used to process the original images; then the result of k-means clustering is used to guide objects merging procedure, in which Otsu threshold method is used to automatically select the impact factor of k-means clustering; finally we obtain the segmentation results which are applicable to different scale objects. FNEA method is taken for an example and segmentation experiments are done using a simulated image and a real remote sensing image from GeoEye-1 satellite, qualitative and quantitative evaluation demonstrates that the proposed method can obtain high quality segmentation results.

  12. Making sense of site declarations: Canadian declarations under article 2.a. (iii) of the Additional Protocol

    International Nuclear Information System (INIS)

    Cameron, J.K.; Benjamin, R.; Ghosh, A.

    2001-01-01

    Full text: While this paper will provide an overview of Additional Protocol implementation activities in Canada, this paper will also deal with a specific, albeit important, component of Canada's initial declaration under the Additional Protocol: site definitions and declarations. A clear description of the problems, solutions and compromises in making site declarations across a variety of sites in Canada would provide a useful insight into the process as other States prepare to do the same. Through the Model Protocol Additional to Safeguards Agreements Between Member States and the International Atomic Energy Agency, provisions exist to fulfil a longstanding gap in the coverage of international safeguards. The success of these new provisions are dependent on the extent to which declarations balance the intent of expanded declarations and the practical difficulties in making such declarations. The prerogative to delineate site boundaries lies with the Member State. In doing so, four factors merit careful consideration. First, Article 18.b of the Additional Protocol draws connections between facility definition and site delineation. Under comprehensive safeguards, information on facilities has already been submitted to the IAEA specifying site layouts in the design information questionnaire. Consistency between the site layouts specifications of the design information and site definition under the Additional Protocol is important, as differences will lead to inconsistencies, which will have to be resolved during implementation. Second, while Article 18.b specified that specific essential services, co-located in close geographic proximity, should be considered as part of the same site, there are instances where site definition is complicated by close proximity of other, but separate, safeguarded facilities and the existence of services related, but not essentials according to the definitions of the Additional Protocol, to the site. Third, practical limitations come

  13. Effect of acid-sensing ion channel 1a on the process of liver fibrosis under hyperglycemia

    International Nuclear Information System (INIS)

    Wang, Huan; Wang, Ying-hong; Yang, Feng; Li, Xiao-feng; Tian, Yuan-yao; Ni, Ming-ming; Zuo, Long-quan; Meng, Xiao-Ming; Huang, Yan

    2015-01-01

    Metabolic syndrome characterized by hyperglycemia contributes to nonalcoholic steatohepatitis-associated liver fibrosis. This study was to investigate the effects of Acid-sensing ion Channel 1a (ASIC1a) on the process of liver fibrosis under hyperglycemia. Results showed that high glucose significantly worsen the pathology of liver fibrosis in vivo. In vitro, high glucose stimulated proliferation, activation and extracellular matrix (ECM) production in HSCs, and enhanced the effect of PDGF-BB on the activation and proliferation of HSCs. These effects could be attenuated by ASIC1a specific inhibitor Psalmotoxin-1(PcTx1) or specific ShRNA for ASIC1a through Notch1/Hes-1 pathways. These data indicate that ASIC1a plays an important role in diabetes complication liver fibrosis. - Highlights: • Hyperglycemia is a risk factor for the process of liver fibrosis. • ASIC1a may be a key factor linking between high glucose and liver fibrosis. • Notch1/Hes-1 may involve to the process of liver fibrosis under hyperglycemia.

  14. Effect of acid-sensing ion channel 1a on the process of liver fibrosis under hyperglycemia

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huan, E-mail: wanghuan7@126.com [School of Pharmacy, Anhui Medical University, Hefei, 230032 (China); Institute for Liver Diseases of Anhui Medical University (AMU), Anhui Medical University, Hefei, 230032 (China); Wang, Ying-hong; Yang, Feng; Li, Xiao-feng; Tian, Yuan-yao; Ni, Ming-ming; Zuo, Long-quan; Meng, Xiao-Ming [School of Pharmacy, Anhui Medical University, Hefei, 230032 (China); Institute for Liver Diseases of Anhui Medical University (AMU), Anhui Medical University, Hefei, 230032 (China); Huang, Yan, E-mail: aydhy@126.com [School of Pharmacy, Anhui Medical University, Hefei, 230032 (China); Institute for Liver Diseases of Anhui Medical University (AMU), Anhui Medical University, Hefei, 230032 (China)

    2015-12-25

    Metabolic syndrome characterized by hyperglycemia contributes to nonalcoholic steatohepatitis-associated liver fibrosis. This study was to investigate the effects of Acid-sensing ion Channel 1a (ASIC1a) on the process of liver fibrosis under hyperglycemia. Results showed that high glucose significantly worsen the pathology of liver fibrosis in vivo. In vitro, high glucose stimulated proliferation, activation and extracellular matrix (ECM) production in HSCs, and enhanced the effect of PDGF-BB on the activation and proliferation of HSCs. These effects could be attenuated by ASIC1a specific inhibitor Psalmotoxin-1(PcTx1) or specific ShRNA for ASIC1a through Notch1/Hes-1 pathways. These data indicate that ASIC1a plays an important role in diabetes complication liver fibrosis. - Highlights: • Hyperglycemia is a risk factor for the process of liver fibrosis. • ASIC1a may be a key factor linking between high glucose and liver fibrosis. • Notch1/Hes-1 may involve to the process of liver fibrosis under hyperglycemia.

  15. Piezo Voltage Controlled Planar Hall Effect Devices.

    Science.gov (United States)

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K W; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-22

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  16. Voltage sensitivity of M2 muscarinic receptors underlies the delayed rectifier-like activation of ACh-gated K(+) current by choline in feline atrial myocytes.

    Science.gov (United States)

    Navarro-Polanco, Ricardo A; Aréchiga-Figueroa, Iván A; Salazar-Fajardo, Pedro D; Benavides-Haro, Dora E; Rodríguez-Elías, Julio C; Sachse, Frank B; Tristani-Firouzi, Martin; Sánchez-Chapula, José A; Moreno-Galindo, Eloy G

    2013-09-01

    Choline (Ch) is a precursor and metabolite of the neurotransmitter acetylcholine (ACh). In canine and guinea pig atrial myocytes, Ch was shown to activate an outward K(+) current in a delayed rectifier fashion. This current has been suggested to modulate cardiac electrical activity and to play a role in atrial fibrillation pathophysiology. However, the exact nature and identity of this current has not been convincingly established. We recently described the unique ligand- and voltage-dependent properties of muscarinic activation of ACh-activated K(+) current (IKACh) and showed that, in contrast to ACh, pilocarpine induces a current with delayed rectifier-like properties with membrane depolarization. Here, we tested the hypothesis that Ch activates IKACh in feline atrial myocytes in a voltage-dependent manner similar to pilocarpine. Single-channel recordings, biophysical profiles, specific pharmacological inhibition and computational data indicate that the current activated by Ch is IKACh. Moreover, we show that membrane depolarization increases the potency and efficacy of IKACh activation by Ch and thus gives the appearance of a delayed rectifier activating K(+) current at depolarized potentials. Our findings support the emerging concept that IKACh modulation is both voltage- and ligand-specific and reinforce the importance of these properties in understanding cardiac physiology.

  17. Asymptotic and numerical prediction of current-voltage curves for an organic bilayer solar cell under varying illumination and comparison to the Shockley equivalent circuit

    KAUST Repository

    Foster, J. M.

    2013-01-01

    In this study, a drift-diffusion model is used to derive the current-voltage curves of an organic bilayer solar cell consisting of slabs of electron acceptor and electron donor materials sandwiched together between current collectors. A simplified version of the standard drift-diffusion equations is employed in which minority carrier densities are neglected. This is justified by the large disparities in electron affinity and ionisation potential between the two materials. The resulting equations are solved (via both asymptotic and numerical techniques) in conjunction with (i) Ohmic boundary conditions on the contacts and (ii) an internal boundary condition, imposed on the interface between the two materials, that accounts for charge pair generation (resulting from the dissociation of excitons) and charge pair recombination. Current-voltage curves are calculated from the solution to this model as a function of the strength of the solar charge generation. In the physically relevant power generating regime, it is shown that these current-voltage curves are well-approximated by a Shockley equivalent circuit model. Furthermore, since our drift-diffusion model is predictive, it can be used to directly calculate equivalent circuit parameters from the material parameters of the device. © 2013 AIP Publishing LLC.

  18. Active-sensing based damage monitoring of airplane wings under low-temperature and continuous loading condition

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jun Young; Jung, Hwee Kwon; Park, Gyu Hae [Dept. of Mechanical Engineering, Chonnam National University, Gwangju (Korea, Republic of); Ha, Jae Seok; Park, Chan Yik [7th R and D Institute, Agency for Denfense Development, Yuseong (Korea, Republic of)

    2016-10-15

    As aircrafts are being operated at high altitude, wing structures experience various fatigue loadings under cryogenic environments. As a result, fatigue damage such as a crack could be develop that could eventually lead to a catastrophic failure. For this reason, fatigue damage monitoring is an important process to ensure efficient maintenance and safety of structures. To implement damage detection in real-world flight environments, a special cooling chamber was built. Inside the chamber, the temperature was maintained at the cryogenic temperature, and harmonic fatigue loading was given to a wing structure. In this study, piezoelectric active-sensing based guided waves were used to detect the fatigue damage. In particular, a beam forming technique was applied to efficiently measure the scattering wave caused by the fatigue damage. The system was used for detection, growth monitoring, and localization of a fatigue crack. In addition, a sensor diagnostic process was also applied to ensure the proper operation of piezoelectric sensors. Several experiments were implemented and the results of the experiments demonstrated that this process could efficiently detect damage in such an extreme environment.

  19. Bio-Inspired Carbon Monoxide Sensors with Voltage-Activated Sensitivity

    KAUST Repository

    Savagatrup, Suchol; Schroeder, Vera; He, Xin; Lin, Sibo; He, Maggie; Yassine, Omar; Salama, Khaled N.; Zhang, Xixiang; Swager, Timothy M.

    2017-01-01

    voltage offers a predicted extra dimension for sensing. Specifically, the sensors show a significant increase in sensitivity toward CO when negative gate voltage is applied. The dosimetric sensors are selective to ppm levels of CO and functional in air. UV

  20. High voltage systems

    International Nuclear Information System (INIS)

    Martin, M.

    1991-01-01

    Industrial processes usually require electrical power. This power is used to drive motors, to heat materials, or in electrochemical processes. Often the power requirements of a plant require the electric power to be delivered at high voltage. In this paper high voltage is considered any voltage over 600 V. This voltage could be as high as 138,000 V for some very large facilities. The characteristics of this voltage and the enormous amounts of power being transmitted necessitate special safety considerations. Safety must be considered during the four activities associated with a high voltage electrical system. These activities are: Design; Installation; Operation; and Maintenance

  1. An optical fiber Bragg grating and piezoelectric ceramic voltage sensor

    Science.gov (United States)

    Yang, Qing; He, Yanxiao; Sun, Shangpeng; Luo, Mandan; Han, Rui

    2017-10-01

    Voltage measurement is essential in many fields like power grids, telecommunications, metallurgy, railways, and oil production. A voltage-sensing unit, consisting of fiber Bragg gratings (FBGs) and piezoelectric ceramics, based on which an optical over-voltage sensor was proposed and fabricated in this paper. No demodulation devices like spectrometer or Fabry-Perot filter were needed to gain the voltage signal, and a relatively large sensing frequency range was acquired in this paper; thus, the cost of the sensing system is more acceptable in engineering application. The voltage to be measured was directly applied to the piezoelectric ceramic, and deformation of the ceramics and the grating would be caused because of the inverse piezoelectric effect. With a reference grating, the output light intensity change will be caused by the FBG center wavelength change; thus, the relationship between the applied voltage and the output light intensity was established. Validation of the sensor was accomplished in the frequency range from 50 Hz to 20 kHz and switching impulse waves with a test platform; good linearity of the input-output characteristic was achieved. A temperature validation test was completed, showing that the sensor maintains good temperature stability. Experimental results show that the optical over-voltage sensor can be used for voltage monitoring, and if applied with a voltage divider, the sensor can be used to measure high voltage.

  2. An optical fiber Bragg grating and piezoelectric ceramic voltage sensor.

    Science.gov (United States)

    Yang, Qing; He, Yanxiao; Sun, Shangpeng; Luo, Mandan; Han, Rui

    2017-10-01

    Voltage measurement is essential in many fields like power grids, telecommunications, metallurgy, railways, and oil production. A voltage-sensing unit, consisting of fiber Bragg gratings (FBGs) and piezoelectric ceramics, based on which an optical over-voltage sensor was proposed and fabricated in this paper. No demodulation devices like spectrometer or Fabry-Perot filter were needed to gain the voltage signal, and a relatively large sensing frequency range was acquired in this paper; thus, the cost of the sensing system is more acceptable in engineering application. The voltage to be measured was directly applied to the piezoelectric ceramic, and deformation of the ceramics and the grating would be caused because of the inverse piezoelectric effect. With a reference grating, the output light intensity change will be caused by the FBG center wavelength change; thus, the relationship between the applied voltage and the output light intensity was established. Validation of the sensor was accomplished in the frequency range from 50 Hz to 20 kHz and switching impulse waves with a test platform; good linearity of the input-output characteristic was achieved. A temperature validation test was completed, showing that the sensor maintains good temperature stability. Experimental results show that the optical over-voltage sensor can be used for voltage monitoring, and if applied with a voltage divider, the sensor can be used to measure high voltage.

  3. Voltage regulator for generator

    Energy Technology Data Exchange (ETDEWEB)

    Naoi, K

    1989-01-17

    It is an object of this invention to provide a voltage regulator for a generator charging a battery, wherein even if the ambient temperature at the voltage regulator rises abnormally high, possible thermal breakage of the semiconductor elements constituting the voltage regulator can be avoided. A feature of this invention is that the semiconductor elements can be protected from thermal breakage, even at an abnormal ambient temperature rise at the voltage regulator for the battery charging generator, by controlling a maximum conduction ratio of a power transistor in the voltage regulator in accordance with the temperature at the voltage regulator. This is achieved through a switching device connected in series to the field coil of the generator and adapted to be controlled in accordance with an output voltage of the generator and the ambient temperature at the voltage regulator. 6 figs.

  4. Readout Distance Enhancement of the Passive Wireless Multi-Parameter Sensing System Using a Repeater Coil

    Directory of Open Access Journals (Sweden)

    Lifeng Wang

    2018-01-01

    Full Text Available A repeater coil is used to extend the detection distance of a passive wireless multi-parameter sensing system. The passive wireless sensing system has the ability of simultaneously monitoring three parameters by using backscatter modulation together with channel multiplexing. Two different repeater coils are designed and fabricated for readout distance enhancement of the sensing system: one is a PCB (printed circuit board repeater coil, and the other is a copper wire repeater coil. Under the conditions of fixed voltage and adjustable voltage, the maximum readout distance of the sensing system with and without a repeater coil is measured. Experimental results show that larger power supply voltage can help further increase the readout distance. The maximum readout distance of the sensing system with a PCB repeater coil has been extended 2.3 times, and the one with a copper wire repeater coil has been extended 3 times. Theoretical analysis and experimental results both indicate that the high Q factor repeater coil can extend the readout distance more. With the copper wire repeater coil as well as a higher power supply voltage, the passive wireless multi-parameter sensing system finally achieves a maximum readout distance of 13.5 cm.

  5. Quorum-Sensing Regulation of Constitutive Plantaricin by Lactobacillus plantarum Strains under a Model System for Vegetables and Fruits

    Science.gov (United States)

    Rizzello, Carlo G.; Filannino, Pasquale; Calasso, Maria; Gobbetti, Marco

    2014-01-01

    This study aimed at investigating the regulatory system of bacteriocin synthesis by Lactobacillus plantarum strains in vegetables and fruits in a model system. Sterile and neutralized cell-free supernatant (CFS) from L. plantarum strains grown in MRS broth showed in vitro antimicrobial activities toward various indicator strains. The highest activity was that of L. plantarum C2. The antimicrobial activity was further assayed on vegetable and fruit agar plates (solid conditions) and in juices (liquid conditions). A regulatory mechanism of bacteriocin synthesis via quorum sensing was hypothesized. The synthesis of antimicrobial compounds seemed to be constitutive under solid conditions of growth on vegetable and fruit agar plates. In contrast, it depended on the size of the inoculum when L. plantarum C2 was grown in carrot juice. Only the inoculum of ca. 9.0 log CFU ml−1 produced detectable activity. The genes plnA, plnEF, plnG, and plnH were found in all L. plantarum strains. The genes plnJK and plnN were detected in only three or four strains. Reverse-phase high-performance liquid chromatography purification and mass spectrometry analysis revealed the presence of a mixture of eight peptides in the most active fraction of the CFS from L. plantarum C2. Active peptides were encrypted into bacteriocin precursors, such as plantaricins PlnJ/K and PlnH and PlnG, which are involved in the ABC transport system. A real-time PCR assay showed an increase in the expression of plnJK and plnG during growth of L. plantarum C2 in carrot juice. PMID:24242246

  6. Torsion sensing based on patterned piezoelectric beams

    Science.gov (United States)

    Cha, Youngsu; You, Hangil

    2018-03-01

    In this study, we investigated the sensing characteristics of piezoelectric beams under torsional loads. We used partially patterned piezoelectric beams to sense torsion. In particular, the piezoelectric patches are located symmetrically with respect to the line of the shear center of the beam. The patterned piezoelectric beam is modeled as a slender beam, and its electrical responses are obtained by piezoelectric electromechanical equations. To validate the modeling framework, experiments are performed using a setup that forces pure torsional deformation. Three different geometric configurations of the patterned piezoelectric layer are used for the experiments. The frequency and amplitude of the forced torsional load are systematically varied in order to study the behavior of the piezoelectric sensor. Experimental results demonstrate that two voltage outputs of the piezoelectric beam are approximately out of phase with identical amplitude. Moreover, the length of the piezoelectric layers has a significant influence on the sensing properties. Our theoretical predictions using the model support the experimental findings.

  7. Automatic voltage imbalance detector

    Science.gov (United States)

    Bobbett, Ronald E.; McCormick, J. Byron; Kerwin, William J.

    1984-01-01

    A device for indicating and preventing damage to voltage cells such as galvanic cells and fuel cells connected in series by detecting sequential voltages and comparing these voltages to adjacent voltage cells. The device is implemented by using operational amplifiers and switching circuitry is provided by transistors. The device can be utilized in battery powered electric vehicles to prevent galvanic cell damage and also in series connected fuel cells to prevent fuel cell damage.

  8. A Coordinated Control for Photovoltaic Generators and Energy Storages in Low-Voltage AC/DC Hybrid Microgrids under Islanded Mode

    DEFF Research Database (Denmark)

    Liu, Yao; Hou, Xiaochao; Wang, Xiaofeng

    2016-01-01

    The increasing penetration of renewable generators can be a significant challenge due to the fluctuation of their power generation. Energy storage (ES) units are one solution to improve power supply quality and guarantee system stability. In this paper, a hybrid microgrid is built based...... on photovoltaic (PV) generator and ES; and coordinated control is proposed and developed to achieve power management in a decentralized manner. This control scheme contains three different droop strategies according to characteristics of PV and ES. First, the modified droop control is proposed for PV, which can...... take full utilization of renewable energy and avoid regulating output active power frequently. Second, to maintain the direct current (DC) bus voltage stability, a novel droop control incorporating a constant power band is presented for DC-side ES. Third, a cascade droop control is designed...

  9. CONTRIBUTIONS OF INTRACELLULAR IONS TO Kv CHANNEL VOLTAGE SENSOR DYNAMICS.

    Directory of Open Access Journals (Sweden)

    Samuel eGoodchild

    2012-06-01

    Full Text Available Voltage sensing domains of Kv channels control ionic conductance through coupling of the movement of charged residues in the S4 segment to conformational changes at the cytoplasmic region of the pore domain, that allow K+ ions to flow. Conformational transitions within the voltage sensing domain caused by changes in the applied voltage across the membrane field are coupled to the conducting pore region and the gating of ionic conductance. However, several other factors not directly linked to the voltage dependent movement of charged residues within the voltage sensor impact the dynamics of the voltage sensor, such as inactivation, ionic conductance, intracellular ion identity and block of the channel by intracellular ligands. The effect of intracellular ions on voltage sensor dynamics is of importance in the interpretation of gating current measurements and the physiology of pore/voltage sensor coupling. There is a significant amount of variability in the reported kinetics of voltage sensor deactivation kinetics of Kv channels attributed to different mechanisms such as open state stabilization, immobilization and relaxation processes of the voltage sensor. Here we separate these factors and focus on the causal role that intracellular ions can play in allosterically modulating the dynamics of Kv voltage sensor deactivation kinetics. These considerations are of critical importance in understanding the molecular determinants of the complete channel gating cycle from activation to deactivation.

  10. Circuit and method for controlling the threshold voltage of transistors.

    NARCIS (Netherlands)

    2008-01-01

    A control unit, for controlling a threshold voltage of a circuit unit having transistor devices, includes a reference circuit and a measuring unit. The measuring unit is configured to measure a threshold voltage of at least one sensing transistor of the circuit unit, and to measure a threshold

  11. Three phase voltage measurements with simple open air sensors

    NARCIS (Netherlands)

    Heesch, van E.J.M.; Caspers, R.; Gulickx, P.F.M.; Jacobs, G.A.P.; Kersten, W.F.J.; Laan, van der P.C.T.

    1991-01-01

    A low cost, easy to install high-voltage measuring system is described for open air substations and overhead lines. Based on the Differentiating/Integrating (D/I) principle, three free-standing capacitive pickup electrodes are used to sense the three phase to ground voltages. Apart from the

  12. High frequency relay protection channels on super high voltage lines

    Energy Technology Data Exchange (ETDEWEB)

    Mikutskii, G V

    1964-08-01

    General aspects of high voltage transmission line design are discussed. The relationships between line voltage and length and line dimensions and power losses are explained. Electrical interference in the line is classified under three headings: interference under normal operating conditions, interference due to insulation faults, and interference due to variations in operating conditions of the high-voltage network.

  13. Feasibility of a SenseCam-assisted 24-h recall to reduce under-reporting of energy intake.

    Science.gov (United States)

    Gemming, L; Doherty, A; Kelly, P; Utter, J; Ni Mhurchu, C

    2013-10-01

    The SenseCam is a camera worn on a lanyard around the neck that automatically captures point-of-view images in response to movement, heat and light (every 20-30 s). This device may enhance the accuracy of self-reported dietary intake by assisting participants' recall of food and beverage consumption. It was the objective of this study to evaluate if the wearable camera, SenseCam, can enhance the 24-h dietary recall by providing visual prompts to improve recall of food and beverage consumption. Thirteen volunteer adults in Oxford, United Kingdom, were recruited. Participants wore the SenseCam for 2 days while continuing their usual daily activities. On day 3, participants' diets were assessed using an interviewer-administered 24-h recall. SenseCam images were then shown to the participants and any additional dietary information that participants provided after viewing the images was recorded. Energy and macronutrient intakes were compared between the 24-h recall and 24-h recall+SenseCam. Data from 10 participants were included in the final analysis (8 males and 2 females), mean age 33 ± 11 years, mean BMI 25.9 ± 5.1 kg/m(2). Viewing the SenseCam images increased self-reported energy intake by approximately 1432 ± 1564 kJ or 12.5% compared with the 24-h recall alone (P=0.02). The increase was predominantly due to reporting of 41 additional foods (241 vs 282 total foods) across a range of food groups. Eight changes in portion size were made, which resulted in a negligible change to energy intake. Wearable cameras are promising method to enhance the accuracy of self-reported dietary assessment methods.

