Hardness and Elastic Modulus on Six-Fold Symmetry Gold Nanoparticles
Ramos, Manuel; Ortiz-Jordan, Luis; Hurtado-Macias, Abel; Flores, Sergio; Elizalde-Galindo, José T.; Rocha, Carmen; Torres, Brenda; Zarei-Chaleshtori, Maryam; Chianelli, Russell R.
2013-01-01
The chemical synthesis of gold nanoparticles (NP) by using gold (III) chloride trihydrate (HAuCl∙3H2O) and sodium citrate as a reducing agent in aqueous conditions at 100 °C is presented here. Gold nanoparticles areformed by a galvanic replacement mechanism as described by Lee and Messiel. Morphology of gold-NP was analyzed by way of high-resolution transmission electron microscopy; results indicate a six-fold icosahedral symmetry with an average size distribution of 22 nm. In order to understand the mechanical behaviors, like hardness and elastic moduli, gold-NP were subjected to nanoindentation measurements—obtaining a hardness value of 1.72 GPa and elastic modulus of 100 GPa in a 3–5 nm of displacement at the nanoparticle’s surface. PMID:28809302
Thermo-solutal growth of an anisotropic dendrite with six-fold symmetry
Alexandrov, D. V.; Galenko, P. K.
2018-03-01
A stable growth of dendritic crystal with the six-fold crystalline anisotropy is analyzed in a binary nonisothermal mixture. A selection criterion representing a relationship between the dendrite tip velocity and its tip diameter is derived on the basis of morphological stability analysis and solvability theory. A complete set of nonlinear equations, consisting of the selection criterion and undercooling balance condition, which determines implicit dependencies of the dendrite tip velocity and tip diameter as functions of the total undercooling, is formulated. Exact analytical solutions of these nonlinear equations are found in a parametric form. Asymptotic solutions describing the crystal growth at small Péclet numbers are determined. Theoretical predictions are compared with experimental data obtained for ice dendrites growing in binary water-ethylenglycol solutions as well as in pure water.
International Nuclear Information System (INIS)
Jacobsen, Alan J.; Barvosa-Carter, William; Nutt, Steven
2008-01-01
A process for interconnecting a three-dimensional pattern of self-propagating polymer waveguides was used to form micro-truss structures with two new unit cell architectures. The structures were formed using a two-dimensional mask with a hexagonal pattern of apertures. Distinct unit cell architectures were possible by exposing the mask to a different number of incident UV exposure beams, which are used to form the waveguides. One unit cell design featured three intersecting waveguides per node, resulting in a structure with three-fold symmetry. The second unit cell design had six-fold symmetry and was characterized by primary nodes with six intersecting waveguides and secondary nodes with two intersecting waveguides. Compression loading experiments were conducted on micro-truss samples with comparable relative density values (ρ/ρ s = 6.5%), but different unit cell architectures. The addition of secondary nodes in the structures based on the second design led to an increase in compressive modulus of up to 70% and an average increase in peak strength of 42%. The increase in compressive strength and modulus was attributed to a reduction in the truss-member slenderness ratio achieved through increased waveguide connectivity
Electromagnetic radiation under explicit symmetry breaking.
Sinha, Dhiraj; Amaratunga, Gehan A J
2015-04-10
We report our observation that radiation from a system of accelerating charges is possible only when there is explicit breaking of symmetry in the electric field in space within the spatial configuration of the radiating system. Under symmetry breaking, current within an enclosed area around the radiating structure is not conserved at a certain instant of time resulting in radiation in free space. Electromagnetic radiation from dielectric and piezoelectric material based resonators are discussed in this context. Finally, it is argued that symmetry of a resonator of any form can be explicitly broken to create a radiating antenna.
Four-switch hybrid power filter working with six-fold switching symmetry
Czech Academy of Sciences Publication Activity Database
Klíma, J.; Tlustý, J.; Škramlík, Jiří; Valouch, Viktor
2011-01-01
Roč. 56, č. 4 (2011), s. 433-446 ISSN 0001-7043 Institutional research plan: CEZ:AV0Z20570509 Keywords : component minimized hybrid power filter * control strategy * analytical model Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering
Six-state, three-level, six-fold ferromagnetic wire system
International Nuclear Information System (INIS)
Blachowicz, T.; Ehrmann, A.
2013-01-01
Six stable states at remanence were identified in iron wire samples of 6-fold spatial symmetry using micromagnetic simulations and the finite element method. Onion and domain-wall magnetic states were tailored by sample shape and guided by an applied magnetic field with a fixed in-plane direction. Different directions of externally applied magnetic fields revealed a tendency for stability or nonstability of the considered states. -- Highlights: ► In a ferromagnetic wire sample six stable states at remanence were discovered. ► Presented wires provide new effects not met in classical thin-layered solutions. ► The mechanism of working results from competing demagnetizing and exchange fields. ► For different physical conditions onion and domain-wall states were observed. ► Wire samples of 6-fold symmetry can lead to many-level information storage devices
Six-state, three-level, six-fold ferromagnetic wire system
Energy Technology Data Exchange (ETDEWEB)
Blachowicz, T., E-mail: tomasz.blachowicz@polsl.pl [Institute of Physics, Silesian University of Technology, 44-100 Gliwice (Poland); Ehrmann, A. [Faculty of Textile and Clothing Technology, Niederrhein University of Applied Sciences, 41065 Mönchengladbach (Germany)
2013-04-15
Six stable states at remanence were identified in iron wire samples of 6-fold spatial symmetry using micromagnetic simulations and the finite element method. Onion and domain-wall magnetic states were tailored by sample shape and guided by an applied magnetic field with a fixed in-plane direction. Different directions of externally applied magnetic fields revealed a tendency for stability or nonstability of the considered states. -- Highlights: ► In a ferromagnetic wire sample six stable states at remanence were discovered. ► Presented wires provide new effects not met in classical thin-layered solutions. ► The mechanism of working results from competing demagnetizing and exchange fields. ► For different physical conditions onion and domain-wall states were observed. ► Wire samples of 6-fold symmetry can lead to many-level information storage devices.
Wnt signaling underlies evolution and development of the butterfly wing pattern symmetry systems.
Martin, Arnaud; Reed, Robert D
2014-11-15
Most butterfly wing patterns are proposed to be derived from a set of conserved pattern elements known as symmetry systems. Symmetry systems are so-named because they are often associated with parallel color stripes mirrored around linear organizing centers that run between the anterior and posterior wing margins. Even though the symmetry systems are the most prominent and diverse wing pattern elements, their study has been confounded by a lack of knowledge regarding the molecular basis of their development, as well as the difficulty of drawing pattern homologies across species with highly derived wing patterns. Here we present the first molecular characterization of symmetry system development by showing that WntA expression is consistently associated with the major basal, discal, central, and external symmetry system patterns of nymphalid butterflies. Pharmacological manipulations of signaling gradients using heparin and dextran sulfate showed that pattern organizing centers correspond precisely with WntA, wingless, Wnt6, and Wnt10 expression patterns, thus suggesting a role for Wnt signaling in color pattern induction. Importantly, this model is supported by recent genetic and population genomic work identifying WntA as the causative locus underlying wing pattern variation within several butterfly species. By comparing the expression of WntA between nymphalid butterflies representing a range of prototypical symmetry systems, slightly deviated symmetry systems, and highly derived wing patterns, we were able to infer symmetry system homologies in several challenging cases. Our work illustrates how highly divergent morphologies can be derived from modifications to a common ground plan across both micro- and macro-evolutionary time scales. Copyright © 2014 Elsevier Inc. All rights reserved.
Samal, D.; Tan, H.; Takamura, Y.; Siemons, W.; Verbeeck, J.; van Tendeloo, G.; Arenholz, E.; Jenkins, A.; Rijnders, Augustinus J.H.M.; Koster, Gertjan
2014-01-01
Unlike other 3d transition metal monoxides (MnO, FeO, CoO, and NiO), CuO is found in a low-symmetry distorted monoclinic structure rather than the rocksalt structure. We report here of the growth of ultrathin CuO films on SrTiO3 substrates; scanning transmission electron microscopy was used to show
Energy Technology Data Exchange (ETDEWEB)
Bakke, K., E-mail: kbakke@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa-PB (Brazil); Furtado, C., E-mail: furtado@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa-PB (Brazil); Belich, H., E-mail: belichjr@gmail.com [Departamento de Física e Química, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, 29060-900, Vitória, ES (Brazil)
2016-09-15
From the modified Maxwell theory coupled to gravity, we establish a possible scenario of the violation of the Lorentz symmetry and write an effective metric for the cosmic string spacetime. Then, we investigate the arising of an analogue of the Anandan quantum phase for a relativistic Dirac neutral particle with a permanent magnetic dipole moment in the cosmic string spacetime under Lorentz symmetry breaking effects. Besides, we analyse the influence of the effects of the Lorentz symmetry violation and the topology of the defect on the Aharonov–Casher geometric quantum phase in the nonrelativistic limit.
Voisin, Claire
1999-01-01
This is the English translation of Professor Voisin's book reflecting the discovery of the mirror symmetry phenomenon. The first chapter is devoted to the geometry of Calabi-Yau manifolds, and the second describes, as motivation, the ideas from quantum field theory that led to the discovery of mirror symmetry. The other chapters deal with more specialized aspects of the subject: the work of Candelas, de la Ossa, Greene, and Parkes, based on the fact that under the mirror symmetry hypothesis, the variation of Hodge structure of a Calabi-Yau threefold determines the Gromov-Witten invariants of its mirror; Batyrev's construction, which exhibits the mirror symmetry phenomenon between hypersurfaces of toric Fano varieties, after a combinatorial classification of the latter; the mathematical construction of the Gromov-Witten potential, and the proof of its crucial property (that it satisfies the WDVV equation), which makes it possible to construct a flat connection underlying a variation of Hodge structure in the ...
Nomura, Takaaki; Okada, Hiroshi
2018-03-01
We propose a Dirac type active neutrino with rank two mass matrix and a Majorana fermion dark matter candidate with an alternative local U(1)_{B-L} extension of neutrinophilic two Higgs doublet model. Our dark matter candidate can be stabilized due to charge assignment under the gauge symmetry without imposing extra discrete Z_2 symmetry and the relic density is obtained from an Z' boson exchanging process. Taking into account collider constraints on the Z' boson mass and coupling, we estimate the relic density.
Waves as the Symmetry Principle Underlying Cosmic, Cell, and Human Languages
Directory of Open Access Journals (Sweden)
Sungchul Ji
2017-02-01
Full Text Available In 1997, the author concluded that living cells use a molecular language (cellese that is isomorphic with the human language (humanese based on his finding that the former shared 10 out of the 13 design features of the latter. In 2012, the author postulated that cellese and humanese derived from a third language called the cosmic language (or cosmese and that what was common among these three kinds of languages was waves—i.e., sound waves for humanese, concentration waves for cellese, and quantum waves for cosmese. These waves were suggested to be the symmetry principle underlying cosmese, cellese, and humanese. We can recognize at least five varieties of waves—(i electromagnetic; (ii mechanical; (iii chemical concentration; (iv gravitational; and (v probability waves, the last being non-material, in contrast to the first four, which are all material. The study of waves is called “cymatics” and the invention of CymaScope by J. S. Reid of the United Kingdom in 2002 is expected to accelerate the study of waves in general. CymaScope has been used to visualize not only human sounds (i.e., humanese but also sounds made by individual cells (cellese in conjunction with Atomic Force Microscopy (AFM (unpublished observations of J. Gimzewski of UCLA and J. Reid. It can be predicted that the gravitational waves recently detected by the Interferometer Gravitational-Wave Observatory (LIGO will be visualized with CymaScope one day, thereby transforming gravitational waves into CymaGlyphs. Since cellese in part depends on RNA concentration waves (or RNA glyphs and humanese includes hieroglyphs that were decoded by Champollion in 1822, it seems reasonable to use cymaglyphs, RNA glyphs, and hieroglyphs as symbols of cosmese, cellese, and humanese, respectively, all based on the principle of waves as the medium of communication.
Composite-meson--quark interactions under the condition of dynamical breaking of chiral symmetry
Energy Technology Data Exchange (ETDEWEB)
Hirata, M.
1989-03-01
Starting from the QCD-inspired model Hamiltonian which can lead to the dynamical breakdown of chiral symmetry, we describe a vacuum consisting of a condensate of q-barq pairs and furthermore meson states and composite-meson field operators within the new Tamm-Dancoff approximation. Using these fields operators and the Hamiltonian we construct composite-meson--quark interactions.
Övgün, Ali; Jusufi, Kimet
2017-12-01
In this paper, we construct generic, spherically symmetric thin-shell wormholes and check their stabilities using the unified dark sector, including dark energy and dark matter. We give a master equation, from which one can recover, as a special case, other stability solutions for generic spherically symmetric thin-shell wormholes. In this context, we consider a particular solution; namely we construct an effective thin-shell wormhole under Lorentz symmetry breaking. We explore stability analyses using different models of the modified Chaplygin gas with constraints from cosmological observations, such as seventh-year full Wilkinson microwave anisotropy probe data points, type Ia supernovae, and baryon acoustic oscillation. In all these models we find stable solutions by choosing suitable values for the parameters of the Lorentz symmetry breaking effect.
Polynomial Graphs and Symmetry
Goehle, Geoff; Kobayashi, Mitsuo
2013-01-01
Most quadratic functions are not even, but every parabola has symmetry with respect to some vertical line. Similarly, every cubic has rotational symmetry with respect to some point, though most cubics are not odd. We show that every polynomial has at most one point of symmetry and give conditions under which the polynomial has rotational or…
Symmetry of nonexploding cylindrical liner converging to the axis under magnetic field effects
International Nuclear Information System (INIS)
Chernyshev, V.K.; Grinevich, B.E.; Buzin, V.N.; Pogorelov, V.P.; Shertsov, V.A.; Petrukhin, A.A.; Demidov, V.A.; Zharinov, E.I.
1990-01-01
Liner acceleration, affected by magnetic pressure, is broadly used to yield megagauss magnetic fields and plasma compression. The progress of test conduction depends much on the state of liner subjected to Taylor instability while being accelerated. There is a number of methods permitting to reduce liner shape distortions, developing during its acceleration. The most simple method consists in that the aspect ratio (the ratio of liner placing radius to its thickness) is taken less than 10. To impart sufficient velocity to the liner of large thickness its density should be small. Therefore, liner is either a gas layer or explosion products of thin metal foil which passed to a vaporous state in early stage of acceleration. Acceleration of nonexploding liners may serve as the other method of asymmetry reduction. Strength and viscosity of liner will be used as stabilizing factors with respect to the development of Taylor instability. This will allow the aspect ratio increase, that is sometimes useful. Test results on acceleration of nonexploding aluminum liners 1 mm thick have been described. Aspect ratio amounted to 30-60 and the ratio of liner acceleration distance to its thickness (parameter, being of great importance when studying the development of Taylor instability) made up 20-40. Satisfactory azimuthal symmetry of liner convergence to the center was recorded. For more detailed investigation of Taylor instability influence on the symmetry of nonexploding liner, the experiments, when the ratio of liner acceleration length to its thickness would be increased up to 90-100 simultaneously with determination of azimuthal and axial symmetry of liner, are of interest. In this paper presents the results of experiments on acceleration of copper cylindrical liner 1.37 mm thick
Sinha, Dhiraj; Bouffanais, Roland; Huang, Shao Ying
2017-11-01
We present an analytical study on the generation of broadband electromagnetic noise in solids as a consequence of variations in the dielectric constant under the impact of polarization induced by nonequilibrium thermodynamic fluctuations. The analysis leads to a specific formulation of the fluctuation dissipation theorem in the context of dielectric materials having finite electrodynamic boundary conditions, which drive energy into the system, under feedback, during its under interaction with a heat bath. The ensuing spectral symmetry breaking of the broadband noise yields bursts of narrowband signals, which can potentially result in phase transitions and dielectric breakdown. This study sheds a new light on high temperature precision calorimetry, while also improving our understanding of unexpected breakdowns in devices like CMOS components, capacitors and batteries.
International Nuclear Information System (INIS)
Alhassid, Y.; Leviatan, A.
1993-01-01
A novel symmetry structure, partial dynamical symmetry is introduced. The Hamiltonian is not invariant under the transformations of a group G and irreps of G are mixed in its eigenstates. it possesses, however, a partial set of eigenstates which do have good symmetry and can be labeled by irreps of G. A general algorithm to construct such Hamiltonians for a semi-simple group G is presented. (Author) 6 refs
Broken symmetries in field theory
Kok, Mark Okker de
2008-01-01
The thesis discusses the role of symmetries in Quantum Field Theory. Quantum Field Theory is the mathematical framework to describe the physics of elementary particles. A symmetry here means a transformation under which the model at hand is invariant. Three types of symmetry are distinguished: 1.
Aniello, Paolo; Chruściński, Dariusz
2017-07-01
A symmetry witness is a suitable subset of the space of selfadjoint trace class operators that allows one to determine whether a linear map is a symmetry transformation, in the sense of Wigner. More precisely, such a set is invariant with respect to an injective densely defined linear operator in the Banach space of selfadjoint trace class operators (if and) only if this operator is a symmetry transformation. According to a linear version of Wigner’s theorem, the set of pure states—the rank-one projections—is a symmetry witness. We show that an analogous result holds for the set of projections with a fixed rank (with some mild constraint on this rank, in the finite-dimensional case). It turns out that this result provides a complete classification of the sets of projections with a fixed rank that are symmetry witnesses. These particular symmetry witnesses are projectable; i.e. reasoning in terms of quantum states, the sets of ‘uniform’ density operators of corresponding fixed rank are symmetry witnesses too.
A broken symmetry ontology: Quantum mechanics as a broken symmetry
International Nuclear Information System (INIS)
Buschmann, J.E.
1988-01-01
The author proposes a new broken symmetry ontology to be used to analyze the quantum domain. This ontology is motivated and grounded in a critical epistemological analysis, and an analysis of the basic role of symmetry in physics. Concurrently, he is led to consider nonheterogeneous systems, whose logical state space contains equivalence relations not associated with the causal relation. This allows him to find a generalized principle of symmetry and a generalized symmetry-conservation formalisms. In particular, he clarifies the role of Noether's theorem in field theory. He shows how a broken symmetry ontology already operates in a description of the weak interactions. Finally, by showing how a broken symmetry ontology operates in the quantum domain, he accounts for the interpretational problem and the essential incompleteness of quantum mechanics. He proposes that the broken symmetry underlying this ontological domain is broken dilation invariance
Einmahl, John; Gan, Zhuojiong
Omnibus tests for central symmetry of a bivariate probability distribution are proposed. The test statistics compare empirical measures of opposite regions. Under rather weak conditions, we establish the asymptotic distribution of the test statistics under the null hypothesis; it follows that they
International Nuclear Information System (INIS)
Blum, Alexander Simon
2009-01-01
This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D 4 , the other describing quarks and employing the symmetry D 14 . In the latter model it is the quark mixing matrix element V ud - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Blum, Alexander Simon
2009-06-10
This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D{sub 4}, the other describing quarks and employing the symmetry D{sub 14}. In the latter model it is the quark mixing matrix element V{sub ud} - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)
Singlets of fermionic gauge symmetries
Bergshoeff, E.A.; Kallosh, R.E.; Rahmanov, M.A.
1989-01-01
We investigate under which conditions singlets of fermionic gauge symmetries which are "square roots of gravity" can exist. Their existence is non-trivial because there are no fields neutral in gravity. We tabulate several examples of singlets of global and local supersymmetry and Îº-symmetry and
Measures with symmetry properties
Schindler, Werner
2003-01-01
Symmetries and invariance principles play an important role in various branches of mathematics. This book deals with measures having weak symmetry properties. Even mild conditions ensure that all invariant Borel measures on a second countable locally compact space can be expressed as images of specific product measures under a fixed mapping. The results derived in this book are interesting for their own and, moreover, a number of carefully investigated examples underline and illustrate their usefulness and applicability for integration problems, stochastic simulations and statistical applications.
International Nuclear Information System (INIS)
Chimento, Luis P.
2002-01-01
We find the group of symmetry transformations under which the Einstein equations for the spatially flat Friedmann-Robertson-Walker universe are form invariant. They relate the energy density and the pressure of the fluid to the expansion rate. We show that inflation can be obtained from nonaccelerated scenarios by a symmetry transformation. We derive the transformation rule for the spectrum and spectral index of the curvature perturbations. Finally, the group is extended to investigate inflation in the anisotropic Bianchi type-I spacetime and the brane-world cosmology
Directory of Open Access Journals (Sweden)
Kirstin Peters
2010-11-01
Full Text Available A well-known result by Palamidessi tells us that πmix (the π-calculus with mixed choice is more expressive than πsep (its subset with only separate choice. The proof of this result argues with their different expressive power concerning leader election in symmetric networks. Later on, Gorla offered an arguably simpler proof that, instead of leader election in symmetric networks, employed the reducibility of incestual processes (mixed choices that include both enabled senders and receivers for the same channel when running two copies in parallel. In both proofs, the role of breaking (initial symmetries is more or less apparent. In this paper, we shed more light on this role by re-proving the above result - based on a proper formalization of what it means to break symmetries without referring to another layer of the distinguishing problem domain of leader election. Both Palamidessi and Gorla rephrased their results by stating that there is no uniform and reasonable encoding from πmix into πsep. We indicate how the respective proofs can be adapted and exhibit the consequences of varying notions of uniformity and reasonableness. In each case, the ability to break initial symmetries turns out to be essential.
Symmetries in fundamental physics
Sundermeyer, Kurt
2014-01-01
Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P. Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also unders...
Symmetries in fundamental physics
Sundermeyer, Kurt
2014-01-01
Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P.Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also underst...
Scale symmetry and virial theorem
International Nuclear Information System (INIS)
Westenholz, C. von
1978-01-01
Scale symmetry (or dilatation invariance) is discussed in terms of Noether's Theorem expressed in terms of a symmetry group action on phase space endowed with a symplectic structure. The conventional conceptual approach expressing invariance of some Hamiltonian under scale transformations is re-expressed in alternate form by infinitesimal automorphisms of the given symplectic structure. That is, the vector field representing scale transformations leaves the symplectic structure invariant. In this model, the conserved quantity or constant of motion related to scale symmetry is the virial. It is shown that the conventional virial theorem can be derived within this framework
Chiral symmetry and chiral-symmetry breaking
International Nuclear Information System (INIS)
Peskin, M.E.
1982-12-01
These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed
Zavala, O.
2017-12-01
We compared subsidence histories from wells into Cretaceous-Cenozoic conjugate margins in the Equatorial and northern South Atlantic as a first-order constraint on whether rifting occurred in a symmetrical, pure shear mode, or whether rifting occurred in an asymmetrical, simple shear mode. For the pure shear mode of rifting, the prediction is for longterm subsidence on both conjugate margins to be similar and reflective of underlying, rift symmetry; for the simple shear mode of rifting, the prediction is that subsidence above the more thinned and wider, lower plate margin is greater than subsidence above the less thinned and more narrow, upper plate margin. A major caveat of this approach is that subsidence variations can be affected by other external factors that include increased sedimentation related to local deltas and structural or hotspot-related uplifts of coastal areas. In the northern Equatorial Atlantic, the longterm subsidence rate for the Guyana basin of northeastern South America of 18.52 m/Ma is less that of the Senegal area of west Africa of 54 m/Ma suggestive of an upper plate to the west and lower plate to the east. Moving southwards, the Potiguar basin of northern Brazil of 23 m/Ma is roughly the same as the Keta-Togo-Benin-Cote d'Ivoire basins of west Africa (21 m/Ma) and suggestive of an underlying rift symmetry. The Bahia Norte-Reconcavo-Sergipe-Alogoas basins of Brazil are less (28 m/Ma) than the Gabon basin (57 m/Ma) of west Africa suggesitive of an lower plate to the east and an upper plate to the west. The Bahia Sul-Espirito Santo basins of Brazil are less (20 m/Ma) than the Lower Congo basin (45 m/Ma) although the latter area includes the localized influence of the Congo delta. We compare additional evidence such as seismic reflection and refraction data and gravity modeling to the predictions of the subsidence values.
Jaffé, Hans H
1977-01-01
This book, devoted exclusively to symmetry in chemistry and developed in an essentially nonmathematical way, is a must for students and researchers. Topics include symmetry elements and operations, multiple symmetry operations, multiplication tables and point groups, group theory applications, and crystal symmetry. Extensive appendices provide useful tables.
Kootstra, Gert; Nederveen, Arco; de Boer, Bart
2008-01-01
Humans are very sensitive to symmetry in visual patterns. Symmetry is detected and recognized very rapidly. While viewing symmetrical patterns eye fixations are concentrated along the axis of symmetry or the symmetrical center of the patterns. This suggests that symmetry is a highly salient feature. Existing computational models of saliency, however, have mainly focused on contrast as a measure of saliency. These models do not take symmetry into account. In this paper, we discuss local symmet...
Approximate Noether symmetries and collineations for regular perturbative Lagrangians
Paliathanasis, Andronikos; Jamal, Sameerah
2018-01-01
Regular perturbative Lagrangians that admit approximate Noether symmetries and approximate conservation laws are studied. Specifically, we investigate the connection between approximate Noether symmetries and collineations of the underlying manifold. In particular we determine the generic Noether symmetry conditions for the approximate point symmetries and we find that for a class of perturbed Lagrangians, Noether symmetries are related to the elements of the Homothetic algebra of the metric which is defined by the unperturbed Lagrangian. Moreover, we discuss how exact symmetries become approximate symmetries. Finally, some applications are presented.
Witten, Edward
2018-02-01
In a modern understanding of particle physics, global symmetries are approximate and gauge symmetries may be emergent. This view, which has echoes in condensed-matter physics, is supported by a variety of arguments from experiment and theory.
International Nuclear Information System (INIS)
Nilles, Hans Peter
2012-04-01
Discrete (family) symmetries might play an important role in models of elementary particle physics. We discuss the origin of such symmetries in the framework of consistent ultraviolet completions of the standard model in field and string theory. The symmetries can arise due to special geometrical properties of extra compact dimensions and the localization of fields in this geometrical landscape. We also comment on anomaly constraints for discrete symmetries.
Energy Technology Data Exchange (ETDEWEB)
Nilles, Hans Peter [Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Bonn Univ. (Germany). Physikalisches Inst.; Ratz, Michael [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-04-15
Discrete (family) symmetries might play an important role in models of elementary particle physics. We discuss the origin of such symmetries in the framework of consistent ultraviolet completions of the standard model in field and string theory. The symmetries can arise due to special geometrical properties of extra compact dimensions and the localization of fields in this geometrical landscape. We also comment on anomaly constraints for discrete symmetries.
Imagery of symmetry in current physics
Shirkov, D. V.
2012-02-01
We consider a remarkable symmetry duality that is broken under a phase transition permitting the appearance of superconductivity and superfluidity. This is a wine-bottle rotation symmetry in a semiphenomenological description in the spirit of Ginzburg and Landau, while it is a phase symmetry responsible for the conservation of the number of particles (helium atoms, Cooper electron pairs) in Bogoliubov's quantum theory. This duality is interesting in the context of the contraposition of logic and intuition or Science and Art. We also briefly discuss another aspect of distorted symmetry connected with varying the geometry of space-time and with dimensional reduction in particular.
A κ-symmetry calculus for superparticles
International Nuclear Information System (INIS)
Gauntlett, J.P.
1991-01-01
We develop a κ-symmetry calculus for the d=2 and d=3, N=2 massive superparticles, which enables us to construct higher order κ-invariant actions. The method relies on a reformulation of these models as supersymmetric sigma models that are invariant under local worldline superconformal transformations. We show that the κ-symmetry is embedded in the superconformal symmetry so that a calculus for the κ-symmetry is equivalent to a tensor calculus for the latter. We develop such a calculus without the introduction of a wordline supergravity multiplet. (orig.)
Wigner's Symmetry Representation Theorem
Indian Academy of Sciences (India)
IAS Admin
This article elucidates the important role the no- tion of symmetry has played in physics. It dis- cusses the proof of one of the important theorems of quantum mechanics, viz., Wigner's Symmetry. Representation Theorem. It also shows how the representations of various continuous and dis- crete symmetries follow from the ...
Rehren, K. -H.
1996-01-01
Weak C* Hopf algebras can act as global symmetries in low-dimensional quantum field theories, when braid group statistics prevents group symmetries. Possibilities to construct field algebras with weak C* Hopf symmetry from a given theory of local observables are discussed.
Symmetry, asymmetry and dissymmetry
International Nuclear Information System (INIS)
Wackenheim, A.; Zollner, G.
1987-01-01
The authors discuss the concept of symmetry and defect of symmetry in radiological imaging and recall the definition of asymmetry (congenital or constitutional) and dissymmetry (acquired). They then describe a rule designed for the cognitive method of automatic evaluation of shape recognition data and propose the use of reversal symmetry [fr
Chiral symmetry and chiral-symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Peskin, M.E.
1982-12-01
These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)
Family gauge symmetry from a composite model
International Nuclear Information System (INIS)
Zhou, B.R.; Chang, C.H.; Princeton Univ., NJ
1983-01-01
A family gauge symmetry SUsup(F)(2) could emerge from a composite model of quarks and leptons under some assumptions of chiral hyperflavor symmetry-breaking pattern. Possible dynamical mechanisms which break the family and electroweak gauge group and produce quark-lepton masses are indicated and their phenomenologies are discussed qualitatively. (orig.)
Testing for Bivariate Spherical Symmetry
Einmahl, J.H.J.; Gantner, M.
2010-01-01
An omnibus test for spherical symmetry in R2 is proposed, employing localized empirical likelihood. The thus obtained test statistic is distri- bution-free under the null hypothesis. The asymptotic null distribution is established and critical values for typical sample sizes, as well as the
Symmetry in labeled transition systems
I.A. van Langevelde
2003-01-01
textabstractSymmetry is defined for labeled transition systems, and it is shown how symmetrical systems can be symmetrically decomposed into components. The central question is under what conditions one such component may represent the whole system, in the sense that one symmetrical system is
Testing for bivariate spherical symmetry
Einmahl, J.H.J.; Gantner, M.
2012-01-01
An omnibus test for spherical symmetry in R2 is proposed, employing localized empirical likelihood. The thus obtained test statistic is distribution free under the null hypothesis. The asymptotic null distribution is established and critical values for typical sample sizes, as well as the asymptotic
On four dimensional mirror symmetry
International Nuclear Information System (INIS)
Losev, A.; Nekrasov, N.; Shatashvili, S.
2000-01-01
A conjecture relating instanton calculus in four dimensional supersymmetric theories and the deformation theory of Lagrangian submanifolds in C 2r invariant under a (subgroup of) Sp(2r,Z) is formulated. This is a four dimensional counterpart of the mirror symmetry of topological strings (relating Gromov-Witten invariants and generalized variations of Hodge structure). (orig.)
Kastner, Ruth E.
2011-11-01
This paper seeks to clarify features of time asymmetry in terms of symmetry breaking. It is observed that, in general, a contingent situation or event requires the breaking of an underlying symmetry. The distinction between the universal anisotropy of temporal processes and the irreversibility of certain physical processes is clarified. It is also proposed that the Transactional Interpretation of quantum mechanics offers an effective way to explain general thermodynamic asymmetry in terms of the time asymmetry of radiation, where prior such efforts have fallen short.
International Nuclear Information System (INIS)
Kastner, Ruth E.
2011-01-01
This paper seeks to clarify features of time asymmetry in terms of symmetry breaking. It is observed that, in general, a contingent situation or event requires the breaking of an underlying symmetry. The distinction between the universal anisotropy of temporal processes and the irreversibility of certain physical processes is clarified. It is also proposed that the Transactional Interpretation of quantum mechanics offers an effective way to explain general thermodynamic asymmetry in terms of the time asymmetry of radiation, where prior such efforts have fallen short.
Scale symmetry of quantum solitons
International Nuclear Information System (INIS)
Chepilko, N.M.; Fujii, K.; Kobushkin, A.P.
1991-01-01
A collective-coordinate Lagrangian for a rotating and vibrating quantum soliton in the nonlinear σ-model is shown to possess a symmetry under scale transformation of the chiral field. Using this symmetry an integrodifferential equation for the chiral angle is obtained. A consistency condition between this equation and the Schroedinger equation for the quantum soliton is also discussed. At limiting cases (a vibrating, but not rotating soliton; or a rotating, but not vibrating soliton) the integrodifferential ones and the chiral angle becomes independent of the solution of the Schroedinger equation. 7 refs
Symmetry analysis of cellular automata
International Nuclear Information System (INIS)
García-Morales, V.
2013-01-01
By means of B-calculus [V. García-Morales, Phys. Lett. A 376 (2012) 2645] a universal map for deterministic cellular automata (CAs) has been derived. The latter is shown here to be invariant upon certain transformations (global complementation, reflection and shift). When constructing CA rules in terms of rules of lower range a new symmetry, “invariance under construction” is uncovered. Modular arithmetic is also reformulated within B-calculus and a new symmetry of certain totalistic CA rules, which calculate the Pascal simplices modulo an integer number p, is then also uncovered.
Webb, G. M.; Zank, G. P.
2007-01-01
We explore the role of the Lagrangian map for Lie symmetries in magnetohydrodynamics (MHD) and gas dynamics. By converting the Eulerian Lie point symmetries of the Galilei group to Lagrange label space, in which the Eulerian position coordinate x is regarded as a function of the Lagrange fluid labels x0 and time t, one finds that there is an infinite class of symmetries in Lagrange label space that map onto each Eulerian Lie point symmetry of the Galilei group. The allowed transformation of the Lagrangian fluid labels x0 corresponds to a fluid relabelling symmetry, including the case where there is no change in the fluid labels. We also consider a class of three, well-known, scaling symmetries for a gas with a constant adiabatic index γ. These symmetries map onto a modified form of the fluid relabelling symmetry determining equations, with non-zero source terms. We determine under which conditions these symmetries are variational or divergence symmetries of the action, and determine the corresponding Lagrangian and Eulerian conservation laws by use of Noether's theorem. These conservation laws depend on the initial entropy, density and magnetic field of the fluid. We derive the conservation law corresponding to the projective symmetry in gas dynamics, for the case γ = (n + 2)/n, where n is the number of Cartesian space coordinates, and the corresponding result for two-dimensional (2D) MHD, for the case γ = 2. Lie algebraic structures in Lagrange label space corresponding to the symmetries are investigated. The Lie algebraic symmetry relations between the fluid relabelling symmetries in Lagrange label space, and their commutators with a linear combination of the three symmetries with a constant adiabatic index are delineated.
International Nuclear Information System (INIS)
Webb, G M; Zank, G P
2007-01-01
We explore the role of the Lagrangian map for Lie symmetries in magnetohydrodynamics (MHD) and gas dynamics. By converting the Eulerian Lie point symmetries of the Galilei group to Lagrange label space, in which the Eulerian position coordinate x is regarded as a function of the Lagrange fluid labels x 0 and time t, one finds that there is an infinite class of symmetries in Lagrange label space that map onto each Eulerian Lie point symmetry of the Galilei group. The allowed transformation of the Lagrangian fluid labels x 0 corresponds to a fluid relabelling symmetry, including the case where there is no change in the fluid labels. We also consider a class of three, well-known, scaling symmetries for a gas with a constant adiabatic index γ. These symmetries map onto a modified form of the fluid relabelling symmetry determining equations, with non-zero source terms. We determine under which conditions these symmetries are variational or divergence symmetries of the action, and determine the corresponding Lagrangian and Eulerian conservation laws by use of Noether's theorem. These conservation laws depend on the initial entropy, density and magnetic field of the fluid. We derive the conservation law corresponding to the projective symmetry in gas dynamics, for the case γ = (n + 2)/n, where n is the number of Cartesian space coordinates, and the corresponding result for two-dimensional (2D) MHD, for the case γ = 2. Lie algebraic structures in Lagrange label space corresponding to the symmetries are investigated. The Lie algebraic symmetry relations between the fluid relabelling symmetries in Lagrange label space, and their commutators with a linear combination of the three symmetries with a constant adiabatic index are delineated
Parastatistics and gauge symmetries
International Nuclear Information System (INIS)
Govorkov, A.B.
1982-01-01
A possible formulation of gauge symmetries in the Green parafield theory is analysed and the SO(3) gauge symmetry is shown to be on a distinct status. The Greenberg paraquark hypothesis turns out to be not equivalent to the hypothesis of quark colour SU(3)sub(c) symmetry. Specific features of the gauge SO(3) symmetry are discussed, and a possible scheme where it is an exact subgroup of the broken SU(3)sub(c) symmetry is proposed. The direct formulation of the gauge principle for the parafield represented by quaternions is also discussed
Miller, G A
2003-01-01
Two new experiments have detected charge-symmetry breaking, the mechanism responsible for protons and neutrons having different masses. Symmetry is a crucial concept in the theories that describe the subatomic world because it has an intimate connection with the laws of conservation. The theory of the strong interaction between quarks - quantum chromodynamics - is approximately invariant under what is called charge symmetry. In other words, if we swap an up quark for a down quark, then the strong interaction will look almost the same. This symmetry is related to the concept of sup i sospin sup , and is not the same as charge conjugation (in which a particle is replaced by its antiparticle). Charge symmetry is broken by the competition between two different effects. The first is the small difference in mass between up and down quarks, which is about 200 times less than the mass of the proton. The second is their different electric charges. The up quark has a charge of +2/3 in units of the proton charge, while ...
Symmetries of nonlinear ordinary differential equations: The ...
Indian Academy of Sciences (India)
2015-10-21
Oct 21, 2015 ... Lie point symmetries; -symmetries; Noether symmetries; contact symmetries; adjoint symmetries; nonlocal symmetries; hidden symmetries; ... 620 024, India; Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401, India ...
Witten, Edward
2016-03-01
In this talk, I will describe global and gauge symmetries and the interplay between them. The meaning of global symmetries is clear: they act on physical observables. Gauge symmetries are more elusive as they typically do not act on physical observables. Gauge symmetries are redundancies in the mathematical description of a physical system rather than properties of the system itself. The existence of nonperturbative dualities makes it clear that this distinction is unavoidable. Yet in our best understanding the gauge symmetries are deeper. The lepton number symmetries that are probed by the wonderful experimental results that will be reported in this session give an excellent illustration. They are regarded in the Standard Model as indirect consequences of gauge symmetries and they are expected to be only approximate. This expectation is supported by the observation of neutrino oscillations.
International Nuclear Information System (INIS)
Gaiotto, Davide; Kapustin, Anton; Seiberg, Nathan; Willett, Brian
2015-01-01
A q-form global symmetry is a global symmetry for which the charged operators are of space-time dimension q; e.g. Wilson lines, surface defects, etc., and the charged excitations have q spatial dimensions; e.g. strings, membranes, etc. Many of the properties of ordinary global symmetries (q=0) apply here. They lead to Ward identities and hence to selection rules on amplitudes. Such global symmetries can be coupled to classical background fields and they can be gauged by summing over these classical fields. These generalized global symmetries can be spontaneously broken (either completely or to a subgroup). They can also have ’t Hooft anomalies, which prevent us from gauging them, but lead to ’t Hooft anomaly matching conditions. Such anomalies can also lead to anomaly inflow on various defects and exotic Symmetry Protected Topological phases. Our analysis of these symmetries gives a new unified perspective of many known phenomena and uncovers new results.
Symmetry and symmetry breaking in quantum mechanics
International Nuclear Information System (INIS)
Chomaz, Philippe
1998-01-01
In the world of infinitely small, the world of atoms, nuclei and particles, the quantum mechanics enforces its laws. The discovery of Quanta, this unbelievable castration of the Possible in grains of matter and radiation, in discrete energy levels compels us of thinking the Single to comprehend the Universal. Quantum Numbers, magic Numbers and Numbers sign the wave. The matter is vibration. To describe the music of the world one needs keys, measures, notes, rules and partition: one needs quantum mechanics. The particles reduce themselves not in material points as the scholars of the past centuries thought, but they must be conceived throughout the space, in the accomplishment of shapes of volumes. When Einstein asked himself whether God plays dice, there was no doubt among its contemporaries that if He exists He is a geometer. In a Nature reduced to Geometry, the symmetries assume their role in servicing the Harmony. The symmetries allow ordering the energy levels to make them understandable. They impose there geometrical rules to the matter waves, giving them properties which sometimes astonish us. Hidden symmetries, internal symmetries and newly conceived symmetries have to be adopted subsequently to the observation of some order in this world of Quanta. In turn, the symmetries provide new observables which open new spaces of observation
Bodily symmetry increases across human childhood.
Hope, David; Bates, Timothy C; Dykiert, Dominika; Der, Geoff; Deary, Ian J
2013-08-01
Although bodily symmetry is widely used in studies of fitness and individual differences, little is known about how symmetry changes across development, especially in childhood. To test how, if at all, bodily symmetry changes across childhood. We measured bodily symmetry via digital images of the hands. Participants provided information on their age. We ran polynomial regression models testing for associations between age and symmetry. 887 children attending a public science event aged between 4 and 15 years old. Mean asymmetry for the eight traits (an average of the asymmetry scores for the lengths and widths of digits 2 to 5). Symmetry increases in childhood and we found that this period of development is best described by a nonlinear function. Symmetry may be under active control, increasing with time as the organism approaches an optimal state, prior to a subsequent decline in symmetry during senescence. The causes and consequences of this contrasting pattern of developmental improvement in symmetry and reversal in old age should be studied in more detail. Copyright © 2013 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Mainzer, K.
1988-01-01
Symmetry, disymmetry, chirality etc. are well-known topics in chemistry. But they cannot only be found on the molecular level of matter. Atoms and elementary particles in physics are also characterized by particular symmetry groups. Even living organisms and populations on the macroscopic level have functional properties of symmetry. The whole physical, chemical, and biological evolution seems to be regulated by the emergence of new symmetries and the breaking down of old ones. One is reminded of Heisenberg's famous statement: 'Die letzte Wurzel der Erscheinungen ist also nicht die Materie, sondern das mathematische Gesetz, die Symmetrie, die mathematische Form' (Wandlungen in den Grundlagen der Naturwissenschaften, 1959). Historically the belief in symmetry and simplicity of nature has a long philosophical tradition from the Pythagoreans, Plato and Greek astronomers to Kepler and modern scientists. Today, 'symmetries in nature' is a common topic of mathematics, physics, chemistry, and biology. A lot of Nobel prizes were given in honour of inquiries concerning symmetries in nature. The fascination of symmetries is not only motivated by science, but by art and religion too. Therefore 'symmetris in nature' is an interdisciplinary topic which may help to overcome C.P. Snow's 'Two Cultures' of natural sciences and humanities. (author) 17 refs., 21 figs
Quantized Response and Topological Magnetic Insulators with Inversion Symmetry
Turner, A.M.; Zhang, Y.; Mong, R.S.K.; Vishwanath, A.
2012-01-01
We study three-dimensional insulators with inversion symmetry in which other point group symmetries, such as time reversal, are generically absent. We find that certain information about such materials’ behavior is determined by just the eigenvalues under inversion symmetry of occupied states at
Partial dynamical symmetry at critical points of quantum phase transitions.
Leviatan, A
2007-06-15
We show that partial dynamical symmetries can occur at critical points of quantum phase transitions, in which case underlying competing symmetries are conserved exactly by a subset of states, and mix strongly in other states. Several types of partial dynamical symmetries are demonstrated with the example of critical-point Hamiltonians for first- and second-order transitions in the framework of the interacting boson model, whose dynamical symmetries correspond to different shape phases in nuclei.