  14. A Coordinated Control for Photovoltaic Generators and Energy Storages in Low-Voltage AC/DC Hybrid Microgrids under Islanded Mode

    Directory of Open Access Journals (Sweden)

    Yao Liu

    2016-08-01

    Full Text Available The increasing penetration of renewable generators can be a significant challenge due to the fluctuation of their power generation. Energy storage (ES units are one solution to improve power supply quality and guarantee system stability. In this paper, a hybrid microgrid is built based on photovoltaic (PV generator and ES; and coordinated control is proposed and developed to achieve power management in a decentralized manner. This control scheme contains three different droop strategies according to characteristics of PV and ES. First, the modified droop control is proposed for PV, which can take full utilization of renewable energy and avoid regulating output active power frequently. Second, to maintain the direct current (DC bus voltage stability, a novel droop control incorporating a constant power band is presented for DC-side ES. Third, a cascade droop control is designed for alternating current (AC-side ES. Thus, the ES lifetime is prolonged. Moreover, interlinking converters (ICs provide a bridge between AC/DC buses in a hybrid microgrid. The power control of IC is enabled when the AC- or DC-side suffer from active power demand shortage. In particular, if the AC microgrid does not satisfy the reactive power demand, IC then acts as a static synchronous compensator (STATCOM. The effectiveness of the proposed strategies is verified by simulations.

  15. Behaviour of total surface charge in SiO2-Si system under short-pulsed ultraviolet irradiation cycles characterised by surface photo voltage technique

    International Nuclear Information System (INIS)

    Kang, Ban-Hong; Lee, Wah-Pheng; Yow, Ho-Kwang; Tou, Teck-Yong

    2009-01-01

    Effects of time-accumulated ultraviolet (UV) irradiation and surface treatment on thermally oxidized p-type silicon wafers were investigated by using the surface photo voltage (SPV) technique via the direct measurement of the total surface charge, Q SC . The rise and fall times of Q sc curves, as a function of accumulated UV irradiation, depended on the thermal oxide thickness. A simple model was proposed to explain the time-varying characteristics of Q sc based on the UV-induced bond breaking of SiOH and SiH, and photoemission of bulk electrons to wafer surface where O 2 - charges were formed. While these mechanisms resulted in charge variations and hence in Q sc , these could be removed by rinsing the silicon wafers in de-ionized water followed by spin-dry or blow-dry by an ionizer fan. Empirical parameters were used in the model simulations and curve-fitting of Q SC . The simulated results suggested that initial changes in the characteristic behaviour of Q sc were mainly due to the net changes in the positive and negative charges, but subsequently were dominated by the accumulation of O 2 - during the UV irradiation.

  16. Ion transport in thin cell electrodeposition: modelling three-ion electrolytes in dense branched morphology under constant voltage and current conditions

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, G. [Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (United States) and Laboratorio de Sistemas Complejos, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina)]. E-mail: marshalg@mail.retina.ar; Molina, F.V. [INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Soba, A. [Laboratorio de Sistemas Complejos, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina)

    2005-05-30

    Electrochemical deposition (ECD) and spatially coupled bipolar electrochemistry (SCBE) experiments in thin-layer cells are known to produce complex ion transport patterns concomitantly with the growth of dendrite-like structures. Here we present a macroscopic model of ECD and SCBE with a three-ion electrolyte in conditions of dense branched morphology. The model describes ion transport and deposit growth through the one-dimensional Nernst-Planck equations for ion transport, the Poisson equation for the electric field and, for ECD, a growth law for deposit evolution. We present numerical simulations for typical electrochemical deposition experiments: dense branched morphology in ECD and the incubation period in SCBE. In ECD the model predicts cation, anion and proton concentration profiles, electric field variations and deposit growth speed, that are in qualitative agreement with experiments; the predicted evolution and collision of the deposit and proton fronts reveal a time scaling close to those observed in experiments. In SCBE, the model predicts that the inverse of the incubation time scales linearly with the applied voltage. Such behaviour was observed in experiments.

  17. Interfacial evaluation and hydrophobicity of multi-functional Ni-nanopowder/epoxy composites for self-sensing and actuation

    International Nuclear Information System (INIS)

    Park, Joung-Man; Wang, Zuo-Jia; Kwon, Dong-Jun; Jang, Jung-Hoon; DeVries, K Lawrence

    2010-01-01

    Electrical and interfacial properties of Ni-nanopowder/epoxy composites were investigated for self-sensing and actuation. Contact resistance and electrical resistivity were measured using a micro-specimen with a gradient grid of electrical contact on its length. The specimens' self-sensing characteristics were monitored reasonably well under applied cyclic loading. Actuation in an electromagnetic field was evaluated by measurement of induced strain for three wavefunction voltages, i.e. sine, triangular and square. Due to the presence of hydrophobic domains on the heterogeneous surface, the static contact angle of Ni-nanopowder/epoxy composites exhibited hydrophobicity. The specimens responded well in both self-sensing and actuation tests, in electromagnetic fields, due to the intrinsic metallic property of Ni-nanopowder. Displacement of the actuator was evaluated to attain optimum performance as functions of wave type, frequency and voltage. The strain response followed the shape of the applied voltages better, and was much smoother and less erratic for applied voltages with sine and triangular waveforms than it was for voltages with a rectangular waveform. This is attributed to the sudden changes in voltage in the latter case. Such self-sensing and actuation, in conductive Ni-nanopowder/epoxy composites, might find uses in multi-functional composite devices such as biomimetic and micro-size generators

  18. Development of a high throughput single-particle screening for inorganic semiconductor nanorods as neural voltage sensor

    Science.gov (United States)

    Kuo, Yung; Park, Kyoungwon; Li, Jack; Ingargiola, Antonino; Park, Joonhyuck; Shvadchak, Volodymyr; Weiss, Shimon

    2017-08-01

    Monitoring membrane potential in neurons requires sensors with minimal invasiveness, high spatial and temporal (sub-ms) resolution, and large sensitivity for enabling detection of sub-threshold activities. While organic dyes and fluorescent proteins have been developed to possess voltage-sensing properties, photobleaching, cytotoxicity, low sensitivity, and low spatial resolution have obstructed further studies. Semiconductor nanoparticles (NPs), as prospective voltage sensors, have shown excellent sensitivity based on Quantum confined Stark effect (QCSE) at room temperature and at single particle level. Both theory and experiment have shown their voltage sensitivity can be increased significantly via material, bandgap, and structural engineering. Based on theoretical calculations, we synthesized one of the optimal candidates for voltage sensors: 12 nm type-II ZnSe/CdS nanorods (NRs), with an asymmetrically located seed. The voltage sensitivity and spectral shift were characterized in vitro using spectrally-resolved microscopy using electrodes grown by thin film deposition, which "sandwich" the NRs. We characterized multiple batches of such NRs and iteratively modified the synthesis to achieve higher voltage sensitivity (ΔF/F> 10%), larger spectral shift (>5 nm), better homogeneity, and better colloidal stability. Using a high throughput screening method, we were able to compare the voltage sensitivity of our NRs with commercial spherical quantum dots (QDs) with single particle statistics. Our method of high throughput screening with spectrally-resolved microscope also provides a versatile tool for studying single particles spectroscopy under field modulation.

  19. A field ion microscope study of the surface reaction of tungsten with n-octanol under an applied positive voltage: reaction conditions for the 'splitting' of (110) plane

    International Nuclear Information System (INIS)

    Terao, T.; Iwatsu, F.; Morikawa, H.

    1993-01-01

    Field ion microscopy is a powerful tool for the study of surface phenomena on an atomic scale, especially when they are crystal plane dependent, because the microscope shows many crystal planes of the sample tip simultaneously. Although a large number of FIM studies on vapor deposition, surface diffusion and surface reactions at a metal-gas interface have been reported, those on reactions at a metal-liquid interface are few. The authors have studied the corrosion or tungsten with aqueous solutions and found that water corroded the tungsten tips very severely to reduce the radius of curvature of the tip cap drastically. The reaction was so severe that it was not possible to trace it back to the very initial stages. They adopted, as a weaker reagent, one of the higher alcohols, n-octanol(C 8 H 17 OH), and found that it reacted with tungsten tips when an electrical pulse with a positive voltage between 5 and 10V was applied to the tip, giving very interesting field ion images in which the central (110) plane was divided into two parts located side by side across the [001] zone line. This means that some anisotropic surface reaction occurred which made a groove along the [001] zone line going through the (110) plane, usually the most stable plane chemically for bcc metals. They named this phenomenon 'splitting'. This reaction was less severe than that with water and some results on the morphology of the groove and on the reaction sequence have been reported. In the present paper more detailed reaction conditions which give rise to the splitting are described

  20. Technological Aspects: High Voltage

    International Nuclear Information System (INIS)

    Faircloth, D C

    2013-01-01

    This paper covers the theory and technological aspects of high-voltage design for ion sources. Electric field strengths are critical to understanding high-voltage breakdown. The equations governing electric fields and the techniques to solve them are discussed. The fundamental physics of high-voltage breakdown and electrical discharges are outlined. Different types of electrical discharges are catalogued and their behaviour in environments ranging from air to vacuum are detailed. The importance of surfaces is discussed. The principles of designing electrodes and insulators are introduced. The use of high-voltage platforms and their relation to system design are discussed. The use of commercially available high-voltage technology such as connectors, feedthroughs and cables are considered. Different power supply technologies and their procurement are briefly outlined. High-voltage safety, electric shocks and system design rules are covered. (author)

  1. Technological Aspects: High Voltage

    CERN Document Server

    Faircloth, D.C.

    2013-12-16

    This paper covers the theory and technological aspects of high-voltage design for ion sources. Electric field strengths are critical to understanding high-voltage breakdown. The equations governing electric fields and the techniques to solve them are discussed. The fundamental physics of high-voltage breakdown and electrical discharges are outlined. Different types of electrical discharges are catalogued and their behaviour in environments ranging from air to vacuum are detailed. The importance of surfaces is discussed. The principles of designing electrodes and insulators are introduced. The use of high-voltage platforms and their relation to system design are discussed. The use of commercially available high-voltage technology such as connectors, feedthroughs and cables are considered. Different power supply technologies and their procurement are briefly outlined. High-voltage safety, electric shocks and system design rules are covered.

  2. Voltage Dependence of a Neuromodulator-Activated Ionic Current123

    Science.gov (United States)

    2016-01-01

    Abstract The neuromodulatory inward current (IMI) generated by crab Cancer borealis stomatogastric ganglion neurons is an inward current whose voltage dependence has been shown to be crucial in the activation of oscillatory activity of the pyloric network of this system. It has been previously shown that IMI loses its voltage dependence in conditions of low extracellular calcium, but that this effect appears to be regulated by intracellular calmodulin. Voltage dependence is only rarely regulated by intracellular signaling mechanisms. Here we address the hypothesis that the voltage dependence of IMI is mediated by intracellular signaling pathways activated by extracellular calcium. We demonstrate that calmodulin inhibitors and a ryanodine antagonist can reduce IMI voltage dependence in normal Ca2+, but that, in conditions of low Ca2+, calmodulin activators do not restore IMI voltage dependence. Further, we show evidence that CaMKII alters IMI voltage dependence. These results suggest that calmodulin is necessary but not sufficient for IMI voltage dependence. We therefore hypothesize that the Ca2+/calmodulin requirement for IMI voltage dependence is due to an active sensing of extracellular calcium by a GPCR family calcium-sensing receptor (CaSR) and that the reduction in IMI voltage dependence by a calmodulin inhibitor is due to CaSR endocytosis. Supporting this, preincubation with an endocytosis inhibitor prevented W7 (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride)-induced loss of IMI voltage dependence, and a CaSR antagonist reduced IMI voltage dependence. Additionally, myosin light chain kinase, which is known to act downstream of the CaSR, seems to play a role in regulating IMI voltage dependence. Finally, a Gβγ-subunit inhibitor also affects IMI voltage dependence, in support of the hypothesis that this process is regulated by a G-protein-coupled CaSR. PMID:27257619

  3. Prediction of breakdown voltages in novel gases for high voltage insulation

    Energy Technology Data Exchange (ETDEWEB)

    Koch, M.

    2015-07-01

    This thesis submitted to the Swiss Federal Institute of Technology ETH in Zurich examines the use of sulphur hexafluoride (SF{sub 6}) and similar gases as important insulation media for high voltage equipment. Due to its superior insulation properties, SF{sub 6} is widely used in gas-insulated switchgear. However, the gas also has a very high global warming potential and the content of SF{sub 6} in the atmosphere is constantly increasing. The search for new insulation gases using classical breakdown experiments is discussed. A model for SF{sub 6} based on the stepped leader model is described. This calculates the breakdown voltages in arbitrary electrode configurations and under standard voltage waveforms. Thus, the thesis provides a method for the prediction of breakdown voltages of arbitrary field configurations under standard voltage waveforms for gases with electron-attaching properties. With this, further gases can be characterized for usage as high voltage insulation media.

  4. Prediction of breakdown voltages in novel gases for high voltage insulation

    International Nuclear Information System (INIS)

    Koch, M.

    2015-01-01

    This thesis submitted to the Swiss Federal Institute of Technology ETH in Zurich examines the use of sulphur hexafluoride (SF_6) and similar gases as important insulation media for high voltage equipment. Due to its superior insulation properties, SF_6 is widely used in gas-insulated switchgear. However, the gas also has a very high global warming potential and the content of SF_6 in the atmosphere is constantly increasing. The search for new insulation gases using classical breakdown experiments is discussed. A model for SF_6 based on the stepped leader model is described. This calculates the breakdown voltages in arbitrary electrode configurations and under standard voltage waveforms. Thus, the thesis provides a method for the prediction of breakdown voltages of arbitrary field configurations under standard voltage waveforms for gases with electron-attaching properties. With this, further gases can be characterized for usage as high voltage insulation media

  5. Maximum permissible voltage of YBCO coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z. [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Hong, Z., E-mail: zhiyong.hong@sjtu.edu.cn [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Wang, D.; Zhou, H.; Shen, X.; Shen, C. [Qingpu Power Supply Company, State Grid Shanghai Municipal Electric Power Company, Shanghai (China)

    2014-06-15

    Highlights: • We examine three kinds of tapes’ maximum permissible voltage. • We examine the relationship between quenching duration and maximum permissible voltage. • Continuous I{sub c} degradations under repetitive quenching where tapes reaching maximum permissible voltage. • The relationship between maximum permissible voltage and resistance, temperature. - Abstract: Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (I{sub c}) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the I{sub c} degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.

  6. Stray voltage mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Jamali, B.; Piercy, R.; Dick, P. [Kinetrics Inc., Toronto, ON (Canada). Transmission and Distribution Technologies

    2008-04-09

    This report discussed issues related to farm stray voltage and evaluated mitigation strategies and costs for limiting voltage to farms. A 3-phase, 3-wire system with no neutral ground was used throughout North America before the 1930s. Transformers were connected phase to phase without any electrical connection between the primary and secondary sides of the transformers. Distribution voltage levels were then increased and multi-grounded neutral wires were added. The earth now forms a parallel return path for the neutral current that allows part of the neutral current to flow continuously through the earth. The arrangement is responsible for causing stray voltage. Stray voltage causes uneven milk production, increased incidences of mastitis, and can create a reluctance to drink water amongst cows when stray voltages are present. Off-farm sources of stray voltage include phase unbalances, undersized neutral wire, and high resistance splices on the neutral wire. Mitigation strategies for reducing stray voltage include phase balancing; conversion from single to 3-phase; increasing distribution voltage levels, and changing pole configurations. 22 refs., 5 tabs., 13 figs.

  7. High voltage engineering

    CERN Document Server

    Rizk, Farouk AM

    2014-01-01

    Inspired by a new revival of worldwide interest in extra-high-voltage (EHV) and ultra-high-voltage (UHV) transmission, High Voltage Engineering merges the latest research with the extensive experience of the best in the field to deliver a comprehensive treatment of electrical insulation systems for the next generation of utility engineers and electric power professionals. The book offers extensive coverage of the physical basis of high-voltage engineering, from insulation stress and strength to lightning attachment and protection and beyond. Presenting information critical to the design, selec

  8. High voltage test techniques

    CERN Document Server

    Kind, Dieter

    2001-01-01

    The second edition of High Voltage Test Techniques has been completely revised. The present revision takes into account the latest international developments in High Voltage and Measurement technology, making it an essential reference for engineers in the testing field.High Voltage Technology belongs to the traditional area of Electrical Engineering. However, this is not to say that the area has stood still. New insulating materials, computing methods and voltage levels repeatedly pose new problems or open up methods of solution; electromagnetic compatibility (EMC) or components and systems al

  9. A coupled remote sensing and the Surface Energy Balance with Topography Algorithm (SEBTA) to estimate actual evapotranspiration under complex terrain

    OpenAIRE

    Z. Q. Gao; C. S. Liu; W. Gao; N. B. Chang

    2010-01-01

    Evapotranspiration (ET) may be used as an ecological indicator to address the ecosystem complexity. The accurate measurement of ET is of great significance for studying environmental sustainability, global climate changes, and biodiversity. Remote sensing technologies are capable of monitoring both energy and water fluxes on the surface of the Earth. With this advancement, existing models, such as SEBAL, S_SEBI and SEBS, enable us to estimate the regional ET with limited temporal and spa...

  10. Negative voltage modulated multi-level resistive switching by using a Cr/BaTiOx/TiN structure and quantum conductance through evidence of H2O2 sensing mechanism.

    Science.gov (United States)

    Chakrabarti, Somsubhra; Ginnaram, Sreekanth; Jana, Surajit; Wu, Zong-Yi; Singh, Kanishk; Roy, Anisha; Kumar, Pankaj; Maikap, Siddheswar; Qiu, Jian-Tai; Cheng, Hsin-Ming; Tsai, Ling-Na; Chang, Ya-Ling; Mahapatra, Rajat; Yang, Jer-Ren

    2017-07-05

    Negative voltage modulated multi-level resistive switching with quantum conductance during staircase-type RESET and its transport characteristics in Cr/BaTiO x /TiN structure have been investigated for the first time. The as-deposited amorphous BaTiO x film has been confirmed by high-resolution transmission electron microscopy. X-ray photo-electron spectroscopy shows different oxidation states of Ba in the switching material, which is responsible for tunable more than 10 resistance states by varying negative stop voltage owing to slow decay value of RESET slope (217.39 mV/decade). Quantum conductance phenomenon has been observed in staircase RESET cycle of the memory devices. By inspecting the oxidation states of Ba + and Ba 2+ through measuring H 2 O 2 with a low concentration of 1 nM in electrolyte/BaTiO x /SiO 2 /p-Si structure, the switching mechanism of each HRS level as well as the multi-level phenomenon has been explained by gradual dissolution of oxygen vacancy filament. Along with negative stop voltage modulated multi-level, current compliance dependent multi-level has also been demonstrated and resistance ratio up to 2000 has been achieved even for a thin (voltage switching curve has been simulated as well. Hence, multi-level resistive switching of Cr/BaTiO x /TiN structure implies the promising applications in high dense, multistate non-volatile memories in near future.

  11. Nonlinear electrokinetics at large voltages

    Energy Technology Data Exchange (ETDEWEB)

    Bazant, Martin Z [Department of Chemical Engineering and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Sabri Kilic, Mustafa; Ajdari, Armand [Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Storey, Brian D [Franklin W Olin College of Engineering, Needham, MA 02492 (United States)], E-mail: bazant@mit.edu

    2009-07-15

    The classical theory of electrokinetic phenomena assumes a dilute solution of point-like ions in chemical equilibrium with a surface whose double-layer voltage is of order the thermal voltage, k{sub B}T/e=25 mV. In nonlinear 'induced-charge' electrokinetic phenomena, such as ac electro-osmosis, several volts {approx}100k{sub B}T/e are applied to the double layer, and the theory breaks down and cannot explain many observed features. We argue that, under such a large voltage, counterions 'condense' near the surface, even for dilute bulk solutions. Based on simple models, we predict that the double-layer capacitance decreases and the electro-osmotic mobility saturates at large voltages, due to steric repulsion and increased viscosity of the condensed layer, respectively. The former suffices to explain observed high-frequency flow reversal in ac electro-osmosis; the latter leads to a salt concentration dependence of induced-charge flows comparable to experiments, although a complete theory is still lacking.

  12. A New Asymmetrical Current-fed Converter with Voltage Lifting

    Directory of Open Access Journals (Sweden)

    DELSHAD, M.

    2011-05-01

    Full Text Available This paper presents a new zero voltage switching current-fed DC-DC converter with high voltage gain. In this converter all switches (main and auxiliary turn on under zero voltage switching and turn off under almost zero voltage switching due to snubber capacitor. Furthermore, the voltage spike across the main switch due to leakage inductance of forward transformer is absorbed. The flyback transformer which is connected to the output in series causes to high voltage gain and less voltage stress on the power devices. Considering high efficiency and voltage gain of this converter, it is suitable for green generated systems such as fuel cells or photovoltaic systems. The presented experimental results verify the integrity of the proposed converter.

  13. Two-stage unified stretched-exponential model for time-dependence of threshold voltage shift under positive-bias-stresses in amorphous indium-gallium-zinc oxide thin-film transistors

    Science.gov (United States)

    Jeong, Chan-Yong; Kim, Hee-Joong; Hong, Sae-Young; Song, Sang-Hun; Kwon, Hyuck-In

    2017-08-01

    In this study, we show that the two-stage unified stretched-exponential model can more exactly describe the time-dependence of threshold voltage shift (ΔV TH) under long-term positive-bias-stresses compared to the traditional stretched-exponential model in amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). ΔV TH is mainly dominated by electron trapping at short stress times, and the contribution of trap state generation becomes significant with an increase in the stress time. The two-stage unified stretched-exponential model can provide useful information not only for evaluating the long-term electrical stability and lifetime of the a-IGZO TFT but also for understanding the stress-induced degradation mechanism in a-IGZO TFTs.

  14. Mechanical characteristics of harbor seal (Phoca vitulina) vibrissae under different circumstances and their implications on its sensing methodology

    International Nuclear Information System (INIS)

    Hans, H; Miao, J M; Triantafyllou, M S

    2014-01-01

    In this paper, the mechanical properties of harbor seal vibrissae immersed in various solutions are investigated. As there are no nerves along the length of the vibrissae, all the perturbations have to be transmitted to their bases for sensing. Hence, quantification and understanding of the mechanical properties of the vibrissae are essential in determining the perturbations transmitted to the base of the vibrissae. Two experimental setups are devised for measurements of the different properties of the vibrissae. The first experimental setup is performed with a dynamic mechanical analysis machine. The measured properties in these experiments are the modulus of elasticity and the damping of the vibrissae. Dry, saline water-immersed, water-immersed and Hanks' balanced salt solution (HBSS)-immersed vibrissae are tested to determine the effects of these solutions on the properties of the vibrissae. Tests on the duration of immersion are also performed with saline water-immersed vibrissae. The second experimental setup is performed with a mini-shaker connected to a clamp, which rigidly holds the vibrissae at their bases. The measured properties in these experiments are the natural frequencies of the vibrissae. The results indicate that the moduli of elasticity of the vibrissae are found to decrease along their lengths. However, their damping does not vary along the lengths. HBSS-immersed and saline water-immersed vibrissae show similar characteristics on their properties. An analytical model for predicting the natural frequencies of the vibrissae is also derived. Strong agreement with previous studies on the underwater sensing principle of the harbor seal is also established. (paper)

  15. based dynamic voltage restorer

    African Journals Online (AJOL)

    HOD

    operation due to presence of increased use of nonlinear loads (computers, microcontrollers ... simulations of a dynamic voltage restorer (DVR) was achieved using MATLAB/Simulink. ..... using Discrete PWM generator, then the IGBT inverter.