Partial Dynamical Symmetry at Critical Points of Quantum Phase Transitions
International Nuclear Information System (INIS)
Leviatan, A.
2007-01-01
We show that partial dynamical symmetries can occur at critical points of quantum phase transitions, in which case underlying competing symmetries are conserved exactly by a subset of states, and mix strongly in other states. Several types of partial dynamical symmetries are demonstrated with the example of critical-point Hamiltonians for first- and second-order transitions in the framework of the interacting boson model, whose dynamical symmetries correspond to different shape phases in nuclei
Chiral symmetries associated with angular momentum
International Nuclear Information System (INIS)
Bhattacharya, M; Kleinert, M
2014-01-01
In quantum mechanics courses, symmetries of a physical system are usually introduced as operators which commute with the Hamiltonian. In this paper we will consider chiral symmetries which anticommute with the Hamiltonian. Typically, introductory courses at the (under)graduate level do not discuss these simple, useful and beautiful symmetries at all. The first time a student encounters them is when the Dirac equation is discussed in a course on relativistic quantum mechanics, or when particle–hole symmetry is studied in the context of superconductivity. In this paper, we will show how chiral symmetries can be simply elucidated using the theory of angular momentum, which is taught in virtually all introductory quantum mechanics courses. (paper)
Flow-induced symmetry reduction in two-dimensional reaction-diffusion system
Hu, Hai Xiang; Li, Xiao Chun; Li, Qian Shu
2009-03-01
The influence of uniform flow on the pattern formation is investigated in a two-dimensional reaction-diffusion system. It is found that the convective flow plays a key role on pattern modulation. Both traveling and stationary periodic patterns are obtained. At moderate flow rates, the perfect hexagon, phase-shifted hexagon and stable square, which are essentially unstable in unperturbed reaction-diffusion systems, are obtained. These patterns move downstream. If the flow rate is increased further, the stationary flow-oriented stripes develop and compete with the spots. If the flow rate exceeds some critical value, the system is convectively unstable and the stationary stripes prevail against the traveling spots. The above patterns all have the same critical wavenumber associated with Turing bifurcation, which indicates that Turing instability produces the patterns while the flow induces the symmetry reduction, i.e., from six-fold symmetry to four-fold one, and to two-fold one ultimately.
Symmetry aspects of nonholonomic field theories
Energy Technology Data Exchange (ETDEWEB)
Vankerschaver, Joris [Control and Dynamical Systems, California Institute of Technology, MC 107-81, Pasadena, CA 91125 (United States); Diego, David MartIn de [Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, Serrano 123, 28006 Madrid (Spain)
2008-01-25
The developments in this paper are concerned with nonholonomic field theories in the presence of symmetries. Having previously treated the case of vertical symmetries, we now deal with the case where the symmetry action can also have a horizontal component. As a first step in this direction, we derive a new and convenient form of the field equations of a nonholonomic field theory. Nonholonomic symmetries are then introduced as symmetry generators whose virtual work is zero along the constraint submanifold, and we show that for every such symmetry, there exists a so-called momentum equation, describing the evolution of the associated component of the momentum map. Keeping up with the underlying geometric philosophy, a small modification of the derivation of the momentum lemma allows us to also treat generalized nonholonomic symmetries, which are vector fields along a projection. Such symmetries arise for example in practical examples of nonholonomic field theories such as the Cosserat rod, for which we recover both energy conservation (a previously known result) and a modified conservation law associated with spatial translations.
Second-quantized mirror symmetry
Ferrara, Sergio; Strominger, A; Vafa, C
1995-01-01
We propose and give strong evidence for a duality relating Type II theories on Calabi-Yau spaces and heterotic strings on K3 \\times T^2, both of which have N=2 spacetime supersymmetry. Entries in the dictionary relating the dual theories are derived from an analysis of the soliton string worldsheet in the context of N=2 orbifolds of dual N=4 compactifications of Type II and heterotic strings. In particular we construct a pairing between Type II string theory on a self-mirror Calabi-Yau space X with h^{11}= h^{21}= 11 and a (4, 0) background of heterotic string theory on K3\\times T^2. Under the duality transformation the usual first-quantized mirror symmetry of X becomes a second-quantized mirror symmetry which determines nonperturbative quantum effects. This enables us to compute the exact quantum moduli space. Mirror symmetry of X implies that the low-energy N=2 gauge theory is finite, even at enhanced symmetry points. This prediction is verified by direct computation on the heterotic side. Other branches of...
Superdeformations and fermion dynamical symmetries
International Nuclear Information System (INIS)
Wu, Cheng-Li
1990-01-01
In this talk, I will present a link between nuclear collective motions and their underlying fermion dynamical symmetries. In particular, I will focus on the microscopic understanding of deformations. It is shown that the SU 3 of the one major shell fermion dynamical symmetry model (FDSM) is responsible for the physics of low and high spins in normal deformation. For the recently observed phenomena of superdeformation, the physics of the problem dictates a generalization to a supershell structure (SFDSM), which also has an SU 3 fermion dynamical symmetry. Many recently discovered feature of superdeformation are found to be inherent in such an SU 3 symmetry. In both cases the dynamical Pauli effect plays a vital role. A particularly noteworthy discovery from this model is that the superdeformed ground band is not the usual unaligned band but the D-pair aligned (DPA) band, which sharply crosses the excited bands. The existence of such DPA band is a key point to understand many properties of superdeformation. Our studies also poses new experimental challenge. This is particularly interesting since there are now plans to build new and exciting γ-ray detecting systems, like the GAMMASPHERE, which could provide answers to some of these challenges. 34 refs., 11 figs., 5 tabs
Marchis, Iuliana
2009-01-01
Symmetry is one of the fundamental concepts in Geometry. It is a Mathematical concept, which can be very well connected with Art and Ethnography. The aim of the article is to show how to link the geometrical concept symmetry with interculturality. For this mosaics from different countries are used.
Quantum symmetry for pedestrians
International Nuclear Information System (INIS)
Mack, G.; Schomerus, V.
1992-03-01
Symmetries more general than groups are possible in quantum therory. Quantum symmetries in the narrow sense are compatible with braid statistics. They are theoretically consistent much as supersymmetry is, and they could lead to degenerate multiplets of excitations with fractional spin in thin films. (orig.)
Schaft, A.J. van der
1987-01-01
It is argued that the existence of symmetries may simplify, as in classical mechanics, the solution of optimal control problems. A procedure for obtaining symmetries for the optimal Hamiltonian resulting from the Maximum Principle is given; this avoids the actual calculation of the optimal
2016-01-01
The Symmetry Festival is a science and art program series, the most important periodic event (see its history) to bring together scientists, artists, educators and practitioners interested in symmetry (its roots, what is behind, applications, etc.), or in the consequences of its absence.
Charged fluids with symmetries
Indian Academy of Sciences (India)
metric tensor field and generate constants of the motion along null geodesics for massless particles. Conformal symmetries arise in various physical applications. The existence of conformal symmetries in relativistic cosmological models, with restrictions on the matter content and fluid four-velocity, have been extensively ...
Testing for bivariate spherical symmetry
Einmahl, J.H.J.; Gantner, M.
2012-01-01
An omnibus test for spherical symmetry in R2 is proposed, employing localized empirical likelihood. The thus obtained test statistic is distri- bution-free under the null hypothesis. The asymptotic null distribution is established and critical values for typical sample sizes, as well as the asymptotic ones, are presented. In a simulation study, the good perfor- mance of the test is demonstrated. Furthermore, a real data example is presented.
Schwichtenberg, Jakob
2015-01-01
This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations.
DEFF Research Database (Denmark)
Avery, John Scales; Rettrup, Sten; Avery, James Emil
In theoretical physics, theoretical chemistry and engineering, one often wishes to solve partial differential equations subject to a set of boundary conditions. This gives rise to eigenvalue problems of which some solutions may be very difficult to find. For example, the problem of finding...... in such problems can be much reduced by making use of symmetry-adapted basis functions. The conventional method for generating symmetry-adapted basis sets is through the application of group theory, but this can be difficult. This book describes an easier method for generating symmetry-adapted basis sets...
A Bootstrap Test for Conditional Symmetry
Liangjun Su; Sainan Jin
2005-01-01
This paper proposes a simple consistent nonparametric test of conditional symmetry based on the principle of characteristic functions. The test statistic is shown to be asymptotically normal under the null hypothesis of conditional symmetry and consistent against any conditional asymmetric distributions. We also study the power against local alternatives, propose a bootstrap version of the test, and conduct a small Monte Carlo simulation to evaluate the finitesample performance of the test.
Quark diquark symmetry breaking
International Nuclear Information System (INIS)
Souza, M.M. de
1980-01-01
Assuming the baryons are made of quark-diquark pairs, the wave functions for the 126 allowed ground states are written. The quark creation and annihilations operators are generalized to describe the quark-diquark structure in terms of a parameter σ. Assuming that all quark-quark interactions are mediated by gluons transforming like an octet of vector mesons, the effective Hamiltonian and the baryon masses as constraint equations for the elements of the mass matrix is written. The symmetry is the SU(6) sub(quark)x SU(21) sub(diquark) broken by quark-quark interactions respectively invariant under U(6), U(2) sub(spin), U(3) and also interactions transforming like the eighth and the third components of SU(3). In the limit of no quark-diquark structure (σ = 0), the ground state masses is titted to within 1% of the experimental data, except for the Δ(1232), where the error is almost 2%. Expanding the decuplet mass equations in terms of σ and keeping terms only up to the second order, this error is reduced to 67%. (Author) [pt
Dynamical symmetries for fermions
International Nuclear Information System (INIS)
Guidry, M.
1989-01-01
An introduction is given to the Fermion Dynamical Symmetry Model (FDSM). The analytical symmetry limits of the model are then applied to the calculation of physical quantities such as ground-state masses and B(E 2 ) values in heavy nuclei. These comparisons with data provide strong support for a new principle of collective motion, the Dynamical Pauli Effect, and suggest that dynamical symmetries which properly account for the pauli principle are much more persistent in nuclear structure than the corresponding boson symmetries. Finally, we present an assessment of criticisms which have been voiced concerning the FDSM, and a discussion of new phenomena and ''exotic spectroscopy'' which may be suggested by the model. 14 refs., 8 figs., 4 tabs
Gauge symmetry from decoupling
Directory of Open Access Journals (Sweden)
C. Wetterich
2017-02-01
Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.
Wigner's Symmetry Representation Theorem
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 10. Wigner's Symmetry Representation Theorem: At the Heart of Quantum Field Theory! Aritra Kr Mukhopadhyay. General Article Volume 19 Issue 10 October 2014 pp 900-916 ...
Frameworks with crystallographic symmetry.
Borcea, Ciprian S; Streinu, Ileana
2014-02-13
Periodic frameworks with crystallographic symmetry are investigated from the perspective of a general deformation theory of periodic bar-and-joint structures in Euclidean spaces of arbitrary dimension. It is shown that natural parametrizations provide affine section descriptions for families of frameworks with a specified graph and symmetry. A simple geometrical setting for displacive phase transitions is obtained. Upper bounds are derived for the number of realizations of minimally rigid periodic graphs.
Interactions between constituent single symmetries in multiple symmetry
Treder, M.S.; Vloed, G. van der; Helm, P.A. van der
2011-01-01
As a rule, the discriminability of multiple symmetries from random patterns increases with the number of symmetry axes, but this number does not seem to be the only determinant. In particular, multiple symmetries with orthogonal axes seem better discriminable than multiple symmetries with
Symbolic Detection of Permutation and Parity Symmetries of Evolution Equations
Alghamdi, Moataz
2017-06-18
We introduce a symbolic computational approach to detecting all permutation and parity symmetries in any general evolution equation, and to generating associated invariant polynomials, from given monomials, under the action of these symmetries. Traditionally, discrete point symmetries of differential equations are systemically found by solving complicated nonlinear systems of partial differential equations; in the presence of Lie symmetries, the process can be simplified further. Here, we show how to find parity- and permutation-type discrete symmetries purely based on algebraic calculations. Furthermore, we show that such symmetries always form groups, thereby allowing for the generation of new group-invariant conserved quantities from known conserved quantities. This work also contains an implementation of the said results in Mathematica. In addition, it includes, as a motivation for this work, an investigation of the connection between variational symmetries, described by local Lie groups, and conserved quantities in Hamiltonian systems.
Quantum Space-Time Deformed Symmetries Versus Broken Symmetries
Amelino-Camelia, G
2002-01-01
Several recent studies have concerned the faith of classical symmetries in quantum space-time. In particular, it appears likely that quantum (discretized, noncommutative,...) versions of Minkowski space-time would not enjoy the classical Lorentz symmetries. I compare two interesting cases: the case in which the classical symmetries are "broken", i.e. at the quantum level some classical symmetries are lost, and the case in which the classical symmetries are "deformed", i.e. the quantum space-time has as many symmetries as its classical counterpart but the nature of these symmetries is affected by the space-time quantization procedure. While some general features, such as the emergence of deformed dispersion relations, characterize both the symmetry-breaking case and the symmetry-deformation case, the two scenarios are also characterized by sharp differences, even concerning the nature of the new effects predicted. I illustrate this point within an illustrative calculation concerning the role of space-time symm...
Schwichtenberg, Jakob
2018-01-01
This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations. .
Energy Technology Data Exchange (ETDEWEB)
Chanowitz, M.S.
1990-09-01
The Higgs mechanism is reviewed in its most general form, requiring the existence of a new symmetry-breaking force and associated particles, which need not however be Higgs bosons. The first lecture reviews the essential elements of the Higgs mechanism, which suffice to establish low energy theorems for the scattering of longitudinally polarized W and Z gauge bosons. An upper bound on the scale of the symmetry-breaking physics then follows from the low energy theorems and partial wave unitarity. The second lecture reviews particular models, with and without Higgs bosons, paying special attention to how the general features discussed in lecture 1 are realized in each model. The third lecture focuses on the experimental signals of strong WW scattering that can be observed at the SSC above 1 TeV in the WW subenergy, which will allow direct measurement of the strength of the symmetry-breaking force. 52 refs., 10 figs.
Weiss, Asia; Whiteley, Walter
2014-01-01
This book contains recent contributions to the fields of rigidity and symmetry with two primary focuses: to present the mathematically rigorous treatment of rigidity of structures, and to explore the interaction of geometry, algebra, and combinatorics. Overall, the book shows how researchers from diverse backgrounds explore connections among the various discrete structures with symmetry as the unifying theme. Contributions present recent trends and advances in discrete geometry, particularly in the theory of polytopes. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory, classical geometry, hyperbolic geometry and topology. The volume will also be a valuable source as an introduction to the ideas of both combinatorial and geometric rigidity theory and its applications, incorporating the surprising impact of symmetry. It will appeal to students at both the advanced undergraduate and gradu...
Symmetry generators in singular theories
International Nuclear Information System (INIS)
Lavrov, P.M.; Tyutin, I.V.
1989-01-01
It is proved that in the singular nondegenerate theories any symmetry of the lagrangian under non-point transformations of lagrangian variables with the open (in the general case) algebra in the hamiltonian approach generates corresponding transformations of canonical variables the generator of which is the Noether charge with respect to the Dirac brackets. On the surface of all constraints these transformations leave the hamiltonian invariant and the algebra of the Noether charges is closed. As a consequence it is shown that the nilpotent BRST charge operator always exists in gauge theories of the general form (if possible anomalies are not taken into account)
Symmetry, structure, and spacetime
Rickles, Dean
2007-01-01
In this book Rickles considers several interpretative difficulties raised by gauge-type symmetries (those that correspond to no change in physical state). The ubiquity of such symmetries in modern physics renders them an urgent topic in philosophy of physics. Rickles focuses on spacetime physics, and in particular classical and quantum general relativity. Here the problems posed are at their most pathological, involving the apparent disappearance of spacetime! Rickles argues that both traditional ontological positions should be replaced by a structuralist account according to which relational
Symmetries of stochastic differential equations: A geometric approach
Energy Technology Data Exchange (ETDEWEB)
De Vecchi, Francesco C., E-mail: francesco.devecchi@unimi.it; Ugolini, Stefania, E-mail: stefania.ugolini@unimi.it [Dipartimento di Matematica, Università degli Studi di Milano, via Saldini 50, Milano (Italy); Morando, Paola, E-mail: paola.morando@unimi.it [DISAA, Università degli Studi di Milano, via Celoria 2, Milano (Italy)
2016-06-15
A new notion of stochastic transformation is proposed and applied to the study of both weak and strong symmetries of stochastic differential equations (SDEs). The correspondence between an algebra of weak symmetries for a given SDE and an algebra of strong symmetries for a modified SDE is proved under suitable regularity assumptions. This general approach is applied to a stochastic version of a two dimensional symmetric ordinary differential equation and to the case of two dimensional Brownian motion.
Interactions between constituent single symmetries in multiple symmetry.
Treder, Matthias Sebastian; van der Vloed, Gert; van der Helm, Peter A
2011-07-01
As a rule, the discriminability of multiple symmetries from random patterns increases with the number of symmetry axes, but this number does not seem to be the only determinant. In particular, multiple symmetries with orthogonal axes seem better discriminable than multiple symmetries with nonorthogonal axes. In six experiments on imperfect two-fold symmetry, we investigated whether this is due to extra structure in the form of so-called correlation rectangles, which arise only in the case of orthogonal axes, or to the relative orientation of the axes as such. The results suggest that correlation rectangles are not perceptually relevant and that the percept of a multiple symmetry results from an orientation-dependent interaction between the constituent single symmetries. The results can be accounted for by a model involving the analysis of symmetry at all orientations, smoothing (averaging over neighboring orientations), and extraction of peaks.
Molecular symmetry and spectroscopy
Bunker, Philip; Jensen, Per
2006-01-01
The first edition, by P.R. Bunker, published in 1979, remains the sole textbook that explains the use of the molecular symmetry group in understanding high resolution molecular spectra. Since 1979 there has been considerable progress in the field and a second edition is required; the original author has been joined in its writing by Per Jensen. The Material of the first edition has been reorganized and much has been added. The molecular symmetry group is now introduced early on, and the explanation of how to determine nuclear spin statistical weights has been consolidated in one chapter, after groups, symmetry groups, character tables and the Hamiltonian have been introduced. A description of the symmetry in the three-dimensional rotation group K(spatial), irreducible spherical tensor operators, and vector coupling coefficients is now included. The chapters on energy levels and selection rules contain a great deal of material that was not in the first edition (much of it was undiscovered in 1979), concerning ...
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 10. Groups and Symmetry: A Guide to Discovering Mathematics. Geetha Venkataraman. Book Review Volume 4 Issue 10 October 1999 pp 91-92. Fulltext. Click here to view fulltext PDF. Permanent link:
Introduction to Chiral Symmetry
Energy Technology Data Exchange (ETDEWEB)
Koch, Volker [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2017-05-09
These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. We will also discuss some effective chiral models such as the linear and nonlinear sigma model as well as the essential ideas of chiral perturbation theory. We will present some applications to the physics of ultrarelativistic heavy ion collisionsd.
Charged fluids with symmetries
Indian Academy of Sciences (India)
conformal Killing vector on the electromagnetic field tensor and the role of Maxwell's equations. 2. Conformal symmetries. Manifolds with structure may admit groups of transformations which preserve this struc- ture. A conformal motion preserves the metric up to a factor and maps null geodesics conformally. A conformal ...
Crumpecker, Cheryl
2003-01-01
Describes an art lesson used with children in the third grade to help them learn about symmetry, as well as encouraging them to draw larger than usual. Explains that students learn about the belief called "Horror Vacui" of the Northwest American Indian tribes and create their interpretation of this belief. (CMK)
Jinzenji, Masao
2018-01-01
This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov–Witten invariants of a Calabi–Yau threefold by using the Picard–Fuchs differential equation of period integrals of its mirror Calabi–Yau threefold. The book concentrates on the best-known example, the quintic hypersurface in 4-dimensional projective space, and its mirror manifold. First, there is a brief review of the process of discovery of mirror symmetry and the striking result proposed in the celebrated paper by Candelas and his collaborators. Next, some elementary results of complex manifolds and Chern classes needed for study of mirror symmetry are explained. Then the topological sigma models, the A-model and the B-model, are introduced. The classical mirror symmetry hypothesis is explained as the equivalence between the correlation function of the A-model of a quintic hyper-surface and that of the B-model of its mirror manifold. On the B-model side, the process of construct...
SYMMETRY OF COMPOSITE CRYSTALS
VANSMAALEN, S
1991-01-01
Composite crystals are crystals that consist of two or more subsystems, in first approximation each one having its own three-dimensional periodicity. The symmetry of these subsystems is then characterized by an ordinary space group. Due to their mutual interaction the true structure consists of a
Chiral Symmetry, Heavy Quark Symmetry and Bound States
Yoshida, Yuhsuke
1995-01-01
I investigate the bound state problems of lowest-lying mesons and heavy mesons. Chiral symmetry is essential when one consider lowest-lying mesons. Heavy quark symmetry plays an central role in considering the semi-leptonic form factors of heavy mesons. Various properties based on the symmetries are revealed using Bethe-Salpeter equations.
Gauge symmetries, topology, and quantisation
International Nuclear Information System (INIS)
Balachandran, A.P.
1994-01-01
The following two loosely connected sets of topics are reviewed in these lecture notes: (1) Gauge invariance, its treatment in field theories and its implications for internal symmetries and edge states such as those in the quantum Hall effect. (2) Quantisation on multiply connected spaces and a topological proof the spin-statistics theorem which avoids quantum field theory and relativity. Under (1), after explaining the meaning of gauge invariance and the theory of constraints, we discuss boundary conditions on gauge transformations and the definition of internal symmetries in gauge field theories. We then show how the edge states in the quantum Hall effect can be derived from the Chern-Simons action using the preceding ideas. Under (2), after explaining the significance of fibre bundles for quantum physics, we review quantisation on multiply connected spaces in detail, explaining also mathematical ideas such as those of the universal covering space and the fundamental group. These ideas are then used to prove the aforementioned topological spin-statistics theorem
On Symmetries in Optimal Control
Schaft, A.J. van der
1986-01-01
We discuss the use of symmetries in solving optimal control problems. In particular a procedure for obtaining symmetries is given which can be performed before the actual calculation of the optimal control and optimal Hamiltonian.
Symmetry and topology in evolution
International Nuclear Information System (INIS)
Lukacs, B.; Berczi, S.; Molnar, I.; Paal, G.
1991-10-01
This volume contains papers of an interdisciplinary symposium on evolution. The aim of this symposium, held in Budapest, Hungary, 28-29 May 1991, was to clear the role of symmetry and topology at different levels of the evolutionary processes. 21 papers were presented, their topics included evolution of the Universe, symmetry of elementary particles, asymmetry of the Earth, symmetry and asymmetry of biomolecules, symmetry and topology of lining objects, human asymmetry etc. (R.P.)
Applications of Classical Scaling Symmetry
Bludman, Sidney
2011-01-01
Any symmetry reduces a second-order differential equation to a first-order equation: variational symmetries of the action (exemplified by central field dynamics) lead to conservation laws, but symmetries of only the equations of motion (exemplified by scale-invariant hydrostatics), yield first-order {\\em non-conservation laws} between invariants. We obtain these conservation laws by extending Noether's Theorem to non-variational symmetries, and present a variational formulation of spherical a...
Quantum symmetries in particle interactions
International Nuclear Information System (INIS)
Shirkov, D.V.
1983-01-01
The concept of a quantum symmetry is introduced as a symmetry in the formulation of which quantum representations and specific quantum notions are used essentially. Three quantum symmetry principles are discussed: the principle of renormalizability (possibly super-renormalizability), the principle of local gauge symmetry, and the principle of supersymmetry. It is shown that these principles play a deterministic role in the development of quantum field theory. Historically their use has led to ever stronger restrictions on the interaction mechanism of quantum fields
R-symmetries from the orbifolded heterotic string
International Nuclear Information System (INIS)
Schmitz, Matthias
2014-08-01
We examine the geometric origin of discrete R-symmetries in heterotic orbifold compactifications. By analysing the symmetries of the worldsheet instanton solutions and the underlying geometry, we obtain a scheme that allows us to systematically explore the R-symmetries arising in these compactifications. Applying this scheme to a classification of orbifold geometries, we are able to find all R-symmetries of heterotic orbifolds with Abelian point groups. We show that in the vast majority of cases, the R-symmetries found satisfy anomaly universality constraints, as required in heterotic orbifolds. Then we examine the implications of the presence of these R-symmetries on a class of phenomenologically attractive orbifold compactifications known as the heterotic mini-landscape. We use the technique of Hilbert bases in order to analyse the properties of a vacuum configuration. We find that phenomenologically viable models remain and the main attractive features of the mini-landscape are unaltered.
Discrete R-symmetries and anomaly universality in heterotic orbifolds
Energy Technology Data Exchange (ETDEWEB)
Bizet, Nana G. Cabo [Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear,Calle 30, esq.a 5ta Ave, Miramar, 6122 La Habana (Cuba); Kobayashi, Tatsuo [Department of Physics, Kyoto University,Kyoto 606-8502 (Japan); Peña, Damián K. Mayorga [Bethe Center for Theoretical Physics and Physikalisches Institut der Universität Bonn,Nussallee 12, 53115 Bonn (Germany); Parameswaran, Susha L. [Department of Mathematics and Physics, Leibniz Universität Hannover,Welfengarten 1, 30167 Hannover (Germany); Schmitz, Matthias [Bethe Center for Theoretical Physics and Physikalisches Institut der Universität Bonn,Nussallee 12, 53115 Bonn (Germany); Zavala, Ivonne [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands)
2014-02-24
We study discrete R-symmetries, which appear in the 4D low energy effective field theory derived from heterotic orbifold models. We derive the R-symmetries directly from the geometrical symmetries of the orbifolds. In particular, we obtain the corresponding R-charges by requiring that the couplings be invariant under these symmetries. This allows for a more general treatment than the explicit computations of correlation functions made previously by the authors, including models with discrete Wilson lines, and orbifold symmetries beyond plane-by-plane rotational invariance. The R-charges obtained in this manner differ from those derived in earlier explicit computations. We study the anomalies associated with these R-symmetries, and comment on the results.
Emergence of Symmetries from Entanglement
CERN. Geneva
2016-01-01
Maximal Entanglement appears to be a key ingredient for the emergence of symmetries. We first illustrate this phenomenon using two examples: the emergence of conformal symmetry in condensed matter systems and the relation of tensor networks to holography. We further present a Principle of Maximal Entanglement that seems to dictate to a large extend the structure of gauge symmetry.
Group analysis and renormgroup symmetries
International Nuclear Information System (INIS)
Kovalev, V.F.; Pustovalov, V.V.; Shirkov, D.V.
1996-01-01
An original regular approach to constructing special type symmetries for boundary-value problems, namely renormgroup symmetries, is presented. Different methods of calculating these symmetries based on modern group analysis are described. An application of the approach to boundary value problems is demonstrated with the help of a simple mathematical model. 35 refs
Partial symmetries in nuclear spectroscopy
International Nuclear Information System (INIS)
Leviatan, A.
1996-01-01
The notions of exact, dynamical and partial symmetries are discussed in relation to nuclear spectroscopy. Explicit forms of Hamiltonians with partial SU(3) symmetry are presented in the framework of the interacting boson model of nuclei. An analysis of the resulting spectrum and electromagnetic transitions demonstrates the relevance of such partial symmetry to the spectroscopy of axially deformed nuclei. (Author)
Necessary Condition for Emergent Symmetry from the Conformal Bootstrap.
Nakayama, Yu; Ohtsuki, Tomoki
2016-09-23
We use the conformal bootstrap program to derive the necessary conditions for emergent symmetry enhancement from discrete symmetry (e.g., Z_{n}) to continuous symmetry [e.g., U(1)] under the renormalization group flow. In three dimensions, in order for Z_{2} symmetry to be enhanced to U(1) symmetry, the conformal bootstrap program predicts that the scaling dimension of the order parameter field at the infrared conformal fixed point must satisfy Δ_{1}>1.08. We also obtain the similar necessary conditions for Z_{3} symmetry with Δ_{1}>0.580 and Z_{4} symmetry with Δ_{1}>0.504 from the simultaneous conformal bootstrap analysis of multiple four-point functions. As applications, we show that our necessary conditions impose severe constraints on the nature of the chiral phase transition in QCD, the deconfinement criticality in Néel valence bond solid transitions, and anisotropic deformations in critical O(n) models. We prove that some fixed points proposed in the literature are unstable under the perturbation that cannot be forbidden by the discrete symmetry. In these situations, the second-order phase transition with enhanced symmetry cannot happen.
Physical pictures of symmetry breaking in quenched QED4
International Nuclear Information System (INIS)
Kogut, J.B.; Argonne National Lab., IL
1989-01-01
We discuss 'collapse of the wavefunction' as the phenomenon underlying chiral symmetry breaking in quenched QED4. The 1/r singularity in the 'collapsed' qanti q wavefunction causes 'catalyzed symmetry breaking' which is the field theoretic analog of 'monopole induced proton decay'. The evasion of mean field exponents by the quenched theory's chiral phase transition is emphasized. (orig.)
Symmetries of Particle Physics: Space-time and Local Gauge ...
Indian Academy of Sciences (India)
GENERAL I ARTICLE. Symmetries of Particle Physics: Space-time and. Local Gauge Symmetries. Sourendu Gupta works on the physics of matter under extreme conditions. He works at the Tata. Institute of Fundamental. Research, Mumbai. Figure 1. Experiment and theory feed on each other. Sourendu Gupta. Introduction.
A complete symmetry classification and reduction of some classes of ...
African Journals Online (AJOL)
... dimensional Lie algebras of point symmetry generators are used to construct exact solutions for some classes invariant under the subalgebra. Comparisons and other significant results regarding other equations, like the Laplace's equation, are made. Keywords: Lie symmetry classification; nonlinear (1-2) wave equation
Dark discrete gauge symmetries
International Nuclear Information System (INIS)
Batell, Brian
2011-01-01
We investigate scenarios in which dark matter is stabilized by an Abelian Z N discrete gauge symmetry. Models are surveyed according to symmetries and matter content. Multicomponent dark matter arises when N is not prime and Z N contains one or more subgroups. The dark sector interacts with the visible sector through the renormalizable kinetic mixing and Higgs portal operators, and we highlight the basic phenomenology in these scenarios. In particular, multiple species of dark matter can lead to an unconventional nuclear recoil spectrum in direct detection experiments, while the presence of new light states in the dark sector can dramatically affect the decays of the Higgs at the Tevatron and LHC, thus providing a window into the gauge origin of the stability of dark matter.
Strong Electroweak Symmetry Breaking
Grinstein, Benjamin
2011-01-01
Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...
Leadership, power and symmetry
DEFF Research Database (Denmark)
Spaten, Ole Michael
2016-01-01
Research publications concerning managers who coach their own employees are barely visible despite its wide- spread use in enterprises (McCarthy & Milner, 2013; Gregory & Levy, 2011; Crabb, 2011). This article focuses on leadership, power and moments of symmetry in the coaching relationship...... regarding managers coaching their employees and it is asked; what contributes to coaching of high quality when one reflects on the power aspect as being immanent? Fourteen middle managers coached five of their employees, and all members of each party wrote down cues and experiences immediately after each...... session. Thereafter we executed qualitative interviews with both managers and employees. Subsequently, a Thematic Analysis resulted in several themes, including power and moments of symmetry in the coaching relationship. One main conclusion is that the most fruitful coaching was obtained when the coachee...
Asymmetry, Symmetry and Beauty
Directory of Open Access Journals (Sweden)
Abbe R. Kopra
2010-07-01
Full Text Available Asymmetry and symmetry coexist in natural and human processes. The vital role of symmetry in art has been well demonstrated. This article highlights the complementary role of asymmetry. Further we show that the interaction of asymmetric action (recursion and symmetric opposition (sinusoidal waves are instrumental in generating creative features (relatively low entropy, temporal complexity, novelty (less recurrence in the data than in randomized copies and complex frequency composition. These features define Bios, a pattern found in musical compositions and in poetry, except for recurrence instead of novelty. Bios is a common pattern in many natural and human processes (quantum processes, the expansion of the universe, gravitational waves, cosmic microwave background radiation, DNA, physiological processes, animal and human populations, and economic time series. The reduction in entropy is significant, as it reveals creativity and contradicts the standard claim of unavoidable decay towards disorder. Artistic creations capture fundamental features of the world.
de Boer, Jan; Freivogel, Ben; Kabir, Laurens; Lokhande, Sagar F.
2017-07-01
In the AdS/CFT correspondence, bulk information appears to be encoded in the CFT in a redundant way. A local bulk field corresponds to many different non-local CFT operators (precursors). We recast this ambiguity in the language of BRST symmetry, and propose that in the large N limit, the difference between two precursors is a BRST exact and ghost-free term. This definition of precursor ambiguities has the advantage that it generalizes to any gauge theory. Using the BRST formalism and working in a simple model with global symmetries, we re-derive a precursor ambiguity appearing in earlier work. Finally, we show within this model that the obtained ambiguity has the right number of parameters to explain the freedom to localize precursors within different spatial regions of the boundary order by order in the large N expansion.
International Nuclear Information System (INIS)
Bunakov, V.E.; Ivanov, I.B.
1999-01-01
Connections between the symmetries of Hamiltonian systems in classical and quantum mechanics, on one hand, and their regularity or chaoticity, on the other hand, are considered. The quantum-chaoticity criterion that was proposed previously and which was borrowed from the theory of compound-nucleus resonances is used to analyze the quantum diamagnetic Kepler problem - that is, the motion of a spinless charged particle in a Coulomb and a uniform magnetic field
International Nuclear Information System (INIS)
Herrero, O F
2010-01-01
Music and Physics are very close because of the symmetry that appears in music. A periodic wave is what music really is, and there is a field of Physics devoted to waves researching. The different musical scales are the base of all kind of music. This article tries to show how this musical scales are made, how the consonance is the base of many of them and how symmetric they are.
Symmetry and quantum mechanics
Corry, Scott
2016-01-01
This book offers an introduction to quantum mechanics for professionals, students, and others in the field of mathematics who have a minimal background in physics with an understanding of linear algebra and group theory. It covers such topics as Lie groups, algebras and their representations, and analysis (Hilbert space, distributions, the spectral Theorem, and the Stone-Von Neumann Theorem). The book emphasizes the role of symmetry and is useful to physicists as it provides a mathematical introduction to the topic.
Energy Technology Data Exchange (ETDEWEB)
Herrero, O F, E-mail: o.f.herrero@hotmail.co [Conservatorio Superior de Musica ' Eduardo Martinez Torner' Corrada del Obispo s/n 33003 - Oviedo - Asturias (Spain)
2010-06-01
Music and Physics are very close because of the symmetry that appears in music. A periodic wave is what music really is, and there is a field of Physics devoted to waves researching. The different musical scales are the base of all kind of music. This article tries to show how this musical scales are made, how the consonance is the base of many of them and how symmetric they are.
Vertex algebras and mirror symmetry
International Nuclear Information System (INIS)
Borisov, L.A.
2001-01-01
Mirror Symmetry for Calabi-Yau hypersurfaces in toric varieties is by now well established. However, previous approaches to it did not uncover the underlying reason for mirror varieties to be mirror. We are able to calculate explicitly vertex algebras that correspond to holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in toric varieties. We establish the relation between these vertex algebras for mirror Calabi-Yau manifolds. This should eventually allow us to rewrite the whole story of toric mirror symmetry in the language of sheaves of vertex algebras. Our approach is purely algebraic and involves simple techniques from toric geometry and homological algebra, as well as some basic results of the theory of vertex algebras. Ideas of this paper may also be useful in other problems related to maps from curves to algebraic varieties.This paper could also be of interest to physicists, because it contains explicit description of holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in terms of free bosons and fermions. (orig.)
Spinor Structure and Internal Symmetries
Varlamov, V. V.
2015-10-01
Spinor structure and internal symmetries are considered within one theoretical framework based on the generalized spin and abstract Hilbert space. Complex momentum is understood as a generating kernel of the underlying spinor structure. It is shown that tensor products of biquaternion algebras are associated with the each irreducible representation of the Lorentz group. Space-time discrete symmetries P, T and their combination PT are generated by the fundamental automorphisms of this algebraic background (Clifford algebras). Charge conjugation C is presented by a pseudoautomorphism of the complex Clifford algebra. This description of the operation C allows one to distinguish charged and neutral particles including particle-antiparticle interchange and truly neutral particles. Spin and charge multiplets, based on the interlocking representations of the Lorentz group, are introduced. A central point of the work is a correspondence between Wigner definition of elementary particle as an irreducible representation of the Poincaré group and SU(3)-description (quark scheme) of the particle as a vector of the supermultiplet (irreducible representation of SU(3)). This correspondence is realized on the ground of a spin-charge Hilbert space. Basic hadron supermultiplets of SU(3)-theory (baryon octet and two meson octets) are studied in this framework. It is shown that quark phenomenologies are naturally incorporated into presented scheme. The relationship between mass and spin is established. The introduced spin-mass formula and its combination with Gell-Mann-Okubo mass formula allows one to take a new look at the problem of mass spectrum of elementary particles.
Contact symmetries and Hamiltonian thermodynamics
International Nuclear Information System (INIS)
Bravetti, A.; Lopez-Monsalvo, C.S.; Nettel, F.
2015-01-01
It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production
Family symmetries in F-theory GUTs
King, S F; Ross, G G
2010-01-01
We discuss F-theory SU(5) GUTs in which some or all of the quark and lepton families are assigned to different curves and family symmetry enforces a leading order rank one structure of the Yukawa matrices. We consider two possibilities for the suppression of baryon and lepton number violation. The first is based on Flipped SU(5) with gauge group SU(5)\\times U(1)_\\chi \\times SU(4)_{\\perp} in which U(1)_{\\chi} plays the role of a generalised matter parity. We present an example which, after imposing a Z_2 monodromy, has a U(1)_{\\perp}^2 family symmetry. Even in the absence of flux, spontaneous breaking of the family symmetry leads to viable quark, charged lepton and neutrino masses and mixing. The second possibility has an R-parity associated with the symmetry of the underlying compactification manifold and the flux. We construct an example of a model with viable masses and mixing angles based on the gauge group SU(5)\\times SU(5)_{\\perp} with a U(1)_{\\perp}^3 family symmetry after imposing a Z_2 monodromy.
The symmetry of large N=4 holography
International Nuclear Information System (INIS)
Gaberdiel, Matthias R.; Peng, Cheng
2014-01-01
For the proposed duality relating a family of N=4 superconformal coset models to a certain supersymmetric higher spin theory on AdS 3 , the asymptotic symmetry algebra of the bulk description is determined. It is shown that, depending on the choice of the boundary charges, one may obtain either the linear or the non-linear superconformal algebra on the boundary. We compare the non-linear version of the asymptotic symmetry algebra with the non-linear coset algebra and find non-trivial agreement in the ’t Hooft limit, thus giving strong support for the proposed duality. As a by-product of our analysis we also show that the W ∞ symmetry of the coset theory is broken under the exactly marginal perturbation that preserves the N=4 superconformal algebra
Rugari, Steven Louis
1992-01-01
We have carried out a search for broken reflection symmetry in the exotic nucleus ^{114 }Xe. Evidence for broken reflection symmetry has been previously observed in the actinide region, most notably Ra-Th nuclei, and more recently in the neutron rich nuclei ^{144}Ba, ^{146}Ce, and ^{146,148}Nd. This evidence has been discussed in terms of two conceptually different theoretical frameworks, namely alpha clustering and octupole deformation. The alpha clustering model makes global predictions of the relative strengths of enhanced electric dipole (E1) transitions characteristic of broken reflection symmetry, and predicts a dependence on isospin divided by nuclear mass (N-Z) ^2/A^2 of the reduced transition probability, B(E1), where A is the nuclear mass number and N and Z are, respectively, the neutron and proton number. The nuclei studied previously have approximately the same value of (N-Z)^2/A ^2 between 0.033 and 0.05. In ^ {114}Xe this parameter is much different, (N-Z)^2/A^2 =.0028, allowing for a test of the prediction. On the other hand, the octupole model description is less straightforward. Two terms contributing to the calculation of reduced transition strengths are based on the collective liquid drop model of nuclei and have a global dependence on A^2 Z^2. A third term, however, depends explicitly on the shell model description of the valence nucleons and can be large enough to remove this global dependence. The nucleus ^{114}Xe was produced in the heavy ion fusion evaporation reaction ^{60}Ni(^ {58}Ni,2p2n)^{114 }Xe in two separate measurements at Daresbury Laboratory and at Yale University. The nucleus was identified by means of a recoil mass spectrometer in the first reaction and by detection of evaporated neutrons in the second. Gamma ray spectra were collected in coincidence with these triggers using similar gamma detector setups. Information on the angular distributions of the gamma rays was collected for at least three separate angles in each
Symmetries of nonlinear ordinary differential equations: The ...
Indian Academy of Sciences (India)
2015-10-21
Oct 21, 2015 ... Abstract. Lie symmetry analysis is one of the powerful tools to analyse nonlinear ordinary dif- ferential equations. We review the effectiveness of this method in terms of various symmetries. We present the method of deriving Lie point symmetries, contact symmetries, hidden symmetries, nonlocal symmetries ...
Symmetry-enthalpy correlations in Diels-Alder reactions.
Tuvi-Arad, Inbal; Avnir, David
2012-08-06
Woodward-Hoffmann (WH) rules provide strict symmetry selection rules: when they are obeyed, a reaction proceeds; when they are not obeyed, there is no reaction. However, the voluminous experimental literature provides ample evidence that strict compliance to symmetry requirements is not an obstacle for a concerted reaction to proceed, and therefore the idea has developed that it is enough to have a certain degree of the required symmetry to have reactivity. Here we provide quantitative evidence of that link, and show that as one deviates from the desired symmetry, the enthalpy of activation increases, that is, we show that concerted reactions slow down the further they are from the ideal symmetry. Specifically, we study the deviation from mirror symmetry (evaluated with the continuous symmetry measure (CSM)) of the [4+2] carbon skeleton of the transition state of a series of twelve Diels-Alder reactions in seven different solvents (and in the gas phase), in which the dienes are butadiene, cyclopentadiene, cyclohexadiene, and cycloheptadiene; the dienophiles are the 1-, 1,1-, and 1,1,2-cyanoethylene derivatives; the solvents were chosen to sample a range of dielectric constants from heptane to ethanol. These components provide twenty-four symmetry-enthalpy DFT-calculated correlation lines (out of which only one case is a relatively mild exception) that show the general trend of increase in enthalpy as symmetry decreases. The various combinations between the dienophiles, cyanoethylenes, and solvents provide all kinds of sources for symmetry deviations; it is therefore remarkable that although the enthalpy of activation is dictated by various parameters, symmetry emerges as a primary parameter. In our analysis we also bisected this overall picture into solvent effects and geometry variation effects to evaluate under which conditions the electronic effects are more dominant than symmetry effects. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Symmetry and perturbation theory
Gaeta, Giuseppe
A co-chain map for the G invariant De Rham complex -- New examples of trihamiltonian structures linking different Lenard chains -- Wave propagation in an elastic medium: GDS equations -- Parametric excitation in nonlinear dynamics -- Collisionless action-minimizing trajectories for the equivariant 3-body problem in R2 -- The Lagrangian and Hamiltonian formulations for a special class of non-conservative systems -- Shadowing chains of collision orbits for the elliptic 3-body problem -- Similarity reductions of an optical model -- Fold, transcritical and pitchfork singularities for time-reversible systems -- Homographic three-body motions with positive and negative masses -- Remarks on conformal Killing tensors and separation of variables -- A regularity theory for optimal partition problems -- Lambda and mu-symmetries -- Potential symmetries and linearization of some evolution equations -- Periodic solutions for zero mass nonlinear wave equations -- Fundamental covariants in the invariant theory of Killing tensors -- Global geometry of 3-body trajectories with vanishing angular momentum -- The relation between the topological structure of the set of controllable affine systems and topological structures of the set of controllable homogenuous systems in low dimension -- On preservation of action variables for satellite librations in elliptic orbits with account of solar light pressure -- An explicit solution of the (quantum) elliptic Calogero-Sutherland model -- An application of the Melnikov integral to a restricted three body problem -- Reductions of integrable equations and automorphic Lie algebras -- Geometric reduction of Poisson operators -- Closed manifolds admitting metrics with the same geodesics -- A transcritical-flip bifurcation in a model for a robot-arm -- Alignment and the classification of Lorentz-signature tensors -- Renormalization group symmetry and gas dynamics -- Refined computation of hypernormal forms -- New order reductions for Euler
Yale, Paul B
2012-01-01
This book is an introduction to the geometry of Euclidean, affine, and projective spaces with special emphasis on the important groups of symmetries of these spaces. The two major objectives of the text are to introduce the main ideas of affine and projective spaces and to develop facility in handling transformations and groups of transformations. Since there are many good texts on affine and projective planes, the author has concentrated on the n-dimensional cases.Designed to be used in advanced undergraduate mathematics or physics courses, the book focuses on ""practical geometry,"" emphasi
Symmetries leading to inflation
International Nuclear Information System (INIS)
Aguirregabiria, Juan M.; Lazkoz, Ruth; Chimento, Luis P.; Jakubi, Alejandro S.