  16. High voltage engineering fundamentals

    CERN Document Server

    Kuffel, E; Hammond, P

    1984-01-01

    Provides a comprehensive treatment of high voltage engineering fundamentals at the introductory and intermediate levels. It covers: techniques used for generation and measurement of high direct, alternating and surge voltages for general application in industrial testing and selected special examples found in basic research; analytical and numerical calculation of electrostatic fields in simple practical insulation system; basic ionisation and decay processes in gases and breakdown mechanisms of gaseous, liquid and solid dielectrics; partial discharges and modern discharge detectors; and over

  17. Fluorescent Protein Voltage Probes Derived from ArcLight that Respond to Membrane Voltage Changes with Fast Kinetics

    Science.gov (United States)

    Han, Zhou; Jin, Lei; Platisa, Jelena; Cohen, Lawrence B.; Baker, Bradley J.; Pieribone, Vincent A.

    2013-01-01

    We previously reported the discovery of a fluorescent protein voltage probe, ArcLight, and its derivatives that exhibit large changes in fluorescence intensity in response to changes of plasma membrane voltage. ArcLight allows the reliable detection of single action potentials and sub-threshold activities in individual neurons and dendrites. The response kinetics of ArcLight (τ1-on ~10 ms, τ2-on ~ 50 ms) are comparable with most published genetically-encoded voltage probes. However, probes using voltage-sensing domains other than that from the Ciona intestinalis voltage sensitive phosphatase exhibit faster kinetics. Here we report new versions of ArcLight, in which the Ciona voltage-sensing domain was replaced with those from chicken, zebrafish, frog, mouse or human. We found that the chicken and zebrafish-based ArcLight exhibit faster kinetics, with a time constant (τ) less than 6ms for a 100 mV depolarization. Although the response amplitude of these two probes (8-9%) is not as large as the Ciona-based ArcLight (~35%), they are better at reporting action potentials from cultured neurons at higher frequency. In contrast, probes based on frog, mouse and human voltage sensing domains were either slower than the Ciona-based ArcLight or had very small signals. PMID:24312287

  18. Fluorescent protein voltage probes derived from ArcLight that respond to membrane voltage changes with fast kinetics.

    Directory of Open Access Journals (Sweden)

    Zhou Han

    Full Text Available We previously reported the discovery of a fluorescent protein voltage probe, ArcLight, and its derivatives that exhibit large changes in fluorescence intensity in response to changes of plasma membrane voltage. ArcLight allows the reliable detection of single action potentials and sub-threshold activities in individual neurons and dendrites. The response kinetics of ArcLight (τ1-on ~10 ms, τ2-on ~ 50 ms are comparable with most published genetically-encoded voltage probes. However, probes using voltage-sensing domains other than that from the Ciona intestinalis voltage sensitive phosphatase exhibit faster kinetics. Here we report new versions of ArcLight, in which the Ciona voltage-sensing domain was replaced with those from chicken, zebrafish, frog, mouse or human. We found that the chicken and zebrafish-based ArcLight exhibit faster kinetics, with a time constant (τ less than 6 ms for a 100 mV depolarization. Although the response amplitude of these two probes (8-9% is not as large as the Ciona-based ArcLight (~35%, they are better at reporting action potentials from cultured neurons at higher frequency. In contrast, probes based on frog, mouse and human voltage sensing domains were either slower than the Ciona-based ArcLight or had very small signals.

  19. Low-voltage gyrotrons

    International Nuclear Information System (INIS)

    Glyavin, M. Yu.; Zavolskiy, N. A.; Sedov, A. S.; Nusinovich, G. S.

    2013-01-01

    For a long time, the gyrotrons were primarily developed for electron cyclotron heating and current drive of plasmas in controlled fusion reactors where a multi-megawatt, quasi-continuous millimeter-wave power is required. In addition to this important application, there are other applications (and their number increases with time) which do not require a very high power level, but such issues as the ability to operate at low voltages and have compact devices are very important. For example, gyrotrons are of interest for a dynamic nuclear polarization, which improves the sensitivity of the nuclear magnetic resonance spectroscopy. In this paper, some issues important for operation of gyrotrons driven by low-voltage electron beams are analyzed. An emphasis is made on the efficiency of low-voltage gyrotron operation at the fundamental and higher cyclotron harmonics. These efficiencies calculated with the account for ohmic losses were, first, determined in the framework of the generalized gyrotron theory based on the cold-cavity approximation. Then, more accurate, self-consistent calculations for the fundamental and second harmonic low-voltage sub-THz gyrotron designs were carried out. Results of these calculations are presented and discussed. It is shown that operation of the fundamental and second harmonic gyrotrons with noticeable efficiencies is possible even at voltages as low as 5–10 kV. Even the third harmonic gyrotrons can operate at voltages about 15 kV, albeit with rather low efficiency (1%–2% in the submillimeter wavelength region).

  20. Room temperature, ppb-level NO2 gas sensing of multiple-networked ZnSe nanowire sensors under UV illumination

    Directory of Open Access Journals (Sweden)

    Sunghoon Park

    2014-10-01

    Full Text Available Reports of the gas sensing properties of ZnSe are few, presumably because of the decomposition and oxidation of ZnSe at high temperatures. In this study, ZnSe nanowires were synthesized by the thermal evaporation of ZnSe powders and the sensing performance of multiple-networked ZnSe nanowire sensors toward NO2 gas was examined. The results showed that ZnSe might be a promising gas sensor material if it is used at room temperature. The response of the ZnSe nanowires to 50 ppb–5 ppm NO2 at room temperature under dark and UV illumination conditions were 101–102% and 113–234%, respectively. The responses of the ZnSe nanowires to 5 ppm NO2 increased from 102 to 234% with increasing UV illumination intensity from 0 to 1.2 mW/cm2. The response of the ZnSe nanowires was stronger than or comparable to that of typical metal oxide semiconductors reported in the literature, which require higher NO2 concentrations and operate at higher temperatures. The origin of the enhanced response of the ZnSe nanowires towards NO2 under UV illumination is also discussed.

  1. Research on the Error Characteristics of a 110 kV Optical Voltage Transformer under Three Conditions: In the Laboratory, Off-Line in the Field and During On-Line Operation

    Science.gov (United States)

    Xiao, Xia; Hu, Haoliang; Xu, Yan; Lei, Min; Xiong, Qianzhu

    2016-01-01

    Optical voltage transformers (OVTs) have been applied in power systems. When performing accuracy performance tests of OVTs large differences exist between the electromagnetic environment and the temperature variation in the laboratory and on-site. Therefore, OVTs may display different error characteristics under different conditions. In this paper, OVT prototypes with typical structures were selected to be tested for the error characteristics with the same testing equipment and testing method. The basic accuracy, the additional error caused by temperature and the adjacent phase in the laboratory, the accuracy in the field off-line, and the real-time monitoring error during on-line operation were tested. The error characteristics under the three conditions—laboratory, in the field off-line and during on-site operation—were compared and analyzed. The results showed that the effect of the transportation process, electromagnetic environment and the adjacent phase on the accuracy of OVTs could be ignored for level 0.2, but the error characteristics of OVTs are dependent on the environmental temperature and are sensitive to the temperature gradient. The temperature characteristics during on-line operation were significantly superior to those observed in the laboratory. PMID:27537895

  2. Damage identification method for continuous girder bridges based on spatially-distributed long-gauge strain sensing under moving loads

    Science.gov (United States)

    Wu, Bitao; Wu, Gang; Yang, Caiqian; He, Yi

    2018-05-01

    A novel damage identification method for concrete continuous girder bridges based on spatially-distributed long-gauge strain sensing is presented in this paper. First, the variation regularity of the long-gauge strain influence line of continuous girder bridges which changes with the location of vehicles on the bridge is studied. According to this variation regularity, a calculation method for the distribution regularity of the area of long-gauge strain history is investigated. Second, a numerical simulation of damage identification based on the distribution regularity of the area of long-gauge strain history is conducted, and the results indicate that this method is effective for identifying damage and is not affected by the speed, axle number and weight of vehicles. Finally, a real bridge test on a highway is conducted, and the experimental results also show that this method is very effective for identifying damage in continuous girder bridges, and the local element stiffness distribution regularity can be revealed at the same time. This identified information is useful for maintaining of continuous girder bridges on highways.

  3. Device for monitoring cell voltage

    Science.gov (United States)

    Doepke, Matthias [Garbsen, DE; Eisermann, Henning [Edermissen, DE

    2012-08-21

    A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.

  4. Regulation of Nicotine Tolerance by Quorum Sensing and High Efficiency of Quorum Quenching Under Nicotine Stress in Pseudomonas aeruginosa PAO1

    Directory of Open Access Journals (Sweden)

    Huiming Tang

    2018-03-01

    Full Text Available Quorum sensing (QS regulates the behavior of bacterial populations and promotes their adaptation and survival under stress. As QS is responsible for the virulence of vast majority of bacteria, quorum quenching (QQ, the interruption of QS, has become an attractive therapeutic strategy. However, the role of QS in stress tolerance and the efficiency of QQ under stress in bacteria are seldom explored. In this study, we demonstrated that QS-regulated catalase (CAT expression and biofilm formation help Pseudomonas aeruginosa PAO1 resist nicotine stress. CAT activity and biofilm formation in wild type (WT and ΔrhlR strains are significantly higher than those in the ΔlasR strain. Supplementation of ΔlasI strain with 3OC12-HSL showed similar CAT activity and biofilm formation as those of the WT strain. LasIR circuit rather than RhlIR circuit is vital to nicotine tolerance. Acylase I significantly decreased the production of virulence factors, namely elastase, pyocyanin, and pyoverdine under nicotine stress compared to the levels observed in the absence of nicotine stress. Thus, QQ is more efficient under stress. To our knowledge, this is the first study to report that QS contributes to nicotine tolerance in P. aeruginosa. This work facilitates a better application of QQ for the treatment of bacterial infections, especially under stress.

  5. Regulation of Nicotine Tolerance by Quorum Sensing and High Efficiency of Quorum Quenching Under Nicotine Stress in Pseudomonas aeruginosa PAO1.

    Science.gov (United States)

    Tang, Huiming; Zhang, Yunyun; Ma, Yifan; Tang, Mengmeng; Shen, Dongsheng; Wang, Meizhen

    2018-01-01

    Quorum sensing (QS) regulates the behavior of bacterial populations and promotes their adaptation and survival under stress. As QS is responsible for the virulence of vast majority of bacteria, quorum quenching (QQ), the interruption of QS, has become an attractive therapeutic strategy. However, the role of QS in stress tolerance and the efficiency of QQ under stress in bacteria are seldom explored. In this study, we demonstrated that QS-regulated catalase (CAT) expression and biofilm formation help Pseudomonas aeruginosa PAO1 resist nicotine stress. CAT activity and biofilm formation in wild type (WT) and Δ rhlR strains are significantly higher than those in the Δ lasR strain. Supplementation of Δ lasI strain with 3OC12-HSL showed similar CAT activity and biofilm formation as those of the WT strain. LasIR circuit rather than RhlIR circuit is vital to nicotine tolerance. Acylase I significantly decreased the production of virulence factors, namely elastase, pyocyanin, and pyoverdine under nicotine stress compared to the levels observed in the absence of nicotine stress. Thus, QQ is more efficient under stress. To our knowledge, this is the first study to report that QS contributes to nicotine tolerance in P. aeruginosa . This work facilitates a better application of QQ for the treatment of bacterial infections, especially under stress.

  6. High frequency breakdown voltage

    International Nuclear Information System (INIS)

    Chu, Thanh Duy.

    1992-03-01

    This report contains information about the effect of frequency on the breakdown voltage of an air gap at standard pressure and temperature, 76 mm Hg and O degrees C, respectively. The frequencies of interest are 47 MHz and 60 MHz. Additionally, the breakdown in vacuum is briefly considered. The breakdown mechanism is explained on the basis of collision and ionization. The presence of the positive ions produced by ionization enhances the field in the gap, and thus determines the breakdown. When a low-frequency voltage is applied across the gap, the breakdown mechanism is the same as that caused by the DC or static voltage. However, when the frequency exceeds the first critical value f c , the positive ions are trapped in the gap, increasing the field considerably. This makes the breakdown occur earlier; in other words, the breakdown voltage is lowered. As the frequency increases two decades or more, the second critical frequency, f ce , is reached. This time the electrons start being trapped in the gap. Those electrons that travel multiple times across the gap before reaching the positive electrode result in an enormous number of electrons and positive ions being present in the gap. The result is a further decrease of the breakdown voltage. However, increasing the frequency does not decrease the breakdown voltage correspondingly. In fact, the associated breakdown field intensity is almost constant (about 29 kV/cm).The reason is that the recombination rate increases and counterbalances the production rate, thus reducing the effect of the positive ions' concentration in the gap. The theory of collision and ionization does not apply to the breakdown in vacuum. It seems that the breakdown in vacuum is primarily determined by the irregularities on the surfaces of the electrodes. Therefore, the effect of frequency on the breakdown, if any, is of secondary importance

  7. A Refined Self-Tuning Filter-Based Instantaneous Power Theory Algorithm for Indirect Current Controlled Three-Level Inverter-Based Shunt Active Power Filters under Non-sinusoidal Source Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Yap Hoon

    2017-02-01

    Full Text Available In this paper, a refined reference current generation algorithm based on instantaneous power (pq theory is proposed, for operation of an indirect current controlled (ICC three-level neutral-point diode clamped (NPC inverter-based shunt active power filter (SAPF under non-sinusoidal source voltage conditions. SAPF is recognized as one of the most effective solutions to current harmonics due to its flexibility in dealing with various power system conditions. As for its controller, pq theory has widely been applied to generate the desired reference current due to its simple implementation features. However, the conventional dependency on self-tuning filter (STF in generating reference current has significantly limited mitigation performance of SAPF. Besides, the conventional STF-based pq theory algorithm is still considered to possess needless features which increase computational complexity. Furthermore, the conventional algorithm is mostly designed to suit operation of direct current controlled (DCC SAPF which is incapable of handling switching ripples problems, thereby leading to inefficient mitigation performance. Therefore, three main improvements are performed which include replacement of STF with mathematical-based fundamental real power identifier, removal of redundant features, and generation of sinusoidal reference current. To validate effectiveness and feasibility of the proposed algorithm, simulation work in MATLAB-Simulink and laboratory test utilizing a TMS320F28335 digital signal processor (DSP are performed. Both simulation and experimental findings demonstrate superiority of the proposed algorithm over the conventional algorithm.

  8. Disaggregation of remotely sensed soil moisture under all sky condition using machine learning approach in Northeast Asia

    Science.gov (United States)

    Kim, S.; Kim, H.; Choi, M.; Kim, K.

    2016-12-01

    Estimating spatiotemporal variation of soil moisture is crucial to hydrological applications such as flood, drought, and near real-time climate forecasting. Recent advances in space-based passive microwave measurements allow the frequent monitoring of the surface soil moisture at a global scale and downscaling approaches have been applied to improve the spatial resolution of passive microwave products available at local scale applications. However, most downscaling methods using optical and thermal dataset, are valid only in cloud-free conditions; thus renewed downscaling method under all sky condition is necessary for the establishment of spatiotemporal continuity of datasets at fine resolution. In present study Support Vector Machine (SVM) technique was utilized to downscale a satellite-based soil moisture retrievals. The 0.1 and 0.25-degree resolution of daily Land Parameter Retrieval Model (LPRM) L3 soil moisture datasets from Advanced Microwave Scanning Radiometer 2 (AMSR2) were disaggregated over Northeast Asia in 2015. Optically derived estimates of surface temperature (LST), normalized difference vegetation index (NDVI), and its cloud products were obtained from MODerate Resolution Imaging Spectroradiometer (MODIS) for the purpose of downscaling soil moisture in finer resolution under all sky condition. Furthermore, a comparison analysis between in situ and downscaled soil moisture products was also conducted for quantitatively assessing its accuracy. Results showed that downscaled soil moisture under all sky condition not only preserves the quality of AMSR2 LPRM soil moisture at 1km resolution, but also attains higher spatial data coverage. From this research we expect that time continuous monitoring of soil moisture at fine scale regardless of weather conditions would be available.

  9. 30 CFR 77.902-1 - Fail safe ground check circuits; maximum voltage.

    Science.gov (United States)

    2010-07-01

    ... voltage. 77.902-1 Section 77.902-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.902-1 Fail safe ground check circuits; maximum voltage. The maximum voltage used for ground check circuits under § 77.902...

  10. 30 CFR 77.803-1 - Fail safe ground check circuits; maximum voltage.

    Science.gov (United States)

    2010-07-01

    ... voltage. 77.803-1 Section 77.803-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.803-1 Fail safe ground check circuits; maximum voltage. The maximum voltage used for ground check circuits under § 77.803 shall not...

  11. Motion makes sense: an adaptive motor-sensory strategy underlies the perception of object location in rats.

    Science.gov (United States)

    Saraf-Sinik, Inbar; Assa, Eldad; Ahissar, Ehud

    2015-06-10

    Tactile perception is obtained by coordinated motor-sensory processes. We studied the processes underlying the perception of object location in freely moving rats. We trained rats to identify the relative location of two vertical poles placed in front of them and measured at high resolution the motor and sensory variables (19 and 2 variables, respectively) associated with this whiskers-based perceptual process. We found that the rats developed stereotypic head and whisker movements to solve this task, in a manner that can be described by several distinct behavioral phases. During two of these phases, the rats' whiskers coded object position by first temporal and then angular coding schemes. We then introduced wind (in two opposite directions) and remeasured their perceptual performance and motor-sensory variables. Our rats continued to perceive object location in a consistent manner under wind perturbations while maintaining all behavioral phases and relatively constant sensory coding. Constant sensory coding was achieved by keeping one group of motor variables (the "controlled variables") constant, despite the perturbing wind, at the cost of strongly modulating another group of motor variables (the "modulated variables"). The controlled variables included coding-relevant variables, such as head azimuth and whisker velocity. These results indicate that consistent perception of location in the rat is obtained actively, via a selective control of perception-relevant motor variables. Copyright © 2015 the authors 0270-6474/15/358777-13$15.00/0.

  12. Digital voltage discriminator

    International Nuclear Information System (INIS)

    Zhou Zhicheng

    1992-01-01

    A digital voltage discriminator is described, which is synthesized by digital comparator and ADC. The threshold is program controllable with high stability. Digital region of confusion is approximately equal to 1.5 LSB. This discriminator has a single channel analyzer function model with channel width of 1.5 LSB

  13. High-voltage picoamperemeter

    Energy Technology Data Exchange (ETDEWEB)

    Bugl, Andrea; Ball, Markus; Boehmer, Michael; Doerheim, Sverre; Hoenle, Andreas; Konorov, Igor [Technische Universitaet Muenchen, Garching (Germany); Ketzer, Bernhard [Technische Universitaet Muenchen, Garching (Germany); Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany)

    2014-07-01

    Current measurements in the nano- and picoampere region on high voltage are an important tool to understand charge transfer processes in micropattern gas detectors like the Gas Electron Multiplier (GEM). They are currently used to e.g. optimize the field configuration in a multi-GEM stack to be used in the ALICE TPC after the upgrade of the experiment during the 2nd long shutdown of the LHC. Devices which allow measurements down to 1pA at high voltage up to 6 kV have been developed at TU Muenchen. They are based on analog current measurements via the voltage drop over a switchable shunt. A microcontroller collects 128 digital ADC values and calculates their mean and standard deviation. This information is sent with a wireless transmitting unit to a computer and stored in a root file. A nearly unlimited number of devices can be operated simultaneously and read out by a single receiver. The results can also be displayed on a LCD directly at the device. Battery operation and the wireless readout are important to protect the user from any contact to high voltage. The principle of the device is explained, and systematic studies of their properties are shown.

  14. Geomagnetism and Induced Voltage

    Science.gov (United States)

    Abdul-Razzaq, W.; Biller, R. D.

    2010-01-01

    Introductory physics laboratories have seen an influx of "conceptual integrated science" over time in their classrooms with elements of other sciences such as chemistry, biology, Earth science, and astronomy. We describe a laboratory to introduce this development, as it attracts attention to the voltage induced in the human brain as it…

  15. Mitigation of Unbalanced Voltage Sags and Voltage Unbalance in CIGRE Low Voltage Distribution Network

    DEFF Research Database (Denmark)

    Mustafa, Ghullam; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    Any problem with voltage in a power network is undesirable as it aggravates the quality of the power. Power electronic devices such as Voltage Source Converter (VSC) based Static Synchronous Compensator (STATCOM) etc. can be used to mitigate the voltage problems in the distribution system...... to unbalanced faults. The compensation of unbalanced voltage sags and voltage unbalance in the CIGRE distribution network is done by using the four STATCOM compensators already existing in the test grid. The simulations are carried out in DIgSILENT power factory software version 15.0........ The voltage problems dealt with in this paper are to show how to mitigate unbalanced voltage sags and voltage unbalance in the CIGRE Low Voltage (LV) test network and net-works like this. The voltage unbalances, for the tested cases in the CIGRE LV test network are mainly due to single phase loads and due...

  16. Mitigation of Voltage Sags in CIGRE Low Voltage Distribution Network

    DEFF Research Database (Denmark)

    Mustafa, Ghullam; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    Any problem in voltage in a power network is undesirable as it aggravates the quality of the power. Power electronic devices such as Voltage Source Converter (VSC) based Static Synchronous Compensator (STATCOM), Dynamic Voltage Restorer (DVR) etc. are commonly used for the mitigation of voltage p....... The compensation of voltage sags in the different parts of CIGRE distribution network is done by using the four STATCOM compensators already existing in the test grid. The simulations are carried out in DIgSILENT power factory software version 15.0.......Any problem in voltage in a power network is undesirable as it aggravates the quality of the power. Power electronic devices such as Voltage Source Converter (VSC) based Static Synchronous Compensator (STATCOM), Dynamic Voltage Restorer (DVR) etc. are commonly used for the mitigation of voltage...... problems in the distribution system. The voltage problems dealt with in this paper are to show how to mitigate voltage sags in the CIGRE Low Voltage (LV) test network and networks like this. The voltage sags, for the tested cases in the CIGRE LV test network are mainly due to three phase faults...

  17. Utility of remote sensing-based surface energy balance models to track water stress in rain-fed switchgrass under dry and wet conditions

    Science.gov (United States)

    Bhattarai, Nishan; Wagle, Pradeep; Gowda, Prasanna H.; Kakani, Vijaya G.

    2017-11-01

    The ability of remote sensing-based surface energy balance (SEB) models to track water stress in rain-fed switchgrass (Panicum virgatum L.) has not been explored yet. In this paper, the theoretical framework of crop water stress index (CWSI; 0 = extremely wet or no water stress condition and 1 = extremely dry or no transpiration) was utilized to estimate CWSI in rain-fed switchgrass using Landsat-derived evapotranspiration (ET) from five remote sensing based single-source SEB models, namely Surface Energy Balance Algorithm for Land (SEBAL), Mapping ET with Internalized Calibration (METRIC), Surface Energy Balance System (SEBS), Simplified Surface Energy Balance Index (S-SEBI), and Operational Simplified Surface Energy Balance (SSEBop). CWSI estimates from the five SEB models and a simple regression model that used normalized difference vegetation index (NDVI), near-surface temperature difference, and measured soil moisture (SM) as covariates were compared with those derived from eddy covariance measured ET (CWSIEC) for the 32 Landsat image acquisition dates during the 2011 (dry) and 2013 (wet) growing seasons. Results indicate that most SEB models can predict CWSI reasonably well. For example, the root mean square error (RMSE) ranged from 0.14 (SEBAL) to 0.29 (SSEBop) and the coefficient of determination (R2) ranged from 0.25 (SSEBop) to 0.72 (SEBAL), justifying the added complexity in CWSI modeling as compared to results from the simple regression model (R2 = 0.55, RMSE = 0.16). All SEB models underestimated CWSI in the dry year but the estimates from SEBAL and S-SEBI were within 7% of the mean CWSIEC and explained over 60% of variations in CWSIEC. In the wet year, S-SEBI mostly overestimated CWSI (around 28%), while estimates from METRIC, SEBAL, SEBS, and SSEBop were within 8% of the mean CWSIEC. Overall, SEBAL was the most robust model under all conditions followed by METRIC, whose performance was slightly worse and better than SEBAL in dry and wet years

  18. Large-strain optical fiber sensing and real-time FEM updating of steel structures under the high temperature effect

    International Nuclear Information System (INIS)

    Huang, Ying; Fang, Xia; Xiao, Hai; Bevans, Wesley James; Chen, Genda; Zhou, Zhi

    2013-01-01

    Steel buildings are subjected to fire hazards during or immediately after a major earthquake. Under combined gravity and thermal loads, they have non-uniformly distributed stiffness and strength, and thus collapse progressively with large deformation. In this study, large-strain optical fiber sensors for high temperature applications and a temperature-dependent finite element model updating method are proposed for accurate prediction of structural behavior in real time. The optical fiber sensors can measure strains up to 10% at approximately 700 °C. Their measurements are in good agreement with those from strain gauges up to 0.5%. In comparison with the experimental results, the proposed model updating method can reduce the predicted strain errors from over 75% to below 20% at 800 °C. The minimum number of sensors in a fire zone that can properly characterize the vertical temperature distribution of heated air due to the gravity effect should be included in the proposed model updating scheme to achieve a predetermined simulation accuracy. (paper)

  19. Thermal remote sensing of water under flooded vegetation: New observations of inundation patterns for the ‘Small’ Lake Chad

    Science.gov (United States)

    Leblanc, M.; Lemoalle, J.; Bader, J.-C.; Tweed, S.; Mofor, L.

    2011-06-01

    SummaryLake Chad at the border of the Sahara desert in central Africa, is well known for its high sensitivity to hydroclimatic events. Gaps in in situ data have so far prevented a full assessment of the response of Lake Chad to the ongoing prolonged drought that started in the second half of the 20th century. Like many other wetlands and shallow lakes, the 'Small' Lake Chad includes large areas of water under aquatic vegetation which needs to be accounted for to obtain the total inundated area. In this paper, a methodology is proposed that uses Meteosat thermal maximum composite data (Tmax) to account for water covered by aquatic vegetation and provide a consistent monthly time series of total inundated area estimates for Lake Chad. Total inundation patterns in Lake Chad were reconstructed for a 15-yr period (1986-2001) which includes the peak of the drought (86-91) and therefore provides new observations on the hydrological functioning of the 'Small' Lake Chad. During the study period, Lake Chad remained below 16,400 km 2 (third quartile ˜8800 km 2). The variability of the inundated area observed in the northern pool (standard deviation σnorthern pool = 1980 km 2) is about 60% greater than that of the southern pool ( σsouthern pool = 1250 km 2). The same methodology could be applied to other large wetlands and shallow lakes in semi-arid or arid regions elsewehere using Meteosat (e.g. Niger Inland Delta, Sudd in Sudan, Okavango Delta) and other weather satellites (e.g., floodplains of the Lake Eyre Basin in Australia and Andean Altiplano Lakes in South America).

  20. Relationship between Remote Sensing Data, Plant Biomass and Soil Nitrogen Dynamics in Intensively Managed Grasslands under Controlled Conditions.

    Science.gov (United States)

    Knoblauch, Christoph; Watson, Conor; Berendonk, Clara; Becker, Rolf; Wrage-Mönnig, Nicole; Wichern, Florian

    2017-06-23

    The sustainable use of grasslands in intensive farming systems aims to optimize nitrogen (N) inputs to increase crop yields and decrease harmful losses to the environment at the same time. To achieve this, simple optical sensors may provide a non-destructive, time- and cost-effective tool for estimating plant biomass in the field, considering spatial and temporal variability. However, the plant growth and related N uptake is affected by the available N in the soil, and therefore, N mineralization and N losses. These soil N dynamics and N losses are affected by the N input and environmental conditions, and cannot easily be determined non-destructively. Therefore, the question arises: whether a relationship can be depicted between N fertilizer levels, plant biomass and N dynamics as indicated by nitrous oxide (N₂O) losses and inorganic N levels. We conducted a standardized greenhouse experiment to explore the potential of spectral measurements for analyzing yield response, N mineralization and N₂O emissions in a permanent grassland. Ryegrass was subjected to four mineral fertilizer input levels over 100 days (four harvests) under controlled environmental conditions. The soil temperature and moisture content were automatically monitored, and the emission rates of N₂O and carbon dioxide (CO₂) were detected frequently. Spectral measurements of the swards were performed directly before harvesting. The normalized difference vegetation index (NDVI) and simple ratio (SR) were moderately correlated with an increasing biomass as affected by fertilization level. Furthermore, we found a non-linear response of increasing N₂O emissions to elevated fertilizer levels. Moreover, inorganic N and extractable organic N levels at the end of the experiment tended to increase with the increasing N fertilizer addition. However, microbial biomass C and CO₂ efflux showed no significant differences among fertilizer treatments, reflecting no substantial changes in the soil

  1. Two-Component Signaling System VgrRS Directly Senses Extracytoplasmic and Intracellular Iron to Control Bacterial Adaptation under Iron Depleted Stress.

    Directory of Open Access Journals (Sweden)

    Li Wang

    2016-12-01

    Full Text Available Both iron starvation and excess are detrimental to cellular life, especially for animal and plant pathogens since they always live in iron-limited environments produced by host immune responses. However, how organisms sense and respond to iron is incompletely understood. Herein, we reveal that in the phytopathogenic bacterium Xanthomonas campestris pv. campestris, VgrS (also named ColS is a membrane-bound receptor histidine kinase that senses extracytoplasmic iron limitation in the periplasm, while its cognate response regulator, VgrR (ColR, detects intracellular iron excess. Under iron-depleted conditions, dissociation of Fe3+ from the periplasmic sensor region of VgrS activates the VgrS autophosphorylation and subsequent phosphotransfer to VgrR, an OmpR-family transcription factor that regulates bacterial responses to take up iron. VgrR-VgrS regulon and the consensus DNA binding motif of the transcription factor VgrR were dissected by comparative proteomic and ChIP-seq analyses, which revealed that in reacting to iron-depleted environments, VgrR directly or indirectly controls the expressions of hundreds of genes that are involved in various physiological cascades, especially those associated with iron-uptake. Among them, we demonstrated that the phosphorylated VgrR tightly represses the transcription of a special TonB-dependent receptor gene, tdvA. This regulation is a critical prerequisite for efficient iron uptake and bacterial virulence since activation of tdvA transcription is detrimental to these processes. When the intracellular iron accumulates, the VgrR-Fe2+ interaction dissociates not only the binding between VgrR and the tdvA promoter, but also the interaction between VgrR and VgrS. This relieves the repression in tdvA transcription to impede continuous iron uptake and avoids possible toxic effects of excessive iron accumulation. Our results revealed a signaling system that directly senses both extracytoplasmic and intracellular

  2. Evaluating productivity-biodiversity relationship and spectral diversity in prairie grasslands under different fire management treatments using in-situ and remote sensing hyperspectral data

    Science.gov (United States)

    Gholizadeh, H.; Gamon, J. A.; Zygielbaum, A. I.; Schweiger, A. K.; Cavender-Bares, J.; Yang, Y.; Knops, J. M. H.

    2017-12-01

    Grasslands cover as much as 25% of the Earth's surface and account for approximately 20% of overall terrestrial productivity and contribute to global biodiversity. To optimize the status of grasslands and to counteract their degradation, different management practices have been adopted. Fire has been shown to be an important management practice in the maintenance of grasslands. Our main goals were 1) to evaluate the productivity-biodiversity relationship in grasslands under fire treatment, and 2) to evaluate the capability of hyperspectral remote sensing in estimating biodiversity using spectral data (i.e. spectral diversity). We used above-ground biomass (as a surrogate for productivity), species richness (SR; as a surrogate for biodiversity), and airborne hyperspectral data from a natural grassland with fire treatment (20 plots), and a natural grassland without fire treatment (21 plots), all located at the Cedar Creek Ecosystem Science Reserve in Central Minnesota, USA. The productivity-biodiversity relationship for the fire treatment plots showed a hump-shaped model with adjusted R2=0.37, whereas the relationship for the non-burned plots were non-significant. The relationship between SR and spectral diversity (SD) were positive linear for both treatments; however, the relationship for plots with fire treatment was higher (adjusted R2 = 0.34 vs. 0.19). It is assumed that post-fire foliar nutrients increase soil nitrogen and phosphorus which facilitate post-fire growth and induce higher above-ground biomass and chlorophyll content in plants. Overall, the results of this study showed that management practices affect the productivity-biodiversity relationship and illustrated the effect of fire treatment on remote sensing of biodiversity.

  3. High Voltage Charge Pump

    KAUST Repository

    Emira, Ahmed A.; Abdelghany, Mohamed A.; Elsayed, Mohannad Yomn; Elshurafa, Amro M; Salama, Khaled N.

    2014-01-01

    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  4. High Voltage Charge Pump

    KAUST Repository

    Emira, Ahmed A.

    2014-10-09

    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  5. Nondestructive Optical Sensing of Flavonols and Chlorophyll in White Head Cabbage (Brassica oleracea L. var. capitata subvar. alba) Grown under Different Nitrogen Regimens.

    Science.gov (United States)

    Agati, Giovanni; Tuccio, Lorenza; Kusznierewicz, Barbara; Chmiel, Tomasz; Bartoszek, Agnieszka; Kowalski, Artur; Grzegorzewska, Maria; Kosson, Ryszard; Kaniszewski, Stanislaw

    2016-01-13

    A multiparametric optical sensor was used to nondestructively estimate phytochemical compounds in white cabbage leaves directly in the field. An experimental site of 1980 white cabbages (Brassica oleracea L. var. capitata subvar. alba), under different nitrogen (N) treatments, was mapped by measuring leaf transmittance and chlorophyll fluorescence screening in one leaf/cabbage head. The provided indices of flavonols (FLAV) and chlorophyll (CHL) displayed the opposite response to applied N rates, decreasing and increasing, respectively. The combined nitrogen balance index (NBI = CHL/FLAV) calculated was able to discriminate all of the plots under four N regimens (0, 100, 200, and 400 kg/ha) and was correlated with the leaf N content determined destructively. CHL and FLAV were properly calibrated against chlorophyll (R(2) = 0.945) and flavonol (R(2) = 0.932) leaf contents, respectively, by using a homographic fit function. The proposed optical sensing of cabbage crops can be used to estimate the N status of plants and perform precision fertilization to maintain acceptable crop yield levels and, additionally, to rapidly detect health-promoting flavonol antioxidants in Brassica plants.

  6. High Voltage Seismic Generator

    Science.gov (United States)

    Bogacz, Adrian; Pala, Damian; Knafel, Marcin

    2015-04-01

    This contribution describes the preliminary result of annual cooperation of three student research groups from AGH UST in Krakow, Poland. The aim of this cooperation was to develop and construct a high voltage seismic wave generator. Constructed device uses a high-energy electrical discharge to generate seismic wave in ground. This type of device can be applied in several different methods of seismic measurement, but because of its limited power it is mainly dedicated for engineering geophysics. The source operates on a basic physical principles. The energy is stored in capacitor bank, which is charged by two stage low to high voltage converter. Stored energy is then released in very short time through high voltage thyristor in spark gap. The whole appliance is powered from li-ion battery and controlled by ATmega microcontroller. It is possible to construct larger and more powerful device. In this contribution the structure of device with technical specifications is resented. As a part of the investigation the prototype was built and series of experiments conducted. System parameter was measured, on this basis specification of elements for the final device were chosen. First stage of the project was successful. It was possible to efficiently generate seismic waves with constructed device. Then the field test was conducted. Spark gap wasplaced in shallowborehole(0.5 m) filled with salt water. Geophones were placed on the ground in straight line. The comparison of signal registered with hammer source and sparker source was made. The results of the test measurements are presented and discussed. Analysis of the collected data shows that characteristic of generated seismic signal is very promising, thus confirms possibility of practical application of the new high voltage generator. The biggest advantage of presented device after signal characteristics is its size which is 0.5 x 0.25 x 0.2 m and weight approximately 7 kg. This features with small li-ion battery makes

  7. Increased voltage photovoltaic cell

    Science.gov (United States)

    Ross, B.; Bickler, D. B.; Gallagher, B. D. (Inventor)

    1985-01-01

    A photovoltaic cell, such as a solar cell, is provided which has a higher output voltage than prior cells. The improved cell includes a substrate of doped silicon, a first layer of silicon disposed on the substrate and having opposite doping, and a second layer of silicon carbide disposed on the first layer. The silicon carbide preferably has the same type of doping as the first layer.

  8. Mechanism of electromechanical coupling in voltage-gated potassium channels

    Directory of Open Access Journals (Sweden)

    Rikard eBlunck

    2012-09-01

    Full Text Available Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion – sodium, calcium or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarization, voltage sensors in voltage-gated potassium channels (Kv undergo conformational changes driven by positive charges in the S4 segment and aided by pairwise electrostatic interactions with the surrounding voltage sensor. Structure-function relations of Kv channels have been investigated in detail, and the resulting models on the movement of the voltage sensors now converge to a consensus; the S4 segment undergoes a combined movement of rotation, tilt and vertical displacement in order to bring 3-4 e+ each through the electric field focused in this region. Nevertheless, the mechanism by which the voltage sensor movement leads to pore opening, the electromechanical coupling, is still not fully understood. Thus, recently, electromechanical coupling in different Kv channels has been investigated with a multitude of techniques including electrophysiology, 3D crystal structures, fluorescence spectroscopy and molecular dynamics simulations. Evidently, the S4-S5 linker, the covalent link between the voltage sensor and pore, plays a crucial role. The linker transfers the energy from the voltage sensor movement to the pore domain via an interaction with the S6 C-termini, which are pulled open during gating. In addition, other contact regions have been proposed. This review aims to provide (i an in-depth comparison of the molecular mechanisms of electromechanical coupling in different Kv channels; (ii insight as to how the voltage sensor and pore domain influence one another; and (iii theoretical predictions on the movement of the cytosolic face of the KV channels

  9. Control and Testing of a Dynamic Voltage Restorer (DVR) at Medium Voltage Level

    DEFF Research Database (Denmark)

    Nielsen, John Godsk; Newman, Michael; Nielsen, Hans Ove

    2004-01-01

    power sensitive loads from voltage sags. This paper reports practical test results obtained on a medium voltage (10 kV) level using a DVR at a Distribution test facility in Kyndby, Denmark. The DVR was designed to protect a 400-kVA load from a 0.5-p.u. maximum voltage sag. The reported DVR verifies......The dynamic voltage restorer (DVR) has become popular as a cost effective solution for the protection of sensitive loads from voltage sags. Implementations of the DVR have been proposed at both a low voltage (LV) level, as well as a medium voltage (MV) level; and give an opportunity to protect high...... the use of a feed-forward and feed-back technique of the controller and it obtains both good transient and steady state responses. The effect of the DVR on the system is experimentally investigated under both faulted and non-faulted system states, for a variety of linear and non-linear loads. Variable...

  10. Mitigating voltage lead errors of an AC Josephson voltage standard by impedance matching

    Science.gov (United States)

    Zhao, Dongsheng; van den Brom, Helko E.; Houtzager, Ernest

    2017-09-01

    A pulse-driven AC Josephson voltage standard (ACJVS) generates calculable AC voltage signals at low temperatures, whereas measurements are performed with a device under test (DUT) at room temperature. The voltage leads cause the output voltage to show deviations that scale with the frequency squared. Error correction mechanisms investigated so far allow the ACJVS to be operational for frequencies up to 100 kHz. In this paper, calculations are presented to deal with these errors in terms of reflected waves. Impedance matching at the source side of the system, which is loaded with a high-impedance DUT, is proposed as an accurate method to mitigate these errors for frequencies up to 1 MHz. Simulations show that the influence of non-ideal component characteristics, such as the tolerance of the matching resistor, the capacitance of the load input impedance, losses in the voltage leads, non-homogeneity in the voltage leads, a non-ideal on-chip connection and inductors between the Josephson junction array and the voltage leads, can be corrected for using the proposed procedures. The results show that an expanded uncertainty of 12 parts in 106 (k  =  2) at 1 MHz and 0.5 part in 106 (k  =  2) at 100 kHz is within reach.

  11. Light-induced conformational changes of LOV1 (light oxygen voltage-sensing domain 1) and LOV2 relative to the kinase domain and regulation of kinase activity in Chlamydomonas phototropin.

    Science.gov (United States)

    Okajima, Koji; Aihara, Yusuke; Takayama, Yuki; Nakajima, Mihoko; Kashojiya, Sachiko; Hikima, Takaaki; Oroguchi, Tomotaka; Kobayashi, Amane; Sekiguchi, Yuki; Yamamoto, Masaki; Suzuki, Tomomi; Nagatani, Akira; Nakasako, Masayoshi; Tokutomi, Satoru

    2014-01-03

    Phototropin (phot), a blue light (BL) receptor in plants, has two photoreceptive domains named LOV1 and LOV2 as well as a Ser/Thr kinase domain (KD) and acts as a BL-regulated protein kinase. A LOV domain harbors a flavin mononucleotide that undergoes a cyclic photoreaction upon BL excitation via a signaling state in which the inhibition of the kinase activity by LOV2 is negated. To understand the molecular mechanism underlying the BL-dependent activation of the kinase, the photochemistry, kinase activity, and molecular structure were studied with the phot of Chlamydomonas reinhardtii. Full-length and LOV2-KD samples of C. reinhardtii phot showed cyclic photoreaction characteristics with the activation of LOV- and BL-dependent kinase. Truncation of LOV1 decreased the photosensitivity of the kinase activation, which was well explained by the fact that the signaling state lasted for a shorter period of time compared with that of the phot. Small angle x-ray scattering revealed monomeric forms of the proteins in solution and detected BL-dependent conformational changes, suggesting an extension of the global molecular shapes of both samples. Constructed molecular model of full-length phot based on the small angle x-ray scattering data proved the arrangement of LOV1, LOV2, and KD for the first time that showed a tandem arrangement both in the dark and under BL irradiation. The models suggest that LOV1 alters its position relative to LOV2-KD under BL irradiation. This finding demonstrates that LOV1 may interact with LOV2 and modify the photosensitivity of the kinase activation through alteration of the duration of the signaling state in LOV2.

  12. Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material.

    Science.gov (United States)

    Yan, Yongke; Zhou, Jie E; Maurya, Deepam; Wang, Yu U; Priya, Shashank

    2016-10-11

    A rapid surge in the research on piezoelectric sensors is occurring with the arrival of the Internet of Things. Single-phase oxide piezoelectric materials with giant piezoelectric voltage coefficient (g, induced voltage under applied stress) and high Curie temperature (T c ) are crucial towards providing desired performance for sensing, especially under harsh environmental conditions. Here, we report a grain-oriented (with 95% texture) modified PbTiO 3 ceramic that has a high T c (364 °C) and an extremely large g 33 (115 × 10 -3  Vm N -1 ) in comparison with other known single-phase oxide materials. Our results reveal that self-polarization due to grain orientation along the spontaneous polarization direction plays an important role in achieving large piezoelectric response in a domain motion-confined material. The phase field simulations confirm that the large piezoelectric voltage coefficient g 33 originates from maximized piezoelectric strain coefficient d 33 and minimized dielectric permittivity ɛ 33 in [001]-textured PbTiO 3 ceramics where domain wall motions are absent.

  13. Suppressing voltage transients in high voltage power supplies

    International Nuclear Information System (INIS)

    Lickel, K.F.; Stonebank, R.

    1979-01-01

    A high voltage power supply for an X-ray tubes includes voltage adjusting means, a high voltage transformer, switch means connected to make and interrupt the primary current of the transformer, and over-voltage suppression means to suppress the voltage transient produced when the current is switched on. In order to reduce the power losses in the suppression means, an impedance is connected in the transformer primary circuit on operation of the switch means and is subsequently short-circuited by a switch controlled by a timer after a period which is automatically adjusted to the duration of the transient overvoltage. (U.K.)

  14. Benchmarking of Voltage Sag Generators

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Zou, Zhixiang

    2012-01-01

    The increased penetration of renewable energy systems, like photovoltaic and wind power systems, rises the concern about the power quality and stability of the utility grid. Some regulations for Low Voltage Ride-Through (LVRT) for medium voltage or high voltage applications, are coming into force...

  15. Charge-pump voltage converter

    Science.gov (United States)

    Brainard, John P [Albuquerque, NM; Christenson, Todd R [Albuquerque, NM

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  16. Transient voltage sharing in series-coupled high voltage switches

    Directory of Open Access Journals (Sweden)

    Editorial Office

    1992-07-01

    Full Text Available For switching voltages in excess of the maximum blocking voltage of a switching element (for example, thyristor, MOSFET or bipolar transistor such elements are often coupled in series - and additional circuitry has to be provided to ensure equal voltage sharing. Between each such series element and system ground there is a certain parasitic capacitance that may draw a significant current during high-speed voltage transients. The "open" switch is modelled as a ladder network. Analy­sis reveals an exponential progression in the distribution of the applied voltage across the elements. Overstressing thus oc­curs in some of the elements at levels of the total voltage that are significantly below the design value. This difficulty is overcome by grading the voltage sharing circuitry, coupled in parallel with each element, in a prescribed manner, as set out here.

  17. Coordinated Voltage Control of Distributed PV Inverters for Voltage Regulation in Low Voltage Distribution Networks

    DEFF Research Database (Denmark)

    Nainar, Karthikeyan; Pokhrel, Basanta Raj; Pillai, Jayakrishnan Radhakrishna

    2017-01-01

    This paper reviews and analyzes the existing voltage control methods of distributed solar PV inverters to improve the voltage regulation and thereby the hosting capacity of a low-voltage distribution network. A novel coordinated voltage control method is proposed based on voltage sensitivity...... optimization. The proposed method is used to calculate the voltage bands and droop settings of PV inverters at each node by the supervisory controller. The local controller of each PV inverter implements the volt/var control and if necessary, the active power curtailment as per the received settings and based...... on measured local voltages. The advantage of the proposed method is that the calculated reactive power and active power droop settings enable fair contribution of the PV inverters at each node to the voltage regulation. Simulation studies are conducted using DigSilent Power factory software on a simplified...

  18. LED-Based High-Voltage Lines Warning System

    Directory of Open Access Journals (Sweden)

    Eldar MUSA

    2013-04-01

    Full Text Available LED-based system, running with the current of high-voltage lines and converting the current flowing through the line into the light by using a toroid transformer, has been developed. The transformer’s primary winding is constituted by the high voltage power line. Toroidal core consists of two equal parts and the secondary windings are evenly placed on these two parts. The system is mounted on the high-voltage lines as a clamp. The secondary winding ends are connected in series by the connector on the clamp. LEDs are supplied by the voltage at the ends of secondary. Current flowing through highvoltage transmission lines is converted to voltage by the toroidal transformer and the light emitting LEDs are supplied with this voltage. The theory of the conversion of the current flowing through the line into the light is given. The system, running with the current of the line and converting the current into the light, has been developed. System has many application areas such as warning high voltage lines (warning winches to not hinder the high-voltage lines when working under the lines, warning planes to not touch the high-voltage lines, remote measurement of high-voltage line currents, and local illumination of the line area

  19. Advances in high voltage power switching with GTOs

    International Nuclear Information System (INIS)

    Podlesak, T.F.