2003-01-01
We present here the general transformation that leaves unchanged the form of the field equations for perfect fluid Friedmann-Robertson-Walker and Bianchi type V cosmologies. The symmetries found can be used as algorithms for generating new cosmological models from existing ones. A particular case of the general transformation is used to illustrate the crucial role played by the number of scalar fields in the occurrence of inflation. Related to this, we also study the existence and stability of Bianchi type V power law solutions
Farmer, David W
1995-01-01
In most mathematics textbooks, the most exciting part of mathematics-the process of invention and discovery-is completely hidden from the reader. The aim of Groups and Symmetry is to change all that. By means of a series of carefully selected tasks, this book leads readers to discover some real mathematics. There are no formulas to memorize; no procedures to follow. The book is a guide: Its job is to start you in the right direction and to bring you back if you stray too far. Discovery is left to you. Suitable for a one-semester course at the beginning undergraduate level, there are no prerequ
Applications of chiral symmetry
International Nuclear Information System (INIS)
Pisarski, R.D.
1995-03-01
The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T χ implies that the ρ and a 1 vector mesons are degenerate in mass. In a gauged linear sigma model the ρ mass increases with temperature, m ρ (T χ ) > m ρ (0). The author conjectures that at T χ the thermal ρ - a 1 , peak is relatively high, at about ∼1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The ω meson also increases in mass, nearly degenerate with the ρ, but its width grows dramatically with temperature, increasing to at least ∼100 MeV by T χ . The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from open-quotes quenchedclose quotes heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates
Directory of Open Access Journals (Sweden)
Nazife O. Koca
2016-12-01
Full Text Available We describe an extension of the pyritohedral symmetry in 3D to 4-dimensional Euclidean space and construct the group elements of the 4D pyritohedral group of order 576 in terms of quaternions. It turns out that it is a maximal subgroup of both the rank-4 Coxeter groups W (F4 and W (H4, implying that it is a group relevant to the crystallographic as well as quasicrystallographic structures in 4-dimensions. We derive the vertices of the 24 pseudoicosahedra, 24 tetrahedra and the 96 triangular pyramids forming the facets of the pseudo snub 24-cell. It turns out that the relevant lattice is the root lattice of W (D4. The vertices of the dual polytope of the pseudo snub 24-cell consists of the union of three sets: 24-cell, another 24-cell and a new pseudo snub 24-cell. We also derive a new representation for the symmetry group of the pseudo snub 24-cell and the corresponding vertices of the polytopes.
Bootstrap Dynamical Symmetry Breaking
Directory of Open Access Journals (Sweden)
Wei-Shu Hou
2013-01-01
Full Text Available Despite the emergence of a 125 GeV Higgs-like particle at the LHC, we explore the possibility of dynamical electroweak symmetry breaking by strong Yukawa coupling of very heavy new chiral quarks Q . Taking the 125 GeV object to be a dilaton with suppressed couplings, we note that the Goldstone bosons G exist as longitudinal modes V L of the weak bosons and would couple to Q with Yukawa coupling λ Q . With m Q ≳ 700 GeV from LHC, the strong λ Q ≳ 4 could lead to deeply bound Q Q ¯ states. We postulate that the leading “collapsed state,” the color-singlet (heavy isotriplet, pseudoscalar Q Q ¯ meson π 1 , is G itself, and a gap equation without Higgs is constructed. Dynamical symmetry breaking is affected via strong λ Q , generating m Q while self-consistently justifying treating G as massless in the loop, hence, “bootstrap,” Solving such a gap equation, we find that m Q should be several TeV, or λ Q ≳ 4 π , and would become much heavier if there is a light Higgs boson. For such heavy chiral quarks, we find analogy with the π − N system, by which we conjecture the possible annihilation phenomena of Q Q ¯ → n V L with high multiplicity, the search of which might be aided by Yukawa-bound Q Q ¯ resonances.
Wilczek, Frank
2004-01-01
Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world (8 pages) Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world. The discrepancy is ascribed to a pervasive symmetry-breaking field, which fills all space uniformly, rendering the Universe a sort of exotic superconductor. So far, the evidence for these bold ideas is indirect. But soon the theory will undergo a critical test depending on whether the quanta of this symmetry-breaking field, the so-called Higgs particles, are produced at the Large Hadron Collider (due to begin operation in 2007).
Symmetry structures and conservation laws of Petrov III and Papapetrou metrics
Bokhari, A. H.; Zaman, F. D.; Narain, R.; Kara, A. H.
2013-07-01
In this paper, Noether symmetries of some spacetime metrics are studied. Considering invariance of the action integral under one parameter Lie group of transformations, it is shown that a large class of Noether symmetries is found. In particular, it is shown that the isometries form a sub-Lie algebra of Noether symmetries.
Neutrino masses and family symmetry
International Nuclear Information System (INIS)
Grinstein, B.; Preskill, J.; Wise, M.B.
1985-01-01
Neutrino masses in the 100 eV-1 MeV range are permitted if there is a spontaneously broken global family symmetry that allows the heavy neutrinos to decay by Goldstone boson emission with a cosmologically acceptable lifetime. The family symmetry may be either abelian or nonabelian; we present models illustrating both possibilities. If the family symmetry is nonabelian, then the decay tau -> μ + Goldstone boson or tau -> e + Goldstone may have an observable rate. (orig.)
Exact dynamical and partial symmetries
Energy Technology Data Exchange (ETDEWEB)
Leviatan, A, E-mail: ami@phys.huji.ac.il [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)
2011-03-01
We discuss a hierarchy of broken symmetries with special emphasis on partial dynamical symmetries (PDS). The latter correspond to a situation in which a non-invariant Hamiltonian accommodates a subset of solvable eigenstates with good symmetry, while other eigenstates are mixed. We present an algorithm for constructing Hamiltonians with this property and demonstrate the relevance of the PDS notion to nuclear spectroscopy, to quantum phase transitions and to mixed systems with coexisting regularity and chaos.
Exact dynamical and partial symmetries
International Nuclear Information System (INIS)
Leviatan, A
2011-01-01
We discuss a hierarchy of broken symmetries with special emphasis on partial dynamical symmetries (PDS). The latter correspond to a situation in which a non-invariant Hamiltonian accommodates a subset of solvable eigenstates with good symmetry, while other eigenstates are mixed. We present an algorithm for constructing Hamiltonians with this property and demonstrate the relevance of the PDS notion to nuclear spectroscopy, to quantum phase transitions and to mixed systems with coexisting regularity and chaos.
The conservation of orbital symmetry
Woodward, R B
2013-01-01
The Conservation of Orbital Symmetry examines the principle of conservation of orbital symmetry and its use. The central content of the principle was that reactions occur readily when there is congruence between orbital symmetry characteristics of reactants and products, and only with difficulty when that congruence does not obtain-or to put it more succinctly, orbital symmetry is conserved in concerted reaction. This principle is expected to endure, whatever the language in which it may be couched, or whatever greater precision may be developed in its application and extension. The book ope
An introduction to Yangian symmetries
International Nuclear Information System (INIS)
Bernard, D.
1992-01-01
Some aspects of the quantum Yangians as symmetry algebras of two-dimensional quantum field theories are reviewed. They include two main issues: the first is the classical Heisenberg model, covering non-Abelian symmetries, generators of the symmetries and the semi-classical Yangians, an alternative presentation of the semi-classical Yangians, digression on Poisson-Lie groups. The second is the quantum Heisenberg chain, covering non-Abelian symmetries and the quantum Yangians, the transfer matrix and an alternative presentation of the Yangians, digression on the double Yangians. (K.A.) 15 refs
Leptogenesis and residual CP symmetry
International Nuclear Information System (INIS)
Chen, Peng; Ding, Gui-Jun; King, Stephen F.
2016-01-01
We discuss flavour dependent leptogenesis in the framework of lepton flavour models based on discrete flavour and CP symmetries applied to the type-I seesaw model. Working in the flavour basis, we analyse the case of two general residual CP symmetries in the neutrino sector, which corresponds to all possible semi-direct models based on a preserved Z 2 in the neutrino sector, together with a CP symmetry, which constrains the PMNS matrix up to a single free parameter which may be fixed by the reactor angle. We systematically study and classify this case for all possible residual CP symmetries, and show that the R-matrix is tightly constrained up to a single free parameter, with only certain forms being consistent with successful leptogenesis, leading to possible connections between leptogenesis and PMNS parameters. The formalism is completely general in the sense that the two residual CP symmetries could result from any high energy discrete flavour theory which respects any CP symmetry. As a simple example, we apply the formalism to a high energy S 4 flavour symmetry with a generalized CP symmetry, broken to two residual CP symmetries in the neutrino sector, recovering familiar results for PMNS predictions, together with new results for flavour dependent leptogenesis.
Quarks, baryons and chiral symmetry
Hosaka, Atsushi
2001-01-01
This book describes baryon models constructed from quarks, mesons and chiral symmetry. The role of chiral symmetry and of quark model structure with SU(6) spin-flavor symmetry are discussed in detail, starting from a pedagogic introduction. Emphasis is placed on symmetry aspects of the theories. As an application, the chiral bag model is studied for nucleon structure, where important methods of theoretical physics, mostly related to the semiclassical approach for a system of strong interactions, are demonstrated. The text is more practical than formal; tools and ideas are explained in detail w
Classical dynamical systems with the symmetry of the Kepler problem
International Nuclear Information System (INIS)
Karloukovski, V.I.
1978-01-01
The Hamiltonian dynamical systems of the form of H=1/2G 1 p 2 +1/2G 2 (xp) 2 +G 3 (xp)+U, where Gsub(j) and U are functions of r= √ x 2 , are investigated. The notion of the strict Kepler symmetry is introduced to single out the cases where there is the Runge-Lenz vector quadratic in the momentum. All dynamical systems with this property are found. They depend on an arbitrary function of the distance to the centrum of symmetry and two arbitrary interaction constants. The equations of motion are solved and it is shown explicitly that the orbits are closed. Cases when the strict Kepler symmetry is related to an underlying E(3) symmetry are noted. The breaking of the strict Kepler symmetry and its relation to the precession of the perihelium are discussed
Emergent Electroweak Symmetry Breaking with Composite W, Z Bosons
Cui, Yanou; Wells, James D
2009-01-01
We present a model of electroweak symmetry breaking in a warped extra dimension where electroweak symmetry is broken at the UV (or Planck) scale. An underlying conformal symmetry is broken at the IR (or TeV) scale generating masses for the electroweak gauge bosons without invoking a Higgs mechanism. By the AdS/CFT correspondence the W,Z bosons are identified as composite states of a strongly-coupled gauge theory, suggesting that electroweak symmetry breaking is an emergent phenomenon at the IR scale. The model satisfies electroweak precision tests with reasonable fits to the S and T parameter. In particular the T parameter is sufficiently suppressed since the model naturally admits a custodial SU(2) symmetry. The composite nature of the W,Z-bosons provide a novel possibility of unitarizing WW scattering via form factor suppression. Constraints from LEP and the Tevatron as well as discovery opportunities at the LHC are discussed for these composite electroweak gauge bosons.
On the flexibility and symmetry of overconstrained mechanisms.
Stachel, Hellmuth
2014-02-13
In kinematics, a framework is called overconstrained if its continuous flexibility is caused by particular dimensions; in the generic case, a framework of this type is rigid. Famous examples of overconstrained structures are the Bricard octahedra, the Bennett isogram, the Grünbaum framework, Bottema's 16-bar mechanism, Chasles' body-bar framework, Burmester's focal mechanism or flexible quad meshes. The aim of this paper is to present some examples in detail and to focus on their symmetry properties. It turns out that only for a few is a global symmetry a necessary condition for flexibility. Sometimes, there is a hidden symmetry, and in some cases, for example, at the flexible type-3 octahedra or at discrete Voss surfaces, there is only a local symmetry. However, there remain overconstrained frameworks where the underlying algebraic conditions for flexibility have no relation to symmetry at all.
Holography without translational symmetry
Vegh, David
2013-01-01
We propose massive gravity as a holographic framework for describing a class of strongly interacting quantum field theories with broken translational symmetry. Bulk gravitons are assumed to have a Lorentz-breaking mass term as a substitute for spatial inhomogeneities. This breaks momentum-conservation in the boundary field theory. At finite chemical potential, the gravity duals are charged black holes in asymptotically anti-de Sitter spacetime. The conductivity in these systems generally exhibits a Drude peak that approaches a delta function in the massless gravity limit. Furthermore, the optical conductivity shows an emergent scaling law: $|\\sigma(\\omega)| \\approx {A \\over \\omega^{\\alpha}} + B$. This result is consistent with that found earlier by Horowitz, Santos, and Tong who introduced an explicit inhomogeneous lattice into the system.
On Consistent Nonparametric Statistical Tests of Symmetry Hypotheses
Directory of Open Access Journals (Sweden)
Jean-François Quessy
2016-05-01
Full Text Available Being able to formally test for symmetry hypotheses is an important topic in many fields, including environmental and physical sciences. In this paper, one concentrates on a large family of nonparametric tests of symmetry based on Cramér–von Mises statistics computed from empirical distribution and characteristic functions. These tests possess the highly desirable property of being universally consistent in the sense that they detect any kind of departure from symmetry as the sample size becomes large. The asymptotic behaviour of these test statistics under symmetry is deduced from the theory of first-order degenerate V-statistics. The issue of computing valid p-values is tackled using the multiplier bootstrap method suitably adapted to V-statistics, yielding elegant, easy-to-compute and quick procedures for testing symmetry. A special focus is put on tests of univariate symmetry, bivariate exchangeability and reflected symmetry; a simulation study indicates the good sampling properties of these tests. Finally, a framework for testing general symmetry hypotheses is introduced.
3D surface configuration modulates 2D symmetry detection.
Chen, Chien-Chung; Sio, Lok-Teng
2015-02-01
We investigated whether three-dimensional (3D) information in a scene can affect symmetry detection. The stimuli were random dot patterns with 15% dot density. We measured the coherence threshold, or the proportion of dots that were the mirror reflection of the other dots in the other half of the image about a central vertical axis, at 75% accuracy with a 2AFC paradigm under various 3D configurations produced by the disparity between the left and right eye images. The results showed that symmetry detection was difficult when the corresponding dots across the symmetry axis were on different frontoparallel or inclined planes. However, this effect was not due to a difference in distance, as the observers could detect symmetry on a slanted surface, where the depth of the two sides of the symmetric axis was different. The threshold was reduced for a hinge configuration where the join of two slanted surfaces coincided with the axis of symmetry. Our result suggests that the detection of two-dimensional (2D) symmetry patterns is subject to the 3D configuration of the scene; and that coplanarity across the symmetry axis and consistency between the 2D pattern and 3D structure are important factors for symmetry detection. Copyright © 2014 Elsevier Ltd. All rights reserved.
Spectral distributions and symmetries
International Nuclear Information System (INIS)
Quesne, C.
1980-01-01
As it is now well known, the spectral distribution method has both statistical and group theoretical aspects which make for great simplifications in many-Fermion system calculations with respect to more conventional ones. Although both aspects intertwine and are equally essential to understand what is going on, we are only going to discuss some of the group theoretical aspects, namely those connected with the propagation of information, in view of their fundamental importance for the actual calculations of spectral distributions. To be more precise, let us recall that the spectral distribution method may be applied in principle to many-Fermion spaces which have a direct-product structure, i.e., are obtained by distributing a certain number n of Fermions over N single-particle states (O less than or equal to n less than or equal to N), as it is the case for instance for the nuclear shell model spaces. For such systems, the operation of a central limit theorem is known to provide us with a simplifying principle which, when used in conjunction with exact or broken symmetries, enables us to make definite predictions in those cases which are not amendable to exact shell model diagonalizations. The distribution (in energy) of the states corresponding to a fixed symmetry is then defined by a small number of low-order energy moments. Since the Hamiltonian is defined in few-particle subspaces embedded in the n-particlespace, the low-order moments, we are interested in, can be expressed in terms of simpler quantities defined in those few-particle subspaces: the information is said to propagate from the simple subspaces to the more complicated ones. The possibility of actually calculating spectral distributions depends upon the finding of simple ways to propagate the information
Realization of chiral symmetry in the ERG
International Nuclear Information System (INIS)
Echigo, Yoshio; Igarashi, Yuji
2011-01-01
We discuss within the framework of the ERG how chiral symmetry is realized in a linear σ model. A generalized Ginsparg-Wilson relation is obtained from the Ward-Takahashi identities for the Wilson action assumed to be bilinear in the Dirac fields. We construct a family of its non-perturbative solutions. The family generates the most general solutions to the Ward-Takahashi identities. Some special solutions are discussed. For each solution in this family, chiral symmetry is realized in such a way that a change in the Wilson action under non-linear symmetry transformation is canceled with a change in the functional measure. We discuss that the family of solutions reduces via a field redefinition to a family of the Wilson actions with some composite object of the scalar fields which has a simple transformation property. For this family, chiral symmetry is linearly realized with a continuum analog of the operator extension of γ 5 used on the lattice. We also show that there exist some appropriate Dirac fields which obey the standard chiral transformations with γ 5 in contrast to the lattice case. Their Yukawa interaction with scalars, however, becomes non-linear. (author)
Symmetry chains and adaptation coefficients
International Nuclear Information System (INIS)
Fritzer, H.P.; Gruber, B.
1985-01-01
Given a symmetry chain of physical significance it becomes necessary to obtain states which transform properly with respect to the symmetries of the chain. In this article we describe a method which permits us to calculate symmetry-adapted quantum states with relative ease. The coefficients for the symmetry-adapted linear combinations are obtained, in numerical form, in terms of the original states of the system and can thus be represented in the form of numerical tables. In addition, one also obtains automatically the matrix elements for the operators of the symmetry groups which are involved, and thus for any physical operator which can be expressed either as an element of the algebra or of the enveloping algebra. The method is well suited for computers once the physically relevant symmetry chain, or chains, have been defined. While the method to be described is generally applicable to any physical system for which semisimple Lie algebras play a role we choose here a familiar example in order to illustrate the method and to illuminate its simplicity. We choose the nuclear shell model for the case of two nucleons with orbital angular momentum l = 1. While the states of the entire shell transform like the smallest spin representation of SO(25) we restrict our attention to its subgroup SU(6) x SU(2)/sub T/. We determine the symmetry chains which lead to total angular momentum SU(2)/sub J/ and obtain the symmetry-adapted states for these chains
Characterization of Partial Intrinsic Symmetries
Shehu, Aurela; Brunton, Alan; Wuhrer, Stefanie; Wand, Michael
2014-01-01
We present a mathematical framework and algorithm for characterizing and extracting partial intrinsic symmetries of surfaces, which is a fundamental building block for many modern geometry processing algorithms. Our goal is to compute all “significant” symmetry information of the shape, which we
Symmetry preservation during radiation damage
International Nuclear Information System (INIS)
Bhat, S.V.; Abdel-Gawad, M.M.H.
1991-01-01
An examination of radiation-damage processes consequent to high-energy irradiation in certain ammonium salts studied using ESR of free radicals together with the structural information available from neutron diffraction studies shows that, other factors being equal/nearly equal, symmetry-related bonds are preserved in preference to those unrelated to one another by any symmetry. (author). 23 refs., 3 tabs
Symmetry guide to ferroaxial transitions
Czech Academy of Sciences Publication Activity Database
Hlinka, Jiří; Přívratská, J.; Ondrejkovič, Petr; Janovec, Václav
2016-01-01
Roč. 116, č. 17 (2016), 1-6, č. článku 177602. ISSN 0031-9007 R&D Projects: GA ČR GA15-04121S Institutional support: RVO:68378271 Keywords : symmetry * symmetry breaking * ferroaxial Transitions * property tensors * Aizu species Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 8.462, year: 2016
Givental Graphs and Inversion Symmetry
Dunin-Barkovskiy, P.; Shadrin, S.; Spitz, L.
2013-01-01
Inversion symmetry is a very non-trivial discrete symmetry of Frobenius manifolds. It was obtained by Dubrovin from one of the elementary Schlesinger transformations of a special ODE associated to a Frobenius manifold. In this paper, we review the Givental group action on Frobenius manifolds in
Collective states and crossing symmetry
International Nuclear Information System (INIS)
Heiss, W.D.
1977-01-01
Collective states are usually described in simple terms but with the use of effective interactions which are supposed to contain more or less complicated contributions. The significance of crossing symmetry is discussed in this connection. Formal problems encountered in the attempts to implement crossing symmetry are pointed out
A cyclic symmetry principle in physics
International Nuclear Information System (INIS)
Green, H.S.; Adelaide Univ., SA
1994-01-01
Many areas of modern physics are illuminated by the application of a symmetry principle, requiring the invariance of the relevant laws of physics under a group of transformations. This paper examines the implications and some of the applications of the principle of cyclic symmetry, especially in the areas of statistical mechanics and quantum mechanics, including quantized field theory. This principle requires invariance under the transformations of a finite group, which may be a Sylow π-group, a group of Lie type, or a symmetric group. The utility of the principle of cyclic invariance is demonstrated in finding solutions of the Yang-Baxter equation that include and generalize known solutions. It is shown that the Sylow π-groups have other uses, in providing a basis for a type of generalized quantum statistics, and in parametrising a new generalization of Lie groups, with associated algebras that include quantized algebras. 31 refs
Discrete symmetries in the MSSM
Energy Technology Data Exchange (ETDEWEB)
Schieren, Roland
2010-12-02
The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z{sup R}{sub 4} symmetry is discovered which solves the {mu}-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z{sup R}{sub 4} is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z{sup R}{sub 4} symmetry and other desirable features. (orig.)
Symmetries in geology and geophysics.
Turcotte, D L; Newman, W I
1996-12-10
Symmetries have played an important role in a variety of problems in geology and geophysics. A large fraction of studies in mineralogy are devoted to the symmetry properties of crystals. In this paper, however, the emphasis will be on scale-invariant (fractal) symmetries. The earth's topography is an example of both statistically self-similar and self-affine fractals. Landforms are also associated with drainage networks, which are statistical fractal trees. A universal feature of drainage networks and other growth networks is side branching. Deterministic space-filling networks with side-branching symmetries are illustrated. It is shown that naturally occurring drainage networks have symmetries similar to diffusion-limited aggregation clusters.
Axions from chiral family symmetry
International Nuclear Information System (INIS)
Chang, D.; Pal, P.B.; Maryland Univ., College Park; Senjanovic, G.
1985-01-01
We investigate the possibility that family symmetry, Gsub(F), is spontaneously broken chiral global symmetry. We classify the interesting cases when family symmetry can result in an automatic Peccei-Quinn symmetry U(1)sub(PQ) and thus provide a solution to the strong CP problem. The result disfavors having two or four families. For more than four families, U(1)sub(PQ) is in general automatic. In the case of three families, a unique Higgs sector allows U(1)sub(PQ) in the simplest case of Gsub(F)=[SU(3)] 3 . Cosmological consideration also puts strong constraint on the number of families. For Gsub(F)=[SU(N)] 3 cosmology singles out the three-family (N=3) case as a unique solution if there are three light neutrinos. Possible implication of decoupling theorem as applied to family symmetry breaking is also discussed. (orig.)
Shape analysis with subspace symmetries
Berner, Alexander
2011-04-01
We address the problem of partial symmetry detection, i.e., the identification of building blocks a complex shape is composed of. Previous techniques identify parts that relate to each other by simple rigid mappings, similarity transforms, or, more recently, intrinsic isometries. Our approach generalizes the notion of partial symmetries to more general deformations. We introduce subspace symmetries whereby we characterize similarity by requiring the set of symmetric parts to form a low dimensional shape space. We present an algorithm to discover subspace symmetries based on detecting linearly correlated correspondences among graphs of invariant features. We evaluate our technique on various data sets. We show that for models with pronounced surface features, subspace symmetries can be found fully automatically. For complicated cases, a small amount of user input is used to resolve ambiguities. Our technique computes dense correspondences that can subsequently be used in various applications, such as model repair and denoising. © 2010 The Author(s).
Space-time symmetries of noncommutative spaces
International Nuclear Information System (INIS)
Calmet, Xavier
2005-01-01
We define a noncommutative Lorentz symmetry for canonical noncommutative spaces. The noncommutative vector fields and the derivatives transform under a deformed Lorentz transformation. We show that the star product is invariant under noncommutative Lorentz transformations. We then apply our idea to the case of actions obtained by expanding the star product and the fields taken in the enveloping algebra via the Seiberg-Witten maps and verify that these actions are invariant under these new noncommutative Lorentz transformations. We finally consider general coordinate transformations and show that the metric is undeformed
Symmetry versus repetition in cyclopean vision: a microgenetic analysis.
Treder, Matthias S; van der Helm, Peter A
2007-10-01
In four experiments, participants had to detect symmetries or repetitions distributed over two depth planes, under presentation times of 200-1000 ms. Structurally corresponding elements were placed in different planes (Experiments 1a and 1b) or in the same plane (Experiments 2a and 2b). Results suggest (a) an ongoing interaction between regularity cues and depth cues, and (b) that efficient detection of symmetry but not of repetition depends on structural correspondences within depth planes. The latter confirms the idea that, to perceptual organization, symmetry is a cue for the presence of one object, whereas repetition is a cue for the presence of multiple objects.
Spontaneous symmetry breaking, self-trapping, and Josephson oscillations
2013-01-01
This volume collects a a number of contributions on spontaneous symmetry breaking. Current studies in this general field are going ahead at a full speed. The book present review chapters which give an overview on the major break throughs of recent years. It covers a number of different physical settings which are introduced when a nonlinearity is added to the underlying symmetric problems and its strength exceeds a certain critical value. The corresponding loss of symmetry, called spontaneous symmetry breaking, alias self-trapping into asymmetric states is extensively discussed in this book.
Energy Technology Data Exchange (ETDEWEB)
Peskin, M.E. [Stanford Univ., CA (United States)
1994-12-01
When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics.
Gravitation and Gauge Symmetries
Stewart, J
2002-01-01
The purpose of this book (I quote verbatim from the back cover) is to 'shed light upon the intrinsic structure of gravity and the principle of gauge invariance, which may lead to a consistent unified field theory', a very laudable aim. The content divides fairly clearly into four sections (and origins). After a brief introduction, chapters 2-6 review the 'Structure of gravity as a theory based on spacetime gauge symmetries'. This is fairly straightforward material, apparently based on a one-semester graduate course taught at the University of Belgrade for about two decades, and, by implication, this is a reasonably accurate description of its level and assumed knowledge. There follow two chapters of new material entitled 'Gravity in flat spacetime' and 'Nonlinear effects in gravity'. The final three chapters, entitled 'Supersymmetry and supergravity', 'Kaluza-Klein theory' and 'String theory' have been used for the basis of a one-semester graduate course on the unification of fundamental interactions. The boo...
Segmentation Using Symmetry Deviation
DEFF Research Database (Denmark)
Hollensen, Christian; Højgaard, L.; Specht, L.
2011-01-01
and evaluate the method. The method uses deformable registration on computed tomography(CT) to find anatomical symmetry deviations of Head & Neck squamous cell carcinoma and combining it with positron emission tomography (PET) images. The method allows the use anatomical and symmetrical information of CT scans...... segmentations on manual contours was evaluated using concordance index and sensitivity for the hypopharyngeal patients. The resulting concordance index and sensitivity was compared with the result of using a threshold of 3 SUV using a paired t-test. Results: The anatomical and symmetrical atlas was constructed...... and sensitivity of respectively 0.43±0.15 and 0.56±0.18 was acquired. It was compared to the concordance index of segmentation using absolute threshold of 3 SUV giving respectively 0.41±0.16 and 0.51±0.19 for concordance index and sensitivity yielding p-values of 0.33 and 0.01 for a paired t-test respectively....
International Nuclear Information System (INIS)
Peskin, M.E.
1994-01-01
When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics
Symmetries in nuclear structure
Allaart, K; Dieperink, A
1983-01-01
The 1982 summer school on nuclear physics, organized by the Nuclear Physics Division of the Netherlands' Physical Society, was the fifth in a series that started in 1963. The number of students attending has always been about one hundred, coming from about thirty countries. The theme of this year's school was symmetry in nuclear physics. This book covers the material presented by the enthusi astic speakers, who were invited to lecture on this subject. We think they have succeeded in presenting us with clear and thorough introductory talks at graduate or higher level. The time schedule of the school and the location allowed the participants to make many informal contacts during many social activities, ranging from billiards to surf board sailing. We hope and expect that the combination of a relaxed atmosphere during part of the time and hard work during most of the time, has furthered the interest in, and understanding of, nuclear physics. The organization of the summer school was made possible by substantia...
Nonlinear electromagnetic fields and symmetries
Barjašić, Irena; Gulin, Luka; Smolić, Ivica
2017-06-01
We extend the classical results on the symmetry inheritance of the canonical electromagnetic fields, described by the Maxwell's Lagrangian, to a much wider class of models, which include those of the Born-Infeld, power Maxwell and the Euler-Heisenberg type. Symmetry inheriting fields allow the introduction of electromagnetic scalar potentials and these are proven to be constant on the Killing horizons. Finally, using the relations obtained along the analysis, we generalize and simplify the recent proof for the symmetry inheritance of the 3-dimensional case, as well as give the first constraint for the higher dimensional electromagnetic fields.
EXECUTIVE SUMMARY OF THE SNOWMASS 2001 WORKING GROUP : ELECTROWEAK SYMMETRY BREAKING
International Nuclear Information System (INIS)
CARENA, M.; GERDES, D.W.; HABER, H.E.; TURCOT, A.S.; ZERWAS, P.M.
2001-01-01
In this summary report of the 2001 Snowmass Electroweak Symmetry Breaking Working Group, the main candidates for theories of electroweak symmetry breaking are surveyed, and the criteria for distinguishing among the different approaches are discussed. The potential for observing electroweak symmetry breaking phenomena at the upgraded Tevatron and the LHC is described. We emphasize the importance of a high-luminosity e + e - linear collider for precision measurements to clarify the underlying electroweak symmetry breaking dynamics. Finally, we note the possible roles of the μ + μ - collider and VLHC for further elucidating the physics of electroweak symmetry breaking
The role of Weyl symmetry in hydrodynamics
Diles, Saulo
2018-04-01
This article is dedicated to the analysis of Weyl symmetry in the context of relativistic hydrodynamics. Here is discussed how this symmetry is properly implemented using the prescription of minimal coupling: ∂ → ∂ + ωA. It is shown that this prescription has no problem to deal with curvature since it gives the correct expressions for the commutator of covariant derivatives. In hydrodynamics, Weyl gauge connection emerges from the degrees of freedom of the fluid: it is a combination of the expansion and entropy gradient. The remaining degrees of freedom, shear, vorticity and the metric tensor, are see in this context as charged fields under the Weyl gauge connection. The gauge nature of the connection provides natural dynamics to it via equations of motion analogous to the Maxwell equations for electromagnetism. As a consequence, a charge for the Weyl connection is defined and the notion of local charge is analyzed generating the conservation law for the Weyl charge.
Spontaneous spherical symmetry breaking in atomic confinement
Sveshnikov, Konstantin; Tolokonnikov, Andrey
2017-07-01
The effect of spontaneous breaking of initial SO(3) symmetry is shown to be possible for an H-like atom in the ground state, when it is confined in a spherical box under general boundary conditions of "not going out" through the box surface (i.e. third kind or Robin's ones), for a wide range of physically reasonable values of system parameters. The most novel and nontrivial result, which has not been reported previously, is that such an effect takes place not only for attractive, but also for repulsive interactions of atomic electrons with the cavity environment. Moreover, in the limit of a large box size R ≫ aB the regime of an atom, soaring over a plane with boundary condition of "not going out", is reproduced, rather than a spherically symmetric configuration, which would be expected on the basis of the initial SO(3) symmetry of the problem.
Physical Model of Cellular Symmetry Breaking
van der Gucht, Jasper; Sykes, Cécile
2009-01-01
Cells can polarize in response to external signals, such as chemical gradients, cell–cell contacts, and electromagnetic fields. However, cells can also polarize in the absence of an external cue. For example, a motile cell, which initially has a more or less round shape, can lose its symmetry spontaneously even in a homogeneous environment and start moving in random directions. One of the principal determinants of cell polarity is the cortical actin network that underlies the plasma membrane. Tension in this network generated by myosin motors can be relaxed by rupture of the shell, leading to polarization. In this article, we discuss how simplified model systems can help us to understand the physics that underlie the mechanics of symmetry breaking. PMID:20066077
Mechanochemical symmetry breaking in Hydra aggregates.
Mercker, Moritz; Köthe, Alexandra; Marciniak-Czochra, Anna
2015-05-05
Tissue morphogenesis comprises the self-organized creation of various patterns and shapes. Although detailed underlying mechanisms are still elusive in many cases, an increasing amount of experimental data suggests that chemical morphogen and mechanical processes are strongly coupled. Here, we develop and test a minimal model of the axis-defining step (i.e., symmetry breaking) in aggregates of the Hydra polyp. Based on previous findings, we combine osmotically driven shape oscillations with tissue mechanics and morphogen dynamics. We show that the model incorporating a simple feedback loop between morphogen patterning and tissue stretch reproduces a wide range of experimental data. Finally, we compare different hypothetical morphogen patterning mechanisms (Turing, tissue-curvature, and self-organized criticality). Our results suggest the experimental investigation of bigger (i.e., multiple head) aggregates as a key step for a deeper understanding of mechanochemical symmetry breaking in Hydra. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Strings, Branes and Symmetries
International Nuclear Information System (INIS)
Westerberg, A.
1997-01-01
Recent dramatic progress in the understanding of the non-perturbative structure of superstring theory shows that extended objects of various kinds, collectively referred to as p-branes, are an integral part of the theory. In this thesis, comprising an introductory text and seven appended research papers, we study various aspects of p-branes with relevance for superstring theory. The first part of the introductory text is a brief review of string theory focussing on the role of p-branes. In particular, we consider the so-called D-branes which currently are attracting a considerable amount of attention. The purpose of this part is mainly to put into context the results of paper 4, 5 and 6 concerning action functionals describing the low-energy dynamics of D-branes. The discussion of perturbative string theory given in this part of the introduction is also intended to provide some background to paper 2 which contains an application of the Reggeon-sewing approach to the construction of string vertices. The second part covers a rather different subject, namely higher-dimensional loop algebras and their cohomology, with the aim of facilitating the reading of papers 1, 3 and 7. The relation to p-branes is to be found in paper 1 where we introduce a certain higher-dimensional generalization of the loop algebra and discuss its potential applicability as a symmetry algebra for p-branes. Papers 3 and 7 are mathematically oriented out-growths of this paper addressing the issue of realizing algebras of this kind, known in physics as current algebras, in terms of pseudo differential operators (PSDOs). The main result of paper 3 is a proof of the equivalence between certain Lie-algebra cocycles on the space of second-quantizable PSDOs
Symmetries in the Lagrangean formalism
International Nuclear Information System (INIS)
Grigore, D.R.
1987-09-01
We generalize the analysis of Levy-Leblond for lagrangean systems with symmetry. We prove that this analysis goes through practically unchanged and after that we analyse in detail some examples.(author)
Renormgroup symmetry for solution functionals
International Nuclear Information System (INIS)
Shirkov, D.V.; Kovalev, V.F.
2004-01-01
The paper contains generalization of the renormgroup algorithm for boundary value problems of mathematical physics and related concept of the renormgroup symmetry, formulated earlier by the authors with reference to models based on differential equations. These algorithm and symmetry are formulated now for models with nonlocal (integral) equations. We discuss in detail and illustrate by examples the applications of the generalized algorithm to models with nonlocal terms which appear as linear functionals of the solution. (author)
The Friedberg-Lee symmetry and minimal seesaw model
International Nuclear Information System (INIS)
He Xiaogang; Liao Wei
2009-01-01
The Friedberg-Lee (FL) symmetry is generated by a transformation of a fermionic field q to q+ξz. This symmetry puts very restrictive constraints on allowed terms in a Lagrangian. Applying this symmetry to N fermionic fields, we find that the number of independent fields is reduced to N-1 if the fields have gauge interaction or the transformation is a local one. Using this property, we find that a seesaw model originally with three generations of left- and right-handed neutrinos, with the left-handed neutrinos unaffected but the right-handed neutrinos transformed under the local FL translation, is reduced to an effective theory of minimal seesaw which has only two right-handed neutrinos. The symmetry predicts that one of the light neutrino masses must be zero.
Symmetries as by-products of conserved quantities
Romero-Maltrana, Diego
2015-11-01
There is general consensus among physicists in considering symmetries as a source of conserved quantities, a conclusion allegedly supported by Emmy Noether's theorems. Recently it has been pointed out that no arrow of explanation can be extracted from Noether's work, and there are also criticisms against the priority of particular symmetries over specific conserved quantities under Noether's ideas, but there are no general arguments against the aforementioned consensus, nor proposals promoting an explanation that leads from conserved quantities to symmetries. In this paper a general argument is built which favours conserved quantities over symmetries inasmuch as the presence of the former seems to allow (i.e. it seems to be a sufficient condition leading to) symmetrical descriptions.
Symmetries of the refined D1/D5 BPS spectrum
Benjamin, Nathan; Harrison, Sarah M.
2017-11-01
We examine the large N 1/4-BPS spectrum of the symmetric orbifold CFT Sym N ( M ) deformed to the supergravity point in moduli space for M = K3 and T 4. We consider refinement under both left- and right-moving SU(2) R symmetries of the superconformal algebra, and decompose the spectrum into characters of the algebra. We find that at large N the character decomposition satisfies an unusual property, in which the degeneracy only depends on a certain linear combination of left- and right-moving quantum numbers, suggesting deeper symmetry structure. Furthermore, we consider the action of discrete symmetry groups on these degeneracies, where certain subgroups of the Conway group are known to play a role. We also comment on the potential for larger discrete symmetry groups to appear in the large N limit.
Local E11 and the gauging of the trombone symmetry
International Nuclear Information System (INIS)
Riccioni, Fabio
2010-01-01
In any dimension, the positive level generators of the very extended Kac-Moody algebra E 11 with completely antisymmetric spacetime indices are associated with the form fields of the corresponding maximal supergravity. We consider the local E 11 algebra, that is the algebra obtained by enlarging these generators of E 11 in such a way that the global E 11 symmetries are promoted to gauge symmetries. These are the gauge symmetries of the corresponding massless maximal supergravity. We show the existence of a new type of deformation of the local E 11 algebra, which corresponds to the gauging of the symmetry under rescaling of the fields. In particular, we show how the gauged IIA theory of Howe, Lambert and West is obtained from an 11-dimensional group element that only depends on the 11th coordinate via a linear rescaling. We then show how this results in ten dimensions in a deformed local E 11 algebra of a new type.
New infinite-dimensional hidden symmetries for heterotic string theory
International Nuclear Information System (INIS)
Gao Yajun
2007-01-01
The symmetry structures of two-dimensional heterotic string theory are studied further. A (2d+n)x(2d+n) matrix complex H-potential is constructed and the field equations are extended into a complex matrix formulation. A pair of Hauser-Ernst-type linear systems are established. Based on these linear systems, explicit formulations of new hidden symmetry transformations for the considered theory are given and then these symmetry transformations are verified to constitute infinite-dimensional Lie algebras: the semidirect product of the Kac-Moody o(d,d+n-circumflex) and Virasoro algebras (without center charges). These results demonstrate that the heterotic string theory under consideration possesses more and richer symmetry structures than previously expected
Origin of constrained maximal CP violation in flavor symmetry
He, Hong-Jian; Rodejohann, Werner; Xu, Xun-Jie
2015-12-01
Current data from neutrino oscillation experiments are in good agreement with δ = -π/2 and θ23 =π/4 under the standard parametrization of the mixing matrix. We define the notion of ;constrained maximal CP violation; (CMCPV) for predicting these features and study their origin in flavor symmetry. We derive the parametrization-independent solution of CMCPV and give a set of equivalent definitions for it. We further present a theorem on how the CMCPV can be realized. This theorem takes the advantage of residual symmetries in neutrino and charged lepton mass matrices, and states that, up to a few minor exceptions, (| δ | ,θ23) = (π/2 ,π/4) is generated when those symmetries are real. The often considered μ- τ reflection symmetry, as well as specific discrete subgroups of O(3), is a special case of our theorem.
QCD-instantons and conformal inversion symmetry
International Nuclear Information System (INIS)
Klammer, D.
2006-07-01
Instantons are an essential and non-perturbative part of Quantum Chromodynamics, the theory of strong interactions. One of the most relevant quantities in the instanton calculus is the instanton-size distribution, which can be described on the one hand within the framework of instanton perturbation theory and on the other hand investigated numerically by means of lattice computations. A rapid onset of a drastic discrepancy between these respective results indicates that the underlying physics is not yet well understood. In this work we investigate the appealing possibility of a symmetry under conformal inversion of space-time leading to this deviation. The motivation being that the lattice data seem to be invariant under an inversion of the instanton size. Since the instanton solution of a given size turns into an anti-instanton solution having an inverted size under conformal inversion of space-time, we ask in a first investigation, whether this property is transferred to the quantum level. In order to introduce a new scale, which is indicated by the lattice data and corresponds to the average instanton size as inversion radius, we project the instanton calculus onto the four-dimensional surface of a five-dimensional sphere via stereographic projection. The radius of this sphere is associated with the average instanton size. The result for the instanton size-distribution projected onto the sphere agrees surprisingly well with the lattice data at qualitative level. The resulting symmetry under an inversion of the instanton size is almost perfect. (orig.)