    1990-01-01

    The control of high voltage at high power, particularly opening switches, has been difficult in the past. Using gate turnoff thyristors (GTOs) arranged in series enables large currents to be switched at high voltage. The authors report a high voltage opening switch has been successfully demonstrated. This switch uses GTOs in series and successfully operates at voltages higher than the rated voltage of the individual devices. It is believed that this is the first time this has been successfully demonstrated, in that GTOs have been operated in series before, but always in a manner as to not exceed the voltage capability of the individual devices. In short, the devices have not worked together, sharing the voltage, but one device has been operated using several backup devices. Of particular interest is how well the individual devices share the voltage applied to them. Equal voltage sharing between devices is absolutely essential, in order to not exceed the voltage rating of any of the devices in the series chain. This is accomplished at high (microsecond) switching speeds. Thus, the system is useful for high frequency applications as well as high power, making for a flexible circuit system element. This demonstration system is rated at 5 KV and uses 1 KV devices. A larger 24 KV system is under design and will use 4.5 KV devices. In order to design the 24 KV switch, the safe operating area of the large devices must be known thoroughly

  20. Intermediate state trapping of a voltage sensor

    DEFF Research Database (Denmark)

    Lacroix, Jérôme J; Pless, Stephan Alexander; Maragliano, Luca

    2012-01-01

    Voltage sensor domains (VSDs) regulate ion channels and enzymes by undergoing conformational changes depending on membrane electrical signals. The molecular mechanisms underlying the VSD transitions are not fully understood. Here, we show that some mutations of I241 in the S1 segment of the Shaker...... Kv channel positively shift the voltage dependence of the VSD movement and alter the functional coupling between VSD and pore domains. Among the I241 mutants, I241W immobilized the VSD movement during activation and deactivation, approximately halfway between the resting and active states......, and drastically shifted the voltage activation of the ionic conductance. This phenotype, which is consistent with a stabilization of an intermediate VSD conformation by the I241W mutation, was diminished by the charge-conserving R2K mutation but not by the charge-neutralizing R2Q mutation. Interestingly, most...

  1. 46 CFR 183.324 - Dual voltage generators.

    Science.gov (United States)

    2010-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS... neutral of a dual voltage system must be solidly connected at the switchboard's neutral bus; and (2) The neutral bus shall be connected to ground. (b) The neutral of a dual voltage system must be accessible for...

  2. Current-voltage curves of gold quantum point contacts revisited

    DEFF Research Database (Denmark)

    Hansen, K.; Nielsen, S K.; Brandbyge, Mads

    2000-01-01

    We present measurements of current-voltage (I-V) curves on gold quantum point contacts (QPCs) with a conductance up to 4 G(0) (G(0) = 2e(2)/h is the conductance quantum) and voltages up to 2 V. The QPCs are formed between the gold tip of a scanning tunneling microscope and a Au(110) surface under...

  3. Evaluation of indices for voltage stability monitoring using PMU measurements

    Directory of Open Access Journals (Sweden)

    Sindy Lorena Ramirez Perdomo

    2014-09-01

    Full Text Available Large disturbances such as voltage collapse and its consequences represent a large challenge to the operational safety of power systems. Therefore, it is important to have indicators of the presence of voltage stability problems in real time. Using phasor measure-ments of voltage and current that are presented in Phasor Measurement Units (PMU, indices for voltage stability monitoring can be calculated in real time. This paper presents some indices for voltage stability monitoring using PMU measurements. Evaluation of such indices on a simplified system was carried out, and the indices were classified according to their method of calculation. Finally, one of these indices was used with the New England 39-bus system under different operating scenarios, including load increments, line output and generator output, to check the indices’ behavior for voltage stability monitoring based on synchronized local measurements.

  4. Grafting voltage and pharmacological sensitivity in potassium channels.

    Science.gov (United States)

    Lan, Xi; Fan, Chunyan; Ji, Wei; Tian, Fuyun; Xu, Tao; Gao, Zhaobing

    2016-08-01

    A classical voltage-gated ion channel consists of four voltage-sensing domains (VSDs). However, the roles of each VSD in the channels remain elusive. We developed a GVTDT (Graft VSD To Dimeric TASK3 channels that lack endogenous VSDs) strategy to produce voltage-gated channels with a reduced number of VSDs. TASK3 channels exhibit a high host tolerance to VSDs of various voltage-gated ion channels without interfering with the intrinsic properties of the TASK3 selectivity filter. The constructed channels, exemplified by the channels grafted with one or two VSDs from Kv7.1 channels, exhibit classical voltage sensitivity, including voltage-dependent opening and closing. Furthermore, the grafted Kv7.1 VSD transfers the potentiation activity of benzbromarone, an activator that acts on the VSDs of the donor channels, to the constructed channels. Our study indicates that one VSD is sufficient to voltage-dependently gate the pore and provides new insight into the roles of VSDs.

  5. Remote Sensing

    CERN Document Server

    Khorram, Siamak; Koch, Frank H; van der Wiele, Cynthia F

    2012-01-01

    Remote Sensing provides information on how remote sensing relates to the natural resources inventory, management, and monitoring, as well as environmental concerns. It explains the role of this new technology in current global challenges. "Remote Sensing" will discuss remotely sensed data application payloads and platforms, along with the methodologies involving image processing techniques as applied to remotely sensed data. This title provides information on image classification techniques and image registration, data integration, and data fusion techniques. How this technology applies to natural resources and environmental concerns will also be discussed.

  6. Taste sensing FET (TSFET)

    Energy Technology Data Exchange (ETDEWEB)

    Toko, K.; Yasuda, R.; Ezaki, S. [Kyushu University, Fukuoka (Japan); Fujiyoshi, T. [Kumamoto University, Kumamoto (Japan). Faculty of Engineering

    1997-12-20

    Taste can be quantified using a multichannel taste sensor with lipid/polymer membranes. Its sensitivity and stability are superior to those of humans. A present study is concerned with the first step of miniaturization and integration of the taste sensor with lipid/polymer membranes using FET. As a result, it was found that gate-source voltage of the taste sensing FET showed the same behaviors as the conventional taste sensor utilizing the membrane-potential change due to five kinds of taste substances. Discrimination of foodstuffs was very easy. A thin lipid membrane formed using LB technique was also tried. These results will open doors to fabrication of a miniaturized, integrated taste sensing system. 12 refs., 6 figs.

  7. Power grid current harmonics mitigation drawn on low voltage rated switching devices with effortless control

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Hugo S.; Anunciada, Victor; Borges, Beatriz V. [Power Electronics Group, Instituto de Telecomunicacoes, Lisbon (Portugal); Instituto Superior Tecnico - Universidade Tecnica de Lisboa, Lisbon (Portugal)

    2010-01-15

    The great majority of the existing hybrid active power filter solutions is normally focused in 3{phi} systems and, in general, concentrates its domain of application in specific loads with deterministic behavior. Because common use grids do not exhibit these characteristics, it is mandatory to develop solutions for more generic scenarios, encouraging the use of less classical hybrid solutions. In fact, due to the widely use of switch mode converters in a great variety of consumer electronics, the problematic of mains current harmonic mitigation is no longer an exclusive matter of 3{phi} systems. The contribution of this paper is to present a shunt hybrid active power filter topology, initially conceived to work in 1{phi} domestic grids, able to operate the inverter at a voltage rate that can be lower than 10% of the mains voltage magnitude, even under nonspecific working conditions. In addition, the results shown in this paper demonstrate that this topology can, without lack of generality, be suitable to medium voltage (1{phi} or 3{phi}) systems. A new control approach for the proposed topology is discussed in this paper. The control method exhibits an extremely simple architecture requiring single point current sensing only, with no need for any kind of reference. Its practical implementation can be fulfilled by using very few, common use, operational amplifiers. The principle of operation, design criteria, simulation predictions and experimental results are presented and discussed. (author)

  8. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System

    Science.gov (United States)

    Zhang, Tongzhi; Pang, Fufei; Liu, Huanhuan; Cheng, Jiajing; Lv, Longbao; Zhang, Xiaobei; Chen, Na; Wang, Tingyun

    2016-01-01

    We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD) of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad/(m⋅Pa). A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work. PMID:27916900

  9. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System

    Directory of Open Access Journals (Sweden)

    Tongzhi Zhang

    2016-11-01

    Full Text Available We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad / ( m ⋅ Pa . A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work.

  10. High voltage isolation transformer

    Science.gov (United States)

    Clatterbuck, C. H.; Ruitberg, A. P. (Inventor)

    1985-01-01

    A high voltage isolation transformer is provided with primary and secondary coils separated by discrete electrostatic shields from the surfaces of insulating spools on which the coils are wound. The electrostatic shields are formed by coatings of a compound with a low electrical conductivity which completely encase the coils and adhere to the surfaces of the insulating spools adjacent to the coils. Coatings of the compound also line axial bores of the spools, thereby forming electrostatic shields separating the spools from legs of a ferromagnetic core extending through the bores. The transformer is able to isolate a high constant potential applied to one of its coils, without the occurrence of sparking or corona, by coupling the coatings, lining the axial bores to the ferromagnetic core and by coupling one terminal of each coil to the respective coating encasing the coil.

  11. The potential for adaptation in a natural Daphnia magna population: broad and narrow-sense heritability of net reproductive rate under Cd stress at two temperatures.

    Science.gov (United States)

    Messiaen, M; Janssen, C R; Thas, O; De Schamphelaere, K A C

    2012-10-01

    The existence of genetic variability is a key element of the adaptive potential of a natural population to stress. In this study we estimated the additive and non-additive components of the genetic variability of net reproductive rate (R(0)) in a natural Daphnia magna population exposed to Cd stress at two different temperatures. To this end, life-table experiments were conducted with 20 parental and 39 offspring clonal lineages following a 2 × 2 design with Cd concentration (control vs. 3.7 μg Cd/L) and temperature (20 vs. 24 °C) as factors. Offspring lineages were obtained through inter-clonal crossing of the different parental lineages. The population mean, additive and non-additive genetic components of variation in each treatment were estimated by fitting an Animal Model to the observed R(0) values using restricted maximum likelihood estimation. From those estimates broad-sense heritabilities (H(2)), narrow-sense heritabilities (h(2)), total (CV(G)) and additive genetic coefficients of variation (CV(A)) of R(0) were calculated. The exposure to Cd imposed a considerable level of stress to the population, as shown by the fact that the population mean of R(0) exposed to Cd was significantly lower than in the control at the corresponding temperature, i.e. by 23 % at 20 °C and by 88 % at 24 °C. The latter difference indicates that increasing temperature increased the stress level imposed by Cd. The H² and CV(G) were significantly greater than 0 in all treatments, suggesting that there is a considerable degree of genetic determination of R(0) in this population and that clonal selection could rapidly lead to increasing population mean fitness under all investigated conditions. More specifically, the H² was 0.392 at 20 °C+Cd and 0.563 at 24 °C+Cd; the CV(G) was 30.0 % at 20 °C+Cd and was significantly higher (147.6 %) in the 24 °C+Cd treatment. Significant values of h(2) (= 0.23) and CV(A) (= 89.7 %) were only found in the 24 °C+Cd treatment, suggesting

  12. Accuracy comparison of remotely sensed evapotranspiration products and their associated water stress footprints under different land cover types in Korean peninsula

    KAUST Repository

    Liaqat, Umar Waqas; Choi, Minha

    2016-01-01

    product of MOD16 evapotranspiration was raised from cropland regions. Overall, this study revealed the performance and suitability of two distinctive remote sensing approaches for characterizing the footprints of water fluxes in the Korean peninsula

  13. Pulse-voltage fast generator

    International Nuclear Information System (INIS)

    Valeev, R.I.; Nikiforov, M.G.; Kharchenko, A.F.

    1988-01-01

    The design is described and the test results of a four-channel pulse-voltage generator with maximum output voltage 200 kV are presented. The measurement results of generator triggering time depending on the value and polarity of the triggering voltage pulse for different triggering circuits are presented. The tests have shown stable triggering of all four channels of the generator in the range up to 40 % from selfbreakdown voltage. The generator triggering delay in the given range is <25 ns, asynchronism in channel triggering is <±1 ns

  14. Voltage Dependence of Supercapacitor Capacitance

    Directory of Open Access Journals (Sweden)

    Szewczyk Arkadiusz

    2016-09-01

    Full Text Available Electronic Double-Layer Capacitors (EDLC, called Supercapacitors (SC, are electronic devices that are capable to store a relatively high amount of energy in a small volume comparing to other types of capacitors. They are composed of an activated carbon layer and electrolyte solution. The charge is stored on electrodes, forming the Helmholtz layer, and in electrolyte. The capacitance of supercapacitor is voltage- dependent. We propose an experimental method, based on monitoring of charging and discharging a supercapacitor, which enables to evaluate the charge in an SC structure as well as the Capacitance-Voltage (C-V dependence. The measurement setup, method and experimental results of charging/discharging commercially available supercapacitors in various voltage and current conditions are presented. The total charge stored in an SC structure is proportional to the square of voltage at SC electrodes while the charge on electrodes increases linearly with the voltage on SC electrodes. The Helmholtz capacitance increases linearly with the voltage bias while a sublinear increase of total capacitance was found. The voltage on SC increases after the discharge of electrodes due to diffusion of charges from the electrolyte to the electrodes. We have found that the recovery voltage value is linearly proportional to the initial bias voltage value.

  15. Control and Protection Cooperation Strategy for Voltage Instability

    DEFF Research Database (Denmark)

    Liu, Zhou; Chen, Zhe; Sun, Haishun

    2012-01-01

    Most cascaded blackouts are caused by unexpected backup relay operations due to low voltage or overload state caused by post fault load restoration dynamics. If such state can be sensed and adjusted appropriately prior to those relay actions, system stability might be sustained. This paper proposed...... a control and protection cooperation strategy to prevent post fault voltage instability. The multi-agent technology is applied for the strategy implementation; the criteria based on wide area measured apparent impedances are defined to choose the control strategy, such as tap changer adjusting or load...

  16. Temporary over voltages in the high voltage networks

    International Nuclear Information System (INIS)

    Vukelja, Petar; Naumov, Radomir; Mrvic, Jovan; Minovski, Risto

    2001-01-01

    The paper treats the temporary over voltages that may arise in the high voltage networks as a result of: ground faults, loss of load, loss of one or two phases and switching operation. Based on the analysis, the measures for their limitation are proposed. (Original)

  17. Triple Line-Voltage Cascaded VIENNA Converter Applied as the Medium-Voltage AC Drive

    Directory of Open Access Journals (Sweden)

    Jia Zou

    2018-04-01

    Full Text Available A novel rectifier based on a triple line-voltage cascaded VIENNA converter (LVC-VC was proposed. Compared to the conventional cascaded H-bridge converters, the switch voltage stress is lower, and the numbers of switches and dc capacitors are fewer under similar operating conditions in the proposed new multilevel converter. The modeling and control for the LVC-VC ware presented. Based on the analysis of the operation principle of the new converter, the power factor correction of the proposed converter was realized by employing a traditional one-cycle control strategy. The minimum average value and maximum harmonic components of the dc-link voltages of the three VIENNA rectifier modules ware calculated. Three VIENNA dc-link voltages were unbalanced under the unbalanced load conditions, so the zero sequence current was injected to the three inner currents for balancing three VIENNA dc-link voltages. Simulation and the results of the experiment verified the availability of the new proposed multilevel converter and the effectiveness of the corresponding control strategy applied.

  18. Accuracy comparison of remotely sensed evapotranspiration products and their associated water stress footprints under different land cover types in Korean peninsula

    KAUST Repository

    Liaqat, Umar Waqas

    2016-09-09

    Robust spatial information of evapotranspiration from multiple land cover types is deemed critical for several applications in agriculture and water balance studies. Energy balance models, used in association with satellite observations, are beneficial to map spatial variability of evapotranspiration which is mainly governed by different vegetation practices and local environmental conditions. This study utilize the Surface Energy Balance System model to estimate actual evapotranspiration and water scarcity footprints under complex landscape of Korean peninsula using Moderate-Resolution Imaging Spectroradiometer satellite data for a complete hydrological year of 2012. The modeled evapotranspiration was compared with flux tower measurements obtained from a subhumid cropland and temperate forest sites for the accuracy assessment. This accuracy comparison at daily scale had good agreement yielding reasonable coefficient of determination (0.72, 0.51), bias (0.41 mm day−1, 1.01 mm day−1) and root mean squared error (0.92 mm day−1, 1.53 mm day−1) at two observation (cropland, forest) sites, respectively. Furthermore, the monthly aggregated evapotranspiration from Surface Energy Balance System showed promising results than those of obtained from Moderate-Resolution Imaging Spectroradiometer based readymade global evapotranspiration product, i.e., MOD16, when both products were compared with unclosed and closed flux tower measurements. However, the variations in monthly evapotranspiration obtained from both products were significantly controlled by several climate factors and vegetation characteristics. Water stress mapping at regional and monthly scale also revealed strong contrast between the products of two approaches. Highest mean water stress (0.74) was observed for land use areas associated with evergreen forest and under sparsely vegetation condition by using estimated evapotranspiration from Surface Energy Balance System while an extreme mean water stress

  19. Glucose Sensing

    CERN Document Server

    Geddes, Chris D

    2006-01-01

    Topics in Fluorescence Spectroscopy, Glucose Sensing is the eleventh volume in the popular series Topics in Fluorescence Spectroscopy, edited by Drs. Chris D. Geddes and Joseph R. Lakowicz. This volume incorporates authoritative analytical fluorescence-based glucose sensing reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Glucose Sensing is an essential reference for any lab working in the analytical fluorescence glucose sensing field. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of glucose sensing, and diabetes care & management, will find this volume an invaluable resource. Topics in Fluorescence Spectroscopy Volume 11, Glucose Sensing Chapters include: Implantable Sensors for Interstitial Fluid Smart Tattoo Glucose Sensors Optical Enzyme-based Glucose Biosensors Plasmonic Glucose Sens...

  20. Make Sense?

    DEFF Research Database (Denmark)

    Gyrd-Jones, Richard; Törmälä, Minna

    Purpose: An important part of how we sense a brand is how we make sense of a brand. Sense-making is naturally strongly connected to how we cognize about the brand. But sense-making is concerned with multiple forms of knowledge that arise from our interpretation of the brand-related stimuli......: Declarative, episodic, procedural and sensory. Knowledge is given meaning through mental association (Keller, 1993) and / or symbolic interaction (Blumer, 1969). These meanings are centrally related to individuals’ sense of identity or “identity needs” (Wallpach & Woodside, 2009). The way individuals make...... sense of brands is related to who people think they are in their context and this shapes what they enact and how they interpret the brand (Currie & Brown, 2003; Weick, Sutcliffe, & Obstfeld, 2005; Weick, 1993). Our subject of interest in this paper is how stakeholders interpret and ascribe meaning...

  1. Sensing the gas metal arc welding process

    Science.gov (United States)

    Carlson, N. M.; Johnson, J. A.; Smartt, H. B.; Watkins, A. D.; Larsen, E. D.; Taylor, P. L.; Waddoups, M. A.

    1994-01-01

    Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-by-pass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.

  2. Low voltage stress-induced leakage current and traps in ultrathin oxide (1.2 2.5 nm) after constant voltage stresses

    Science.gov (United States)

    Petit, C.; Zander, D.

    2007-10-01

    It has been shown that the low voltage gate current in ultrathin oxide metal-oxide-semiconductor devices is very sensitive to electrical stresses. Therefore, it can be used as a reliability monitor when the oxide thickness becomes too small for traditional electrical measurements to be used. In this work, we present a study on n-MOSCAP devices at negative gate bias in the direct tunneling (DT) regime. If the low voltage stress-induced leakage current (LVSILC) depends strongly on the low sense voltages, it also depends strongly on the stress voltage magnitude. We show that two LVSILC peaks appear as a function of the sense voltage in the LVSILC region and that their magnitude, one compared to the other, depends strongly on the stress voltage magnitude. One is larger than the other at low stress voltage and smaller at high stress voltage. From our experimental results, different conduction mechanisms are analyzed. To explain LVSILC variations, we propose a model of the conduction through the ultrathin gate oxide based on two distinctly different trap-assisted tunneling mechanisms: inelastic of gate electron (INE) and trap-assisted electron (ETAT).

  3. Modified Dual Second-order Generalized Integrator FLL for Frequency Estimation Under Various Grid Abnormalities

    Directory of Open Access Journals (Sweden)

    Kalpeshkumar Rohitbhai Patil

    2016-10-01

    Full Text Available Proper synchronization of Distributed Generator with grid and its performance in grid-connected mode relies on fast and precise estimation of phase and amplitude of the fundamental component of grid voltage. However, the accuracy with which the frequency is estimated is dependent on the type of grid voltage abnormalities and structure of the phase-locked loop or frequency locked loop control schemes. Among various control schemes, second-order generalized integrator based frequency- locked loop (SOGI-FLL is reported to have the most promising performance. It tracks the frequency of grid voltage accurately even when grid voltage is characterized by sag, swell, harmonics, imbalance, frequency variations etc. However, estimated frequency contains low frequency oscillations in case when sensed grid-voltage has a dc offset. This paper presents a modified dual second-order generalized integrator frequency-locked loop (MDSOGI-FLL for three-phase systems to cope with the non-ideal three-phase grid voltages having all type of abnormalities including the dc offset. The complexity in control scheme is almost the same as the standard dual SOGI-FLL, but the performance is enhanced. Simulation results show that the proposed MDSOGI-FLL is effective under all abnormal grid voltage conditions. The results are validated experimentally to justify the superior performance of MDSOGI-FLL under adverse conditions.

  4. Modulating the Voltage-sensitivity of a Genetically Encoded Voltage Indicator.

    Science.gov (United States)

    Jung, Arong; Rajakumar, Dhanarajan; Yoon, Bong-June; Baker, Bradley J

    2017-10-01

    Saturation mutagenesis was performed on a single position in the voltage-sensing domain (VSD) of a genetically encoded voltage indicator (GEVI). The VSD consists of four transmembrane helixes designated S1-S4. The V220 position located near the plasma membrane/extracellular interface had previously been shown to affect the voltage range of the optical signal. Introduction of polar amino acids at this position reduced the voltage-dependent optical signal of the GEVI. Negatively charged amino acids slightly reduced the optical signal by 33 percent while positively charge amino acids at this position reduced the optical signal by 80%. Surprisingly, the range of V220D was similar to that of V220K with shifted optical responses towards negative potentials. In contrast, the V220E mutant mirrored the responses of the V220R mutation suggesting that the length of the side chain plays in role in determining the voltage range of the GEVI. Charged mutations at the 219 position all behaved similarly slightly shifting the optical response to more negative potentials. Charged mutations to the 221 position behaved erratically suggesting interactions with the plasma membrane and/or other amino acids in the VSD. Introduction of bulky amino acids at the V220 position increased the range of the optical response to include hyperpolarizing signals. Combining The V220W mutant with the R217Q mutation resulted in a probe that reduced the depolarizing signal and enhanced the hyperpolarizing signal which may lead to GEVIs that only report neuronal inhibition.

  5. Developing Fast Fluorescent Protein Voltage Sensors by Optimizing FRET Interactions.

    Directory of Open Access Journals (Sweden)

    Uhna Sung

    Full Text Available FRET (Förster Resonance Energy Transfer-based protein voltage sensors can be useful for monitoring neuronal activity in vivo because the ratio of signals between the donor and acceptor pair reduces common sources of noise such as heart beat artifacts. We improved the performance of FRET based genetically encoded Fluorescent Protein (FP voltage sensors by optimizing the location of donor and acceptor FPs flanking the voltage sensitive domain of the Ciona intestinalis voltage sensitive phosphatase. First, we created 39 different "Nabi1" constructs by positioning the donor FP, UKG, at 8 different locations downstream of the voltage-sensing domain and the acceptor FP, mKO, at 6 positions upstream. Several of these combinations resulted in large voltage dependent signals and relatively fast kinetics. Nabi1 probes responded with signal size up to 11% ΔF/F for a 100 mV depolarization and fast response time constants both for signal activation (~2 ms and signal decay (~3 ms. We improved expression in neuronal cells by replacing the mKO and UKG FRET pair with Clover (donor FP and mRuby2 (acceptor FP to create Nabi2 probes. Nabi2 probes also had large signals and relatively fast time constants in HEK293 cells. In primary neuronal culture, a Nabi2 probe was able to differentiate individual action potentials at 45 Hz.

  6. Computer controlled high voltage system

    Energy Technology Data Exchange (ETDEWEB)

    Kunov, B; Georgiev, G; Dimitrov, L [and others

    1996-12-31

    A multichannel computer controlled high-voltage power supply system is developed. The basic technical parameters of the system are: output voltage -100-3000 V, output current - 0-3 mA, maximum number of channels in one crate - 78. 3 refs.

  7. Voltage Controlled Dynamic Demand Response

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    Future power system is expected to be characterized by increased penetration of intermittent sources. Random and rapid fluctuations in demands together with intermittency in generation impose new challenges for power balancing in the existing system. Conventional techniques of balancing by large...... central or dispersed generations might not be sufficient for future scenario. One of the effective methods to cope with this scenario is to enable demand response. This paper proposes a dynamic voltage regulation based demand response technique to be applied in low voltage (LV) distribution feeders....... An adaptive dynamic model has been developed to determine composite voltage dependency of an aggregated load on feeder level. Following the demand dispatch or control signal, optimum voltage setting at the LV substation is determined based on the voltage dependency of the load. Furthermore, a new technique...

  8. Transient voltage oscillations in coils

    International Nuclear Information System (INIS)

    Chowdhuri, P.

    1985-01-01

    Magnet coils may be excited into internal voltage oscillations by transient voltages. Such oscillations may electrically stress the magnet's dielectric components to many times its normal stress. This may precipitate a dielectric failure, and the attendant prolonged loss of service and costly repair work. Therefore, it is important to know the natural frequencies of oscillations of a magnet during the design stage, and to determine whether the expected switching transient voltages can excite the magnet into high-voltage internal oscillations. The series capacitance of a winding significantly affects its natural frequencies. However, the series capacitance is difficult to calculate, because it may comprise complex capacitance network, consisting of intra- and inter-coil turn-to-turn capacitances of the coil sections. A method of calculating the series capacitance of a winding is proposed. This method is rigorous but simple to execute. The time-varying transient voltages along the winding are also calculated

  9. Coordinated Voltage Control Scheme for SEIG-Based Wind Park Utilizing Substation STATCOM and ULTC Transformer

    DEFF Research Database (Denmark)

    S. El Moursi, Mohamed; Bak-Jensen, Birgitte; Abdel-Rahman, Mansour Hassan

    2011-01-01

    and optimal tracking secondary voltage control for wind parks based on self-excited induction generators which comprise STATCOM and under-load tap changer (ULTC) substation transformers. The voltage controllers for the STATCOM and ULTC transformer are coordinated and ensure the voltage support. In steady...

  10. Numerical analysis on the effect of voltage change on removing condensed water inside the GDL of a PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Nam Woo [Fuel Cell Technology Development Team, Eco-Technology Center, Hyundai-Kia Motors, Yongin (Korea, Republic of); Kim, Young Sang; Kim, Min Soo [Dept. of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Kim, Min Sung [School of Energy Systems Engineering, Chung-Ang University, Seoul (Korea, Republic of)

    2016-09-15

    Decreasing the voltage of a fuel cell through hydrogen mixing or using low-air stoichiometry ratio is beneficial to remove condensed water inside GDL under flooding condition. In this study, the effect of voltage level of a fuel cell on water distribution in GDL under flooding condition was numerically analyzed. Water content in GDL was dependent on the voltage level of a fuel cell, that is, the water content was low when the cell voltage was maintained low. The effect of voltage change under flooding condition was also simulated. The flow rate of condensed water inside GDL considerably increased immediately after decreasing the cell voltage. The oxygen concentration in the catalyst layer was increased by decreasing the voltage of the fuel cell. Consequently, the cell voltage was recovered. Therefore, decreasing cell voltage under flooding condition can facilitate removal of condensed water in GDL.

  11. Charge Gain, Voltage Gain, and Node Capacitance of the SAPHIRA Detector Pixel by Pixel

    Science.gov (United States)

    Pastrana, Izabella M.; Hall, Donald N. B.; Baker, Ian M.; Jacobson, Shane M.; Goebel, Sean B.

    2018-01-01

    The University of Hawai`i Institute for Astronomy has partnered with Leonardo (formerly Selex) in the development of HgCdTe linear mode avalanche photodiode (L-APD) SAPHIRA detectors. The SAPHIRA (Selex Avalanche Photodiode High-speed Infra-Red Array) is ideally suited for photon-starved astronomical observations, particularly near infrared (NIR) adaptive optics (AO) wave-front sensing. I have measured the stability, and linearity with current, of a 1.7-um (10% spectral bandpass) infrared light emitting diode (IR LED) used to illuminate the SAPHIRA and have then utilized this source to determine the charge gain (in e-/ADU), voltage gain (in uV/ADU), and node capacitance (in fF) for each pixel of the 320x256@24um SAPHIRA. These have previously only been averages over some sub-array. Determined from the ratio of the temporal averaged signal level to variance under constant 1.7-um LED illumination, I present the charge gain pixel-by-pixel in a 64x64 sub-array at the center of the active area of the SAPHIRA (analyzed separately as four 32x32 sub-arrays) to be about 1.6 e-/ADU (σ=0.5 e-/ADU). Additionally, the standard technique of varying the pixel reset voltage (PRV) in 10 mV increments and recording output frames for the same 64x64 subarray found the voltage gain per pixel to be about 11.7 uV/ADU (σ=0.2 uV/ADU). Finally, node capacitance was found to be approximately 23 fF (σ=6 fF) utilizing the aforementioned charge and voltage gain measurements. I further discuss the linearity measurements of the 1.7-um LED used in the charge gain characterization procedure.

  12. Grid Filter Design for a Multi-Megawatt Medium-Voltage Voltage Source Inverter

    DEFF Research Database (Denmark)

    Rockhill, A.A.; Liserre, Marco; Teodorescu, Remus

    2011-01-01

    This paper describes the design procedure and performance of an LCL grid filter for a medium-voltage neutral point clamped (NPC) converter to be adopted for a multimegawatt wind turbine. The unique filter design challenges in this application are driven by a combination of the medium voltage...... converter, a limited allowable switching frequency, component physical size and weight concerns, and the stringent limits for allowable injected current harmonics. Traditional design procedures of grid filters for lower power and higher switching frequency converters are not valid for a multi......-megawatt filter connecting a medium-voltage converter switching at low frequency to the electric grid. This paper demonstrates a frequency domain model based approach to determine the optimum filter parameters that provide the necessary performance under all operating conditions given the necessary design...

  13. Ion peak narrowing by applying additional AC voltage (ripple voltage) to FAIMS extractor electrode.

    Science.gov (United States)

    Pervukhin, Viktor V; Sheven, Dmitriy G

    2010-01-01

    The use of a non-uniform electric field in a high-field asymmetric waveform ion mobility spectrometry (FAIMS) analyzer increases sensitivity but decreases resolution. The application of an additional AC voltage to the extractor electrode ("ripple" voltage, U(ripple)) can overcome this effect, which decreases the FAIMS peak width. In this approach, the diffusion ion loss remains minimal in the non-uniform electric field in the cylindrical part of the device, and all ion losses under U(ripple) occur in a short portion of their path. Application of the ripple voltage to the extractor electrode is twice as efficient as the applying of U(ripple) along the total length of the device. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  14. Stabilization of Voltage Parameters of Induction Generator Excited by a Voltage Inverter

    Directory of Open Access Journals (Sweden)

    Padalko D.A.

    2017-12-01

    Full Text Available The article reveals the operational aspects of induction generator. Methods for stabilization of induction generator (IG parameters under inverter excitation are investigated. The study was carried out using mathematical description and simulation modeling in MATLAB Simulink. The paper provides analysis of causes of generated voltage amplitude and frequency displacement when the loading condition and the rate vary. Due to the parametric resonance nature of IG self-excitation, the author introduces the expression that allows estimating the capacitor capacitance required to maintain the generation process, depending on the rotor speed of electric machine, load nature and rate. Based on the studies, it was proved that it is possible to stabilize the IG voltage parameters by maintaining the magnetizing circuit inductance Lm at the constant level., and realizing a control law close to U/f = const. The study proves that using the inverter together with the voltage regulator allows ensuring the quality of electricity corresponding to modern standards. The necessity of problem solving of the required quality of the voltage by the harmonic component for the exciter - inverter with PWM is shown. The prospects of the power generation system based on induction machine (IM with a semiconductor frequency converter, which serves as an adjustable supplier of capacitive current for IM for autonomous objects, are substantiated. The use of semiconductor frequency converters makes it possible to provide high stability of the output voltage parameters and good speed of the mechatronic generation system with an asynchronous machine.

  15. CMOS-compatible high-voltage integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Parpia, Z

    1988-01-01

    Considerable savings in cost and development time can be achieved if high-voltage ICs (HVICs) are fabricated in an existing low-voltage process. In this thesis, the feasibility of fabricating HVICs in a standard CMOS process is investigated. The high-voltage capabilities of an existing 5-{mu}m CMOS process are first studied. High-voltage n- and p-channel transistors with breakdown voltages of 50 and 190 V, respectively, were fabricated without any modifications to the process under consideration. SPICE models for these transistors are developed, and their accuracy verified by comparison with experimental results. In addition, the effect of the interconnect metallization on the high-voltage performance of these devices is also examined. Polysilicon field plates are found to be effective in preventing premature interconnect induced breakdown in these devices. A novel high-voltage transistor structure, the insulated base transistor (IBT), based on a merged MOS-bipolar concept, is proposed and implemented. In order to enhance the high-voltage device capabilities, an improved CMOS-compatible HVIC process using junction isolation is developed.

  16. Recording membrane potential changes through photoacoustic voltage sensitive dye

    DEFF Research Database (Denmark)

    Zhang, Haichong K.; Kang, Jeeun; Yan, Ping

    2017-01-01

    Monitoring of the membrane potential is possible using voltage sensitive dyes (VSD), where fluorescence intensity changes in response to neuronal electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in vivo...... systems for external detection. In contrast, photoacoustic (PA) imaging, an emerging modality, is capable of deep tissue, noninvasive imaging by combining near infrared light excitation and ultrasound detection. In this work, we develop the theoretical concept whereby the voltage-dependent quenching...... the experimental PA intensity change depends on fluorescence and absorbance properties of the dye. These results not only demonstrate the voltage sensing capability of the dye, but also indicate the necessity of considering both fluorescence and absorbance spectral sensitivities in order to optimize...

  17. Analyzing suitability for urban expansion under rapid coastal urbanization with remote sensing and GIS techniques: a case study of Linanyungang, China

    DEFF Research Database (Denmark)

    Zhao, Wenjun; Zhu, Xiaodong; Reenberg, Anette

    2010-01-01

    Beginning in 2000, Lianyungang's urbanization entered a period of rapid growth, spatially as well as economically. Rapid and intensive expansion of "construction land" imposed increasing pressures on regional environment. With the support of remote sensing data and GIS tools, this paper reports a...

  18. Utility of remote sensing-based surface energy balance models to track water stress in rain-fed switchgrass under dry and wet conditions

    Science.gov (United States)

    The ability of remote sensing-based surface energy balance (SEB) models to track water stress in rain-fed switchgrass has not been explored yet. In this paper, the theoretical framework of crop water stress index (CWSI) was utilized to estimate CWSI in rain-fed switchgrass (Panicum virgatum L.) usin...

  19. Closed-form solution for static pull-in voltage of electrostatically actuated clamped-clamped micro/nano beams under the effect of fringing field and van der Waals force

    Science.gov (United States)

    Bhojawala, V. M.; Vakharia, D. P.

    2017-12-01

    This investigation provides an accurate prediction of static pull-in voltage for clamped-clamped micro/nano beams based on distributed model. The Euler-Bernoulli beam theory is used adapting geometric non-linearity of beam, internal (residual) stress, van der Waals force, distributed electrostatic force and fringing field effects for deriving governing differential equation. The Galerkin discretisation method is used to make reduced-order model of the governing differential equation. A regime plot is presented in the current work for determining the number of modes required in reduced-order model to obtain completely converged pull-in voltage for micro/nano beams. A closed-form relation is developed based on the relationship obtained from curve fitting of pull-in instability plots and subsequent non-linear regression for the proposed relation. The output of regression analysis provides Chi-square (χ 2) tolerance value equals to 1  ×  10-9, adjusted R-square value equals to 0.999 29 and P-value equals to zero, these statistical parameters indicate the convergence of non-linear fit, accuracy of fitted data and significance of the proposed model respectively. The closed-form equation is validated using available data of experimental and numerical results. The relative maximum error of 4.08% in comparison to several available experimental and numerical data proves the reliability of the proposed closed-form equation.

  20. Electrochemical Properties of the LiNi0.6Co0.2Mn0.2O2 Cathode Material Modified by Lithium Tungstate under High Voltage.

    Science.gov (United States)

    Fu, Jiale; Mu, Daobin; Wu, Borong; Bi, Jiaying; Cui, Hui; Yang, Hao; Wu, Hanfeng; Wu, Feng

    2018-05-31

    An amount (5 wt %) of lithium tungstate (Li 2 WO 4 ) as an additive significantly improves the cycle and rate performances of the LiNi 0.6 Co 0.2 Mn 0.2 O 2 electrode at the cutoff voltage of 4.6 V. The 5 wt % Li 2 WO 4 -mixed LiNi 0.6 Co 0.2 Mn 0.2 O 2 electrode delivers a reversible capacity of 199.2 mA h g -1 and keeps 73.1% capacity for 200 cycles at 1 C. It retains 67.4% capacity after 200 cycles at 2 C and delivers a discharge capacity of 167.3 mA h g -1 at 10 C, while those of the pristine electrode are only 44.7% and 87.5 mA h g -1 , respectively. It is shown that the structure of the LiNi 0.6 Co 0.2 Mn 0.2 O 2 cathode material is not affected by mixing Li 2 WO 4 . The introduced Li 2 WO 4 effectively restrains the LiPF 6 and carbonate solvent decomposition by consuming PF 5 at high cutoff voltage, forming a stable cathode/electrolyte interface film with low resistance.

  1. LOFT voltage insertion calibaration program

    International Nuclear Information System (INIS)

    Tillitt, D.N.; Miyasaki, F.S.

    1975-08-01

    The Loss-of-Fluid Test (LOFT) Facility is an experimental facility built around a ''scaled'' version of a large pressurized water reactor (LPWR). Part of this facility is the Data Acquisition and Visual Display System (DAVDS) as defined by the LOFT System Design Document SDD 1.4.2C. The DAVDS has a 702 data channel recording capability of which 548 are recorded digitally. The DAVDS also contains a Voltage Insertion Calibration Subsystem used to inject precise and known voltage steps into the recording systems. The computer program that controls the Voltage Insertion Calibration Subsystem is presented. 7 references. (auth)

  2. Power-MOSFET Voltage Regulator

    Science.gov (United States)

    Miller, W. N.; Gray, O. E.

    1982-01-01

    Ninety-six parallel MOSFET devices with two-stage feedback circuit form a high-current dc voltage regulator that also acts as fully-on solid-state switch when fuel-cell out-put falls below regulated voltage. Ripple voltage is less than 20 mV, transient recovery time is less than 50 ms. Parallel MOSFET's act as high-current dc regulator and switch. Regulator can be used wherever large direct currents must be controlled. Can be applied to inverters, industrial furnaces photovoltaic solar generators, dc motors, and electric autos.

  3. Outward Rectification of Voltage-Gated K+ Channels Evolved at Least Twice in Life History.

    Directory of Open Access Journals (Sweden)

    Janin Riedelsberger

    Full Text Available Voltage-gated potassium (K+ channels are present in all living systems. Despite high structural similarities in the transmembrane domains (TMD, this K+ channel type segregates into at least two main functional categories-hyperpolarization-activated, inward-rectifying (Kin and depolarization-activated, outward-rectifying (Kout channels. Voltage-gated K+ channels sense the membrane voltage via a voltage-sensing domain that is connected to the conduction pathway of the channel. It has been shown that the voltage-sensing mechanism is the same in Kin and Kout channels, but its performance results in opposite pore conformations. It is not known how the different coupling of voltage-sensor and pore is implemented. Here, we studied sequence and structural data of voltage-gated K+ channels from animals and plants with emphasis on the property of opposite rectification. We identified structural hotspots that alone allow already the distinction between Kin and Kout channels. Among them is a loop between TMD S5 and the pore that is very short in animal Kout, longer in plant and animal Kin and the longest in plant Kout channels. In combination with further structural and phylogenetic analyses this finding suggests that outward-rectification evolved twice and independently in the animal and plant kingdom.

  4. Modular High Voltage Power Supply

    Energy Technology Data Exchange (ETDEWEB)

    Newell, Matthew R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-18

    The goal of this project is to develop a modular high voltage power supply that will meet the needs of safeguards applications and provide a modular plug and play supply for use with standard electronic racks.

  5. Reliability criteria for voltage stability

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Carson W; Silverstein, Brian L [Bonneville Power Administration, Portland, OR (United States)

    1994-12-31

    In face of costs pressures, there is need to allocate scare resources more effectively in order to achieve voltage stability. This naturally leads to development of probabilistic criteria and notions of rick management. In this paper it is presented a discussion about criteria for long term voltage stability limited to the case in which the time frames are topically several minutes. (author) 14 refs., 1 fig.

  6. High voltage distributions in RPCs

    International Nuclear Information System (INIS)

    Inoue, Y.; Muranishi, Y.; Nakamura, M.; Nakano, E.; Takahashi, T.; Teramoto, Y.

    1996-01-01

    High voltage distributions on the inner surfaces of RPCs electrodes were calculated by using a two-dimensional resistor network model. The calculated result shows that the surface resistivity of the electrodes should be high, compared to their volume resistivity, to get a uniform high voltage over the surface. Our model predicts that the rate capabilities of RPCs should be inversely proportional to the thickness of the electrodes if the ratio of surface-to-volume resistivity is low. (orig.)

  7. Ionization processes in combined high-voltage nanosecond - laser discharges in inert gas

    Science.gov (United States)

    Starikovskiy, Andrey; Shneider, Mikhail; PU Team

    2016-09-01

    Remote control of plasmas induced by laser radiation in the atmosphere is one of the challenging issues of free space communication, long-distance energy transmission, remote sensing of the atmosphere, and standoff detection of trace gases and bio-threat species. Sequences of laser pulses, as demonstrated by an extensive earlier work, offer an advantageous tool providing access to the control of air-plasma dynamics and optical interactions. The avalanche ionization induced in a pre-ionized region by infrared laser pulses where investigated. Pre-ionization was created by an ionization wave, initiated by high-voltage nanosecond pulse. Then, behind the front of ionization wave extra avalanche ionization was initiated by the focused infrared laser pulse. The experiment was carried out in argon. It is shown that the gas pre-ionization inhibits the laser spark generation under low pressure conditions.

  8. Macroeconomic Assessment of Voltage Sags

    Directory of Open Access Journals (Sweden)

    Sinan Küfeoğlu

    2016-12-01

    Full Text Available The electric power sector has changed dramatically since the 1980s. Electricity customers are now demanding uninterrupted and high quality service from both utilities and authorities. By becoming more and more dependent on the voltage sensitive electronic equipment, the industry sector is the one which is affected the most by voltage disturbances. Voltage sags are one of the most crucial problems for these customers. The utilities, on the other hand, conduct cost-benefit analyses before going through new investment projects. At this point, understanding the costs of voltage sags become imperative for planning purposes. The characteristics of electric power consumption and hence the susceptibility against voltage sags differ considerably among different industry subsectors. Therefore, a model that will address the estimation of worth of electric power reliability for a large number of customer groups is necessary. This paper introduces a macroeconomic model to calculate Customer Voltage Sag Costs (CVSCs for the industry sector customers. The proposed model makes use of analytical data such as value added, annual energy consumption, working hours, and average outage durations and provides a straightforward, credible, and easy to follow methodology for the estimation of CVSCs.

  9. A matter of quantum voltages

    Energy Technology Data Exchange (ETDEWEB)

    Sellner, Bernhard; Kathmann, Shawn M., E-mail: Shawn.Kathmann@pnnl.gov [Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2014-11-14

    Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. The variation of voltages in matter can be measured by experiment, however, modern supercomputers allow the calculation of accurate quantum voltages with spatial resolutions of bulk systems well beyond what can currently be measured provided a sufficient level of theory is employed. Of particular interest is the Mean Inner Potential (V{sub o}) – the spatial average of these quantum voltages referenced to the vacuum. Here we establish a protocol to reliably evaluate V{sub o} from quantum calculations. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of V{sub o} for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Certain aspects in this regard are highlighted making use of simple model systems/approximations. Furthermore, we predict V{sub o} as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms.

  10. Sensing in tissue bioreactors

    Science.gov (United States)

    Rolfe, P.

    2006-03-01

    Specialized sensing and measurement instruments are under development to aid the controlled culture of cells in bioreactors for the fabrication of biological tissues. Precisely defined physical and chemical conditions are needed for the correct culture of the many cell-tissue types now being studied, including chondrocytes (cartilage), vascular endothelial cells and smooth muscle cells (blood vessels), fibroblasts, hepatocytes (liver) and receptor neurones. Cell and tissue culture processes are dynamic and therefore, optimal control requires monitoring of the key process variables. Chemical and physical sensing is approached in this paper with the aim of enabling automatic optimal control, based on classical cell growth models, to be achieved. Non-invasive sensing is performed via the bioreactor wall, invasive sensing with probes placed inside the cell culture chamber and indirect monitoring using analysis within a shunt or a sampling chamber. Electroanalytical and photonics-based systems are described. Chemical sensing for gases, ions, metabolites, certain hormones and proteins, is under development. Spectroscopic analysis of the culture medium is used for measurement of glucose and for proteins that are markers of cell biosynthetic behaviour. Optical interrogation of cells and tissues is also investigated for structural analysis based on scatter.

  11. Development of high voltage PEEK wire with radiation-resistance and cryogenic characteristics

    International Nuclear Information System (INIS)

    Fujita, T.; Hirata, T.; Araki, S.; Ohara, H.; Nishimura, H.

    1989-01-01

    High voltage electric wires insulated with highly-refined polyetheretherketone (PEEK) have been developed for the wiring in fusion reactors, where the wire is required to withstand high voltage under high vacuum up to 10 -5 Torr. The PEEK wires having the advantages of PEEK resin including superior radiation resistance and cryogenic characteristics are usable over a wide range of temperature and in radiation fields. The results of withstand voltage tests proved that the PEEK wires exceeding 0.8 mm in insulation thickness withstand such specified high voltage conditions as 24 kV for 1 minutes by 10 times and 6.6 kV for 110 hours. The results also revealed that the withstand voltage is improved by providing a jacket layer over the insulation and decreased by periodical voltage charge, by bending of the specimen and by water in the conductor. This paper deal with the withstand voltage test results under varied conditions of the PEEK wires. (author)

  12. Visibility of changes in light intensity caused by voltage leaps

    International Nuclear Information System (INIS)

    Seljeseth, Helge; Mogstad, Olve

    2006-05-01

    Sintef Energy Research was engaged by NVE to evaluate the official requirements on voltage leaps in regulations concerning quality of delivery, and simultaneously conduct tests with a panel of test persons in order to get more detailed evaluations and recommendations to the existing requirements on voltage leaps. Tests and laboratory experiments have been performed on a total of 96 test persons, and the results reveal that voltage leaps even smaller than the 3 percent limit set by Norwegian regulations are visible to most people. The majority of the test persons consider the light conditions as unacceptably bad when light conditions are near the limit of voltage leap. Moreover, 25 percent of the test persons considered the light quality unacceptable when the voltage leap was well under half of the official limit.The results of the experiments indicates a need for narrowing the restrictions on voltage leaps in the Norwegian power network in order to limit the size and frequency of this kind of disturbance in the voltage. Recommendations for regulations are elaborated in chapter 3 (ml)

  13. Voltage-carrying states in superconducting microstrips

    International Nuclear Information System (INIS)

    Stuivinga, M.E.C.