QCD-instantons and conformal inversion symmetry
Energy Technology Data Exchange (ETDEWEB)
Klammer, D.
2006-07-15
Instantons are an essential and non-perturbative part of Quantum Chromodynamics, the theory of strong interactions. One of the most relevant quantities in the instanton calculus is the instanton-size distribution, which can be described on the one hand within the framework of instanton perturbation theory and on the other hand investigated numerically by means of lattice computations. A rapid onset of a drastic discrepancy between these respective results indicates that the underlying physics is not yet well understood. In this work we investigate the appealing possibility of a symmetry under conformal inversion of space-time leading to this deviation. The motivation being that the lattice data seem to be invariant under an inversion of the instanton size. Since the instanton solution of a given size turns into an anti-instanton solution having an inverted size under conformal inversion of space-time, we ask in a first investigation, whether this property is transferred to the quantum level. In order to introduce a new scale, which is indicated by the lattice data and corresponds to the average instanton size as inversion radius, we project the instanton calculus onto the four-dimensional surface of a five-dimensional sphere via stereographic projection. The radius of this sphere is associated with the average instanton size. The result for the instanton size-distribution projected onto the sphere agrees surprisingly well with the lattice data at qualitative level. The resulting symmetry under an inversion of the instanton size is almost perfect. (orig.)
Test of Pseudospin Symmetry in Deformed Nuclei
Ginocchio, J. N.; Leviatan, A.; Meng, J.; Zhou, Shan-Gui
2003-01-01
Pseudospin symmetry is a relativistic symmetry of the Dirac Hamiltonian with scalar and vector mean fields equal and opposite in sign. This symmetry imposes constraints on the Dirac eigenfunctions. We examine extensively the Dirac eigenfunctions of realistic relativistic mean field calculations of deformed nuclei to determine if these eigenfunctions satisfy these pseudospin symmetry constraints.
Symmetry and group theory in chemistry
Ladd, M
1998-01-01
A comprehensive discussion of group theory in the context of molecular and crystal symmetry, this book covers both point-group and space-group symmetries.Provides a comprehensive discussion of group theory in the context of molecular and crystal symmetryCovers both point-group and space-group symmetriesIncludes tutorial solutions
Test of pseudospin symmetry in deformed nuclei
International Nuclear Information System (INIS)
Ginocchio, J.N.; Leviatan, A.; Meng, J.; Zhou Shangui
2004-01-01
Pseudospin symmetry is a relativistic symmetry of the Dirac Hamiltonian with scalar and vector mean fields equal and opposite in sign. This symmetry imposes constraints on the Dirac eigenfunctions. We examine extensively the Dirac eigenfunctions of realistic relativistic mean field calculations of deformed nuclei to determine if these eigenfunctions satisfy these pseudospin symmetry constraints
Conformal Symmetry as a Template for QCD
Energy Technology Data Exchange (ETDEWEB)
Brodsky, S
2004-08-04
Conformal symmetry is broken in physical QCD; nevertheless, one can use conformal symmetry as a template, systematically correcting for its nonzero {beta} function as well as higher-twist effects. For example, commensurate scale relations which relate QCD observables to each other, such as the generalized Crewther relation, have no renormalization scale or scheme ambiguity and retain a convergent perturbative structure which reflects the underlying conformal symmetry of the classical theory. The ''conformal correspondence principle'' also dictates the form of the expansion basis for hadronic distribution amplitudes. The AdS/CFT correspondence connecting superstring theory to superconformal gauge theory has important implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for hard exclusive processes as well as determining essential aspects of hadronic light-front wavefunctions. Theoretical and phenomenological evidence is now accumulating that QCD couplings based on physical observables such as {tau} decay become constant at small virtuality; i.e., effective charges develop an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. The near-constant behavior of effective couplings also suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer. The importance of using an analytic effective charge such as the pinch scheme for unifying the electroweak and strong couplings and forces is also emphasized.
Symmetries, variational principles, and quantum dynamics
Directory of Open Access Journals (Sweden)
A. Sissakian
2004-05-01
Full Text Available We describe the role of symmetries in formation of quantum dynamics. A quantum version of d'Alembert's principle is proposed to take into account the symmetry constrains more exact. It is argued that the time reversibility of quantum process, as the quantum analogy of d'Alembert's principle, makes the measure of the corresponding path integral ÃŽÂ´-like. The argument of this ÃŽÂ´-function is the sum of all classical forces of the problem under consideration plus the random force of quantum excitations. Such measure establishes the one-to-one correspondence with classical mechanics and, for this reason, allows a free choice of the useful dynamical variables. The analysis shows that choosing the action-angle variables, one may get to the free-from-divergences quantum field theory. Moreover, one can try to get an independence from necessity to extract the degrees of freedom constrained by the symmetry. These properties of new quantization scheme are vitally essential for such theories as the non-Abelian Yang-Mills gauge theory and quantum gravity.
Using MT2 to distinguish dark matter stabilization symmetries
International Nuclear Information System (INIS)
Agashe, Kaustubh; Kim, Doojin; Zhu Lijun; Walker, Devin G. E.
2011-01-01
We examine the potential of using colliders to distinguish models with parity (Z 2 ) stabilized dark matter (DM) from models in which the DM is stabilized by other symmetries, taking the latter to be a Z 3 symmetry for illustration. The key observation is that a heavier mother particle charged under a Z 3 stabilization symmetry can decay into one or two DM particles along with standard model particles. This can be contrasted with the decay of a mother particle charged under a parity symmetry; typically, only one DM particle appears in the decay chain. The arXiv:1003.0899 studied the distributions of visible invariant mass from the decay of a single such mother particle in order to highlight the resulting distinctive signatures of Z 3 symmetry versus parity symmetry stabilized dark matter candidates. We now describe a complementary study which focuses on decay chains of the two mother particles which are necessarily present in these events. We also include in our analysis the missing energy/momentum in the event. For the Z 3 symmetry stabilized mothers, the resulting inclusive final state can have two, three or four DM particles. In contrast, models with Z 2 symmetry can have only two. We show that the shapes and edges of the distribution of M T2 -type variables, along with ratio of the visible momentum/energy on the two sides of the event, are powerful in distinguishing these different scenarios. Finally we conclude by outlining future work which focuses on reducing combinatoric ambiguities from reconstructing multijet events. Increasing the reconstruction efficiency can allow better reconstruction of events with two or three dark matter candidates in the final state.
Prediction of Human Eye Fixations using Symmetry
Kootstra, Gert; Schomaker, Lambert R. B.
2009-01-01
Humans are very sensitive to symmetry in visual patterns. Reaction time experiments show that symmetry is detected and recognized very rapidly. This suggests that symmetry is a highly salient feature. Existing computational models of saliency, however, have mainly focused on contrast as a measure of saliency. In this paper, we discuss local symmetry as a measure of saliency. We propose a number of symmetry models and perform an eye-tracking study with human participants viewing photographic i...
Some Remarks on the Symmetry Kernel Test
Baszczyńska, Aleksandra
2013-01-01
The paper presents chosen statistical tests used to verify the hypothesis of the symmetry of random variable’s distribution. Detailed analysis of the symmetry kernel test is made. The properties of the regarded symmetry kernel test are compared with the other symmetry tests using Monte Carlo methods. The symmetry tests are used, as an example, in analysis of the distribution of the Human Development Index (HDI). W pracy przedstawiono wybrane statystyczne testy wykorzystywane w ...
Soft theorems from anomalous symmetries
Huang, Yu-tin; Wen, Congkao
2015-12-01
We discuss constraints imposed by soft limits for effective field theories arising from symmetry breaking. In particular, we consider those associated with anomalous conformal symmetry as well as duality symmetries in supergravity. We verify these soft theorems for the dilaton effective action relevant for the a-theorem, as well as the one-loop effective action for N=4 supergravity. Using the universality of leading transcendental coefficients in the α' expansion of string theory amplitudes, we study the matrix elements of operator R 4 with half maximal supersymmetry. We construct the non-linear completion of R 4 that satisfies both single and double soft theorems up to seven points. This supports the existence of duality invariant completion of R 4.
Soft theorems from anomalous symmetries
Energy Technology Data Exchange (ETDEWEB)
Huang, Yu-tin [Department of Physics and Astronomy, National Taiwan University,Taipei 10617, Taiwan, ROC (China); Wen, Congkao [I.N.F.N. Sezione di Roma “Tor Vergata”,Via della Ricerca Scientifica, 00133 Roma (Italy)
2015-12-22
We discuss constraints imposed by soft limits for effective field theories arising from symmetry breaking. In particular, we consider those associated with anomalous conformal symmetry as well as duality symmetries in supergravity. We verify these soft theorems for the dilaton effective action relevant for the a-theorem, as well as the one-loop effective action for N=4 supergravity. Using the universality of leading transcendental coefficients in the α{sup ′} expansion of string theory amplitudes, we study the matrix elements of operator R{sup 4} with half maximal supersymmetry. We construct the non-linear completion of R{sup 4} that satisfies both single and double soft theorems up to seven points. This supports the existence of duality invariant completion of R{sup 4}.
Hidden Symmetries of Stochastic Models
Directory of Open Access Journals (Sweden)
Boyka Aneva
2007-05-01
Full Text Available In the matrix product states approach to $n$ species diffusion processes the stationary probability distribution is expressed as a matrix product state with respect to a quadratic algebra determined by the dynamics of the process. The quadratic algebra defines a noncommutative space with a $SU_q(n$ quantum group action as its symmetry. Boundary processes amount to the appearance of parameter dependent linear terms in the algebraic relations and lead to a reduction of the $SU_q(n$ symmetry. We argue that the boundary operators of the asymmetric simple exclusion process generate a tridiagonal algebra whose irriducible representations are expressed in terms of the Askey-Wilson polynomials. The Askey-Wilson algebra arises as a symmetry of the boundary problem and allows to solve the model exactly.
Symmetry gauge theory for paraparticles
International Nuclear Information System (INIS)
Kursawe, U.
1986-01-01
In the present thesis it was shown that for identical particles the wave function of which has a more complicated symmetry than it is the case at the known kinds of particles, the bosons and fermions, a gauge theory can be formulated, the so-called 'symmetry gauge theory'. This theory has its origin alone in the symmetry of the particle wave functions and becomes first relevant when more than two particles are considered. It was shown that for particles with mixed-symmetrical wave functions, so-called 'paraparticles', the quantum mechanical state is no more described by one Hilbert-space element but by a many-dimensional subspace of this Hilbert space. The gauge freedom consists then just in the freedom of the choice of the basis in this subspace, the corresponding gauge group is the group of the unitary basis transformation in this subspace. (orig./HSI) [de
Non-Gaussianity from Broken Symmetries
Kolb, Edward W; Vallinotto, A; Kolb, Edward W.; Riotto, Antonio; Vallinotto, Alberto
2006-01-01
Recently we studied inflation models in which the inflaton potential is characterized by an underlying approximate global symmetry. In the first work we pointed out that in such a model curvature perturbations are generated after the end of the slow-roll phase of inflation. In this work we develop further the observational implications of the model and compute the degree of non-Gaussianity predicted in the scenario. We find that the corresponding nonlinearity parameter, $f_{NL}$, can be as large as 10^2.
Submaximal conformal symmetry superalgebras for Lorentzian manifolds of low dimension
Energy Technology Data Exchange (ETDEWEB)
Medeiros, Paul de [Crawley, West Sussex (United Kingdom)
2016-02-01
We consider a class of smooth oriented Lorentzian manifolds in dimensions three and four which admit a nowhere vanishing conformal Killing vector and a closed two-form that is invariant under the Lie algebra of conformal Killing vectors. The invariant two-form is constrained in a particular way by the conformal geometry of the manifold. In three dimensions, the conformal Killing vector must be everywhere causal (or null if the invariant two-form vanishes identically). In four dimensions, the conformal Killing vector must be everywhere null and the invariant two-form vanishes identically if the geometry is everywhere of Petrov type N or O. To the conformal class of any such geometry, it is possible to assign a particular Lie superalgebra structure, called a conformal symmetry superalgebra. The even part of this superalgebra contains conformal Killing vectors and constant R-symmetries while the odd part contains (charged) twistor spinors. The largest possible dimension of a conformal symmetry superalgebra is realised only for geometries that are locally conformally flat. We determine precisely which non-trivial conformal classes of metrics admit a conformal symmetry superalgebra with the next largest possible dimension, and compute all the associated submaximal conformal symmetry superalgebras. In four dimensions, we also compute symmetry superalgebras for a class of Ricci-flat Lorentzian geometries not of Petrov type N or O which admit a null Killing vector.
Symposium Symmetries in Science XIII
Gruber, Bruno J; Yoshinaga, Naotaka; Symmetries in Science XI
2005-01-01
This book is a collection of reviews and essays about the recent developments in the area of Symmetries and applications of Group Theory. Contributions have been written mostly at the graduate level but some are accessible to advanced undergraduates. The book is of interest to a wide audience and covers a broad range of topics with a strong degree of thematical unity. The book is part of a Series of books on Symmetries in Science and may be compared to the published Proceedings of the Colloquia on Group Theoretical Methods in Physics. Here, however, prevails a distinguished character for presenting extended reviews on present applications to Science, not restricted to Theoretical Physics.
Chiral symmetry on the lattice
Energy Technology Data Exchange (ETDEWEB)
Creutz, M.
1994-11-01
The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model.
Cosmological Reflection of Particle Symmetry
Directory of Open Access Journals (Sweden)
Maxim Khlopov
2016-08-01
Full Text Available The standard model involves particle symmetry and the mechanism of its breaking. Modern cosmology is based on inflationary models with baryosynthesis and dark matter/energy, which involves physics beyond the standard model. Studies of the physical basis of modern cosmology combine direct searches for new physics at accelerators with its indirect non-accelerator probes, in which cosmological consequences of particle models play an important role. The cosmological reflection of particle symmetry and the mechanisms of its breaking are the subject of the present review.
Symmetry of intramolecular quantum dynamics
Burenin, Alexander V
2012-01-01
The main goal of this book is to give a systematic description of intramolecular quantum dynamics on the basis of only the symmetry principles. In this respect, the book has no analogs in the world literature. The obtained models lead to a simple, purely algebraic, scheme of calculation and are rigorous in the sense that their correctness is limited only to the correct choice of symmetry of the internal dynamics. The book is basically intended for scientists working in the field of molecular spectroscopy, quantum and structural chemistry.
Clifford algebraic symmetries in physics
International Nuclear Information System (INIS)
Salingaros, N.
1986-01-01
This paper reviews the following appearances of Clifford algebras in theoretical physics: statistical mechanics; general relativity; quantum electrodynamics; internal symmetries; the vee product; classical electrodynamics; charged-particle motion; and the Lorentz group. It is concluded that the power of the Clifford-algebraic description resides in its ability to perform representation-free calculations which are generalizations of the traditional vector algebra and that this considerable computational asset, in combination with the intrinsic symmetry, provides a practical framework for much of theoretical physics. 5 references
Renormalizable models with broken symmetries
International Nuclear Information System (INIS)
Becchi, C.; Rouet, A.; Stora, R.
1975-10-01
The results of the renormalized perturbation theory, in the absence of massless quanta, are summarized. The global symmetry breaking is studied and the associated currents are discussed in terms of the coupling with a classical Yang Mills field. Gauge theories are discussed; it is most likely that the natural set up should be the theory of fiber bundles and that making a choice of field coordinates makes the situation obscure. An attempt is made in view of clarifying the meaning of the Slavnov symmetry which characterizes gauge field theories [fr
Microscopic basis of collective symmetries
International Nuclear Information System (INIS)
Arima, A.
1983-01-01
The seniority scheme of SU(2) symmetry in a single closed shell is an interaction to conserve seniority. It is suggested that an interaction simpler than delta interaction can be used to study the level structure of Pb isotopes. The concept of seniority number is introduced. Reduction formulae are then derived for one-body operators. Conservation of seniority in a single closed shell is treated. SU(6) symmetry of nuclear collective motion, or the SU(6) invariance of the boson system, is derived
Chiral symmetry on the lattice
International Nuclear Information System (INIS)
Creutz, M.
1994-11-01
The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model
Optical metamaterials with quasicrystalline symmetry: symmetry-induced optical isotropy
International Nuclear Information System (INIS)
Kruk, S.S.; Decker, M.; Helgert, Ch.; Neshev, D.N.; Kivshar, Y.S.; Staude, I.; Powell, D.A.; Pertsch, Th.; Menzel, Ch.; Helgert, Ch.; Etrich, Ch.; Rockstuhl, C.; Menzel, Ch.
2013-01-01
Taking advantage of symmetry considerations, we have analyzed the potential of various metamaterials to affect the polarization state of light upon oblique illumination. We have shown that depending on the angle of illumination, metamaterials are able to support specific polarization states. The presented methodology that using ellipticity and circular dichroism, provides an unambiguous language for discussing the impact of the inherent symmetry of the metamaterial lattices on their far-field response. Our findings allow the quantification analysis of the impact of inter-element coupling and lattice symmetry on the optical properties of metamaterials, and to separate this contribution from the response associated with a single meta-atom. In addition, we have studied the concept of optical quasicrystalline metamaterials, revealing that the absence of translational symmetry (periodicity) of quasicrystalline metamaterials causes an isotropic optical response, while the long-range positional order preserves the resonance properties. Our findings constitute an important step towards the design of optically isotropic metamaterials and metasurfaces. (authors)
International Nuclear Information System (INIS)
Kotel'nikov, G.A.
1994-01-01
An algorithm id proposed for research the symmetries of mathematical physics equation. The application of this algorithm to the Schroedinger equation permitted to establish, that in addition to the known symmetry the Schroedinger equation possesses also the relativistic symmetry
The master symmetry and time dependent symmetries of the differential–difference KP equation
International Nuclear Information System (INIS)
Khanizadeh, Farbod
2014-01-01
We first obtain the master symmetry of the differential–difference KP equation. Then we show how this master symmetry, through sl(2,C)-representation of the equation, can construct generators of time dependent symmetries. (paper)
Floral guidance of learning a preference for symmetry by bumblebees.
Plowright, Catherine M S; Bridger, Jeremy J M; Xu, Vicki; Herlehy, Racheal A; Collin, Charles A
2017-11-01
This study examines the mechanism underlying one way in which bumblebees are known to develop a preference for symmetric patterns: through prior non-differential reinforcement on simple patterns (black discs and white discs). In three experiments, bees were given a choice among symmetric and asymmetric black-and-white non-rewarding patterns presented at the ends of corridors in a radial maze. Experimental groups had prior rewarded non-discrimination training on white patterns and black patterns, while control groups had no pre-test experience outside the colony. No preference for symmetry was obtained for any of the control groups. Prior training with circular patterns highlighting a horizontal axis of symmetry led to a specific subsequent preference for horizontal over vertical symmetry, while training with a vertical axis abolished this effect. Circles highlighting both axes created a general avoidance of asymmetry in favour of symmetric patterns with vertical, horizontal or both axes of symmetry. Training with plain circles, but not with deformed circles, led to a preference for symmetry: there was no evidence that the preference emerged just by virtue of having attention drawn away from irrelevant pattern differences. Our results point to a preference for symmetry developing gradually through first learning to extract an axis of symmetry from simple patterns and subsequently recognizing that axis in new patterns. They highlight the importance of continued learning through non-differential reinforcement by skilled foragers. Floral guides can function not only to guide pollinators to the source of reward but also to highlight an axis of symmetry for use in subsequent floral encounters.
Symmetry in Sphere-Based Assembly Configuration Spaces
Directory of Open Access Journals (Sweden)
Meera Sitharam
2016-01-01
Full Text Available Many remarkably robust, rapid and spontaneous self-assembly phenomena occurring in nature can be modeled geometrically, starting from a collection of rigid bunches of spheres. This paper highlights the role of symmetry in sphere-based assembly processes. Since spheres within bunches could be identical and bunches could be identical, as well, the underlying symmetry groups could be of large order that grows with the number of participating spheres and bunches. Thus, understanding symmetries and associated isomorphism classes of microstates that correspond to various types of macrostates can significantly increase efficiency and accuracy, i.e., reduce the notorious complexity of computing entropy and free energy, as well as paths and kinetics, in high dimensional configuration spaces. In addition, a precise understanding of symmetries is crucial for giving provable guarantees of algorithmic accuracy and efficiency, as well as accuracy vs. efficiency trade-offs in such computations. In particular, this may aid in predicting crucial assembly-driving interactions. This is a primarily expository paper that develops a novel, original framework for dealing with symmetries in configuration spaces of assembling spheres, with the following goals. (1 We give new, formal definitions of various concepts relevant to the sphere-based assembly setting that occur in previous work and, in turn, formal definitions of their relevant symmetry groups leading to the main theorem concerning their symmetries. These previously-developed concepts include, for example: (i assembly configuration spaces; (ii stratification of assembly configuration space into configurational regions defined by active constraint graphs; (iii paths through the configurational regions; and (iv coarse assembly pathways. (2 We then demonstrate the new symmetry concepts to compute the sizes and numbers of orbits in two example settings appearing in previous work. (3 Finally, we give formal
Classical extended conformal symmetries
International Nuclear Information System (INIS)
Viswanathan, R.
1990-02-01
Extensions of the Virasoro algebra are constructed as Poisson brackets of higher spin fields which appear as coefficient fields in certain covariant derivative operators of order N. These differential operators are constructed so as to be covariant under reparametrizations on fields of definite conformal dimension. Factorization of such an N-th order operator in terms of first order operators, together with the inclusion of a spin one U(1) current, is shown to lead to a two-parameter W-algebra. One of these parameters plays the role of interpolating between W-algebras based on different Lie algebras of the same rank. (author). 11 refs
A model of intrinsic symmetry breaking
International Nuclear Information System (INIS)
Ge, Li; Li, Sheng; George, Thomas F.; Sun, Xin
2013-01-01
Different from the symmetry breaking associated with a phase transition, which occurs when the controlling parameter is manipulated across a critical point, the symmetry breaking presented in this Letter does not need parameter manipulation. Instead, the system itself suddenly undergoes symmetry breaking at a certain time during its evolution, which is intrinsic symmetry breaking. Through a polymer model, it is revealed that the origin of the intrinsic symmetry breaking is nonlinearity, which produces instability at the instance when the evolution crosses an inflexion point, where this instability breaks the original symmetry
Charge symmetry at the partonic level
Energy Technology Data Exchange (ETDEWEB)
Londergan, J. T.; Peng, J. C.; Thomas, A. W.
2010-07-01
This review article discusses the experimental and theoretical status of partonic charge symmetry. It is shown how the partonic content of various structure functions gets redefined when the assumption of charge symmetry is relaxed. We review various theoretical and phenomenological models for charge symmetry violation in parton distribution functions. We summarize the current experimental upper limits on charge symmetry violation in parton distributions. A series of experiments are presented, which might reveal partonic charge symmetry violation, or alternatively might lower the current upper limits on parton charge symmetry violation.
From symmetries to number theory
International Nuclear Information System (INIS)
Tempesta, P.
2009-01-01
It is shown that the finite-operator calculus provides a simple formalism useful for constructing symmetry-preserving discretizations of quantum-mechanical integrable models. A related algebraic approach can also be used to define a class of Appell polynomials and of L series.
Orthogonal symmetries and Clifford algebras
Indian Academy of Sciences (India)
a universal property of the even Clifford algebra in §3. ..... symmetry if σ2 = id. In the literature, such maps are sometimes also called “orthogonal involutions” (cf. Ch. III, §5 of [4]). We have, however, preferred to use the former ...... [7] Helmstetter J and Micali A, Quadratic mappings and Clifford algebras (Basel: Birkhäuser.
Exploiting symmetry in protocol testing
J.M.T. Romijn (Judi); J.G. Springintveld
1999-01-01
textabstractTest generation and execution are often hampered by the large state spaces of the systems involved. In automata (or transition system) based test algorithms, taking advantage of symmetry in the behavior of specification and implementation may substantially reduce the amount of tests. We
Symmetry violation in weak decays
Vos, Kimberley Keri
2016-01-01
Our current knowledge of particle physics is described by the Standard Model (SM). This model, however, leaves important observations unexplained. To answer these outstanding questions, as of yet, unknown physics is required. In the search for new physics, symmetries and their breaking play a
Lifshitz symmetries and nonrelativistic holography
Sybesma, Z.W.
2017-01-01
In this dissertation we cover topics within the main themes of Lifshitz symmetries and nonrelativistic holography. Nonrelativistic theories are typically less constrained than relativistic ones, which makes them often more cumbersome to work with. Via holography one can have acces to domains of a
Symmetry, empirical significance, and identity
Friederich, Simon
The article proposes a novel approach to the much discussed question of which symmetries have ‘direct empirical significance’ and which do not. The approach is based on a development of a recently proposed framework by Hilary Greaves and David Wallace, who claim that, contrary to the standard
Exploiting Symmetry on Parallel Architectures.
Stiller, Lewis Benjamin
1995-01-01
This thesis describes techniques for the design of parallel programs that solve well-structured problems with inherent symmetry. Part I demonstrates the reduction of such problems to generalized matrix multiplication by a group-equivariant matrix. Fast techniques for this multiplication are described, including factorization, orbit decomposition, and Fourier transforms over finite groups. Our algorithms entail interaction between two symmetry groups: one arising at the software level from the problem's symmetry and the other arising at the hardware level from the processors' communication network. Part II illustrates the applicability of our symmetry -exploitation techniques by presenting a series of case studies of the design and implementation of parallel programs. First, a parallel program that solves chess endgames by factorization of an associated dihedral group-equivariant matrix is described. This code runs faster than previous serial programs, and discovered it a number of results. Second, parallel algorithms for Fourier transforms for finite groups are developed, and preliminary parallel implementations for group transforms of dihedral and of symmetric groups are described. Applications in learning, vision, pattern recognition, and statistics are proposed. Third, parallel implementations solving several computational science problems are described, including the direct n-body problem, convolutions arising from molecular biology, and some communication primitives such as broadcast and reduce. Some of our implementations ran orders of magnitude faster than previous techniques, and were used in the investigation of various physical phenomena.
Symmetry structure and phase transitions
Indian Academy of Sciences (India)
We study chiral symmetry structure at finite density and temperature in the presence of external magnetic field and .... the case of neutron stars as a function of chemical potential µ associated with finite baryon number density we ..... work expended to create a bubble and are given by Rc = 2σ Ph(T) Pq(T) and Wc = 4πσR2.
Symmetry structure and phase transitions
Indian Academy of Sciences (India)
Spontaneous symmetry breaking is one of the most important concepts of all unified gauge theories. The idea that ... stable configurations of gauge and Higgs fields in the form of domain walls, cosmic strings and monopoles on the ..... pressure to balance the surface tension and the pressure of the hadron phase. The quark.
Experimental tests of fundamental symmetries
Jungmann, K. P.
2014-01-01
Ongoing experiments and projects to test our understanding of fundamental inter- actions and symmetries in nature have progressed significantly in the past few years. At high energies the long searched for Higgs boson has been found; tests of gravity for antimatter have come closer to reality;
Dark Energy and Spacetime Symmetry
Directory of Open Access Journals (Sweden)
Irina Dymnikova
2017-03-01
Full Text Available The Petrov classification of stress-energy tensors provides a model-independent definition of a vacuum by the algebraic structure of its stress-energy tensor and implies the existence of vacua whose symmetry is reduced as compared with the maximally symmetric de Sitter vacuum associated with the Einstein cosmological term. This allows to describe a vacuum in general setting by dynamical vacuum dark fluid, presented by a variable cosmological term with the reduced symmetry which makes vacuum fluid essentially anisotropic and allows it to be evolving and clustering. The relevant solutions to the Einstein equations describe regular cosmological models with time-evolving and spatially inhomogeneous vacuum dark energy, and compact vacuum objects generically related to a dark energy: regular black holes, their remnants and self-gravitating vacuum solitons with de Sitter vacuum interiors—which can be responsible for observational effects typically related to a dark matter. The mass of objects with de Sitter interior is generically related to vacuum dark energy and to breaking of space-time symmetry. In the cosmological context spacetime symmetry provides a mechanism for relaxing cosmological constant to a needed non-zero value.
Kohn's theorem and Galilean symmetry
Zhang, P.-M.; Horvathy, P. A.
2011-08-01
The relation between the separability of a system of charged particles in a uniform magnetic field and Galilean symmetry is revisited using Duval's “Bargmann framework”. If the charge-to-mass ratios of the particles are identical, ea/ma=ɛ for all particles, then the Bargmann space of the magnetic system is isometric to that of an anisotropic harmonic oscillator. Assuming that the particles interact through a potential which only depends on their relative distances, the system splits into one representing the center of mass plus a decoupled internal part, and can be mapped further into an isolated system using Niederer's transformation. Conversely, the manifest Galilean boost symmetry of the isolated system can be “imported” to the oscillator and to the magnetic systems, respectively, to yield the symmetry used by Gibbons and Pope to prove the separability. For vanishing interaction potential the isolated system is free and our procedure endows all our systems with a hidden Schrödinger symmetry, augmented with independent internal rotations. All these properties follow from the cohomological structure of the Galilei group, as explained by Souriau's “décomposition barycentrique”.
Directory of Open Access Journals (Sweden)
Raquel Lourenço
2010-05-01
Full Text Available The formation of a perfect vertebrate body plan poses many questions that thrill developmental biologists. Special attention has been given to the symmetric segmental patterning that allows the formation of the vertebrae and skeletal muscles. These segmented structures derive from bilaterally symmetric units called somites, which are formed under the control of a segmentation clock. At the same time that these symmetric units are being formed, asymmetric signals are establishing laterality in nearby embryonic tissues, allowing the asymmetric placement of the internal organs. More recently, a “shield” that protects symmetric segmentation from the influence of laterality cues was uncovered. Here we review the mechanisms that control symmetric versus asymmetric development along the left-right axis among vertebrates. We also discuss the impact that these studies might have in the understanding of human congenital disorders characterized by congenital vertebral malformations and abnormal laterality phenotypes.
Projective symmetry of partons in Kitaev's honeycomb model
Mellado, Paula
2015-03-01
Low-energy states of quantum spin liquids are thought to involve partons living in a gauge-field background. We study the spectrum of Majorana fermions of Kitaev's honeycomb model on spherical clusters. The gauge field endows the partons with half-integer orbital angular momenta. As a consequence, the multiplicities reflect not the point-group symmetries of the cluster, but rather its projective symmetries, operations combining physical and gauge transformations. The projective symmetry group of the ground state is the double cover of the point group. We acknowledge Fondecyt under Grant No. 11121397, Conicyt under Grant No. 79112004, and the Simons Foundation (P.M.); the Max Planck Society and the Alexander von Humboldt Foundation (O.P.); and the US DOE Grant No. DE-FG02-08ER46544 (O.T.).
The Lagrangian Map and Lie Symmetries in Magnetohydrodynamics and Gas Dynamics
Ko, C. M.; Webb, G. M.; Ratkiewicz, R. E.; Zank, G. P.
2007-12-01
We explore the role of the Lagrangian map for Lie symmetries in magnetohydrodynamics and gas dynamics. By converting the Eulerian Lie point symmetries of the Galilean group to Lagrange label space, in which the Eulerian position is regarded as a function of the Lagrange fluid label and time t, one finds that there is an infinite class of symmetries in Lagrange label space that map onto each Lie point symmetry. This involves the solution of the Lie determining equations for the fluid relabeling symmetries. We also consider a class of scaling symmetries for a gas with a constant adiabatic index. These symmetries map onto a modified form of the fluid relabeling symmetry determining equations with non-zero source terms. We investigate under what conditions the scaling symmetries give rise to conservation laws, and find that the conservation laws depend on the initial entropy, density and magnetic field of the fluid. Lie algebraic structures in Lagrange label space corresponding to the symmetries are investigated.
Assessing symmetry of financial returns series
H. F. Coronel-Brizio; A. R. Hernandez-Montoya; Huerta-Quintanilla; M. Rodriguez-Achach; .
2007-01-01
Testing symmetry of a probability distribution is a common question arising from applications in several fields. Particularly, in the study of observables used in the analysis of stock market index variations, the question of symmetry has not been fully investigated by means of statistical procedures. In this work a distribution-free test statistic Tn for testing symmetry, derived by Einmahl and McKeague, based on the empirical likelihood approach, is used to address the study of symmetry of ...
Scaling Symmetry and Integrable Spherical Hydrostatics
Bludman, Sidney; Kennedy, Dallas C.
2011-01-01
Any symmetry reduces a second-order differential equation to a first integral: variational symmetries of the action (exemplified by central field dynamics) lead to conservation laws, but symmetries of only the equations of motion (exemplified by scale-invariant hydrostatics) yield first-order {\\em non-conservation laws} between invariants. We obtain these non-conservation laws by extending Noether's Theorem to non-variational symmetries and present an innovative variational formulation of sph...
Symmetry of the Pyritohedron and Lattices
Directory of Open Access Journals (Sweden)
Nazife O. Koca
2016-12-01
Full Text Available The pyritohedron consisting of twelve identical but non regular pentagonal faces and its dual pseudoicosahedron that possess the pyritohedral (Th symmetry play an essential role in understanding the crystallographic structures with the pyritohedral symmetry. The pyritohedral symmetry takes a simpler form in terms of quaternionic representation. We discuss the 3D crystals with the pyritohedral symmetry which can be derived from the Coxeter-Dynkin diagram of D3.
Baryon spectroscopy: symmetries, symmetry breaking and hadronic loops
International Nuclear Information System (INIS)
Zenczykowski, P.
1985-01-01
The problem of hadronic loop effects in baryon spectroscopy is thoroughly discussed. It is argued that such effects very likely constitute the dominant contribution to the observed splitting and mixing pattern of the (56,0 + ) and (70,1 - ) baryon multiplets. In particular, this dominance is demonstrated in the original Isgur-Karl-Koniuk model of baryons, in which hadronic loops are shown to provide an explanation for at least 2/3 of the observed size of splittings, both for the ground-state and excited baryons. The unitarity-induced mixing angles in the (70,1 - )-multiplet are also shown to be in good agreement with experiment. For the ground-state baryons the formula relating Σ-Λ and Δ-Ν mass differences - as originally derived by de Rujula, Georgi and Glashow from the single gluon exchange-is obtained from the hadronic loop effects as well. This (and other) results are derived after taking into account a complete set of symmetry-related hadronic loops. Consideration of such a complete set of symmetry-related processes is shown to be crucial in restoring proper symmetry properties of the calculated spectrum. 74 refs., 10 figs., 4 tabs. (author)
Symmetry rules for the indirect nuclear spin-spin coupling tensor revisited
Buckingham, A. D.; Pyykkö, P.; Robert, J. B.; Wiesenfeld, L.
The symmetry rules of Buckingham and Love (1970), relating the number of independent components of the indirect spin-spin coupling tensor J to the symmetry of the nuclear sites, are shown to require modification if the two nuclei are exchanged by a symmetry operation. In that case, the anti-symmetric part of J does not transform as a second-rank polar tensor under symmetry operations that interchange the coupled nuclei and may be called an anti-tensor. New rules are derived and illustrated by simple molecular models.
An introduction to non-Abelian discrete symmetries for particle physicists
Ishimori, Hajime; Ohki, Hiroshi; Okada, Hiroshi; Shimizu, Yusuke; Tanimoto, Morimitsu
2012-01-01
These lecture notes provide a tutorial review of non-Abelian discrete groups and show some applications to issues in physics where discrete symmetries constitute an important principle for model building in particle physics. While Abelian discrete symmetries are often imposed in order to control couplings for particle physics - in particular model building beyond the standard model - non-Abelian discrete symmetries have been applied to understand the three-generation flavor structure in particular. Indeed, non-Abelian discrete symmetries are considered to be the most attractive choice for the flavor sector: model builders have tried to derive experimental values of quark and lepton masses, and mixing angles by assuming non-Abelian discrete flavor symmetries of quarks and leptons, yet, lepton mixing has already been intensively discussed in this context, as well. The possible origins of the non-Abelian discrete symmetry for flavors is another topic of interest, as they can arise from an underlying theory -...
Variational symmetries and conservation laws of the coupled Maxwell-Dirac equations
Fliss, Jackson; Menon, Balraj
2012-03-01
The role of symmetry groups has become increasing important in the study of modern physics. The theorems of Emmy Noether link conservation laws to symmetries of the action functional. Contact symmetries can be constructed from the invariance of the action under infinitesimal transformations that are dependent on the independent variables and the dependent variables. First-order generalized symmetries can be constructed by including the first derivatives of the dependent variables. In the case of the coupled Maxwell-Dirac equations, the independent variables and dependent variables are, respectively, the spacetime coordinates and the fields. In this talk I will review the familiar symmetries of field theory, as well as investigate the first-order generalized symmetries of the coupled Maxwell-Dirac equations. The local conservation laws associated with each of these, via the theorems of Noether, will be addressed as well.
Pan, Y; Nikitin, A M; Araizi, G K; Huang, Y K; Matsushita, Y; Naka, T; de Visser, A
2016-06-28
Recently it was demonstrated that Sr intercalation provides a new route to induce superconductivity in the topological insulator Bi2Se3. Topological superconductors are predicted to be unconventional with an odd-parity pairing symmetry. An adequate probe to test for unconventional superconductivity is the upper critical field, Bc2. For a standard BCS layered superconductor Bc2 shows an anisotropy when the magnetic field is applied parallel and perpendicular to the layers, but is isotropic when the field is rotated in the plane of the layers. Here we report measurements of the upper critical field of superconducting SrxBi2Se3 crystals (Tc = 3.0 K). Surprisingly, field-angle dependent magnetotransport measurements reveal a large anisotropy of Bc2 when the magnet field is rotated in the basal plane. The large two-fold anisotropy, while six-fold is anticipated, cannot be explained with the Ginzburg-Landau anisotropic effective mass model or flux flow induced by the Lorentz force. The rotational symmetry breaking of Bc2 indicates unconventional superconductivity with odd-parity spin-triplet Cooper pairs (Δ4-pairing) recently proposed for rhombohedral topological superconductors, or might have a structural nature, such as self-organized stripe ordering of Sr atoms.
Prediction of human eye fixations using symmetry
Kootstra, Gert; Schomaker, Lambert
2009-01-01
Humans are very sensitive to symmetry in visual patterns. Reaction time experiments show that symmetry is detected and recognized very rapidly. This suggests that symmetry is a highly salient feature. Existing computational models of saliency, however, have mainly focused on contrast as a measure of
Symmetry and electromagnetism. Simetria y electromagnetismo
Energy Technology Data Exchange (ETDEWEB)
Fuentes Cobas, L.E.; Font Hernandez, R.
1993-01-01
An analytical treatment of electrostatic and magnetostatic field symmetry, as a function of charge and current distribution symmetry, is proposed. The Newmann Principle, related to the cause-effect symmetry relation, is presented and applied to the characterization of simple configurations. (Author) 5 refs.
Generalized partial dynamical symmetry in nuclei.
Leviatan, A; Isacker, P Van
2002-11-25
We introduce the notion of a generalized partial dynamical-symmetry for which part of the eigenstates have part of the dynamical symmetry. This general concept is illustrated with the example of Hamiltonians with a partial dynamical O(6) symmetry in the framework of the interacting boson model. The resulting spectrum and electromagnetic transitions are compared with empirical data in 162Dy.
Partial Dynamical Symmetry in Deformed Nuclei
International Nuclear Information System (INIS)
Leviatan, A.
1996-01-01
We discuss the notion of partial dynamical symmetry in relation to nuclear spectroscopy. Explicit forms of Hamiltonians with partial SU(3) symmetry are presented in the framework of the interacting boson model of nuclei. An analysis of the resulting spectrum and electromagnetic transitions demonstrates the relevance of such partial symmetry to the spectroscopy of axially deformed nuclei. copyright 1996 The American Physical Society
Simultaneous occurrence of distinct symmetries in nuclei
International Nuclear Information System (INIS)
Leviatan, A.
2016-01-01
We show that distinct emergent symmetries, such as partial dynamical symmetry and quasi dynamical symmetry, can occur simultaneously in the same or different eigenstates of the Hamiltonian. Implications for nuclear spectroscopy in the rare-earth region and for first-order quantum phase transitions between spherical and deformed shapes, are considered. (paper)
Generalized partial dynamical symmetry in nuclei
International Nuclear Information System (INIS)
Leviatan, A.; Isacker, P. van
2002-01-01
We introduce the notion of a generalized partial dynamical-symmetry for which part of the eigenstates have part of the dynamical symmetry. This general concept is illustrated with the example of Hamiltonians with a partial dynamical O(6) symmetry in the framework of the interacting boson model. The resulting spectrum and electromagnetic transitions are compared with empirical data in Dy 162
Partial Dynamical Symmetry in Deformed Nuclei
Energy Technology Data Exchange (ETDEWEB)
Leviatan, A. [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)
1996-07-01
We discuss the notion of partial dynamical symmetry in relation to nuclear spectroscopy. Explicit forms of Hamiltonians with partial SU(3) symmetry are presented in the framework of the interacting boson model of nuclei. An analysis of the resulting spectrum and electromagnetic transitions demonstrates the relevance of such partial symmetry to the spectroscopy of axially deformed nuclei. {copyright} {ital 1996 The American Physical Society.}
Involution symmetries and the PMNS matrix
Indian Academy of Sciences (India)
Palash B Pal
2017-10-09
Oct 9, 2017 ... approach, advocated first by Lam [1], one starts by look- ing at the symmetries of the low-energy Lagrangian, and tries to see which group can contain these symmetries. The bigger symmetry might then determine the PMNS matrix, or at least some information about its elements. In this paper, we are going ...
Symmetry realization of texture zeros
International Nuclear Information System (INIS)
Grimus, W.; Joshipura, A.S.; Lavoura, L.; Tanimoto, M.
2004-01-01
We show that it is possible to enforce texture zeros in arbitrary entries of the fermion mass matrices by means of Abelian symmetries; in this way, many popular mass-matrix textures find a symmetry justification. We propose two alternative methods which allow one to place zeros in any number of elements of the mass matrices that one wants. They are applicable simultaneously in the quark and lepton sectors. They are also applicable in grand unified theories. The number of scalar fields required by our methods may be large; still, in many interesting cases this number can be reduced considerably. The larger the desired number of texture zeros is, the simpler are the models which reproduce the texture. (orig.)
Gauging the graded conformal group with unitary internal symmetries
International Nuclear Information System (INIS)
Ferrara, S.; Townsend, P.K.; Kaku, M.; Nieuwenhuizen Van, P.
1977-06-01
Gauge theories for extended SU(N) conformal supergravity are constructed which are invariant under local scale, chiral, proper conformal, supersymmetry and internal SU(N) transformations. The relation between intrinsic parity and symmetry properties of their generators of the internal vector mesons is established. These theories contain no cosmological constants, but technical problems inherent to higher derivative actions are pointed out
Through the Looking Glass: Symmetry in Behavioral Principles?
Marr, M. Jackson
2006-01-01
In this article, the author discusses and presents seven possibilities that describe how symmetry principles are reflected in behavior analysis. First, if there are apparently no functional distinctions to be made between positive and negative reinforcement, then reinforcer effectiveness (by various measures) is invariant under a simple inversion…
Symmetry versus repetition in cyclopean vision: a microgenetic analysis
Treder, M.S.; Helm, P.A. van der
2007-01-01
In four experiments, participants had to detect symmetries or repetitions distributed over two depth planes, under presentation times of 200-1000 ms. Structurally corresponding elements were placed in different planes (Experiments la and 1b) or in the same plane (Experiments 2a and 2b). Results
Enantioselective Symmetry Breaking Directed by the Order of Process Steps
Noorduin, Wim L.; Meekes, Hugo; Enckevort, Willem J.P. van; Kaptein, Bernard; Kellogg, Richard M.; Vlieg, Elias
2010-01-01
Going forward in reverse: The configuration of the product of grinding-induced symmetry breaking can be controlled simply by the order in which the different reaction-mixture components are combined. The underlying mechanism is based on a subtle balance between enantioselective crystal growth and
Hidden symmetry of the quantum Calogero-Moser system
DEFF Research Database (Denmark)
Kuzentsov, Vadim b
1996-01-01
The hidden symmetry of the quantum Calogero-Moser system with an inverse-square potential is algebraically demonstrated making use of Dunkl's operators. We find the underlying algebra explaining the super-integrability phenomenon for this system. Applications to related multi-variable Bessel...... functions are also discussed....
The degenerate C. Neumann system I: symmetry reduction and convexity
Dullin, H.R.; Hanssmann, H.|info:eu-repo/dai/nl/107757435
2012-01-01
The C. Neumann system describes a particle on the sphere Sn under the influence of a potential that is a quadratic form. We study the case that the quadratic form has ` +1 distinct eigenvalues with multiplicity. Each group of m equal eigenvalues gives rise to an O(m )-symmetry in configuration
Symmetry and symmetry breaking in cancer: a foundational approach to the cancer problem.
Frost, J James; Pienta, Kenneth J; Coffey, Donald S
2018-02-20
Symmetry and symmetry breaking concepts from physics and biology are applied to the problem of cancer. Three categories of symmetry breaking in cancer are examined: combinatorial, geometric, and functional. Within these categories, symmetry breaking is examined for relevant cancer features, including epithelial-mesenchymal transition (EMT); tumor heterogeneity; tensegrity; fractal geometric and information structure; functional interaction networks; and network stabilizability and attack tolerance. The new cancer symmetry concepts are relevant to homeostasis loss in cancer and to its origin, spread, treatment and resistance. Symmetry and symmetry breaking could provide a new way of thinking and a pathway to a solution of the cancer problem.
Symmetries of the dual metrics
International Nuclear Information System (INIS)
Baleanu, D.
1998-01-01
The geometric duality between the metric g μν and a Killing tensor K μν is studied. The conditions were found when the symmetries of the metric g μν and the dual metric K μν are the same. Dual spinning space was constructed without introduction of torsion. The general results are applied to the case of Kerr-Newmann metric
Dual Symmetry in Gauge Theories
Koshkarov, A. L.
1997-01-01
Continuous dual symmetry in electrodynamics, Yang-Mills theory and gravitation is investigated. Dual invariant which leads to badly nonlinear motion equations is chosen as a Lagrangian of the pure classical dual nonlinear electrodynamics. In a natural manner some dual angle which is determined by the electromagnetic strengths at the point of the time-space appears in the model. Motion equations may well be interpreted as the equations of the standard Maxwell theory with source. Alternative in...
Chiral symmetry and nucleon structure
Energy Technology Data Exchange (ETDEWEB)
Holstein, B.R. (Massachusetts Univ., Amherst, MA (United States). Dept. of Physics and Astromony Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory)
1992-01-01
Recently it has been realized that significant tests of the validity of QCD are available in low energy experiments (E < 500 MeV) by exploiting the property of (broken) chiral symmetry. This technique has been highly developed in The Goldstone boson sector by the work of Gasser and Leutwyler. Application to the nucleon system is much more difficult and is now being carefully developed.
Models of electroweak symmetry breaking
Pomarol, Alex
2015-01-01
This chapter present models of electroweak symmetry breaking arising from strongly interacting sectors, including both Higgsless models and mechanisms involving a composite Higgs. These scenarios have also been investigated in the framework of five-dimensional warped models that, according to the AdS/CFT correspondence, have a four-dimensional holographic interpretation in terms of strongly coupled field theories. We explore the implications of these models at the LHC.
Soft pion theorem, asymptotic symmetry and new memory effect
Hamada, Yuta; Sugishita, Sotaro
2017-11-01
It is known that soft photon and graviton theorems can be regarded as the Ward-Takahashi identities of asymptotic symmetries. In this paper, we consider soft theorem for pions, i.e., Nambu-Goldstone bosons associated with a spontaneously broken axial symmetry. The soft pion theorem is written as the Ward-Takahashi identities of the S-matrix under asymptotic transformations. We investigate the asymptotic dynamics, and find that the conservation of charges generating the asymptotic transformations can be interpreted as a pion memory effect.
Superconformal Symmetry, Supergravity and Cosmology
Kallosh, Renata E; Linde, Andrei D; Van Proeyen, A; Kallosh, Renata; Kofman, Lev; Linde, Andrei; Proeyen, Antoine Van
2000-01-01
We introduce the general N=1 gauge theory superconformally coupled to supergravity. The theory has local SU(2,2|1) symmetry and no dimensional parameters. The superconformal origin of the Fayet-Iliopoulos terms is clarified. The phase of this theory with spontaneously broken conformal symmetry gives various formulations of N=1 supergravity interacting with matter, depending on the choice of the R-symmetry fixing. We have found that the locally superconformal theory is useful for describing the physics of the early universe with a conformally flat FRW metric. Few applications of superconformal theory to cosmology include the study of i) particle production after inflation, particularly the non-conformal helicity 1/2 states of gravitino, ii) the super-Higgs effect in cosmology and the derivation of the equations for the gravitino interacting with any number of chiral and vector multiplets in the gravitational background with varying scalar fields, iii) the weak coupling limit of supergravity and gravitino-golds...
Dark matter and global symmetries
Directory of Open Access Journals (Sweden)
Yann Mambrini
2016-09-01
Full Text Available General considerations in general relativity and quantum mechanics are known to potentially rule out continuous global symmetries in the context of any consistent theory of quantum gravity. Assuming the validity of such considerations, we derive stringent bounds from gamma-ray, X-ray, cosmic-ray, neutrino, and CMB data on models that invoke global symmetries to stabilize the dark matter particle. We compute up-to-date, robust model-independent limits on the dark matter lifetime for a variety of Planck-scale suppressed dimension-five effective operators. We then specialize our analysis and apply our bounds to specific models including the Two-Higgs-Doublet, Left–Right, Singlet Fermionic, Zee–Babu, 3-3-1 and Radiative See-Saw models. Assuming that (i global symmetries are broken at the Planck scale, that (ii the non-renormalizable operators mediating dark matter decay have O(1 couplings, that (iii the dark matter is a singlet field, and that (iv the dark matter density distribution is well described by a NFW profile, we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV–TeV, including the WIMP regime.
Entanglement entropy and nonabelian gauge symmetry
International Nuclear Information System (INIS)
Donnelly, William
2014-01-01
Entanglement entropy has proven to be an extremely useful concept in quantum field theory. Gauge theories are of particular interest, but for these systems the entanglement entropy is not clearly defined because the physical Hilbert space does not factor as a tensor product according to regions of space. Here we review a definition of entanglement entropy that applies to abelian and nonabelian lattice gauge theories. This entanglement entropy is obtained by embedding the physical Hilbert space into a product of Hilbert spaces associated to regions with boundary. The latter Hilbert spaces include degrees of freedom on the entangling surface that transform like surface charges under the gauge symmetry. These degrees of freedom are shown to contribute to the entanglement entropy, and the form of this contribution is determined by the gauge symmetry. We test our definition using the example of two-dimensional Yang–Mills theory, and find that it agrees with the thermal entropy in de Sitter space, and with the results of the Euclidean replica trick. We discuss the possible implications of this result for more complicated gauge theories, including quantum gravity. (paper)
Entanglement entropy and nonabelian gauge symmetry
Donnelly, William
2014-11-01
Entanglement entropy has proven to be an extremely useful concept in quantum field theory. Gauge theories are of particular interest, but for these systems the entanglement entropy is not clearly defined because the physical Hilbert space does not factor as a tensor product according to regions of space. Here we review a definition of entanglement entropy that applies to abelian and nonabelian lattice gauge theories. This entanglement entropy is obtained by embedding the physical Hilbert space into a product of Hilbert spaces associated to regions with boundary. The latter Hilbert spaces include degrees of freedom on the entangling surface that transform like surface charges under the gauge symmetry. These degrees of freedom are shown to contribute to the entanglement entropy, and the form of this contribution is determined by the gauge symmetry. We test our definition using the example of two-dimensional Yang-Mills theory, and find that it agrees with the thermal entropy in de Sitter space, and with the results of the Euclidean replica trick. We discuss the possible implications of this result for more complicated gauge theories, including quantum gravity.
Dimensional reduction, monopoles and dynamical symmetry breaking
Dolan, Brian P.; Szabo, Richard J.
2009-03-01
We consider SU(2)-equivariant dimensional reduction of Yang-Mills-Dirac theory on manifolds of the form M × Bbb CP1, with emphasis on the effects of non-trivial magnetic flux on Bbb CP1. The reduction of Yang-Mills fields gives a chain of coupled Yang-Mills-Higgs systems on M with a Higgs potential leading to dynamical symmetry breaking, as a consequence of the monopole fields. The reduction of SU(2)-symmetric fermions gives massless Dirac fermions on M transforming under the low-energy gauge group with Yukawa couplings, again as a result of the internal U(1) fluxes. The tower of massive fermionic Kaluza-Klein states also has Yukawa interactions and admits a natural SU(2)-equivariant truncation by replacing Bbb CP1 with a fuzzy sphere. In this approach it is possible to obtain exactly massless chiral fermions in the effective field theory with Yukawa interactions, without any further requirements. We work out the spontaneous symmetry breaking patterns and determine the complete physical particle spectrum in a number of explicit examples.
Compact localized states and flat bands from local symmetry partitioning
Röntgen, M.; Morfonios, C. V.; Schmelcher, P.
2018-01-01
We propose a framework for the connection between local symmetries of discrete Hamiltonians and the design of compact localized states. Such compact localized states are used for the creation of tunable, local symmetry-induced bound states in an energy continuum and flat energy bands for periodically repeated local symmetries in one- and two-dimensional lattices. The framework is based on very recent theorems in graph theory which are here employed to obtain a block partitioning of the Hamiltonian induced by the symmetry of a given system under local site permutations. The diagonalization of the Hamiltonian is thereby reduced to finding the eigenspectra of smaller matrices, with eigenvectors automatically divided into compact localized and extended states. We distinguish between local symmetry operations which commute with the Hamiltonian, and those which do not commute due to an asymmetric coupling to the surrounding sites. While valuable as a computational tool for versatile discrete systems with locally symmetric structures, the approach provides in particular a unified, intuitive, and efficient route to the flexible design of compact localized states at desired energies.
The Symmetry of Optical Field in Photonic Crystal Fibre with Trigonal Symmetry
Directory of Open Access Journals (Sweden)
Ivan Turek
2006-01-01
Full Text Available Some photographs of intensity of optical field of a photonic crystal fibre are presented in the contribution. Presented photographs document that the symmetry of photonic crystal creating the cladding of fibre is manifested in the symmetry of distribution of the optical field intensity. In case when more modes are excited in the fibre the symmetry of the generated field can be different as the symmetry of the eventual modes. How the symmetry may be changed is illustrated by amodel example.
A custodial symmetry for $Zb\\overline{\\b}$
Agashe, K; Rold, L D; Pomarol, A; Agashe, Kaustubh; Contino, Roberto; Rold, Leandro Da; Pomarol, Alex
2006-01-01
We show that a subgroup of the custodial symmetry O(3) that protects delta rho from radiative corrections can also protect the Zbb coupling. This allows one to build models of electroweak symmetry breaking, such as Higgsless, Little Higgs or 5D composite Higgs models, that are safe from corrections to Z-> bb. We show that when this symmetry protects Zbb it cannot simultaneously protect Ztt and Wtb. Therefore one can expect to measure sizable deviations from the SM predictions of these couplings at future collider experiments. We also show under what circumstances Zb_R b_R can receive corrections in the right direction to explain the anomaly in the LEP/SLD forward-backward asymmetry A^b_{FB}.
Demonstration of SU(2)-symmetry by neutron interferometry
International Nuclear Information System (INIS)
Rauch, H.; Zeilinger, A.
1981-01-01
Neutron interferometry provides a direct test of the 4π-symmetry of a fermion wave function. The experiments performed with perfect crystal interferometers to demonstrate that SU(2)-symmetry property are reviewed. The measured periodicity value of 716.8 +- 3.8 degrees, which is the most precise one obtained up to now, is in good agreement with theoretical prediction. Effects are discussed which may give rise to deviations of the experimental result from the 4π value. Furthermore, an account of epistemological aspects is given relating to the question of the operational applicability of the term rotation in the interpretation of the experiments. Finally, proposals for new, more precise, experiments are made. Some of these experiments may have particular relevance in the context of considerations of a breaking of SU(2) symmetry under strong interaction
Robust symmetry-protected metrology with the Haldane phase
Bartlett, Stephen D.; Brennen, Gavin K.; Miyake, Akimasa
2018-01-01
We propose a metrology scheme that is made robust to a wide range of noise processes by using the passive, error-preventing properties of symmetry-protected topological phases. The so-called fractionalized edge mode of an antiferromagnetic Heisenberg spin-1 chain in a rotationally- symmetric Haldane phase can be used to measure the direction of an unknown electric field, by exploiting the way in which the field direction reduces the symmetry of the chain. Specifically, the direction (and when supplementing with a known background field, also the strength) of the field is registered in the holonomy under an adiabatic sensing protocol, and the degenerate fractionalized edge mode is protected through this process by the remaining reduced symmetry. We illustrate the scheme with respect to a potential realization by Rydberg dressed atoms.
Dynamical study of symmetries: breaking and restauration
International Nuclear Information System (INIS)
Schuck, P.
1986-09-01
First symmetry breaking (spontaneous) is explained and the physical implication discussed for infinite systems. The relation with phase transitions is indicated. Then the specific aspects of symmetry breaking in finite systems is treated and illustrated in detail for the case of translational invariance with the help of an oversimplified but exactly solvable model. The method of projection (restauration of symmetry) is explained for the static case and also applied to the model. Symmetry breaking in the dynamical case and for instance the notion of a soft mode responsible for the symmetry breaking is discussed in the case of superfluidity and another exactly solvable model is introduced. The Goldstone mode is treated in detail. Some remarks on analogies with the breaking of chiral symmetry are made. Some recent developments in the theory of symmetry restauration are briefly outlined [fr
International Nuclear Information System (INIS)
Acik, Oe; Ertem, Ue; Vercin, A; Oender, M
2009-01-01
It has been shown that, for all dimensions and signatures, the most general first-order linear symmetry operators for the Dirac equation including interaction with Maxwell field in a curved background are given in terms of Killing-Yano (KY) forms. As a general gauge invariant condition it is found that among all KY forms of the underlying (pseudo) Riemannian manifold, only those which Clifford commute with the Maxwell field take part in the symmetry operator. It is also proved that associated with each KY form taking part in the symmetry operator, one can define a quadratic function of velocities which is a geodesic invariant as well as a constant of motion for the classical trajectory. Some geometrical and physical implications of the existence of KY forms are also elucidated.
Energy Technology Data Exchange (ETDEWEB)
Castillo, Andres [Universidad Nacional de Colombia, Sede Bogota, Departamento de Fisica, Facultad de Ciencias, Bogota (Colombia); Delgado, Rafael L.; Dobado, Antonio; Llanes-Estrada, Felipe J. [Universidad Complutense de Madrid, Departamento de Fisica Teorica I, Madrid (Spain)
2017-07-15
By considering a non-linear electroweak chiral Lagrangian, including the Higgs, coupled to heavy quarks, and the equivalence theorem, we compute the one-loop scattering amplitudes W{sup +}W{sup -} → t anti t, ZZ → t anti t and hh → t anti t (in the regime M{sub t}{sup 2}/v{sup 2} << √(s)M{sub t}/v{sup 2} << s/v{sup 2} and to NLO in the effective theory). We calculate the scalar partial-wave helicity amplitudes which allow us to check unitarity at the perturbative level in both M{sub t}/v and s/v. As with growing energy perturbative unitarity deteriorates, we also introduce a new unitarization method with the right analytical behavior on the complex s-plane and that can support poles on the second Riemann sheet to describe resonances in terms of the Lagrangian couplings. Thus we have achieved a consistent phenomenological description of any resonant t anti t production that may be enhanced by a possible strongly interacting electroweak symmetry breaking sector. (orig.)
Luis F Cuñado, Jose; Pedrosa, Javier; Ajejas, Fernando; Perna, Paolo; Miranda, Rodolfo; Camarero, Julio
2017-10-11
Angle- and temperature-dependent vectorial magnetometry measurements are necessary to disentangle the effective magnetic symmetry in magnetic nanostructures. Here we present a detailed study on an Fe(1 0 0) thin film system with competing collinear biaxial (four-fold symmetry) and uniaxial (two-fold) magnetic anisotropies, carried out with our recently developed full angular/broad temperature range/vectorial-resolved magneto-optical Kerr effect magnetometer, named TRISTAN. The data give direct views on the angular and temperature dependence of the magnetization reversal pathways, from which characteristic axes, remanences, critical fields, domain wall types, and effective magnetic symmetry are obtained. In particular, although the remanence shows four-fold angular symmetry for all investigated temperatures (15 K-400 K), the critical fields show strong temperature and angular dependencies and the reversal mechanism changes for specific angles at a given (angle-dependent) critical temperature, showing signatures of an additional collinear two-fold symmetry. This symmetry-breaking is more relevant as temperature increases to room temperature. It originates from the competition between two anisotropy contributions with different symmetry and temperature evolution. The results highlight the importance of combining temperature and angular studies, and the need to look at different magnetic parameters to unravel the underlying magnetic symmetries and temperature evolutions of the symmetry-breaking effects in magnetic nanostructures.
Reflection symmetry-integrated image segmentation.
Sun, Yu; Bhanu, Bir
2012-09-01
This paper presents a new symmetry-integrated region-based image segmentation method. The method is developed to obtain improved image segmentation by exploiting image symmetry. It is realized by constructing a symmetry token that can be flexibly embedded into segmentation cues. Interesting points are initially extracted from an image by the SIFT operator and they are further refined for detecting the global bilateral symmetry. A symmetry affinity matrix is then computed using the symmetry axis and it is used explicitly as a constraint in a region growing algorithm in order to refine the symmetry of the segmented regions. A multi-objective genetic search finds the segmentation result with the highest performance for both segmentation and symmetry, which is close to the global optimum. The method has been investigated experimentally in challenging natural images and images containing man-made objects. It is shown that the proposed method outperforms current segmentation methods both with and without exploiting symmetry. A thorough experimental analysis indicates that symmetry plays an important role as a segmentation cue, in conjunction with other attributes like color and texture.
Bootstrapping 3D fermions with global symmetries
Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David
2018-01-01
We study the conformal bootstrap for 4-point functions of fermions 〈 ψ i ψ j ψ k ψ ℓ 〉 in parity-preserving 3d CFTs, where ψ i transforms as a vector under an O( N ) global symmetry. We compute bounds on scaling dimensions and central charges, finding features in our bounds that appear to coincide with the O( N ) symmetric Gross-Neveu-Yukawa fixed points. Our computations are in perfect agreement with the 1 /N expansion at large N and allow us to make nontrivial predictions at small N . For values of N for which the Gross-Neveu-Yukawa universality classes are relevant to condensed-matter systems, we compare our results to previous analytic and numerical results.
Horizontal symmetries for the supersymmetric flavor problem
Pomarol, A; Pomarol, Alex; Tommasini, Daniele
1996-01-01
The heaviness of the third family fermions and the experimental absence of large flavor violating processes suggest, in supersymmetric theories, that the three families belong to a 2+1 representation of a horizontal symmetry G_H. In this framework, we discuss a class of models based on the group U(2) that describe the fermion flavor structure and are compatible with an underlying GUT. We study the phenomenology of these models and focus on two interesting scenarios: In the first one, the first and second family scalars are assumed to be heavier than the weak scale allowing for complex soft supersymmetry breaking terms. In the second one, all the CP-violating phases are assumed to be small. Both scenarios present a rich phenomenology in agreement with constraints from flavor violating processes and electric dipole moments.
The elliptic genus and Hidden symmetry
International Nuclear Information System (INIS)
Jaffe, A.
2001-01-01
We study the elliptic genus (a partition function) in certain interacting, twist quantum field theories. Without twists, these theories have N=2 supersymmetry. The twists provide a regularization, and also partially break the supersymmetry. In spite of the regularization, one can establish a homotopy of the elliptic genus in a coupling parameter. Our construction relies on a priori estimates and other methods from constructive quantum field theory; this mathematical underpinning allows us to justify evaluating the elliptic genus at one endpoint of the homotopy. We obtain a version of Witten's proposed formula for the elliptic genus in terms of classical theta functions. As a consequence, the elliptic genus has a hidden SL(2,Z) symmetry characteristic of conformal theory, even though the underlying theory is not conformal. (orig.)
Infrared modification of gravity from conformal symmetry
Gegenberg, Jack; Rahmati, Shohreh; Seahra, Sanjeev S.
2016-03-01
We reconsider a gauge theory of gravity in which the gauge group is the conformal group SO(4,2), and the action is of the Yang-Mills form, quadratic in the curvature. The resulting gravitational theory exhibits local conformal symmetry and reduces to Weyl-squared gravity under certain conditions. When the theory is linearized about flat spacetime, we find that matter which couples to the generators of special conformal transformations reproduces Newton's inverse square law. Conversely, matter which couples to generators of translations induces a constant and possibly repulsive force far from the source, which may be relevant for explaining the late-time acceleration of the Universe. The coupling constant of the theory is dimensionless, which means that it is potentially renormalizable.
Statistical symmetries of the Lundgren-Monin-Novikov hierarchy.
Wacławczyk, Marta; Staffolani, Nicola; Oberlack, Martin; Rosteck, Andreas; Wilczek, Michael; Friedrich, Rudolf
2014-07-01
It was shown by Oberlack and Rosteck [Discr. Cont. Dyn. Sys. S, 3, 451 2010] that the infinite set of multipoint correlation (MPC) equations of turbulence admits a considerable extended set of Lie point symmetries compared to the Galilean group, which is implied by the original set of equations of fluid mechanics. Specifically, a new scaling group and an infinite set of translational groups of all multipoint correlation tensors have been discovered. These new statistical groups have important consequences for our understanding of turbulent scaling laws as they are essential ingredients of, e.g., the logarithmic law of the wall and other scaling laws, which in turn are exact solutions of the MPC equations. In this paper we first show that the infinite set of translational groups of all multipoint correlation tensors corresponds to an infinite dimensional set of translations under which the Lundgren-Monin-Novikov (LMN) hierarchy of equations for the probability density functions (PDF) are left invariant. Second, we derive a symmetry for the LMN hierarchy which is analogous to the scaling group of the MPC equations. Most importantly, we show that this symmetry is a measure of the intermittency of the velocity signal and the transformed functions represent PDFs of an intermittent (i.e., turbulent or nonturbulent) flow. Interesting enough, the positivity of the PDF puts a constraint on the group parameters of both shape and intermittency symmetry, leading to two conclusions. First, the latter symmetries may no longer be Lie group as under certain conditions group properties are violated, but still they are symmetries of the LMN equations. Second, as the latter two symmetries in its MPC versions are ingredients of many scaling laws such as the log law, the above constraints implicitly put weak conditions on the scaling parameter such as von Karman constant κ as they are functions of the group parameters. Finally, let us note that these kind of statistical symmetries are
Hexagonal response matrix using symmetries
International Nuclear Information System (INIS)
Gotoh, Y.
1991-01-01
A response matrix for use in core calculations for nuclear reactors with hexagonal fuel assemblies is presented. It is based on the incoming currents averaged over the half-surface of a hexagonal node by applying symmetry theory. The boundary conditions of the incoming currents on the half-surface of the node are expressed by a complete set of orthogonal vectors which are constructed from symmetrized functions. The expansion coefficients of the functions are determined by the boundary conditions of incoming currents. (author)
Crossing symmetry in Alpha space
CERN. Geneva
2017-01-01
The conformal bootstrap program aims to catalog all conformal field theories (second-order phase transitions) in D dimensions. Despite its ambitious scope much progress has been made over the past decade, e.g. in computing critical exponents for the 3D O(N) models to high precision. At this stage, analytic methods to explore the CFT landscape are not as well developed. In this talk I will describe a new mathematical framework for the bootstrap known as "alpha space", which reduces crossing symmetry to a set of integral equations. Based on arXiv:1702.08471 (with Balt van Rees) and arXiv:1703.08159.
Symmetries applied to reactor calculations
International Nuclear Information System (INIS)
Makai, M.
1982-03-01
Three problems of a reactor-calculational model are discussed with the help of symmetry considerations. 1/ A coarse mesh method applicable to any geometry is derived. It is shown that the coarse mesh solution can be constructed from a few standard boundary value problems. 2/ A second stage homogenization method is given based on the Bloch theorem. This ensures the continuity of the current and the flux at the boundary. 3/ The validity of the micro-macro separation is shown for heterogeneous lattices. A formula for the neutron density is derived for cell homogenization. (author)
Effective operators and extended symmetry
Frère, J M; Moreno, J M; Orloff, J
1994-01-01
In this note we expand on our previous study of the implications of LEP1 results for future colliders. We extend the effective operator-based analysis of De R\\'ujula et al. to a larger symmetry group, and show at which cost their expectations can be relaxed. Of particular interest to experiment is a rephrasing of our previous results in terms of the Renard et al. parametrization for the gauge boson self-couplings (slightly extended to include $\\delta g_{\\gamma}$). We suggest the use of a ($\\delta g_{\\gamma}$, $\\delta g_{Z}$) plot to confront the expectations of various models.
Renormalization Method and Mirror Symmetry
Directory of Open Access Journals (Sweden)
Si Li
2012-12-01
Full Text Available This is a brief summary of our works [arXiv:1112.4063, arXiv:1201.4501] on constructing higher genus B-model from perturbative quantization of BCOV theory. We analyze Givental's symplectic loop space formalism in the context of B-model geometry on Calabi-Yau manifolds, and explain the Fock space construction via the renormalization techniques of gauge theory. We also give a physics interpretation of the Virasoro constraints as the symmetry of the classical BCOV action functional, and discuss the Virasoro constraints in the quantum theory.
Dual symmetry in gauge theories
International Nuclear Information System (INIS)
Koshkarov, A.L.
1997-01-01
Continuous dual symmetry in electrodynamics, Yang-Mills theory and gravitation is investigated. Dual invariant which leads to badly nonlinear motion equations is chosen as a Lagrangian of the pure classical dual nonlinear electrodynamics. In a natural manner some dual angle which is determined by the electromagnetic strengths at the point of the time-space appears in the model. Motion equations may well be interpreted as the equations of the standard Maxwell theory with source. Alternative interpretation is the quasi-Maxwell linear theory with magnetic charge. Analogous approach is possible in the Yang-Mills theory. In this case the dual-invariant non-Abelian theory motion equations possess the same instanton solutions as the conventional Yang-Mills equations have. An Abelian two-parameter dual group is found to exist in gravitation. Irreducible representations have been obtained: the curvature tensor was expanded into the sum of twice anti-self-dual and self-dual parts. Gravitational instantons are defined as (real )solutions to the usual duality equations. Central symmetry solutions to these equations are obtained. The twice anti-self-dual part of the curvature tensor may be used for introduction of new gravitational equations generalizing Einstein''s equations. However, the theory obtained reduces to the conformal-flat Nordstroem theory
Extreme lattices: symmetries and decorrelation
Andreanov, A.; Scardicchio, A.; Torquato, S.
2016-11-01
We study statistical and structural properties of extreme lattices, which are the local minima in the density landscape of lattice sphere packings in d-dimensional Euclidean space {{{R}}d} . Specifically, we ascertain statistics of the densities and kissing numbers as well as the numbers of distinct symmetries of the packings for dimensions 8 through 13 using the stochastic Voronoi algorithm. The extreme lattices in a fixed dimension of space d (d≥slant 8 ) are dominated by typical lattices that have similar packing properties, such as packing densities and kissing numbers, while the best and the worst packers are in the long tails of the distribution of the extreme lattices. We also study the validity of the recently proposed decorrelation principle, which has important implications for sphere packings in general. The degree to which extreme-lattice packings decorrelate as well as how decorrelation is related to the packing density and symmetry of the lattices as the space dimension increases is also investigated. We find that the extreme lattices decorrelate with increasing dimension, while the least symmetric lattices decorrelate faster.
Discrete symmetries with neutral mesons
Bernabéu, José
2018-01-01
Symmetries, and Symmetry Breakings, in the Laws of Physics play a crucial role in Fundamental Science. Parity and Charge Conjugation Violations prompted the consideration of Chiral Fields in the construction of the Standard Model, whereas CP-Violation needed at least three families of Quarks leading to Flavour Physics. In this Lecture I discuss the Conceptual Basis and the present experimental results for a Direct Evidence of Separate Reversal-in-Time T, CP and CPT Genuine Asymmetries in Decaying Particles like Neutral Meson Transitions, using Quantum Entanglement and the Decay as a Filtering Measurement. The eight transitions associated to the Flavour-CP eigenstate decay products of entangled neutral mesons have demonstrated with impressive significance a separate evidence of TRV and CPV in Bd-physics, whereas a CPTV asymmetry shows a 2σ effect interpreted as an upper limit. Novel CPTV observables are discussed for K physics at KLOE-2, including the difference between the semileptonic asymmetries from KL and KS, the ratios of double decay rate Intensities to Flavour-CP eigenstate decay products and the ω-effect. Their observation would lead to a change of paradigm beyond Quantum Field Theory, however there is nothing in Quantum Mechanics forbidding CPTV.
Flavor symmetries and fermion masses
International Nuclear Information System (INIS)
Rasin, A.
1994-04-01
We introduce several ways in which approximate flavor symmetries act on fermions and which are consistent with observed fermion masses and mixings. Flavor changing interactions mediated by new scalars appear as a consequence of approximate flavor symmetries. We discuss the experimental limits on masses of the new scalars, and show that the masses can easily be of the order of weak scale. Some implications for neutrino physics are also discussed. Such flavor changing interactions would easily erase any primordial baryon asymmetry. We show that this situation can be saved by simply adding a new charged particle with its own asymmetry. The neutrality of the Universe, together with sphaleron processes, then ensures a survival of baryon asymmetry. Several topics on flavor structure of the supersymmetric grand unified theories are discussed. First, we show that the successful predictions for the Kobayashi-Maskawa mixing matrix elements, V ub /V cb = √m u /m c and V td /V ts = √m d /m s , are a consequence of a large class of models, rather than specific properties of a few models. Second, we discuss how the recent observation of the decay β → sγ constrains the parameter space when the ratio of the vacuum expectation values of the two Higgs doublets, tanΒ, is large. Finally, we discuss the flavor structure of proton decay. We observe a surprising enhancement of the branching ratio for the muon mode in SO(10) models compared to the same mode in the SU(5) model
Lorentz Symmetry Breaking in Quantum Electrodynamics
Oliveira, D. M.
2010-01-01
In this dissertation, we study the implications generated by the Lorentz breaking symmetry in quantum electrodynamics. We analyze fermions interacting with an electromagnetic field in the contexts of quantum mechanics and make radiative corrections. In quantum mechanics, the terms of the Lorentz breaking symmetry were treated as perturbations to the Dirac equation, and their expected values were obtained in a vacuum. In the radiative corrections, the Lorentz breaking symmetry was introduced i...
Symmetries in geology and geophysics
Turcotte, Donald L.; Newman, William I.
1996-01-01
Symmetries have played an important role in a variety of problems in geology and geophysics. A large fraction of studies in mineralogy are devoted to the symmetry properties of crystals. In this paper, however, the emphasis will be on scale-invariant (fractal) symmetries. The earth’s topography is an example of both statistically self-similar and self-affine fractals. Landforms are also associated with drainage networks, which are statistical fractal trees. A unive...
Discrete symmetries and coset space dimensional reduction
International Nuclear Information System (INIS)
Kapetanakis, D.; Zoupanos, G.
1989-01-01
We consider the discrete symmetries of all the six-dimensional coset spaces and we apply them in gauge theories defined in ten dimensions which are dimensionally reduced over these homogeneous spaces. Particular emphasis is given in the consequences of the discrete symmetries on the particle content as well as on the symmetry breaking a la Hosotani of the resulting four-dimensional theory. (orig.)
The near-symmetry of proteins.
Bonjack-Shterengartz, Maayan; Avnir, David
2015-04-01
The majority of protein oligomers form clusters which are nearly symmetric. Understanding of that imperfection, its origins, and perhaps also its advantages requires the conversion of the currently used vague qualitative descriptive language of the near-symmetry into an accurate quantitative measure that will allow to answer questions such as: "What is the degree of symmetry deviation of the protein?," "how do these deviations compare within a family of proteins?," and so on. We developed quantitative methods to answer this type of questions, which are capable of analyzing the whole protein, its backbone or selected portions of it, down to comparison of symmetry-related specific amino-acids, and which are capable of visualizing the various levels of symmetry deviations in the form of symmetry maps. We have applied these methods on an extensive list of homomers and heteromers and found that apparently all proteins never reach perfect symmetry. Strikingly, even homomeric protein clusters are never ideally symmetric. We also found that the main burden of symmetry distortion is on the amino-acids near the symmetry axis; that it is mainly the more hydrophilic amino-acids that take place in symmetry-distortive interactions; and more. The remarkable ability of heteromers to preserve near-symmetry, despite the different sequences, was also shown and analyzed. The comprehensive literature on the suggested advantages symmetric oligomerizations raises a yet-unsolved key question: If symmetry is so advantageous, why do proteins stop shy of perfect symmetry? Some tentative answers to be tested in further studies are suggested in a concluding outlook. © 2014 Wiley Periodicals, Inc.
Hall, Lawrence J.; Nomura, Yasunori; Pierce, Aaron
2002-01-01
A natural origin for the mu and B parameters of weak scale supersymmetric theories is proposed, applicable to any supersymmetry breaking messenger scale between the weak and Planck scales. Although quite general, it requires supersymmetric interactions to respect an R symmetry with definite quantum numbers, and it requires some new scale of symmetry breaking. The required R symmetry distinguishes the Higgs boson from the sneutrino, preserves baryon number in operators of dimension four and fi...
The Serret-Andoyer Formalism in Rigid-Body Dynamics: 1. Symmetries and Perturbations
National Research Council Canada - National Science Library
Gurfil, P; Elipe, A; Tangren, W; Efroimsky, M
2007-01-01
.... As is well known, the problem of unsupported and unperturbed rigid rotator can be reduced. The availability of this reduction is offered by the underlying symmetry, that stems from conservation of the angular momentum and rotational kinetic energy...
Topology and symmetries in gyroscopic lattices
Nash, Lisa M.; Mitchell, Noah P.; Turner, Ari M.; Irvine, William T. M.
Mechanical metamaterials - including static frames, coupled pendula, and gyroscopic lattices - can support topologically protected vibrational behavior. In particular, fast-spinning gyroscopes pinned on a honeycomb lattice break time-reversal symmetry and exhibit topologically protected, one-way edge modes. As in electronic systems, symmetries play an important role in determining the topological properties of the material. Here we present the roles of inversion symmetry, local coordination number, and time reversal symmetry on the band topology of gyroscopic metamaterials with several lattice geometries.
Measure of departure from marginal point-symmetry for two-way contingency tables
Directory of Open Access Journals (Sweden)
Kouji Yamamoto
2013-05-01
Full Text Available For two-way contingency tables, Tomizawa (1985 considered the point-symmetry and marginal point-symmetry models, and Tomizawa, Yamamoto and Tahata (2007 proposed a measure to represent the degree of departure from point-symmetry. The present paper proposes a measure to represent the degree of departure from marginal pointsymmetry for two-way tables. The proposed measure is expressed by using Cressie-Read power-divergence or Patil-Taillie diversity index. This measure would be useful for comparing the degrees of departure from marginal point-symmetry in several tables. The relationship between the degree of departure from marginal point-symmetry and the measure is shown when it is reasonable to assume underlying bivariate normal distribution. Examples are shown.
Long-range order and symmetry breaking in projected entangled-pair state models
Rispler, Manuel; Duivenvoorden, Kasper; Schuch, Norbert
2015-10-01
Projected entangled-pair states (PEPS) provide a framework for the construction of models where a single tensor gives rise to both Hamiltonian and ground state wave function on the same footing. A key problem is to characterize the behavior which emerges in the system in terms of the properties of the tensor, and thus of the Hamiltonian. In this paper, we consider PEPS models with Z2 on-site symmetry and study the occurrence of long-range order and spontaneous symmetry breaking. We show how long-range order is connected to a degeneracy in the spectrum of the PEPS transfer operator, and how the latter gives rise to spontaneous symmetry breaking under perturbations. We provide a succinct characterization of the symmetry-broken states in terms of the PEPS tensor, and find that using the symmetry-broken states we can derive a local entanglement Hamiltonian, thereby restoring locality of the entanglement Hamiltonian for all gapped phases.
CIneGlobe Festival 2015 - Opening Night with projection of Symmetry
Brice, Maximilien
2015-01-01
Swiss Avant-PremièreSymmetry, by Ruben Van Leer (documentary, 28’, EN/ST FR) followed by Symmetry Unravelled, by Juliette Stevens (documentary, 23’, EN/ST FR) in the presence of the directors. Symmetry is a dance & opera film, in which CERN researcher Lukas is thrown off balance, while working on the theory of everything and the smallest particle. Through Claron’s singing he rediscovers love, in an endless landscape. She takes him back to the moment before the big bang, when time didn’t exist; a love with no end… Symmetry Unravelled shows the making of process of Symmetry. It’s filmed deep under the ground inside CERN and it’s detectors and far above sea level on the endless Bolivian miniral landscape Uyuni. Collaborating artists and renowned physicists unravel the relationship between art and science.
PREFACE: Symmetries in Science XV
Schuch, Dieter; Ramek, Michael
2012-08-01
Logo Bregenz, the peaceful monastery of Mehrerau and the Opera on the Floating Stage again provided the setting for the international symposium 'Symmetries in Science'. The series which has been running for more than 30 years brings together leading theoreticians whose area of research is, in one way or another, related to symmetry. Since 1992 the meeting took place biannually in Brengez until 2003. In 2009, with the endorsement of the founder, Professor Bruno Gruber, we succeeded in re-establishing the series without external funding. The resounding success of that meeting encouraged us to continue in 2011 and, following on the enthusiasm and positive feedback of the participants, we expect to continue in 2013. Yet again, our meeting in 2011 was very international in flavour and brought together some 30 participants representing 12 nationalities, half of them from countries outside the European Union (from New Zealand to Mexico, Russia to Israel). The broad spectrum, a mixture of experienced experts and highly-motivated newcomers, the intensive exchange of ideas in a harmonious and relaxed atmosphere and the resulting joint projects are probably the secrets of why this meeting is considered to be so special to its participants. At the resumption in 2009 some leading experts and younger scientists from economically weak countries were unable to attend due to the lack of financial resources. This time, with the very worthy and unbureaucratic support of the 'Vereinigung von Freunden und Förderern der J W Goethe-Universität Frankfurt am Main' (in short: 'Friends and Supporters of the Frankfurt University'), it was possible for all candidates to participate. In particular some young, inspired scientists had the chance of presenting their work to a very competent, but also friendly, audience. We wish to thank the 'Freunde und Förderer' for supporting Symmetries in Science XV. Almost all participants contributed to the publication of this Conference Proceedings. There
Nuclear probes of fundamental symmetries
International Nuclear Information System (INIS)
Adelberger, E.G.
1983-01-01
Nuclear experiments which probe the parity (P) and time-reversal (T) symmetries and lepton-number conservation are reviewed. The P-violating NN interaction, studied in the NN system and in light nuclei, provides an unique window on ΔS=0 hadronic weak processes. Results are in accord with expectations. Sensitive searches for T-violation via detailed balance, T-odd correlations in γ and β-decay, and a possible neutron electric dipole moment (EDM) are discussed. No T-violation is observed. The EDM limit is almost good enough to eliminate one of the leading theoretical explanations for CP violation. Experimental studies of double β-decay are reviewed. Although ββ nu nu decay has been convincingly detected in geochemical experiments there is no evidence for the lepton number violating ββ decay mode
Liu, Ke; Greitemann, Jonas; Pollet, Lode
2018-01-01
Polyhedral nematics are examples of exotic orientational phases that possess a complex internal symmetry, representing highly nontrivial ways of rotational symmetry breaking, and are subject to current experimental pursuits in colloidal and molecular systems. The classification of these phases has been known for a long time; however, their transitions to the disordered isotropic liquid phase remain largely unexplored, except for a few symmetries. In this work, we utilize a recently introduced non-Abelian gauge theory to explore the nature of the underlying nematic-isotropic transition for all three-dimensional polyhedral nematics. The gauge theory can readily be applied to nematic phases with an arbitrary point-group symmetry, including those where traditional Landau methods and the associated lattice models may become too involved to implement owing to a prohibitive order-parameter tensor of high rank or (the absence of) mirror symmetries. By means of exhaustive Monte Carlo simulations, we find that the nematic-isotropic transition is generically first-order for all polyhedral symmetries. Moreover, we show that this universal result is fully consistent with our expectation from a renormalization group approach, as well as with other lattice models for symmetries already studied in the literature. We argue that extreme fine tuning is required to promote those transitions to second-order ones. We also comment on the nature of phase transitions breaking the O(3 ) symmetry in general cases.
Flavor symmetries and fermion masses
Energy Technology Data Exchange (ETDEWEB)
Rasin, Andrija [Univ. of California, Berkeley, CA (United States)
1994-04-01
We introduce several ways in which approximate flavor symmetries act on fermions and which are consistent with observed fermion masses and mixings. Flavor changing interactions mediated by new scalars appear as a consequence of approximate flavor symmetries. We discuss the experimental limits on masses of the new scalars, and show that the masses can easily be of the order of weak scale. Some implications for neutrino physics are also discussed. Such flavor changing interactions would easily erase any primordial baryon asymmetry. We show that this situation can be saved by simply adding a new charged particle with its own asymmetry. The neutrality of the Universe, together with sphaleron processes, then ensures a survival of baryon asymmetry. Several topics on flavor structure of the supersymmetric grand unified theories are discussed. First, we show that the successful predictions for the Kobayashi-Maskawa mixing matrix elements, V_{ub}/V_{cb} = √m_{u}/m_{c} and V_{td}/V_{ts} = √m_{d}/m_{s}, are a consequence of a large class of models, rather than specific properties of a few models. Second, we discuss how the recent observation of the decay β → sγ constrains the parameter space when the ratio of the vacuum expectation values of the two Higgs doublets, tanβ, is large. Finally, we discuss the flavor structure of proton decay. We observe a surprising enhancement of the branching ratio for the muon mode in SO(10) models compared to the same mode in the SU(5) model.
Neutrino properties and fundamental symmetries
International Nuclear Information System (INIS)
Bowles, T.J.