    1983-01-01

    When the critical current is exceeded in a superconducting microstrip, voltage-carrying states with a resistance significantly below the normal state resistance can occur. Phase-slip centers (PSC) appear at about the critical temperature. These are successive local voltage units which manifest themselves as strip-like increments in voltage in the I-V characteristic. For temperatures off the critical temperature the PSC regime degenerates into a region of normal material, a so-called hot spot. These two phenomena, PSC and hot spots, form the subject of this thesis. To gain a better understanding of the phase-slip center process, an experiment was designed to measure local values of the quasi-particle and pair potential. The results of local potential and gap measurements at a PSC in aluminium are presented and discussed. Special attention is paid to pair-breaking interactions which can shorten the relaxation time. A non-linear differential equation is derived which describes the development of a PSC into a normal hot spot under the influence of Joule heating. It incorporates the temperature rise due to the dissipative processes occurring in the charge imbalance tails. Numerical solutions are presented for a set of parameters, including those for aluminium and tin. Subsequently, they are compared with experiments. (Auth.)

  14. Discussion - a high voltage DC generator

    International Nuclear Information System (INIS)

    Bhagwat, P.V.; Singh, Jagir; Hattangadi, V.A.

    1993-01-01

    One of the requirements for a high power ion source is a high voltage, high current DC generator. The high voltage, high current generator, DISCATRON, presently under development in our laboratory is a rotating disc type electrostatic generator similar in design to the one reported by A. Isoya et al. (1985). It is compact and rugged electrostatic DC generator based on the principle of induction charging by pellet chains used in the pelletron accelerator. It is, basically, a constant-current device with little stored energy, so that, in case of a breakdown, damage to the equipment connected to the output terminals is minimal. Since the present generator is only a proto-type, meant for a study of the practical difficulties that would be encountered in its manufacture, the output voltage and current specified has been kept quite modest viz., 300 kV at 500 μA, maximum. Some results of the preliminary tests carried out with this generator are described. (author). 4 figs

  15. Artificial intelligence techniques for voltage control

    Energy Technology Data Exchange (ETDEWEB)

    Ekwue, A.; Cheng, D.T.Y.; Macqueen, J.F.

    1997-12-31

    In electric power systems, the advantages of reactive power dispatching or optimisation include improved utilisation of reactive power sources and hence reduction in reactive power flows and real losses of the system; unloading of the system and equipment as a result of reactive flow reduction; the power factors of generation are improved and system security is enhanced; reduced voltage gradients and somewhat higher voltages which result across the system from improved operation; deferred capital investment is new reactive power sources as a result of improved utilisation of existing equipment; and for the National Grid Company plc (NGC), the main advantage is reduced out-of-merit operation. The problem of reactive power control has been studied and widely reported in the literature. Non-linear programming methods as well as linear programming techniques for constraint dispatch have been described. Static optimisation of reactive power sources by the use of sensitivity analysis was described by Kishore and Hill. Long range optimum var planning has been considered and the optimum amount and location of network reactive compensation so as to maintain the system voltage within the desired limits, while operating under normal and various insecurity states, have also been studied using several methods. The objective of this chapter is therefore to review conventional methods as well as AI techniques for reactive power control. (Author)

  16. Mitigation of voltage sags in the distribution system with dynamic voltage restorer

    International Nuclear Information System (INIS)

    Viglas, D.; Belan, A.

    2012-01-01

    Dynamic voltage restorer is a custom power device that is used to improve voltage sags or swells in electrical distribution system. The components of the Dynamic Voltage Restorer consist of injection transformers, voltage source inverter, passive filters and energy storage. The main function of the Dynamic voltage restorer is used to inject three phase voltage in series and in synchronism with the grid voltages in order to compensate voltage disturbances. This article deals with mitigation of voltage sags caused by three-phase short circuit. Dynamic voltage restorer is modelled in MATLAB/Simulink. (Authors)

  17. Imaging Voltage in Genetically Defined Neuronal Subpopulations with a Cre Recombinase-Targeted Hybrid Voltage Sensor.

    Science.gov (United States)

    Bayguinov, Peter O; Ma, Yihe; Gao, Yu; Zhao, Xinyu; Jackson, Meyer B

    2017-09-20

    Genetically encoded voltage indicators create an opportunity to monitor electrical activity in defined sets of neurons as they participate in the complex patterns of coordinated electrical activity that underlie nervous system function. Taking full advantage of genetically encoded voltage indicators requires a generalized strategy for targeting the probe to genetically defined populations of cells. To this end, we have generated a mouse line with an optimized hybrid voltage sensor (hVOS) probe within a locus designed for efficient Cre recombinase-dependent expression. Crossing this mouse with Cre drivers generated double transgenics expressing hVOS probe in GABAergic, parvalbumin, and calretinin interneurons, as well as hilar mossy cells, new adult-born neurons, and recently active neurons. In each case, imaging in brain slices from male or female animals revealed electrically evoked optical signals from multiple individual neurons in single trials. These imaging experiments revealed action potentials, dynamic aspects of dendritic integration, and trial-to-trial fluctuations in response latency. The rapid time response of hVOS imaging revealed action potentials with high temporal fidelity, and enabled accurate measurements of spike half-widths characteristic of each cell type. Simultaneous recording of rapid voltage changes in multiple neurons with a common genetic signature offers a powerful approach to the study of neural circuit function and the investigation of how neural networks encode, process, and store information. SIGNIFICANCE STATEMENT Genetically encoded voltage indicators hold great promise in the study of neural circuitry, but realizing their full potential depends on targeting the sensor to distinct cell types. Here we present a new mouse line that expresses a hybrid optical voltage sensor under the control of Cre recombinase. Crossing this line with Cre drivers generated double-transgenic mice, which express this sensor in targeted cell types. In

  18. The NH2 terminus regulates voltage-dependent gating of CALHM ion channels.

    Science.gov (United States)

    Tanis, Jessica E; Ma, Zhongming; Foskett, J Kevin

    2017-08-01

    Calcium homeostasis modulator protein-1 (CALHM1) and its Caenorhabditis elegans (ce) homolog, CLHM-1, belong to a new family of physiologically important ion channels that are regulated by voltage and extracellular Ca 2+ (Ca 2+ o ) but lack a canonical voltage-sensing domain. Consequently, the intrinsic voltage-dependent gating mechanisms for CALHM channels are unknown. Here, we performed voltage-clamp experiments on ceCLHM-1 chimeric, deletion, insertion, and point mutants to assess the role of the NH 2 terminus (NT) in CALHM channel gating. Analyses of chimeric channels in which the ceCLHM-1 and human (h)CALHM1 NH 2 termini were interchanged showed that the hCALHM1 NT destabilized channel-closed states, whereas the ceCLHM-1 NT had a stabilizing effect. In the absence of Ca 2+ o , deletion of up to eight amino acids from the ceCLHM-1 NT caused a hyperpolarizing shift in the conductance-voltage relationship with little effect on voltage-dependent slope. However, deletion of nine or more amino acids decreased voltage dependence and induced a residual conductance at hyperpolarized voltages. Insertion of amino acids into the NH 2 -terminal helix also decreased voltage dependence but did not prevent channel closure. Mutation of ceCLHM-1 valine 9 and glutamine 13 altered half-maximal activation and voltage dependence, respectively, in 0 Ca 2+ In 2 mM Ca 2+ o , ceCLHM-1 NH 2 -terminal deletion and point mutant channels closed completely at hyperpolarized voltages with apparent affinity for Ca 2+ o indistinguishable from wild-type ceCLHM-1, although the ceCLHM-1 valine 9 mutant exhibited an altered conductance-voltage relationship and kinetics. We conclude that the NT plays critical roles modulating voltage dependence and stabilizing the closed states of CALHM channels. Copyright © 2017 the American Physiological Society.

  19. Development of a New Cascade Voltage-Doubler for Voltage Multiplication

    OpenAIRE

    Toudeshki, Arash; Mariun, Norman; Hizam, Hashim; Abdul Wahab, Noor Izzri

    2014-01-01

    For more than eight decades, cascade voltage-doubler circuits are used as a method to produce DC output voltage higher than the input voltage. In this paper, the topological developments of cascade voltage-doublers are reviewed. A new circuit configuration for cascade voltage-doubler is presented. This circuit can produce a higher value of the DC output voltage and better output quality compared to the conventional cascade voltage-doubler circuits, with the same number of stages.

  20. Evaluation of Voltage Control Approaches for Future Smart Distribution Networks

    Directory of Open Access Journals (Sweden)

    Pengfei Wang

    2017-08-01

    Full Text Available This paper evaluates meta-heuristic and deterministic approaches for distribution network voltage control. As part of this evaluation, a novel meta-heuristic algorithm, Cuckoo Search, is applied for distribution network voltage control and compared with a deterministic voltage control algorithm, the oriented discrete coordinate decent method (ODCDM. ODCDM has been adopted in a state-of-the-art industrial product and applied in real distribution networks. These two algorithms have been evaluated under a set of test cases, which were generated to represent the voltage control problems in current and future distribution networks. Sampled test results have been presented, and findings have been discussed regarding the adoption of different optimization algorithms for current and future distribution networks.

  1. Cavity Voltage Phase Modulation MD

    CERN Document Server

    Mastoridis, Themistoklis; Molendijk, John; Timko, Helga; CERN. Geneva. ATS Department

    2016-01-01

    The LHC RF/LLRF system is currently configured for extremely stable RF voltage to minimize transient beam loading effects. The present scheme cannot be extended beyond nominal beam current since the demanded power would exceed the peak klystron power and lead to saturation. A new scheme has therefore been proposed: for beam currents above nominal (and possibly earlier), the cavity phase modulation by the beam will not be corrected (transient beam loading), but the strong RF feedback and One-Turn Delay feedback will still be active for loop and beam stability in physics. To achieve this, the voltage set point will be adapted for each bunch. The goal of this MD was to test a new algorithm that would adjust the voltage set point to achieve the cavity phase modulation that would minimize klystron forward power.

  2. Design of shielded voltage divider for impulse voltage measurement

    International Nuclear Information System (INIS)

    Kato, Shohei; Kouno, Teruya; Maruyama, Yoshio; Kikuchi, Koji.

    1976-01-01

    The dividers used for the study of the insulation and electric discharge phenomena in high voltage equipments have the problems of the change of response characteristics owing to adjacent bodies and of induced noise. To improve the characteristics, the enclosed type divider shielded with metal has been investigated, and the divider of excellent response has been obtained by adopting the frequency-separating divider system, which is divided into two parts, resistance divider (lower frequency region) and capacitance divider (higher frequency region), for avoiding to degrade the response. Theoretical analysis was carried out in the cases that residual inductance can be neglected or can not be neglected in the small capacitance divider, and that the connecting wires are added. Next, the structure of the divider and the design of the electric field for the divider manufactured on the basis of the theory are described. The response characteristics were measured. The results show that 1 MV impulse voltage can be measured within the response time of 10 ns. Though this divider aims at the impulse voltage, the duration time of which is about that of standard lightning impulse, in view of the heat capacity because of the input resistance of 10.5 kΩ, it is expected that the divider can be applied to the voltage of longer duration time by increasing the input resistance in future. (Wakatsuki, Y.)

  3. Unbalanced Voltage Compensation in Low Voltage Residential AC Grids

    DEFF Research Database (Denmark)

    Trintis, Ionut; Douglass, Philip; Munk-Nielsen, Stig

    2016-01-01

    This paper describes the design and test of a control algorithm for active front-end rectifiers that draw power from a residential AC grid to feed heat pump loads. The control algorithm is able to control the phase to neutral or phase to phase RMS voltages at the point of common coupling...

  4. The high voltage homopolar generator

    Science.gov (United States)

    Price, J. H.; Gully, J. H.; Driga, M. D.

    1986-11-01

    System and component design features of proposed high voltage homopolar generator (HVHPG) are described. The system is to have an open circuit voltage of 500 V, a peak output current of 500 kA, 3.25 MJ of stored inertial energy and possess an average magnetic-flux density of 5 T. Stator assembly components are discussed, including the stator, mount structure, hydrostatic bearings, main and motoring brushgears and rotor. Planned operational procedures such as monitoring the rotor to full speed and operation with a superconducting field coil are delineated.

  5. Gating transitions in the selectivity filter region of a sodium channel are coupled to the domain IV voltage sensor.

    Science.gov (United States)

    Capes, Deborah L; Arcisio-Miranda, Manoel; Jarecki, Brian W; French, Robert J; Chanda, Baron

    2012-02-14

    Voltage-dependent ion channels are crucial for generation and propagation of electrical activity in biological systems. The primary mechanism for voltage transduction in these proteins involves the movement of a voltage-sensing domain (D), which opens a gate located on the cytoplasmic side. A distinct conformational change in the selectivity filter near the extracellular side has been implicated in slow inactivation gating, which is important for spike frequency adaptation in neural circuits. However, it remains an open question whether gating transitions in the selectivity filter region are also actuated by voltage sensors. Here, we examine conformational coupling between each of the four voltage sensors and the outer pore of a eukaryotic voltage-dependent sodium channel. The voltage sensors of these sodium channels are not structurally symmetric and exhibit functional specialization. To track the conformational rearrangements of individual voltage-sensing domains, we recorded domain-specific gating pore currents. Our data show that, of the four voltage sensors, only the domain IV voltage sensor is coupled to the conformation of the selectivity filter region of the sodium channel. Trapping the outer pore in a particular conformation with a high-affinity toxin or disulphide crossbridge impedes the return of this voltage sensor to its resting conformation. Our findings directly establish that, in addition to the canonical electromechanical coupling between voltage sensor and inner pore gates of a sodium channel, gating transitions in the selectivity filter region are also coupled to the movement of a voltage sensor. Furthermore, our results also imply that the voltage sensor of domain IV is unique in this linkage and in the ability to initiate slow inactivation in sodium channels.

  6. Pervasive sensing

    Science.gov (United States)

    Nagel, David J.

    2000-11-01

    The coordinated exploitation of modern communication, micro- sensor and computer technologies makes it possible to give global reach to our senses. Web-cameras for vision, web- microphones for hearing and web-'noses' for smelling, plus the abilities to sense many factors we cannot ordinarily perceive, are either available or will be soon. Applications include (1) determination of weather and environmental conditions on dense grids or over large areas, (2) monitoring of energy usage in buildings, (3) sensing the condition of hardware in electrical power distribution and information systems, (4) improving process control and other manufacturing, (5) development of intelligent terrestrial, marine, aeronautical and space transportation systems, (6) managing the continuum of routine security monitoring, diverse crises and military actions, and (7) medicine, notably the monitoring of the physiology and living conditions of individuals. Some of the emerging capabilities, such as the ability to measure remotely the conditions inside of people in real time, raise interesting social concerns centered on privacy issues. Methods for sensor data fusion and designs for human-computer interfaces are both crucial for the full realization of the potential of pervasive sensing. Computer-generated virtual reality, augmented with real-time sensor data, should be an effective means for presenting information from distributed sensors.

  7. Resilient architecture design for voltage variation

    CERN Document Server

    Reddi, Vijay Janapa

    2013-01-01

    Shrinking feature size and diminishing supply voltage are making circuits sensitive to supply voltage fluctuations within the microprocessor, caused by normal workload activity changes. If left unattended, voltage fluctuations can lead to timing violations or even transistor lifetime issues that degrade processor robustness. Mechanisms that learn to tolerate, avoid, and eliminate voltage fluctuations based on program and microarchitectural events can help steer the processor clear of danger, thus enabling tighter voltage margins that improve performance or lower power consumption. We describe

  8. Listening to membrane potential: photoacoustic voltage-sensitive dye recording

    Science.gov (United States)

    Zhang, Haichong K.; Yan, Ping; Kang, Jeeun; Abou, Diane S.; Le, Hanh N. D.; Jha, Abhinav K.; Thorek, Daniel L. J.; Kang, Jin U.; Rahmim, Arman; Wong, Dean F.; Boctor, Emad M.; Loew, Leslie M.

    2017-04-01

    Voltage-sensitive dyes (VSDs) are designed to monitor membrane potential by detecting fluorescence changes in response to neuronal or muscle electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in vivo systems for external detection. By contrast, photoacoustic (PA) imaging, an emerging modality, is capable of deep tissue, noninvasive imaging by combining near-infrared light excitation and ultrasound detection. Here, we show that voltage-dependent quenching of dye fluorescence leads to a reciprocal enhancement of PA intensity. We synthesized a near-infrared photoacoustic VSD (PA-VSD), whose PA intensity change is sensitive to membrane potential. In the polarized state, this cyanine-based probe enhances PA intensity while decreasing fluorescence output in a lipid vesicle membrane model. A theoretical model accounts for how the experimental PA intensity change depends on fluorescence and absorbance properties of the dye. These results not only demonstrate PA voltage sensing but also emphasize the interplay of both fluorescence and absorbance properties in the design of optimized PA probes. Together, our results demonstrate PA sensing as a potential new modality for recording and external imaging of electrophysiological and neurochemical events in the brain.

  9. Solid-state high voltage modulator and its application to rf source high voltage power supplies

    International Nuclear Information System (INIS)

    Tooker, J.F.; Huynh, P.; Street, R.W.

    2009-01-01

    A solid-state high voltage modulator is described in which series-connected insulated-gate bipolar transistors (IGBTs) are switched at a fixed frequency by a pulse width modulation (PWM) regulator, that adjusts the pulse width to control the voltage out of an inductor-capacitor filter network. General Atomics proposed the HV power supply (HVPS) topology of multiple IGBT modulators connected to a common HVdc source for the large number of 1 MW klystrons in the linear accelerator of the Accelerator Production of Tritium project. The switching of 24 IGBTs to obtain 20 kVdc at 20 A for short pulses was successfully demonstrated. This effort was incorporated into the design of a -70 kV, 80 A, IGBT modulator, and in a short-pulse test 12 IGBTs regulated -5 kV at 50 A under PWM control. These two tests confirm the practicality of solid-state IGBT modulators to regulate high voltage at reasonable currents. Tokamaks such as ITER require large rf heating and current drive systems with multiple rf sources. A HVPS topology is presented that readily adapts to the three rf heating systems on ITER. To take advantage of the known economy of scale for power conversion equipment, a single HVdc source feeds multiple rf sources. The large power conversion equipment, which is located outside, converts the incoming utility line voltage directly to the HVdc needed for the class of rf sources connected to it, to further reduce cost. The HVdc feeds a set of IGBT modulators, one for each rf source, to independently control the voltage applied to each source, maximizing operational flexibility. Only the modulators are indoors, close to the rf sources, minimizing the use of costly near-tokamak floor space.

  10. Voltage Weak DC Distribution Grids

    NARCIS (Netherlands)

    Hailu, T.G.; Mackay, L.J.; Ramirez Elizondo, L.M.; Ferreira, J.A.

    2017-01-01

    This paper describes the behavior of voltage weak DC distribution systems. These systems have relatively small system capacitance. The size of system capacitance, which stores energy, has a considerable effect on the value of fault currents, control complexity, and system reliability. A number of

  11. High voltage power network construction

    CERN Document Server

    Harker, Keith

    2018-01-01

    This book examines the key requirements, considerations, complexities and constraints relevant to the task of high voltage power network construction, from design, finance, contracts and project management to installation and commissioning, with the aim of providing an overview of the holistic end to end construction task in a single volume.

  12. Voltage control of ferromagnetic resonance

    Directory of Open Access Journals (Sweden)

    Ziyao Zhou

    2016-06-01

    Full Text Available Voltage control of magnetism in multiferroics, where the ferromagnetism and ferroelectricity are simultaneously exhibiting, is of great importance to achieve compact, fast and energy efficient voltage controllable magnetic/microwave devices. Particularly, these devices are widely used in radar, aircraft, cell phones and satellites, where volume, response time and energy consumption is critical. Researchers realized electric field tuning of magnetic properties like magnetization, magnetic anisotropy and permeability in varied multiferroic heterostructures such as bulk, thin films and nanostructure by different magnetoelectric (ME coupling mechanism: strain/stress, interfacial charge, spin–electromagnetic (EM coupling and exchange coupling, etc. In this review, we focus on voltage control of ferromagnetic resonance (FMR in multiferroics. ME coupling-induced FMR change is critical in microwave devices, where the electric field tuning of magnetic effective anisotropic field determines the tunability of the performance of microwave devices. Experimentally, FMR measurement technique is also an important method to determine the small effective magnetic field change in small amount of magnetic material precisely due to its high sensitivity and to reveal the deep science of multiferroics, especially, voltage control of magnetism in novel mechanisms like interfacial charge, spin–EM coupling and exchange coupling.

  13. High voltage MOSFET switching circuit

    Science.gov (United States)

    McEwan, Thomas E.

    1994-01-01

    The problem of source lead inductance in a MOSFET switching circuit is compensated for by adding an inductor to the gate circuit. The gate circuit inductor produces an inductive spike which counters the source lead inductive drop to produce a rectangular drive voltage waveform at the internal gate-source terminals of the MOSFET.

  14. System for improving measurement accuracy of transducer by measuring transducer temperature and resistance change using thermoelectric voltages

    Science.gov (United States)

    Anderson, Karl F. (Inventor); Parker, Allen R., Jr. (Inventor)

    1993-01-01

    A constant current loop measuring system measures a property including the temperature of a sensor responsive to an external condition being measured. The measuring system includes thermocouple conductors connected to the sensor, sensing first and second induced voltages responsive to the external condition. In addition, the measuring system includes a current generator and reverser generating a constant current, and supplying the constant current to the thermocouple conductors in forward and reverse directions generating first and second measured voltages, and a determining unit receiving the first and second measured voltages from the current generator and reverser, and determining the temperature of the sensor responsive to the first and second measured voltages.

  15. DC Voltage Control and Power-Sharing of Multi-Terminal DC Grids Based on Optimal DC Power Flow and Flexible Voltage Droop Strategy

    Directory of Open Access Journals (Sweden)

    F. Azma

    2015-06-01

    Full Text Available This paper develops an effective control framework for DC voltage control and power-sharing of multi-terminal DC (MTDC grids based on an optimal power flow (OPF procedure and the voltage-droop control. In the proposed approach, an OPF algorithm is executed at the secondary level to find optimal reference of DC voltages and active powers of all voltage-regulating converters. Then, the voltage droop characteristics of voltage-regulating converters, at the primary level, are tuned based on the OPF results such that the operating point of the MTDC grid lies on the voltage droop characteristics. Consequently, the optimally-tuned voltage droop controller leads to the optimal operation of the MTDC grid. In case of variation in load or generation of the grid, a new stable operating point is achieved based on the voltage droop characteristics. By execution of a new OPF, the voltage droop characteristics are re-tuned for optimal operation of the MTDC grid after the occurrence of the load or generation variations. The results of simulation on a grid inspired by CIGRE B4 DC grid test system demonstrate efficient grid performance under the proposed control strategy.