1996-01-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). There are two components to this work. The first is a development of a new detection scheme for neutrinos. The observed deficit of neutrinos from the Sun may be due to either a lack of understanding of physical processes in the Sun or may be due to neutrinos oscillating from one type to another during their transit from the Sun to the Earth. The Sudbury Neutrino Observatory (SNO) is designed to use a water Cerenkov detector employing one thousand tonnes of heavy water to resolve this question. The ability to distinguish muon and tau neutrinos from electron neutrinos is crucial in order to carry out a model-independent test of neutrino oscillations. We describe a developmental exploration of a novel technique to do this using 3 He proportional counters. Such a method offers considerable advantages over the initially proposed method of using Cerenkov light from capture on NaCl in the SNO. The second component of this work is an exploration of optimal detector geometry for a time-reversal invariance experiment. The question of why time moves only in the forward direction is one of the most puzzling problems in modern physics. We know from particle physics measurements of the decay of kaons that there is a charge-parity symmetry that is violated in nature, implying time-reversal invariance violation. Yet, we do not understand the origin of the violation of this symmetry. To promote such an understanding, we are developing concepts and prototype apparatus for a new, highly sensitive technique to search for time-reversal-invariance violation in the beta decay of the free neutron. The optimized detector geometry is seven times more sensitive than that in previous experiments. 15 refs
Complete theory of symmetry-based indicators of band topology.
Po, Hoi Chun; Vishwanath, Ashvin; Watanabe, Haruki
2017-06-30
The interplay between symmetry and topology leads to a rich variety of electronic topological phases, protecting states such as the topological insulators and Dirac semimetals. Previous results, like the Fu-Kane parity criterion for inversion-symmetric topological insulators, demonstrate that symmetry labels can sometimes unambiguously indicate underlying band topology. Here we develop a systematic approach to expose all such symmetry-based indicators of band topology in all the 230 space groups. This is achieved by first developing an efficient way to represent band structures in terms of elementary basis states, and then isolating the topological ones by removing the subset of atomic insulators, defined by the existence of localized symmetric Wannier functions. Aside from encompassing all earlier results on such indicators, including in particular the notion of filling-enforced quantum band insulators, our theory identifies symmetry settings with previously hidden forms of band topology, and can be applied to the search for topological materials.Understanding the role of topology in determining electronic structure can lead to the discovery, or appreciation, of materials with exotic properties such as protected surface states. Here, the authors present a framework for identifying topologically distinct band-structures for all 3D space groups.
PREFACE: Symmetries and Integrability of Difference Equations
Doliwa, Adam; Korhonen, Risto; Lafortune, Stéphane
2007-10-01
The notion of integrability was first introduced in the 19th century in the context of classical mechanics with the definition of Liouville integrability for Hamiltonian flows. Since then, several notions of integrability have been introduced for partial and ordinary differential equations. Closely related to integrability theory is the symmetry analysis of nonlinear evolution equations. Symmetry analysis takes advantage of the Lie group structure of a given equation to study its properties. Together, integrability theory and symmetry analysis provide the main method by which nonlinear evolution equations can be solved explicitly. Difference equations (DE), like differential equations, are important in numerous fields of science and have a wide variety of applications in such areas as mathematical physics, computer visualization, numerical analysis, mathematical biology, economics, combinatorics, and quantum field theory. It is thus crucial to develop tools to study and solve DEs. While the theory of symmetry and integrability for differential equations is now largely well-established, this is not yet the case for discrete equations. Although over recent years there has been significant progress in the development of a complete analytic theory of difference equations, further tools are still needed to fully understand, for instance, the symmetries, asymptotics and the singularity structure of difference equations. The series of SIDE meetings on Symmetries and Integrability of Difference Equations started in 1994. Its goal is to provide a platform for an international and interdisciplinary communication for researchers working in areas associated with integrable discrete systems, such as classical and quantum physics, computer science and numerical analysis, mathematical biology and economics, discrete geometry and combinatorics, theory of special functions, etc. The previous SIDE meetings took place in Estérel near Montréal, Canada (1994), at the University of
Spontaneous symmetry breakdown in gauge theories
International Nuclear Information System (INIS)
Scadron, M.D.
1982-01-01
The dynamical theory of spontaneous breakdown correctly predicts the bound states and relates the order parameters of electron-photon superconductivity and quark-gluon chiral symmetry. A similar statement cannot be made for the standard electro-weak gauge symmetry. (author)
Symmetry breaking signaling mechanisms during cell polarization
Bruurs, LJM
2017-01-01
Breaking of cellular symmetry in order to establish an apico-basal polarity axis initiates de novo formation of cell polarity. However, symmetry breaking provides a formidable challenge from a signaling perspective, because by definition no spatial cues are present to instruct axis establishment.
Order in the Universe: The Symmetry Principle.
Foundation for Integrative Education, Inc., New York, NY.
The first two papers in this booklet provide a review of the pervasiveness of symmetry in nature and art, discussing how symmetry can be traced through every domain open to our understanding, from all aspects of nature to the special provinces of man; the checks and balances of government, the concept of equal justice, and the aesthetic ordering…
Symmetries of Taub-NUT dual metrics
International Nuclear Information System (INIS)
Baleanu, D.; Codoban, S.
1998-01-01
Recently geometric duality was analyzed for a metric which admits Killing tensors. An interesting example arises when the manifold has Killing-Yano tensors. The symmetries of the dual metrics in the case of Taub-NUT metric are investigated. Generic and non-generic symmetries of dual Taub-NUT metric are analyzed
Space-time and Local Gauge Symmetries
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 2. Symmetries of Particle Physics: Space-time and Local Gauge Symmetries. Sourendu Gupta. General Article Volume 6 Issue 2 February 2001 pp 29-38. Fulltext. Click here to view fulltext PDF. Permanent link:
Broken color symmetry and weak currents
International Nuclear Information System (INIS)
Stech, B.
1976-01-01
Broken colour symmetry predicts a very rich spectrum of new particles. If broken colour is relevant at all, charged psi-particles should be found in particular at the 4 GeV region. For the weak hadronic currents no completely satisfactory suggestion exists. Broken colour symmetry describes qualitatively several of the new effects observed recently. (BJ) [de
Nuclear symmetry energy: An experimental overview
Indian Academy of Sciences (India)
Abstract. The nuclear symmetry energy is a fundamental quantity important for study- ing the structure of systems as diverse as the atomic nucleus and the neutron star. Con- siderable efforts are being made to experimentally extract the symmetry energy and its dependence on nuclear density and temperature. In this article ...
Scalar symmetry of the massless Dirac equation
International Nuclear Information System (INIS)
Clerk, G.J.; McKellar, B.H.J.
1992-01-01
The existence of a symmetry of the Dirac equation for a massless particle in a scalar field is demonstrated, and its effect on the band structure of certain arrays of scalar δ-function potentials is investigated. The implications of the symmetry for more general scalar potentials are also discussed. 10 refs
Molecular symmetry in ab initio calculations
International Nuclear Information System (INIS)
Madhavan, P.V.; Whitten, J.L.
1987-01-01
A scheme is presented for the construction of the Fock matrix in LCAO-SCF calculations and for the transformation of basis integrals to LCAO-MO integrals that can utilize several symmetry unique lists of integrals corresponding to different symmetry groups. The algorithm is fully compatible with vector processing machines and is especially suited for parallel processing machines. copyright 1987 Academic Press, Inc
Nuclear symmetry energy: An experimental overview
Indian Academy of Sciences (India)
The nuclear symmetry energy is a fundamental quantity important for studying the structure of systems as diverse as the atomic nucleus and the neutron star. Considerable efforts are being made to experimentally extract the symmetry energy and its dependence on nuclear density and temperature. In this article, the ...
Generalized global symmetries and dissipative magnetohydrodynamics
Grozdanov, S.; Hofman, D.M.; Iqbal, N.
2017-01-01
The conserved magnetic flux of U(1) electrodynamics coupled to matter in four dimensions is associated with a generalized global symmetry. We study the realization of such a symmetry at finite temperature and develop the hydrodynamic theory describing fluctuations of a conserved 2-form current
Reverse-symmetry waveguides: Theory and fabrication
DEFF Research Database (Denmark)
Horvath, R.; Lindvold, Lars René; Larsen, N.B.
2002-01-01
We present an extensive theoretical analysis of reverse-symmetry waveguides with special focus on their potential application as sensor components in aqueous media and demonstrate a novel method for fabrication of such waveguides. The principle of reverse symmetry is based on making the refractive...
Partial dynamical symmetry in a fermion system
Escher; Leviatan
2000-02-28
The relevance of the partial dynamical symmetry concept for an interacting fermion system is demonstrated. Hamiltonians with partial SU(3) symmetry are presented in the framework of the symplectic shell model of nuclei and shown to be closely related to the quadrupole-quadrupole interaction. Implications are discussed for the deformed light nucleus 20Ne.
The golden ratio in facial symmetry
Prokopakis, E. P.; Vlastos, I. M.; Picavet, V. A.; Nolst Trenite, G.; Thomas, R.; Cingi, C.; Hellings, P. W.
2013-01-01
Symmetry is believed to be a hallmark of appealing faces. However, this does not imply that the most aesthetically pleasing proportions are necessary those that arise from the simple division of the face into thirds or fifths. Based on the etymology of the word symmetry, as well as on specific
Symmetry breaking and restoration in gauge theories
International Nuclear Information System (INIS)
Natale, A.A.
A review is made of the utilization of the Higgs mechanism in spontaneous symmetry breaking. It is shown that such as ideas came from an analogy with the superconductivity phenomenological theory based on a Ginzburg-Landau lagrangean. The symmetry restoration through the temperature influence is studied. (L.C.) [pt
Discrete symmetries and their stringy origin
International Nuclear Information System (INIS)
Mayorga Pena, Damian Kaloni
2014-05-01
Discrete symmetries have proven to be very useful in controlling the phenomenology of theories beyond the standard model. In this work we explore how these symmetries emerge from string compactifications. Our approach is twofold: On the one hand, we consider the heterotic string on orbifold backgrounds. In this case the discrete symmetries can be derived from the orbifold conformal field theory, and it can be shown that they are in close relation with the orbifold geometry. We devote special attention to R-symmetries, which arise from discrete remnants of the Lorentz group in compact space. Further we discuss the physical implications of these symmetries both in the heterotic mini-landscape and in newly constructed models based on the Z 2 x Z 4 orbifold. In both cases we observe that the discrete symmetries favor particular locations in the orbifold where the particles of standard model should live. On the other hand we consider a class of F-theory models exhibiting an SU(5) gauge group, times additional U(1) symmetries. In this case, the smooth compactification background does not permit us to track the discrete symmetries as transparently as in orbifold models. Hence, we follow a different approach and search for discrete subgroups emerging after the U(1)s are broken. We observe that in this approach it is possible to obtain the standard Z 2 matter parity of the MSSM.
Emergent symmetry and dimensional reduction at a quantum critical point
Schmalian, J.; Batista, C. D.
2008-03-01
We show that the spatial dimensionality of the quantum critical point associated with Bose-Einstein condensation at T=0 is reduced when the underlying lattice comprises a set of layers coupled by a frustrating interaction. For this purpose, we use an heuristic mean field approach that is complemented and justified by a more rigorous renormalization group analysis. Due to the presence of an emergent symmetry, i.e., a symmetry of the ground state that is absent in the underlying Hamiltonian, a three-dimensional interacting Bose system undergoes a chemical potential tuned quantum phase transition that is strictly two-dimensional. Our theoretical predictions for the critical temperature as a function of the chemical potential correspond very well with recent measurements in BaCuSi2O6 .
Braided quantum field theories and their symmetries
International Nuclear Information System (INIS)
Sasai, Yuya; Sasakura, Naoki
2007-01-01
Braided quantum field theories, proposed by Oeckl, can provide a framework for quantum field theories that possess Hopf algebra symmetries. In quantum field theories, symmetries lead to non-perturbative relations among correlation functions. We study Hopf algebra symmetries and such relations in the context of braided quantum field theories. We give the four algebraic conditions among Hopf algebra symmetries and braided quantum field theories that are required for the relations to hold. As concrete examples, we apply our analysis to the Poincare symmetries of two examples of noncommutative field theories. One is the effective quantum field theory of three-dimensional quantum gravity coupled to spinless particles formulated by Freidel and Livine, and the other is noncommutative field theory on the Moyal plane. We also comment on quantum field theory in κ-Minkowski spacetime. (author)
Symmetries in geology and geophysics
Turcotte, Donald L.; Newman, William I.
1996-01-01
Symmetries have played an important role in a variety of problems in geology and geophysics. A large fraction of studies in mineralogy are devoted to the symmetry properties of crystals. In this paper, however, the emphasis will be on scale-invariant (fractal) symmetries. The earth’s topography is an example of both statistically self-similar and self-affine fractals. Landforms are also associated with drainage networks, which are statistical fractal trees. A universal feature of drainage networks and other growth networks is side branching. Deterministic space-filling networks with side-branching symmetries are illustrated. It is shown that naturally occurring drainage networks have symmetries similar to diffusion-limited aggregation clusters. PMID:11607719
Ermakov's Superintegrable Toy and Nonlocal Symmetries
Directory of Open Access Journals (Sweden)
P.G.L. Leach
2005-11-01
Full Text Available We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R. The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.
Ermakov's Superintegrable Toy and Nonlocal Symmetries
Leach, P. G. L.; Karasu Kalkanli, A.; Nucci, M. C.; Andriopoulos, K.
2005-11-01
We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R). The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.
Symmetry of wavefunctions in quantum algebras and supersymmetry
International Nuclear Information System (INIS)
Zachos, C.K.
1992-01-01
The statistics-altering operators η present in the limit q = -1 of multiparticle SU q (2)- invariant subspaces parallel the action of such operators which naturally occur in supersymmetric theories. I illustrate this heuristically by comparison to a toy N = 2 superymmetry algebra, and ask whether there is a supersymmetry structure underlying SU q (2) in that limit. I remark on the relevance of such alternating-symmetry multiplets to the construction of invariant hamiltonians
On the approximation of the elastica functional in radial symmetry
Bellettini, G.; Mugnai, L.
2005-01-01
We prove a result concerning the approximation of the elastica functional with a sequence of second order functionals, under radial symmetry assumptions. This theorem is strictly related to a conjecture of De Giorgi [8]. Received: 26 July 2004, Accepted: 19 October 2004, Published online: 22 December 2004 The first author is grateful to Maurizio Paolini for useful discussions. The second author gratefully acknowledges the hospitality and the support of the Max Planck Institute for Gr...
Lie-algebra approach to symmetry breaking
International Nuclear Information System (INIS)
Anderson, J.T.
1981-01-01
A formal Lie-algebra approach to symmetry breaking is studied in an attempt to reduce the arbitrariness of Lagrangian (Hamiltonian) models which include several free parameters and/or ad hoc symmetry groups. From Lie algebra it is shown that the unbroken Lagrangian vacuum symmetry can be identified from a linear function of integers which are Cartan matrix elements. In broken symmetry if the breaking operators form an algebra then the breaking symmetry (or symmetries) can be identified from linear functions of integers characteristic of the breaking symmetries. The results are applied to the Dirac Hamiltonian of a sum of flavored fermions and colored bosons in the absence of dynamical symmetry breaking. In the partially reduced quadratic Hamiltonian the breaking-operator functions are shown to consist of terms of order g 2 , g, and g 0 in the color coupling constants and identified with strong (boson-boson), medium strong (boson-fermion), and fine-structure (fermion-fermion) interactions. The breaking operators include a boson helicity operator in addition to the familiar fermion helicity and ''spin-orbit'' terms. Within the broken vacuum defined by the conventional formalism, the field divergence yields a gauge which is a linear function of Cartan matrix integers and which specifies the vacuum symmetry. We find that the vacuum symmetry is chiral SU(3) x SU(3) and the axial-vector-current divergence gives a PCAC -like function of the Cartan matrix integers which reduces to PCAC for SU(2) x SU(2) breaking. For the mass spectra of the nonets J/sup P/ = 0 - ,1/2 + ,1 - the integer runs through the sequence 3,0,-1,-2, which indicates that the breaking subgroups are the simple Lie groups. Exact axial-vector-current conservation indicates a breaking sum rule which generates octet enhancement. Finally, the second-order breaking terms are obtained from the second-order spin tensor sum of the completely reduced quartic Hamiltonian
Anomalous Symmetry Fractionalization and Surface Topological Order
Directory of Open Access Journals (Sweden)
Xie Chen
2015-10-01
Full Text Available In addition to possessing fractional statistics, anyon excitations of a 2D topologically ordered state can realize symmetry in distinct ways, leading to a variety of symmetry-enriched topological (SET phases. While the symmetry fractionalization must be consistent with the fusion and braiding rules of the anyons, not all ostensibly consistent symmetry fractionalizations can be realized in 2D systems. Instead, certain “anomalous” SETs can only occur on the surface of a 3D symmetry-protected topological (SPT phase. In this paper, we describe a procedure for determining whether a SET of a discrete, on-site, unitary symmetry group G is anomalous or not. The basic idea is to gauge the symmetry and expose the anomaly as an obstruction to a consistent topological theory combining both the original anyons and the gauge fluxes. Utilizing a result of Etingof, Nikshych, and Ostrik, we point out that a class of obstructions is captured by the fourth cohomology group H^{4}(G,U(1, which also precisely labels the set of 3D SPT phases, with symmetry group G. An explicit procedure for calculating the cohomology data from a SET is given, with the corresponding physical intuition explained. We thus establish a general bulk-boundary correspondence between the anomalous SET and the 3D bulk SPT whose surface termination realizes it. We illustrate this idea using the chiral spin liquid [U(1_{2}] topological order with a reduced symmetry Z_{2}×Z_{2}⊂SO(3, which can act on the semion quasiparticle in an anomalous way. We construct exactly solved 3D SPT models realizing the anomalous surface terminations and demonstrate that they are nontrivial by computing three-loop braiding statistics. Possible extensions to antiunitary symmetries are also discussed.
Directory of Open Access Journals (Sweden)
Meng Cheng
2016-12-01
Full Text Available The Lieb-Schultz-Mattis theorem and its higher-dimensional generalizations by Oshikawa and Hastings require that translationally invariant 2D spin systems with a half-integer spin per unit cell must either have a continuum of low energy excitations, spontaneously break some symmetries, or exhibit topological order with anyonic excitations. We establish a connection between these constraints and a remarkably similar set of constraints at the surface of a 3D interacting topological insulator. This, combined with recent work on symmetry-enriched topological phases with on-site unitary symmetries, enables us to develop a framework for understanding the structure of symmetry-enriched topological phases with both translational and on-site unitary symmetries, including the effective theory of symmetry defects. This framework places stringent constraints on the possible types of symmetry fractionalization that can occur in 2D systems whose unit cell contains fractional spin, fractional charge, or a projective representation of the symmetry group. As a concrete application, we determine when a topological phase must possess a “spinon” excitation, even in cases when spin rotational invariance is broken down to a discrete subgroup by the crystal structure. We also describe the phenomena of “anyonic spin-orbit coupling,” which may arise from the interplay of translational and on-site symmetries. These include the possibility of on-site symmetry defect branch lines carrying topological charge per unit length and lattice dislocations inducing degeneracies protected by on-site symmetry.
Testing spatial symmetry using contingency tables based on nearest neighbor relations.
Ceyhan, Elvan
2014-01-01
We consider two types of spatial symmetry, namely, symmetry in the mixed or shared nearest neighbor (NN) structures. We use Pielou's and Dixon's symmetry tests which are defined using contingency tables based on the NN relationships between the data points. We generalize these tests to multiple classes and demonstrate that both the asymptotic and exact versions of Pielou's first type of symmetry test are extremely conservative in rejecting symmetry in the mixed NN structure and hence should be avoided or only the Monte Carlo randomized version should be used. Under RL, we derive the asymptotic distribution for Dixon's symmetry test and also observe that the usual independence test seems to be appropriate for Pielou's second type of test. Moreover, we apply variants of Fisher's exact test on the shared NN contingency table for Pielou's second test and determine the most appropriate version for our setting. We also consider pairwise and one-versus-rest type tests in post hoc analysis after a significant overall symmetry test. We investigate the asymptotic properties of the tests, prove their consistency under appropriate null hypotheses, and investigate finite sample performance of them by extensive Monte Carlo simulations. The methods are illustrated on a real-life ecological data set.
DEFF Research Database (Denmark)
Coimbatore Balram, Ajit; Jain, Jainendra
2017-01-01
The particle-hole (PH) symmetry of {\\em electrons} is an exact symmetry of the electronic Hamiltonian confined to a specific Landau level, and its interplay with the formation of composite fermions has attracted much attention of late. This article investigates an emergent symmetry in the fractio......The particle-hole (PH) symmetry of {\\em electrons} is an exact symmetry of the electronic Hamiltonian confined to a specific Landau level, and its interplay with the formation of composite fermions has attracted much attention of late. This article investigates an emergent symmetry...... in the fractional quantum Hall effect, namely the PH symmetry of {\\em composite fermions}, which relates states at composite fermion filling factors $\
Efficient Symmetry Reduction and the Use of State Symmetries for Symbolic Model Checking
Directory of Open Access Journals (Sweden)
Christian Appold
2010-06-01
Full Text Available One technique to reduce the state-space explosion problem in temporal logic model checking is symmetry reduction. The combination of symmetry reduction and symbolic model checking by using BDDs suffered a long time from the prohibitively large BDD for the orbit relation. Dynamic symmetry reduction calculates representatives of equivalence classes of states dynamically and thus avoids the construction of the orbit relation. In this paper, we present a new efficient model checking algorithm based on dynamic symmetry reduction. Our experiments show that the algorithm is very fast and allows the verification of larger systems. We additionally implemented the use of state symmetries for symbolic symmetry reduction. To our knowledge we are the first who investigated state symmetries in combination with BDD based symbolic model checking.
Massive Kaluza-Klein theories and their spontaneously broken symmetries
Energy Technology Data Exchange (ETDEWEB)
Hohm, O.
2006-07-15
In this thesis we investigate the effective actions for massive Kaluza-Klein states, focusing on the massive modes of spin-3/2 and spin-2 fields. To this end we determine the spontaneously broken gauge symmetries associated to these 'higher-spin' states and construct the unbroken phase of the Kaluza-Klein theory. We show that for the particular background AdS{sub 3} x S{sup 3} x S{sup 3} a consistent coupling of the first massive spin-3/2 multiplet requires an enhancement of local supersymmetry, which in turn will be partially broken in the Kaluza-Klein vacuum. The corresponding action is constructed as a gauged maximal supergravity in D=3. Subsequently, the symmetries underlying an infinite tower of massive spin-2 states are analyzed in case of a Kaluza-Klein compactification of four-dimensional gravity to D=3. It is shown that the resulting gravity-spin-2 theory is given by a Chern-Simons action of an affine algebra and also allows a geometrical interpretation in terms of 'algebra-valued' differential geometry. The global symmetry group is determined, which contains an affine extension of the Ehlers group. We show that the broken phase can in turn be constructed via gauging a certain subgroup of the global symmetry group. Finally, deformations of the Kaluza-Klein theory on AdS{sub 3} x S{sup 3} x S{sup 3} and the corresponding symmetry breakings are analyzed as possible applications for the AdS/CFT correspondence. (Orig.)
International Nuclear Information System (INIS)
Zhang Yi; Fan Cunxin
2007-01-01
The perturbation of symmetries and adiabatic invariants for mechanical systems with unilateral holonomic constraints are studied. The exact invariant in the form of Hojman led by special Lie symmetries for an undisturbed system with unilateral constraints is given. Based on the concept of high-order adiabatic invariant of mechanical systems, the perturbation of Lie symmetries for the system under the action of small disturbance is investigated, and a new adiabatic invariant for the system with unilateral holonomic constraints is obtained, which can be called Hojman adiabatic invariant. In the end of the paper, an example is given to illustrate the application of the results.
Electric-magnetic duality as a secondary symmetry
International Nuclear Information System (INIS)
Brandt, R.A.; Young, K.
1980-01-01
In both the abelian and non-abelian classical point magnetic monopole theories, electric current conservation is a consequence of gauge invariance, but, since there is no magnetic gauge group, magnetic current conservation is not a Noether-type conservation law. In the abelian models, the equations of motion (but not the lagrangian) are invariant to the duality rotations in electric-magnetic charge space, but this is not the case in the non-abelian models. In an attempt to understand these and related points, we introduce a generalization of Noether's theorem. Consider a physical system described by a set of variables THETA and characterized by a lagrangian density L(THETA). A transormation law THETA → G THETA which leaves L invariant leads to a conserved current Jsub(μ)(THETA). We then call G a primary symmetry. A second transformation law THETA → D THETA which leaves the equations of motion, but not L, invariant then leads to another conserved current Jsub(μ)(D THETA). We then call D a secondary symmetra. Our main point is that Jsub(μ) (D THETA) may be conserved even if the equations of motion are not invariant under D. All that is required is that the change of the equations of motion under D is perpendicular (in the field space) to the change of the fields under G. Then we call D an incomplete secondary symmetry. We show that in both the abelian and non-abelian monopole theories, duality is an incomplete secondary symmetry whose associated conservation law is magnetic current conservation. Thus it is the interpretation of duality as a secondary symmetry which explains magnetic current conservation and which generalizes from the abelian theories to the non-abelian ones. This suggests that magnetic current conservation may remain valid in quantum field theory. (orig.)
Palmer, Jacqueline A; Hsiao, HaoYuan; Wright, Tamara; Binder-Macleod, Stuart A
2017-05-01
Recent research demonstrated that the symmetry of corticomotor drive with the paretic and nonparetic plantarflexor muscles was related to the biomechanical ankle moment strategy that people with chronic stroke used to achieve their greatest walking speeds. Rehabilitation strategies that promote corticomotor balance might improve poststroke walking mechanics and enhance functional ambulation. The study objectives were to test the effectiveness of a single session of gait training using functional electrical stimulation (FES) to improve plantarflexor corticomotor symmetry and plantarflexion ankle moment symmetry and to determine whether changes in corticomotor symmetry were related to changes in ankle moment symmetry within the session. This was a repeated-measures crossover study. On separate days, 20 people with chronic stroke completed a session of treadmill walking either with or without the use of FES of their ankle dorsi- and plantarflexor muscles. We calculated plantarflexor corticomotor symmetry using transcranial magnetic stimulation and plantarflexion ankle moment symmetry during walking between the paretic and the nonparetic limbs before and after each session. We compared changes and tested relationships between corticomotor symmetry and ankle moment symmetry following each session. Following the session with FES, there was an increase in plantarflexor corticomotor symmetry that was related to the observed increase in ankle moment symmetry. In contrast, following the session without FES, there were no changes in corticomotor symmetry or ankle moment symmetry. No stratification was made on the basis of lesion size, location, or clinical severity. These findings demonstrate, for the first time (to our knowledge), the ability of a single session of gait training with FES to induce positive corticomotor plasticity in people in the chronic stage of stroke recovery. They also provide insight into the neurophysiologic mechanisms underlying improvements in
PREFACE: Symmetries in Science XIV
Schuch, Dieter; Ramek, Michael
2010-04-01
Symmetries Logo This volume of the proceedings "Symmetries in Science XIV" is dedicated to the memory of our colleagues and dear friends Marcos Moshinsky and Yuriĭ Smirnov who regularly participated in these Symposia and were a great inspiration to many. We shall miss them. Dieter Schuch and Michael Ramek The international symposium "Symmetries in Science XIV" held at Collegium Mehrerau in Bregenz, Austria from July 19-24, 2009, attended by 32 scientists from 11 countries, was an experiment, performed by theoreticians. Aim of this experiment was to find out if the desire to revive or even continue this conference series was stronger than the very restricted pecuniary boundary conditions. It obviously was! After its establishment by Bruno Gruber in 1979, the biennial series settled in the very stimulating atmosphere of the monastery Mehrerau, which provided the ideal environment for a limited number of invited participants to exchange ideas, without parallel sessions, and pursue deeper discussions (at the latest in the evening at "Gasthof Lamm"). When the conference series terminated in 2003, former participants were quite disappointed. Meeting again at several (larger) conferences in subsequent years, there were repeated expressions of "the lack of a Bregenz-type meeting in our field nowadays" and the question of a possible "revitalization", even without external funding. After some hesitation, but also driven by our own desire to reinstate the series, we consulted Bruno who not only approved wholeheartedly but also offered his full support. It all finally led to the symposium in July 2009. The atmosphere was really like in the "good old days" and the interesting and thought-provoking presentations culminated in the publication of these Proceedings. We are grateful to Carl Bender for establishing contact with IOP making it possible for us to publish these Proceedings in the Journal of Physics Conference Series. A majority of the participants contributed to these
Group symmetries and information propagation
International Nuclear Information System (INIS)
Draayer, J.P.
1980-01-01
Spectroscopy concerns itself with the ways in which the Hamiltonian and other interesting operators defined in few-particle spaces are determined or determine properties of many-particle systems. But the action of the central limit theorem (CLT) filters the transmission of information between source and observed so whether propagating forward from a few-particle defining space, as is usual in theoretical studies, or projecting backward to it from measured things, each is only sensitive to averaged properties of the other. Our concern is with the propagation of spectroscopic information in the presence of good symmetries when filtering action of the CLT is effective. Specifically, we propose to address the question, What propagates and how. We begin with some examples, using both scalar and isospin geometries to illustrate simple propagation. Examples of matrix propagation are studied; contact with standard tensor algebra is established and an algorithm put forward for the expansion of any operator in terms of another set, complete or not; shell-model results for 20 Ne using a realistic interaction and two trace-equivalent forms are presented; and some further challenges are mentioned
PREFACE: Symmetries in Science XVI
2014-10-01
This volume of the proceedings ''Symmetries in Science XVI'' is dedicated to the memory of Miguel Lorente and Allan Solomon who both participated several times in these Symposia. We lost not only two great scientists and colleagues, but also two wonderful persons of high esteem whom we will always remember. Dieter Schuch, Michael Ramek There is a German saying ''all good things come in threes'' and ''Symmetries in Science XVI'', convened July 20-26, 2013 at the Mehrerau Monastery, was our third in the sequel of these symposia since taking it over from founder Bruno Gruber who instigated it in 1988 (then in Lochau). Not only the time seemed to have been perfect (one week of beautiful sunshine), but also the medley of participants could hardly have been better. This time, 34 scientists from 16 countries (more than half outside the European Union) came together to report and discuss their latest results in various fields of science, all related to symmetries. The now customary grouping of renowned experts and talented newcomers was very rewarding and stimulating for all. The informal, yet intense, discussions at ''Gasthof Lamm'' occurred (progressively later) each evening till well after midnight and finally till almost daybreak! However, prior to the opening ceremony and during the conference, respectively, we were informed that Miguel Lorente and Allan Solomon had recently passed away. Both attended the SIS Symposia several times and had many friends among present and former participants. Professor Peter Kramer, himself a long-standing participant and whose 80th birthday commemoration prevented him from attending SIS XVI, kindly agreed to write the obituary for Miguel Lorente. Professors Richard Kerner and Carol Penson (both also former attendees) penned, at very short notice, the tribute to Allan Solomon. The obituaries are included in these Proceedings and further tributes have been posted to our conference website. In 28 lectures and an evening poster
Nuclear symmetries at low isospin
International Nuclear Information System (INIS)
Juillet, Olivier
1999-01-01
With the development of radioactive beams, an area of intense research in nuclear physics concerns the structure of exotic systems with roughly equal numbers of protons and neutrons. These nuclei might in fact develop a proton-neutron superfluidity whose importance compared to pairing correlations between like nucleons is currently investigated. The work presented in this thesis suggests to look at such a competition in an algebraic framework based on a Wigner SU(4) symmetry that combines the pseudo-spin and isospin degrees of freedom. After a detailed review of group theory in quantum mechanics, the validity of the pseudo-SU(4) classification is shown via a direct analysis of realistic shell model states. Its consequences on binding energies and β decay are also studied. Moreover, a simplified boson realisation with zero orbital angular momentum is used to find some physical features of N=Z nuclei such as the condensation of α-like structures or the destruction of isoscalar superfluid correlations by the spin-orbit potential. Finally, another bosonization scheme that includes quadrupole degrees of freedom (IBM-4 model) is tested for the first time by diagonalization of a full Hamiltonian deduced from a realistic shell model interaction. The quality of the results, especially for odd-odd nuclei, allows one to consider this boson approximation as an alternative to standard fermionic approaches for the collective structure of the exotic line N∼Z=28-50. (author) [fr
Protected Edge Modes without Symmetry
Directory of Open Access Journals (Sweden)
Michael Levin
2013-05-01
Full Text Available We discuss the question of when a gapped two-dimensional electron system without any symmetry has a protected gapless edge mode. While it is well known that systems with a nonzero thermal Hall conductance, K_{H}≠0, support such modes, here we show that robust modes can also occur when K_{H}=0—if the system has quasiparticles with fractional statistics. We show that some types of fractional statistics are compatible with a gapped edge, while others are fundamentally incompatible. More generally, we give a criterion for when an electron system with Abelian statistics and K_{H}=0 can support a gapped edge: We show that a gapped edge is possible if and only if there exists a subset of quasiparticle types M such that (1 all the quasiparticles in M have trivial mutual statistics, and (2 every quasiparticle that is not in M has nontrivial mutual statistics with at least one quasiparticle in M. We derive this criterion using three different approaches: a microscopic analysis of the edge, a general argument based on braiding statistics, and finally a conformal field theory approach that uses constraints from modular invariance. We also discuss the analogous result for two-dimensional boson systems.
Automatic Affective Evaluation of Visual Symmetry
Directory of Open Access Journals (Sweden)
Alexis Makin
2012-05-01
Full Text Available It is possible that the neural mechanisms that detect symmetry are linked to those that produce positive affect. We conducted a set of behavioural and electrophysiological studies designed to investigate the nature of this putative connection. First, we used the Implicit Association Test (IAT to measure implicit preference for visual regularity. On some trials, participants saw symmetrical or random dot patterns. On interleaved trials, they saw positive or negative words. When the same button was used to report symmetrical patterns and positive words, response times were faster than when the same button was used to report symmetrical patterns and negative words. This classic IAT effect demonstrated an implicit preference for symmetry. In further experiments, the same procedure was used to record implicit preference for reflection over other types of regularity, such as translation or rotational symmetry. Second, we simultaneously recorded EEG and EMG from the same participants while they observed reflection or random dot patterns. Contrary to previous findings, we found that early visual components (P1 and N1 were modulated by symmetry. Moreover, there was increased activity in the Zygomaticus Major (the muscle responsible for smiling when participants viewed reflectional symmetry, indicating a positive affective response. Rotational symmetry produced different ERPs, and no affective response. Together, our data suggest that, once the patterns are attended, most participants spontaneously form a preference for reflectional symmetry, even in the absence of any explicit instruction to engage in aesthetic evaluation.
Symmetry Reduction of the (2+1)-Dimensional Modified Dispersive Water-Wave System
Ma, Zheng-Yi; Fei, Jin-Xi; Du, Xiao-Yang
2015-08-01
Using the standard truncated Painlevé expansion, the residual symmetry of the (2+1)-dimensional modified dispersive water-wave system is localized in the properly prolonged system with the Lie point symmetry vector. Some different transformation invariances are derived by utilizing the obtained symmetries. The symmetries of the system are also derived through the Clarkson-Kruskal direct method, and several types of explicit reduction solutions relate to the trigonometric or the hyperbolic functions are obtained. Finally, some special solitons are depicted from one of the solutions. Supported by the National Natural Science Foundation of China under Grant No. 11447017 and the Natural Science Foundation of Zhejiang Province under Grant Nos. LY14A010005 and LQ13A010013
Partial dynamical symmetry and the suppression of chaos
International Nuclear Information System (INIS)
Whelan, N.; Alhassid, Y.; Leviatan, A.
1993-01-01
Partial dynamical symmetry is a situation in which the Hamiltonian does not have a certain symmetry yet a subset of its eigenstates does. It is shown that partial dynamical symmetry may cause suppression of chaos even in cases where the fraction of states which has the symmetry vanishes in the classical limit. The average entropy associated with the symmetry is a sensitive quantum measure of the partial symmetry and its effect on the chaotic dynamics
Partial dynamical symmetry and the suppression of chaos
Energy Technology Data Exchange (ETDEWEB)
Whelan, N.; Alhassid, Y. (Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, Connecticut 06511 (United States)); Leviatan, A. (Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel))
1993-10-04
Partial dynamical symmetry is a situation in which the Hamiltonian does not have a certain symmetry yet a subset of its eigenstates does. It is shown that partial dynamical symmetry may cause suppression of chaos even in cases where the fraction of states which has the symmetry vanishes in the classical limit. The average entropy associated with the symmetry is a sensitive quantum measure of the partial symmetry and its effect on the chaotic dynamics.
Ermakov's Superintegrable Toy and Nonlocal Symmetries
Leach, P. G. L.; Karasu, A.; Nucci, M. C.; Andriopoulos, K.
2005-01-01
We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R). The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representat...
Exploring Symmetry to Assist Alzheimer's Disease Diagnosis
Illán, I. A.; Górriz, J. M.; Ramírez, J.; Salas-Gonzalez, D.; López, M.; Padilla, P.; Chaves, R.; Segovia, F.; Puntonet, C. G.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder first affecting memory functions and then gradually affecting all cognitive functions with behavioral impairments and eventually causing death. Functional brain imaging as Single-Photon Emission Computed Tomography (SPECT) is commonly used to guide the clinician's diagnosis. The essential left-right symmetry of human brains is shown to play a key role in coding and recognition. In the present work we explore the implications of this symmetry in AD diagnosis, showing that recognition may be enhanced when considering this latent symmetry.
Interdependence of different symmetry energy elements
Mondal, C.; Agrawal, B. K.; De, J. N.; Samaddar, S. K.; Centelles, M.; Viñas, X.
2017-08-01
Relations between the nuclear symmetry energy coefficient and its density derivatives are derived. The relations hold for a class of interactions with quadratic momentum dependence and a power-law density dependence. The structural connection between the different symmetry energy elements as obtained seems to be followed by almost all reasonable nuclear energy density functionals, both relativistic and nonrelativistic, suggesting a universality in the correlation structure. This, coupled with known values of some well-accepted constants related to nuclear matter, helps in constraining values of different density derivatives of the nuclear symmetry energy, shedding light on the isovector part of the nuclear interaction.
Symmetry and bifurcations of momentum mappings
International Nuclear Information System (INIS)
Arms, J.M.; Marsden, J.E.; Moncrief, V.
1981-01-01
The zero set of a momentum mapping is shown to have a singularity at each point with symmetry. The zero set is diffeomorphic to the product of a manifold and the zero set of a homogeneous quadratic function. The proof uses the Kuranishi theory of deformations. Among the applications, it is shown that the set of all solutions of the Yang-Mills equations on a Lorentz manifold has a singularity at any solution with symmetry, in the sense of a pure gauge symmetry. Similarly, the set of solutions of Einstein's equations has a singularity at any solution that has spacelike Killing fields, provided the spacetime has a compact Cauchy surface. (orig.)
Appreciation of symmetry in natural product synthesis.
Bai, Wen-Ju; Wang, Xiqing
2017-12-13
Covering: 2012 to June 2017This review aims to show that complex natural product synthesis can be streamlined by taking advantage of molecular symmetry. Various strategies to construct molecules with either evident or hidden symmetry are illustrated. Insights regarding the origins and adjustments of these strategies as well as inspiring new methodological developments are deliberated. When a symmetric strategy fails, the corresponding reason is analysed and an alternative approach is briefly provided. Finally, the importance of exploiting molecular symmetry and future research directions are discussed.
Particle production from symmetry breaking after inflation
García-Bellido, J; Garcia-Bellido, Juan; Morales, Ester Ruiz
2002-01-01
Recent studies suggest that the process of symmetry breaking after inflation typically occurs very fast, within a single oscillation of the symmetry-breaking field, due to the spinodal growth of its long-wave modes, otherwise known as `tachyonic preheating'. In this letter we show how this sudden transition from the false to the true vacuum can induce a significant production of particles, bosons and fermions, coupled to the symmetry-breaking field. We find that this new mechanism of particle production in the early Universe may have interesting consequences for the origin of dark matter and the generation of the observed baryon asymmetry through leptogenesis.
Hairs of discrete symmetries and gravity
Directory of Open Access Journals (Sweden)
Kang Sin Choi
2017-06-01
Full Text Available Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.
Hairs of discrete symmetries and gravity
Energy Technology Data Exchange (ETDEWEB)
Choi, Kang Sin [Scranton Honors Program, Ewha Womans University, Seodaemun-Gu, Seoul 03760 (Korea, Republic of); Center for Fields, Gravity and Strings, CTPU, Institute for Basic Sciences, Yuseong-Gu, Daejeon 34047 (Korea, Republic of); Kim, Jihn E., E-mail: jihnekim@gmail.com [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, Seoul 02447 (Korea, Republic of); Center for Axion and Precision Physics Research (IBS), 291 Daehakro, Yuseong-Gu, Daejeon 34141 (Korea, Republic of); Kyae, Bumseok [Department of Physics, Pusan National University, 2 Busandaehakro-63-Gil, Geumjeong-Gu, Busan 46241 (Korea, Republic of); Nam, Soonkeon [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, Seoul 02447 (Korea, Republic of)
2017-06-10
Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair) at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.
The zonal satellite problem. III Symmetries
Directory of Open Access Journals (Sweden)
Mioc V.
2002-01-01
Full Text Available The two-body problem associated with a force field described by a potential of the form U =Sum(k=1,n ak/rk (r = distance between particles, ak = real parameters is resumed from the only standpoint of symmetries. Such symmetries, expressed in Hamiltonian coordinates, or in standard polar coordinates, are recovered for McGehee-type coordinates of both collision-blow-up and infinity-blow-up kind. They form diffeomorphic commutative groups endowed with a Boolean structure. Expressed in Levi-Civita’s coordinates, the problem exhibits a larger group of symmetries, also commutative and presenting a Boolean structure.
Symmetry and bifurcations of momentum mappings
Arms, Judith M.; Marsden, Jerrold E.; Moncrief, Vincent
1981-01-01
The zero set of a momentum mapping is shown to have a singularity at each point with symmetry. The zero set is diffeomorphic to the product of a manifold and the zero set of a homogeneous quadratic function. The proof uses the Kuranishi theory of deformations. Among the applications, it is shown that the set of all solutions of the Yang-Mills equations on a Lorentz manifold has a singularity at any solution with symmetry, in the sense of a pure gauge symmetry. Similarly, the set of solutions of Einstein's equations has a singularity at any solution that has spacelike Killing fields, provided the spacetime has a compact Cauchy surface.
Amel'kin, N. I.
For an arbitrary rigid body, all dynamical symmetry points are found, and the directions of the axes of dynamical symmetry are determined for these points. We obtain conditions on the principal central moments of inertia under which the Lagrange and Kovalevskaya cases can be realized for the rigid
Gauge origin of discrete flavor symmetries in heterotic orbifolds
Directory of Open Access Journals (Sweden)
Florian Beye
2014-09-01
Full Text Available We show that non-Abelian discrete symmetries in orbifold string models have a gauge origin. This can be understood when looking at the vicinity of a symmetry enhanced point in moduli space. At such an enhanced point, orbifold fixed points are characterized by an enhanced gauge symmetry. This gauge symmetry can be broken to a discrete subgroup by a nontrivial vacuum expectation value of the Kähler modulus T. Using this mechanism it is shown that the Δ(54 non-Abelian discrete symmetry group originates from a SU(3 gauge symmetry, whereas the D4 symmetry group is obtained from a SU(2 gauge symmetry.
Measuring the implosion symmetry on the NIF laser
International Nuclear Information System (INIS)
Kyrala, G.A.
2010-01-01
Complete text of publication follows. Indirect drive is used to implode capsules in cryogenically cooled hohlraums at the National Ignition Facility. One of the required conditions for successful implosion is spherical symmetry of the imploded capsule at peak compression. Instead of using ignition capsules with frozen D/T fuel, analog capsules called symcaps are used to study the hydrodynamics behavior of the implosion. The symcaps are imploded in hohlraums with the same size, gas fills, and hohlraum gas temperatures of an ignition hohlraums. Symcaps with gaseous fills of deuterium/helium fills are used to emulate the behavior of the ignition capsules. We will describe the technique used to measure the symmetry of the implosion of symcaps, show some of the results of the measurements, how the technique was used to tune the symmetry of the implosion, and briefly discuss the extension of the technique to non-igniting capsules filled with mixtures of T/H/D gases. Acknowledgements. This work was performed by Los Alamos National Laboratory under the auspices of the U. S. Department of Energy under contract No. DE-AC52-06NA25396.
Viability of minimal left–right models with discrete symmetries
Directory of Open Access Journals (Sweden)
Wouter Dekens
2014-12-01
Full Text Available We provide a systematic study of minimal left–right models that are invariant under P, C, and/or CP transformations. Due to the high amount of symmetry such models are quite predictive in the amount and pattern of CP violation they can produce or accommodate at lower energies. Using current experimental constraints some of the models can already be excluded. For this purpose we provide an overview of the experimental constraints on the different left–right symmetric models, considering bounds from colliders, meson-mixing and low-energy observables, such as beta decay and electric dipole moments. The features of the various Yukawa and Higgs sectors are discussed in detail. In particular, we give the Higgs potentials for each case, discuss the possible vacua and investigate the amount of fine-tuning present in these potentials. It turns out that all left–right models with P, C, and/or CP symmetry have a high degree of fine-tuning, unless supplemented with mechanisms to suppress certain parameters. The models that are symmetric under both P and C are not in accordance with present observations, whereas the models with either P, C, or CP symmetry cannot be excluded by data yet. To further constrain and discriminate between the models measurements of B-meson observables at LHCb and B-factories will be especially important, while measurements of the EDMs of light nuclei in particular could provide complementary tests of the LRMs.
Minimal realization of right-handed gauge symmetry
Nomura, Takaaki; Okada, Hiroshi
2018-01-01
We propose a minimally extended gauge symmetry model with U (1 )R , where only the right-handed fermions have nonzero charges in the fermion sector. To achieve both anomaly cancellations and minimality, three right-handed neutrinos are naturally required, and the standard model Higgs has to have nonzero charge under this symmetry. Then we find that its breaking scale(Λ ) is restricted by precise measurement of neutral gauge boson in the standard model; therefore, O (10 ) TeV ≲Λ . We also discuss its testability of the new gauge boson and discrimination of U (1 )R model from U (1 )B-L one at collider physics such as LHC and ILC.
Classification of matrix product states with a local (gauge) symmetry
Kull, Ilya; Molnar, Andras; Zohar, Erez; Cirac, J. Ignacio
2017-11-01
Matrix Product States (MPS) are a particular type of one dimensional tensor network states, that have been applied to the study of numerous quantum many body problems. One of their key features is the possibility to describe and encode symmetries on the level of a single building block (tensor), and hence they provide a natural playground for the study of symmetric systems. In particular, recent works have proposed to use MPS (and higher dimensional tensor networks) for the study of systems with local symmetry that appear in the context of gauge theories. In this work we classify MPS which exhibit local invariance under arbitrary gauge groups. We study the respective tensors and their structure, revealing known constructions that follow known gauging procedures, as well as different, other types of possible gauge invariant states.
Review of drive symmetry measurement and control experiments on the Nova laser system
International Nuclear Information System (INIS)
Mack, J.M.; Hauer, A.A.; Delamater, N.D.
1994-01-01
Symmetric radiation drive is required for achieving ignition in laboratory experiments. Over the last two years, concerted series of drive symmetry experiments have been performed on the Nova laser system. The goals of this work were to develop measurements techniques and to apply them to symmetry variation and control experiments. The emphasis in this initial work has been on time integrated measurements (integrated over the laser drive pulse). The authors have also begun work on methods for time resolved measurements. Most of their work used the symmetry signature impressed on the compressed core of a capsule imploded in a hohlraum (cylindrical canister) environment. X-ray imaging of this core provides a mapping that can be compared with theoretical modeling and related to a specific amount of drive asymmetry. This method is indirect and they have taken great care in understanding the formation of the symmetry signature and in its comparison with simulations. A review of drive symmetry measurement and control experiments is presented, including data from time integrated and time resolved measurements; these measurements are also compared to modeling. Under carefully controlled conditions results from symmetry measurements (and from other auxiliary measurements) are reproducible, and indicate that aspects of implosions symmetry can be controlled
Noether Symmetry Analysis of the Dynamic Euler-Bernoulli Beam Equation
Johnpillai, A. G.; Mahomed, K. S.; Harley, C.; Mahomed, F. M.
2016-05-01
We study the fourth-order dynamic Euler-Bernoulli beam equation from the Noether symmetry viewpoint. This was earlier considered for the Lie symmetry classification. We obtain the Noether symmetry classification of the equation with respect to the applied load, which is a function of the dependent variable of the underlying equation. We find that the principal Noether symmetry algebra is two-dimensional when the load function is arbitrary and extends for linear and power law cases. For all cases, for each of the Noether symmetries associated with the usual Lagrangian, we construct conservation laws for the equation via the Noether theorem. We also provide a basis of conservation laws by using the adjoint algebra. The Noether symmetries pick out the special value of the power law, which is -7. We consider the Noether symmetry reduction for this special case, which gives rise to a first integral that is used for our numerical code. For this, we then find numerical solutions using an in-built function in MATLAB called bvp4c, which is a boundary value solver for differential equations that are depicted in five figures. The physical solutions obtained are for the deflection of the beam with an increase in displacement. These are given in four figures and discussed.
Mirror Symmetry, Hitchin's Equations, And Langlands Duality
Witten, Edward
This chapter begins with a discussion of the A-model and B-model. It then describes mirror symmetry and Hitchin's equations, Hitchin fibration, ramification, wild ramification, and four-dimensional gauge theory and stacks.
Conformal correlators of mixed-symmetry tensors
Costa, Miguel S
2015-01-01
We generalize the embedding formalism for conformal field theories to the case of general operators with mixed symmetry. The index-free notation encoding symmetric tensors as polynomials in an auxiliary polarization vector is extended to mixed-symmetry tensors by introducing a new commuting or anticommuting polarization vector for each row or column in the Young diagram that describes the index symmetries of the tensor. We determine the tensor structures that are allowed in n-point conformal correlation functions and give an algorithm for counting them in terms of tensor product coefficients. We show, with an example, how the new formalism can be used to compute conformal blocks of arbitrary external fields for the exchange of any conformal primary and its descendants. The matching between the number of tensor structures in conformal field theory correlators of operators in d dimensions and massive scattering amplitudes in d+1 dimensions is also seen to carry over to mixed-symmetry tensors.
Symmetries and statistical behavior in fermion systems
International Nuclear Information System (INIS)
French, J.B.; Draayer, J.P.
1978-01-01
The interplay between statistical behavior and symmetries in nuclei, as revealed, for example, by spectra and by distributions for various kinds of excitations is considered. Methods and general results, rather than specific applications, are given. 16 references
Gapless Symmetry-Protected Topological Order
Directory of Open Access Journals (Sweden)
Thomas Scaffidi
2017-11-01
Full Text Available We introduce exactly solvable gapless quantum systems in d dimensions that support symmetry-protected topological (SPT edge modes. Our construction leads to long-range entangled, critical points or phases that can be interpreted as critical condensates of domain walls “decorated” with dimension (d-1 SPT systems. Using a combination of field theory and exact lattice results, we argue that such gapless SPT systems have symmetry-protected topological edge modes that can be either gapless or symmetry broken, leading to unusual surface critical properties. Despite the absence of a bulk gap, these edge modes are robust against arbitrary symmetry-preserving local perturbations near the edges. In two dimensions, we construct wave functions that can also be interpreted as unusual quantum critical points with diffusive scaling in the bulk but ballistic edge dynamics.
Symmetries and statistical behavior in fermion systems
Energy Technology Data Exchange (ETDEWEB)
French, J.B.; Draayer, J.P.
1978-01-01
The interplay between statistical behavior and symmetries in nuclei, as revealed, for example, by spectra and by distributions for various kinds of excitations is considered. Methods and general results, rather than specific applications, are given. 16 references. (JFP)
Symmetry and group theory throughout physics
Directory of Open Access Journals (Sweden)
Villain J.
2012-03-01
Full Text Available As noticed in 1884 by Pierre Curie [1], physical properties of matter are tightly related to the kind of symmetry of the medium. Group theory is a systematic tool, though not always easy to handle, to exploit symmetry properties, for instance to find the eigenvectors and eigenvalues of an operator. Certain properties (optical activity, piezoelectricity are forbidden in molecules or crystals of high symmetry. A few theorems (Noether, Goldstone establish general relations between physical properties and symmetry. Applications of group theory to condensed matter physics, elementary particle physics, quantum mechanics, electromagnetism are reviewed. Group theory is not only a tool, but also a beautiful construction which casts insight into natural phenomena.
Nonlinear (super)symmetries and amplitudes
Energy Technology Data Exchange (ETDEWEB)
Kallosh, Renata [Physics Department, Stanford University,382 Via Pueblo Mall, Stanford, CA 94305-4060 (United States)
2017-03-07
There is an increasing interest in nonlinear supersymmetries in cosmological model building. Independently, elegant expressions for the all-tree amplitudes in models with nonlinear symmetries, like D3 brane Dirac-Born-Infeld-Volkov-Akulov theory, were recently discovered. Using the generalized background field method we show how, in general, nonlinear symmetries of the action, bosonic and fermionic, constrain amplitudes beyond soft limits. The same identities control, for example, bosonic E{sub 7(7)} scalar sector symmetries as well as the fermionic goldstino symmetries. We present a universal derivation of the vanishing amplitudes in the single (bosonic or fermionic) soft limit. We explain why, universally, the double-soft limit probes the coset space algebra. We also provide identities describing the multiple-soft limit. We discuss loop corrections to N≥5 supergravity, to the D3 brane, and the UV completion of constrained multiplets in string theory.
Nobel Prize for work on broken symmetries
2008-01-01
The 2008 Nobel Prize for Physics goes to three physicists who have worked on broken symmetries in particle physics. The announcement of the 2008 Nobel Prize for physics was transmitted to the Globe of Science and Innovation via webcast on the occasion of the preview of the Nobel Accelerator exhibition.On 7 October it was announced that the Royal Swedish Academy of Sciences had awarded the 2008 Nobel Prize for physics to three particle physicists for their fundamental work on the mechanisms of broken symmetries. Half the prize was awarded to Yoichiro Nambu of Fermilab for "the discovery of the mechanism of spontaneous broken symmetry in subatomic physics". The other half is shared by Makato Kobayashi of Japan’s KEK Institute and Toshihide Maskawa of the Yukawa Institute at the University of Kyoto "for the discovery of the origin of the broken symmetry which predicts the existence of at least three families of quarks in Nature". At th...
The problem of symmetry breaking hierarchy
International Nuclear Information System (INIS)
Natale, A.A.
1983-01-01
The problem of symmetry breaking hierarchy in grand unified theories is discussed, proving the impossibility to get a big hierarchy of interactions, in a natural way within the framework of perturbation theory. (L.C.) [pt
Phil Anderson and Gauge Symmetry Breaking
Witten, Edward
In this article, I describe the celebrated paper that Phil Anderson wrote in 1962 with early contributions to the idea of gauge symmetry breaking in particle physics. To set the stage, I describe the work of Julian Schwinger to which Anderson was responding, and also some of Anderson's own work on superconductivity that provided part of the context. After describing Anderson's work I describe the later work of others, leading to the modern understanding of gauge symmetry breaking in weak interactions...
Extended nonabelian symmetries for free fermionic model
International Nuclear Information System (INIS)
Zaikov, R.P.
1993-08-01
The higher spin symmetry for both Dirac and Majorana massless free fermionic field models are considered. An infinite Lie algebra which is a linear realization of the higher spin extension of the cross products of the Virasoro and affine Kac-Moody algebras is obtained. The corresponding current algebra is closed which is not the case of analogous current algebra in the WZNW model. The gauging procedure for the higher spin symmetry is also given. (author). 12 refs
Inextendibility of expanding cosmological models with symmetry
Energy Technology Data Exchange (ETDEWEB)
Dafermos, Mihalis [University of Cambridge, Department of Pure Mathematics and Mathematical Statistics, Wilberforce Road, Cambridge CB3 0WB (United Kingdom); Rendall, Alan D [Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Am Muehlenberg 1, D-14476 Golm (Germany)
2005-12-07
A new criterion for inextendibility of expanding cosmological models with symmetry is presented. It is applied to derive a number of new results and to simplify the proofs of existing ones. In particular, it shows that the solutions of the Einstein-Vlasov system with T{sup 2} symmetry, including the vacuum solutions, are inextendible in the future. The technique introduced adds a qualitatively new element to the available tool-kit for studying strong cosmic censorship. (letter to the editor)
Relabeling symmetries in hydrodynamics and magnetohydrodynamics
International Nuclear Information System (INIS)
Padhye, N.; Morrison, P.J.
1996-04-01
Lagrangian symmetries and concomitant generalized Bianchi identities associated with the relabeling of fluid elements are found for hydrodynamics and magnetohydrodynamics (MHD). In hydrodynamics relabeling results in Ertel's theorem of conservation of potential vorticity, while in MHD it yields the conservation of cross helicity. The symmetries of the reduction from Lagrangian (material) to Eulerian variables are used to construct the Casimir invariants of the Hamiltonian formalism
Magnetohydrodynamic equilibria with incompressible flows: Symmetry approach
Energy Technology Data Exchange (ETDEWEB)
Cicogna, G. [Dipartimento di Fisica “E.Fermi” dell' Università di Pisa and INFN, Sez. di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Pegoraro, F., E-mail: pegoraro@df.unipi.it [Dipartimento di Fisica “E.Fermi” dell' Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy)
2015-02-15
We identify and discuss a family of azimuthally symmetric, incompressible, magnetohydrodynamic plasma equilibria with poloidal and toroidal flows in terms of solutions of the Generalized Grad Shafranov (GGS) equation. These solutions are derived by exploiting the incompressibility assumption, in order to rewrite the GGS equation in terms of a different dependent variable, and the continuous Lie symmetry properties of the resulting equation and, in particular, a special type of “weak” symmetries.
Symmetry processing in Nafsat al-Masdur
Directory of Open Access Journals (Sweden)
Aliakbar Samkhaniani
2016-06-01
B: Co-ornament: the second kind of rhetorical symmetry processing is co-ornament and co-ornament is so that the author or poet applies similar ornaments in two phrases or two hemistich or two verses. If co-ornament is particularly well balanced formed, i.e. every ornament is in a well-balanced status with its symmetry, shows the capabilities and skills of its creator.
Partial dynamical symmetries in quantum systems
International Nuclear Information System (INIS)
Leviatan, A
2012-01-01
We discuss the the notion of a partial dynamical symmetry (PDS), for which a prescribed symmetry is obeyed by only a subset of solvable eigenstates, while other eigenstates are strongly mixed. We present an explicit construction of Hamiltonians with this property, including higher-order terms, and portray their significance for spectroscopy and shape-phase transitions in nuclei. The occurrence of both a single PDS, relevant to stable structures, and of several PDSs, relevant to coexistence phenomena, are considered.
Discrete symmetries and solar neutrino mixing
Energy Technology Data Exchange (ETDEWEB)
Kapetanakis, D.; Mayr, P.; Nilles, H.P. (Physik Dept., Technische Univ. Muenchen, Garching (Germany) Max-Planck-Inst. fuer Physik, Werner-Heisenberg-Inst., Muenchen (Germany))
1992-05-21
We study the question of resonant solar neutrino mixing in the framework of the supersymmetric extension of the standard model. Discrete symmetries that are consistent with solar neutrino mixing and proton stability are classified. In the minimal model they are shown to lead to two distinct patterns of allowed dimension-four operators. Imposing anomaly freedom, only three different discrete Z{sub N}-symmetries (with N=2, 3, 6) are found to be phenomenologically acceptable. (orig.).
Discrete symmetries and solar neutrino mixing
International Nuclear Information System (INIS)
Kapetanakis, D.; Mayr, P.; Nilles, H.P.
1992-01-01
We study the question of resonant solar neutrino mixing in the framework of the supersymmetric extension of the standard model. Discrete symmetries that are consistent with solar neutrino mixing and proton stability are classified. In the minimal model they are shown to lead to two distinct patterns of allowed dimension-four operators. Imposing anomaly freedom, only three different discrete Z N -symmetries (with N=2, 3, 6) are found to be phenomenologically acceptable. (orig.)
Bag model with broken chiral symmetry
International Nuclear Information System (INIS)
Efrosinin, V.P.; Zaikin, D.A.
1986-01-01
A variant of the bag model in which chiral symmetry is broken and which provides a description of all the experimental data on the light hadrons, including the pion, is discussed. The pion and kaon decay constants are calculated in this model. The problem of taking into account the center-of-mass motion in bag models and the boundary conditions in the bag model with broken chiral symmetry are also discussed
Hidden symmetries of the Nambu-Goto action
International Nuclear Information System (INIS)
Duff, M.J.
2006-01-01
We organize the eight variables of the four-dimensional bosonic string (X-bar μ ,X 'μ ) into a 2x2x2 hypermatrix a AA'A'' and show that in signature (2,2) the Nambu-Goto Lagrangian is given by Deta where Det is Cayley's hyperdeterminant. This is invariant not only under [SL(2,R)] 3 but also under interchange of the indices A, A' and A''. This triality reveals hitherto hidden discrete symmetries of the Nambu-Goto action
TOPICAL REVIEW: The many symmetries of Calabi-Yau compactifications
Emam, Moataz H.
2010-08-01
We review the major mathematical concepts involved in the dimensional reduction of D = 11 {\\cal N}=1 supergravity theory over a Calabi-Yau manifold with non-trivial complex structure moduli resulting in ungauged D = 5 {\\cal N}=2 supergravity theory with hypermultiplets. The latter has a particularly rich structure with many underlying geometries. We reproduce the entire calculation and particularly emphasize its symplectic symmetry and how that arises from the topology of the underlying subspace. The review is intended to fill a specific gap in the literature with the hope that it will be useful to both the beginner and the expert alike.
Symmetry-protected topological insulator and its symmetry-enriched topologically ordered boundary
Wang, Juven; Wen, Xiao-Gang; Witten, Edward
We propose a mechanism for achieving symmetry-enriched topologically ordered boundaries for symmetry-protected topological states, including those of topological insulators. Several different boundary phases and their phase transitions are considered, including confined phases, deconfined phases, symmetry-breaking, gapped and gapless phases. National Science Foundation PHY-1606531, Corning Glass Works Foundation Fellowship, NSF Grant DMR- 1506475 and NSFC 11274192, the BMO Financial Group and the John Templeton Foundation No. 39901.
Roy, Amitava; Post, Carol Beth
2011-01-01
A large number of viral capsids, as well as other macromolecular assemblies, have icosahedral structure or structures with other rotational symmetries. This symmetry can be exploited during molecular dynamics (MD) to model in effect the full viral capsid using only a subset of primary atoms plus copies of image atoms generated from rotational symmetry boundary conditions (RSBC). A pure rotational symmetry operation results in both primary and image atoms at short range, and within nonbonded interaction distance of each other, so that nonbonded interactions can not be specified by the minimum image convention and explicit treatment of image atoms is required. As such an unavoidable consequence of RSBC is that the enumeration of nonbonded interactions in regions surrounding certain rotational axes must include both a primary atom and its copied image atom, thereby imposing microscopic symmetry for some forces. We examined the possibility of artifacts arising from this imposed microscopic symmetry of RSBC using two simulation systems: a water shell and human rhinovirus 14 (HRV14) capsid with explicit water. The primary unit was a pentamer of the icosahedron, which has the advantage of direct comparison of icosahedrally equivalent spatial regions, for example regions near a 2-fold symmetry axis with imposed symmetry and a 2-fold axis without imposed symmetry. Analysis of structural and dynamic properties of water molecules and protein atoms found similar behavior near symmetry axes with imposed symmetry and where the minimum image convention fails compared with that in other regions in the simulation system, even though an excluded volume effect was detected for water molecules near the axes with imposed symmetry. These results validate the use of RSBC for icosahedral viral capsids or other rotationally symmetric systems. PMID:22096451
Optical chirality in gyrotropic media: symmetry approach
International Nuclear Information System (INIS)
Proskurin, Igor; Ovchinnikov, Alexander S; Nosov, Pavel; Kishine, Jun-ichiro
2017-01-01
We discuss optical chirality in different types of gyrotropic media. Our analysis is based on the formalism of nongeometric symmetries of Maxwell’s equations in vacuum generalized to material media with given constituent relations. This approach enables us to directly derive conservation laws related to nongeometric symmetries. For isotropic chiral media, we demonstrate that like a free electromagnetic field, both duality and helicity generators belong to the basis set of nongeometric symmetries that guarantees the conservation of optical chirality. In gyrotropic crystals, which exhibit natural optical activity, the situation is quite different from the case of isotropic media. For light propagating along a certain crystallographic direction, there arises two distinct cases: (1) the duality is broken but the helicity is preserved, or (2) only the duality symmetry survives. We show that the existence of one of these symmetries (duality or helicity) is enough to define optical chirality. In addition, we present examples of low-symmetry media, where optical chirality cannot be defined. (paper)
Symmetries in the world of elementary particles
International Nuclear Information System (INIS)
Horvath, D.; Hungarian Academy of Sciences, Debrecen
2003-01-01
Symmetries are leading to conservation laws and these are important features of interactions. Elementary particles are classified according to their spin into fermions and bosons with accordingly different symmetry features. Each particle has its corresponding antiparticle that is leading to the CPT symmetry. Particles can also be classified according to the type of interaction they take part in. Leptons are not taking part in the strong interaction, while the quark model can describe all particles. The model has been made complete with the introduction of a new quantum number, the colour. The next theoretical stage has been that of the GIM mechanism leading to the Standard Model, according to which all interactions are rooted in local symmetries. The carriers of the three basic interactions are: the photon for the electromagnetic one, the weak bosons for the weak interaction, and the gluons for the strong one. The Standard Model has been brought to its actual form by the Higgs mechanism, the spontaneous symmetry breaking. Further development of the model is envisaged. One direction might be that of super symmetry, which created the Minimal Supersymmetric Standard Model. (Gy.M.)
PREFACE: Workshop on Higher Symmetries in Physics
Campoamor-Stursberg, Rutwig; María Ancochea, José; Castrillón, Marco
2009-07-01
This volume of Journal of Physics: Conference Series contains the Proceedings of the Workshop on Higher Symmetries in Physics (WHSP), held at the Universidad Complutense of Madrid (UCM) on 6-8 November 2008. This meeting constituted one of the activities of the research group GEODISIM-920920 of the Universidad Complutense, through the research project CCG07/ESP-2922 of the UCM/CAM for the academic year 2008/2009. The objective of this meeting was to provide a forum to facilitate the opportunity for interaction between specialists working in different fields of physics and mathematics, but who share a common interest in group theoretical, geometrical and symmetry methods applied to physical phenomena. This goal was achieved by means of lectures and technical presentations on different subjects, the only constraint being the current academic interest. The multidisciplinary character of the meeting allowed an effective exchange of ideas between different topics having a symmetry background, like higher order and n-Lie algebras and their cohomology theories, supergravity backgrounds, the geometric approach to the Quantum Hall effect, integrable and superintegrable systems, loop quantum gravity, master symmetries, constants of motion, Gowdy cosmological models, new methods for the Kronecker product decomposition of multiplets, the internal labelling problem or recent developments concerning Grand Unified Theories. The workshop consisted of three microcourses of three hours each and some plenary talks of one hour, as well as a small number of short communications. The Proceedings have been divided into two main sections, according to the structure of the meeting. The first one corresponds to the papers of the courses, which in addition to the material presented in the lectures also contain new and original results. The second part is devoted to the papers of the plenary talks and the remaining contributions. In some cases, the corresponding contributions are completely
International Nuclear Information System (INIS)
Zhao Gang-Ling; Chen Li-Qun; Fu Jing-Li; Hong Fang-Yu
2013-01-01
In this paper, Noether symmetry and Mei symmetry of discrete nonholonomic dynamical systems with regular and the irregular lattices are investigated. Firstly, the equations of motion of discrete nonholonomic systems are introduced for regular and irregular lattices. Secondly, for cases of the two lattices, based on the invariance of the Hamiltomian functional under the infinitesimal transformation of time and generalized coordinates, we present the quasi-extremal equation, the discrete analogues of Noether identity, Noether theorems, and the Noether conservation laws of the systems. Thirdly, in cases of the two lattices, we study the Mei symmetry in which we give the discrete analogues of the criterion, the theorem, and the conservative laws of Mei symmetry for the systems. Finally, an example is discussed for the application of the results
Instability of Yb3+ and Pr3+ low-symmetry luminescence centers in gallium phosphide
International Nuclear Information System (INIS)
Kasatkin, V.A.
1985-01-01
The stability of γb 3+ and Pr 3+ low-symmetry luminescence centers formed in gallium phosphide during quenching were studied in the process of durable storage and annealing. Observation of the Yb 3+ and Pr 3+ centrer states was accomplished by the photoluminescence spectra at 18 K. It has been established that annealing in the dark under normal conditions results in a reduced integral luminescence intensity of all low-symmetry Yb 3+ and Pr 3+ centers. Annealing of quenched GaP and GaP saples at 400 K results in complete disappearance of intracenter luminescence of Pr 3+ and low-symmetry Yb 3+ centers. Decomposition during storage and low anealing temperature point to the instability of low-symmetry centers of Pr 3+ and Yb 3+ luminescence
Acceleration-enlarged symmetries in nonrelativistic space-time with a cosmological constant TH1"-->
Lukierski, J.; Stichel, P. C.; Zakrzewski, W. J.
2008-05-01
By considering the nonrelativistic limit of de Sitter geometry one obtains the nonrelativistic space-time with a cosmological constant and Newton Hooke (NH) symmetries. We show that the NH symmetry algebra can be enlarged by the addition of the constant acceleration generators and endowed with central extensions (one in any dimension (D) and three in D=(2+1)). We present a classical Lagrangian and Hamiltonian framework for constructing models quasi-invariant under enlarged NH symmetries that depend on three parameters described by three nonvanishing central charges. The Hamiltonian dynamics then splits into external and internal sectors with new noncommutative structures of external and internal phase spaces. We show that in the limit of vanishing cosmological constant the system reduces to the one, which possesses acceleration-enlarged Galilean symmetries.
Spontaneous Symmetry Breaking and Nambu–Goldstone Bosons in Quantum Many-Body Systems
Directory of Open Access Journals (Sweden)
Tomáš Brauner
2010-04-01
Full Text Available Spontaneous symmetry breaking is a general principle that constitutes the underlying concept of a vast number of physical phenomena ranging from ferromagnetism and superconductivity in condensed matter physics to the Higgs mechanism in the standard model of elementary particles. I focus on manifestations of spontaneously broken symmetries in systems that are not Lorentz invariant, which include both nonrelativistic systems as well as relativistic systems at nonzero density, providing a self-contained review of the properties of spontaneously broken symmetries specific to such theories. Topics covered include: (i Introduction to the mathematics of spontaneous symmetry breaking and the Goldstone theorem. (ii Minimization of Higgs-type potentials for higher-dimensional representations. (iii Counting rules for Nambu–Goldstone bosons and their dispersion relations. (iv Construction of effective Lagrangians. Specific examples in both relativistic and nonrelativistic physics are worked out in detail.
Perception of Mirror Symmetry in Autism Spectrum Disorders
Falter, Christine M.; Bailey, Anthony J.
2012-01-01
Gestalt grouping in autism spectrum disorders (ASD) is selectively impaired for certain organization principles but for not others. Symmetry is a fundamental Gestalt principle characterizing many biological shapes. Sensitivity to symmetry was tested using the Picture Symmetry Test, which requires finding symmetry lines on pictures. Individuals…
Hidden symmetries of the Principal Chiral Model unveiled
International Nuclear Information System (INIS)
Devchand, C.; Schiff, J.
1996-12-01
By relating the two-dimensional U(N) Principal Chiral Model to a Simple linear system we obtain a free-field parametrization of solutions. Obvious symmetry transformations on the free-field data give symmetries of the model. In this way all known 'hidden symmetries' and Baecklund transformations, as well as a host of new symmetries, arise. (author). 21 refs
Composite symmetry-protected topological order and effective models
Nietner, A.; Krumnow, C.; Bergholtz, E. J.; Eisert, J.
2017-12-01
Strongly correlated quantum many-body systems at low dimension exhibit a wealth of phenomena, ranging from features of geometric frustration to signatures of symmetry-protected topological order. In suitable descriptions of such systems, it can be helpful to resort to effective models, which focus on the essential degrees of freedom of the given model. In this work, we analyze how to determine the validity of an effective model by demanding it to be in the same phase as the original model. We focus our study on one-dimensional spin-1 /2 systems and explain how nontrivial symmetry-protected topologically ordered (SPT) phases of an effective spin-1 model can arise depending on the couplings in the original Hamiltonian. In this analysis, tensor network methods feature in two ways: on the one hand, we make use of recent techniques for the classification of SPT phases using matrix product states in order to identify the phases in the effective model with those in the underlying physical system, employing Künneth's theorem for cohomology. As an intuitive paradigmatic model we exemplify the developed methodology by investigating the bilayered Δ chain. For strong ferromagnetic interlayer couplings, we find the system to transit into exactly the same phase as an effective spin-1 model. However, for weak but finite coupling strength, we identify a symmetry broken phase differing from this effective spin-1 description. On the other hand, we underpin our argument with a numerical analysis making use of matrix product states.
Bogolyubov renormalization group and symmetry of solution in mathematical physics
International Nuclear Information System (INIS)
Shirkov, D.V.; Kovalev, V.F.
2000-01-01
Evolution of the concept known in the theoretical physics as the Renormalization Group (RG) is presented. The corresponding symmetry, that has been first introduced in QFT in mid-fifties, is a continuous symmetry of a solution with respect to transformation involving parameters (e.g., of boundary condition) specifying some particular solution. After short detour into Wilson's discrete semi-group, we follow the expansion of QFT RG and argue that the underlying transformation, being considered as a reparametrization one, is closely related to the self-similarity property. It can be treated as its generalization, the Functional Self-similarity (FS). Then, we review the essential progress during the last decade of the FS concept in application to boundary value problem formulated in terms of differential equations. A summary of a regular approach recently devised for discovering the RG = FS symmetries with the help of the modern Lie group analysis and some of its applications are given. As a main physical illustration, we give application of a new approach to solution for a problem of self-focusing laser beam in a nonlinear medium
Planar cell polarity breaks bilateral symmetry by controlling ciliary positioning.
Song, Hai; Hu, Jianxin; Chen, Wen; Elliott, Gene; Andre, Philipp; Gao, Bo; Yang, Yingzi
2010-07-15
Defining the three body axes is a central event of vertebrate morphogenesis. Establishment of left-right (L-R) asymmetry in development follows the determination of dorsal-ventral and anterior-posterior (A-P) body axes, although the molecular mechanism underlying precise L-R symmetry breaking in reference to the other two axes is still poorly understood. Here, by removing both Vangl1 and Vangl2, the two mouse homologues of a Drosophila core planar cell polarity (PCP) gene Van Gogh (Vang), we reveal a previously unrecognized function of PCP in the initial breaking of lateral symmetry. The leftward nodal flow across the posterior notochord (PNC) has been identified as the earliest event in the de novo formation of L-R asymmetry. We show that PCP is essential in interpreting the A-P patterning information and linking it to L-R asymmetry. In the absence of Vangl1 and Vangl2, cilia are positioned randomly around the centre of the PNC cells and nodal flow is turbulent, which results in disrupted L-R asymmetry. PCP in mouse, unlike what has been implicated in other vertebrate species, is not required for ciliogenesis, cilium motility, Sonic hedgehog (Shh) signalling or apical docking of basal bodies in ciliated tracheal epithelial cells. Our data suggest that PCP acts earlier than the unidirectional nodal flow during bilateral symmetry breaking in vertebrates and provide insight into the functional mechanism of PCP in organizing the vertebrate tissues in development.
Shape-Anisotropy Driven Symmetry Transformations in Nanocrystal Superlattice Polymorphs
Bian, Kaifu
2011-04-26
Despite intense research efforts by research groups worldwide, the potential of self-assembled nanocrystal superlattices (NCSLs) has not been realized due to an incomplete understanding of the fundamental molecular interactions governing the self-assembly process. Because NCSLs reside naturally at length-scales between atomic crystals and colloidal assemblies, synthetic control over the properties of constituent nanocrystal (NC) building blocks and their coupling in ordered assemblies is expected to yield a new class of materials with remarkable optical, electronic, and vibrational characteristics. Progress toward the formation of suitable test structures and subsequent development of NCSL-based technologies has been held back by the limited control over superlattice spacing and symmetry. Here we show that NCSL symmetry can be controlled by manipulating molecular interactions between ligands bound to the NC surface and the surrounding solvent. Specifically, we demonstrate solvent vapor-mediated NCSL symmetry transformations that are driven by the orientational ordering of NCs within the lattice. The assembly of various superlattice polymorphs, including face-centered cubic (fcc), body-centered cubic (bcc), and body-centered tetragonal (bct) structures, is studied in real time using in situ grazing incidence small-angle X-ray scattering (GISAXS) under controlled solvent vapor exposure. This approach provides quantitative insights into the molecular level physics that controls solvent-ligand interactions and assembly of NCSLs. Computer simulations based on all-atom molecular dynamics techniques confirm several key insights gained from experiment. © 2011 American Chemical Society.
Pseudospin Symmetry as a Bridge between Hadrons and Nuclei
Directory of Open Access Journals (Sweden)
Joseph N. Ginocchio
2016-03-01
Full Text Available Atomic nuclei exhibit approximate pseudospin symmetry. We review the arguments that this symmetry is a relativistic symmetry. The condition for this symmetry is that the sum of the vector and scalar potentials in the Dirac Hamiltonian is a constant. We give the generators of pseudospin symmetry. We review some of the predictions that follow from the insight that pseudospin symmetry has relativistic origins . We show that approximate pseudospin symmetry in nuclei predicts approximate spin symmetry in anti-nucleon scattering from nuclei. Since QCD sum rules predict that the sum of the scalar and vector potentials is small, we discuss the quark origins of pseudospin symmetry in nuclei and spin symmetry in hadrons.
Covalent bond symmetry breaking and protein secondary structure
Lundgren, Martin; Niemi, Antti J.
2011-01-01
Both symmetry and organized breaking of symmetry have a pivotal r\\^ole in our understanding of structure and pattern formation in physical systems, including the origin of mass in the Universe and the chiral structure of biological macromolecules. Here we report on a new symmetry breaking phenomenon that takes place in all biologically active proteins, thus this symmetry breaking relates to the inception of life. The unbroken symmetry determines the covalent bond geometry of a sp3 hybridized ...
Nuclear symmetry energy in density dependent hadronic models
International Nuclear Information System (INIS)
Haddad, S.
2008-12-01
The density dependence of the symmetry energy and the correlation between parameters of the symmetry energy and the neutron skin thickness in the nucleus 208 Pb are investigated in relativistic Hadronic models. The dependency of the symmetry energy on density is linear around saturation density. Correlation exists between the neutron skin thickness in the nucleus 208 Pb and the value of the nuclear symmetry energy at saturation density, but not with the slope of the symmetry energy at saturation density. (author)
A notion of symmetry witness related to Wigner’s theorem on symmetry transformations
Aniello, Paolo
2018-02-01
A symmetry witness is a subset of the space of selfadjoint trace class operators that allows one to ascertain whether a linear map acting in that space is a symmetry transformation. This notion arises from a certain type of linear preserver problems. Precisely, a symmetry witness is a suitable set which is invariant with respect to an injective linear map in the Banach space of selfadjoint trace class operators where the quantum states live if and only if this map acts as a symmetry transformation. In particular, by a linear version of Wigner’s classical theorem, the set of pure states — the rank-one projections — is a symmetry witness. Linearity entails that the usual assumption of preservation of the transition probability between pure states becomes superfluous. This result extends to every set of projections of a fixed (finite) rank, with some suitable constraint on this rank. One then obtains a classification of the sets of projections of a fixed rank that are symmetry witnesses. These symmetry witnesses are projectable. Namely, formulating the mentioned result in terms of quantum states, the sets of ‘uniform’ density operators of a suitable fixed rank are symmetry witnesses as well.
Geometry and symmetry in non-equilibrium thermodynamic systems
Sonnino, Giorgio
2017-06-01
The ultimate aim of this series of works is to establish the closure equations, valid for thermodynamic systems out from the Onsager region, and to describe the geometry and symmetry in thermodynamic systems far from equilibrium. Geometry of a non-equilibrium thermodynamic system is constructed by taking into account the second law of thermodynamics and by imposing the validity of the Glansdorff-Prigogine Universal Criterion of Evolution. These two constraints allow introducing the metrics and the affine connection of the Space of the Thermodynamic Forces, respectively. The Lie group associated to the nonlinear Thermodynamic Coordinate Transformations (TCT) leaving invariant both the entropy production σ and the Glansdorff-Prigogine dissipative quantity P, is also described. The invariance under TCT leads to the formulation of the Thermodynamic Covariance Principle (TCP): The nonlinear closure equations, i.e. the flux-force relations, must be covariant under TCT. In other terms, the fundamental laws of thermodynamics should be manifestly covariant under transformations between the admissible thermodynamic forces (i.e. under TCT). The symmetry properties of a physical system are intimately related to the conservation laws characterizing the thermodynamic system. Noether's theorem gives a precise description of this relation. The macroscopic theory for closure relations, based on this geometrical description and subject to the TCP, is referred to as the Thermodynamic Field Theory (TFT). This theory ensures the validity of the fundamental theorems for systems far from equilibrium.
Violation of Particle Anti-particle Symmetry
CERN. Geneva
2001-01-01
Symmetry is a fundamental concept which can be found in the whole range of human activities e. g. from arts to science. The beauty of a statues is often related to its symmetric form. In physics, all the laws are related to some sort of symmetry. Equally important is a small breakdown ofsymmetry. Even for the case of a statue, its beauty might be enhanced by introducing small distortions. In this course, we investigate the role symmetry in the world of elementary particles. Some symmetries found there are very similar to those which can be seen in our daily life, while others are more exotic and related to the quantum nature of the elementary particles. Our particular focus ismade on symmetry and its violation between the matter and anti-matter, known as CP violation. It is experimentally well established that particleand anti-particle behave a tiny bit differently in the world of elementary particles. We discuss how this would be explained and how we can extendour knowledge. Evolution of our universe is stro...
Weyl-gauge symmetry of graphene
International Nuclear Information System (INIS)
Iorio, Alfredo
2011-01-01
Research highlights: → Graphene action's Weyl symmetry identifies shapes for which the DOS is invariant. → Electrons on graphene might experience a general-relativistic-like spacetime. → Rich mathematical structures, such as the Liouville's equation, naturally arise. - Abstract: The conformal invariance of the low energy limit theory governing the electronic properties of graphene is explored. In particular, it is noted that the massless Dirac theory in point enjoys local Weyl symmetry, a very large symmetry. Exploiting this symmetry in the two spatial dimensions and in the associated three dimensional spacetime, we find the geometric constraints that correspond to specific shapes of the graphene sheet for which the electronic density of states is the same as that for planar graphene, provided the measurements are made in accordance to the inner reference frame of the electronic system. These results rely on the (surprising) general relativistic-like behavior of the graphene system arising from the combination of its well known special relativistic-like behavior with the less explored Weyl symmetry. Mathematical structures, such as the Virasoro algebra and the Liouville equation, naturally arise in this three-dimensional context and can be related to specific profiles of the graphene sheet. Speculations on possible applications of three-dimensional gravity are also proposed.
Bilateral symmetry analysis of breast MRI
International Nuclear Information System (INIS)
Alterson, Robert; Plewes, Donald B
2003-01-01
Mammographic interpretation often uses symmetry between left and right breasts to indicate the site of potential tumour masses. This approach has not been applied to breast images obtained from MRI. We present an automatic technique for breast symmetry detection based on feature extraction techniques which does not require any efforts to co-register breast MRI data. The approach applies computer-vision techniques to detect natural biological symmetries in breast MR scans based on three objective measures of similarity: multiresolution non-orthogonal wavelet representation, three-dimensional intensity distributions and co-occurrence matrices. Statistical distributions that are invariant to feature localization are computed for each of the extracted image features. These distributions are later compared against each other to account for perceptual similarity. Studies based on 51 normal MRI scans of randomly selected patients showed that the sensitivity of symmetry detection rate approached 94%. The symmetry analysis procedure presented in this paper can be applied as an aid in detecting breast tissue changes arising from disease
Reflections on the concept of symmetry
Lorenz, Kuno
2005-10-01
The concept of symmetry is omnipresent, although originally, in Greek antiquity, distinctly different from the modern logical notion. In logic a binary relation R is called symmetric if xRy implies yRx. In Greek, "being symmetric" in general usage is synonymous with "being harmonious", and in technical usage, as in Euclid's Elements, it is synonymous with "commensurable". Due to the second meaning, which is close to the etymology of συ´μμɛτρoς, "with measure" has likewise to be read as "being [in] rational [ratios]" and displays the origin of the concept of rationality of establishing a proportion. Heraclitus can be read as a master of such connections. Exercising rationality is a case of simultaneously finding and inventing symmetries. On that basis a proposal is made of how to relate the modern logical notion of symmetry, a second-order concept, on the one hand with modern first-order usages of the term symmetric in geometry and other fields, and on the other hand with the notion of balance that derives from the ancient usage of symmetric. It is argued that symmetries as states of balance exist only in theory, in practice they function as norms vis-à-vis broken symmetries.
Symmetries, dimensional reduction, and topological quantum order
Nussinov, Zohar; Ortiz, Gerardo
2009-12-01
We prove sufficient conditions for Topological Quantum Order at zero and finite temperatures. The crux of the proof hinges on the existence of low-dimensional Gauge-Like Symmetries, thus providing a unifying framework based on a symmetry principle. All known examples of Topological Quantum Order display Gauge-Like Symmetries. Other systems exhibiting such symmetries include Hamiltonians depicting orbital-dependent spin exchange and Jahn-Teller effects in transition metal orbital compounds, short-range frustrated Klein spin models, and p+ip superconducting arrays. We analyze the physical consequences of Gauge-Like Symmetries (including topological terms and charges) and, most importantly, show the insufficiency of the energy spectrum, (recently defined) entanglement entropy, maximal string correlators, and fractionalization in establishing Topological Quantum Order. Duality mappings illustrate that not withstanding the existence of spectral gaps, thermal fluctuations may impose restrictions on suggested topological quantum computing schemes. Our results allow us to go beyond standard topological field theories and engineer new systems with Topological Quantum Order.