  16. Voltage linear transformation circuit design

    Science.gov (United States)

    Sanchez, Lucas R. W.; Jin, Moon-Seob; Scott, R. Phillip; Luder, Ryan J.; Hart, Michael

    2017-09-01

    Many engineering projects require automated control of analog voltages over a specified range. We have developed a computer interface comprising custom hardware and MATLAB code to provide real-time control of a Thorlabs adaptive optics (AO) kit. The hardware interface includes an op amp cascade to linearly shift and scale a voltage range. With easy modifications, any linear transformation can be accommodated. In AO applications, the design is suitable to drive a range of different types of deformable and fast steering mirrors (FSM's). Our original motivation and application was to control an Optics in Motion (OIM) FSM which requires the customer to devise a unique interface to supply voltages to the mirror controller to set the mirror's angular deflection. The FSM is in an optical servo loop with a wave front sensor (WFS), which controls the dynamic behavior of the mirror's deflection. The code acquires wavefront data from the WFS and fits a plane, which is subsequently converted into its corresponding angular deflection. The FSM provides +/-3° optical angular deflection for a +/-10 V voltage swing. Voltages are applied to the mirror via a National Instruments digital-to-analog converter (DAC) followed by an op amp cascade circuit. This system has been integrated into our Thorlabs AO testbed which currently runs at 11 Hz, but with planned software upgrades, the system update rate is expected to improve to 500 Hz. To show that the FSM subsystem is ready for this speed, we conducted two different PID tuning runs at different step commands. Once 500 Hz is achieved, we plan to make the code and method for our interface solution freely available to the community.

  17. A Zero-Voltage Switching Control Strategy for Dual Half-Bridge Cascaded Three-Level DC/DC Converter with Balanced Capacitor Voltages

    DEFF Research Database (Denmark)

    Liu, Dong; Wang, Yanbo; Chen, Zhe

    2017-01-01

    The input capacitor's voltages are unbalanced under the conventional control strategy in a dual half-bridge cascaded three-level (TL) DC/DC converter, which would affect the high voltage stresses on the capacitors. This paper proposes a pulse-wide modulation (PWM) strategy with two working modes...... for the dual half-bridge cascaded TL DC/DC converter, which can realize the zero-voltage switching (ZVS). More significantly, a capacitor voltage balance control is proposed by alternating the two working modes of the proposed ZVS PWM strategy, which can eliminate the voltage unbalance on the four input...... capacitors. Therefore, the proposed control strategy can improve the converter's performances in: 1) reducing the switching losses and noises of the power switches; and 2) reducing the voltage stresses on the input capacitors. Finally, the simulation results are conducted to verify the proposed control...

  18. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    Science.gov (United States)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  19. Design of a High Performance Green-Mode PWM Controller IC with Smart Sensing Protection Circuits

    Directory of Open Access Journals (Sweden)

    Shen-Li Chen

    2014-08-01

    Full Text Available A design of high performance green-mode pulse-width-modulation (PWM controller IC with smart sensing protection circuits for the application of lithium-ion battery charger (1.52 V ~ 7.5 V is investigated in this paper. The protection circuits architecture of this system mainly bases on the lithium battery function and does for the system design standard of control circuit. In this work, the PWM controller will be with an automatic load sensing and judges the system operated in the operating mode or in the standby mode. Therefore, it reduces system’s power dissipation effectively and achieves the saving power target. In the same time, many protection sensing circuits such as: (1 over current protection (OCP and under current protection (UCP, (2 over voltage protection (OVP and under voltage protection (UVP, (3 loading determintion and short circuit protection (SCP, (4 over temperature protection (OTP, (5 VDD surge-spiking protection are included. Then, it has the characteristics of an effective monitoring the output loading and the harm prevention as a battery charging. Eventually, this green-mode pulse-width-modulation (PWM controller IC will be that the operation voltage is 3.3 V, the operation frequency is 0.98 MHz, and the output current range is from 454 mA to 500 mA. Meanwhile, the output convert efficiency is range from 74.8 % to 91 %, the power dissipation efficiency in green-mode is 25 %, and the operation temperature range is between -20 0C ~ 114 0C.

  20. Conversational sensing

    Science.gov (United States)

    Preece, Alun; Gwilliams, Chris; Parizas, Christos; Pizzocaro, Diego; Bakdash, Jonathan Z.; Braines, Dave

    2014-05-01

    Recent developments in sensing technologies, mobile devices and context-aware user interfaces have made it pos- sible to represent information fusion and situational awareness for Intelligence, Surveillance and Reconnaissance (ISR) activities as a conversational process among actors at or near the tactical edges of a network. Motivated by use cases in the domain of Company Intelligence Support Team (CoIST) tasks, this paper presents an approach to information collection, fusion and sense-making based on the use of natural language (NL) and controlled nat- ural language (CNL) to support richer forms of human-machine interaction. The approach uses a conversational protocol to facilitate a ow of collaborative messages from NL to CNL and back again in support of interactions such as: turning eyewitness reports from human observers into actionable information (from both soldier and civilian sources); fusing information from humans and physical sensors (with associated quality metadata); and assisting human analysts to make the best use of available sensing assets in an area of interest (governed by man- agement and security policies). CNL is used as a common formal knowledge representation for both machine and human agents to support reasoning, semantic information fusion and generation of rationale for inferences, in ways that remain transparent to human users. Examples are provided of various alternative styles for user feedback, including NL, CNL and graphical feedback. A pilot experiment with human subjects shows that a prototype conversational agent is able to gather usable CNL information from untrained human subjects.

  1. Remote RemoteRemoteRemote sensing potential for sensing ...

    African Journals Online (AJOL)

    Remote RemoteRemoteRemote sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing p. A Ngie, F Ahmed, K Abutaleb ...

  2. Coordinated Control of Multifunctional Inverters for Voltage Support and Harmonic Compensation in a Grid-Connected Microgrid

    DEFF Research Database (Denmark)

    Mousazadeh, Seyyed Yousef; Jalilian, Alireza; Savaghebi, Mehdi

    2018-01-01

    In this paper, a coordinated harmonic compensation and voltage support scheme is presented for distributed generations’ (DGs’) interface inverters in a resistive grid-connected microgrid. Voltage support is performed by reactive power compensation which can mitigate the over/under voltage problem...

  3. Radiophysical methods of diagnostics the Earth's ionosphere and the underlying earth's surface by remote sensing in the short-wave range of radio waves

    Science.gov (United States)

    Belov, S. Yu.; Belova, I. N.

    2017-11-01

    Monitoring of the earth's surface by remote sensing in the short-wave band can provide quick identification of some characteristics of natural systems. This band range allows one to diagnose subsurface aspects of the earth, as the scattering parameter is affected by irregularities in the dielectric permittivity of subsurface structures. This method based on the organization of the monitoring probe may detect changes in these environments, for example, to assess seismic hazard, hazardous natural phenomena such as earthquakes, as well as some man-made hazards and etc. The problem of measuring and accounting for the scattering power of the earth's surface in the short-range of radio waves is important for a number of purposes, such as diagnosing properties of the medium, which is of interest for geological, environmental studies. In this paper, we propose a new method for estimating the parameters of incoherent signal/noise ratio. The paper presents the results of comparison of the measurement method from the point of view of their admissible relative analytical errors. The new method is suggested. Analysis of analytical error of estimation of this parameter allowed to recommend new method instead of standard method. A comparative analysis and shows that the analytical (relative) accuracy of the determination of this parameter new method on the order exceeds the widely-used standard method.

  4. Analyzing suitability for urban expansion under rapid coastal urbanization with remote sensing and GIS techniques: a case study of Lianyungang, China

    Science.gov (United States)

    Zhao, Wenjun; Zhu, Xiaodong; Reenberg, Anette; Sun, Xiang

    2010-10-01

    Beginning in 2000, Lianyungang's urbanization entered a period of rapid growth, spatially as well as economically. Rapid and intensive expansion of "construction land" imposed increasing pressures on regional environment. With the support of remote sensing data and GIS tools, this paper reports a "present-capacity-potential" integrated suitability analysis framework, in order to characterize and evaluate the suitability of urban expansion in Lianyungang. We found that during the rapid coastal urbanization process from 2000 to 2008, the characteristics of physical expansion in the study area were characterized by a combination of high-density expansion and sprawling development. The land use conversion driven by urbanization and industrialization has not occurred only in city districts, but also the surrounding areas that were spatially absorbed by urban growth, while closely associated and greatly influenced by the explosive growth of industrial establishment. The over-consumption of land resources in the areas with low environmental carrying capacity, particularly in the eastern coastal area, should be strictly controlled. Compared to conventional land suitability analysis methods, the proposed integrated approach could better review the potential environmental impacts of urban expansion and provide guidance for decision makers.

  5. All-inorganic perovskite quantum dot/TiO2 inverse opal electrode platform: stable and efficient photoelectrochemical sensing of dopamine under visible irradiation.

    Science.gov (United States)

    Chen, Xu; Li, Dongyu; Pan, Gencai; Zhou, Donglei; Xu, Wen; Zhu, Jinyang; Wang, He; Chen, Cong; Song, Hongwei

    2018-06-07

    CsPbX3 (X = Cl, Br or I) perovskite quantum dots (PQDs) have attracted tremendous attention due to their extraordinarily excellent optical properties. However, there is still an obstacle for their bio-application, which is limited by their water-instability. In this work, we have designed a novel visible light triggered photoelectrochemical (PEC) sensor for dopamine (DA) based on CsPbBr1.5I1.5 PQD immobilized three-dimensional (3D) TiO2 inverse opal photonic crystals (IOPCs). Supported by the TiO2 IOPCs, the water-stability of the PQDs as well as that of the PEC sensor was considerably improved. Furthermore, employed as a photoactive material in PEC sensor, CsPbBr1.5I1.5 PQDs can expand the photocurrent response of the PEC sensor to the whole visible region. In addition, the modulation of the photonic stop band effect of TiO2 IOPCs on the incident light and the emission of PQDs could further enhance the photocurrent response. Such a PEC sensor demonstrates sensitive detection of DA in phosphate buffer saline solution and serum, with a good linear range from 0.1 μM to 250 μM and a low detection limit of approximately 0.012 μM. Our strategy opens an alternative horizon for PQD based PEC sensing, which could be more sensitive, convenient and inexpensive for clinical and biological analysis.

  6. Voltage control in the future power transmission systems

    DEFF Research Database (Denmark)

    Qin, Nan

    Wind energy in Denmark covers 42% of the total power consumption in 2015, and will share up to 50% by 2020. Consequently, the conventional power plants are decommissioning. Under the progress of the green transition, the national decision leads to underground many overhead lines in the future...... stages. The voltage uncertainty caused by the wind power forecasting errors is estimated, which is applied as a voltage security margin to further constrain the voltage magnitude in the optimization problem. The problem under the uncertainty is therefore converted to a deterministic problem, which...... to ensure a highly reliable transmission, e.g. balancing the generation and the consumption in large geographic regions, the exchange capacities will be enlarged by upgrading the interconnections. The Danish power system, the electricity transportation hub between the Nordic and continental European systems...

  7. Experimental investigation of the streaming potential hypothesis for ionic polymer transducers in sensing

    International Nuclear Information System (INIS)

    Kocer, Bilge; Weiland, Lisa Mauck

    2013-01-01

    Ionic polymer transducers (IPTs) are ionomers that are plated with conductive media such as metals, leading to capacitive behavior. IPTs exhibit bending deformation when a voltage difference is applied across the surfaces of the transducer, thus displaying actuation. A current is generated when they are deformed, thus exhibiting sensing. However, the mechanisms responsible for actuation and sensing differ; research to date has focused predominantly on actuation, while identification of the dominant mechanism responsible for IPT sensing remains an open topic. The goal of this work is to initiate experimental investigations of the streaming potential hypothesis for IPT sensing. This hypothesis argues that the presence of unbound counter-ions within the hydrophilic phase of an ionic polymer behaves as an electrolyte in the presence of the electrode. Thus, as per classic streaming potential analyses, relative motion of the electrolyte with respect to the electrode will result in the evolution of a streaming potential. According to this hypothesis, the extent of communication between the electrode and electrolyte becomes important in the evolution of an electrical signal. This study experimentally explores the effect of electrode architecture on the sensing response where the IPTs are prepared via the direct assembly process (DAP). The DAP is selected because it enables control over the fabrication of the electrode structure. In this study, cantilevered IPT samples having different electrode composition are tested under several step input tip displacements. The experimental outcomes are consistent with predicted trends via streaming potential theory. (paper)

  8. Reference voltage calculation method based on zero-sequence component optimisation for a regional compensation DVR

    Science.gov (United States)

    Jian, Le; Cao, Wang; Jintao, Yang; Yinge, Wang

    2018-04-01

    This paper describes the design of a dynamic voltage restorer (DVR) that can simultaneously protect several sensitive loads from voltage sags in a region of an MV distribution network. A novel reference voltage calculation method based on zero-sequence voltage optimisation is proposed for this DVR to optimise cost-effectiveness in compensation of voltage sags with different characteristics in an ungrounded neutral system. Based on a detailed analysis of the characteristics of voltage sags caused by different types of faults and the effect of the wiring mode of the transformer on these characteristics, the optimisation target of the reference voltage calculation is presented with several constraints. The reference voltages under all types of voltage sags are calculated by optimising the zero-sequence component, which can reduce the degree of swell in the phase-to-ground voltage after compensation to the maximum extent and can improve the symmetry degree of the output voltages of the DVR, thereby effectively increasing the compensation ability. The validity and effectiveness of the proposed method are verified by simulation and experimental results.

  9. Regulation of the Output Voltage of an Inverter in Case of Load Variation

    Science.gov (United States)

    Diouri, Omar; Errahimi, Fatima; Es-Sbai, Najia

    2018-05-01

    In a DC/AC photovoltaic application, the stability of the output voltage of the inverter plays a very important role in the electrical systems. Such a photovoltaic system is constituted by an inverter, which makes it possible to convert the continuous energy to the alternative energy used in systems which operate under a voltage of 230V. The output of this inverter can be connected to a single load or more, at which time a second load is added in parallel with the first load. In this case, it proves a voltage drop at the output of the inverter. This problem influences the proper functioning of the electrical loads. Therefore, our contribution is to give a solution to this by compensating this voltage drop using a boost converter at the input of the inverter. This boost converter will play the role of the compensator that will provide the necessary voltage to the inverter in order to increase the voltage across the loads. But the use of this boost without controlling it is not enough because it generates a voltage that depends on the duty cycle of the control signal. To stabilize the output voltage of the inverter, we used a Proportional, Integral, and Derivative control (PID), which makes it possible to generate the necessary control signal for the voltage boost in order to have a good regulation of the output voltage of the inverter. Finally, we have solved the problem of the voltage drop even though there is loads variation.

  10. Design of auto-control high-voltage control system of pulsed neutron generator

    International Nuclear Information System (INIS)

    Lv Juntao

    2008-01-01

    It is difficult to produce multiple anode controlling time sequences under different logging mode for the high-voltage control system of the conventional pulsed neutron generator. It is also difficult realize sequential control among anode high-voltage, filament power supply and target voltage to make neutron yield stable. To these problems, an auto-control high-voltage system of neutron pulsed generator was designed. It not only can achieve anode high-voltage double blast time sequences, which can measure multiple neutron blast time sequences such as Σ, activated spectrum, etc. under inelastic scattering mode, but also can realize neutron generator real-time measurement of multi-state parameters and auto-control such as target voltage pulse width modulation (PWM), filament current, anode current, etc., there by it can produce stable neutron yield and realize stable and accurate measurement of the pulsed neutron full spectral loging tool. (authors)

  11. Voltage-gated sodium channels in taste bud cells.

    Science.gov (United States)

    Gao, Na; Lu, Min; Echeverri, Fernando; Laita, Bianca; Kalabat, Dalia; Williams, Mark E; Hevezi, Peter; Zlotnik, Albert; Moyer, Bryan D

    2009-03-12

    Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown. We describe the molecular and histological expression profiles of cation channels involved in electrical signal transmission from apical to basolateral membrane domains. TRPM5 was positioned immediately beneath tight junctions to receive calcium signals originating from sweet, bitter, and umami receptor activation, while PKD2L1 was positioned at the taste pore. Using mouse taste bud and lingual epithelial cells collected by laser capture microdissection, SCN2A, SCN3A, and SCN9A voltage-gated sodium channel transcripts were expressed in taste tissue. SCN2A, SCN3A, and SCN9A were expressed beneath tight junctions in subsets of taste cells. SCN3A and SCN9A were expressed in TRPM5 cells, while SCN2A was expressed in TRPM5 and PKD2L1 cells. HCN4, a gene previously implicated in sour taste, was expressed in PKD2L1 cells and localized to cell processes beneath the taste pore. SCN2A, SCN3A and SCN9A voltage-gated sodium channels are positioned to sense initial depolarizing signals stemming from taste receptor activation and initiate taste cell action potentials. SCN2A, SCN3A and SCN9A gene products likely account for the tetrodotoxin-sensitive sodium currents in taste receptor cells.

  12. Sensing interrail mobility

    DEFF Research Database (Denmark)

    Jensen, Martin Trandberg

    methodologies, this doctoral thesis explores the analytical prospects of non-representational theories in tourism research. The dissertation points toward a richer understanding of the ‘social’ which encompasses under-researched topics such as the implications of affective atmospheres, the sensuous and vibrant...... of Culture and Global Studies, Aalborg University, Campus Copenhagen. ’Sensing interrail mobility: Towards multimodal methodologies’ is his Ph.d. dissertation....

  13. Spike voltage topography in temporal lobe epilepsy.

    Science.gov (United States)

    Asadi-Pooya, Ali A; Asadollahi, Marjan; Shimamoto, Shoichi; Lorenzo, Matthew; Sperling, Michael R

    2016-07-15

    We investigated the voltage topography of interictal spikes in patients with temporal lobe epilepsy (TLE) to see whether topography was related to etiology for TLE. Adults with TLE, who had epilepsy surgery for drug-resistant seizures from 2011 until 2014 at Jefferson Comprehensive Epilepsy Center were selected. Two groups of patients were studied: patients with mesial temporal sclerosis (MTS) on MRI and those with other MRI findings. The voltage topography maps of the interictal spikes at the peak were created using BESA software. We classified the interictal spikes as polar, basal, lateral, or others. Thirty-four patients were studied, from which the characteristics of 340 spikes were investigated. The most common type of spike orientation was others (186 spikes; 54.7%), followed by lateral (146; 42.9%), polar (5; 1.5%), and basal (3; 0.9%). Characteristics of the voltage topography maps of the spikes between the two groups of patients were somewhat different. Five spikes in patients with MTS had polar orientation, but none of the spikes in patients with other MRI findings had polar orientation (odds ratio=6.98, 95% confidence interval=0.38 to 127.38; p=0.07). Scalp topographic mapping of interictal spikes has the potential to offer different information than visual inspection alone. The present results do not allow an immediate clinical application of our findings; however, detecting a polar spike in a patient with TLE may increase the possibility of mesial temporal sclerosis as the underlying etiology. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Precise derating of three phase induction motors with unbalanced voltages

    International Nuclear Information System (INIS)

    Faiz, Jawad; Ebrahimpour, H.

    2007-01-01

    Performance analysis of three phase induction motors under supply voltage unbalance conditions is normally conducted using the well-known symmetrical components analysis. In this analysis, the voltage unbalance level at the terminals of the machine is assessed by means of the NEMA or IEC definitions. Both definitions lead to a relatively large error in predicting the performance of a machine. A method has recently been proposed in which, in addition to the voltage unbalance factor (VUF), the phase angle has been taken into account in the analysis. This means that the voltage unbalance factor is regarded as a complex value. This paper shows that although the use of the complex VUF reduces the computational error considerably, it is still high. This is proven by evaluating the derating factor of a three phase induction motor. A method is introduced to determine the derating factor precisely using the complex unbalance factor for an induction motor operating under any unbalanced supply condition. A practical case for derating of a typical three phase squirrel cage induction motor supplied by an unbalanced voltage is studied in the paper

  15. Analyzing randomly occurring voltage breakdowns

    International Nuclear Information System (INIS)

    Wiltshire, C.W.

    1977-01-01

    During acceptance testing of high-vacuum neutron tubes, 40% of the tubes failed after experiencing high-voltage breakdowns during the aging process. Use of a digitizer in place of an oscilloscope revealed two types of breakdowns, only one of which affected acceptance testing. This information allowed redesign of the aging sequence to prevent tube damage and improve yield and quality of the final product

  16. Advances in high voltage engineering

    CERN Document Server

    Haddad, A

    2005-01-01

    This book addresses the very latest research and development issues in high voltage technology and is intended as a reference source for researchers and students in the field, specifically covering developments throughout the past decade. This unique blend of expert authors and comprehensive subject coverage means that this book is ideally suited as a reference source for engineers and academics in the field for years to come.

  17. GECM-Based Voltage Stability Assessment Using Wide-Area Synchrophasors

    OpenAIRE

    Heng-Yi Su; Tzu-Yi Liu

    2017-01-01

    Voltage instability is a crucial issue in the secure operation of power grids. Several methods for voltage stability assessment were presented. Some of them are highly computationally intensive, while others are reported not to work properly under all circumstances. This paper proposes a new methodology based on the generator equivalent circuit model (GECM) and the phasor measurement unit (PMU) technology for online voltage stability monitoring of a power grid. First, the proposed methodology...

  18. DiSC: A Simulation Framework for Distribution System Voltage Control

    DEFF Research Database (Denmark)

    Pedersen, Rasmus; Sloth, Christoffer Eg; Andresen, Gorm

    2015-01-01

    This paper presents the MATLAB simulation framework, DiSC, for verifying voltage control approaches in power distribution systems. It consists of real consumption data, stochastic models of renewable resources, flexible assets, electrical grid, and models of the underlying communication channels....... The simulation framework makes it possible to validate control approaches, and thus advance realistic and robust control algorithms for distribution system voltage control. Two examples demonstrate the potential voltage issues from penetration of renewables in the distribution grid, along with simple control...

  19. A SCHEDULING SCHEME WITH DYNAMIC FREQUENCY CLOCKING AND MULTIPLE VOLTAGES FOR LOW POWER DESIGNS

    Institute of Scientific and Technical Information of China (English)

    Wen Dongxin; Wang Ling; Yang Xiaozong

    2007-01-01

    In this letter, a scheduling scheme based on Dynamic Frequency Clocking (DFC) and multiple voltages is proposed for low power designs under the timing and the resource constraints.Unlike the conventional methods at high level synthesis where only voltages of nodes were considered,the scheme based on a gain function considers both voltage and frequency simultaneously to reduce energy consumption. Experiments with a number of DSP benchmarks show that the proposed scheme achieves an effective energy reduction.

  20. HORIZON SENSING

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Stolarczyk

    2003-03-18

    With the aid of a DOE grant (No. DE-FC26-01NT41050), Stolar Research Corporation (Stolar) developed the Horizon Sensor (HS) to distinguish between the different layers of a coal seam. Mounted on mining machine cutter drums, HS units can detect or sense the horizon between the coal seam and the roof and floor rock, providing the opportunity to accurately mine the section of the seam most desired. HS also enables accurate cutting of minimum height if that is the operator's objective. Often when cutting is done out-of-seam, the head-positioning function facilitates a fixed mining height to minimize dilution. With this technology, miners can still be at a remote location, yet cut only the clean coal, resulting in a much more efficient overall process. The objectives of this project were to demonstrate the feasibility of horizon sensing on mining machines and demonstrate that Horizon Sensing can allow coal to be cut cleaner and more efficiently. Stolar's primary goal was to develop the Horizon Sensor (HS) into an enabling technology for full or partial automation or ''agile mining''. This technical innovation (R&D 100 Award Winner) is quickly demonstrating improvements in productivity and miner safety at several prominent coal mines in the United States. In addition, the HS system can enable the cutting of cleaner coal. Stolar has driven the HS program on the philosophy that cutting cleaner coal means burning cleaner coal. The sensor, located inches from the cutting bits, is based upon the physics principles of a Resonant Microstrip Patch Antenna (RMPA). When it is in proximity of the rock-coal interface, the RMPA impedance varies depending on the thickness of uncut coal. The impedance is measured by the computer-controlled electronics and then sent by radio waves to the mining machine. The worker at the machine can read the data via a Graphical User Interface, displaying a color-coded image of the coal being cut, and direct the machine