Symmetries of Trautman retarded radial coordinates
Kolanowski, Maciej; Lewandowski, Jerzy
2018-02-01
We consider spacetime described by an observer that uses a Trautman retarded radial coordinate system. Given a metric tensor, we find all the local symmetries of the coordinates. They set a 10D family that can be parametrized by Poincaré algebra. This result is similar to the symmetries of an observer using the Gaussian normal spacetime radial coordinates and experiencing algebra deformation induced by the spacetime Riemann tensor. A new, surprising property of the retarded coordinates is a generic lack of smoothness in the symmetries. We show that, in general, the symmetries are not twice differentiable. In other words, a family of smooth symmetries is smaller than in the Gaussian normal spacetime coordinate case. We demonstrate examples of that non-smoothness and find the necessary conditions for the differentiability to the second order. We also discuss the consequences and relevance of that result for the geometric relational observables program. One can interpret our result by the fact that Trautman coordinates provide gauge conditions stronger than the Gaussian spacetime radial gauge.
Dynamical symmetries of the shell model
Energy Technology Data Exchange (ETDEWEB)
Van Isacker, P
2000-07-01
The applications of spectrum generating algebras and of dynamical symmetries in the nuclear shell model are many and varied. They stretch back to Wigner's early work on the supermultiplet model and encompass important landmarks in our understanding of the structure of the atomic nucleus such as Racah's SU(2) pairing model and Elliot's SU(3) rotational model. One of the aims of this contribution has been to show the historical importance of the idea of dynamical symmetry in nuclear physics. Another has been to indicate that, in spite of being old, this idea continues to inspire developments that are at the forefront of today's research in nuclear physics. It has been argued in this contribution that the main driving features of nuclear structure can be represented algebraically but at the same time the limitations of the symmetry approach must be recognised. It should be clear that such approach can only account for gross properties and that any detailed description requires more involved numerical calculations of which we have seen many fine examples during this symposium. In this way symmetry techniques can be used as an appropriate starting point for detailed calculations. A noteworthy example of this approach is the pseudo-SU(3) model which starting from its initial symmetry Ansatz has grown into an adequate and powerful description of the nucleus in terms of a truncated shell model. (author)
Symmetries and variation of spectra
Bhatia, Rajendra; Elsner, Ludwig
1992-01-01
An interesting class of matrices is shown to have the property that the spectrum of each of its elements is invariant under multiplication by p-th roots of unity. For this class and tor a class of Hamiltonian matrices improved spectral variation bounds are obtained.
Workshop on electroweak symmetry breaking: proceedings
International Nuclear Information System (INIS)
Hinchliffe, I.
1984-10-01
A theoretical workshop on electroweak symmetry breaking at the Superconducting Supercollider was held at Lawrence Berkeley Laboratory, June 4-22, 1984. The purpose of the workshop was to focus theoretical attention on the ways in which experimentation at the SSC could reveal manifestations of the phenomenon responsible for electroweak symmetry breaking. This issue represents, at present, the most compelling scientific argument for the need to explore the energy region to be made accessible by the SSC, and a major aim of the workshop was to involve a broad cross section of particle theorists in the ongoing process of sharpening the requirements for both accelerator and detector design that will ensure detection and identification of meaningful signals, whatever form the electroweak symmetry breaking phenomenon should actually take. Separate entries were prepared for the data base for the papers presented
Workshop on electroweak symmetry breaking: proceedings
Energy Technology Data Exchange (ETDEWEB)
Hinchliffe, I. (ed.)
1984-10-01
A theoretical workshop on electroweak symmetry breaking at the Superconducting Supercollider was held at Lawrence Berkeley Laboratory, June 4-22, 1984. The purpose of the workshop was to focus theoretical attention on the ways in which experimentation at the SSC could reveal manifestations of the phenomenon responsible for electroweak symmetry breaking. This issue represents, at present, the most compelling scientific argument for the need to explore the energy region to be made accessible by the SSC, and a major aim of the workshop was to involve a broad cross section of particle theorists in the ongoing process of sharpening the requirements for both accelerator and detector design that will ensure detection and identification of meaningful signals, whatever form the electroweak symmetry breaking phenomenon should actually take. Separate entries were prepared for the data base for the papers presented.
Arithmetic crystal classes of magnetic symmetries
International Nuclear Information System (INIS)
Angelova, M.N.; Boyle, L.L.
1993-01-01
The symmetries and properties of a broad class of magnetic crystals are described by magnetic space groups which contain both (unitary) spatial symmetry operations and their combinations with the (anti-unitary operation of) time inversion, 0. The spatial symmetry operations form a halving, non-magnetic, space group H of the magnetic group M such that M=H+aH. As an abstract group the magnetic group M is isomorphic to a non-magnetic group G. The anti-unitary operator a is simply the time inversion 0 when M is a grey group but a product of time inversion with some spatial operation belonging to the coset G-H when M is a black-and-white group. (Author)
Higgsless approach to electroweak symmetry breaking
Grojean, Christophe
2007-01-01
Higgsless models are an attempt to achieve a breaking of the electroweak symmetry via boundary conditions at the end-points of a fifth dimension compactified on an interval, as an alternative to the usual Higgs mechanism. There is no physical Higgs scalar in the spectrum and the perturbative unitarity violation scale is delayed via the exchange of massive spin-1 KK resonances. The correct mass spectrum is reproduced in a model in warped space, which inherits a custodial symmetry from a left–right gauge symmetry in the bulk. Phenomenological challenges as well as collider signatures are presented. From the AdS/CFT perspective, this model appears as a weakly coupled dual to walking technicolour models.
Symmetry transforms for ideal magnetohydrodynamics equilibria.
Bogoyavlenskij, Oleg I
2002-11-01
A method for constructing ideal magnetohydrodynamics (MHD) equilibria is introduced. The method consists of the application of symmetry transforms to any known MHD equilibrium [ O. I. Bogoyavlenskij, Phys. Rev. E. 62, 8616, (2000)]. The transforms break the geometrical symmetries of the field-aligned solutions and produce continuous families of the nonsymmetric MHD equilibria. The method of symmetry transforms also allows to obtain MHD equilibria with current sheets and exact solutions with noncollinear vector fields B and V. A model of the nonsymmetric astrophysical jets outside of their accretion disks is developed. The total magnetic and kinetic energy of the jet is finite in any layer c(1)ball lightning with dynamics of plasma inside the fireball.
Symmetry issues in Directly Irradiated Targets
Ramis, R.; Temporal, M.; Canaud, B.; Brandon, V.
2013-11-01
In direct drive Inertial Confinement Fusion (ICF), the typical laser beam to laser beam angle is around 30°. This fact makes the study of the irradiation symmetry a genuine 3D problem. In this paper we use the three dimensional version of the MULTI hydrocode to assess the symmetry of such ICF implosions. More specifically, we study a shock-ignition proposal for the Laser-Mégajoule facility (LMJ) in which two of the equatorial beam cones are used to implode and precompress a spherical capsule (the "reference" capsule of HiPER project) made of 0.59 mg of pure Deuterium-Tritium mixture. The symmetry of this scheme is analysed and optimized to get a design inside the operating limits of LMJ. The studied configuration has been found essentially axial-symmetric, so that the use of 2D hydrocodes would be appropriate for this specific situation.
Crystallography and the world of symmetry
Chatterjee, Sanat K
2008-01-01
Symmetry exists in realms from crystals to patterns, in external shapes of living or non-living objects, as well as in the fundamental particles and the physical laws that govern them. In fact, the search for this symmetry is the driving force for the discovery of many fundamental particles and the formulation of many physical laws. While one can not imagine a world which is absolutely symmetrical nor can one a world which is absolutely asymmetrical. These two aspects of nature are intermingled with each other inseparably. This is the basis of the existence of aperiodicity manifested in the liquid crystals and also quasi-crystals also discussed in Crystallography and the World of Symmetry.
Gauged discrete symmetries and proton stability
International Nuclear Information System (INIS)
Mohapatra, Rabindra N.; Ratz, Michael
2007-01-01
We discuss the results of a search for anomaly-free Abelian Z N discrete symmetries that lead to automatic R-parity conservation and prevent dangerous higher-dimensional proton decay operators in simple extensions of minimal supersymmetric extension of the standard model based on the left-right symmetric group, the Pati-Salam group and SO(10). We require that the superpotential for the models have enough structures to be able to give correct symmetry breaking to minimal supersymmetric extension of the standard model and potentially realistic fermion masses. We find viable models in each of the extensions, and for all the cases, anomaly freedom of the discrete symmetry restricts the number of generations
Supersymmetric defect models and mirror symmetry
Energy Technology Data Exchange (ETDEWEB)
Hook, Anson; Kachru, Shamit; Torroba, Gonzalo
2013-11-01
We study supersymmetric field theories in three space-time dimensions doped by various configurations of electric charges or magnetic fluxes. These are supersymmetric avatars of impurity models. In the presence of additional sources such configurations are shown to preserve half of the supersymmetries. Mirror symmetry relates the two sets of configurations. We discuss the implications for impurity models in 3d NN = 4 QED with a single charged hypermultiplet (and its mirror, the theory of a free hypermultiplet) as well as 3d NN = 2 QED with one flavor and its dual, a supersymmetric Wilson-Fisher fixed point. Mirror symmetry allows us to find backreacted solutions for arbitrary arrays of defects in the IR limit of NN = 4 QED. Our analysis, complemented with appropriate string theory brane constructions, sheds light on various aspects of mirror symmetry, the map between particles and vortices and the emergence of ground state entropy in QED at finite density.
Operational symmetries basic operations in physics
Saller, Heinrich
2017-01-01
This book describes the endeavour to relate the particle spectrum with representations of operational electroweak spacetime, in analogy to the atomic spectrum as characterizing representations of hyperbolic space. The spectrum of hyperbolic position space explains the properties of the nonrelativistic atoms; the spectrum of electroweak spacetime is hoped to explain those of the basic interactions and elementary particles. In this book, the theory of operational symmetries is developed from the numbers, from Plato’s and Kepler’s symmetries over the simple Lie groups to their applications in nonrelativistic, special relativistic and general relativistic quantum theories with the atomic spectrum for hyperbolic position and, in first attempts, the particle spectrum for electroweak spacetime. The standard model of elementary particles and interactions is characterized by a symmetry group. In general, as initiated by Weyl and stressed by Heisenberg, quantum theory can be built as a theory of operation groups an...
Facial aesthetics: babies prefer attractiveness to symmetry.
Samuels, Curtis A; Butterworth, George; Roberts, Tony; Graupner, Lida; Hole, Graham
2013-01-01
The visual preferences of human infants for faces that varied in their attractiveness and in their symmetry about the midline were explored. The aim was to establish whether infants' visual preference for attractive faces may be mediated by the vertical symmetry of the face. Chimeric faces, made from photographs of attractive and unattractive female faces, were produced by computer graphics. Babies looked longer at normal and at chimeric attractive faces than at normal and at chimeric unattractive faces. There were no developmental differences between the younger and older infants: all preferred to look at the attractive faces. Infants as young as 4 months showed similarity with adults in the 'aesthetic perception' of attractiveness and this preference was not based on the vertical symmetry of the face.
Symmetry and bifurcations of momentum mappings
Energy Technology Data Exchange (ETDEWEB)
Arms, J.M.; Marsden, J.E.; Moncrief, V.
1981-01-01
The zero set of a momentum mapping is shown to have a singularity at each point with symmetry. The zero set is diffeomorphic to the product of a manifold and the zero set of a homogeneous quadratic function. The proof uses the Kuranishi theory of deformations. Among the applications, it is shown that the set of all solutions of the Yang-Mills equations on a Lorentz manifold has a singularity at any solution with symmetry, in the sense of a pure gauge symmetry. Similarly, the set of solutions of Einstein's equations has a singularity at any solution that has spacelike Killing fields, provided the spacetime has a compact Cauchy surface.
Topological phases with generalized global symmetries
Yoshida, Beni
2016-04-01
We present simple lattice realizations of symmetry-protected topological phases with q -form global symmetries where charged excitations have q spatial dimensions. Specifically, we construct d space-dimensional models supported on a (d +1 ) -colorable graph by using a family of unitary phase gates, known as multiqubit control-Z gates in quantum information community. In our construction, charged excitations of different dimensionality may coexist and form a short-range entangled state which is protected by symmetry operators of different dimensionality. Nontriviality of proposed models, in a sense of quantum circuit complexity, is confirmed by studying protected boundary modes, gauged models, and corresponding gapped domain walls. We also comment on applications of our construction to quantum error-correcting codes, and discuss corresponding fault-tolerant logical gates.
Quantum mechanics and hidden superconformal symmetry
Bonezzi, R.; Corradini, O.; Latini, E.; Waldron, A.
2017-12-01
Solvability of the ubiquitous quantum harmonic oscillator relies on a spectrum generating osp (1 |2 ) superconformal symmetry. We study the problem of constructing all quantum mechanical models with a hidden osp (1 |2 ) symmetry on a given space of states. This problem stems from interacting higher spin models coupled to gravity. In one dimension, we show that the solution to this problem is the Vasiliev-Plyushchay family of quantum mechanical models with hidden superconformal symmetry obtained by viewing the harmonic oscillator as a one dimensional Dirac system, so that Grassmann parity equals wave function parity. These models—both oscillator and particlelike—realize all possible unitary irreducible representations of osp (1 |2 ).
Homological mirror symmetry and tropical geometry
Catanese, Fabrizio; Kontsevich, Maxim; Pantev, Tony; Soibelman, Yan; Zharkov, Ilia
2014-01-01
The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tropical” approach to Gromov-Witten theory, and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Ge...
Geometric symmetries in superfluid vortex dynamics
Kozik, Evgeny; Svistunov, Boris
2010-10-01
Dynamics of quantized vortex lines in a superfluid feature symmetries associated with the geometric character of the complex-valued field, w(z)=x(z)+iy(z) , describing the instant shape of the line. Along with a natural set of Noether’s constants of motion, which—apart from their rather specific expressions in terms of w(z) —are nothing but components of the total linear and angular momenta of the fluid, the geometric symmetry brings about crucial consequences for kinetics of distortion waves on the vortex lines, the Kelvin waves. It is the geometric symmetry that renders Kelvin-wave cascade local in the wave-number space. Similar considerations apply to other systems with purely geometric degrees of freedom.
Test of Relativistic Eigenfunctions for Pseudospin Symmetry
Ginocchio, Joseph N.
2001-10-01
Pseudospin symmetry has been shown to be a relativistic symmetry of the Dirac Hamiltonian [1] and the generators of this symmetry have been determined [2]. Although the measured energy splittings between pseudospin doublets are small, the eigenfunctions of the doublets have been examined only recently [3]. We show to what extent the pseudospin partners of realistic relativistic mean field eigenfunctions [4] are themselves eigenfunctions of the same Dirac Hamiltonian. 1) J. N. Ginocchio, Phys. Rev. Lett. 78, 436 (1997). 2) J. N. Ginocchio and A. Leviatan, Phys. Lett. B 425, 1 (1998). 3) J. N. Ginocchio and A. Leviatan, to be published in Phys. Rev. Lett. (2001). 4) J. N. Ginocchio and D. G. Madland, Phys. Rev. C 57, 1167 (1998).
On radiative gauge symmetry breaking in the minimal supersymmetric model
International Nuclear Information System (INIS)
Gamberini, G.; Ridolfi, G.; Zwirner, F.
1990-01-01
We present a critical reappraisal of radiative gauge symmetry breaking in the minimal supersymmetric standard model. We show that a naive use of the renormalization group improved tree-level potential can lead to incorrect conclusions. We specify the conditions under which the above method gives reliable results, by performing a comparison with the results obtained from the full one-loop potential. We also point out how the stability constraint and the conditions for the absence of charge- and colour-breaking minima should be applied. Finally, we comment on the uncertainties affecting the model predictions for physical observables, in particular for the top quark mass. (orig.)
Noether symmetry approach inf(T, B) teleparallel cosmology.
Bahamonde, Sebastian; Capozziello, Salvatore
2017-01-01
We consider the cosmology derived from f ( T , B ) gravity where T is the torsion scalar and [Formula: see text] a boundary term. In particular we discuss how it is possible to recover, under the same standard, the teleparallel f ( T ) gravity, the curvature f ( R ) gravity, and the teleparallel-curvature f ( R , T ) gravity, which are particular cases of f ( T , B ). We adopt the Noether Symmetry Approach to study the related dynamical systems and to find cosmological solutions.
Hermite-symmetry and super-gauge-invariance
Energy Technology Data Exchange (ETDEWEB)
Treder, H.J. (Akademie der Wissenschaften der DDR, Potsdam-Babelsberg. Einstein-Laboratorium fuer Theoretische Physik)
1985-03-01
Within a unitary general relativistic field theory the metric fundamental tensor and the affinities are to be considered as independent field variables under the condition that besides the coordinate covariance the invariance for 'transformations preserving parallelism' (Einstein's A-gauge-invariance) exists. For a (non-degenerate) hermitian fundamental tensor the demand for super-gauge-invariance leads to the hermitian symmetry of both the affinities and the Ricci tensor. The hermitian continuation of general relativity into the complex domain leads therefore to the Einstein-Schroedinger field equations.
Noether symmetry approach in f(T, B) teleparallel cosmology
Energy Technology Data Exchange (ETDEWEB)
Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom); Capozziello, Salvatore [Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica, Naples (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Compl. Univ. di Monte S. Angelo, Naples (Italy); INFN, Napoli (Italy)
2017-02-15
We consider the cosmology derived from f(T, B) gravity where T is the torsion scalar and B = (2)/(e)∂{sub μ}(eT{sup μ}) a boundary term. In particular we discuss how it is possible to recover, under the same standard, the teleparallel f(T) gravity, the curvature f(R) gravity, and the teleparallel-curvature f(R, T) gravity, which are particular cases of f(T, B). We adopt the Noether Symmetry Approach to study the related dynamical systems and to find cosmological solutions. (orig.)
Kholodnyi, V. A.
2002-05-01
Although symmetries play a major role in physics, their use in finance is relatively new and, to the best of our knowledge, can be traced to 1995 when Kholodnyi introduced the beliefs-preferences gauge symmetry. One of the main outcomes of the beliefs-preferences gauge symmetry is that it allows for the valuation and dynamic replication of contingent claims in a general market environment, that is, in the case of a general, not necessarily diffusion Markov process for the prices of underlying securities. This valuation and dynamic replication is based on the novel ideas of symmetry in contrast to the standard approach which uses stochastic analysis. The practical applications of the beliefs-preferences gauge symmetry range from the detection of a new type of true arbitrage to the beliefs-preferences-independent valuation and dynamic replication of contingent claims in a general market environment.
High-symmetry organic scintillator systems
Feng, Patrick L.
2018-02-06
An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.
Deformations of spacetime and internal symmetries
Directory of Open Access Journals (Sweden)
Gresnigt Niels G.
2017-01-01
Full Text Available Algebraic deformations provide a systematic approach to generalizing the symmetries of a physical theory through the introduction of new fundamental constants. The applications of deformations of Lie algebras and Hopf algebras to both spacetime and internal symmetries are discussed. As a specific example we demonstrate how deforming the classical flavor group S U(3 to the quantum group S Uq(3 ≡ U q (su(3 (a Hopf algebra and taking into account electromagnetic mass splitting within isospin multiplets leads to new and exceptionally accurate baryon mass sum rules that agree perfectly with experimental data.
Deriving GENERIC from a Generalized Fluctuation Symmetry
Kraaij, Richard; Lazarescu, Alexandre; Maes, Christian; Peletier, Mark
2018-02-01
Much of the structure of macroscopic evolution equations for relaxation to equilibrium can be derived from symmetries in the dynamical fluctuations around the most typical trajectory. For example, detailed balance as expressed in terms of the Lagrangian for the path-space action leads to gradient zero-cost flow. We expose a new such fluctuation symmetry that implies GENERIC, an extension of gradient flow where a Hamiltonian part is added to the dissipative term in such a way as to retain the free energy as Lyapunov function.
Symmetry in bonding and spectra an introduction
Douglas, Bodie E
1985-01-01
Many courses dealing with the material in this text are called ""Applications of Group Theory."" Emphasizing the central role and primary importance of symmetry in the applications, Symmetry in Bonding and Spectra enables students to handle applications, particularly applications to chemical bonding and spectroscopy. It contains the essential background in vectors and matrices for the applications, along with concise reviews of simple molecular orbital theory, ligand field theory, and treatments of molecular shapes, as well as some quantum mechanics. Solved examples in the text illustra
Introduction to symmetry breaking and spin
International Nuclear Information System (INIS)
Ng, J.N.
1992-05-01
These lectures form an elementary introduction to the physics of symmetry breaking and the role polarization experiments play in the study of gauge symmetry breaking. Included here is an introduction to testing the electroweak sector of the standard model to one-loop and the use of oblique corrections as a probe of new physics. The second part of the lectures consists of an introduction to multiple Higgs models as sources of spontaneous CP violation. A brief discussion of using spin measurements in meson decays to study these sources of CP violation is also included. (author)
Fibre bundles. Monopoles and internal symmetries
International Nuclear Information System (INIS)
Horvathy, P.A.; Rawnsley, J.H.
1985-01-01
Asymptotic monopole configurations are described in fibre-bundle terms. Bundle reduction -the geometric procedure for spontaneous symmetry breaking- is studied in detail: the monopole-bundle is reducible to a given subgroup K of the gauge group if and only if the Higgs charge satisfies a suitable constraint. The Yang-Mills connection reduces if and only if the non-Abelian charge vector belongs to the Lie algebra of K. The problem of ''global color'' can also be formulated in these terms. Our theory allows us to determine which subgroups K are internal symmetries of a given field configuration
Neutron matter, symmetry energy and neutron stars
Energy Technology Data Exchange (ETDEWEB)
Stefano, Gandolfi [Los Alamos National Laboratory (LANL); Steiner, Andrew W [ORNL
2016-01-01
Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron-rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.
Holographic Metals and Insulators with Helical Symmetry
Donos, Aristomenis; Kiritsis, Elias
2014-01-01
Homogeneous, zero temperature scaling solutions with Bianchi VII spatial geometry are constructed in Einstein-Maxwell-Dilaton theory. They correspond to quantum critical saddle points with helical symmetry at finite density. Assuming $AdS_{5}$ UV asymptotics, the small frequency/(temperature) dependence of the AC/(DC) electric conductivity along the director of the helix are computed. A large class of insulating and conducting anisotropic phases is found, as well as isotropic, metallic phases. Conduction can be dominated by dissipation due to weak breaking of translation symmetry or by a quantum critical current.
High-symmetry organic scintillator systems
Energy Technology Data Exchange (ETDEWEB)
Feng, Patrick L.
2018-03-13
An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.
Antiunitary symmetry operators in quantum mechanics
International Nuclear Information System (INIS)
Carinena, J.F.; Santander, M.
1981-01-01
A criterion to decide that some symmetries of a quantum system must be realized as antiunitary operators is given. It is based on some mathematical theorems about the second cohomology group of the symmetry group when expressed in terms of those of a normal subgroup and the corresponding factor group. It is also shown that this criterion implies that the only possibility for the unitary subgroup in the Galilean case is that generated by the space reflection and the connected component containing the identity; otherwise only massless systems would arise. (author)
Cosmoparticle physics of family symmetry breaking
International Nuclear Information System (INIS)
Khlopov, M.Yu.
1993-07-01
The foundations of both particle theory and cosmology are hidden at super energy scale and can not be tested by direct laboratory means. Cosmoparticle physics is developed to probe these foundations by the proper combination of their indirect effects, thus providing definite conclusions on their reliability. Cosmological and astrophysical tests turn to be complementary to laboratory searches of rare processes, induced by new physics, as it can be seen in the case of gauge theory of broken symmetry of quark and lepton families, ascribing to the hierarchy of the horizontal symmetry breaking the observed hierarchy of masses and the mixing between quark and lepton families. 36 refs
Energy Technology Data Exchange (ETDEWEB)
Leviatan, A. [Racah Institute of Physics, The Hebrew University, Jerusalem 91904, (Israel); Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Institute for Nuclear Theory, University of Washington, Box 351550, Seattle, Washington 98195 (United States); Ginocchio, J. N. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2000-02-01
We use the empirical evidence that F-spin multiplets exist in nuclei for only selected states as an indication that F spin can be regarded as a partial symmetry. We show that there is a class of non-F-scalar IBM-2 Hamiltonians with partial F-spin symmetry, which reproduce the known systematics of collective bands in nuclei. These Hamiltonians predict that the scissors states have good F-spin and form F-spin multiplets, which is supported by the existing data. (c) 2000 The American Physical Society.
International Nuclear Information System (INIS)
Leviatan, A.; Ginocchio, J. N.
2000-01-01
We use the empirical evidence that F-spin multiplets exist in nuclei for only selected states as an indication that F spin can be regarded as a partial symmetry. We show that there is a class of non-F-scalar IBM-2 Hamiltonians with partial F-spin symmetry, which reproduce the known systematics of collective bands in nuclei. These Hamiltonians predict that the scissors states have good F-spin and form F-spin multiplets, which is supported by the existing data. (c) 2000 The American Physical Society
Leviatan, A
2000-01-01
We use the empirical evidence that F-spin multiplets exist in nuclei for only selected states as an indication that F spin can be regarded as a partial symmetry. We show that there is a class of non-F-scalar IBM-2 Hamiltonians with partial F-spin symmetry, which reproduce the known systematics of collective bands in nuclei. These Hamiltonians predict that the scissors states have good F-spin and form F-spin multiplets, which is supported by the existing data. (22 refs).
Toward Measuring Network Aesthetics Based on Symmetry
Directory of Open Access Journals (Sweden)
Zengqiang Chen
2017-05-01
Full Text Available In this exploratory paper, we discuss quantitative graph-theoretical measures of network aesthetics. Related work in this area has typically focused on geometrical features (e.g., line crossings or edge bendiness of drawings or visual representations of graphs which purportedly affect an observer’s perception. Here we take a very different approach, abandoning reliance on geometrical properties, and apply information-theoretic measures to abstract graphs and networks directly (rather than to their visual representaions as a means of capturing classical appreciation of structural symmetry. Examples are used solely to motivate the approach to measurement, and to elucidate our symmetry-based mathematical theory of network aesthetics.
Symmetry characterization of electrons and lattice excitations
Directory of Open Access Journals (Sweden)
Schober H.
2012-03-01
Full Text Available Symmetry concerns all aspects of a physical system from the electronic orbitals to structural and magnetic excitations. In this article we will try to elaborate the fundamental connection between symmetry and excitations. As excitations are manyfold in physical systems it is impossible to treat them exhaustively. We thus concentrate on the two topics of Bloch electrons and phonons. These two examples are complementary in the sense that Bloch electrons describe single particles in an external periodic potential while phonons exemplify a decoupled system of interacting particles. The way we develop the argument gives as by-product a short account of molecular orbitals and molecular vibrations.
CP violation and modular symmetries
Dent, Thomas
2001-01-01
We reconsider the origin of CP violation in fundamental theory. Existing string models of spontaneous CP violation make ambiguous predictions, due to the arbitrariness of CP transformation and the apparent non-invariance of the results under duality. We find an unambiguous modular CP invariance condition, applicable to predictive models of spontaneous CP violation, which circumvents these problems; it strongly constrains CP violation by heterotic string moduli. The dilaton is also evaluated a...
Acceleration-extended Newton-Hooke symmetry and its dynamical realization
International Nuclear Information System (INIS)
Liu Fuli; Tian Yu
2008-01-01
Newton-Hooke group is the nonrelativistic limit of de Sitter (anti-de Sitter) group, which can be enlarged with transformations that describe constant acceleration. We consider a higher order Lagrangian that is quasi-invariant under the acceleration-extended Newton-Hooke symmetry, and obtain the Schroedinger equation quantizing the Hamiltonian corresponding to its first order form. We show that the Schroedinger equation is invariant under the acceleration-extended Newton-Hooke transformations. We also discuss briefly the exotic conformal Newton-Hooke symmetry in 2+1 dimensions
Broken SU(4) Symmetry and The Fractional Quantum Hall Effect in Graphene
Sodemann, Inti; MacDonald, Allan
2014-03-01
We describe a simple variational approach to understand the spin-valley broken symmetry states in the fractional quantum Hall regime of graphene. Our approach allows to predict the incompressible ground states and their charge gaps and is able to explain the observed differences between filling factor ranges | ν | normal which allows to tune the relative strength of Zeeman and valley symmetry breaking interactions. Supported by DOE Division of Materials Sciences and Engineering under grant DE-FG03-02ER45958 and by the Welch foundation under grant TBF1473.
CP violation and modular symmetries
International Nuclear Information System (INIS)
Dent, Thomas
2001-01-01
We reconsider the origin of CP violation in fundamental theory. Existing string models of spontaneous CP violation make ambiguous predictions, due to the arbitrariness of CP transformation and the apparent noninvariance of the results under duality. We find a modular CP invariance condition, applicable to any predictive model of spontaneous CP violation, which circumvents these problems; it strongly constrains CP violation by heterotic string moduli. The dilaton is also evaluated as a source of CP violation, but is likely experimentally excluded. We consider the prospects for explaining CP violation in strongly coupled strings and brane worlds
Mirror symmetry, chiral symmetry breaking, and antihydrogen states in natural atomic H
Van Hooydonk, G
2002-01-01
Molecular band spectra reveal a left-right symmetry for atoms Yvan Hooydonk, Spectrochim. Acta A 56, 2273 (2000)Â¿. Intra-atomic left- right symmetry points to antiatom states and, to make sense, this must also show in line spectra. H Lyman ns singlets show a mirror plane at quantum number n/sub 0/= 1/2 pi . A symmetry-breaking oscillator (1- 1/2 pi /n)/sup 2/ means that some of these n states are antihydrogenic. This view runs ahead of CERN's antiproton decelerator project on antihydrogen. (7 refs).
Pole Inflation - Shift Symmetry and Universal Corrections
Broy, Benedict J.; Galante, Mario; Roest, Diederik; Westphal, Alexander
2015-01-01
An appealing explanation for the Planck data is provided by inflationary models with a singular non-canonical kinetic term: a Laurent expansion of the kinetic function translates into a potential with a nearly shift-symmetric plateau in canonical fields. The shift symmetry can be broken at large
Cobimaximal lepton mixing from soft symmetry breaking
Grimus, W.; Lavoura, L.
2017-11-01
Cobimaximal lepton mixing, i.e.θ23 = 45 ° and δ = ± 90 ° in the lepton mixing matrix V, arises as a consequence of SV =V* P, where S is the permutation matrix that interchanges the second and third rows of V and P is a diagonal matrix of phase factors. We prove that any such V may be written in the form V = URP, where U is any predefined unitary matrix satisfying SU =U*, R is an orthogonal, i.e. real, matrix, and P is a diagonal matrix satisfying P2 = P. Using this theorem, we demonstrate the equivalence of two ways of constructing models for cobimaximal mixing-one way that uses a standard CP symmetry and a different way that uses a CP symmetry including μ-τ interchange. We also present two simple seesaw models to illustrate this equivalence; those models have, in addition to the CP symmetry, flavour symmetries broken softly by the Majorana mass terms of the right-handed neutrino singlets. Since each of the two models needs four scalar doublets, we investigate how to accommodate the Standard Model Higgs particle in them.
Dynamical Symmetry Breaking in RN Quantum Gravity
Directory of Open Access Journals (Sweden)
A. T. Kotvytskiy
2011-01-01
Full Text Available We show that in the RN gravitation model, there is no dynamical symmetry breaking effect in the formalism of the Schwinger-Dyson equation (in flat background space-time. A general formula for the second variation of the gravitational action is obtained from the quantum corrections hμν (in arbitrary background metrics.
Symmetries and Interactions in Matrix String Theory
Hacquebord, F.H.
1999-01-01
This PhD-thesis reviews matrix string theory and recent developments therein. The emphasis is put on symmetries, interactions and scattering processes in the matrix model. We start with an introduction to matrix string theory and a review of the orbifold model that flows out of matrix string theory
Structure and Properties of High Symmetry Composites
1990-07-27
In Part I of this study, 3-D fiber architectures were classified according to the method of manufacture, symmetry and geometric isotopy . It was...concluded that a classification scheme based on geometric isotopy provides the most efficient and useful method for the modelling of the 3-D composite
The Absolute Normal Scores Test for Symmetry
Penfield, Douglas A.; Sachdeva, Darshan
1976-01-01
The absolute normal scores test is described as a test for the symmetry of a distribution of scores about a location parameter. The test is compared to the sign test and the Wilcoxon test as an alternative to the "t"-test. (Editor/RK)
Maintaining symmetry of simulated likelihood functions
DEFF Research Database (Denmark)
Andersen, Laura Mørch
This paper suggests solutions to two different types of simulation errors related to Quasi-Monte Carlo integration. Likelihood functions which depend on standard deviations of mixed parameters are symmetric in nature. This paper shows that antithetic draws preserve this symmetry and thereby...
Involution symmetries and the PMNS matrix
Indian Academy of Sciences (India)
Palash B Pal
2017-10-09
Oct 9, 2017 ... 1Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700 064, India. 2Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick ... paper [3] we take the third assumption in addition, and try to find symmetries consistent with this extra one. The purpose of this talk is ...
Symmetry in crystallography understanding the international tables
Radaelli, Paolo G
2011-01-01
A fresh approach to teaching crystallographic symmetry. Rather than being swamped by heavy algebraic notation, the reader is taken through a series of simple and beautiful examples from the visual arts, and taught how to analyse them employing the 'pictorial' diagrams used in the international tables of crystallography.
Equilibria with incompressible flows from symmetry analysis
Energy Technology Data Exchange (ETDEWEB)
Kuiroukidis, Ap, E-mail: kouirouki@astro.auth.gr, E-mail: gthroum@cc.uoi.gr [Technological Education Institute of Serres, 62124 Serres (Greece); Throumoulopoulos, G. N., E-mail: kouirouki@astro.auth.gr, E-mail: gthroum@cc.uoi.gr [Department of Physics, University of Ioannina, GR 451 10 Ioannina (Greece)
2015-08-15
We identify and study new nonlinear axisymmetric equilibria with incompressible flow of arbitrary direction satisfying a generalized Grad Shafranov equation by extending the symmetry analysis presented by Cicogna and Pegoraro [Phys. Plasmas 22, 022520 (2015)]. In particular, we construct a typical tokamak D-shaped equilibrium with peaked toroidal current density, monotonically varying safety factor, and sheared electric field.
Large hierarchies from approximate R symmetries
International Nuclear Information System (INIS)
Kappl, Rolf; Ratz, Michael; Vaudrevange, Patrick K.S.
2008-12-01
We show that hierarchically small vacuum expectation values of the superpotential in supersymmetric theories can be a consequence of an approximate R symmetry. We briefly discuss the role of such small constants in moduli stabilization and understanding the huge hierarchy between the Planck and electroweak scales. (orig.)
Neutrino mass and mixing with discrete symmetry
King, Stephen F.; Luhn, Christoph
2013-05-01
This is a review paper about neutrino mass and mixing and flavour model building strategies based on discrete family symmetry. After a pedagogical introduction and overview of the whole of neutrino physics, we focus on the PMNS mixing matrix and the latest global fits following the Daya Bay and RENO experiments which measure the reactor angle. We then describe the simple bimaximal, tri-bimaximal and golden ratio patterns of lepton mixing and the deviations required for a non-zero reactor angle, with solar or atmospheric mixing sum rules resulting from charged lepton corrections or residual trimaximal mixing. The different types of see-saw mechanism are then reviewed as well as the sequential dominance mechanism. We then give a mini-review of finite group theory, which may be used as a discrete family symmetry broken by flavons either completely, or with different subgroups preserved in the neutrino and charged lepton sectors. These two approaches are then reviewed in detail in separate chapters including mechanisms for flavon vacuum alignment and different model building strategies that have been proposed to generate the reactor angle. We then briefly review grand unified theories (GUTs) and how they may be combined with discrete family symmetry to describe all quark and lepton masses and mixing. Finally, we discuss three model examples which combine an SU(5) GUT with the discrete family symmetries A4, S4 and Δ(96).
Symmetry and physical properties of crystals
Malgrange, Cécile; Schlenker, Michel
2014-01-01
Crystals are everywhere, from natural crystals (minerals) through the semiconductors and magnetic materials in electronic devices and computers or piezoelectric resonators at the heart of our quartz watches to electro-optical devices. Understanding them in depth is essential both for pure research and for their applications. This book provides a clear, thorough presentation of their symmetry, both at the microscopic space-group level and the macroscopic point-group level. The implications of the symmetry of crystals for their physical properties are then presented, together with their mathematical description in terms of tensors. The conditions on the symmetry of a crystal for a given property to exist then become clear, as does the symmetry of the property. The geometrical representation of tensor quantities or properties is presented, and its use in determining important relationships emphasized. An original feature of this book is that most chapters include exercises with complete solutions. This all...
The quantum symmetry of rational field theories
International Nuclear Information System (INIS)
Fuchs, J.
1993-12-01
The quantum symmetry of a rational quantum field theory is a finite-dimensional multi-matrix algebra. Its representation category, which determines the fusion rules and braid group representations of superselection sectors, is a braided monoidal C*-category. Various properties of such algebraic structures are described, and some ideas concerning the classification programme are outlined. (orig.)
Symmetry and resonance in Hamiltonian systems
Tuwankotta, J.M.; Verhulst, F.
2000-01-01
In this paper we study resonances in two degrees of freedom, autonomous, hamiltonian systems. Due to the presence of a symmetry condition on one of the degrees of freedom, we show that some of the resonances vanish as lower order resonances. After giving a sharp estimate of the resonance domain, we
Symmetry and resonance in Hamiltonian systems
Tuwankotta, J.M.; Verhulst, F.
1999-01-01
In this paper we study resonances in two degrees of freedom, autonomous, hamiltonian systems. Due to the presence of a symmetry condition on one of the degrees of freedom, we show that some of the resonances vanish as lower order resonances. After determining the size of the resonance domain, we
Folded Fashions: Symmetry in Clothing Design.
Evered, Lisa J.
1992-01-01
Fashion design is a field perceived as both a female and male domain that utilizes mathematics. Presents creative activities to teach the concept of symmetry as applied in fashion designs in the style of the famous French designer Madeleine Vionnet. (MDH)
The "ghost" symmetry in the CKP hierarchy
Cheng, Jipeng; He, Jingsong
2014-06-01
In this paper, we systematically study the "ghost" symmetry in the CKP hierarchy through its actions on the Lax operator, dressing operator, eigenfunctions and the tau function. In this process, the spectral representation of the eigenfunction is developed and the squared eigenfunction potential is investigated.
Hidden symmetry of a free fermion model
International Nuclear Information System (INIS)
Bazhanov, V.V.; Stroganov, Yu.G.
1984-01-01
A well-known eight-vertex free fermion model on a plane lattice is considered. Solving triangle equations and using the symmetry properties of the model, an elliptic parametrization for Boltzmann vertex weights is constructed. In the parametrization the weights are meromorphic functions of three complex variables
Introduction to chiral symmetry in QCD
Directory of Open Access Journals (Sweden)
Sazdjian H.
2017-01-01
Full Text Available The main aspects of chiral symmetry in QCD are presented. The necessity of its spontaneous breakdown is explained. Some low-energy theorems are reviewed. The role of chiral effective Lagrangians in the formulation and realization of chiral perturbation theory is emphasized. The consequences of the presence of anomalies are sketched.
Symmetry Approach and Exact Solutions in Hydrodynamics
Golovin, Sergey V.
2005-01-01
The application of symmetry analysis in hydrodynamics is illustrated by two examples. First is a description of all irrotational barochronous motions of ideal gas. The second is an exact solution of magnetohydrodynamics equations for infinitely conducting media, which describes the flow of so called “special vortex” type.
Nuclear symmetry energy: An experimental overview
Indian Academy of Sciences (India)
The nuclear matter symmetry energy, which is defined as the difference in energy per nucleon between the pure neutron matter and the symmetric nuclear matter ... Hartree–Fock (DBHF) calculations, or the phenomenological calculations such as the Skyrme Hartree–Fock (SHF) and the relativistic mean field (RMF) calcula-.
Fundamental symmetries and interactions-selected topics
Jungmann, Klaus P.
2015-01-01
In the field of fundamental interactions and symmetries numerous experiments are underway or planned in order to verify the standard model in particle physics, to search for possible extensions to it or to exploit the standard model for extracting most precise values for fundamental constants. We
Dynamical symmetry and higher-order interactions
International Nuclear Information System (INIS)
Van Isacker, P.
1999-01-01
It is shown that the concept of dynamical symmetry is enriched by increasing the order the interactions between the constituent particles of a given many-body-system. The idea is illustrated with an analysis of higher-order interactions in the interacting boson model. (author)
Magnetic rotation and chiral symmetry breaking
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 57; Issue 2-3 ... Most of the symmetry operations considered so far have been deﬁned for a situation wherein the angular momentum coincides with one of the principal axes and ... The total angular momentum vector in such bands is tilted away from the principal axes.
Symplectic symmetry in the nuclear shell model
French, J.B.
The nature of the general two-particle interaction which is compatible with symplectic symmetry in the jj coupling shell model is investigated. The essential result is that, to within an additive constant and an additive multiple of T2, the interaction should have the form of a sum of scalar
Electroweak symmetry breaking beyond the Standard Model
Indian Academy of Sciences (India)
In this paper, two key issues related to electroweak symmetry breaking are addressed. First, how ﬁne-tuned different models are that trigger this phenomenon? Second, even if a light Higgs boson exists, does it have to be necessarily elementary? After a brief introduction, the ﬁne-tuning aspects of the MSSM, NMSSM, ...
Dynamical symmetry and higher-order interactions
Energy Technology Data Exchange (ETDEWEB)
Van Isacker, P. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)
1999-07-01
It is shown that the concept of dynamical symmetry is enriched by increasing the order the interactions between the constituent particles of a given many-body-system. The idea is illustrated with an analysis of higher-order interactions in the interacting boson model. (author)
Electrospin and broken SU(2) symmetry
International Nuclear Information System (INIS)
Chew, G.F.; Finkelstein, J.
1983-01-01
We identify within topological particle theory a broken SU(2) ''electrospin'' symmetry and enumerate a related collection of exact and approximate conservation laws. One component of electrospin, equal to Q-(1/2)(B-L), is always conserved. The connection of electrospin with strong and weak isospin is discussed
Unified gauge theories with spontaneous symmetry breaking
International Nuclear Information System (INIS)
MacDowell, S.W.
1975-01-01
Unified gauge theories with spontaneous symmetry breaking are studied with a view to renormalize quantum field theory. Georgi-Glashow and Weinberg-Salam models to unify weak and electromagnetic interactions are discussed in detail. Gauge theories of strong interactions are also considered [pt
New symmetries in heavy flavor physics
International Nuclear Information System (INIS)
Bjorken, J.D.
1990-06-01
Isgur and Wise have found that the formal limit M b , M c → ∞ leads to very great simplification in the general structure of the electroweak matrix elements of hadrons containing those quarks. In additions, interesting new symmetries appear in this limit. Their results are discussed, as well as some natural extensions to matrix elements of products of currents. 11 refs
Configuration-mixed effective SU(3) symmetries
Hess, P O; Hunyadi, M; Kvi, A G; Cseh, J
2002-01-01
The procedure of Jarrio et al. (Nucl. Phys. A 528, 409 (1991)) for the determination of the effective SU(3) symmetry of nuclear states is extended to small deformations and to oblate nuclei. Self-consistency checks are carried out both for light and for heavy nuclei. (orig.)